]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/cpufreq/powernv-cpufreq.c
Merge branch 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdim...
[karo-tx-linux.git] / drivers / cpufreq / powernv-cpufreq.c
1 /*
2  * POWERNV cpufreq driver for the IBM POWER processors
3  *
4  * (C) Copyright IBM 2014
5  *
6  * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  */
19
20 #define pr_fmt(fmt)     "powernv-cpufreq: " fmt
21
22 #include <linux/kernel.h>
23 #include <linux/sysfs.h>
24 #include <linux/cpumask.h>
25 #include <linux/module.h>
26 #include <linux/cpufreq.h>
27 #include <linux/smp.h>
28 #include <linux/of.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <trace/events/power.h>
33
34 #include <asm/cputhreads.h>
35 #include <asm/firmware.h>
36 #include <asm/reg.h>
37 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
38 #include <asm/opal.h>
39 #include <linux/timer.h>
40
41 #define POWERNV_MAX_PSTATES     256
42 #define PMSR_PSAFE_ENABLE       (1UL << 30)
43 #define PMSR_SPR_EM_DISABLE     (1UL << 31)
44 #define PMSR_MAX(x)             ((x >> 32) & 0xFF)
45 #define LPSTATE_SHIFT           48
46 #define GPSTATE_SHIFT           56
47 #define GET_LPSTATE(x)          (((x) >> LPSTATE_SHIFT) & 0xFF)
48 #define GET_GPSTATE(x)          (((x) >> GPSTATE_SHIFT) & 0xFF)
49
50 #define MAX_RAMP_DOWN_TIME                              5120
51 /*
52  * On an idle system we want the global pstate to ramp-down from max value to
53  * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
54  * then ramp-down rapidly later on.
55  *
56  * This gives a percentage rampdown for time elapsed in milliseconds.
57  * ramp_down_percentage = ((ms * ms) >> 18)
58  *                      ~= 3.8 * (sec * sec)
59  *
60  * At 0 ms      ramp_down_percent = 0
61  * At 5120 ms   ramp_down_percent = 100
62  */
63 #define ramp_down_percent(time)         ((time * time) >> 18)
64
65 /* Interval after which the timer is queued to bring down global pstate */
66 #define GPSTATE_TIMER_INTERVAL                          2000
67
68 /**
69  * struct global_pstate_info -  Per policy data structure to maintain history of
70  *                              global pstates
71  * @highest_lpstate_idx:        The local pstate index from which we are
72  *                              ramping down
73  * @elapsed_time:               Time in ms spent in ramping down from
74  *                              highest_lpstate_idx
75  * @last_sampled_time:          Time from boot in ms when global pstates were
76  *                              last set
77  * @last_lpstate_idx,           Last set value of local pstate and global
78  * last_gpstate_idx             pstate in terms of cpufreq table index
79  * @timer:                      Is used for ramping down if cpu goes idle for
80  *                              a long time with global pstate held high
81  * @gpstate_lock:               A spinlock to maintain synchronization between
82  *                              routines called by the timer handler and
83  *                              governer's target_index calls
84  */
85 struct global_pstate_info {
86         int highest_lpstate_idx;
87         unsigned int elapsed_time;
88         unsigned int last_sampled_time;
89         int last_lpstate_idx;
90         int last_gpstate_idx;
91         spinlock_t gpstate_lock;
92         struct timer_list timer;
93 };
94
95 static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
96 static bool rebooting, throttled, occ_reset;
97
98 static const char * const throttle_reason[] = {
99         "No throttling",
100         "Power Cap",
101         "Processor Over Temperature",
102         "Power Supply Failure",
103         "Over Current",
104         "OCC Reset"
105 };
106
107 enum throttle_reason_type {
108         NO_THROTTLE = 0,
109         POWERCAP,
110         CPU_OVERTEMP,
111         POWER_SUPPLY_FAILURE,
112         OVERCURRENT,
113         OCC_RESET_THROTTLE,
114         OCC_MAX_REASON
115 };
116
117 static struct chip {
118         unsigned int id;
119         bool throttled;
120         bool restore;
121         u8 throttle_reason;
122         cpumask_t mask;
123         struct work_struct throttle;
124         int throttle_turbo;
125         int throttle_sub_turbo;
126         int reason[OCC_MAX_REASON];
127 } *chips;
128
129 static int nr_chips;
130 static DEFINE_PER_CPU(struct chip *, chip_info);
131
132 /*
133  * Note:
134  * The set of pstates consists of contiguous integers.
135  * powernv_pstate_info stores the index of the frequency table for
136  * max, min and nominal frequencies. It also stores number of
137  * available frequencies.
138  *
139  * powernv_pstate_info.nominal indicates the index to the highest
140  * non-turbo frequency.
141  */
142 static struct powernv_pstate_info {
143         unsigned int min;
144         unsigned int max;
145         unsigned int nominal;
146         unsigned int nr_pstates;
147         bool wof_enabled;
148 } powernv_pstate_info;
149
150 /* Use following macros for conversions between pstate_id and index */
151 static inline int idx_to_pstate(unsigned int i)
152 {
153         if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
154                 pr_warn_once("index %u is out of bound\n", i);
155                 return powernv_freqs[powernv_pstate_info.nominal].driver_data;
156         }
157
158         return powernv_freqs[i].driver_data;
159 }
160
161 static inline unsigned int pstate_to_idx(int pstate)
162 {
163         int min = powernv_freqs[powernv_pstate_info.min].driver_data;
164         int max = powernv_freqs[powernv_pstate_info.max].driver_data;
165
166         if (min > 0) {
167                 if (unlikely((pstate < max) || (pstate > min))) {
168                         pr_warn_once("pstate %d is out of bound\n", pstate);
169                         return powernv_pstate_info.nominal;
170                 }
171         } else {
172                 if (unlikely((pstate > max) || (pstate < min))) {
173                         pr_warn_once("pstate %d is out of bound\n", pstate);
174                         return powernv_pstate_info.nominal;
175                 }
176         }
177         /*
178          * abs() is deliberately used so that is works with
179          * both monotonically increasing and decreasing
180          * pstate values
181          */
182         return abs(pstate - idx_to_pstate(powernv_pstate_info.max));
183 }
184
185 static inline void reset_gpstates(struct cpufreq_policy *policy)
186 {
187         struct global_pstate_info *gpstates = policy->driver_data;
188
189         gpstates->highest_lpstate_idx = 0;
190         gpstates->elapsed_time = 0;
191         gpstates->last_sampled_time = 0;
192         gpstates->last_lpstate_idx = 0;
193         gpstates->last_gpstate_idx = 0;
194 }
195
196 /*
197  * Initialize the freq table based on data obtained
198  * from the firmware passed via device-tree
199  */
200 static int init_powernv_pstates(void)
201 {
202         struct device_node *power_mgt;
203         int i, nr_pstates = 0;
204         const __be32 *pstate_ids, *pstate_freqs;
205         u32 len_ids, len_freqs;
206         u32 pstate_min, pstate_max, pstate_nominal;
207         u32 pstate_turbo, pstate_ultra_turbo;
208
209         power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
210         if (!power_mgt) {
211                 pr_warn("power-mgt node not found\n");
212                 return -ENODEV;
213         }
214
215         if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
216                 pr_warn("ibm,pstate-min node not found\n");
217                 return -ENODEV;
218         }
219
220         if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
221                 pr_warn("ibm,pstate-max node not found\n");
222                 return -ENODEV;
223         }
224
225         if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
226                                  &pstate_nominal)) {
227                 pr_warn("ibm,pstate-nominal not found\n");
228                 return -ENODEV;
229         }
230
231         if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo",
232                                  &pstate_ultra_turbo)) {
233                 powernv_pstate_info.wof_enabled = false;
234                 goto next;
235         }
236
237         if (of_property_read_u32(power_mgt, "ibm,pstate-turbo",
238                                  &pstate_turbo)) {
239                 powernv_pstate_info.wof_enabled = false;
240                 goto next;
241         }
242
243         if (pstate_turbo == pstate_ultra_turbo)
244                 powernv_pstate_info.wof_enabled = false;
245         else
246                 powernv_pstate_info.wof_enabled = true;
247
248 next:
249         pr_info("cpufreq pstate min %d nominal %d max %d\n", pstate_min,
250                 pstate_nominal, pstate_max);
251         pr_info("Workload Optimized Frequency is %s in the platform\n",
252                 (powernv_pstate_info.wof_enabled) ? "enabled" : "disabled");
253
254         pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
255         if (!pstate_ids) {
256                 pr_warn("ibm,pstate-ids not found\n");
257                 return -ENODEV;
258         }
259
260         pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
261                                       &len_freqs);
262         if (!pstate_freqs) {
263                 pr_warn("ibm,pstate-frequencies-mhz not found\n");
264                 return -ENODEV;
265         }
266
267         if (len_ids != len_freqs) {
268                 pr_warn("Entries in ibm,pstate-ids and "
269                         "ibm,pstate-frequencies-mhz does not match\n");
270         }
271
272         nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
273         if (!nr_pstates) {
274                 pr_warn("No PStates found\n");
275                 return -ENODEV;
276         }
277
278         powernv_pstate_info.nr_pstates = nr_pstates;
279         pr_debug("NR PStates %d\n", nr_pstates);
280         for (i = 0; i < nr_pstates; i++) {
281                 u32 id = be32_to_cpu(pstate_ids[i]);
282                 u32 freq = be32_to_cpu(pstate_freqs[i]);
283
284                 pr_debug("PState id %d freq %d MHz\n", id, freq);
285                 powernv_freqs[i].frequency = freq * 1000; /* kHz */
286                 powernv_freqs[i].driver_data = id;
287
288                 if (id == pstate_max)
289                         powernv_pstate_info.max = i;
290                 else if (id == pstate_nominal)
291                         powernv_pstate_info.nominal = i;
292                 else if (id == pstate_min)
293                         powernv_pstate_info.min = i;
294
295                 if (powernv_pstate_info.wof_enabled && id == pstate_turbo) {
296                         int j;
297
298                         for (j = i - 1; j >= (int)powernv_pstate_info.max; j--)
299                                 powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ;
300                 }
301         }
302
303         /* End of list marker entry */
304         powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
305         return 0;
306 }
307
308 /* Returns the CPU frequency corresponding to the pstate_id. */
309 static unsigned int pstate_id_to_freq(int pstate_id)
310 {
311         int i;
312
313         i = pstate_to_idx(pstate_id);
314         if (i >= powernv_pstate_info.nr_pstates || i < 0) {
315                 pr_warn("PState id %d outside of PState table, "
316                         "reporting nominal id %d instead\n",
317                         pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
318                 i = powernv_pstate_info.nominal;
319         }
320
321         return powernv_freqs[i].frequency;
322 }
323
324 /*
325  * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
326  * the firmware
327  */
328 static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
329                                         char *buf)
330 {
331         return sprintf(buf, "%u\n",
332                 powernv_freqs[powernv_pstate_info.nominal].frequency);
333 }
334
335 struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
336         __ATTR_RO(cpuinfo_nominal_freq);
337
338 #define SCALING_BOOST_FREQS_ATTR_INDEX          2
339
340 static struct freq_attr *powernv_cpu_freq_attr[] = {
341         &cpufreq_freq_attr_scaling_available_freqs,
342         &cpufreq_freq_attr_cpuinfo_nominal_freq,
343         &cpufreq_freq_attr_scaling_boost_freqs,
344         NULL,
345 };
346
347 #define throttle_attr(name, member)                                     \
348 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf)    \
349 {                                                                       \
350         struct chip *chip = per_cpu(chip_info, policy->cpu);            \
351                                                                         \
352         return sprintf(buf, "%u\n", chip->member);                      \
353 }                                                                       \
354                                                                         \
355 static struct freq_attr throttle_attr_##name = __ATTR_RO(name)          \
356
357 throttle_attr(unthrottle, reason[NO_THROTTLE]);
358 throttle_attr(powercap, reason[POWERCAP]);
359 throttle_attr(overtemp, reason[CPU_OVERTEMP]);
360 throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
361 throttle_attr(overcurrent, reason[OVERCURRENT]);
362 throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
363 throttle_attr(turbo_stat, throttle_turbo);
364 throttle_attr(sub_turbo_stat, throttle_sub_turbo);
365
366 static struct attribute *throttle_attrs[] = {
367         &throttle_attr_unthrottle.attr,
368         &throttle_attr_powercap.attr,
369         &throttle_attr_overtemp.attr,
370         &throttle_attr_supply_fault.attr,
371         &throttle_attr_overcurrent.attr,
372         &throttle_attr_occ_reset.attr,
373         &throttle_attr_turbo_stat.attr,
374         &throttle_attr_sub_turbo_stat.attr,
375         NULL,
376 };
377
378 static const struct attribute_group throttle_attr_grp = {
379         .name   = "throttle_stats",
380         .attrs  = throttle_attrs,
381 };
382
383 /* Helper routines */
384
385 /* Access helpers to power mgt SPR */
386
387 static inline unsigned long get_pmspr(unsigned long sprn)
388 {
389         switch (sprn) {
390         case SPRN_PMCR:
391                 return mfspr(SPRN_PMCR);
392
393         case SPRN_PMICR:
394                 return mfspr(SPRN_PMICR);
395
396         case SPRN_PMSR:
397                 return mfspr(SPRN_PMSR);
398         }
399         BUG();
400 }
401
402 static inline void set_pmspr(unsigned long sprn, unsigned long val)
403 {
404         switch (sprn) {
405         case SPRN_PMCR:
406                 mtspr(SPRN_PMCR, val);
407                 return;
408
409         case SPRN_PMICR:
410                 mtspr(SPRN_PMICR, val);
411                 return;
412         }
413         BUG();
414 }
415
416 /*
417  * Use objects of this type to query/update
418  * pstates on a remote CPU via smp_call_function.
419  */
420 struct powernv_smp_call_data {
421         unsigned int freq;
422         int pstate_id;
423         int gpstate_id;
424 };
425
426 /*
427  * powernv_read_cpu_freq: Reads the current frequency on this CPU.
428  *
429  * Called via smp_call_function.
430  *
431  * Note: The caller of the smp_call_function should pass an argument of
432  * the type 'struct powernv_smp_call_data *' along with this function.
433  *
434  * The current frequency on this CPU will be returned via
435  * ((struct powernv_smp_call_data *)arg)->freq;
436  */
437 static void powernv_read_cpu_freq(void *arg)
438 {
439         unsigned long pmspr_val;
440         s8 local_pstate_id;
441         struct powernv_smp_call_data *freq_data = arg;
442
443         pmspr_val = get_pmspr(SPRN_PMSR);
444
445         /*
446          * The local pstate id corresponds bits 48..55 in the PMSR.
447          * Note: Watch out for the sign!
448          */
449         local_pstate_id = (pmspr_val >> 48) & 0xFF;
450         freq_data->pstate_id = local_pstate_id;
451         freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
452
453         pr_debug("cpu %d pmsr %016lX pstate_id %d frequency %d kHz\n",
454                 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
455                 freq_data->freq);
456 }
457
458 /*
459  * powernv_cpufreq_get: Returns the CPU frequency as reported by the
460  * firmware for CPU 'cpu'. This value is reported through the sysfs
461  * file cpuinfo_cur_freq.
462  */
463 static unsigned int powernv_cpufreq_get(unsigned int cpu)
464 {
465         struct powernv_smp_call_data freq_data;
466
467         smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
468                         &freq_data, 1);
469
470         return freq_data.freq;
471 }
472
473 /*
474  * set_pstate: Sets the pstate on this CPU.
475  *
476  * This is called via an smp_call_function.
477  *
478  * The caller must ensure that freq_data is of the type
479  * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
480  * on this CPU should be present in freq_data->pstate_id.
481  */
482 static void set_pstate(void *data)
483 {
484         unsigned long val;
485         struct powernv_smp_call_data *freq_data = data;
486         unsigned long pstate_ul = freq_data->pstate_id;
487         unsigned long gpstate_ul = freq_data->gpstate_id;
488
489         val = get_pmspr(SPRN_PMCR);
490         val = val & 0x0000FFFFFFFFFFFFULL;
491
492         pstate_ul = pstate_ul & 0xFF;
493         gpstate_ul = gpstate_ul & 0xFF;
494
495         /* Set both global(bits 56..63) and local(bits 48..55) PStates */
496         val = val | (gpstate_ul << 56) | (pstate_ul << 48);
497
498         pr_debug("Setting cpu %d pmcr to %016lX\n",
499                         raw_smp_processor_id(), val);
500         set_pmspr(SPRN_PMCR, val);
501 }
502
503 /*
504  * get_nominal_index: Returns the index corresponding to the nominal
505  * pstate in the cpufreq table
506  */
507 static inline unsigned int get_nominal_index(void)
508 {
509         return powernv_pstate_info.nominal;
510 }
511
512 static void powernv_cpufreq_throttle_check(void *data)
513 {
514         struct chip *chip;
515         unsigned int cpu = smp_processor_id();
516         unsigned long pmsr;
517         int pmsr_pmax;
518         unsigned int pmsr_pmax_idx;
519
520         pmsr = get_pmspr(SPRN_PMSR);
521         chip = this_cpu_read(chip_info);
522
523         /* Check for Pmax Capping */
524         pmsr_pmax = (s8)PMSR_MAX(pmsr);
525         pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
526         if (pmsr_pmax_idx != powernv_pstate_info.max) {
527                 if (chip->throttled)
528                         goto next;
529                 chip->throttled = true;
530                 if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
531                         pr_warn_once("CPU %d on Chip %u has Pmax(%d) reduced below nominal frequency(%d)\n",
532                                      cpu, chip->id, pmsr_pmax,
533                                      idx_to_pstate(powernv_pstate_info.nominal));
534                         chip->throttle_sub_turbo++;
535                 } else {
536                         chip->throttle_turbo++;
537                 }
538                 trace_powernv_throttle(chip->id,
539                                       throttle_reason[chip->throttle_reason],
540                                       pmsr_pmax);
541         } else if (chip->throttled) {
542                 chip->throttled = false;
543                 trace_powernv_throttle(chip->id,
544                                       throttle_reason[chip->throttle_reason],
545                                       pmsr_pmax);
546         }
547
548         /* Check if Psafe_mode_active is set in PMSR. */
549 next:
550         if (pmsr & PMSR_PSAFE_ENABLE) {
551                 throttled = true;
552                 pr_info("Pstate set to safe frequency\n");
553         }
554
555         /* Check if SPR_EM_DISABLE is set in PMSR */
556         if (pmsr & PMSR_SPR_EM_DISABLE) {
557                 throttled = true;
558                 pr_info("Frequency Control disabled from OS\n");
559         }
560
561         if (throttled) {
562                 pr_info("PMSR = %16lx\n", pmsr);
563                 pr_warn("CPU Frequency could be throttled\n");
564         }
565 }
566
567 /**
568  * calc_global_pstate - Calculate global pstate
569  * @elapsed_time:               Elapsed time in milliseconds
570  * @local_pstate_idx:           New local pstate
571  * @highest_lpstate_idx:        pstate from which its ramping down
572  *
573  * Finds the appropriate global pstate based on the pstate from which its
574  * ramping down and the time elapsed in ramping down. It follows a quadratic
575  * equation which ensures that it reaches ramping down to pmin in 5sec.
576  */
577 static inline int calc_global_pstate(unsigned int elapsed_time,
578                                      int highest_lpstate_idx,
579                                      int local_pstate_idx)
580 {
581         int index_diff;
582
583         /*
584          * Using ramp_down_percent we get the percentage of rampdown
585          * that we are expecting to be dropping. Difference between
586          * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
587          * number of how many pstates we will drop eventually by the end of
588          * 5 seconds, then just scale it get the number pstates to be dropped.
589          */
590         index_diff =  ((int)ramp_down_percent(elapsed_time) *
591                         (powernv_pstate_info.min - highest_lpstate_idx)) / 100;
592
593         /* Ensure that global pstate is >= to local pstate */
594         if (highest_lpstate_idx + index_diff >= local_pstate_idx)
595                 return local_pstate_idx;
596         else
597                 return highest_lpstate_idx + index_diff;
598 }
599
600 static inline void  queue_gpstate_timer(struct global_pstate_info *gpstates)
601 {
602         unsigned int timer_interval;
603
604         /*
605          * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
606          * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
607          * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
608          * seconds of ramp down time.
609          */
610         if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
611              > MAX_RAMP_DOWN_TIME)
612                 timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
613         else
614                 timer_interval = GPSTATE_TIMER_INTERVAL;
615
616         mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
617 }
618
619 /**
620  * gpstate_timer_handler
621  *
622  * @data: pointer to cpufreq_policy on which timer was queued
623  *
624  * This handler brings down the global pstate closer to the local pstate
625  * according quadratic equation. Queues a new timer if it is still not equal
626  * to local pstate
627  */
628 void gpstate_timer_handler(unsigned long data)
629 {
630         struct cpufreq_policy *policy = (struct cpufreq_policy *)data;
631         struct global_pstate_info *gpstates = policy->driver_data;
632         int gpstate_idx, lpstate_idx;
633         unsigned long val;
634         unsigned int time_diff = jiffies_to_msecs(jiffies)
635                                         - gpstates->last_sampled_time;
636         struct powernv_smp_call_data freq_data;
637
638         if (!spin_trylock(&gpstates->gpstate_lock))
639                 return;
640
641         /*
642          * If PMCR was last updated was using fast_swtich then
643          * We may have wrong in gpstate->last_lpstate_idx
644          * value. Hence, read from PMCR to get correct data.
645          */
646         val = get_pmspr(SPRN_PMCR);
647         freq_data.gpstate_id = (s8)GET_GPSTATE(val);
648         freq_data.pstate_id = (s8)GET_LPSTATE(val);
649         if (freq_data.gpstate_id  == freq_data.pstate_id) {
650                 reset_gpstates(policy);
651                 spin_unlock(&gpstates->gpstate_lock);
652                 return;
653         }
654
655         gpstates->last_sampled_time += time_diff;
656         gpstates->elapsed_time += time_diff;
657
658         if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
659                 gpstate_idx = pstate_to_idx(freq_data.pstate_id);
660                 lpstate_idx = gpstate_idx;
661                 reset_gpstates(policy);
662                 gpstates->highest_lpstate_idx = gpstate_idx;
663         } else {
664                 lpstate_idx = pstate_to_idx(freq_data.pstate_id);
665                 gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
666                                                  gpstates->highest_lpstate_idx,
667                                                  lpstate_idx);
668         }
669         freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
670         gpstates->last_gpstate_idx = gpstate_idx;
671         gpstates->last_lpstate_idx = lpstate_idx;
672         /*
673          * If local pstate is equal to global pstate, rampdown is over
674          * So timer is not required to be queued.
675          */
676         if (gpstate_idx != gpstates->last_lpstate_idx)
677                 queue_gpstate_timer(gpstates);
678
679         spin_unlock(&gpstates->gpstate_lock);
680
681         /* Timer may get migrated to a different cpu on cpu hot unplug */
682         smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
683 }
684
685 /*
686  * powernv_cpufreq_target_index: Sets the frequency corresponding to
687  * the cpufreq table entry indexed by new_index on the cpus in the
688  * mask policy->cpus
689  */
690 static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
691                                         unsigned int new_index)
692 {
693         struct powernv_smp_call_data freq_data;
694         unsigned int cur_msec, gpstate_idx;
695         struct global_pstate_info *gpstates = policy->driver_data;
696
697         if (unlikely(rebooting) && new_index != get_nominal_index())
698                 return 0;
699
700         if (!throttled) {
701                 /* we don't want to be preempted while
702                  * checking if the CPU frequency has been throttled
703                  */
704                 preempt_disable();
705                 powernv_cpufreq_throttle_check(NULL);
706                 preempt_enable();
707         }
708
709         cur_msec = jiffies_to_msecs(get_jiffies_64());
710
711         spin_lock(&gpstates->gpstate_lock);
712         freq_data.pstate_id = idx_to_pstate(new_index);
713
714         if (!gpstates->last_sampled_time) {
715                 gpstate_idx = new_index;
716                 gpstates->highest_lpstate_idx = new_index;
717                 goto gpstates_done;
718         }
719
720         if (gpstates->last_gpstate_idx < new_index) {
721                 gpstates->elapsed_time += cur_msec -
722                                                  gpstates->last_sampled_time;
723
724                 /*
725                  * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
726                  * we should be resetting all global pstate related data. Set it
727                  * equal to local pstate to start fresh.
728                  */
729                 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
730                         reset_gpstates(policy);
731                         gpstates->highest_lpstate_idx = new_index;
732                         gpstate_idx = new_index;
733                 } else {
734                 /* Elaspsed_time is less than 5 seconds, continue to rampdown */
735                         gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
736                                                          gpstates->highest_lpstate_idx,
737                                                          new_index);
738                 }
739         } else {
740                 reset_gpstates(policy);
741                 gpstates->highest_lpstate_idx = new_index;
742                 gpstate_idx = new_index;
743         }
744
745         /*
746          * If local pstate is equal to global pstate, rampdown is over
747          * So timer is not required to be queued.
748          */
749         if (gpstate_idx != new_index)
750                 queue_gpstate_timer(gpstates);
751         else
752                 del_timer_sync(&gpstates->timer);
753
754 gpstates_done:
755         freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
756         gpstates->last_sampled_time = cur_msec;
757         gpstates->last_gpstate_idx = gpstate_idx;
758         gpstates->last_lpstate_idx = new_index;
759
760         spin_unlock(&gpstates->gpstate_lock);
761
762         /*
763          * Use smp_call_function to send IPI and execute the
764          * mtspr on target CPU.  We could do that without IPI
765          * if current CPU is within policy->cpus (core)
766          */
767         smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
768         return 0;
769 }
770
771 static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
772 {
773         int base, i, ret;
774         struct kernfs_node *kn;
775         struct global_pstate_info *gpstates;
776
777         base = cpu_first_thread_sibling(policy->cpu);
778
779         for (i = 0; i < threads_per_core; i++)
780                 cpumask_set_cpu(base + i, policy->cpus);
781
782         kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
783         if (!kn) {
784                 int ret;
785
786                 ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
787                 if (ret) {
788                         pr_info("Failed to create throttle stats directory for cpu %d\n",
789                                 policy->cpu);
790                         return ret;
791                 }
792         } else {
793                 kernfs_put(kn);
794         }
795
796         gpstates =  kzalloc(sizeof(*gpstates), GFP_KERNEL);
797         if (!gpstates)
798                 return -ENOMEM;
799
800         policy->driver_data = gpstates;
801
802         /* initialize timer */
803         init_timer_pinned_deferrable(&gpstates->timer);
804         gpstates->timer.data = (unsigned long)policy;
805         gpstates->timer.function = gpstate_timer_handler;
806         gpstates->timer.expires = jiffies +
807                                 msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
808         spin_lock_init(&gpstates->gpstate_lock);
809         ret = cpufreq_table_validate_and_show(policy, powernv_freqs);
810
811         if (ret < 0) {
812                 kfree(policy->driver_data);
813                 return ret;
814         }
815
816         policy->fast_switch_possible = true;
817         return ret;
818 }
819
820 static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
821 {
822         /* timer is deleted in cpufreq_cpu_stop() */
823         kfree(policy->driver_data);
824
825         return 0;
826 }
827
828 static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
829                                 unsigned long action, void *unused)
830 {
831         int cpu;
832         struct cpufreq_policy cpu_policy;
833
834         rebooting = true;
835         for_each_online_cpu(cpu) {
836                 cpufreq_get_policy(&cpu_policy, cpu);
837                 powernv_cpufreq_target_index(&cpu_policy, get_nominal_index());
838         }
839
840         return NOTIFY_DONE;
841 }
842
843 static struct notifier_block powernv_cpufreq_reboot_nb = {
844         .notifier_call = powernv_cpufreq_reboot_notifier,
845 };
846
847 void powernv_cpufreq_work_fn(struct work_struct *work)
848 {
849         struct chip *chip = container_of(work, struct chip, throttle);
850         unsigned int cpu;
851         cpumask_t mask;
852
853         get_online_cpus();
854         cpumask_and(&mask, &chip->mask, cpu_online_mask);
855         smp_call_function_any(&mask,
856                               powernv_cpufreq_throttle_check, NULL, 0);
857
858         if (!chip->restore)
859                 goto out;
860
861         chip->restore = false;
862         for_each_cpu(cpu, &mask) {
863                 int index;
864                 struct cpufreq_policy policy;
865
866                 cpufreq_get_policy(&policy, cpu);
867                 index = cpufreq_table_find_index_c(&policy, policy.cur);
868                 powernv_cpufreq_target_index(&policy, index);
869                 cpumask_andnot(&mask, &mask, policy.cpus);
870         }
871 out:
872         put_online_cpus();
873 }
874
875 static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
876                                    unsigned long msg_type, void *_msg)
877 {
878         struct opal_msg *msg = _msg;
879         struct opal_occ_msg omsg;
880         int i;
881
882         if (msg_type != OPAL_MSG_OCC)
883                 return 0;
884
885         omsg.type = be64_to_cpu(msg->params[0]);
886
887         switch (omsg.type) {
888         case OCC_RESET:
889                 occ_reset = true;
890                 pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
891                 /*
892                  * powernv_cpufreq_throttle_check() is called in
893                  * target() callback which can detect the throttle state
894                  * for governors like ondemand.
895                  * But static governors will not call target() often thus
896                  * report throttling here.
897                  */
898                 if (!throttled) {
899                         throttled = true;
900                         pr_warn("CPU frequency is throttled for duration\n");
901                 }
902
903                 break;
904         case OCC_LOAD:
905                 pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
906                 break;
907         case OCC_THROTTLE:
908                 omsg.chip = be64_to_cpu(msg->params[1]);
909                 omsg.throttle_status = be64_to_cpu(msg->params[2]);
910
911                 if (occ_reset) {
912                         occ_reset = false;
913                         throttled = false;
914                         pr_info("OCC Active, CPU frequency is no longer throttled\n");
915
916                         for (i = 0; i < nr_chips; i++) {
917                                 chips[i].restore = true;
918                                 schedule_work(&chips[i].throttle);
919                         }
920
921                         return 0;
922                 }
923
924                 for (i = 0; i < nr_chips; i++)
925                         if (chips[i].id == omsg.chip)
926                                 break;
927
928                 if (omsg.throttle_status >= 0 &&
929                     omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
930                         chips[i].throttle_reason = omsg.throttle_status;
931                         chips[i].reason[omsg.throttle_status]++;
932                 }
933
934                 if (!omsg.throttle_status)
935                         chips[i].restore = true;
936
937                 schedule_work(&chips[i].throttle);
938         }
939         return 0;
940 }
941
942 static struct notifier_block powernv_cpufreq_opal_nb = {
943         .notifier_call  = powernv_cpufreq_occ_msg,
944         .next           = NULL,
945         .priority       = 0,
946 };
947
948 static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
949 {
950         struct powernv_smp_call_data freq_data;
951         struct global_pstate_info *gpstates = policy->driver_data;
952
953         freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
954         freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
955         smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
956         del_timer_sync(&gpstates->timer);
957 }
958
959 static unsigned int powernv_fast_switch(struct cpufreq_policy *policy,
960                                         unsigned int target_freq)
961 {
962         int index;
963         struct powernv_smp_call_data freq_data;
964
965         index = cpufreq_table_find_index_dl(policy, target_freq);
966         freq_data.pstate_id = powernv_freqs[index].driver_data;
967         freq_data.gpstate_id = powernv_freqs[index].driver_data;
968         set_pstate(&freq_data);
969
970         return powernv_freqs[index].frequency;
971 }
972
973 static struct cpufreq_driver powernv_cpufreq_driver = {
974         .name           = "powernv-cpufreq",
975         .flags          = CPUFREQ_CONST_LOOPS,
976         .init           = powernv_cpufreq_cpu_init,
977         .exit           = powernv_cpufreq_cpu_exit,
978         .verify         = cpufreq_generic_frequency_table_verify,
979         .target_index   = powernv_cpufreq_target_index,
980         .fast_switch    = powernv_fast_switch,
981         .get            = powernv_cpufreq_get,
982         .stop_cpu       = powernv_cpufreq_stop_cpu,
983         .attr           = powernv_cpu_freq_attr,
984 };
985
986 static int init_chip_info(void)
987 {
988         unsigned int chip[256];
989         unsigned int cpu, i;
990         unsigned int prev_chip_id = UINT_MAX;
991
992         for_each_possible_cpu(cpu) {
993                 unsigned int id = cpu_to_chip_id(cpu);
994
995                 if (prev_chip_id != id) {
996                         prev_chip_id = id;
997                         chip[nr_chips++] = id;
998                 }
999         }
1000
1001         chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
1002         if (!chips)
1003                 return -ENOMEM;
1004
1005         for (i = 0; i < nr_chips; i++) {
1006                 chips[i].id = chip[i];
1007                 cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i]));
1008                 INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
1009                 for_each_cpu(cpu, &chips[i].mask)
1010                         per_cpu(chip_info, cpu) =  &chips[i];
1011         }
1012
1013         return 0;
1014 }
1015
1016 static inline void clean_chip_info(void)
1017 {
1018         kfree(chips);
1019 }
1020
1021 static inline void unregister_all_notifiers(void)
1022 {
1023         opal_message_notifier_unregister(OPAL_MSG_OCC,
1024                                          &powernv_cpufreq_opal_nb);
1025         unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
1026 }
1027
1028 static int __init powernv_cpufreq_init(void)
1029 {
1030         int rc = 0;
1031
1032         /* Don't probe on pseries (guest) platforms */
1033         if (!firmware_has_feature(FW_FEATURE_OPAL))
1034                 return -ENODEV;
1035
1036         /* Discover pstates from device tree and init */
1037         rc = init_powernv_pstates();
1038         if (rc)
1039                 goto out;
1040
1041         /* Populate chip info */
1042         rc = init_chip_info();
1043         if (rc)
1044                 goto out;
1045
1046         register_reboot_notifier(&powernv_cpufreq_reboot_nb);
1047         opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
1048
1049         if (powernv_pstate_info.wof_enabled)
1050                 powernv_cpufreq_driver.boost_enabled = true;
1051         else
1052                 powernv_cpu_freq_attr[SCALING_BOOST_FREQS_ATTR_INDEX] = NULL;
1053
1054         rc = cpufreq_register_driver(&powernv_cpufreq_driver);
1055         if (rc) {
1056                 pr_info("Failed to register the cpufreq driver (%d)\n", rc);
1057                 goto cleanup_notifiers;
1058         }
1059
1060         if (powernv_pstate_info.wof_enabled)
1061                 cpufreq_enable_boost_support();
1062
1063         return 0;
1064 cleanup_notifiers:
1065         unregister_all_notifiers();
1066         clean_chip_info();
1067 out:
1068         pr_info("Platform driver disabled. System does not support PState control\n");
1069         return rc;
1070 }
1071 module_init(powernv_cpufreq_init);
1072
1073 static void __exit powernv_cpufreq_exit(void)
1074 {
1075         cpufreq_unregister_driver(&powernv_cpufreq_driver);
1076         unregister_all_notifiers();
1077         clean_chip_info();
1078 }
1079 module_exit(powernv_cpufreq_exit);
1080
1081 MODULE_LICENSE("GPL");
1082 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");