]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/crypto/atmel-sha.c
mtd: nand: atmel: Add ->setup_data_interface() hooks
[karo-tx-linux.git] / drivers / crypto / atmel-sha.c
1 /*
2  * Cryptographic API.
3  *
4  * Support for ATMEL SHA1/SHA256 HW acceleration.
5  *
6  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
7  * Author: Nicolas Royer <nicolas@eukrea.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as published
11  * by the Free Software Foundation.
12  *
13  * Some ideas are from omap-sham.c drivers.
14  */
15
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/io.h>
23 #include <linux/hw_random.h>
24 #include <linux/platform_device.h>
25
26 #include <linux/device.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/irq.h>
31 #include <linux/scatterlist.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/of_device.h>
34 #include <linux/delay.h>
35 #include <linux/crypto.h>
36 #include <linux/cryptohash.h>
37 #include <crypto/scatterwalk.h>
38 #include <crypto/algapi.h>
39 #include <crypto/sha.h>
40 #include <crypto/hash.h>
41 #include <crypto/internal/hash.h>
42 #include <linux/platform_data/crypto-atmel.h>
43 #include "atmel-sha-regs.h"
44 #include "atmel-authenc.h"
45
46 /* SHA flags */
47 #define SHA_FLAGS_BUSY                  BIT(0)
48 #define SHA_FLAGS_FINAL                 BIT(1)
49 #define SHA_FLAGS_DMA_ACTIVE    BIT(2)
50 #define SHA_FLAGS_OUTPUT_READY  BIT(3)
51 #define SHA_FLAGS_INIT                  BIT(4)
52 #define SHA_FLAGS_CPU                   BIT(5)
53 #define SHA_FLAGS_DMA_READY             BIT(6)
54 #define SHA_FLAGS_DUMP_REG      BIT(7)
55
56 /* bits[11:8] are reserved. */
57
58 #define SHA_FLAGS_FINUP         BIT(16)
59 #define SHA_FLAGS_SG            BIT(17)
60 #define SHA_FLAGS_ERROR         BIT(23)
61 #define SHA_FLAGS_PAD           BIT(24)
62 #define SHA_FLAGS_RESTORE       BIT(25)
63 #define SHA_FLAGS_IDATAR0       BIT(26)
64 #define SHA_FLAGS_WAIT_DATARDY  BIT(27)
65
66 #define SHA_OP_INIT     0
67 #define SHA_OP_UPDATE   1
68 #define SHA_OP_FINAL    2
69 #define SHA_OP_DIGEST   3
70
71 #define SHA_BUFFER_LEN          (PAGE_SIZE / 16)
72
73 #define ATMEL_SHA_DMA_THRESHOLD         56
74
75 struct atmel_sha_caps {
76         bool    has_dma;
77         bool    has_dualbuff;
78         bool    has_sha224;
79         bool    has_sha_384_512;
80         bool    has_uihv;
81         bool    has_hmac;
82 };
83
84 struct atmel_sha_dev;
85
86 /*
87  * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
88  * tested by the ahash_prepare_alg() function.
89  */
90 struct atmel_sha_reqctx {
91         struct atmel_sha_dev    *dd;
92         unsigned long   flags;
93         unsigned long   op;
94
95         u8      digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
96         u64     digcnt[2];
97         size_t  bufcnt;
98         size_t  buflen;
99         dma_addr_t      dma_addr;
100
101         /* walk state */
102         struct scatterlist      *sg;
103         unsigned int    offset; /* offset in current sg */
104         unsigned int    total;  /* total request */
105
106         size_t block_size;
107         size_t hash_size;
108
109         u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
110 };
111
112 typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
113
114 struct atmel_sha_ctx {
115         struct atmel_sha_dev    *dd;
116         atmel_sha_fn_t          start;
117
118         unsigned long           flags;
119 };
120
121 #define ATMEL_SHA_QUEUE_LENGTH  50
122
123 struct atmel_sha_dma {
124         struct dma_chan                 *chan;
125         struct dma_slave_config dma_conf;
126         struct scatterlist      *sg;
127         int                     nents;
128         unsigned int            last_sg_length;
129 };
130
131 struct atmel_sha_dev {
132         struct list_head        list;
133         unsigned long           phys_base;
134         struct device           *dev;
135         struct clk                      *iclk;
136         int                                     irq;
137         void __iomem            *io_base;
138
139         spinlock_t              lock;
140         int                     err;
141         struct tasklet_struct   done_task;
142         struct tasklet_struct   queue_task;
143
144         unsigned long           flags;
145         struct crypto_queue     queue;
146         struct ahash_request    *req;
147         bool                    is_async;
148         bool                    force_complete;
149         atmel_sha_fn_t          resume;
150         atmel_sha_fn_t          cpu_transfer_complete;
151
152         struct atmel_sha_dma    dma_lch_in;
153
154         struct atmel_sha_caps   caps;
155
156         struct scatterlist      tmp;
157
158         u32     hw_version;
159 };
160
161 struct atmel_sha_drv {
162         struct list_head        dev_list;
163         spinlock_t              lock;
164 };
165
166 static struct atmel_sha_drv atmel_sha = {
167         .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
168         .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
169 };
170
171 #ifdef VERBOSE_DEBUG
172 static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
173 {
174         switch (offset) {
175         case SHA_CR:
176                 return "CR";
177
178         case SHA_MR:
179                 return "MR";
180
181         case SHA_IER:
182                 return "IER";
183
184         case SHA_IDR:
185                 return "IDR";
186
187         case SHA_IMR:
188                 return "IMR";
189
190         case SHA_ISR:
191                 return "ISR";
192
193         case SHA_MSR:
194                 return "MSR";
195
196         case SHA_BCR:
197                 return "BCR";
198
199         case SHA_REG_DIN(0):
200         case SHA_REG_DIN(1):
201         case SHA_REG_DIN(2):
202         case SHA_REG_DIN(3):
203         case SHA_REG_DIN(4):
204         case SHA_REG_DIN(5):
205         case SHA_REG_DIN(6):
206         case SHA_REG_DIN(7):
207         case SHA_REG_DIN(8):
208         case SHA_REG_DIN(9):
209         case SHA_REG_DIN(10):
210         case SHA_REG_DIN(11):
211         case SHA_REG_DIN(12):
212         case SHA_REG_DIN(13):
213         case SHA_REG_DIN(14):
214         case SHA_REG_DIN(15):
215                 snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
216                 break;
217
218         case SHA_REG_DIGEST(0):
219         case SHA_REG_DIGEST(1):
220         case SHA_REG_DIGEST(2):
221         case SHA_REG_DIGEST(3):
222         case SHA_REG_DIGEST(4):
223         case SHA_REG_DIGEST(5):
224         case SHA_REG_DIGEST(6):
225         case SHA_REG_DIGEST(7):
226         case SHA_REG_DIGEST(8):
227         case SHA_REG_DIGEST(9):
228         case SHA_REG_DIGEST(10):
229         case SHA_REG_DIGEST(11):
230         case SHA_REG_DIGEST(12):
231         case SHA_REG_DIGEST(13):
232         case SHA_REG_DIGEST(14):
233         case SHA_REG_DIGEST(15):
234                 if (wr)
235                         snprintf(tmp, sz, "IDATAR[%u]",
236                                  16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
237                 else
238                         snprintf(tmp, sz, "ODATAR[%u]",
239                                  (offset - SHA_REG_DIGEST(0)) >> 2);
240                 break;
241
242         case SHA_HW_VERSION:
243                 return "HWVER";
244
245         default:
246                 snprintf(tmp, sz, "0x%02x", offset);
247                 break;
248         }
249
250         return tmp;
251 }
252
253 #endif /* VERBOSE_DEBUG */
254
255 static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
256 {
257         u32 value = readl_relaxed(dd->io_base + offset);
258
259 #ifdef VERBOSE_DEBUG
260         if (dd->flags & SHA_FLAGS_DUMP_REG) {
261                 char tmp[16];
262
263                 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
264                          atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
265         }
266 #endif /* VERBOSE_DEBUG */
267
268         return value;
269 }
270
271 static inline void atmel_sha_write(struct atmel_sha_dev *dd,
272                                         u32 offset, u32 value)
273 {
274 #ifdef VERBOSE_DEBUG
275         if (dd->flags & SHA_FLAGS_DUMP_REG) {
276                 char tmp[16];
277
278                 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
279                          atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
280         }
281 #endif /* VERBOSE_DEBUG */
282
283         writel_relaxed(value, dd->io_base + offset);
284 }
285
286 static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
287 {
288         struct ahash_request *req = dd->req;
289
290         dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
291                        SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
292                        SHA_FLAGS_DUMP_REG);
293
294         clk_disable(dd->iclk);
295
296         if ((dd->is_async || dd->force_complete) && req->base.complete)
297                 req->base.complete(&req->base, err);
298
299         /* handle new request */
300         tasklet_schedule(&dd->queue_task);
301
302         return err;
303 }
304
305 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
306 {
307         size_t count;
308
309         while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
310                 count = min(ctx->sg->length - ctx->offset, ctx->total);
311                 count = min(count, ctx->buflen - ctx->bufcnt);
312
313                 if (count <= 0) {
314                         /*
315                         * Check if count <= 0 because the buffer is full or
316                         * because the sg length is 0. In the latest case,
317                         * check if there is another sg in the list, a 0 length
318                         * sg doesn't necessarily mean the end of the sg list.
319                         */
320                         if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
321                                 ctx->sg = sg_next(ctx->sg);
322                                 continue;
323                         } else {
324                                 break;
325                         }
326                 }
327
328                 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
329                         ctx->offset, count, 0);
330
331                 ctx->bufcnt += count;
332                 ctx->offset += count;
333                 ctx->total -= count;
334
335                 if (ctx->offset == ctx->sg->length) {
336                         ctx->sg = sg_next(ctx->sg);
337                         if (ctx->sg)
338                                 ctx->offset = 0;
339                         else
340                                 ctx->total = 0;
341                 }
342         }
343
344         return 0;
345 }
346
347 /*
348  * The purpose of this padding is to ensure that the padded message is a
349  * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
350  * The bit "1" is appended at the end of the message followed by
351  * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
352  * 128 bits block (SHA384/SHA512) equals to the message length in bits
353  * is appended.
354  *
355  * For SHA1/SHA224/SHA256, padlen is calculated as followed:
356  *  - if message length < 56 bytes then padlen = 56 - message length
357  *  - else padlen = 64 + 56 - message length
358  *
359  * For SHA384/SHA512, padlen is calculated as followed:
360  *  - if message length < 112 bytes then padlen = 112 - message length
361  *  - else padlen = 128 + 112 - message length
362  */
363 static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
364 {
365         unsigned int index, padlen;
366         u64 bits[2];
367         u64 size[2];
368
369         size[0] = ctx->digcnt[0];
370         size[1] = ctx->digcnt[1];
371
372         size[0] += ctx->bufcnt;
373         if (size[0] < ctx->bufcnt)
374                 size[1]++;
375
376         size[0] += length;
377         if (size[0]  < length)
378                 size[1]++;
379
380         bits[1] = cpu_to_be64(size[0] << 3);
381         bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
382
383         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
384         case SHA_FLAGS_SHA384:
385         case SHA_FLAGS_SHA512:
386                 index = ctx->bufcnt & 0x7f;
387                 padlen = (index < 112) ? (112 - index) : ((128+112) - index);
388                 *(ctx->buffer + ctx->bufcnt) = 0x80;
389                 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
390                 memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
391                 ctx->bufcnt += padlen + 16;
392                 ctx->flags |= SHA_FLAGS_PAD;
393                 break;
394
395         default:
396                 index = ctx->bufcnt & 0x3f;
397                 padlen = (index < 56) ? (56 - index) : ((64+56) - index);
398                 *(ctx->buffer + ctx->bufcnt) = 0x80;
399                 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
400                 memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
401                 ctx->bufcnt += padlen + 8;
402                 ctx->flags |= SHA_FLAGS_PAD;
403                 break;
404         }
405 }
406
407 static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
408 {
409         struct atmel_sha_dev *dd = NULL;
410         struct atmel_sha_dev *tmp;
411
412         spin_lock_bh(&atmel_sha.lock);
413         if (!tctx->dd) {
414                 list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
415                         dd = tmp;
416                         break;
417                 }
418                 tctx->dd = dd;
419         } else {
420                 dd = tctx->dd;
421         }
422
423         spin_unlock_bh(&atmel_sha.lock);
424
425         return dd;
426 }
427
428 static int atmel_sha_init(struct ahash_request *req)
429 {
430         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
431         struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
432         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
433         struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
434
435         ctx->dd = dd;
436
437         ctx->flags = 0;
438
439         dev_dbg(dd->dev, "init: digest size: %d\n",
440                 crypto_ahash_digestsize(tfm));
441
442         switch (crypto_ahash_digestsize(tfm)) {
443         case SHA1_DIGEST_SIZE:
444                 ctx->flags |= SHA_FLAGS_SHA1;
445                 ctx->block_size = SHA1_BLOCK_SIZE;
446                 break;
447         case SHA224_DIGEST_SIZE:
448                 ctx->flags |= SHA_FLAGS_SHA224;
449                 ctx->block_size = SHA224_BLOCK_SIZE;
450                 break;
451         case SHA256_DIGEST_SIZE:
452                 ctx->flags |= SHA_FLAGS_SHA256;
453                 ctx->block_size = SHA256_BLOCK_SIZE;
454                 break;
455         case SHA384_DIGEST_SIZE:
456                 ctx->flags |= SHA_FLAGS_SHA384;
457                 ctx->block_size = SHA384_BLOCK_SIZE;
458                 break;
459         case SHA512_DIGEST_SIZE:
460                 ctx->flags |= SHA_FLAGS_SHA512;
461                 ctx->block_size = SHA512_BLOCK_SIZE;
462                 break;
463         default:
464                 return -EINVAL;
465                 break;
466         }
467
468         ctx->bufcnt = 0;
469         ctx->digcnt[0] = 0;
470         ctx->digcnt[1] = 0;
471         ctx->buflen = SHA_BUFFER_LEN;
472
473         return 0;
474 }
475
476 static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
477 {
478         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
479         u32 valmr = SHA_MR_MODE_AUTO;
480         unsigned int i, hashsize = 0;
481
482         if (likely(dma)) {
483                 if (!dd->caps.has_dma)
484                         atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
485                 valmr = SHA_MR_MODE_PDC;
486                 if (dd->caps.has_dualbuff)
487                         valmr |= SHA_MR_DUALBUFF;
488         } else {
489                 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
490         }
491
492         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
493         case SHA_FLAGS_SHA1:
494                 valmr |= SHA_MR_ALGO_SHA1;
495                 hashsize = SHA1_DIGEST_SIZE;
496                 break;
497
498         case SHA_FLAGS_SHA224:
499                 valmr |= SHA_MR_ALGO_SHA224;
500                 hashsize = SHA256_DIGEST_SIZE;
501                 break;
502
503         case SHA_FLAGS_SHA256:
504                 valmr |= SHA_MR_ALGO_SHA256;
505                 hashsize = SHA256_DIGEST_SIZE;
506                 break;
507
508         case SHA_FLAGS_SHA384:
509                 valmr |= SHA_MR_ALGO_SHA384;
510                 hashsize = SHA512_DIGEST_SIZE;
511                 break;
512
513         case SHA_FLAGS_SHA512:
514                 valmr |= SHA_MR_ALGO_SHA512;
515                 hashsize = SHA512_DIGEST_SIZE;
516                 break;
517
518         default:
519                 break;
520         }
521
522         /* Setting CR_FIRST only for the first iteration */
523         if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
524                 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
525         } else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
526                 const u32 *hash = (const u32 *)ctx->digest;
527
528                 /*
529                  * Restore the hardware context: update the User Initialize
530                  * Hash Value (UIHV) with the value saved when the latest
531                  * 'update' operation completed on this very same crypto
532                  * request.
533                  */
534                 ctx->flags &= ~SHA_FLAGS_RESTORE;
535                 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
536                 for (i = 0; i < hashsize / sizeof(u32); ++i)
537                         atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
538                 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
539                 valmr |= SHA_MR_UIHV;
540         }
541         /*
542          * WARNING: If the UIHV feature is not available, the hardware CANNOT
543          * process concurrent requests: the internal registers used to store
544          * the hash/digest are still set to the partial digest output values
545          * computed during the latest round.
546          */
547
548         atmel_sha_write(dd, SHA_MR, valmr);
549 }
550
551 static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
552                                                 atmel_sha_fn_t resume)
553 {
554         u32 isr = atmel_sha_read(dd, SHA_ISR);
555
556         if (unlikely(isr & SHA_INT_DATARDY))
557                 return resume(dd);
558
559         dd->resume = resume;
560         atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
561         return -EINPROGRESS;
562 }
563
564 static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
565                               size_t length, int final)
566 {
567         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
568         int count, len32;
569         const u32 *buffer = (const u32 *)buf;
570
571         dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
572                 ctx->digcnt[1], ctx->digcnt[0], length, final);
573
574         atmel_sha_write_ctrl(dd, 0);
575
576         /* should be non-zero before next lines to disable clocks later */
577         ctx->digcnt[0] += length;
578         if (ctx->digcnt[0] < length)
579                 ctx->digcnt[1]++;
580
581         if (final)
582                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
583
584         len32 = DIV_ROUND_UP(length, sizeof(u32));
585
586         dd->flags |= SHA_FLAGS_CPU;
587
588         for (count = 0; count < len32; count++)
589                 atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
590
591         return -EINPROGRESS;
592 }
593
594 static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
595                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
596 {
597         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
598         int len32;
599
600         dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
601                 ctx->digcnt[1], ctx->digcnt[0], length1, final);
602
603         len32 = DIV_ROUND_UP(length1, sizeof(u32));
604         atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
605         atmel_sha_write(dd, SHA_TPR, dma_addr1);
606         atmel_sha_write(dd, SHA_TCR, len32);
607
608         len32 = DIV_ROUND_UP(length2, sizeof(u32));
609         atmel_sha_write(dd, SHA_TNPR, dma_addr2);
610         atmel_sha_write(dd, SHA_TNCR, len32);
611
612         atmel_sha_write_ctrl(dd, 1);
613
614         /* should be non-zero before next lines to disable clocks later */
615         ctx->digcnt[0] += length1;
616         if (ctx->digcnt[0] < length1)
617                 ctx->digcnt[1]++;
618
619         if (final)
620                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
621
622         dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
623
624         /* Start DMA transfer */
625         atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
626
627         return -EINPROGRESS;
628 }
629
630 static void atmel_sha_dma_callback(void *data)
631 {
632         struct atmel_sha_dev *dd = data;
633
634         dd->is_async = true;
635
636         /* dma_lch_in - completed - wait DATRDY */
637         atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
638 }
639
640 static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
641                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
642 {
643         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
644         struct dma_async_tx_descriptor  *in_desc;
645         struct scatterlist sg[2];
646
647         dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
648                 ctx->digcnt[1], ctx->digcnt[0], length1, final);
649
650         dd->dma_lch_in.dma_conf.src_maxburst = 16;
651         dd->dma_lch_in.dma_conf.dst_maxburst = 16;
652
653         dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
654
655         if (length2) {
656                 sg_init_table(sg, 2);
657                 sg_dma_address(&sg[0]) = dma_addr1;
658                 sg_dma_len(&sg[0]) = length1;
659                 sg_dma_address(&sg[1]) = dma_addr2;
660                 sg_dma_len(&sg[1]) = length2;
661                 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
662                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
663         } else {
664                 sg_init_table(sg, 1);
665                 sg_dma_address(&sg[0]) = dma_addr1;
666                 sg_dma_len(&sg[0]) = length1;
667                 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
668                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
669         }
670         if (!in_desc)
671                 return atmel_sha_complete(dd, -EINVAL);
672
673         in_desc->callback = atmel_sha_dma_callback;
674         in_desc->callback_param = dd;
675
676         atmel_sha_write_ctrl(dd, 1);
677
678         /* should be non-zero before next lines to disable clocks later */
679         ctx->digcnt[0] += length1;
680         if (ctx->digcnt[0] < length1)
681                 ctx->digcnt[1]++;
682
683         if (final)
684                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
685
686         dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
687
688         /* Start DMA transfer */
689         dmaengine_submit(in_desc);
690         dma_async_issue_pending(dd->dma_lch_in.chan);
691
692         return -EINPROGRESS;
693 }
694
695 static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
696                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
697 {
698         if (dd->caps.has_dma)
699                 return atmel_sha_xmit_dma(dd, dma_addr1, length1,
700                                 dma_addr2, length2, final);
701         else
702                 return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
703                                 dma_addr2, length2, final);
704 }
705
706 static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
707 {
708         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
709         int bufcnt;
710
711         atmel_sha_append_sg(ctx);
712         atmel_sha_fill_padding(ctx, 0);
713         bufcnt = ctx->bufcnt;
714         ctx->bufcnt = 0;
715
716         return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
717 }
718
719 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
720                                         struct atmel_sha_reqctx *ctx,
721                                         size_t length, int final)
722 {
723         ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
724                                 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
725         if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
726                 dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
727                                 ctx->block_size);
728                 return atmel_sha_complete(dd, -EINVAL);
729         }
730
731         ctx->flags &= ~SHA_FLAGS_SG;
732
733         /* next call does not fail... so no unmap in the case of error */
734         return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
735 }
736
737 static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
738 {
739         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
740         unsigned int final;
741         size_t count;
742
743         atmel_sha_append_sg(ctx);
744
745         final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
746
747         dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
748                  ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
749
750         if (final)
751                 atmel_sha_fill_padding(ctx, 0);
752
753         if (final || (ctx->bufcnt == ctx->buflen)) {
754                 count = ctx->bufcnt;
755                 ctx->bufcnt = 0;
756                 return atmel_sha_xmit_dma_map(dd, ctx, count, final);
757         }
758
759         return 0;
760 }
761
762 static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
763 {
764         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
765         unsigned int length, final, tail;
766         struct scatterlist *sg;
767         unsigned int count;
768
769         if (!ctx->total)
770                 return 0;
771
772         if (ctx->bufcnt || ctx->offset)
773                 return atmel_sha_update_dma_slow(dd);
774
775         dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
776                 ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
777
778         sg = ctx->sg;
779
780         if (!IS_ALIGNED(sg->offset, sizeof(u32)))
781                 return atmel_sha_update_dma_slow(dd);
782
783         if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
784                 /* size is not ctx->block_size aligned */
785                 return atmel_sha_update_dma_slow(dd);
786
787         length = min(ctx->total, sg->length);
788
789         if (sg_is_last(sg)) {
790                 if (!(ctx->flags & SHA_FLAGS_FINUP)) {
791                         /* not last sg must be ctx->block_size aligned */
792                         tail = length & (ctx->block_size - 1);
793                         length -= tail;
794                 }
795         }
796
797         ctx->total -= length;
798         ctx->offset = length; /* offset where to start slow */
799
800         final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
801
802         /* Add padding */
803         if (final) {
804                 tail = length & (ctx->block_size - 1);
805                 length -= tail;
806                 ctx->total += tail;
807                 ctx->offset = length; /* offset where to start slow */
808
809                 sg = ctx->sg;
810                 atmel_sha_append_sg(ctx);
811
812                 atmel_sha_fill_padding(ctx, length);
813
814                 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
815                         ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
816                 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
817                         dev_err(dd->dev, "dma %zu bytes error\n",
818                                 ctx->buflen + ctx->block_size);
819                         return atmel_sha_complete(dd, -EINVAL);
820                 }
821
822                 if (length == 0) {
823                         ctx->flags &= ~SHA_FLAGS_SG;
824                         count = ctx->bufcnt;
825                         ctx->bufcnt = 0;
826                         return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
827                                         0, final);
828                 } else {
829                         ctx->sg = sg;
830                         if (!dma_map_sg(dd->dev, ctx->sg, 1,
831                                 DMA_TO_DEVICE)) {
832                                         dev_err(dd->dev, "dma_map_sg  error\n");
833                                         return atmel_sha_complete(dd, -EINVAL);
834                         }
835
836                         ctx->flags |= SHA_FLAGS_SG;
837
838                         count = ctx->bufcnt;
839                         ctx->bufcnt = 0;
840                         return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
841                                         length, ctx->dma_addr, count, final);
842                 }
843         }
844
845         if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
846                 dev_err(dd->dev, "dma_map_sg  error\n");
847                 return atmel_sha_complete(dd, -EINVAL);
848         }
849
850         ctx->flags |= SHA_FLAGS_SG;
851
852         /* next call does not fail... so no unmap in the case of error */
853         return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
854                                                                 0, final);
855 }
856
857 static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
858 {
859         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
860
861         if (ctx->flags & SHA_FLAGS_SG) {
862                 dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
863                 if (ctx->sg->length == ctx->offset) {
864                         ctx->sg = sg_next(ctx->sg);
865                         if (ctx->sg)
866                                 ctx->offset = 0;
867                 }
868                 if (ctx->flags & SHA_FLAGS_PAD) {
869                         dma_unmap_single(dd->dev, ctx->dma_addr,
870                                 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
871                 }
872         } else {
873                 dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
874                                                 ctx->block_size, DMA_TO_DEVICE);
875         }
876
877         return 0;
878 }
879
880 static int atmel_sha_update_req(struct atmel_sha_dev *dd)
881 {
882         struct ahash_request *req = dd->req;
883         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
884         int err;
885
886         dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
887                 ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
888
889         if (ctx->flags & SHA_FLAGS_CPU)
890                 err = atmel_sha_update_cpu(dd);
891         else
892                 err = atmel_sha_update_dma_start(dd);
893
894         /* wait for dma completion before can take more data */
895         dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
896                         err, ctx->digcnt[1], ctx->digcnt[0]);
897
898         return err;
899 }
900
901 static int atmel_sha_final_req(struct atmel_sha_dev *dd)
902 {
903         struct ahash_request *req = dd->req;
904         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
905         int err = 0;
906         int count;
907
908         if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
909                 atmel_sha_fill_padding(ctx, 0);
910                 count = ctx->bufcnt;
911                 ctx->bufcnt = 0;
912                 err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
913         }
914         /* faster to handle last block with cpu */
915         else {
916                 atmel_sha_fill_padding(ctx, 0);
917                 count = ctx->bufcnt;
918                 ctx->bufcnt = 0;
919                 err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
920         }
921
922         dev_dbg(dd->dev, "final_req: err: %d\n", err);
923
924         return err;
925 }
926
927 static void atmel_sha_copy_hash(struct ahash_request *req)
928 {
929         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
930         u32 *hash = (u32 *)ctx->digest;
931         unsigned int i, hashsize;
932
933         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
934         case SHA_FLAGS_SHA1:
935                 hashsize = SHA1_DIGEST_SIZE;
936                 break;
937
938         case SHA_FLAGS_SHA224:
939         case SHA_FLAGS_SHA256:
940                 hashsize = SHA256_DIGEST_SIZE;
941                 break;
942
943         case SHA_FLAGS_SHA384:
944         case SHA_FLAGS_SHA512:
945                 hashsize = SHA512_DIGEST_SIZE;
946                 break;
947
948         default:
949                 /* Should not happen... */
950                 return;
951         }
952
953         for (i = 0; i < hashsize / sizeof(u32); ++i)
954                 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
955         ctx->flags |= SHA_FLAGS_RESTORE;
956 }
957
958 static void atmel_sha_copy_ready_hash(struct ahash_request *req)
959 {
960         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
961
962         if (!req->result)
963                 return;
964
965         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
966         default:
967         case SHA_FLAGS_SHA1:
968                 memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
969                 break;
970
971         case SHA_FLAGS_SHA224:
972                 memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
973                 break;
974
975         case SHA_FLAGS_SHA256:
976                 memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
977                 break;
978
979         case SHA_FLAGS_SHA384:
980                 memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
981                 break;
982
983         case SHA_FLAGS_SHA512:
984                 memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
985                 break;
986         }
987 }
988
989 static int atmel_sha_finish(struct ahash_request *req)
990 {
991         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
992         struct atmel_sha_dev *dd = ctx->dd;
993
994         if (ctx->digcnt[0] || ctx->digcnt[1])
995                 atmel_sha_copy_ready_hash(req);
996
997         dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
998                 ctx->digcnt[0], ctx->bufcnt);
999
1000         return 0;
1001 }
1002
1003 static void atmel_sha_finish_req(struct ahash_request *req, int err)
1004 {
1005         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1006         struct atmel_sha_dev *dd = ctx->dd;
1007
1008         if (!err) {
1009                 atmel_sha_copy_hash(req);
1010                 if (SHA_FLAGS_FINAL & dd->flags)
1011                         err = atmel_sha_finish(req);
1012         } else {
1013                 ctx->flags |= SHA_FLAGS_ERROR;
1014         }
1015
1016         /* atomic operation is not needed here */
1017         (void)atmel_sha_complete(dd, err);
1018 }
1019
1020 static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
1021 {
1022         int err;
1023
1024         err = clk_enable(dd->iclk);
1025         if (err)
1026                 return err;
1027
1028         if (!(SHA_FLAGS_INIT & dd->flags)) {
1029                 atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
1030                 dd->flags |= SHA_FLAGS_INIT;
1031                 dd->err = 0;
1032         }
1033
1034         return 0;
1035 }
1036
1037 static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
1038 {
1039         return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
1040 }
1041
1042 static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
1043 {
1044         atmel_sha_hw_init(dd);
1045
1046         dd->hw_version = atmel_sha_get_version(dd);
1047
1048         dev_info(dd->dev,
1049                         "version: 0x%x\n", dd->hw_version);
1050
1051         clk_disable(dd->iclk);
1052 }
1053
1054 static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
1055                                   struct ahash_request *req)
1056 {
1057         struct crypto_async_request *async_req, *backlog;
1058         struct atmel_sha_ctx *ctx;
1059         unsigned long flags;
1060         bool start_async;
1061         int err = 0, ret = 0;
1062
1063         spin_lock_irqsave(&dd->lock, flags);
1064         if (req)
1065                 ret = ahash_enqueue_request(&dd->queue, req);
1066
1067         if (SHA_FLAGS_BUSY & dd->flags) {
1068                 spin_unlock_irqrestore(&dd->lock, flags);
1069                 return ret;
1070         }
1071
1072         backlog = crypto_get_backlog(&dd->queue);
1073         async_req = crypto_dequeue_request(&dd->queue);
1074         if (async_req)
1075                 dd->flags |= SHA_FLAGS_BUSY;
1076
1077         spin_unlock_irqrestore(&dd->lock, flags);
1078
1079         if (!async_req)
1080                 return ret;
1081
1082         if (backlog)
1083                 backlog->complete(backlog, -EINPROGRESS);
1084
1085         ctx = crypto_tfm_ctx(async_req->tfm);
1086
1087         dd->req = ahash_request_cast(async_req);
1088         start_async = (dd->req != req);
1089         dd->is_async = start_async;
1090         dd->force_complete = false;
1091
1092         /* WARNING: ctx->start() MAY change dd->is_async. */
1093         err = ctx->start(dd);
1094         return (start_async) ? ret : err;
1095 }
1096
1097 static int atmel_sha_done(struct atmel_sha_dev *dd);
1098
1099 static int atmel_sha_start(struct atmel_sha_dev *dd)
1100 {
1101         struct ahash_request *req = dd->req;
1102         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1103         int err;
1104
1105         dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
1106                                                 ctx->op, req->nbytes);
1107
1108         err = atmel_sha_hw_init(dd);
1109         if (err)
1110                 return atmel_sha_complete(dd, err);
1111
1112         /*
1113          * atmel_sha_update_req() and atmel_sha_final_req() can return either:
1114          *  -EINPROGRESS: the hardware is busy and the SHA driver will resume
1115          *                its job later in the done_task.
1116          *                This is the main path.
1117          *
1118          * 0: the SHA driver can continue its job then release the hardware
1119          *    later, if needed, with atmel_sha_finish_req().
1120          *    This is the alternate path.
1121          *
1122          * < 0: an error has occurred so atmel_sha_complete(dd, err) has already
1123          *      been called, hence the hardware has been released.
1124          *      The SHA driver must stop its job without calling
1125          *      atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
1126          *      called a second time.
1127          *
1128          * Please note that currently, atmel_sha_final_req() never returns 0.
1129          */
1130
1131         dd->resume = atmel_sha_done;
1132         if (ctx->op == SHA_OP_UPDATE) {
1133                 err = atmel_sha_update_req(dd);
1134                 if (!err && (ctx->flags & SHA_FLAGS_FINUP))
1135                         /* no final() after finup() */
1136                         err = atmel_sha_final_req(dd);
1137         } else if (ctx->op == SHA_OP_FINAL) {
1138                 err = atmel_sha_final_req(dd);
1139         }
1140
1141         if (!err)
1142                 /* done_task will not finish it, so do it here */
1143                 atmel_sha_finish_req(req, err);
1144
1145         dev_dbg(dd->dev, "exit, err: %d\n", err);
1146
1147         return err;
1148 }
1149
1150 static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
1151 {
1152         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1153         struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1154         struct atmel_sha_dev *dd = tctx->dd;
1155
1156         ctx->op = op;
1157
1158         return atmel_sha_handle_queue(dd, req);
1159 }
1160
1161 static int atmel_sha_update(struct ahash_request *req)
1162 {
1163         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1164
1165         if (!req->nbytes)
1166                 return 0;
1167
1168         ctx->total = req->nbytes;
1169         ctx->sg = req->src;
1170         ctx->offset = 0;
1171
1172         if (ctx->flags & SHA_FLAGS_FINUP) {
1173                 if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
1174                         /* faster to use CPU for short transfers */
1175                         ctx->flags |= SHA_FLAGS_CPU;
1176         } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
1177                 atmel_sha_append_sg(ctx);
1178                 return 0;
1179         }
1180         return atmel_sha_enqueue(req, SHA_OP_UPDATE);
1181 }
1182
1183 static int atmel_sha_final(struct ahash_request *req)
1184 {
1185         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1186
1187         ctx->flags |= SHA_FLAGS_FINUP;
1188
1189         if (ctx->flags & SHA_FLAGS_ERROR)
1190                 return 0; /* uncompleted hash is not needed */
1191
1192         if (ctx->flags & SHA_FLAGS_PAD)
1193                 /* copy ready hash (+ finalize hmac) */
1194                 return atmel_sha_finish(req);
1195
1196         return atmel_sha_enqueue(req, SHA_OP_FINAL);
1197 }
1198
1199 static int atmel_sha_finup(struct ahash_request *req)
1200 {
1201         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1202         int err1, err2;
1203
1204         ctx->flags |= SHA_FLAGS_FINUP;
1205
1206         err1 = atmel_sha_update(req);
1207         if (err1 == -EINPROGRESS || err1 == -EBUSY)
1208                 return err1;
1209
1210         /*
1211          * final() has to be always called to cleanup resources
1212          * even if udpate() failed, except EINPROGRESS
1213          */
1214         err2 = atmel_sha_final(req);
1215
1216         return err1 ?: err2;
1217 }
1218
1219 static int atmel_sha_digest(struct ahash_request *req)
1220 {
1221         return atmel_sha_init(req) ?: atmel_sha_finup(req);
1222 }
1223
1224
1225 static int atmel_sha_export(struct ahash_request *req, void *out)
1226 {
1227         const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1228
1229         memcpy(out, ctx, sizeof(*ctx));
1230         return 0;
1231 }
1232
1233 static int atmel_sha_import(struct ahash_request *req, const void *in)
1234 {
1235         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1236
1237         memcpy(ctx, in, sizeof(*ctx));
1238         return 0;
1239 }
1240
1241 static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1242 {
1243         struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
1244
1245         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1246                                  sizeof(struct atmel_sha_reqctx));
1247         ctx->start = atmel_sha_start;
1248
1249         return 0;
1250 }
1251
1252 static struct ahash_alg sha_1_256_algs[] = {
1253 {
1254         .init           = atmel_sha_init,
1255         .update         = atmel_sha_update,
1256         .final          = atmel_sha_final,
1257         .finup          = atmel_sha_finup,
1258         .digest         = atmel_sha_digest,
1259         .export         = atmel_sha_export,
1260         .import         = atmel_sha_import,
1261         .halg = {
1262                 .digestsize     = SHA1_DIGEST_SIZE,
1263                 .statesize      = sizeof(struct atmel_sha_reqctx),
1264                 .base   = {
1265                         .cra_name               = "sha1",
1266                         .cra_driver_name        = "atmel-sha1",
1267                         .cra_priority           = 100,
1268                         .cra_flags              = CRYPTO_ALG_ASYNC,
1269                         .cra_blocksize          = SHA1_BLOCK_SIZE,
1270                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1271                         .cra_alignmask          = 0,
1272                         .cra_module             = THIS_MODULE,
1273                         .cra_init               = atmel_sha_cra_init,
1274                 }
1275         }
1276 },
1277 {
1278         .init           = atmel_sha_init,
1279         .update         = atmel_sha_update,
1280         .final          = atmel_sha_final,
1281         .finup          = atmel_sha_finup,
1282         .digest         = atmel_sha_digest,
1283         .export         = atmel_sha_export,
1284         .import         = atmel_sha_import,
1285         .halg = {
1286                 .digestsize     = SHA256_DIGEST_SIZE,
1287                 .statesize      = sizeof(struct atmel_sha_reqctx),
1288                 .base   = {
1289                         .cra_name               = "sha256",
1290                         .cra_driver_name        = "atmel-sha256",
1291                         .cra_priority           = 100,
1292                         .cra_flags              = CRYPTO_ALG_ASYNC,
1293                         .cra_blocksize          = SHA256_BLOCK_SIZE,
1294                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1295                         .cra_alignmask          = 0,
1296                         .cra_module             = THIS_MODULE,
1297                         .cra_init               = atmel_sha_cra_init,
1298                 }
1299         }
1300 },
1301 };
1302
1303 static struct ahash_alg sha_224_alg = {
1304         .init           = atmel_sha_init,
1305         .update         = atmel_sha_update,
1306         .final          = atmel_sha_final,
1307         .finup          = atmel_sha_finup,
1308         .digest         = atmel_sha_digest,
1309         .export         = atmel_sha_export,
1310         .import         = atmel_sha_import,
1311         .halg = {
1312                 .digestsize     = SHA224_DIGEST_SIZE,
1313                 .statesize      = sizeof(struct atmel_sha_reqctx),
1314                 .base   = {
1315                         .cra_name               = "sha224",
1316                         .cra_driver_name        = "atmel-sha224",
1317                         .cra_priority           = 100,
1318                         .cra_flags              = CRYPTO_ALG_ASYNC,
1319                         .cra_blocksize          = SHA224_BLOCK_SIZE,
1320                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1321                         .cra_alignmask          = 0,
1322                         .cra_module             = THIS_MODULE,
1323                         .cra_init               = atmel_sha_cra_init,
1324                 }
1325         }
1326 };
1327
1328 static struct ahash_alg sha_384_512_algs[] = {
1329 {
1330         .init           = atmel_sha_init,
1331         .update         = atmel_sha_update,
1332         .final          = atmel_sha_final,
1333         .finup          = atmel_sha_finup,
1334         .digest         = atmel_sha_digest,
1335         .export         = atmel_sha_export,
1336         .import         = atmel_sha_import,
1337         .halg = {
1338                 .digestsize     = SHA384_DIGEST_SIZE,
1339                 .statesize      = sizeof(struct atmel_sha_reqctx),
1340                 .base   = {
1341                         .cra_name               = "sha384",
1342                         .cra_driver_name        = "atmel-sha384",
1343                         .cra_priority           = 100,
1344                         .cra_flags              = CRYPTO_ALG_ASYNC,
1345                         .cra_blocksize          = SHA384_BLOCK_SIZE,
1346                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1347                         .cra_alignmask          = 0x3,
1348                         .cra_module             = THIS_MODULE,
1349                         .cra_init               = atmel_sha_cra_init,
1350                 }
1351         }
1352 },
1353 {
1354         .init           = atmel_sha_init,
1355         .update         = atmel_sha_update,
1356         .final          = atmel_sha_final,
1357         .finup          = atmel_sha_finup,
1358         .digest         = atmel_sha_digest,
1359         .export         = atmel_sha_export,
1360         .import         = atmel_sha_import,
1361         .halg = {
1362                 .digestsize     = SHA512_DIGEST_SIZE,
1363                 .statesize      = sizeof(struct atmel_sha_reqctx),
1364                 .base   = {
1365                         .cra_name               = "sha512",
1366                         .cra_driver_name        = "atmel-sha512",
1367                         .cra_priority           = 100,
1368                         .cra_flags              = CRYPTO_ALG_ASYNC,
1369                         .cra_blocksize          = SHA512_BLOCK_SIZE,
1370                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1371                         .cra_alignmask          = 0x3,
1372                         .cra_module             = THIS_MODULE,
1373                         .cra_init               = atmel_sha_cra_init,
1374                 }
1375         }
1376 },
1377 };
1378
1379 static void atmel_sha_queue_task(unsigned long data)
1380 {
1381         struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1382
1383         atmel_sha_handle_queue(dd, NULL);
1384 }
1385
1386 static int atmel_sha_done(struct atmel_sha_dev *dd)
1387 {
1388         int err = 0;
1389
1390         if (SHA_FLAGS_CPU & dd->flags) {
1391                 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1392                         dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1393                         goto finish;
1394                 }
1395         } else if (SHA_FLAGS_DMA_READY & dd->flags) {
1396                 if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1397                         dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1398                         atmel_sha_update_dma_stop(dd);
1399                         if (dd->err) {
1400                                 err = dd->err;
1401                                 goto finish;
1402                         }
1403                 }
1404                 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1405                         /* hash or semi-hash ready */
1406                         dd->flags &= ~(SHA_FLAGS_DMA_READY |
1407                                                 SHA_FLAGS_OUTPUT_READY);
1408                         err = atmel_sha_update_dma_start(dd);
1409                         if (err != -EINPROGRESS)
1410                                 goto finish;
1411                 }
1412         }
1413         return err;
1414
1415 finish:
1416         /* finish curent request */
1417         atmel_sha_finish_req(dd->req, err);
1418
1419         return err;
1420 }
1421
1422 static void atmel_sha_done_task(unsigned long data)
1423 {
1424         struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1425
1426         dd->is_async = true;
1427         (void)dd->resume(dd);
1428 }
1429
1430 static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1431 {
1432         struct atmel_sha_dev *sha_dd = dev_id;
1433         u32 reg;
1434
1435         reg = atmel_sha_read(sha_dd, SHA_ISR);
1436         if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1437                 atmel_sha_write(sha_dd, SHA_IDR, reg);
1438                 if (SHA_FLAGS_BUSY & sha_dd->flags) {
1439                         sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1440                         if (!(SHA_FLAGS_CPU & sha_dd->flags))
1441                                 sha_dd->flags |= SHA_FLAGS_DMA_READY;
1442                         tasklet_schedule(&sha_dd->done_task);
1443                 } else {
1444                         dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1445                 }
1446                 return IRQ_HANDLED;
1447         }
1448
1449         return IRQ_NONE;
1450 }
1451
1452
1453 /* DMA transfer functions */
1454
1455 static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
1456                                         struct scatterlist *sg,
1457                                         size_t len)
1458 {
1459         struct atmel_sha_dma *dma = &dd->dma_lch_in;
1460         struct ahash_request *req = dd->req;
1461         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1462         size_t bs = ctx->block_size;
1463         int nents;
1464
1465         for (nents = 0; sg; sg = sg_next(sg), ++nents) {
1466                 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
1467                         return false;
1468
1469                 /*
1470                  * This is the last sg, the only one that is allowed to
1471                  * have an unaligned length.
1472                  */
1473                 if (len <= sg->length) {
1474                         dma->nents = nents + 1;
1475                         dma->last_sg_length = sg->length;
1476                         sg->length = ALIGN(len, sizeof(u32));
1477                         return true;
1478                 }
1479
1480                 /* All other sg lengths MUST be aligned to the block size. */
1481                 if (!IS_ALIGNED(sg->length, bs))
1482                         return false;
1483
1484                 len -= sg->length;
1485         }
1486
1487         return false;
1488 }
1489
1490 static void atmel_sha_dma_callback2(void *data)
1491 {
1492         struct atmel_sha_dev *dd = data;
1493         struct atmel_sha_dma *dma = &dd->dma_lch_in;
1494         struct scatterlist *sg;
1495         int nents;
1496
1497         dmaengine_terminate_all(dma->chan);
1498         dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1499
1500         sg = dma->sg;
1501         for (nents = 0; nents < dma->nents - 1; ++nents)
1502                 sg = sg_next(sg);
1503         sg->length = dma->last_sg_length;
1504
1505         dd->is_async = true;
1506         (void)atmel_sha_wait_for_data_ready(dd, dd->resume);
1507 }
1508
1509 static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
1510                                struct scatterlist *src,
1511                                size_t len,
1512                                atmel_sha_fn_t resume)
1513 {
1514         struct atmel_sha_dma *dma = &dd->dma_lch_in;
1515         struct dma_slave_config *config = &dma->dma_conf;
1516         struct dma_chan *chan = dma->chan;
1517         struct dma_async_tx_descriptor *desc;
1518         dma_cookie_t cookie;
1519         unsigned int sg_len;
1520         int err;
1521
1522         dd->resume = resume;
1523
1524         /*
1525          * dma->nents has already been initialized by
1526          * atmel_sha_dma_check_aligned().
1527          */
1528         dma->sg = src;
1529         sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1530         if (!sg_len) {
1531                 err = -ENOMEM;
1532                 goto exit;
1533         }
1534
1535         config->src_maxburst = 16;
1536         config->dst_maxburst = 16;
1537         err = dmaengine_slave_config(chan, config);
1538         if (err)
1539                 goto unmap_sg;
1540
1541         desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
1542                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1543         if (!desc) {
1544                 err = -ENOMEM;
1545                 goto unmap_sg;
1546         }
1547
1548         desc->callback = atmel_sha_dma_callback2;
1549         desc->callback_param = dd;
1550         cookie = dmaengine_submit(desc);
1551         err = dma_submit_error(cookie);
1552         if (err)
1553                 goto unmap_sg;
1554
1555         dma_async_issue_pending(chan);
1556
1557         return -EINPROGRESS;
1558
1559 unmap_sg:
1560         dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1561 exit:
1562         return atmel_sha_complete(dd, err);
1563 }
1564
1565
1566 /* CPU transfer functions */
1567
1568 static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
1569 {
1570         struct ahash_request *req = dd->req;
1571         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1572         const u32 *words = (const u32 *)ctx->buffer;
1573         size_t i, num_words;
1574         u32 isr, din, din_inc;
1575
1576         din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
1577         for (;;) {
1578                 /* Write data into the Input Data Registers. */
1579                 num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
1580                 for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
1581                         atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
1582
1583                 ctx->offset += ctx->bufcnt;
1584                 ctx->total -= ctx->bufcnt;
1585
1586                 if (!ctx->total)
1587                         break;
1588
1589                 /*
1590                  * Prepare next block:
1591                  * Fill ctx->buffer now with the next data to be written into
1592                  * IDATARx: it gives time for the SHA hardware to process
1593                  * the current data so the SHA_INT_DATARDY flag might be set
1594                  * in SHA_ISR when polling this register at the beginning of
1595                  * the next loop.
1596                  */
1597                 ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1598                 scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1599                                          ctx->offset, ctx->bufcnt, 0);
1600
1601                 /* Wait for hardware to be ready again. */
1602                 isr = atmel_sha_read(dd, SHA_ISR);
1603                 if (!(isr & SHA_INT_DATARDY)) {
1604                         /* Not ready yet. */
1605                         dd->resume = atmel_sha_cpu_transfer;
1606                         atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
1607                         return -EINPROGRESS;
1608                 }
1609         }
1610
1611         if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
1612                 return dd->cpu_transfer_complete(dd);
1613
1614         return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
1615 }
1616
1617 static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
1618                                struct scatterlist *sg,
1619                                unsigned int len,
1620                                bool idatar0_only,
1621                                bool wait_data_ready,
1622                                atmel_sha_fn_t resume)
1623 {
1624         struct ahash_request *req = dd->req;
1625         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1626
1627         if (!len)
1628                 return resume(dd);
1629
1630         ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
1631
1632         if (idatar0_only)
1633                 ctx->flags |= SHA_FLAGS_IDATAR0;
1634
1635         if (wait_data_ready)
1636                 ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
1637
1638         ctx->sg = sg;
1639         ctx->total = len;
1640         ctx->offset = 0;
1641
1642         /* Prepare the first block to be written. */
1643         ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1644         scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1645                                  ctx->offset, ctx->bufcnt, 0);
1646
1647         dd->cpu_transfer_complete = resume;
1648         return atmel_sha_cpu_transfer(dd);
1649 }
1650
1651 static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
1652                               const void *data, unsigned int datalen,
1653                               bool auto_padding,
1654                               atmel_sha_fn_t resume)
1655 {
1656         struct ahash_request *req = dd->req;
1657         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1658         u32 msglen = (auto_padding) ? datalen : 0;
1659         u32 mr = SHA_MR_MODE_AUTO;
1660
1661         if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
1662                 return atmel_sha_complete(dd, -EINVAL);
1663
1664         mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1665         atmel_sha_write(dd, SHA_MR, mr);
1666         atmel_sha_write(dd, SHA_MSR, msglen);
1667         atmel_sha_write(dd, SHA_BCR, msglen);
1668         atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1669
1670         sg_init_one(&dd->tmp, data, datalen);
1671         return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
1672 }
1673
1674
1675 /* hmac functions */
1676
1677 struct atmel_sha_hmac_key {
1678         bool                    valid;
1679         unsigned int            keylen;
1680         u8                      buffer[SHA512_BLOCK_SIZE];
1681         u8                      *keydup;
1682 };
1683
1684 static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
1685 {
1686         memset(hkey, 0, sizeof(*hkey));
1687 }
1688
1689 static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
1690 {
1691         kfree(hkey->keydup);
1692         memset(hkey, 0, sizeof(*hkey));
1693 }
1694
1695 static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
1696                                          const u8 *key,
1697                                          unsigned int keylen)
1698 {
1699         atmel_sha_hmac_key_release(hkey);
1700
1701         if (keylen > sizeof(hkey->buffer)) {
1702                 hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
1703                 if (!hkey->keydup)
1704                         return -ENOMEM;
1705
1706         } else {
1707                 memcpy(hkey->buffer, key, keylen);
1708         }
1709
1710         hkey->valid = true;
1711         hkey->keylen = keylen;
1712         return 0;
1713 }
1714
1715 static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
1716                                           const u8 **key,
1717                                           unsigned int *keylen)
1718 {
1719         if (!hkey->valid)
1720                 return false;
1721
1722         *keylen = hkey->keylen;
1723         *key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
1724         return true;
1725 }
1726
1727
1728 struct atmel_sha_hmac_ctx {
1729         struct atmel_sha_ctx    base;
1730
1731         struct atmel_sha_hmac_key       hkey;
1732         u32                     ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
1733         u32                     opad[SHA512_BLOCK_SIZE / sizeof(u32)];
1734         atmel_sha_fn_t          resume;
1735 };
1736
1737 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1738                                 atmel_sha_fn_t resume);
1739 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1740                                       const u8 *key, unsigned int keylen);
1741 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
1742 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
1743 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
1744 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
1745
1746 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
1747 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
1748 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
1749 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
1750
1751 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1752                                 atmel_sha_fn_t resume)
1753 {
1754         struct ahash_request *req = dd->req;
1755         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1756         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1757         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1758         unsigned int keylen;
1759         const u8 *key;
1760         size_t bs;
1761
1762         hmac->resume = resume;
1763         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1764         case SHA_FLAGS_SHA1:
1765                 ctx->block_size = SHA1_BLOCK_SIZE;
1766                 ctx->hash_size = SHA1_DIGEST_SIZE;
1767                 break;
1768
1769         case SHA_FLAGS_SHA224:
1770                 ctx->block_size = SHA224_BLOCK_SIZE;
1771                 ctx->hash_size = SHA256_DIGEST_SIZE;
1772                 break;
1773
1774         case SHA_FLAGS_SHA256:
1775                 ctx->block_size = SHA256_BLOCK_SIZE;
1776                 ctx->hash_size = SHA256_DIGEST_SIZE;
1777                 break;
1778
1779         case SHA_FLAGS_SHA384:
1780                 ctx->block_size = SHA384_BLOCK_SIZE;
1781                 ctx->hash_size = SHA512_DIGEST_SIZE;
1782                 break;
1783
1784         case SHA_FLAGS_SHA512:
1785                 ctx->block_size = SHA512_BLOCK_SIZE;
1786                 ctx->hash_size = SHA512_DIGEST_SIZE;
1787                 break;
1788
1789         default:
1790                 return atmel_sha_complete(dd, -EINVAL);
1791         }
1792         bs = ctx->block_size;
1793
1794         if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
1795                 return resume(dd);
1796
1797         /* Compute K' from K. */
1798         if (unlikely(keylen > bs))
1799                 return atmel_sha_hmac_prehash_key(dd, key, keylen);
1800
1801         /* Prepare ipad. */
1802         memcpy((u8 *)hmac->ipad, key, keylen);
1803         memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
1804         return atmel_sha_hmac_compute_ipad_hash(dd);
1805 }
1806
1807 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1808                                       const u8 *key, unsigned int keylen)
1809 {
1810         return atmel_sha_cpu_hash(dd, key, keylen, true,
1811                                   atmel_sha_hmac_prehash_key_done);
1812 }
1813
1814 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
1815 {
1816         struct ahash_request *req = dd->req;
1817         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1818         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1819         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1820         size_t ds = crypto_ahash_digestsize(tfm);
1821         size_t bs = ctx->block_size;
1822         size_t i, num_words = ds / sizeof(u32);
1823
1824         /* Prepare ipad. */
1825         for (i = 0; i < num_words; ++i)
1826                 hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1827         memset((u8 *)hmac->ipad + ds, 0, bs - ds);
1828         return atmel_sha_hmac_compute_ipad_hash(dd);
1829 }
1830
1831 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
1832 {
1833         struct ahash_request *req = dd->req;
1834         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1835         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1836         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1837         size_t bs = ctx->block_size;
1838         size_t i, num_words = bs / sizeof(u32);
1839
1840         memcpy(hmac->opad, hmac->ipad, bs);
1841         for (i = 0; i < num_words; ++i) {
1842                 hmac->ipad[i] ^= 0x36363636;
1843                 hmac->opad[i] ^= 0x5c5c5c5c;
1844         }
1845
1846         return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
1847                                   atmel_sha_hmac_compute_opad_hash);
1848 }
1849
1850 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
1851 {
1852         struct ahash_request *req = dd->req;
1853         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1854         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1855         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1856         size_t bs = ctx->block_size;
1857         size_t hs = ctx->hash_size;
1858         size_t i, num_words = hs / sizeof(u32);
1859
1860         for (i = 0; i < num_words; ++i)
1861                 hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1862         return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
1863                                   atmel_sha_hmac_setup_done);
1864 }
1865
1866 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
1867 {
1868         struct ahash_request *req = dd->req;
1869         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1870         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1871         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1872         size_t hs = ctx->hash_size;
1873         size_t i, num_words = hs / sizeof(u32);
1874
1875         for (i = 0; i < num_words; ++i)
1876                 hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1877         atmel_sha_hmac_key_release(&hmac->hkey);
1878         return hmac->resume(dd);
1879 }
1880
1881 static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
1882 {
1883         struct ahash_request *req = dd->req;
1884         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1885         int err;
1886
1887         err = atmel_sha_hw_init(dd);
1888         if (err)
1889                 return atmel_sha_complete(dd, err);
1890
1891         switch (ctx->op) {
1892         case SHA_OP_INIT:
1893                 err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
1894                 break;
1895
1896         case SHA_OP_UPDATE:
1897                 dd->resume = atmel_sha_done;
1898                 err = atmel_sha_update_req(dd);
1899                 break;
1900
1901         case SHA_OP_FINAL:
1902                 dd->resume = atmel_sha_hmac_final;
1903                 err = atmel_sha_final_req(dd);
1904                 break;
1905
1906         case SHA_OP_DIGEST:
1907                 err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
1908                 break;
1909
1910         default:
1911                 return atmel_sha_complete(dd, -EINVAL);
1912         }
1913
1914         return err;
1915 }
1916
1917 static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1918                                  unsigned int keylen)
1919 {
1920         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1921
1922         if (atmel_sha_hmac_key_set(&hmac->hkey, key, keylen)) {
1923                 crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1924                 return -EINVAL;
1925         }
1926
1927         return 0;
1928 }
1929
1930 static int atmel_sha_hmac_init(struct ahash_request *req)
1931 {
1932         int err;
1933
1934         err = atmel_sha_init(req);
1935         if (err)
1936                 return err;
1937
1938         return atmel_sha_enqueue(req, SHA_OP_INIT);
1939 }
1940
1941 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
1942 {
1943         struct ahash_request *req = dd->req;
1944         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1945         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1946         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1947         size_t bs = ctx->block_size;
1948         size_t hs = ctx->hash_size;
1949
1950         ctx->bufcnt = 0;
1951         ctx->digcnt[0] = bs;
1952         ctx->digcnt[1] = 0;
1953         ctx->flags |= SHA_FLAGS_RESTORE;
1954         memcpy(ctx->digest, hmac->ipad, hs);
1955         return atmel_sha_complete(dd, 0);
1956 }
1957
1958 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
1959 {
1960         struct ahash_request *req = dd->req;
1961         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1962         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1963         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1964         u32 *digest = (u32 *)ctx->digest;
1965         size_t ds = crypto_ahash_digestsize(tfm);
1966         size_t bs = ctx->block_size;
1967         size_t hs = ctx->hash_size;
1968         size_t i, num_words;
1969         u32 mr;
1970
1971         /* Save d = SHA((K' + ipad) | msg). */
1972         num_words = ds / sizeof(u32);
1973         for (i = 0; i < num_words; ++i)
1974                 digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1975
1976         /* Restore context to finish computing SHA((K' + opad) | d). */
1977         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1978         num_words = hs / sizeof(u32);
1979         for (i = 0; i < num_words; ++i)
1980                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1981
1982         mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
1983         mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1984         atmel_sha_write(dd, SHA_MR, mr);
1985         atmel_sha_write(dd, SHA_MSR, bs + ds);
1986         atmel_sha_write(dd, SHA_BCR, ds);
1987         atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1988
1989         sg_init_one(&dd->tmp, digest, ds);
1990         return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
1991                                    atmel_sha_hmac_final_done);
1992 }
1993
1994 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
1995 {
1996         /*
1997          * req->result might not be sizeof(u32) aligned, so copy the
1998          * digest into ctx->digest[] before memcpy() the data into
1999          * req->result.
2000          */
2001         atmel_sha_copy_hash(dd->req);
2002         atmel_sha_copy_ready_hash(dd->req);
2003         return atmel_sha_complete(dd, 0);
2004 }
2005
2006 static int atmel_sha_hmac_digest(struct ahash_request *req)
2007 {
2008         int err;
2009
2010         err = atmel_sha_init(req);
2011         if (err)
2012                 return err;
2013
2014         return atmel_sha_enqueue(req, SHA_OP_DIGEST);
2015 }
2016
2017 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
2018 {
2019         struct ahash_request *req = dd->req;
2020         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
2021         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2022         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2023         size_t hs = ctx->hash_size;
2024         size_t i, num_words = hs / sizeof(u32);
2025         bool use_dma = false;
2026         u32 mr;
2027
2028         /* Special case for empty message. */
2029         if (!req->nbytes)
2030                 return atmel_sha_complete(dd, -EINVAL); // TODO:
2031
2032         /* Check DMA threshold and alignment. */
2033         if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
2034             atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
2035                 use_dma = true;
2036
2037         /* Write both initial hash values to compute a HMAC. */
2038         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2039         for (i = 0; i < num_words; ++i)
2040                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2041
2042         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2043         for (i = 0; i < num_words; ++i)
2044                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2045
2046         /* Write the Mode, Message Size, Bytes Count then Control Registers. */
2047         mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
2048         mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2049         if (use_dma)
2050                 mr |= SHA_MR_MODE_IDATAR0;
2051         else
2052                 mr |= SHA_MR_MODE_AUTO;
2053         atmel_sha_write(dd, SHA_MR, mr);
2054
2055         atmel_sha_write(dd, SHA_MSR, req->nbytes);
2056         atmel_sha_write(dd, SHA_BCR, req->nbytes);
2057
2058         atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2059
2060         /* Process data. */
2061         if (use_dma)
2062                 return atmel_sha_dma_start(dd, req->src, req->nbytes,
2063                                            atmel_sha_hmac_final_done);
2064
2065         return atmel_sha_cpu_start(dd, req->src, req->nbytes, false, true,
2066                                    atmel_sha_hmac_final_done);
2067 }
2068
2069 static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
2070 {
2071         struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2072
2073         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2074                                  sizeof(struct atmel_sha_reqctx));
2075         hmac->base.start = atmel_sha_hmac_start;
2076         atmel_sha_hmac_key_init(&hmac->hkey);
2077
2078         return 0;
2079 }
2080
2081 static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
2082 {
2083         struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2084
2085         atmel_sha_hmac_key_release(&hmac->hkey);
2086 }
2087
2088 static struct ahash_alg sha_hmac_algs[] = {
2089 {
2090         .init           = atmel_sha_hmac_init,
2091         .update         = atmel_sha_update,
2092         .final          = atmel_sha_final,
2093         .digest         = atmel_sha_hmac_digest,
2094         .setkey         = atmel_sha_hmac_setkey,
2095         .export         = atmel_sha_export,
2096         .import         = atmel_sha_import,
2097         .halg = {
2098                 .digestsize     = SHA1_DIGEST_SIZE,
2099                 .statesize      = sizeof(struct atmel_sha_reqctx),
2100                 .base   = {
2101                         .cra_name               = "hmac(sha1)",
2102                         .cra_driver_name        = "atmel-hmac-sha1",
2103                         .cra_priority           = 100,
2104                         .cra_flags              = CRYPTO_ALG_ASYNC,
2105                         .cra_blocksize          = SHA1_BLOCK_SIZE,
2106                         .cra_ctxsize            = sizeof(struct atmel_sha_hmac_ctx),
2107                         .cra_alignmask          = 0,
2108                         .cra_module             = THIS_MODULE,
2109                         .cra_init               = atmel_sha_hmac_cra_init,
2110                         .cra_exit               = atmel_sha_hmac_cra_exit,
2111                 }
2112         }
2113 },
2114 {
2115         .init           = atmel_sha_hmac_init,
2116         .update         = atmel_sha_update,
2117         .final          = atmel_sha_final,
2118         .digest         = atmel_sha_hmac_digest,
2119         .setkey         = atmel_sha_hmac_setkey,
2120         .export         = atmel_sha_export,
2121         .import         = atmel_sha_import,
2122         .halg = {
2123                 .digestsize     = SHA224_DIGEST_SIZE,
2124                 .statesize      = sizeof(struct atmel_sha_reqctx),
2125                 .base   = {
2126                         .cra_name               = "hmac(sha224)",
2127                         .cra_driver_name        = "atmel-hmac-sha224",
2128                         .cra_priority           = 100,
2129                         .cra_flags              = CRYPTO_ALG_ASYNC,
2130                         .cra_blocksize          = SHA224_BLOCK_SIZE,
2131                         .cra_ctxsize            = sizeof(struct atmel_sha_hmac_ctx),
2132                         .cra_alignmask          = 0,
2133                         .cra_module             = THIS_MODULE,
2134                         .cra_init               = atmel_sha_hmac_cra_init,
2135                         .cra_exit               = atmel_sha_hmac_cra_exit,
2136                 }
2137         }
2138 },
2139 {
2140         .init           = atmel_sha_hmac_init,
2141         .update         = atmel_sha_update,
2142         .final          = atmel_sha_final,
2143         .digest         = atmel_sha_hmac_digest,
2144         .setkey         = atmel_sha_hmac_setkey,
2145         .export         = atmel_sha_export,
2146         .import         = atmel_sha_import,
2147         .halg = {
2148                 .digestsize     = SHA256_DIGEST_SIZE,
2149                 .statesize      = sizeof(struct atmel_sha_reqctx),
2150                 .base   = {
2151                         .cra_name               = "hmac(sha256)",
2152                         .cra_driver_name        = "atmel-hmac-sha256",
2153                         .cra_priority           = 100,
2154                         .cra_flags              = CRYPTO_ALG_ASYNC,
2155                         .cra_blocksize          = SHA256_BLOCK_SIZE,
2156                         .cra_ctxsize            = sizeof(struct atmel_sha_hmac_ctx),
2157                         .cra_alignmask          = 0,
2158                         .cra_module             = THIS_MODULE,
2159                         .cra_init               = atmel_sha_hmac_cra_init,
2160                         .cra_exit               = atmel_sha_hmac_cra_exit,
2161                 }
2162         }
2163 },
2164 {
2165         .init           = atmel_sha_hmac_init,
2166         .update         = atmel_sha_update,
2167         .final          = atmel_sha_final,
2168         .digest         = atmel_sha_hmac_digest,
2169         .setkey         = atmel_sha_hmac_setkey,
2170         .export         = atmel_sha_export,
2171         .import         = atmel_sha_import,
2172         .halg = {
2173                 .digestsize     = SHA384_DIGEST_SIZE,
2174                 .statesize      = sizeof(struct atmel_sha_reqctx),
2175                 .base   = {
2176                         .cra_name               = "hmac(sha384)",
2177                         .cra_driver_name        = "atmel-hmac-sha384",
2178                         .cra_priority           = 100,
2179                         .cra_flags              = CRYPTO_ALG_ASYNC,
2180                         .cra_blocksize          = SHA384_BLOCK_SIZE,
2181                         .cra_ctxsize            = sizeof(struct atmel_sha_hmac_ctx),
2182                         .cra_alignmask          = 0,
2183                         .cra_module             = THIS_MODULE,
2184                         .cra_init               = atmel_sha_hmac_cra_init,
2185                         .cra_exit               = atmel_sha_hmac_cra_exit,
2186                 }
2187         }
2188 },
2189 {
2190         .init           = atmel_sha_hmac_init,
2191         .update         = atmel_sha_update,
2192         .final          = atmel_sha_final,
2193         .digest         = atmel_sha_hmac_digest,
2194         .setkey         = atmel_sha_hmac_setkey,
2195         .export         = atmel_sha_export,
2196         .import         = atmel_sha_import,
2197         .halg = {
2198                 .digestsize     = SHA512_DIGEST_SIZE,
2199                 .statesize      = sizeof(struct atmel_sha_reqctx),
2200                 .base   = {
2201                         .cra_name               = "hmac(sha512)",
2202                         .cra_driver_name        = "atmel-hmac-sha512",
2203                         .cra_priority           = 100,
2204                         .cra_flags              = CRYPTO_ALG_ASYNC,
2205                         .cra_blocksize          = SHA512_BLOCK_SIZE,
2206                         .cra_ctxsize            = sizeof(struct atmel_sha_hmac_ctx),
2207                         .cra_alignmask          = 0,
2208                         .cra_module             = THIS_MODULE,
2209                         .cra_init               = atmel_sha_hmac_cra_init,
2210                         .cra_exit               = atmel_sha_hmac_cra_exit,
2211                 }
2212         }
2213 },
2214 };
2215
2216 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2217 /* authenc functions */
2218
2219 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
2220 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
2221 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
2222
2223
2224 struct atmel_sha_authenc_ctx {
2225         struct crypto_ahash     *tfm;
2226 };
2227
2228 struct atmel_sha_authenc_reqctx {
2229         struct atmel_sha_reqctx base;
2230
2231         atmel_aes_authenc_fn_t  cb;
2232         struct atmel_aes_dev    *aes_dev;
2233
2234         /* _init() parameters. */
2235         struct scatterlist      *assoc;
2236         u32                     assoclen;
2237         u32                     textlen;
2238
2239         /* _final() parameters. */
2240         u32                     *digest;
2241         unsigned int            digestlen;
2242 };
2243
2244 static void atmel_sha_authenc_complete(struct crypto_async_request *areq,
2245                                        int err)
2246 {
2247         struct ahash_request *req = areq->data;
2248         struct atmel_sha_authenc_reqctx *authctx  = ahash_request_ctx(req);
2249
2250         authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
2251 }
2252
2253 static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
2254 {
2255         struct ahash_request *req = dd->req;
2256         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2257         int err;
2258
2259         /*
2260          * Force atmel_sha_complete() to call req->base.complete(), ie
2261          * atmel_sha_authenc_complete(), which in turn calls authctx->cb().
2262          */
2263         dd->force_complete = true;
2264
2265         err = atmel_sha_hw_init(dd);
2266         return authctx->cb(authctx->aes_dev, err, dd->is_async);
2267 }
2268
2269 bool atmel_sha_authenc_is_ready(void)
2270 {
2271         struct atmel_sha_ctx dummy;
2272
2273         dummy.dd = NULL;
2274         return (atmel_sha_find_dev(&dummy) != NULL);
2275 }
2276 EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
2277
2278 unsigned int atmel_sha_authenc_get_reqsize(void)
2279 {
2280         return sizeof(struct atmel_sha_authenc_reqctx);
2281 }
2282 EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
2283
2284 struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
2285 {
2286         struct atmel_sha_authenc_ctx *auth;
2287         struct crypto_ahash *tfm;
2288         struct atmel_sha_ctx *tctx;
2289         const char *name;
2290         int err = -EINVAL;
2291
2292         switch (mode & SHA_FLAGS_MODE_MASK) {
2293         case SHA_FLAGS_HMAC_SHA1:
2294                 name = "atmel-hmac-sha1";
2295                 break;
2296
2297         case SHA_FLAGS_HMAC_SHA224:
2298                 name = "atmel-hmac-sha224";
2299                 break;
2300
2301         case SHA_FLAGS_HMAC_SHA256:
2302                 name = "atmel-hmac-sha256";
2303                 break;
2304
2305         case SHA_FLAGS_HMAC_SHA384:
2306                 name = "atmel-hmac-sha384";
2307                 break;
2308
2309         case SHA_FLAGS_HMAC_SHA512:
2310                 name = "atmel-hmac-sha512";
2311                 break;
2312
2313         default:
2314                 goto error;
2315         }
2316
2317         tfm = crypto_alloc_ahash(name,
2318                                  CRYPTO_ALG_TYPE_AHASH,
2319                                  CRYPTO_ALG_TYPE_AHASH_MASK);
2320         if (IS_ERR(tfm)) {
2321                 err = PTR_ERR(tfm);
2322                 goto error;
2323         }
2324         tctx = crypto_ahash_ctx(tfm);
2325         tctx->start = atmel_sha_authenc_start;
2326         tctx->flags = mode;
2327
2328         auth = kzalloc(sizeof(*auth), GFP_KERNEL);
2329         if (!auth) {
2330                 err = -ENOMEM;
2331                 goto err_free_ahash;
2332         }
2333         auth->tfm = tfm;
2334
2335         return auth;
2336
2337 err_free_ahash:
2338         crypto_free_ahash(tfm);
2339 error:
2340         return ERR_PTR(err);
2341 }
2342 EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
2343
2344 void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
2345 {
2346         if (auth)
2347                 crypto_free_ahash(auth->tfm);
2348         kfree(auth);
2349 }
2350 EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
2351
2352 int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
2353                              const u8 *key, unsigned int keylen,
2354                              u32 *flags)
2355 {
2356         struct crypto_ahash *tfm = auth->tfm;
2357         int err;
2358
2359         crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
2360         crypto_ahash_set_flags(tfm, *flags & CRYPTO_TFM_REQ_MASK);
2361         err = crypto_ahash_setkey(tfm, key, keylen);
2362         *flags = crypto_ahash_get_flags(tfm);
2363
2364         return err;
2365 }
2366 EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
2367
2368 int atmel_sha_authenc_schedule(struct ahash_request *req,
2369                                struct atmel_sha_authenc_ctx *auth,
2370                                atmel_aes_authenc_fn_t cb,
2371                                struct atmel_aes_dev *aes_dev)
2372 {
2373         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2374         struct atmel_sha_reqctx *ctx = &authctx->base;
2375         struct crypto_ahash *tfm = auth->tfm;
2376         struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
2377         struct atmel_sha_dev *dd;
2378
2379         /* Reset request context (MUST be done first). */
2380         memset(authctx, 0, sizeof(*authctx));
2381
2382         /* Get SHA device. */
2383         dd = atmel_sha_find_dev(tctx);
2384         if (!dd)
2385                 return cb(aes_dev, -ENODEV, false);
2386
2387         /* Init request context. */
2388         ctx->dd = dd;
2389         ctx->buflen = SHA_BUFFER_LEN;
2390         authctx->cb = cb;
2391         authctx->aes_dev = aes_dev;
2392         ahash_request_set_tfm(req, tfm);
2393         ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
2394
2395         return atmel_sha_handle_queue(dd, req);
2396 }
2397 EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
2398
2399 int atmel_sha_authenc_init(struct ahash_request *req,
2400                            struct scatterlist *assoc, unsigned int assoclen,
2401                            unsigned int textlen,
2402                            atmel_aes_authenc_fn_t cb,
2403                            struct atmel_aes_dev *aes_dev)
2404 {
2405         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2406         struct atmel_sha_reqctx *ctx = &authctx->base;
2407         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2408         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2409         struct atmel_sha_dev *dd = ctx->dd;
2410
2411         if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
2412                 return atmel_sha_complete(dd, -EINVAL);
2413
2414         authctx->cb = cb;
2415         authctx->aes_dev = aes_dev;
2416         authctx->assoc = assoc;
2417         authctx->assoclen = assoclen;
2418         authctx->textlen = textlen;
2419
2420         ctx->flags = hmac->base.flags;
2421         return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
2422 }
2423 EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
2424
2425 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
2426 {
2427         struct ahash_request *req = dd->req;
2428         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2429         struct atmel_sha_reqctx *ctx = &authctx->base;
2430         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2431         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2432         size_t hs = ctx->hash_size;
2433         size_t i, num_words = hs / sizeof(u32);
2434         u32 mr, msg_size;
2435
2436         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2437         for (i = 0; i < num_words; ++i)
2438                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2439
2440         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2441         for (i = 0; i < num_words; ++i)
2442                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2443
2444         mr = (SHA_MR_MODE_IDATAR0 |
2445               SHA_MR_HMAC |
2446               SHA_MR_DUALBUFF);
2447         mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2448         atmel_sha_write(dd, SHA_MR, mr);
2449
2450         msg_size = authctx->assoclen + authctx->textlen;
2451         atmel_sha_write(dd, SHA_MSR, msg_size);
2452         atmel_sha_write(dd, SHA_BCR, msg_size);
2453
2454         atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2455
2456         /* Process assoc data. */
2457         return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
2458                                    true, false,
2459                                    atmel_sha_authenc_init_done);
2460 }
2461
2462 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
2463 {
2464         struct ahash_request *req = dd->req;
2465         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2466
2467         return authctx->cb(authctx->aes_dev, 0, dd->is_async);
2468 }
2469
2470 int atmel_sha_authenc_final(struct ahash_request *req,
2471                             u32 *digest, unsigned int digestlen,
2472                             atmel_aes_authenc_fn_t cb,
2473                             struct atmel_aes_dev *aes_dev)
2474 {
2475         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2476         struct atmel_sha_reqctx *ctx = &authctx->base;
2477         struct atmel_sha_dev *dd = ctx->dd;
2478
2479         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
2480         case SHA_FLAGS_SHA1:
2481                 authctx->digestlen = SHA1_DIGEST_SIZE;
2482                 break;
2483
2484         case SHA_FLAGS_SHA224:
2485                 authctx->digestlen = SHA224_DIGEST_SIZE;
2486                 break;
2487
2488         case SHA_FLAGS_SHA256:
2489                 authctx->digestlen = SHA256_DIGEST_SIZE;
2490                 break;
2491
2492         case SHA_FLAGS_SHA384:
2493                 authctx->digestlen = SHA384_DIGEST_SIZE;
2494                 break;
2495
2496         case SHA_FLAGS_SHA512:
2497                 authctx->digestlen = SHA512_DIGEST_SIZE;
2498                 break;
2499
2500         default:
2501                 return atmel_sha_complete(dd, -EINVAL);
2502         }
2503         if (authctx->digestlen > digestlen)
2504                 authctx->digestlen = digestlen;
2505
2506         authctx->cb = cb;
2507         authctx->aes_dev = aes_dev;
2508         authctx->digest = digest;
2509         return atmel_sha_wait_for_data_ready(dd,
2510                                              atmel_sha_authenc_final_done);
2511 }
2512 EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
2513
2514 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
2515 {
2516         struct ahash_request *req = dd->req;
2517         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2518         size_t i, num_words = authctx->digestlen / sizeof(u32);
2519
2520         for (i = 0; i < num_words; ++i)
2521                 authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
2522
2523         return atmel_sha_complete(dd, 0);
2524 }
2525
2526 void atmel_sha_authenc_abort(struct ahash_request *req)
2527 {
2528         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2529         struct atmel_sha_reqctx *ctx = &authctx->base;
2530         struct atmel_sha_dev *dd = ctx->dd;
2531
2532         /* Prevent atmel_sha_complete() from calling req->base.complete(). */
2533         dd->is_async = false;
2534         dd->force_complete = false;
2535         (void)atmel_sha_complete(dd, 0);
2536 }
2537 EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
2538
2539 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2540
2541
2542 static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
2543 {
2544         int i;
2545
2546         if (dd->caps.has_hmac)
2547                 for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
2548                         crypto_unregister_ahash(&sha_hmac_algs[i]);
2549
2550         for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
2551                 crypto_unregister_ahash(&sha_1_256_algs[i]);
2552
2553         if (dd->caps.has_sha224)
2554                 crypto_unregister_ahash(&sha_224_alg);
2555
2556         if (dd->caps.has_sha_384_512) {
2557                 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
2558                         crypto_unregister_ahash(&sha_384_512_algs[i]);
2559         }
2560 }
2561
2562 static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
2563 {
2564         int err, i, j;
2565
2566         for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
2567                 err = crypto_register_ahash(&sha_1_256_algs[i]);
2568                 if (err)
2569                         goto err_sha_1_256_algs;
2570         }
2571
2572         if (dd->caps.has_sha224) {
2573                 err = crypto_register_ahash(&sha_224_alg);
2574                 if (err)
2575                         goto err_sha_224_algs;
2576         }
2577
2578         if (dd->caps.has_sha_384_512) {
2579                 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
2580                         err = crypto_register_ahash(&sha_384_512_algs[i]);
2581                         if (err)
2582                                 goto err_sha_384_512_algs;
2583                 }
2584         }
2585
2586         if (dd->caps.has_hmac) {
2587                 for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
2588                         err = crypto_register_ahash(&sha_hmac_algs[i]);
2589                         if (err)
2590                                 goto err_sha_hmac_algs;
2591                 }
2592         }
2593
2594         return 0;
2595
2596         /*i = ARRAY_SIZE(sha_hmac_algs);*/
2597 err_sha_hmac_algs:
2598         for (j = 0; j < i; j++)
2599                 crypto_unregister_ahash(&sha_hmac_algs[j]);
2600         i = ARRAY_SIZE(sha_384_512_algs);
2601 err_sha_384_512_algs:
2602         for (j = 0; j < i; j++)
2603                 crypto_unregister_ahash(&sha_384_512_algs[j]);
2604         crypto_unregister_ahash(&sha_224_alg);
2605 err_sha_224_algs:
2606         i = ARRAY_SIZE(sha_1_256_algs);
2607 err_sha_1_256_algs:
2608         for (j = 0; j < i; j++)
2609                 crypto_unregister_ahash(&sha_1_256_algs[j]);
2610
2611         return err;
2612 }
2613
2614 static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
2615 {
2616         struct at_dma_slave     *sl = slave;
2617
2618         if (sl && sl->dma_dev == chan->device->dev) {
2619                 chan->private = sl;
2620                 return true;
2621         } else {
2622                 return false;
2623         }
2624 }
2625
2626 static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
2627                                 struct crypto_platform_data *pdata)
2628 {
2629         int err = -ENOMEM;
2630         dma_cap_mask_t mask_in;
2631
2632         /* Try to grab DMA channel */
2633         dma_cap_zero(mask_in);
2634         dma_cap_set(DMA_SLAVE, mask_in);
2635
2636         dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask_in,
2637                         atmel_sha_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
2638         if (!dd->dma_lch_in.chan) {
2639                 dev_warn(dd->dev, "no DMA channel available\n");
2640                 return err;
2641         }
2642
2643         dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
2644         dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
2645                 SHA_REG_DIN(0);
2646         dd->dma_lch_in.dma_conf.src_maxburst = 1;
2647         dd->dma_lch_in.dma_conf.src_addr_width =
2648                 DMA_SLAVE_BUSWIDTH_4_BYTES;
2649         dd->dma_lch_in.dma_conf.dst_maxburst = 1;
2650         dd->dma_lch_in.dma_conf.dst_addr_width =
2651                 DMA_SLAVE_BUSWIDTH_4_BYTES;
2652         dd->dma_lch_in.dma_conf.device_fc = false;
2653
2654         return 0;
2655 }
2656
2657 static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
2658 {
2659         dma_release_channel(dd->dma_lch_in.chan);
2660 }
2661
2662 static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
2663 {
2664
2665         dd->caps.has_dma = 0;
2666         dd->caps.has_dualbuff = 0;
2667         dd->caps.has_sha224 = 0;
2668         dd->caps.has_sha_384_512 = 0;
2669         dd->caps.has_uihv = 0;
2670         dd->caps.has_hmac = 0;
2671
2672         /* keep only major version number */
2673         switch (dd->hw_version & 0xff0) {
2674         case 0x510:
2675                 dd->caps.has_dma = 1;
2676                 dd->caps.has_dualbuff = 1;
2677                 dd->caps.has_sha224 = 1;
2678                 dd->caps.has_sha_384_512 = 1;
2679                 dd->caps.has_uihv = 1;
2680                 dd->caps.has_hmac = 1;
2681                 break;
2682         case 0x420:
2683                 dd->caps.has_dma = 1;
2684                 dd->caps.has_dualbuff = 1;
2685                 dd->caps.has_sha224 = 1;
2686                 dd->caps.has_sha_384_512 = 1;
2687                 dd->caps.has_uihv = 1;
2688                 break;
2689         case 0x410:
2690                 dd->caps.has_dma = 1;
2691                 dd->caps.has_dualbuff = 1;
2692                 dd->caps.has_sha224 = 1;
2693                 dd->caps.has_sha_384_512 = 1;
2694                 break;
2695         case 0x400:
2696                 dd->caps.has_dma = 1;
2697                 dd->caps.has_dualbuff = 1;
2698                 dd->caps.has_sha224 = 1;
2699                 break;
2700         case 0x320:
2701                 break;
2702         default:
2703                 dev_warn(dd->dev,
2704                                 "Unmanaged sha version, set minimum capabilities\n");
2705                 break;
2706         }
2707 }
2708
2709 #if defined(CONFIG_OF)
2710 static const struct of_device_id atmel_sha_dt_ids[] = {
2711         { .compatible = "atmel,at91sam9g46-sha" },
2712         { /* sentinel */ }
2713 };
2714
2715 MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
2716
2717 static struct crypto_platform_data *atmel_sha_of_init(struct platform_device *pdev)
2718 {
2719         struct device_node *np = pdev->dev.of_node;
2720         struct crypto_platform_data *pdata;
2721
2722         if (!np) {
2723                 dev_err(&pdev->dev, "device node not found\n");
2724                 return ERR_PTR(-EINVAL);
2725         }
2726
2727         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2728         if (!pdata) {
2729                 dev_err(&pdev->dev, "could not allocate memory for pdata\n");
2730                 return ERR_PTR(-ENOMEM);
2731         }
2732
2733         pdata->dma_slave = devm_kzalloc(&pdev->dev,
2734                                         sizeof(*(pdata->dma_slave)),
2735                                         GFP_KERNEL);
2736         if (!pdata->dma_slave) {
2737                 dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
2738                 return ERR_PTR(-ENOMEM);
2739         }
2740
2741         return pdata;
2742 }
2743 #else /* CONFIG_OF */
2744 static inline struct crypto_platform_data *atmel_sha_of_init(struct platform_device *dev)
2745 {
2746         return ERR_PTR(-EINVAL);
2747 }
2748 #endif
2749
2750 static int atmel_sha_probe(struct platform_device *pdev)
2751 {
2752         struct atmel_sha_dev *sha_dd;
2753         struct crypto_platform_data     *pdata;
2754         struct device *dev = &pdev->dev;
2755         struct resource *sha_res;
2756         int err;
2757
2758         sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
2759         if (sha_dd == NULL) {
2760                 dev_err(dev, "unable to alloc data struct.\n");
2761                 err = -ENOMEM;
2762                 goto sha_dd_err;
2763         }
2764
2765         sha_dd->dev = dev;
2766
2767         platform_set_drvdata(pdev, sha_dd);
2768
2769         INIT_LIST_HEAD(&sha_dd->list);
2770         spin_lock_init(&sha_dd->lock);
2771
2772         tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
2773                                         (unsigned long)sha_dd);
2774         tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
2775                                         (unsigned long)sha_dd);
2776
2777         crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
2778
2779         sha_dd->irq = -1;
2780
2781         /* Get the base address */
2782         sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2783         if (!sha_res) {
2784                 dev_err(dev, "no MEM resource info\n");
2785                 err = -ENODEV;
2786                 goto res_err;
2787         }
2788         sha_dd->phys_base = sha_res->start;
2789
2790         /* Get the IRQ */
2791         sha_dd->irq = platform_get_irq(pdev,  0);
2792         if (sha_dd->irq < 0) {
2793                 dev_err(dev, "no IRQ resource info\n");
2794                 err = sha_dd->irq;
2795                 goto res_err;
2796         }
2797
2798         err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
2799                                IRQF_SHARED, "atmel-sha", sha_dd);
2800         if (err) {
2801                 dev_err(dev, "unable to request sha irq.\n");
2802                 goto res_err;
2803         }
2804
2805         /* Initializing the clock */
2806         sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
2807         if (IS_ERR(sha_dd->iclk)) {
2808                 dev_err(dev, "clock initialization failed.\n");
2809                 err = PTR_ERR(sha_dd->iclk);
2810                 goto res_err;
2811         }
2812
2813         sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
2814         if (IS_ERR(sha_dd->io_base)) {
2815                 dev_err(dev, "can't ioremap\n");
2816                 err = PTR_ERR(sha_dd->io_base);
2817                 goto res_err;
2818         }
2819
2820         err = clk_prepare(sha_dd->iclk);
2821         if (err)
2822                 goto res_err;
2823
2824         atmel_sha_hw_version_init(sha_dd);
2825
2826         atmel_sha_get_cap(sha_dd);
2827
2828         if (sha_dd->caps.has_dma) {
2829                 pdata = pdev->dev.platform_data;
2830                 if (!pdata) {
2831                         pdata = atmel_sha_of_init(pdev);
2832                         if (IS_ERR(pdata)) {
2833                                 dev_err(&pdev->dev, "platform data not available\n");
2834                                 err = PTR_ERR(pdata);
2835                                 goto iclk_unprepare;
2836                         }
2837                 }
2838                 if (!pdata->dma_slave) {
2839                         err = -ENXIO;
2840                         goto iclk_unprepare;
2841                 }
2842                 err = atmel_sha_dma_init(sha_dd, pdata);
2843                 if (err)
2844                         goto err_sha_dma;
2845
2846                 dev_info(dev, "using %s for DMA transfers\n",
2847                                 dma_chan_name(sha_dd->dma_lch_in.chan));
2848         }
2849
2850         spin_lock(&atmel_sha.lock);
2851         list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
2852         spin_unlock(&atmel_sha.lock);
2853
2854         err = atmel_sha_register_algs(sha_dd);
2855         if (err)
2856                 goto err_algs;
2857
2858         dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
2859                         sha_dd->caps.has_sha224 ? "/SHA224" : "",
2860                         sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
2861
2862         return 0;
2863
2864 err_algs:
2865         spin_lock(&atmel_sha.lock);
2866         list_del(&sha_dd->list);
2867         spin_unlock(&atmel_sha.lock);
2868         if (sha_dd->caps.has_dma)
2869                 atmel_sha_dma_cleanup(sha_dd);
2870 err_sha_dma:
2871 iclk_unprepare:
2872         clk_unprepare(sha_dd->iclk);
2873 res_err:
2874         tasklet_kill(&sha_dd->queue_task);
2875         tasklet_kill(&sha_dd->done_task);
2876 sha_dd_err:
2877         dev_err(dev, "initialization failed.\n");
2878
2879         return err;
2880 }
2881
2882 static int atmel_sha_remove(struct platform_device *pdev)
2883 {
2884         static struct atmel_sha_dev *sha_dd;
2885
2886         sha_dd = platform_get_drvdata(pdev);
2887         if (!sha_dd)
2888                 return -ENODEV;
2889         spin_lock(&atmel_sha.lock);
2890         list_del(&sha_dd->list);
2891         spin_unlock(&atmel_sha.lock);
2892
2893         atmel_sha_unregister_algs(sha_dd);
2894
2895         tasklet_kill(&sha_dd->queue_task);
2896         tasklet_kill(&sha_dd->done_task);
2897
2898         if (sha_dd->caps.has_dma)
2899                 atmel_sha_dma_cleanup(sha_dd);
2900
2901         clk_unprepare(sha_dd->iclk);
2902
2903         return 0;
2904 }
2905
2906 static struct platform_driver atmel_sha_driver = {
2907         .probe          = atmel_sha_probe,
2908         .remove         = atmel_sha_remove,
2909         .driver         = {
2910                 .name   = "atmel_sha",
2911                 .of_match_table = of_match_ptr(atmel_sha_dt_ids),
2912         },
2913 };
2914
2915 module_platform_driver(atmel_sha_driver);
2916
2917 MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2918 MODULE_LICENSE("GPL v2");
2919 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");