]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/dma/hsu/hsu.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / drivers / dma / hsu / hsu.c
1 /*
2  * Core driver for the High Speed UART DMA
3  *
4  * Copyright (C) 2015 Intel Corporation
5  * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
6  *
7  * Partially based on the bits found in drivers/tty/serial/mfd.c.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13
14 /*
15  * DMA channel allocation:
16  * 1. Even number chans are used for DMA Read (UART TX), odd chans for DMA
17  *    Write (UART RX).
18  * 2. 0/1 channel are assigned to port 0, 2/3 chan to port 1, 4/5 chan to
19  *    port 3, and so on.
20  */
21
22 #include <linux/delay.h>
23 #include <linux/dmaengine.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28
29 #include "hsu.h"
30
31 #define HSU_DMA_BUSWIDTHS                               \
32         BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED)       |       \
33         BIT(DMA_SLAVE_BUSWIDTH_1_BYTE)          |       \
34         BIT(DMA_SLAVE_BUSWIDTH_2_BYTES)         |       \
35         BIT(DMA_SLAVE_BUSWIDTH_3_BYTES)         |       \
36         BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)         |       \
37         BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)         |       \
38         BIT(DMA_SLAVE_BUSWIDTH_16_BYTES)
39
40 static inline void hsu_chan_disable(struct hsu_dma_chan *hsuc)
41 {
42         hsu_chan_writel(hsuc, HSU_CH_CR, 0);
43 }
44
45 static inline void hsu_chan_enable(struct hsu_dma_chan *hsuc)
46 {
47         u32 cr = HSU_CH_CR_CHA;
48
49         if (hsuc->direction == DMA_MEM_TO_DEV)
50                 cr &= ~HSU_CH_CR_CHD;
51         else if (hsuc->direction == DMA_DEV_TO_MEM)
52                 cr |= HSU_CH_CR_CHD;
53
54         hsu_chan_writel(hsuc, HSU_CH_CR, cr);
55 }
56
57 static void hsu_dma_chan_start(struct hsu_dma_chan *hsuc)
58 {
59         struct dma_slave_config *config = &hsuc->config;
60         struct hsu_dma_desc *desc = hsuc->desc;
61         u32 bsr = 0, mtsr = 0;  /* to shut the compiler up */
62         u32 dcr = HSU_CH_DCR_CHSOE | HSU_CH_DCR_CHEI;
63         unsigned int i, count;
64
65         if (hsuc->direction == DMA_MEM_TO_DEV) {
66                 bsr = config->dst_maxburst;
67                 mtsr = config->src_addr_width;
68         } else if (hsuc->direction == DMA_DEV_TO_MEM) {
69                 bsr = config->src_maxburst;
70                 mtsr = config->dst_addr_width;
71         }
72
73         hsu_chan_disable(hsuc);
74
75         hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
76         hsu_chan_writel(hsuc, HSU_CH_BSR, bsr);
77         hsu_chan_writel(hsuc, HSU_CH_MTSR, mtsr);
78
79         /* Set descriptors */
80         count = desc->nents - desc->active;
81         for (i = 0; i < count && i < HSU_DMA_CHAN_NR_DESC; i++) {
82                 hsu_chan_writel(hsuc, HSU_CH_DxSAR(i), desc->sg[i].addr);
83                 hsu_chan_writel(hsuc, HSU_CH_DxTSR(i), desc->sg[i].len);
84
85                 /* Prepare value for DCR */
86                 dcr |= HSU_CH_DCR_DESCA(i);
87                 dcr |= HSU_CH_DCR_CHTOI(i);     /* timeout bit, see HSU Errata 1 */
88
89                 desc->active++;
90         }
91         /* Only for the last descriptor in the chain */
92         dcr |= HSU_CH_DCR_CHSOD(count - 1);
93         dcr |= HSU_CH_DCR_CHDI(count - 1);
94
95         hsu_chan_writel(hsuc, HSU_CH_DCR, dcr);
96
97         hsu_chan_enable(hsuc);
98 }
99
100 static void hsu_dma_stop_channel(struct hsu_dma_chan *hsuc)
101 {
102         hsu_chan_disable(hsuc);
103         hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
104 }
105
106 static void hsu_dma_start_channel(struct hsu_dma_chan *hsuc)
107 {
108         hsu_dma_chan_start(hsuc);
109 }
110
111 static void hsu_dma_start_transfer(struct hsu_dma_chan *hsuc)
112 {
113         struct virt_dma_desc *vdesc;
114
115         /* Get the next descriptor */
116         vdesc = vchan_next_desc(&hsuc->vchan);
117         if (!vdesc) {
118                 hsuc->desc = NULL;
119                 return;
120         }
121
122         list_del(&vdesc->node);
123         hsuc->desc = to_hsu_dma_desc(vdesc);
124
125         /* Start the channel with a new descriptor */
126         hsu_dma_start_channel(hsuc);
127 }
128
129 /*
130  *      hsu_dma_get_status() - get DMA channel status
131  *      @chip: HSUART DMA chip
132  *      @nr: DMA channel number
133  *      @status: pointer for DMA Channel Status Register value
134  *
135  *      Description:
136  *      The function reads and clears the DMA Channel Status Register, checks
137  *      if it was a timeout interrupt and returns a corresponding value.
138  *
139  *      Caller should provide a valid pointer for the DMA Channel Status
140  *      Register value that will be returned in @status.
141  *
142  *      Return:
143  *      1 for DMA timeout status, 0 for other DMA status, or error code for
144  *      invalid parameters or no interrupt pending.
145  */
146 int hsu_dma_get_status(struct hsu_dma_chip *chip, unsigned short nr,
147                        u32 *status)
148 {
149         struct hsu_dma_chan *hsuc;
150         unsigned long flags;
151         u32 sr;
152
153         /* Sanity check */
154         if (nr >= chip->hsu->nr_channels)
155                 return -EINVAL;
156
157         hsuc = &chip->hsu->chan[nr];
158
159         /*
160          * No matter what situation, need read clear the IRQ status
161          * There is a bug, see Errata 5, HSD 2900918
162          */
163         spin_lock_irqsave(&hsuc->vchan.lock, flags);
164         sr = hsu_chan_readl(hsuc, HSU_CH_SR);
165         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
166
167         /* Check if any interrupt is pending */
168         sr &= ~(HSU_CH_SR_DESCE_ANY | HSU_CH_SR_CDESC_ANY);
169         if (!sr)
170                 return -EIO;
171
172         /* Timeout IRQ, need wait some time, see Errata 2 */
173         if (sr & HSU_CH_SR_DESCTO_ANY)
174                 udelay(2);
175
176         /*
177          * At this point, at least one of Descriptor Time Out, Channel Error
178          * or Descriptor Done bits must be set. Clear the Descriptor Time Out
179          * bits and if sr is still non-zero, it must be channel error or
180          * descriptor done which are higher priority than timeout and handled
181          * in hsu_dma_do_irq(). Else, it must be a timeout.
182          */
183         sr &= ~HSU_CH_SR_DESCTO_ANY;
184
185         *status = sr;
186
187         return sr ? 0 : 1;
188 }
189 EXPORT_SYMBOL_GPL(hsu_dma_get_status);
190
191 /*
192  *      hsu_dma_do_irq() - DMA interrupt handler
193  *      @chip: HSUART DMA chip
194  *      @nr: DMA channel number
195  *      @status: Channel Status Register value
196  *
197  *      Description:
198  *      This function handles Channel Error and Descriptor Done interrupts.
199  *      This function should be called after determining that the DMA interrupt
200  *      is not a normal timeout interrupt, ie. hsu_dma_get_status() returned 0.
201  *
202  *      Return:
203  *      IRQ_NONE for invalid channel number, IRQ_HANDLED otherwise.
204  */
205 irqreturn_t hsu_dma_do_irq(struct hsu_dma_chip *chip, unsigned short nr,
206                            u32 status)
207 {
208         struct hsu_dma_chan *hsuc;
209         struct hsu_dma_desc *desc;
210         unsigned long flags;
211
212         /* Sanity check */
213         if (nr >= chip->hsu->nr_channels)
214                 return IRQ_NONE;
215
216         hsuc = &chip->hsu->chan[nr];
217
218         spin_lock_irqsave(&hsuc->vchan.lock, flags);
219         desc = hsuc->desc;
220         if (desc) {
221                 if (status & HSU_CH_SR_CHE) {
222                         desc->status = DMA_ERROR;
223                 } else if (desc->active < desc->nents) {
224                         hsu_dma_start_channel(hsuc);
225                 } else {
226                         vchan_cookie_complete(&desc->vdesc);
227                         desc->status = DMA_COMPLETE;
228                         hsu_dma_start_transfer(hsuc);
229                 }
230         }
231         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
232
233         return IRQ_HANDLED;
234 }
235 EXPORT_SYMBOL_GPL(hsu_dma_do_irq);
236
237 static struct hsu_dma_desc *hsu_dma_alloc_desc(unsigned int nents)
238 {
239         struct hsu_dma_desc *desc;
240
241         desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
242         if (!desc)
243                 return NULL;
244
245         desc->sg = kcalloc(nents, sizeof(*desc->sg), GFP_NOWAIT);
246         if (!desc->sg) {
247                 kfree(desc);
248                 return NULL;
249         }
250
251         return desc;
252 }
253
254 static void hsu_dma_desc_free(struct virt_dma_desc *vdesc)
255 {
256         struct hsu_dma_desc *desc = to_hsu_dma_desc(vdesc);
257
258         kfree(desc->sg);
259         kfree(desc);
260 }
261
262 static struct dma_async_tx_descriptor *hsu_dma_prep_slave_sg(
263                 struct dma_chan *chan, struct scatterlist *sgl,
264                 unsigned int sg_len, enum dma_transfer_direction direction,
265                 unsigned long flags, void *context)
266 {
267         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
268         struct hsu_dma_desc *desc;
269         struct scatterlist *sg;
270         unsigned int i;
271
272         desc = hsu_dma_alloc_desc(sg_len);
273         if (!desc)
274                 return NULL;
275
276         for_each_sg(sgl, sg, sg_len, i) {
277                 desc->sg[i].addr = sg_dma_address(sg);
278                 desc->sg[i].len = sg_dma_len(sg);
279
280                 desc->length += sg_dma_len(sg);
281         }
282
283         desc->nents = sg_len;
284         desc->direction = direction;
285         /* desc->active = 0 by kzalloc */
286         desc->status = DMA_IN_PROGRESS;
287
288         return vchan_tx_prep(&hsuc->vchan, &desc->vdesc, flags);
289 }
290
291 static void hsu_dma_issue_pending(struct dma_chan *chan)
292 {
293         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
294         unsigned long flags;
295
296         spin_lock_irqsave(&hsuc->vchan.lock, flags);
297         if (vchan_issue_pending(&hsuc->vchan) && !hsuc->desc)
298                 hsu_dma_start_transfer(hsuc);
299         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
300 }
301
302 static size_t hsu_dma_active_desc_size(struct hsu_dma_chan *hsuc)
303 {
304         struct hsu_dma_desc *desc = hsuc->desc;
305         size_t bytes = 0;
306         int i;
307
308         for (i = desc->active; i < desc->nents; i++)
309                 bytes += desc->sg[i].len;
310
311         i = HSU_DMA_CHAN_NR_DESC - 1;
312         do {
313                 bytes += hsu_chan_readl(hsuc, HSU_CH_DxTSR(i));
314         } while (--i >= 0);
315
316         return bytes;
317 }
318
319 static enum dma_status hsu_dma_tx_status(struct dma_chan *chan,
320         dma_cookie_t cookie, struct dma_tx_state *state)
321 {
322         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
323         struct virt_dma_desc *vdesc;
324         enum dma_status status;
325         size_t bytes;
326         unsigned long flags;
327
328         status = dma_cookie_status(chan, cookie, state);
329         if (status == DMA_COMPLETE)
330                 return status;
331
332         spin_lock_irqsave(&hsuc->vchan.lock, flags);
333         vdesc = vchan_find_desc(&hsuc->vchan, cookie);
334         if (hsuc->desc && cookie == hsuc->desc->vdesc.tx.cookie) {
335                 bytes = hsu_dma_active_desc_size(hsuc);
336                 dma_set_residue(state, bytes);
337                 status = hsuc->desc->status;
338         } else if (vdesc) {
339                 bytes = to_hsu_dma_desc(vdesc)->length;
340                 dma_set_residue(state, bytes);
341         }
342         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
343
344         return status;
345 }
346
347 static int hsu_dma_slave_config(struct dma_chan *chan,
348                                 struct dma_slave_config *config)
349 {
350         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
351
352         /* Check if chan will be configured for slave transfers */
353         if (!is_slave_direction(config->direction))
354                 return -EINVAL;
355
356         memcpy(&hsuc->config, config, sizeof(hsuc->config));
357
358         return 0;
359 }
360
361 static int hsu_dma_pause(struct dma_chan *chan)
362 {
363         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
364         unsigned long flags;
365
366         spin_lock_irqsave(&hsuc->vchan.lock, flags);
367         if (hsuc->desc && hsuc->desc->status == DMA_IN_PROGRESS) {
368                 hsu_chan_disable(hsuc);
369                 hsuc->desc->status = DMA_PAUSED;
370         }
371         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
372
373         return 0;
374 }
375
376 static int hsu_dma_resume(struct dma_chan *chan)
377 {
378         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
379         unsigned long flags;
380
381         spin_lock_irqsave(&hsuc->vchan.lock, flags);
382         if (hsuc->desc && hsuc->desc->status == DMA_PAUSED) {
383                 hsuc->desc->status = DMA_IN_PROGRESS;
384                 hsu_chan_enable(hsuc);
385         }
386         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
387
388         return 0;
389 }
390
391 static int hsu_dma_terminate_all(struct dma_chan *chan)
392 {
393         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
394         unsigned long flags;
395         LIST_HEAD(head);
396
397         spin_lock_irqsave(&hsuc->vchan.lock, flags);
398
399         hsu_dma_stop_channel(hsuc);
400         if (hsuc->desc) {
401                 hsu_dma_desc_free(&hsuc->desc->vdesc);
402                 hsuc->desc = NULL;
403         }
404
405         vchan_get_all_descriptors(&hsuc->vchan, &head);
406         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
407         vchan_dma_desc_free_list(&hsuc->vchan, &head);
408
409         return 0;
410 }
411
412 static void hsu_dma_free_chan_resources(struct dma_chan *chan)
413 {
414         vchan_free_chan_resources(to_virt_chan(chan));
415 }
416
417 int hsu_dma_probe(struct hsu_dma_chip *chip)
418 {
419         struct hsu_dma *hsu;
420         void __iomem *addr = chip->regs + chip->offset;
421         unsigned short i;
422         int ret;
423
424         hsu = devm_kzalloc(chip->dev, sizeof(*hsu), GFP_KERNEL);
425         if (!hsu)
426                 return -ENOMEM;
427
428         chip->hsu = hsu;
429
430         /* Calculate nr_channels from the IO space length */
431         hsu->nr_channels = (chip->length - chip->offset) / HSU_DMA_CHAN_LENGTH;
432
433         hsu->chan = devm_kcalloc(chip->dev, hsu->nr_channels,
434                                  sizeof(*hsu->chan), GFP_KERNEL);
435         if (!hsu->chan)
436                 return -ENOMEM;
437
438         INIT_LIST_HEAD(&hsu->dma.channels);
439         for (i = 0; i < hsu->nr_channels; i++) {
440                 struct hsu_dma_chan *hsuc = &hsu->chan[i];
441
442                 hsuc->vchan.desc_free = hsu_dma_desc_free;
443                 vchan_init(&hsuc->vchan, &hsu->dma);
444
445                 hsuc->direction = (i & 0x1) ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
446                 hsuc->reg = addr + i * HSU_DMA_CHAN_LENGTH;
447         }
448
449         dma_cap_set(DMA_SLAVE, hsu->dma.cap_mask);
450         dma_cap_set(DMA_PRIVATE, hsu->dma.cap_mask);
451
452         hsu->dma.device_free_chan_resources = hsu_dma_free_chan_resources;
453
454         hsu->dma.device_prep_slave_sg = hsu_dma_prep_slave_sg;
455
456         hsu->dma.device_issue_pending = hsu_dma_issue_pending;
457         hsu->dma.device_tx_status = hsu_dma_tx_status;
458
459         hsu->dma.device_config = hsu_dma_slave_config;
460         hsu->dma.device_pause = hsu_dma_pause;
461         hsu->dma.device_resume = hsu_dma_resume;
462         hsu->dma.device_terminate_all = hsu_dma_terminate_all;
463
464         hsu->dma.src_addr_widths = HSU_DMA_BUSWIDTHS;
465         hsu->dma.dst_addr_widths = HSU_DMA_BUSWIDTHS;
466         hsu->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
467         hsu->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
468
469         hsu->dma.dev = chip->dev;
470
471         dma_set_max_seg_size(hsu->dma.dev, HSU_CH_DxTSR_MASK);
472
473         ret = dma_async_device_register(&hsu->dma);
474         if (ret)
475                 return ret;
476
477         dev_info(chip->dev, "Found HSU DMA, %d channels\n", hsu->nr_channels);
478         return 0;
479 }
480 EXPORT_SYMBOL_GPL(hsu_dma_probe);
481
482 int hsu_dma_remove(struct hsu_dma_chip *chip)
483 {
484         struct hsu_dma *hsu = chip->hsu;
485         unsigned short i;
486
487         dma_async_device_unregister(&hsu->dma);
488
489         for (i = 0; i < hsu->nr_channels; i++) {
490                 struct hsu_dma_chan *hsuc = &hsu->chan[i];
491
492                 tasklet_kill(&hsuc->vchan.task);
493         }
494
495         return 0;
496 }
497 EXPORT_SYMBOL_GPL(hsu_dma_remove);
498
499 MODULE_LICENSE("GPL v2");
500 MODULE_DESCRIPTION("High Speed UART DMA core driver");
501 MODULE_AUTHOR("Andy Shevchenko <andriy.shevchenko@linux.intel.com>");