]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/dma/omap-dma.c
Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / drivers / dma / omap-dma.c
1 /*
2  * OMAP DMAengine support
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 #include <linux/delay.h>
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/err.h>
12 #include <linux/init.h>
13 #include <linux/interrupt.h>
14 #include <linux/list.h>
15 #include <linux/module.h>
16 #include <linux/omap-dma.h>
17 #include <linux/platform_device.h>
18 #include <linux/slab.h>
19 #include <linux/spinlock.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_device.h>
22
23 #include "virt-dma.h"
24
25 struct omap_dmadev {
26         struct dma_device ddev;
27         spinlock_t lock;
28         struct tasklet_struct task;
29         struct list_head pending;
30         void __iomem *base;
31         const struct omap_dma_reg *reg_map;
32         struct omap_system_dma_plat_info *plat;
33         bool legacy;
34         spinlock_t irq_lock;
35         uint32_t irq_enable_mask;
36         struct omap_chan *lch_map[32];
37 };
38
39 struct omap_chan {
40         struct virt_dma_chan vc;
41         struct list_head node;
42         void __iomem *channel_base;
43         const struct omap_dma_reg *reg_map;
44         uint32_t ccr;
45
46         struct dma_slave_config cfg;
47         unsigned dma_sig;
48         bool cyclic;
49         bool paused;
50
51         int dma_ch;
52         struct omap_desc *desc;
53         unsigned sgidx;
54 };
55
56 struct omap_sg {
57         dma_addr_t addr;
58         uint32_t en;            /* number of elements (24-bit) */
59         uint32_t fn;            /* number of frames (16-bit) */
60 };
61
62 struct omap_desc {
63         struct virt_dma_desc vd;
64         enum dma_transfer_direction dir;
65         dma_addr_t dev_addr;
66
67         int16_t fi;             /* for OMAP_DMA_SYNC_PACKET */
68         uint8_t es;             /* CSDP_DATA_TYPE_xxx */
69         uint32_t ccr;           /* CCR value */
70         uint16_t clnk_ctrl;     /* CLNK_CTRL value */
71         uint16_t cicr;          /* CICR value */
72         uint32_t csdp;          /* CSDP value */
73
74         unsigned sglen;
75         struct omap_sg sg[0];
76 };
77
78 enum {
79         CCR_FS                  = BIT(5),
80         CCR_READ_PRIORITY       = BIT(6),
81         CCR_ENABLE              = BIT(7),
82         CCR_AUTO_INIT           = BIT(8),       /* OMAP1 only */
83         CCR_REPEAT              = BIT(9),       /* OMAP1 only */
84         CCR_OMAP31_DISABLE      = BIT(10),      /* OMAP1 only */
85         CCR_SUSPEND_SENSITIVE   = BIT(8),       /* OMAP2+ only */
86         CCR_RD_ACTIVE           = BIT(9),       /* OMAP2+ only */
87         CCR_WR_ACTIVE           = BIT(10),      /* OMAP2+ only */
88         CCR_SRC_AMODE_CONSTANT  = 0 << 12,
89         CCR_SRC_AMODE_POSTINC   = 1 << 12,
90         CCR_SRC_AMODE_SGLIDX    = 2 << 12,
91         CCR_SRC_AMODE_DBLIDX    = 3 << 12,
92         CCR_DST_AMODE_CONSTANT  = 0 << 14,
93         CCR_DST_AMODE_POSTINC   = 1 << 14,
94         CCR_DST_AMODE_SGLIDX    = 2 << 14,
95         CCR_DST_AMODE_DBLIDX    = 3 << 14,
96         CCR_CONSTANT_FILL       = BIT(16),
97         CCR_TRANSPARENT_COPY    = BIT(17),
98         CCR_BS                  = BIT(18),
99         CCR_SUPERVISOR          = BIT(22),
100         CCR_PREFETCH            = BIT(23),
101         CCR_TRIGGER_SRC         = BIT(24),
102         CCR_BUFFERING_DISABLE   = BIT(25),
103         CCR_WRITE_PRIORITY      = BIT(26),
104         CCR_SYNC_ELEMENT        = 0,
105         CCR_SYNC_FRAME          = CCR_FS,
106         CCR_SYNC_BLOCK          = CCR_BS,
107         CCR_SYNC_PACKET         = CCR_BS | CCR_FS,
108
109         CSDP_DATA_TYPE_8        = 0,
110         CSDP_DATA_TYPE_16       = 1,
111         CSDP_DATA_TYPE_32       = 2,
112         CSDP_SRC_PORT_EMIFF     = 0 << 2, /* OMAP1 only */
113         CSDP_SRC_PORT_EMIFS     = 1 << 2, /* OMAP1 only */
114         CSDP_SRC_PORT_OCP_T1    = 2 << 2, /* OMAP1 only */
115         CSDP_SRC_PORT_TIPB      = 3 << 2, /* OMAP1 only */
116         CSDP_SRC_PORT_OCP_T2    = 4 << 2, /* OMAP1 only */
117         CSDP_SRC_PORT_MPUI      = 5 << 2, /* OMAP1 only */
118         CSDP_SRC_PACKED         = BIT(6),
119         CSDP_SRC_BURST_1        = 0 << 7,
120         CSDP_SRC_BURST_16       = 1 << 7,
121         CSDP_SRC_BURST_32       = 2 << 7,
122         CSDP_SRC_BURST_64       = 3 << 7,
123         CSDP_DST_PORT_EMIFF     = 0 << 9, /* OMAP1 only */
124         CSDP_DST_PORT_EMIFS     = 1 << 9, /* OMAP1 only */
125         CSDP_DST_PORT_OCP_T1    = 2 << 9, /* OMAP1 only */
126         CSDP_DST_PORT_TIPB      = 3 << 9, /* OMAP1 only */
127         CSDP_DST_PORT_OCP_T2    = 4 << 9, /* OMAP1 only */
128         CSDP_DST_PORT_MPUI      = 5 << 9, /* OMAP1 only */
129         CSDP_DST_PACKED         = BIT(13),
130         CSDP_DST_BURST_1        = 0 << 14,
131         CSDP_DST_BURST_16       = 1 << 14,
132         CSDP_DST_BURST_32       = 2 << 14,
133         CSDP_DST_BURST_64       = 3 << 14,
134
135         CICR_TOUT_IE            = BIT(0),       /* OMAP1 only */
136         CICR_DROP_IE            = BIT(1),
137         CICR_HALF_IE            = BIT(2),
138         CICR_FRAME_IE           = BIT(3),
139         CICR_LAST_IE            = BIT(4),
140         CICR_BLOCK_IE           = BIT(5),
141         CICR_PKT_IE             = BIT(7),       /* OMAP2+ only */
142         CICR_TRANS_ERR_IE       = BIT(8),       /* OMAP2+ only */
143         CICR_SUPERVISOR_ERR_IE  = BIT(10),      /* OMAP2+ only */
144         CICR_MISALIGNED_ERR_IE  = BIT(11),      /* OMAP2+ only */
145         CICR_DRAIN_IE           = BIT(12),      /* OMAP2+ only */
146         CICR_SUPER_BLOCK_IE     = BIT(14),      /* OMAP2+ only */
147
148         CLNK_CTRL_ENABLE_LNK    = BIT(15),
149 };
150
151 static const unsigned es_bytes[] = {
152         [CSDP_DATA_TYPE_8] = 1,
153         [CSDP_DATA_TYPE_16] = 2,
154         [CSDP_DATA_TYPE_32] = 4,
155 };
156
157 static struct of_dma_filter_info omap_dma_info = {
158         .filter_fn = omap_dma_filter_fn,
159 };
160
161 static inline struct omap_dmadev *to_omap_dma_dev(struct dma_device *d)
162 {
163         return container_of(d, struct omap_dmadev, ddev);
164 }
165
166 static inline struct omap_chan *to_omap_dma_chan(struct dma_chan *c)
167 {
168         return container_of(c, struct omap_chan, vc.chan);
169 }
170
171 static inline struct omap_desc *to_omap_dma_desc(struct dma_async_tx_descriptor *t)
172 {
173         return container_of(t, struct omap_desc, vd.tx);
174 }
175
176 static void omap_dma_desc_free(struct virt_dma_desc *vd)
177 {
178         kfree(container_of(vd, struct omap_desc, vd));
179 }
180
181 static void omap_dma_write(uint32_t val, unsigned type, void __iomem *addr)
182 {
183         switch (type) {
184         case OMAP_DMA_REG_16BIT:
185                 writew_relaxed(val, addr);
186                 break;
187         case OMAP_DMA_REG_2X16BIT:
188                 writew_relaxed(val, addr);
189                 writew_relaxed(val >> 16, addr + 2);
190                 break;
191         case OMAP_DMA_REG_32BIT:
192                 writel_relaxed(val, addr);
193                 break;
194         default:
195                 WARN_ON(1);
196         }
197 }
198
199 static unsigned omap_dma_read(unsigned type, void __iomem *addr)
200 {
201         unsigned val;
202
203         switch (type) {
204         case OMAP_DMA_REG_16BIT:
205                 val = readw_relaxed(addr);
206                 break;
207         case OMAP_DMA_REG_2X16BIT:
208                 val = readw_relaxed(addr);
209                 val |= readw_relaxed(addr + 2) << 16;
210                 break;
211         case OMAP_DMA_REG_32BIT:
212                 val = readl_relaxed(addr);
213                 break;
214         default:
215                 WARN_ON(1);
216                 val = 0;
217         }
218
219         return val;
220 }
221
222 static void omap_dma_glbl_write(struct omap_dmadev *od, unsigned reg, unsigned val)
223 {
224         const struct omap_dma_reg *r = od->reg_map + reg;
225
226         WARN_ON(r->stride);
227
228         omap_dma_write(val, r->type, od->base + r->offset);
229 }
230
231 static unsigned omap_dma_glbl_read(struct omap_dmadev *od, unsigned reg)
232 {
233         const struct omap_dma_reg *r = od->reg_map + reg;
234
235         WARN_ON(r->stride);
236
237         return omap_dma_read(r->type, od->base + r->offset);
238 }
239
240 static void omap_dma_chan_write(struct omap_chan *c, unsigned reg, unsigned val)
241 {
242         const struct omap_dma_reg *r = c->reg_map + reg;
243
244         omap_dma_write(val, r->type, c->channel_base + r->offset);
245 }
246
247 static unsigned omap_dma_chan_read(struct omap_chan *c, unsigned reg)
248 {
249         const struct omap_dma_reg *r = c->reg_map + reg;
250
251         return omap_dma_read(r->type, c->channel_base + r->offset);
252 }
253
254 static void omap_dma_clear_csr(struct omap_chan *c)
255 {
256         if (dma_omap1())
257                 omap_dma_chan_read(c, CSR);
258         else
259                 omap_dma_chan_write(c, CSR, ~0);
260 }
261
262 static unsigned omap_dma_get_csr(struct omap_chan *c)
263 {
264         unsigned val = omap_dma_chan_read(c, CSR);
265
266         if (!dma_omap1())
267                 omap_dma_chan_write(c, CSR, val);
268
269         return val;
270 }
271
272 static void omap_dma_assign(struct omap_dmadev *od, struct omap_chan *c,
273         unsigned lch)
274 {
275         c->channel_base = od->base + od->plat->channel_stride * lch;
276
277         od->lch_map[lch] = c;
278 }
279
280 static void omap_dma_start(struct omap_chan *c, struct omap_desc *d)
281 {
282         struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
283
284         if (__dma_omap15xx(od->plat->dma_attr))
285                 omap_dma_chan_write(c, CPC, 0);
286         else
287                 omap_dma_chan_write(c, CDAC, 0);
288
289         omap_dma_clear_csr(c);
290
291         /* Enable interrupts */
292         omap_dma_chan_write(c, CICR, d->cicr);
293
294         /* Enable channel */
295         omap_dma_chan_write(c, CCR, d->ccr | CCR_ENABLE);
296 }
297
298 static void omap_dma_stop(struct omap_chan *c)
299 {
300         struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
301         uint32_t val;
302
303         /* disable irq */
304         omap_dma_chan_write(c, CICR, 0);
305
306         omap_dma_clear_csr(c);
307
308         val = omap_dma_chan_read(c, CCR);
309         if (od->plat->errata & DMA_ERRATA_i541 && val & CCR_TRIGGER_SRC) {
310                 uint32_t sysconfig;
311                 unsigned i;
312
313                 sysconfig = omap_dma_glbl_read(od, OCP_SYSCONFIG);
314                 val = sysconfig & ~DMA_SYSCONFIG_MIDLEMODE_MASK;
315                 val |= DMA_SYSCONFIG_MIDLEMODE(DMA_IDLEMODE_NO_IDLE);
316                 omap_dma_glbl_write(od, OCP_SYSCONFIG, val);
317
318                 val = omap_dma_chan_read(c, CCR);
319                 val &= ~CCR_ENABLE;
320                 omap_dma_chan_write(c, CCR, val);
321
322                 /* Wait for sDMA FIFO to drain */
323                 for (i = 0; ; i++) {
324                         val = omap_dma_chan_read(c, CCR);
325                         if (!(val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE)))
326                                 break;
327
328                         if (i > 100)
329                                 break;
330
331                         udelay(5);
332                 }
333
334                 if (val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE))
335                         dev_err(c->vc.chan.device->dev,
336                                 "DMA drain did not complete on lch %d\n",
337                                 c->dma_ch);
338
339                 omap_dma_glbl_write(od, OCP_SYSCONFIG, sysconfig);
340         } else {
341                 val &= ~CCR_ENABLE;
342                 omap_dma_chan_write(c, CCR, val);
343         }
344
345         mb();
346
347         if (!__dma_omap15xx(od->plat->dma_attr) && c->cyclic) {
348                 val = omap_dma_chan_read(c, CLNK_CTRL);
349
350                 if (dma_omap1())
351                         val |= 1 << 14; /* set the STOP_LNK bit */
352                 else
353                         val &= ~CLNK_CTRL_ENABLE_LNK;
354
355                 omap_dma_chan_write(c, CLNK_CTRL, val);
356         }
357 }
358
359 static void omap_dma_start_sg(struct omap_chan *c, struct omap_desc *d,
360         unsigned idx)
361 {
362         struct omap_sg *sg = d->sg + idx;
363         unsigned cxsa, cxei, cxfi;
364
365         if (d->dir == DMA_DEV_TO_MEM) {
366                 cxsa = CDSA;
367                 cxei = CDEI;
368                 cxfi = CDFI;
369         } else {
370                 cxsa = CSSA;
371                 cxei = CSEI;
372                 cxfi = CSFI;
373         }
374
375         omap_dma_chan_write(c, cxsa, sg->addr);
376         omap_dma_chan_write(c, cxei, 0);
377         omap_dma_chan_write(c, cxfi, 0);
378         omap_dma_chan_write(c, CEN, sg->en);
379         omap_dma_chan_write(c, CFN, sg->fn);
380
381         omap_dma_start(c, d);
382 }
383
384 static void omap_dma_start_desc(struct omap_chan *c)
385 {
386         struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
387         struct omap_desc *d;
388         unsigned cxsa, cxei, cxfi;
389
390         if (!vd) {
391                 c->desc = NULL;
392                 return;
393         }
394
395         list_del(&vd->node);
396
397         c->desc = d = to_omap_dma_desc(&vd->tx);
398         c->sgidx = 0;
399
400         /*
401          * This provides the necessary barrier to ensure data held in
402          * DMA coherent memory is visible to the DMA engine prior to
403          * the transfer starting.
404          */
405         mb();
406
407         omap_dma_chan_write(c, CCR, d->ccr);
408         if (dma_omap1())
409                 omap_dma_chan_write(c, CCR2, d->ccr >> 16);
410
411         if (d->dir == DMA_DEV_TO_MEM) {
412                 cxsa = CSSA;
413                 cxei = CSEI;
414                 cxfi = CSFI;
415         } else {
416                 cxsa = CDSA;
417                 cxei = CDEI;
418                 cxfi = CDFI;
419         }
420
421         omap_dma_chan_write(c, cxsa, d->dev_addr);
422         omap_dma_chan_write(c, cxei, 0);
423         omap_dma_chan_write(c, cxfi, d->fi);
424         omap_dma_chan_write(c, CSDP, d->csdp);
425         omap_dma_chan_write(c, CLNK_CTRL, d->clnk_ctrl);
426
427         omap_dma_start_sg(c, d, 0);
428 }
429
430 static void omap_dma_callback(int ch, u16 status, void *data)
431 {
432         struct omap_chan *c = data;
433         struct omap_desc *d;
434         unsigned long flags;
435
436         spin_lock_irqsave(&c->vc.lock, flags);
437         d = c->desc;
438         if (d) {
439                 if (!c->cyclic) {
440                         if (++c->sgidx < d->sglen) {
441                                 omap_dma_start_sg(c, d, c->sgidx);
442                         } else {
443                                 omap_dma_start_desc(c);
444                                 vchan_cookie_complete(&d->vd);
445                         }
446                 } else {
447                         vchan_cyclic_callback(&d->vd);
448                 }
449         }
450         spin_unlock_irqrestore(&c->vc.lock, flags);
451 }
452
453 /*
454  * This callback schedules all pending channels.  We could be more
455  * clever here by postponing allocation of the real DMA channels to
456  * this point, and freeing them when our virtual channel becomes idle.
457  *
458  * We would then need to deal with 'all channels in-use'
459  */
460 static void omap_dma_sched(unsigned long data)
461 {
462         struct omap_dmadev *d = (struct omap_dmadev *)data;
463         LIST_HEAD(head);
464
465         spin_lock_irq(&d->lock);
466         list_splice_tail_init(&d->pending, &head);
467         spin_unlock_irq(&d->lock);
468
469         while (!list_empty(&head)) {
470                 struct omap_chan *c = list_first_entry(&head,
471                         struct omap_chan, node);
472
473                 spin_lock_irq(&c->vc.lock);
474                 list_del_init(&c->node);
475                 omap_dma_start_desc(c);
476                 spin_unlock_irq(&c->vc.lock);
477         }
478 }
479
480 static irqreturn_t omap_dma_irq(int irq, void *devid)
481 {
482         struct omap_dmadev *od = devid;
483         unsigned status, channel;
484
485         spin_lock(&od->irq_lock);
486
487         status = omap_dma_glbl_read(od, IRQSTATUS_L1);
488         status &= od->irq_enable_mask;
489         if (status == 0) {
490                 spin_unlock(&od->irq_lock);
491                 return IRQ_NONE;
492         }
493
494         while ((channel = ffs(status)) != 0) {
495                 unsigned mask, csr;
496                 struct omap_chan *c;
497
498                 channel -= 1;
499                 mask = BIT(channel);
500                 status &= ~mask;
501
502                 c = od->lch_map[channel];
503                 if (c == NULL) {
504                         /* This should never happen */
505                         dev_err(od->ddev.dev, "invalid channel %u\n", channel);
506                         continue;
507                 }
508
509                 csr = omap_dma_get_csr(c);
510                 omap_dma_glbl_write(od, IRQSTATUS_L1, mask);
511
512                 omap_dma_callback(channel, csr, c);
513         }
514
515         spin_unlock(&od->irq_lock);
516
517         return IRQ_HANDLED;
518 }
519
520 static int omap_dma_alloc_chan_resources(struct dma_chan *chan)
521 {
522         struct omap_dmadev *od = to_omap_dma_dev(chan->device);
523         struct omap_chan *c = to_omap_dma_chan(chan);
524         int ret;
525
526         if (od->legacy) {
527                 ret = omap_request_dma(c->dma_sig, "DMA engine",
528                                        omap_dma_callback, c, &c->dma_ch);
529         } else {
530                 ret = omap_request_dma(c->dma_sig, "DMA engine", NULL, NULL,
531                                        &c->dma_ch);
532         }
533
534         dev_dbg(od->ddev.dev, "allocating channel %u for %u\n",
535                 c->dma_ch, c->dma_sig);
536
537         if (ret >= 0) {
538                 omap_dma_assign(od, c, c->dma_ch);
539
540                 if (!od->legacy) {
541                         unsigned val;
542
543                         spin_lock_irq(&od->irq_lock);
544                         val = BIT(c->dma_ch);
545                         omap_dma_glbl_write(od, IRQSTATUS_L1, val);
546                         od->irq_enable_mask |= val;
547                         omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
548
549                         val = omap_dma_glbl_read(od, IRQENABLE_L0);
550                         val &= ~BIT(c->dma_ch);
551                         omap_dma_glbl_write(od, IRQENABLE_L0, val);
552                         spin_unlock_irq(&od->irq_lock);
553                 }
554         }
555
556         if (dma_omap1()) {
557                 if (__dma_omap16xx(od->plat->dma_attr)) {
558                         c->ccr = CCR_OMAP31_DISABLE;
559                         /* Duplicate what plat-omap/dma.c does */
560                         c->ccr |= c->dma_ch + 1;
561                 } else {
562                         c->ccr = c->dma_sig & 0x1f;
563                 }
564         } else {
565                 c->ccr = c->dma_sig & 0x1f;
566                 c->ccr |= (c->dma_sig & ~0x1f) << 14;
567         }
568         if (od->plat->errata & DMA_ERRATA_IFRAME_BUFFERING)
569                 c->ccr |= CCR_BUFFERING_DISABLE;
570
571         return ret;
572 }
573
574 static void omap_dma_free_chan_resources(struct dma_chan *chan)
575 {
576         struct omap_dmadev *od = to_omap_dma_dev(chan->device);
577         struct omap_chan *c = to_omap_dma_chan(chan);
578
579         if (!od->legacy) {
580                 spin_lock_irq(&od->irq_lock);
581                 od->irq_enable_mask &= ~BIT(c->dma_ch);
582                 omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
583                 spin_unlock_irq(&od->irq_lock);
584         }
585
586         c->channel_base = NULL;
587         od->lch_map[c->dma_ch] = NULL;
588         vchan_free_chan_resources(&c->vc);
589         omap_free_dma(c->dma_ch);
590
591         dev_dbg(od->ddev.dev, "freeing channel for %u\n", c->dma_sig);
592 }
593
594 static size_t omap_dma_sg_size(struct omap_sg *sg)
595 {
596         return sg->en * sg->fn;
597 }
598
599 static size_t omap_dma_desc_size(struct omap_desc *d)
600 {
601         unsigned i;
602         size_t size;
603
604         for (size = i = 0; i < d->sglen; i++)
605                 size += omap_dma_sg_size(&d->sg[i]);
606
607         return size * es_bytes[d->es];
608 }
609
610 static size_t omap_dma_desc_size_pos(struct omap_desc *d, dma_addr_t addr)
611 {
612         unsigned i;
613         size_t size, es_size = es_bytes[d->es];
614
615         for (size = i = 0; i < d->sglen; i++) {
616                 size_t this_size = omap_dma_sg_size(&d->sg[i]) * es_size;
617
618                 if (size)
619                         size += this_size;
620                 else if (addr >= d->sg[i].addr &&
621                          addr < d->sg[i].addr + this_size)
622                         size += d->sg[i].addr + this_size - addr;
623         }
624         return size;
625 }
626
627 /*
628  * OMAP 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is
629  * read before the DMA controller finished disabling the channel.
630  */
631 static uint32_t omap_dma_chan_read_3_3(struct omap_chan *c, unsigned reg)
632 {
633         struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
634         uint32_t val;
635
636         val = omap_dma_chan_read(c, reg);
637         if (val == 0 && od->plat->errata & DMA_ERRATA_3_3)
638                 val = omap_dma_chan_read(c, reg);
639
640         return val;
641 }
642
643 static dma_addr_t omap_dma_get_src_pos(struct omap_chan *c)
644 {
645         struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
646         dma_addr_t addr, cdac;
647
648         if (__dma_omap15xx(od->plat->dma_attr)) {
649                 addr = omap_dma_chan_read(c, CPC);
650         } else {
651                 addr = omap_dma_chan_read_3_3(c, CSAC);
652                 cdac = omap_dma_chan_read_3_3(c, CDAC);
653
654                 /*
655                  * CDAC == 0 indicates that the DMA transfer on the channel has
656                  * not been started (no data has been transferred so far).
657                  * Return the programmed source start address in this case.
658                  */
659                 if (cdac == 0)
660                         addr = omap_dma_chan_read(c, CSSA);
661         }
662
663         if (dma_omap1())
664                 addr |= omap_dma_chan_read(c, CSSA) & 0xffff0000;
665
666         return addr;
667 }
668
669 static dma_addr_t omap_dma_get_dst_pos(struct omap_chan *c)
670 {
671         struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
672         dma_addr_t addr;
673
674         if (__dma_omap15xx(od->plat->dma_attr)) {
675                 addr = omap_dma_chan_read(c, CPC);
676         } else {
677                 addr = omap_dma_chan_read_3_3(c, CDAC);
678
679                 /*
680                  * CDAC == 0 indicates that the DMA transfer on the channel
681                  * has not been started (no data has been transferred so
682                  * far).  Return the programmed destination start address in
683                  * this case.
684                  */
685                 if (addr == 0)
686                         addr = omap_dma_chan_read(c, CDSA);
687         }
688
689         if (dma_omap1())
690                 addr |= omap_dma_chan_read(c, CDSA) & 0xffff0000;
691
692         return addr;
693 }
694
695 static enum dma_status omap_dma_tx_status(struct dma_chan *chan,
696         dma_cookie_t cookie, struct dma_tx_state *txstate)
697 {
698         struct omap_chan *c = to_omap_dma_chan(chan);
699         struct virt_dma_desc *vd;
700         enum dma_status ret;
701         unsigned long flags;
702
703         ret = dma_cookie_status(chan, cookie, txstate);
704         if (ret == DMA_COMPLETE || !txstate)
705                 return ret;
706
707         spin_lock_irqsave(&c->vc.lock, flags);
708         vd = vchan_find_desc(&c->vc, cookie);
709         if (vd) {
710                 txstate->residue = omap_dma_desc_size(to_omap_dma_desc(&vd->tx));
711         } else if (c->desc && c->desc->vd.tx.cookie == cookie) {
712                 struct omap_desc *d = c->desc;
713                 dma_addr_t pos;
714
715                 if (d->dir == DMA_MEM_TO_DEV)
716                         pos = omap_dma_get_src_pos(c);
717                 else if (d->dir == DMA_DEV_TO_MEM)
718                         pos = omap_dma_get_dst_pos(c);
719                 else
720                         pos = 0;
721
722                 txstate->residue = omap_dma_desc_size_pos(d, pos);
723         } else {
724                 txstate->residue = 0;
725         }
726         spin_unlock_irqrestore(&c->vc.lock, flags);
727
728         return ret;
729 }
730
731 static void omap_dma_issue_pending(struct dma_chan *chan)
732 {
733         struct omap_chan *c = to_omap_dma_chan(chan);
734         unsigned long flags;
735
736         spin_lock_irqsave(&c->vc.lock, flags);
737         if (vchan_issue_pending(&c->vc) && !c->desc) {
738                 /*
739                  * c->cyclic is used only by audio and in this case the DMA need
740                  * to be started without delay.
741                  */
742                 if (!c->cyclic) {
743                         struct omap_dmadev *d = to_omap_dma_dev(chan->device);
744                         spin_lock(&d->lock);
745                         if (list_empty(&c->node))
746                                 list_add_tail(&c->node, &d->pending);
747                         spin_unlock(&d->lock);
748                         tasklet_schedule(&d->task);
749                 } else {
750                         omap_dma_start_desc(c);
751                 }
752         }
753         spin_unlock_irqrestore(&c->vc.lock, flags);
754 }
755
756 static struct dma_async_tx_descriptor *omap_dma_prep_slave_sg(
757         struct dma_chan *chan, struct scatterlist *sgl, unsigned sglen,
758         enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
759 {
760         struct omap_dmadev *od = to_omap_dma_dev(chan->device);
761         struct omap_chan *c = to_omap_dma_chan(chan);
762         enum dma_slave_buswidth dev_width;
763         struct scatterlist *sgent;
764         struct omap_desc *d;
765         dma_addr_t dev_addr;
766         unsigned i, j = 0, es, en, frame_bytes;
767         u32 burst;
768
769         if (dir == DMA_DEV_TO_MEM) {
770                 dev_addr = c->cfg.src_addr;
771                 dev_width = c->cfg.src_addr_width;
772                 burst = c->cfg.src_maxburst;
773         } else if (dir == DMA_MEM_TO_DEV) {
774                 dev_addr = c->cfg.dst_addr;
775                 dev_width = c->cfg.dst_addr_width;
776                 burst = c->cfg.dst_maxburst;
777         } else {
778                 dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
779                 return NULL;
780         }
781
782         /* Bus width translates to the element size (ES) */
783         switch (dev_width) {
784         case DMA_SLAVE_BUSWIDTH_1_BYTE:
785                 es = CSDP_DATA_TYPE_8;
786                 break;
787         case DMA_SLAVE_BUSWIDTH_2_BYTES:
788                 es = CSDP_DATA_TYPE_16;
789                 break;
790         case DMA_SLAVE_BUSWIDTH_4_BYTES:
791                 es = CSDP_DATA_TYPE_32;
792                 break;
793         default: /* not reached */
794                 return NULL;
795         }
796
797         /* Now allocate and setup the descriptor. */
798         d = kzalloc(sizeof(*d) + sglen * sizeof(d->sg[0]), GFP_ATOMIC);
799         if (!d)
800                 return NULL;
801
802         d->dir = dir;
803         d->dev_addr = dev_addr;
804         d->es = es;
805
806         d->ccr = c->ccr | CCR_SYNC_FRAME;
807         if (dir == DMA_DEV_TO_MEM)
808                 d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT;
809         else
810                 d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC;
811
812         d->cicr = CICR_DROP_IE | CICR_BLOCK_IE;
813         d->csdp = es;
814
815         if (dma_omap1()) {
816                 d->cicr |= CICR_TOUT_IE;
817
818                 if (dir == DMA_DEV_TO_MEM)
819                         d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_TIPB;
820                 else
821                         d->csdp |= CSDP_DST_PORT_TIPB | CSDP_SRC_PORT_EMIFF;
822         } else {
823                 if (dir == DMA_DEV_TO_MEM)
824                         d->ccr |= CCR_TRIGGER_SRC;
825
826                 d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
827         }
828         if (od->plat->errata & DMA_ERRATA_PARALLEL_CHANNELS)
829                 d->clnk_ctrl = c->dma_ch;
830
831         /*
832          * Build our scatterlist entries: each contains the address,
833          * the number of elements (EN) in each frame, and the number of
834          * frames (FN).  Number of bytes for this entry = ES * EN * FN.
835          *
836          * Burst size translates to number of elements with frame sync.
837          * Note: DMA engine defines burst to be the number of dev-width
838          * transfers.
839          */
840         en = burst;
841         frame_bytes = es_bytes[es] * en;
842         for_each_sg(sgl, sgent, sglen, i) {
843                 d->sg[j].addr = sg_dma_address(sgent);
844                 d->sg[j].en = en;
845                 d->sg[j].fn = sg_dma_len(sgent) / frame_bytes;
846                 j++;
847         }
848
849         d->sglen = j;
850
851         return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
852 }
853
854 static struct dma_async_tx_descriptor *omap_dma_prep_dma_cyclic(
855         struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
856         size_t period_len, enum dma_transfer_direction dir, unsigned long flags,
857         void *context)
858 {
859         struct omap_dmadev *od = to_omap_dma_dev(chan->device);
860         struct omap_chan *c = to_omap_dma_chan(chan);
861         enum dma_slave_buswidth dev_width;
862         struct omap_desc *d;
863         dma_addr_t dev_addr;
864         unsigned es;
865         u32 burst;
866
867         if (dir == DMA_DEV_TO_MEM) {
868                 dev_addr = c->cfg.src_addr;
869                 dev_width = c->cfg.src_addr_width;
870                 burst = c->cfg.src_maxburst;
871         } else if (dir == DMA_MEM_TO_DEV) {
872                 dev_addr = c->cfg.dst_addr;
873                 dev_width = c->cfg.dst_addr_width;
874                 burst = c->cfg.dst_maxburst;
875         } else {
876                 dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
877                 return NULL;
878         }
879
880         /* Bus width translates to the element size (ES) */
881         switch (dev_width) {
882         case DMA_SLAVE_BUSWIDTH_1_BYTE:
883                 es = CSDP_DATA_TYPE_8;
884                 break;
885         case DMA_SLAVE_BUSWIDTH_2_BYTES:
886                 es = CSDP_DATA_TYPE_16;
887                 break;
888         case DMA_SLAVE_BUSWIDTH_4_BYTES:
889                 es = CSDP_DATA_TYPE_32;
890                 break;
891         default: /* not reached */
892                 return NULL;
893         }
894
895         /* Now allocate and setup the descriptor. */
896         d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
897         if (!d)
898                 return NULL;
899
900         d->dir = dir;
901         d->dev_addr = dev_addr;
902         d->fi = burst;
903         d->es = es;
904         d->sg[0].addr = buf_addr;
905         d->sg[0].en = period_len / es_bytes[es];
906         d->sg[0].fn = buf_len / period_len;
907         d->sglen = 1;
908
909         d->ccr = c->ccr;
910         if (dir == DMA_DEV_TO_MEM)
911                 d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT;
912         else
913                 d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC;
914
915         d->cicr = CICR_DROP_IE;
916         if (flags & DMA_PREP_INTERRUPT)
917                 d->cicr |= CICR_FRAME_IE;
918
919         d->csdp = es;
920
921         if (dma_omap1()) {
922                 d->cicr |= CICR_TOUT_IE;
923
924                 if (dir == DMA_DEV_TO_MEM)
925                         d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_MPUI;
926                 else
927                         d->csdp |= CSDP_DST_PORT_MPUI | CSDP_SRC_PORT_EMIFF;
928         } else {
929                 if (burst)
930                         d->ccr |= CCR_SYNC_PACKET;
931                 else
932                         d->ccr |= CCR_SYNC_ELEMENT;
933
934                 if (dir == DMA_DEV_TO_MEM)
935                         d->ccr |= CCR_TRIGGER_SRC;
936
937                 d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
938
939                 d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
940         }
941
942         if (__dma_omap15xx(od->plat->dma_attr))
943                 d->ccr |= CCR_AUTO_INIT | CCR_REPEAT;
944         else
945                 d->clnk_ctrl = c->dma_ch | CLNK_CTRL_ENABLE_LNK;
946
947         c->cyclic = true;
948
949         return vchan_tx_prep(&c->vc, &d->vd, flags);
950 }
951
952 static int omap_dma_slave_config(struct omap_chan *c, struct dma_slave_config *cfg)
953 {
954         if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
955             cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
956                 return -EINVAL;
957
958         memcpy(&c->cfg, cfg, sizeof(c->cfg));
959
960         return 0;
961 }
962
963 static int omap_dma_terminate_all(struct omap_chan *c)
964 {
965         struct omap_dmadev *d = to_omap_dma_dev(c->vc.chan.device);
966         unsigned long flags;
967         LIST_HEAD(head);
968
969         spin_lock_irqsave(&c->vc.lock, flags);
970
971         /* Prevent this channel being scheduled */
972         spin_lock(&d->lock);
973         list_del_init(&c->node);
974         spin_unlock(&d->lock);
975
976         /*
977          * Stop DMA activity: we assume the callback will not be called
978          * after omap_dma_stop() returns (even if it does, it will see
979          * c->desc is NULL and exit.)
980          */
981         if (c->desc) {
982                 c->desc = NULL;
983                 /* Avoid stopping the dma twice */
984                 if (!c->paused)
985                         omap_dma_stop(c);
986         }
987
988         if (c->cyclic) {
989                 c->cyclic = false;
990                 c->paused = false;
991         }
992
993         vchan_get_all_descriptors(&c->vc, &head);
994         spin_unlock_irqrestore(&c->vc.lock, flags);
995         vchan_dma_desc_free_list(&c->vc, &head);
996
997         return 0;
998 }
999
1000 static int omap_dma_pause(struct omap_chan *c)
1001 {
1002         /* Pause/Resume only allowed with cyclic mode */
1003         if (!c->cyclic)
1004                 return -EINVAL;
1005
1006         if (!c->paused) {
1007                 omap_dma_stop(c);
1008                 c->paused = true;
1009         }
1010
1011         return 0;
1012 }
1013
1014 static int omap_dma_resume(struct omap_chan *c)
1015 {
1016         /* Pause/Resume only allowed with cyclic mode */
1017         if (!c->cyclic)
1018                 return -EINVAL;
1019
1020         if (c->paused) {
1021                 omap_dma_start(c, c->desc);
1022                 c->paused = false;
1023         }
1024
1025         return 0;
1026 }
1027
1028 static int omap_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1029         unsigned long arg)
1030 {
1031         struct omap_chan *c = to_omap_dma_chan(chan);
1032         int ret;
1033
1034         switch (cmd) {
1035         case DMA_SLAVE_CONFIG:
1036                 ret = omap_dma_slave_config(c, (struct dma_slave_config *)arg);
1037                 break;
1038
1039         case DMA_TERMINATE_ALL:
1040                 ret = omap_dma_terminate_all(c);
1041                 break;
1042
1043         case DMA_PAUSE:
1044                 ret = omap_dma_pause(c);
1045                 break;
1046
1047         case DMA_RESUME:
1048                 ret = omap_dma_resume(c);
1049                 break;
1050
1051         default:
1052                 ret = -ENXIO;
1053                 break;
1054         }
1055
1056         return ret;
1057 }
1058
1059 static int omap_dma_chan_init(struct omap_dmadev *od, int dma_sig)
1060 {
1061         struct omap_chan *c;
1062
1063         c = kzalloc(sizeof(*c), GFP_KERNEL);
1064         if (!c)
1065                 return -ENOMEM;
1066
1067         c->reg_map = od->reg_map;
1068         c->dma_sig = dma_sig;
1069         c->vc.desc_free = omap_dma_desc_free;
1070         vchan_init(&c->vc, &od->ddev);
1071         INIT_LIST_HEAD(&c->node);
1072
1073         od->ddev.chancnt++;
1074
1075         return 0;
1076 }
1077
1078 static void omap_dma_free(struct omap_dmadev *od)
1079 {
1080         tasklet_kill(&od->task);
1081         while (!list_empty(&od->ddev.channels)) {
1082                 struct omap_chan *c = list_first_entry(&od->ddev.channels,
1083                         struct omap_chan, vc.chan.device_node);
1084
1085                 list_del(&c->vc.chan.device_node);
1086                 tasklet_kill(&c->vc.task);
1087                 kfree(c);
1088         }
1089 }
1090
1091 static int omap_dma_probe(struct platform_device *pdev)
1092 {
1093         struct omap_dmadev *od;
1094         struct resource *res;
1095         int rc, i, irq;
1096
1097         od = devm_kzalloc(&pdev->dev, sizeof(*od), GFP_KERNEL);
1098         if (!od)
1099                 return -ENOMEM;
1100
1101         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1102         od->base = devm_ioremap_resource(&pdev->dev, res);
1103         if (IS_ERR(od->base))
1104                 return PTR_ERR(od->base);
1105
1106         od->plat = omap_get_plat_info();
1107         if (!od->plat)
1108                 return -EPROBE_DEFER;
1109
1110         od->reg_map = od->plat->reg_map;
1111
1112         dma_cap_set(DMA_SLAVE, od->ddev.cap_mask);
1113         dma_cap_set(DMA_CYCLIC, od->ddev.cap_mask);
1114         od->ddev.device_alloc_chan_resources = omap_dma_alloc_chan_resources;
1115         od->ddev.device_free_chan_resources = omap_dma_free_chan_resources;
1116         od->ddev.device_tx_status = omap_dma_tx_status;
1117         od->ddev.device_issue_pending = omap_dma_issue_pending;
1118         od->ddev.device_prep_slave_sg = omap_dma_prep_slave_sg;
1119         od->ddev.device_prep_dma_cyclic = omap_dma_prep_dma_cyclic;
1120         od->ddev.device_control = omap_dma_control;
1121         od->ddev.dev = &pdev->dev;
1122         INIT_LIST_HEAD(&od->ddev.channels);
1123         INIT_LIST_HEAD(&od->pending);
1124         spin_lock_init(&od->lock);
1125         spin_lock_init(&od->irq_lock);
1126
1127         tasklet_init(&od->task, omap_dma_sched, (unsigned long)od);
1128
1129         for (i = 0; i < 127; i++) {
1130                 rc = omap_dma_chan_init(od, i);
1131                 if (rc) {
1132                         omap_dma_free(od);
1133                         return rc;
1134                 }
1135         }
1136
1137         irq = platform_get_irq(pdev, 1);
1138         if (irq <= 0) {
1139                 dev_info(&pdev->dev, "failed to get L1 IRQ: %d\n", irq);
1140                 od->legacy = true;
1141         } else {
1142                 /* Disable all interrupts */
1143                 od->irq_enable_mask = 0;
1144                 omap_dma_glbl_write(od, IRQENABLE_L1, 0);
1145
1146                 rc = devm_request_irq(&pdev->dev, irq, omap_dma_irq,
1147                                       IRQF_SHARED, "omap-dma-engine", od);
1148                 if (rc)
1149                         return rc;
1150         }
1151
1152         rc = dma_async_device_register(&od->ddev);
1153         if (rc) {
1154                 pr_warn("OMAP-DMA: failed to register slave DMA engine device: %d\n",
1155                         rc);
1156                 omap_dma_free(od);
1157                 return rc;
1158         }
1159
1160         platform_set_drvdata(pdev, od);
1161
1162         if (pdev->dev.of_node) {
1163                 omap_dma_info.dma_cap = od->ddev.cap_mask;
1164
1165                 /* Device-tree DMA controller registration */
1166                 rc = of_dma_controller_register(pdev->dev.of_node,
1167                                 of_dma_simple_xlate, &omap_dma_info);
1168                 if (rc) {
1169                         pr_warn("OMAP-DMA: failed to register DMA controller\n");
1170                         dma_async_device_unregister(&od->ddev);
1171                         omap_dma_free(od);
1172                 }
1173         }
1174
1175         dev_info(&pdev->dev, "OMAP DMA engine driver\n");
1176
1177         return rc;
1178 }
1179
1180 static int omap_dma_remove(struct platform_device *pdev)
1181 {
1182         struct omap_dmadev *od = platform_get_drvdata(pdev);
1183
1184         if (pdev->dev.of_node)
1185                 of_dma_controller_free(pdev->dev.of_node);
1186
1187         dma_async_device_unregister(&od->ddev);
1188
1189         if (!od->legacy) {
1190                 /* Disable all interrupts */
1191                 omap_dma_glbl_write(od, IRQENABLE_L0, 0);
1192         }
1193
1194         omap_dma_free(od);
1195
1196         return 0;
1197 }
1198
1199 static const struct of_device_id omap_dma_match[] = {
1200         { .compatible = "ti,omap2420-sdma", },
1201         { .compatible = "ti,omap2430-sdma", },
1202         { .compatible = "ti,omap3430-sdma", },
1203         { .compatible = "ti,omap3630-sdma", },
1204         { .compatible = "ti,omap4430-sdma", },
1205         {},
1206 };
1207 MODULE_DEVICE_TABLE(of, omap_dma_match);
1208
1209 static struct platform_driver omap_dma_driver = {
1210         .probe  = omap_dma_probe,
1211         .remove = omap_dma_remove,
1212         .driver = {
1213                 .name = "omap-dma-engine",
1214                 .owner = THIS_MODULE,
1215                 .of_match_table = of_match_ptr(omap_dma_match),
1216         },
1217 };
1218
1219 bool omap_dma_filter_fn(struct dma_chan *chan, void *param)
1220 {
1221         if (chan->device->dev->driver == &omap_dma_driver.driver) {
1222                 struct omap_chan *c = to_omap_dma_chan(chan);
1223                 unsigned req = *(unsigned *)param;
1224
1225                 return req == c->dma_sig;
1226         }
1227         return false;
1228 }
1229 EXPORT_SYMBOL_GPL(omap_dma_filter_fn);
1230
1231 static int omap_dma_init(void)
1232 {
1233         return platform_driver_register(&omap_dma_driver);
1234 }
1235 subsys_initcall(omap_dma_init);
1236
1237 static void __exit omap_dma_exit(void)
1238 {
1239         platform_driver_unregister(&omap_dma_driver);
1240 }
1241 module_exit(omap_dma_exit);
1242
1243 MODULE_AUTHOR("Russell King");
1244 MODULE_LICENSE("GPL");