]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/edac/edac_mc.c
Merge branches 'pm-cpuidle', 'pm-cpufreq' and 'pm-sleep'
[karo-tx-linux.git] / drivers / edac / edac_mc.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *      http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42
43 /* lock to memory controller's control array */
44 static DEFINE_MUTEX(mem_ctls_mutex);
45 static LIST_HEAD(mc_devices);
46
47 /*
48  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
49  *      apei/ghes and i7core_edac to be used at the same time.
50  */
51 static void const *edac_mc_owner;
52
53 static struct bus_type mc_bus[EDAC_MAX_MCS];
54
55 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
56                                  unsigned len)
57 {
58         struct mem_ctl_info *mci = dimm->mci;
59         int i, n, count = 0;
60         char *p = buf;
61
62         for (i = 0; i < mci->n_layers; i++) {
63                 n = snprintf(p, len, "%s %d ",
64                               edac_layer_name[mci->layers[i].type],
65                               dimm->location[i]);
66                 p += n;
67                 len -= n;
68                 count += n;
69                 if (!len)
70                         break;
71         }
72
73         return count;
74 }
75
76 #ifdef CONFIG_EDAC_DEBUG
77
78 static void edac_mc_dump_channel(struct rank_info *chan)
79 {
80         edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
81         edac_dbg(4, "    channel = %p\n", chan);
82         edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
83         edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
84 }
85
86 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
87 {
88         char location[80];
89
90         edac_dimm_info_location(dimm, location, sizeof(location));
91
92         edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
93                  dimm->mci->csbased ? "rank" : "dimm",
94                  number, location, dimm->csrow, dimm->cschannel);
95         edac_dbg(4, "  dimm = %p\n", dimm);
96         edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
97         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
98         edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
99         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
100 }
101
102 static void edac_mc_dump_csrow(struct csrow_info *csrow)
103 {
104         edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
105         edac_dbg(4, "  csrow = %p\n", csrow);
106         edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
107         edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
108         edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
109         edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
110         edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
111         edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
112 }
113
114 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
115 {
116         edac_dbg(3, "\tmci = %p\n", mci);
117         edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
118         edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
119         edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
120         edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
121         edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
122                  mci->nr_csrows, mci->csrows);
123         edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
124                  mci->tot_dimms, mci->dimms);
125         edac_dbg(3, "\tdev = %p\n", mci->pdev);
126         edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
127                  mci->mod_name, mci->ctl_name);
128         edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
129 }
130
131 #endif                          /* CONFIG_EDAC_DEBUG */
132
133 const char * const edac_mem_types[] = {
134         [MEM_EMPTY]     = "Empty csrow",
135         [MEM_RESERVED]  = "Reserved csrow type",
136         [MEM_UNKNOWN]   = "Unknown csrow type",
137         [MEM_FPM]       = "Fast page mode RAM",
138         [MEM_EDO]       = "Extended data out RAM",
139         [MEM_BEDO]      = "Burst Extended data out RAM",
140         [MEM_SDR]       = "Single data rate SDRAM",
141         [MEM_RDR]       = "Registered single data rate SDRAM",
142         [MEM_DDR]       = "Double data rate SDRAM",
143         [MEM_RDDR]      = "Registered Double data rate SDRAM",
144         [MEM_RMBS]      = "Rambus DRAM",
145         [MEM_DDR2]      = "Unbuffered DDR2 RAM",
146         [MEM_FB_DDR2]   = "Fully buffered DDR2",
147         [MEM_RDDR2]     = "Registered DDR2 RAM",
148         [MEM_XDR]       = "Rambus XDR",
149         [MEM_DDR3]      = "Unbuffered DDR3 RAM",
150         [MEM_RDDR3]     = "Registered DDR3 RAM",
151         [MEM_LRDDR3]    = "Load-Reduced DDR3 RAM",
152         [MEM_DDR4]      = "Unbuffered DDR4 RAM",
153         [MEM_RDDR4]     = "Registered DDR4 RAM",
154 };
155 EXPORT_SYMBOL_GPL(edac_mem_types);
156
157 /**
158  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
159  * @p:          pointer to a pointer with the memory offset to be used. At
160  *              return, this will be incremented to point to the next offset
161  * @size:       Size of the data structure to be reserved
162  * @n_elems:    Number of elements that should be reserved
163  *
164  * If 'size' is a constant, the compiler will optimize this whole function
165  * down to either a no-op or the addition of a constant to the value of '*p'.
166  *
167  * The 'p' pointer is absolutely needed to keep the proper advancing
168  * further in memory to the proper offsets when allocating the struct along
169  * with its embedded structs, as edac_device_alloc_ctl_info() does it
170  * above, for example.
171  *
172  * At return, the pointer 'p' will be incremented to be used on a next call
173  * to this function.
174  */
175 void *edac_align_ptr(void **p, unsigned size, int n_elems)
176 {
177         unsigned align, r;
178         void *ptr = *p;
179
180         *p += size * n_elems;
181
182         /*
183          * 'p' can possibly be an unaligned item X such that sizeof(X) is
184          * 'size'.  Adjust 'p' so that its alignment is at least as
185          * stringent as what the compiler would provide for X and return
186          * the aligned result.
187          * Here we assume that the alignment of a "long long" is the most
188          * stringent alignment that the compiler will ever provide by default.
189          * As far as I know, this is a reasonable assumption.
190          */
191         if (size > sizeof(long))
192                 align = sizeof(long long);
193         else if (size > sizeof(int))
194                 align = sizeof(long);
195         else if (size > sizeof(short))
196                 align = sizeof(int);
197         else if (size > sizeof(char))
198                 align = sizeof(short);
199         else
200                 return (char *)ptr;
201
202         r = (unsigned long)p % align;
203
204         if (r == 0)
205                 return (char *)ptr;
206
207         *p += align - r;
208
209         return (void *)(((unsigned long)ptr) + align - r);
210 }
211
212 static void _edac_mc_free(struct mem_ctl_info *mci)
213 {
214         int i, chn, row;
215         struct csrow_info *csr;
216         const unsigned int tot_dimms = mci->tot_dimms;
217         const unsigned int tot_channels = mci->num_cschannel;
218         const unsigned int tot_csrows = mci->nr_csrows;
219
220         if (mci->dimms) {
221                 for (i = 0; i < tot_dimms; i++)
222                         kfree(mci->dimms[i]);
223                 kfree(mci->dimms);
224         }
225         if (mci->csrows) {
226                 for (row = 0; row < tot_csrows; row++) {
227                         csr = mci->csrows[row];
228                         if (csr) {
229                                 if (csr->channels) {
230                                         for (chn = 0; chn < tot_channels; chn++)
231                                                 kfree(csr->channels[chn]);
232                                         kfree(csr->channels);
233                                 }
234                                 kfree(csr);
235                         }
236                 }
237                 kfree(mci->csrows);
238         }
239         kfree(mci);
240 }
241
242 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
243                                    unsigned n_layers,
244                                    struct edac_mc_layer *layers,
245                                    unsigned sz_pvt)
246 {
247         struct mem_ctl_info *mci;
248         struct edac_mc_layer *layer;
249         struct csrow_info *csr;
250         struct rank_info *chan;
251         struct dimm_info *dimm;
252         u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
253         unsigned pos[EDAC_MAX_LAYERS];
254         unsigned size, tot_dimms = 1, count = 1;
255         unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
256         void *pvt, *p, *ptr = NULL;
257         int i, j, row, chn, n, len, off;
258         bool per_rank = false;
259
260         BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
261         /*
262          * Calculate the total amount of dimms and csrows/cschannels while
263          * in the old API emulation mode
264          */
265         for (i = 0; i < n_layers; i++) {
266                 tot_dimms *= layers[i].size;
267                 if (layers[i].is_virt_csrow)
268                         tot_csrows *= layers[i].size;
269                 else
270                         tot_channels *= layers[i].size;
271
272                 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
273                         per_rank = true;
274         }
275
276         /* Figure out the offsets of the various items from the start of an mc
277          * structure.  We want the alignment of each item to be at least as
278          * stringent as what the compiler would provide if we could simply
279          * hardcode everything into a single struct.
280          */
281         mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
282         layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
283         for (i = 0; i < n_layers; i++) {
284                 count *= layers[i].size;
285                 edac_dbg(4, "errcount layer %d size %d\n", i, count);
286                 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
287                 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
288                 tot_errcount += 2 * count;
289         }
290
291         edac_dbg(4, "allocating %d error counters\n", tot_errcount);
292         pvt = edac_align_ptr(&ptr, sz_pvt, 1);
293         size = ((unsigned long)pvt) + sz_pvt;
294
295         edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
296                  size,
297                  tot_dimms,
298                  per_rank ? "ranks" : "dimms",
299                  tot_csrows * tot_channels);
300
301         mci = kzalloc(size, GFP_KERNEL);
302         if (mci == NULL)
303                 return NULL;
304
305         /* Adjust pointers so they point within the memory we just allocated
306          * rather than an imaginary chunk of memory located at address 0.
307          */
308         layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
309         for (i = 0; i < n_layers; i++) {
310                 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
311                 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
312         }
313         pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
314
315         /* setup index and various internal pointers */
316         mci->mc_idx = mc_num;
317         mci->tot_dimms = tot_dimms;
318         mci->pvt_info = pvt;
319         mci->n_layers = n_layers;
320         mci->layers = layer;
321         memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
322         mci->nr_csrows = tot_csrows;
323         mci->num_cschannel = tot_channels;
324         mci->csbased = per_rank;
325
326         /*
327          * Alocate and fill the csrow/channels structs
328          */
329         mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
330         if (!mci->csrows)
331                 goto error;
332         for (row = 0; row < tot_csrows; row++) {
333                 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
334                 if (!csr)
335                         goto error;
336                 mci->csrows[row] = csr;
337                 csr->csrow_idx = row;
338                 csr->mci = mci;
339                 csr->nr_channels = tot_channels;
340                 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
341                                         GFP_KERNEL);
342                 if (!csr->channels)
343                         goto error;
344
345                 for (chn = 0; chn < tot_channels; chn++) {
346                         chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
347                         if (!chan)
348                                 goto error;
349                         csr->channels[chn] = chan;
350                         chan->chan_idx = chn;
351                         chan->csrow = csr;
352                 }
353         }
354
355         /*
356          * Allocate and fill the dimm structs
357          */
358         mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
359         if (!mci->dimms)
360                 goto error;
361
362         memset(&pos, 0, sizeof(pos));
363         row = 0;
364         chn = 0;
365         for (i = 0; i < tot_dimms; i++) {
366                 chan = mci->csrows[row]->channels[chn];
367                 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
368                 if (off < 0 || off >= tot_dimms) {
369                         edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
370                         goto error;
371                 }
372
373                 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
374                 if (!dimm)
375                         goto error;
376                 mci->dimms[off] = dimm;
377                 dimm->mci = mci;
378
379                 /*
380                  * Copy DIMM location and initialize it.
381                  */
382                 len = sizeof(dimm->label);
383                 p = dimm->label;
384                 n = snprintf(p, len, "mc#%u", mc_num);
385                 p += n;
386                 len -= n;
387                 for (j = 0; j < n_layers; j++) {
388                         n = snprintf(p, len, "%s#%u",
389                                      edac_layer_name[layers[j].type],
390                                      pos[j]);
391                         p += n;
392                         len -= n;
393                         dimm->location[j] = pos[j];
394
395                         if (len <= 0)
396                                 break;
397                 }
398
399                 /* Link it to the csrows old API data */
400                 chan->dimm = dimm;
401                 dimm->csrow = row;
402                 dimm->cschannel = chn;
403
404                 /* Increment csrow location */
405                 if (layers[0].is_virt_csrow) {
406                         chn++;
407                         if (chn == tot_channels) {
408                                 chn = 0;
409                                 row++;
410                         }
411                 } else {
412                         row++;
413                         if (row == tot_csrows) {
414                                 row = 0;
415                                 chn++;
416                         }
417                 }
418
419                 /* Increment dimm location */
420                 for (j = n_layers - 1; j >= 0; j--) {
421                         pos[j]++;
422                         if (pos[j] < layers[j].size)
423                                 break;
424                         pos[j] = 0;
425                 }
426         }
427
428         mci->op_state = OP_ALLOC;
429
430         return mci;
431
432 error:
433         _edac_mc_free(mci);
434
435         return NULL;
436 }
437 EXPORT_SYMBOL_GPL(edac_mc_alloc);
438
439 void edac_mc_free(struct mem_ctl_info *mci)
440 {
441         edac_dbg(1, "\n");
442
443         /* If we're not yet registered with sysfs free only what was allocated
444          * in edac_mc_alloc().
445          */
446         if (!device_is_registered(&mci->dev)) {
447                 _edac_mc_free(mci);
448                 return;
449         }
450
451         /* the mci instance is freed here, when the sysfs object is dropped */
452         edac_unregister_sysfs(mci);
453 }
454 EXPORT_SYMBOL_GPL(edac_mc_free);
455
456 bool edac_has_mcs(void)
457 {
458         bool ret;
459
460         mutex_lock(&mem_ctls_mutex);
461
462         ret = list_empty(&mc_devices);
463
464         mutex_unlock(&mem_ctls_mutex);
465
466         return !ret;
467 }
468 EXPORT_SYMBOL_GPL(edac_has_mcs);
469
470 /* Caller must hold mem_ctls_mutex */
471 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
472 {
473         struct mem_ctl_info *mci;
474         struct list_head *item;
475
476         edac_dbg(3, "\n");
477
478         list_for_each(item, &mc_devices) {
479                 mci = list_entry(item, struct mem_ctl_info, link);
480
481                 if (mci->pdev == dev)
482                         return mci;
483         }
484
485         return NULL;
486 }
487
488 /**
489  * find_mci_by_dev
490  *
491  *      scan list of controllers looking for the one that manages
492  *      the 'dev' device
493  * @dev: pointer to a struct device related with the MCI
494  */
495 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
496 {
497         struct mem_ctl_info *ret;
498
499         mutex_lock(&mem_ctls_mutex);
500         ret = __find_mci_by_dev(dev);
501         mutex_unlock(&mem_ctls_mutex);
502
503         return ret;
504 }
505 EXPORT_SYMBOL_GPL(find_mci_by_dev);
506
507 /*
508  * handler for EDAC to check if NMI type handler has asserted interrupt
509  */
510 static int edac_mc_assert_error_check_and_clear(void)
511 {
512         int old_state;
513
514         if (edac_op_state == EDAC_OPSTATE_POLL)
515                 return 1;
516
517         old_state = edac_err_assert;
518         edac_err_assert = 0;
519
520         return old_state;
521 }
522
523 /*
524  * edac_mc_workq_function
525  *      performs the operation scheduled by a workq request
526  */
527 static void edac_mc_workq_function(struct work_struct *work_req)
528 {
529         struct delayed_work *d_work = to_delayed_work(work_req);
530         struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
531
532         mutex_lock(&mem_ctls_mutex);
533
534         if (mci->op_state != OP_RUNNING_POLL) {
535                 mutex_unlock(&mem_ctls_mutex);
536                 return;
537         }
538
539         if (edac_mc_assert_error_check_and_clear())
540                 mci->edac_check(mci);
541
542         mutex_unlock(&mem_ctls_mutex);
543
544         /* Queue ourselves again. */
545         edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
546 }
547
548 /*
549  * edac_mc_reset_delay_period(unsigned long value)
550  *
551  *      user space has updated our poll period value, need to
552  *      reset our workq delays
553  */
554 void edac_mc_reset_delay_period(unsigned long value)
555 {
556         struct mem_ctl_info *mci;
557         struct list_head *item;
558
559         mutex_lock(&mem_ctls_mutex);
560
561         list_for_each(item, &mc_devices) {
562                 mci = list_entry(item, struct mem_ctl_info, link);
563
564                 if (mci->op_state == OP_RUNNING_POLL)
565                         edac_mod_work(&mci->work, value);
566         }
567         mutex_unlock(&mem_ctls_mutex);
568 }
569
570
571
572 /* Return 0 on success, 1 on failure.
573  * Before calling this function, caller must
574  * assign a unique value to mci->mc_idx.
575  *
576  *      locking model:
577  *
578  *              called with the mem_ctls_mutex lock held
579  */
580 static int add_mc_to_global_list(struct mem_ctl_info *mci)
581 {
582         struct list_head *item, *insert_before;
583         struct mem_ctl_info *p;
584
585         insert_before = &mc_devices;
586
587         p = __find_mci_by_dev(mci->pdev);
588         if (unlikely(p != NULL))
589                 goto fail0;
590
591         list_for_each(item, &mc_devices) {
592                 p = list_entry(item, struct mem_ctl_info, link);
593
594                 if (p->mc_idx >= mci->mc_idx) {
595                         if (unlikely(p->mc_idx == mci->mc_idx))
596                                 goto fail1;
597
598                         insert_before = item;
599                         break;
600                 }
601         }
602
603         list_add_tail_rcu(&mci->link, insert_before);
604         atomic_inc(&edac_handlers);
605         return 0;
606
607 fail0:
608         edac_printk(KERN_WARNING, EDAC_MC,
609                 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
610                 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
611         return 1;
612
613 fail1:
614         edac_printk(KERN_WARNING, EDAC_MC,
615                 "bug in low-level driver: attempt to assign\n"
616                 "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
617         return 1;
618 }
619
620 static int del_mc_from_global_list(struct mem_ctl_info *mci)
621 {
622         int handlers = atomic_dec_return(&edac_handlers);
623         list_del_rcu(&mci->link);
624
625         /* these are for safe removal of devices from global list while
626          * NMI handlers may be traversing list
627          */
628         synchronize_rcu();
629         INIT_LIST_HEAD(&mci->link);
630
631         return handlers;
632 }
633
634 struct mem_ctl_info *edac_mc_find(int idx)
635 {
636         struct mem_ctl_info *mci = NULL;
637         struct list_head *item;
638
639         mutex_lock(&mem_ctls_mutex);
640
641         list_for_each(item, &mc_devices) {
642                 mci = list_entry(item, struct mem_ctl_info, link);
643
644                 if (mci->mc_idx >= idx) {
645                         if (mci->mc_idx == idx) {
646                                 goto unlock;
647                         }
648                         break;
649                 }
650         }
651
652 unlock:
653         mutex_unlock(&mem_ctls_mutex);
654         return mci;
655 }
656 EXPORT_SYMBOL(edac_mc_find);
657
658
659 /* FIXME - should a warning be printed if no error detection? correction? */
660 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
661                                const struct attribute_group **groups)
662 {
663         int ret = -EINVAL;
664         edac_dbg(0, "\n");
665
666         if (mci->mc_idx >= EDAC_MAX_MCS) {
667                 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
668                 return -ENODEV;
669         }
670
671 #ifdef CONFIG_EDAC_DEBUG
672         if (edac_debug_level >= 3)
673                 edac_mc_dump_mci(mci);
674
675         if (edac_debug_level >= 4) {
676                 int i;
677
678                 for (i = 0; i < mci->nr_csrows; i++) {
679                         struct csrow_info *csrow = mci->csrows[i];
680                         u32 nr_pages = 0;
681                         int j;
682
683                         for (j = 0; j < csrow->nr_channels; j++)
684                                 nr_pages += csrow->channels[j]->dimm->nr_pages;
685                         if (!nr_pages)
686                                 continue;
687                         edac_mc_dump_csrow(csrow);
688                         for (j = 0; j < csrow->nr_channels; j++)
689                                 if (csrow->channels[j]->dimm->nr_pages)
690                                         edac_mc_dump_channel(csrow->channels[j]);
691                 }
692                 for (i = 0; i < mci->tot_dimms; i++)
693                         if (mci->dimms[i]->nr_pages)
694                                 edac_mc_dump_dimm(mci->dimms[i], i);
695         }
696 #endif
697         mutex_lock(&mem_ctls_mutex);
698
699         if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
700                 ret = -EPERM;
701                 goto fail0;
702         }
703
704         if (add_mc_to_global_list(mci))
705                 goto fail0;
706
707         /* set load time so that error rate can be tracked */
708         mci->start_time = jiffies;
709
710         mci->bus = &mc_bus[mci->mc_idx];
711
712         if (edac_create_sysfs_mci_device(mci, groups)) {
713                 edac_mc_printk(mci, KERN_WARNING,
714                         "failed to create sysfs device\n");
715                 goto fail1;
716         }
717
718         if (mci->edac_check) {
719                 mci->op_state = OP_RUNNING_POLL;
720
721                 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
722                 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
723
724         } else {
725                 mci->op_state = OP_RUNNING_INTERRUPT;
726         }
727
728         /* Report action taken */
729         edac_mc_printk(mci, KERN_INFO,
730                 "Giving out device to module %s controller %s: DEV %s (%s)\n",
731                 mci->mod_name, mci->ctl_name, mci->dev_name,
732                 edac_op_state_to_string(mci->op_state));
733
734         edac_mc_owner = mci->mod_name;
735
736         mutex_unlock(&mem_ctls_mutex);
737         return 0;
738
739 fail1:
740         del_mc_from_global_list(mci);
741
742 fail0:
743         mutex_unlock(&mem_ctls_mutex);
744         return ret;
745 }
746 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
747
748 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
749 {
750         struct mem_ctl_info *mci;
751
752         edac_dbg(0, "\n");
753
754         mutex_lock(&mem_ctls_mutex);
755
756         /* find the requested mci struct in the global list */
757         mci = __find_mci_by_dev(dev);
758         if (mci == NULL) {
759                 mutex_unlock(&mem_ctls_mutex);
760                 return NULL;
761         }
762
763         /* mark MCI offline: */
764         mci->op_state = OP_OFFLINE;
765
766         if (!del_mc_from_global_list(mci))
767                 edac_mc_owner = NULL;
768
769         mutex_unlock(&mem_ctls_mutex);
770
771         if (mci->edac_check)
772                 edac_stop_work(&mci->work);
773
774         /* remove from sysfs */
775         edac_remove_sysfs_mci_device(mci);
776
777         edac_printk(KERN_INFO, EDAC_MC,
778                 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
779                 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
780
781         return mci;
782 }
783 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
784
785 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
786                                 u32 size)
787 {
788         struct page *pg;
789         void *virt_addr;
790         unsigned long flags = 0;
791
792         edac_dbg(3, "\n");
793
794         /* ECC error page was not in our memory. Ignore it. */
795         if (!pfn_valid(page))
796                 return;
797
798         /* Find the actual page structure then map it and fix */
799         pg = pfn_to_page(page);
800
801         if (PageHighMem(pg))
802                 local_irq_save(flags);
803
804         virt_addr = kmap_atomic(pg);
805
806         /* Perform architecture specific atomic scrub operation */
807         edac_atomic_scrub(virt_addr + offset, size);
808
809         /* Unmap and complete */
810         kunmap_atomic(virt_addr);
811
812         if (PageHighMem(pg))
813                 local_irq_restore(flags);
814 }
815
816 /* FIXME - should return -1 */
817 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
818 {
819         struct csrow_info **csrows = mci->csrows;
820         int row, i, j, n;
821
822         edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
823         row = -1;
824
825         for (i = 0; i < mci->nr_csrows; i++) {
826                 struct csrow_info *csrow = csrows[i];
827                 n = 0;
828                 for (j = 0; j < csrow->nr_channels; j++) {
829                         struct dimm_info *dimm = csrow->channels[j]->dimm;
830                         n += dimm->nr_pages;
831                 }
832                 if (n == 0)
833                         continue;
834
835                 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
836                          mci->mc_idx,
837                          csrow->first_page, page, csrow->last_page,
838                          csrow->page_mask);
839
840                 if ((page >= csrow->first_page) &&
841                     (page <= csrow->last_page) &&
842                     ((page & csrow->page_mask) ==
843                      (csrow->first_page & csrow->page_mask))) {
844                         row = i;
845                         break;
846                 }
847         }
848
849         if (row == -1)
850                 edac_mc_printk(mci, KERN_ERR,
851                         "could not look up page error address %lx\n",
852                         (unsigned long)page);
853
854         return row;
855 }
856 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
857
858 const char *edac_layer_name[] = {
859         [EDAC_MC_LAYER_BRANCH] = "branch",
860         [EDAC_MC_LAYER_CHANNEL] = "channel",
861         [EDAC_MC_LAYER_SLOT] = "slot",
862         [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
863         [EDAC_MC_LAYER_ALL_MEM] = "memory",
864 };
865 EXPORT_SYMBOL_GPL(edac_layer_name);
866
867 static void edac_inc_ce_error(struct mem_ctl_info *mci,
868                               bool enable_per_layer_report,
869                               const int pos[EDAC_MAX_LAYERS],
870                               const u16 count)
871 {
872         int i, index = 0;
873
874         mci->ce_mc += count;
875
876         if (!enable_per_layer_report) {
877                 mci->ce_noinfo_count += count;
878                 return;
879         }
880
881         for (i = 0; i < mci->n_layers; i++) {
882                 if (pos[i] < 0)
883                         break;
884                 index += pos[i];
885                 mci->ce_per_layer[i][index] += count;
886
887                 if (i < mci->n_layers - 1)
888                         index *= mci->layers[i + 1].size;
889         }
890 }
891
892 static void edac_inc_ue_error(struct mem_ctl_info *mci,
893                                     bool enable_per_layer_report,
894                                     const int pos[EDAC_MAX_LAYERS],
895                                     const u16 count)
896 {
897         int i, index = 0;
898
899         mci->ue_mc += count;
900
901         if (!enable_per_layer_report) {
902                 mci->ue_noinfo_count += count;
903                 return;
904         }
905
906         for (i = 0; i < mci->n_layers; i++) {
907                 if (pos[i] < 0)
908                         break;
909                 index += pos[i];
910                 mci->ue_per_layer[i][index] += count;
911
912                 if (i < mci->n_layers - 1)
913                         index *= mci->layers[i + 1].size;
914         }
915 }
916
917 static void edac_ce_error(struct mem_ctl_info *mci,
918                           const u16 error_count,
919                           const int pos[EDAC_MAX_LAYERS],
920                           const char *msg,
921                           const char *location,
922                           const char *label,
923                           const char *detail,
924                           const char *other_detail,
925                           const bool enable_per_layer_report,
926                           const unsigned long page_frame_number,
927                           const unsigned long offset_in_page,
928                           long grain)
929 {
930         unsigned long remapped_page;
931         char *msg_aux = "";
932
933         if (*msg)
934                 msg_aux = " ";
935
936         if (edac_mc_get_log_ce()) {
937                 if (other_detail && *other_detail)
938                         edac_mc_printk(mci, KERN_WARNING,
939                                        "%d CE %s%son %s (%s %s - %s)\n",
940                                        error_count, msg, msg_aux, label,
941                                        location, detail, other_detail);
942                 else
943                         edac_mc_printk(mci, KERN_WARNING,
944                                        "%d CE %s%son %s (%s %s)\n",
945                                        error_count, msg, msg_aux, label,
946                                        location, detail);
947         }
948         edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
949
950         if (mci->scrub_mode == SCRUB_SW_SRC) {
951                 /*
952                         * Some memory controllers (called MCs below) can remap
953                         * memory so that it is still available at a different
954                         * address when PCI devices map into memory.
955                         * MC's that can't do this, lose the memory where PCI
956                         * devices are mapped. This mapping is MC-dependent
957                         * and so we call back into the MC driver for it to
958                         * map the MC page to a physical (CPU) page which can
959                         * then be mapped to a virtual page - which can then
960                         * be scrubbed.
961                         */
962                 remapped_page = mci->ctl_page_to_phys ?
963                         mci->ctl_page_to_phys(mci, page_frame_number) :
964                         page_frame_number;
965
966                 edac_mc_scrub_block(remapped_page,
967                                         offset_in_page, grain);
968         }
969 }
970
971 static void edac_ue_error(struct mem_ctl_info *mci,
972                           const u16 error_count,
973                           const int pos[EDAC_MAX_LAYERS],
974                           const char *msg,
975                           const char *location,
976                           const char *label,
977                           const char *detail,
978                           const char *other_detail,
979                           const bool enable_per_layer_report)
980 {
981         char *msg_aux = "";
982
983         if (*msg)
984                 msg_aux = " ";
985
986         if (edac_mc_get_log_ue()) {
987                 if (other_detail && *other_detail)
988                         edac_mc_printk(mci, KERN_WARNING,
989                                        "%d UE %s%son %s (%s %s - %s)\n",
990                                        error_count, msg, msg_aux, label,
991                                        location, detail, other_detail);
992                 else
993                         edac_mc_printk(mci, KERN_WARNING,
994                                        "%d UE %s%son %s (%s %s)\n",
995                                        error_count, msg, msg_aux, label,
996                                        location, detail);
997         }
998
999         if (edac_mc_get_panic_on_ue()) {
1000                 if (other_detail && *other_detail)
1001                         panic("UE %s%son %s (%s%s - %s)\n",
1002                               msg, msg_aux, label, location, detail, other_detail);
1003                 else
1004                         panic("UE %s%son %s (%s%s)\n",
1005                               msg, msg_aux, label, location, detail);
1006         }
1007
1008         edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1009 }
1010
1011 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1012                               struct mem_ctl_info *mci,
1013                               struct edac_raw_error_desc *e)
1014 {
1015         char detail[80];
1016         int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1017
1018         /* Memory type dependent details about the error */
1019         if (type == HW_EVENT_ERR_CORRECTED) {
1020                 snprintf(detail, sizeof(detail),
1021                         "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1022                         e->page_frame_number, e->offset_in_page,
1023                         e->grain, e->syndrome);
1024                 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1025                               detail, e->other_detail, e->enable_per_layer_report,
1026                               e->page_frame_number, e->offset_in_page, e->grain);
1027         } else {
1028                 snprintf(detail, sizeof(detail),
1029                         "page:0x%lx offset:0x%lx grain:%ld",
1030                         e->page_frame_number, e->offset_in_page, e->grain);
1031
1032                 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1033                               detail, e->other_detail, e->enable_per_layer_report);
1034         }
1035
1036
1037 }
1038 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1039
1040 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1041                           struct mem_ctl_info *mci,
1042                           const u16 error_count,
1043                           const unsigned long page_frame_number,
1044                           const unsigned long offset_in_page,
1045                           const unsigned long syndrome,
1046                           const int top_layer,
1047                           const int mid_layer,
1048                           const int low_layer,
1049                           const char *msg,
1050                           const char *other_detail)
1051 {
1052         char *p;
1053         int row = -1, chan = -1;
1054         int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1055         int i, n_labels = 0;
1056         u8 grain_bits;
1057         struct edac_raw_error_desc *e = &mci->error_desc;
1058
1059         edac_dbg(3, "MC%d\n", mci->mc_idx);
1060
1061         /* Fills the error report buffer */
1062         memset(e, 0, sizeof (*e));
1063         e->error_count = error_count;
1064         e->top_layer = top_layer;
1065         e->mid_layer = mid_layer;
1066         e->low_layer = low_layer;
1067         e->page_frame_number = page_frame_number;
1068         e->offset_in_page = offset_in_page;
1069         e->syndrome = syndrome;
1070         e->msg = msg;
1071         e->other_detail = other_detail;
1072
1073         /*
1074          * Check if the event report is consistent and if the memory
1075          * location is known. If it is known, enable_per_layer_report will be
1076          * true, the DIMM(s) label info will be filled and the per-layer
1077          * error counters will be incremented.
1078          */
1079         for (i = 0; i < mci->n_layers; i++) {
1080                 if (pos[i] >= (int)mci->layers[i].size) {
1081
1082                         edac_mc_printk(mci, KERN_ERR,
1083                                        "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1084                                        edac_layer_name[mci->layers[i].type],
1085                                        pos[i], mci->layers[i].size);
1086                         /*
1087                          * Instead of just returning it, let's use what's
1088                          * known about the error. The increment routines and
1089                          * the DIMM filter logic will do the right thing by
1090                          * pointing the likely damaged DIMMs.
1091                          */
1092                         pos[i] = -1;
1093                 }
1094                 if (pos[i] >= 0)
1095                         e->enable_per_layer_report = true;
1096         }
1097
1098         /*
1099          * Get the dimm label/grain that applies to the match criteria.
1100          * As the error algorithm may not be able to point to just one memory
1101          * stick, the logic here will get all possible labels that could
1102          * pottentially be affected by the error.
1103          * On FB-DIMM memory controllers, for uncorrected errors, it is common
1104          * to have only the MC channel and the MC dimm (also called "branch")
1105          * but the channel is not known, as the memory is arranged in pairs,
1106          * where each memory belongs to a separate channel within the same
1107          * branch.
1108          */
1109         p = e->label;
1110         *p = '\0';
1111
1112         for (i = 0; i < mci->tot_dimms; i++) {
1113                 struct dimm_info *dimm = mci->dimms[i];
1114
1115                 if (top_layer >= 0 && top_layer != dimm->location[0])
1116                         continue;
1117                 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1118                         continue;
1119                 if (low_layer >= 0 && low_layer != dimm->location[2])
1120                         continue;
1121
1122                 /* get the max grain, over the error match range */
1123                 if (dimm->grain > e->grain)
1124                         e->grain = dimm->grain;
1125
1126                 /*
1127                  * If the error is memory-controller wide, there's no need to
1128                  * seek for the affected DIMMs because the whole
1129                  * channel/memory controller/...  may be affected.
1130                  * Also, don't show errors for empty DIMM slots.
1131                  */
1132                 if (e->enable_per_layer_report && dimm->nr_pages) {
1133                         if (n_labels >= EDAC_MAX_LABELS) {
1134                                 e->enable_per_layer_report = false;
1135                                 break;
1136                         }
1137                         n_labels++;
1138                         if (p != e->label) {
1139                                 strcpy(p, OTHER_LABEL);
1140                                 p += strlen(OTHER_LABEL);
1141                         }
1142                         strcpy(p, dimm->label);
1143                         p += strlen(p);
1144                         *p = '\0';
1145
1146                         /*
1147                          * get csrow/channel of the DIMM, in order to allow
1148                          * incrementing the compat API counters
1149                          */
1150                         edac_dbg(4, "%s csrows map: (%d,%d)\n",
1151                                  mci->csbased ? "rank" : "dimm",
1152                                  dimm->csrow, dimm->cschannel);
1153                         if (row == -1)
1154                                 row = dimm->csrow;
1155                         else if (row >= 0 && row != dimm->csrow)
1156                                 row = -2;
1157
1158                         if (chan == -1)
1159                                 chan = dimm->cschannel;
1160                         else if (chan >= 0 && chan != dimm->cschannel)
1161                                 chan = -2;
1162                 }
1163         }
1164
1165         if (!e->enable_per_layer_report) {
1166                 strcpy(e->label, "any memory");
1167         } else {
1168                 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1169                 if (p == e->label)
1170                         strcpy(e->label, "unknown memory");
1171                 if (type == HW_EVENT_ERR_CORRECTED) {
1172                         if (row >= 0) {
1173                                 mci->csrows[row]->ce_count += error_count;
1174                                 if (chan >= 0)
1175                                         mci->csrows[row]->channels[chan]->ce_count += error_count;
1176                         }
1177                 } else
1178                         if (row >= 0)
1179                                 mci->csrows[row]->ue_count += error_count;
1180         }
1181
1182         /* Fill the RAM location data */
1183         p = e->location;
1184
1185         for (i = 0; i < mci->n_layers; i++) {
1186                 if (pos[i] < 0)
1187                         continue;
1188
1189                 p += sprintf(p, "%s:%d ",
1190                              edac_layer_name[mci->layers[i].type],
1191                              pos[i]);
1192         }
1193         if (p > e->location)
1194                 *(p - 1) = '\0';
1195
1196         /* Report the error via the trace interface */
1197         grain_bits = fls_long(e->grain) + 1;
1198         trace_mc_event(type, e->msg, e->label, e->error_count,
1199                        mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
1200                        (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1201                        grain_bits, e->syndrome, e->other_detail);
1202
1203         edac_raw_mc_handle_error(type, mci, e);
1204 }
1205 EXPORT_SYMBOL_GPL(edac_mc_handle_error);