]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/edac/sb_edac.c
Merge branch 'karo-tx6-mainline' into stable
[karo-tx-linux.git] / drivers / edac / sb_edac.c
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *       Mauro Carvalho Chehab
11  */
12
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
25 #include <asm/mce.h>
26
27 #include "edac_core.h"
28
29 /* Static vars */
30 static LIST_HEAD(sbridge_edac_list);
31 static DEFINE_MUTEX(sbridge_edac_lock);
32 static int probed;
33
34 /*
35  * Alter this version for the module when modifications are made
36  */
37 #define SBRIDGE_REVISION    " Ver: 1.1.1 "
38 #define EDAC_MOD_STR      "sbridge_edac"
39
40 /*
41  * Debug macros
42  */
43 #define sbridge_printk(level, fmt, arg...)                      \
44         edac_printk(level, "sbridge", fmt, ##arg)
45
46 #define sbridge_mc_printk(mci, level, fmt, arg...)              \
47         edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
48
49 /*
50  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51  */
52 #define GET_BITFIELD(v, lo, hi) \
53         (((v) & GENMASK_ULL(hi, lo)) >> (lo))
54
55 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
56 static const u32 sbridge_dram_rule[] = {
57         0x80, 0x88, 0x90, 0x98, 0xa0,
58         0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
59 };
60
61 static const u32 ibridge_dram_rule[] = {
62         0x60, 0x68, 0x70, 0x78, 0x80,
63         0x88, 0x90, 0x98, 0xa0, 0xa8,
64         0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
65         0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
66 };
67
68 #define SAD_LIMIT(reg)          ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
69 #define DRAM_ATTR(reg)          GET_BITFIELD(reg, 2,  3)
70 #define INTERLEAVE_MODE(reg)    GET_BITFIELD(reg, 1,  1)
71 #define DRAM_RULE_ENABLE(reg)   GET_BITFIELD(reg, 0,  0)
72 #define A7MODE(reg)             GET_BITFIELD(reg, 26, 26)
73
74 static char *get_dram_attr(u32 reg)
75 {
76         switch(DRAM_ATTR(reg)) {
77                 case 0:
78                         return "DRAM";
79                 case 1:
80                         return "MMCFG";
81                 case 2:
82                         return "NXM";
83                 default:
84                         return "unknown";
85         }
86 }
87
88 static const u32 sbridge_interleave_list[] = {
89         0x84, 0x8c, 0x94, 0x9c, 0xa4,
90         0xac, 0xb4, 0xbc, 0xc4, 0xcc,
91 };
92
93 static const u32 ibridge_interleave_list[] = {
94         0x64, 0x6c, 0x74, 0x7c, 0x84,
95         0x8c, 0x94, 0x9c, 0xa4, 0xac,
96         0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
97         0xdc, 0xe4, 0xec, 0xf4, 0xfc,
98 };
99
100 struct interleave_pkg {
101         unsigned char start;
102         unsigned char end;
103 };
104
105 static const struct interleave_pkg sbridge_interleave_pkg[] = {
106         { 0, 2 },
107         { 3, 5 },
108         { 8, 10 },
109         { 11, 13 },
110         { 16, 18 },
111         { 19, 21 },
112         { 24, 26 },
113         { 27, 29 },
114 };
115
116 static const struct interleave_pkg ibridge_interleave_pkg[] = {
117         { 0, 3 },
118         { 4, 7 },
119         { 8, 11 },
120         { 12, 15 },
121         { 16, 19 },
122         { 20, 23 },
123         { 24, 27 },
124         { 28, 31 },
125 };
126
127 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
128                           int interleave)
129 {
130         return GET_BITFIELD(reg, table[interleave].start,
131                             table[interleave].end);
132 }
133
134 /* Devices 12 Function 7 */
135
136 #define TOLM            0x80
137 #define TOHM            0x84
138 #define HASWELL_TOLM    0xd0
139 #define HASWELL_TOHM_0  0xd4
140 #define HASWELL_TOHM_1  0xd8
141
142 #define GET_TOLM(reg)           ((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
143 #define GET_TOHM(reg)           ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
144
145 /* Device 13 Function 6 */
146
147 #define SAD_TARGET      0xf0
148
149 #define SOURCE_ID(reg)          GET_BITFIELD(reg, 9, 11)
150
151 #define SAD_CONTROL     0xf4
152
153 /* Device 14 function 0 */
154
155 static const u32 tad_dram_rule[] = {
156         0x40, 0x44, 0x48, 0x4c,
157         0x50, 0x54, 0x58, 0x5c,
158         0x60, 0x64, 0x68, 0x6c,
159 };
160 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
161
162 #define TAD_LIMIT(reg)          ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
163 #define TAD_SOCK(reg)           GET_BITFIELD(reg, 10, 11)
164 #define TAD_CH(reg)             GET_BITFIELD(reg,  8,  9)
165 #define TAD_TGT3(reg)           GET_BITFIELD(reg,  6,  7)
166 #define TAD_TGT2(reg)           GET_BITFIELD(reg,  4,  5)
167 #define TAD_TGT1(reg)           GET_BITFIELD(reg,  2,  3)
168 #define TAD_TGT0(reg)           GET_BITFIELD(reg,  0,  1)
169
170 /* Device 15, function 0 */
171
172 #define MCMTR                   0x7c
173
174 #define IS_ECC_ENABLED(mcmtr)           GET_BITFIELD(mcmtr, 2, 2)
175 #define IS_LOCKSTEP_ENABLED(mcmtr)      GET_BITFIELD(mcmtr, 1, 1)
176 #define IS_CLOSE_PG(mcmtr)              GET_BITFIELD(mcmtr, 0, 0)
177
178 /* Device 15, function 1 */
179
180 #define RASENABLES              0xac
181 #define IS_MIRROR_ENABLED(reg)          GET_BITFIELD(reg, 0, 0)
182
183 /* Device 15, functions 2-5 */
184
185 static const int mtr_regs[] = {
186         0x80, 0x84, 0x88,
187 };
188
189 #define RANK_DISABLE(mtr)               GET_BITFIELD(mtr, 16, 19)
190 #define IS_DIMM_PRESENT(mtr)            GET_BITFIELD(mtr, 14, 14)
191 #define RANK_CNT_BITS(mtr)              GET_BITFIELD(mtr, 12, 13)
192 #define RANK_WIDTH_BITS(mtr)            GET_BITFIELD(mtr, 2, 4)
193 #define COL_WIDTH_BITS(mtr)             GET_BITFIELD(mtr, 0, 1)
194
195 static const u32 tad_ch_nilv_offset[] = {
196         0x90, 0x94, 0x98, 0x9c,
197         0xa0, 0xa4, 0xa8, 0xac,
198         0xb0, 0xb4, 0xb8, 0xbc,
199 };
200 #define CHN_IDX_OFFSET(reg)             GET_BITFIELD(reg, 28, 29)
201 #define TAD_OFFSET(reg)                 (GET_BITFIELD(reg,  6, 25) << 26)
202
203 static const u32 rir_way_limit[] = {
204         0x108, 0x10c, 0x110, 0x114, 0x118,
205 };
206 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
207
208 #define IS_RIR_VALID(reg)       GET_BITFIELD(reg, 31, 31)
209 #define RIR_WAY(reg)            GET_BITFIELD(reg, 28, 29)
210
211 #define MAX_RIR_WAY     8
212
213 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
214         { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
215         { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
216         { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
217         { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
218         { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
219 };
220
221 #define RIR_RNK_TGT(reg)                GET_BITFIELD(reg, 16, 19)
222 #define RIR_OFFSET(reg)         GET_BITFIELD(reg,  2, 14)
223
224 /* Device 16, functions 2-7 */
225
226 /*
227  * FIXME: Implement the error count reads directly
228  */
229
230 static const u32 correrrcnt[] = {
231         0x104, 0x108, 0x10c, 0x110,
232 };
233
234 #define RANK_ODD_OV(reg)                GET_BITFIELD(reg, 31, 31)
235 #define RANK_ODD_ERR_CNT(reg)           GET_BITFIELD(reg, 16, 30)
236 #define RANK_EVEN_OV(reg)               GET_BITFIELD(reg, 15, 15)
237 #define RANK_EVEN_ERR_CNT(reg)          GET_BITFIELD(reg,  0, 14)
238
239 static const u32 correrrthrsld[] = {
240         0x11c, 0x120, 0x124, 0x128,
241 };
242
243 #define RANK_ODD_ERR_THRSLD(reg)        GET_BITFIELD(reg, 16, 30)
244 #define RANK_EVEN_ERR_THRSLD(reg)       GET_BITFIELD(reg,  0, 14)
245
246
247 /* Device 17, function 0 */
248
249 #define SB_RANK_CFG_A           0x0328
250
251 #define IB_RANK_CFG_A           0x0320
252
253 /*
254  * sbridge structs
255  */
256
257 #define NUM_CHANNELS            8       /* 2MC per socket, four chan per MC */
258 #define MAX_DIMMS               3       /* Max DIMMS per channel */
259 #define CHANNEL_UNSPECIFIED     0xf     /* Intel IA32 SDM 15-14 */
260
261 enum type {
262         SANDY_BRIDGE,
263         IVY_BRIDGE,
264         HASWELL,
265         BROADWELL,
266 };
267
268 struct sbridge_pvt;
269 struct sbridge_info {
270         enum type       type;
271         u32             mcmtr;
272         u32             rankcfgr;
273         u64             (*get_tolm)(struct sbridge_pvt *pvt);
274         u64             (*get_tohm)(struct sbridge_pvt *pvt);
275         u64             (*rir_limit)(u32 reg);
276         const u32       *dram_rule;
277         const u32       *interleave_list;
278         const struct interleave_pkg *interleave_pkg;
279         u8              max_sad;
280         u8              max_interleave;
281         u8              (*get_node_id)(struct sbridge_pvt *pvt);
282         enum mem_type   (*get_memory_type)(struct sbridge_pvt *pvt);
283         enum dev_type   (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
284         struct pci_dev  *pci_vtd;
285 };
286
287 struct sbridge_channel {
288         u32             ranks;
289         u32             dimms;
290 };
291
292 struct pci_id_descr {
293         int                     dev_id;
294         int                     optional;
295 };
296
297 struct pci_id_table {
298         const struct pci_id_descr       *descr;
299         int                             n_devs;
300 };
301
302 struct sbridge_dev {
303         struct list_head        list;
304         u8                      bus, mc;
305         u8                      node_id, source_id;
306         struct pci_dev          **pdev;
307         int                     n_devs;
308         struct mem_ctl_info     *mci;
309 };
310
311 struct sbridge_pvt {
312         struct pci_dev          *pci_ta, *pci_ddrio, *pci_ras;
313         struct pci_dev          *pci_sad0, *pci_sad1;
314         struct pci_dev          *pci_ha0, *pci_ha1;
315         struct pci_dev          *pci_br0, *pci_br1;
316         struct pci_dev          *pci_ha1_ta;
317         struct pci_dev          *pci_tad[NUM_CHANNELS];
318
319         struct sbridge_dev      *sbridge_dev;
320
321         struct sbridge_info     info;
322         struct sbridge_channel  channel[NUM_CHANNELS];
323
324         /* Memory type detection */
325         bool                    is_mirrored, is_lockstep, is_close_pg;
326
327         /* Fifo double buffers */
328         struct mce              mce_entry[MCE_LOG_LEN];
329         struct mce              mce_outentry[MCE_LOG_LEN];
330
331         /* Fifo in/out counters */
332         unsigned                mce_in, mce_out;
333
334         /* Count indicator to show errors not got */
335         unsigned                mce_overrun;
336
337         /* Memory description */
338         u64                     tolm, tohm;
339 };
340
341 #define PCI_DESCR(device_id, opt)       \
342         .dev_id = (device_id),          \
343         .optional = opt
344
345 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
346                 /* Processor Home Agent */
347         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)     },
348
349                 /* Memory controller */
350         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)      },
351         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)     },
352         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)    },
353         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)    },
354         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)    },
355         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)    },
356         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)   },
357
358                 /* System Address Decoder */
359         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)        },
360         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)        },
361
362                 /* Broadcast Registers */
363         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)          },
364 };
365
366 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
367 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
368         PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
369         {0,}                    /* 0 terminated list. */
370 };
371
372 /* This changes depending if 1HA or 2HA:
373  * 1HA:
374  *      0x0eb8 (17.0) is DDRIO0
375  * 2HA:
376  *      0x0ebc (17.4) is DDRIO0
377  */
378 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0      0x0eb8
379 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0      0x0ebc
380
381 /* pci ids */
382 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0             0x0ea0
383 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA          0x0ea8
384 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS         0x0e71
385 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0        0x0eaa
386 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1        0x0eab
387 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2        0x0eac
388 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3        0x0ead
389 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD                 0x0ec8
390 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0                 0x0ec9
391 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1                 0x0eca
392 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1             0x0e60
393 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA          0x0e68
394 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS         0x0e79
395 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0        0x0e6a
396 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1        0x0e6b
397 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2        0x0e6c
398 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3        0x0e6d
399
400 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
401                 /* Processor Home Agent */
402         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)             },
403
404                 /* Memory controller */
405         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)          },
406         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)         },
407         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)        },
408         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)        },
409         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)        },
410         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)        },
411
412                 /* System Address Decoder */
413         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)                 },
414
415                 /* Broadcast Registers */
416         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)                 },
417         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)                 },
418
419                 /* Optional, mode 2HA */
420         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)             },
421 #if 0
422         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)  },
423         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1) },
424 #endif
425         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)        },
426         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)        },
427         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1)        },
428         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1)        },
429
430         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)      },
431         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)      },
432 };
433
434 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
435         PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
436         {0,}                    /* 0 terminated list. */
437 };
438
439 /* Haswell support */
440 /* EN processor:
441  *      - 1 IMC
442  *      - 3 DDR3 channels, 2 DPC per channel
443  * EP processor:
444  *      - 1 or 2 IMC
445  *      - 4 DDR4 channels, 3 DPC per channel
446  * EP 4S processor:
447  *      - 2 IMC
448  *      - 4 DDR4 channels, 3 DPC per channel
449  * EX processor:
450  *      - 2 IMC
451  *      - each IMC interfaces with a SMI 2 channel
452  *      - each SMI channel interfaces with a scalable memory buffer
453  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
454  */
455 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
456 #define HASWELL_HASYSDEFEATURE2 0x84
457 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
458 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0     0x2fa0
459 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1     0x2f60
460 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA  0x2fa8
461 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
462 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA  0x2f68
463 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
464 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
465 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
466 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
467 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
468 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
469 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
470 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
471 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
472 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
473 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
474 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
475 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
476 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
477 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
478 static const struct pci_id_descr pci_dev_descr_haswell[] = {
479         /* first item must be the HA */
480         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)             },
481
482         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)        },
483         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)        },
484
485         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)             },
486
487         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)          },
488         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)     },
489         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)        },
490         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)        },
491         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)        },
492         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)        },
493
494         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)          },
495         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1)          },
496         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1)          },
497         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1)          },
498
499         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)          },
500         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)     },
501         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)        },
502         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)        },
503         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)        },
504         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)        },
505 };
506
507 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
508         PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell),
509         {0,}                    /* 0 terminated list. */
510 };
511
512 /*
513  * Broadwell support
514  *
515  * DE processor:
516  *      - 1 IMC
517  *      - 2 DDR3 channels, 2 DPC per channel
518  * EP processor:
519  *      - 1 or 2 IMC
520  *      - 4 DDR4 channels, 3 DPC per channel
521  * EP 4S processor:
522  *      - 2 IMC
523  *      - 4 DDR4 channels, 3 DPC per channel
524  * EX processor:
525  *      - 2 IMC
526  *      - each IMC interfaces with a SMI 2 channel
527  *      - each SMI channel interfaces with a scalable memory buffer
528  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
529  */
530 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
531 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0   0x6fa0
532 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1   0x6f60
533 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA        0x6fa8
534 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
535 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA        0x6f68
536 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL 0x6f79
537 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
538 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
539 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
540 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
541 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
542 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
543 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
544 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
545 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
546 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
547 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
548
549 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
550         /* first item must be the HA */
551         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0)           },
552
553         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0)      },
554         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0)      },
555
556         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1)           },
557
558         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0)        },
559         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0)   },
560         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0)      },
561         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0)      },
562         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1)      },
563         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1)      },
564
565         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1)        },
566
567         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1)        },
568         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL, 1)   },
569         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1)      },
570         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1)      },
571         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1)      },
572         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1)      },
573 };
574
575 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
576         PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell),
577         {0,}                    /* 0 terminated list. */
578 };
579
580 /*
581  *      pci_device_id   table for which devices we are looking for
582  */
583 static const struct pci_device_id sbridge_pci_tbl[] = {
584         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)},
585         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
586         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)},
587         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0)},
588         {0,}                    /* 0 terminated list. */
589 };
590
591
592 /****************************************************************************
593                         Ancillary status routines
594  ****************************************************************************/
595
596 static inline int numrank(enum type type, u32 mtr)
597 {
598         int ranks = (1 << RANK_CNT_BITS(mtr));
599         int max = 4;
600
601         if (type == HASWELL || type == BROADWELL)
602                 max = 8;
603
604         if (ranks > max) {
605                 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
606                          ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
607                 return -EINVAL;
608         }
609
610         return ranks;
611 }
612
613 static inline int numrow(u32 mtr)
614 {
615         int rows = (RANK_WIDTH_BITS(mtr) + 12);
616
617         if (rows < 13 || rows > 18) {
618                 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
619                          rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
620                 return -EINVAL;
621         }
622
623         return 1 << rows;
624 }
625
626 static inline int numcol(u32 mtr)
627 {
628         int cols = (COL_WIDTH_BITS(mtr) + 10);
629
630         if (cols > 12) {
631                 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
632                          cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
633                 return -EINVAL;
634         }
635
636         return 1 << cols;
637 }
638
639 static struct sbridge_dev *get_sbridge_dev(u8 bus)
640 {
641         struct sbridge_dev *sbridge_dev;
642
643         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
644                 if (sbridge_dev->bus == bus)
645                         return sbridge_dev;
646         }
647
648         return NULL;
649 }
650
651 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
652                                            const struct pci_id_table *table)
653 {
654         struct sbridge_dev *sbridge_dev;
655
656         sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
657         if (!sbridge_dev)
658                 return NULL;
659
660         sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
661                                    GFP_KERNEL);
662         if (!sbridge_dev->pdev) {
663                 kfree(sbridge_dev);
664                 return NULL;
665         }
666
667         sbridge_dev->bus = bus;
668         sbridge_dev->n_devs = table->n_devs;
669         list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
670
671         return sbridge_dev;
672 }
673
674 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
675 {
676         list_del(&sbridge_dev->list);
677         kfree(sbridge_dev->pdev);
678         kfree(sbridge_dev);
679 }
680
681 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
682 {
683         u32 reg;
684
685         /* Address range is 32:28 */
686         pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
687         return GET_TOLM(reg);
688 }
689
690 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
691 {
692         u32 reg;
693
694         pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
695         return GET_TOHM(reg);
696 }
697
698 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
699 {
700         u32 reg;
701
702         pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
703
704         return GET_TOLM(reg);
705 }
706
707 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
708 {
709         u32 reg;
710
711         pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
712
713         return GET_TOHM(reg);
714 }
715
716 static u64 rir_limit(u32 reg)
717 {
718         return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
719 }
720
721 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
722 {
723         u32 reg;
724         enum mem_type mtype;
725
726         if (pvt->pci_ddrio) {
727                 pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
728                                       &reg);
729                 if (GET_BITFIELD(reg, 11, 11))
730                         /* FIXME: Can also be LRDIMM */
731                         mtype = MEM_RDDR3;
732                 else
733                         mtype = MEM_DDR3;
734         } else
735                 mtype = MEM_UNKNOWN;
736
737         return mtype;
738 }
739
740 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
741 {
742         u32 reg;
743         bool registered = false;
744         enum mem_type mtype = MEM_UNKNOWN;
745
746         if (!pvt->pci_ddrio)
747                 goto out;
748
749         pci_read_config_dword(pvt->pci_ddrio,
750                               HASWELL_DDRCRCLKCONTROLS, &reg);
751         /* Is_Rdimm */
752         if (GET_BITFIELD(reg, 16, 16))
753                 registered = true;
754
755         pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
756         if (GET_BITFIELD(reg, 14, 14)) {
757                 if (registered)
758                         mtype = MEM_RDDR4;
759                 else
760                         mtype = MEM_DDR4;
761         } else {
762                 if (registered)
763                         mtype = MEM_RDDR3;
764                 else
765                         mtype = MEM_DDR3;
766         }
767
768 out:
769         return mtype;
770 }
771
772 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
773 {
774         /* there's no way to figure out */
775         return DEV_UNKNOWN;
776 }
777
778 static enum dev_type __ibridge_get_width(u32 mtr)
779 {
780         enum dev_type type;
781
782         switch (mtr) {
783         case 3:
784                 type = DEV_UNKNOWN;
785                 break;
786         case 2:
787                 type = DEV_X16;
788                 break;
789         case 1:
790                 type = DEV_X8;
791                 break;
792         case 0:
793                 type = DEV_X4;
794                 break;
795         }
796
797         return type;
798 }
799
800 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
801 {
802         /*
803          * ddr3_width on the documentation but also valid for DDR4 on
804          * Haswell
805          */
806         return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
807 }
808
809 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
810 {
811         /* ddr3_width on the documentation but also valid for DDR4 */
812         return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
813 }
814
815 static u8 get_node_id(struct sbridge_pvt *pvt)
816 {
817         u32 reg;
818         pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
819         return GET_BITFIELD(reg, 0, 2);
820 }
821
822 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
823 {
824         u32 reg;
825
826         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
827         return GET_BITFIELD(reg, 0, 3);
828 }
829
830 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
831 {
832         u32 reg;
833
834         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
835         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
836 }
837
838 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
839 {
840         u64 rc;
841         u32 reg;
842
843         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
844         rc = GET_BITFIELD(reg, 26, 31);
845         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
846         rc = ((reg << 6) | rc) << 26;
847
848         return rc | 0x1ffffff;
849 }
850
851 static u64 haswell_rir_limit(u32 reg)
852 {
853         return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
854 }
855
856 static inline u8 sad_pkg_socket(u8 pkg)
857 {
858         /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
859         return ((pkg >> 3) << 2) | (pkg & 0x3);
860 }
861
862 static inline u8 sad_pkg_ha(u8 pkg)
863 {
864         return (pkg >> 2) & 0x1;
865 }
866
867 /****************************************************************************
868                         Memory check routines
869  ****************************************************************************/
870 static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
871 {
872         struct pci_dev *pdev = NULL;
873
874         do {
875                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
876                 if (pdev && pdev->bus->number == bus)
877                         break;
878         } while (pdev);
879
880         return pdev;
881 }
882
883 /**
884  * check_if_ecc_is_active() - Checks if ECC is active
885  * @bus:        Device bus
886  * @type:       Memory controller type
887  * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
888  *          disabled
889  */
890 static int check_if_ecc_is_active(const u8 bus, enum type type)
891 {
892         struct pci_dev *pdev = NULL;
893         u32 mcmtr, id;
894
895         switch (type) {
896         case IVY_BRIDGE:
897                 id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
898                 break;
899         case HASWELL:
900                 id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
901                 break;
902         case SANDY_BRIDGE:
903                 id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
904                 break;
905         case BROADWELL:
906                 id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA;
907                 break;
908         default:
909                 return -ENODEV;
910         }
911
912         pdev = get_pdev_same_bus(bus, id);
913         if (!pdev) {
914                 sbridge_printk(KERN_ERR, "Couldn't find PCI device "
915                                         "%04x:%04x! on bus %02d\n",
916                                         PCI_VENDOR_ID_INTEL, id, bus);
917                 return -ENODEV;
918         }
919
920         pci_read_config_dword(pdev, MCMTR, &mcmtr);
921         if (!IS_ECC_ENABLED(mcmtr)) {
922                 sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
923                 return -ENODEV;
924         }
925         return 0;
926 }
927
928 static int get_dimm_config(struct mem_ctl_info *mci)
929 {
930         struct sbridge_pvt *pvt = mci->pvt_info;
931         struct dimm_info *dimm;
932         unsigned i, j, banks, ranks, rows, cols, npages;
933         u64 size;
934         u32 reg;
935         enum edac_type mode;
936         enum mem_type mtype;
937
938         if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL)
939                 pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
940         else
941                 pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
942
943         pvt->sbridge_dev->source_id = SOURCE_ID(reg);
944
945         pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
946         edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
947                  pvt->sbridge_dev->mc,
948                  pvt->sbridge_dev->node_id,
949                  pvt->sbridge_dev->source_id);
950
951         pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
952         if (IS_MIRROR_ENABLED(reg)) {
953                 edac_dbg(0, "Memory mirror is enabled\n");
954                 pvt->is_mirrored = true;
955         } else {
956                 edac_dbg(0, "Memory mirror is disabled\n");
957                 pvt->is_mirrored = false;
958         }
959
960         pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
961         if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
962                 edac_dbg(0, "Lockstep is enabled\n");
963                 mode = EDAC_S8ECD8ED;
964                 pvt->is_lockstep = true;
965         } else {
966                 edac_dbg(0, "Lockstep is disabled\n");
967                 mode = EDAC_S4ECD4ED;
968                 pvt->is_lockstep = false;
969         }
970         if (IS_CLOSE_PG(pvt->info.mcmtr)) {
971                 edac_dbg(0, "address map is on closed page mode\n");
972                 pvt->is_close_pg = true;
973         } else {
974                 edac_dbg(0, "address map is on open page mode\n");
975                 pvt->is_close_pg = false;
976         }
977
978         mtype = pvt->info.get_memory_type(pvt);
979         if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
980                 edac_dbg(0, "Memory is registered\n");
981         else if (mtype == MEM_UNKNOWN)
982                 edac_dbg(0, "Cannot determine memory type\n");
983         else
984                 edac_dbg(0, "Memory is unregistered\n");
985
986         if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
987                 banks = 16;
988         else
989                 banks = 8;
990
991         for (i = 0; i < NUM_CHANNELS; i++) {
992                 u32 mtr;
993
994                 if (!pvt->pci_tad[i])
995                         continue;
996                 for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
997                         dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
998                                        i, j, 0);
999                         pci_read_config_dword(pvt->pci_tad[i],
1000                                               mtr_regs[j], &mtr);
1001                         edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1002                         if (IS_DIMM_PRESENT(mtr)) {
1003                                 pvt->channel[i].dimms++;
1004
1005                                 ranks = numrank(pvt->info.type, mtr);
1006                                 rows = numrow(mtr);
1007                                 cols = numcol(mtr);
1008
1009                                 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1010                                 npages = MiB_TO_PAGES(size);
1011
1012                                 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1013                                          pvt->sbridge_dev->mc, i/4, i%4, j,
1014                                          size, npages,
1015                                          banks, ranks, rows, cols);
1016
1017                                 dimm->nr_pages = npages;
1018                                 dimm->grain = 32;
1019                                 dimm->dtype = pvt->info.get_width(pvt, mtr);
1020                                 dimm->mtype = mtype;
1021                                 dimm->edac_mode = mode;
1022                                 snprintf(dimm->label, sizeof(dimm->label),
1023                                          "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1024                                          pvt->sbridge_dev->source_id, i/4, i%4, j);
1025                         }
1026                 }
1027         }
1028
1029         return 0;
1030 }
1031
1032 static void get_memory_layout(const struct mem_ctl_info *mci)
1033 {
1034         struct sbridge_pvt *pvt = mci->pvt_info;
1035         int i, j, k, n_sads, n_tads, sad_interl;
1036         u32 reg;
1037         u64 limit, prv = 0;
1038         u64 tmp_mb;
1039         u32 gb, mb;
1040         u32 rir_way;
1041
1042         /*
1043          * Step 1) Get TOLM/TOHM ranges
1044          */
1045
1046         pvt->tolm = pvt->info.get_tolm(pvt);
1047         tmp_mb = (1 + pvt->tolm) >> 20;
1048
1049         gb = div_u64_rem(tmp_mb, 1024, &mb);
1050         edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1051                 gb, (mb*1000)/1024, (u64)pvt->tolm);
1052
1053         /* Address range is already 45:25 */
1054         pvt->tohm = pvt->info.get_tohm(pvt);
1055         tmp_mb = (1 + pvt->tohm) >> 20;
1056
1057         gb = div_u64_rem(tmp_mb, 1024, &mb);
1058         edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1059                 gb, (mb*1000)/1024, (u64)pvt->tohm);
1060
1061         /*
1062          * Step 2) Get SAD range and SAD Interleave list
1063          * TAD registers contain the interleave wayness. However, it
1064          * seems simpler to just discover it indirectly, with the
1065          * algorithm bellow.
1066          */
1067         prv = 0;
1068         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1069                 /* SAD_LIMIT Address range is 45:26 */
1070                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1071                                       &reg);
1072                 limit = SAD_LIMIT(reg);
1073
1074                 if (!DRAM_RULE_ENABLE(reg))
1075                         continue;
1076
1077                 if (limit <= prv)
1078                         break;
1079
1080                 tmp_mb = (limit + 1) >> 20;
1081                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1082                 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1083                          n_sads,
1084                          get_dram_attr(reg),
1085                          gb, (mb*1000)/1024,
1086                          ((u64)tmp_mb) << 20L,
1087                          INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
1088                          reg);
1089                 prv = limit;
1090
1091                 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1092                                       &reg);
1093                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1094                 for (j = 0; j < 8; j++) {
1095                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1096                         if (j > 0 && sad_interl == pkg)
1097                                 break;
1098
1099                         edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1100                                  n_sads, j, pkg);
1101                 }
1102         }
1103
1104         /*
1105          * Step 3) Get TAD range
1106          */
1107         prv = 0;
1108         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1109                 pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
1110                                       &reg);
1111                 limit = TAD_LIMIT(reg);
1112                 if (limit <= prv)
1113                         break;
1114                 tmp_mb = (limit + 1) >> 20;
1115
1116                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1117                 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1118                          n_tads, gb, (mb*1000)/1024,
1119                          ((u64)tmp_mb) << 20L,
1120                          (u32)(1 << TAD_SOCK(reg)),
1121                          (u32)TAD_CH(reg) + 1,
1122                          (u32)TAD_TGT0(reg),
1123                          (u32)TAD_TGT1(reg),
1124                          (u32)TAD_TGT2(reg),
1125                          (u32)TAD_TGT3(reg),
1126                          reg);
1127                 prv = limit;
1128         }
1129
1130         /*
1131          * Step 4) Get TAD offsets, per each channel
1132          */
1133         for (i = 0; i < NUM_CHANNELS; i++) {
1134                 if (!pvt->channel[i].dimms)
1135                         continue;
1136                 for (j = 0; j < n_tads; j++) {
1137                         pci_read_config_dword(pvt->pci_tad[i],
1138                                               tad_ch_nilv_offset[j],
1139                                               &reg);
1140                         tmp_mb = TAD_OFFSET(reg) >> 20;
1141                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1142                         edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1143                                  i, j,
1144                                  gb, (mb*1000)/1024,
1145                                  ((u64)tmp_mb) << 20L,
1146                                  reg);
1147                 }
1148         }
1149
1150         /*
1151          * Step 6) Get RIR Wayness/Limit, per each channel
1152          */
1153         for (i = 0; i < NUM_CHANNELS; i++) {
1154                 if (!pvt->channel[i].dimms)
1155                         continue;
1156                 for (j = 0; j < MAX_RIR_RANGES; j++) {
1157                         pci_read_config_dword(pvt->pci_tad[i],
1158                                               rir_way_limit[j],
1159                                               &reg);
1160
1161                         if (!IS_RIR_VALID(reg))
1162                                 continue;
1163
1164                         tmp_mb = pvt->info.rir_limit(reg) >> 20;
1165                         rir_way = 1 << RIR_WAY(reg);
1166                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1167                         edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1168                                  i, j,
1169                                  gb, (mb*1000)/1024,
1170                                  ((u64)tmp_mb) << 20L,
1171                                  rir_way,
1172                                  reg);
1173
1174                         for (k = 0; k < rir_way; k++) {
1175                                 pci_read_config_dword(pvt->pci_tad[i],
1176                                                       rir_offset[j][k],
1177                                                       &reg);
1178                                 tmp_mb = RIR_OFFSET(reg) << 6;
1179
1180                                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1181                                 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1182                                          i, j, k,
1183                                          gb, (mb*1000)/1024,
1184                                          ((u64)tmp_mb) << 20L,
1185                                          (u32)RIR_RNK_TGT(reg),
1186                                          reg);
1187                         }
1188                 }
1189         }
1190 }
1191
1192 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
1193 {
1194         struct sbridge_dev *sbridge_dev;
1195
1196         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1197                 if (sbridge_dev->node_id == node_id)
1198                         return sbridge_dev->mci;
1199         }
1200         return NULL;
1201 }
1202
1203 static int get_memory_error_data(struct mem_ctl_info *mci,
1204                                  u64 addr,
1205                                  u8 *socket, u8 *ha,
1206                                  long *channel_mask,
1207                                  u8 *rank,
1208                                  char **area_type, char *msg)
1209 {
1210         struct mem_ctl_info     *new_mci;
1211         struct sbridge_pvt *pvt = mci->pvt_info;
1212         struct pci_dev          *pci_ha;
1213         int                     n_rir, n_sads, n_tads, sad_way, sck_xch;
1214         int                     sad_interl, idx, base_ch;
1215         int                     interleave_mode, shiftup = 0;
1216         unsigned                sad_interleave[pvt->info.max_interleave];
1217         u32                     reg, dram_rule;
1218         u8                      ch_way, sck_way, pkg, sad_ha = 0, ch_add = 0;
1219         u32                     tad_offset;
1220         u32                     rir_way;
1221         u32                     mb, gb;
1222         u64                     ch_addr, offset, limit = 0, prv = 0;
1223
1224
1225         /*
1226          * Step 0) Check if the address is at special memory ranges
1227          * The check bellow is probably enough to fill all cases where
1228          * the error is not inside a memory, except for the legacy
1229          * range (e. g. VGA addresses). It is unlikely, however, that the
1230          * memory controller would generate an error on that range.
1231          */
1232         if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1233                 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1234                 return -EINVAL;
1235         }
1236         if (addr >= (u64)pvt->tohm) {
1237                 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1238                 return -EINVAL;
1239         }
1240
1241         /*
1242          * Step 1) Get socket
1243          */
1244         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1245                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1246                                       &reg);
1247
1248                 if (!DRAM_RULE_ENABLE(reg))
1249                         continue;
1250
1251                 limit = SAD_LIMIT(reg);
1252                 if (limit <= prv) {
1253                         sprintf(msg, "Can't discover the memory socket");
1254                         return -EINVAL;
1255                 }
1256                 if  (addr <= limit)
1257                         break;
1258                 prv = limit;
1259         }
1260         if (n_sads == pvt->info.max_sad) {
1261                 sprintf(msg, "Can't discover the memory socket");
1262                 return -EINVAL;
1263         }
1264         dram_rule = reg;
1265         *area_type = get_dram_attr(dram_rule);
1266         interleave_mode = INTERLEAVE_MODE(dram_rule);
1267
1268         pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1269                               &reg);
1270
1271         if (pvt->info.type == SANDY_BRIDGE) {
1272                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1273                 for (sad_way = 0; sad_way < 8; sad_way++) {
1274                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1275                         if (sad_way > 0 && sad_interl == pkg)
1276                                 break;
1277                         sad_interleave[sad_way] = pkg;
1278                         edac_dbg(0, "SAD interleave #%d: %d\n",
1279                                  sad_way, sad_interleave[sad_way]);
1280                 }
1281                 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1282                          pvt->sbridge_dev->mc,
1283                          n_sads,
1284                          addr,
1285                          limit,
1286                          sad_way + 7,
1287                          !interleave_mode ? "" : "XOR[18:16]");
1288                 if (interleave_mode)
1289                         idx = ((addr >> 6) ^ (addr >> 16)) & 7;
1290                 else
1291                         idx = (addr >> 6) & 7;
1292                 switch (sad_way) {
1293                 case 1:
1294                         idx = 0;
1295                         break;
1296                 case 2:
1297                         idx = idx & 1;
1298                         break;
1299                 case 4:
1300                         idx = idx & 3;
1301                         break;
1302                 case 8:
1303                         break;
1304                 default:
1305                         sprintf(msg, "Can't discover socket interleave");
1306                         return -EINVAL;
1307                 }
1308                 *socket = sad_interleave[idx];
1309                 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
1310                          idx, sad_way, *socket);
1311         } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1312                 int bits, a7mode = A7MODE(dram_rule);
1313
1314                 if (a7mode) {
1315                         /* A7 mode swaps P9 with P6 */
1316                         bits = GET_BITFIELD(addr, 7, 8) << 1;
1317                         bits |= GET_BITFIELD(addr, 9, 9);
1318                 } else
1319                         bits = GET_BITFIELD(addr, 6, 8);
1320
1321                 if (interleave_mode == 0) {
1322                         /* interleave mode will XOR {8,7,6} with {18,17,16} */
1323                         idx = GET_BITFIELD(addr, 16, 18);
1324                         idx ^= bits;
1325                 } else
1326                         idx = bits;
1327
1328                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
1329                 *socket = sad_pkg_socket(pkg);
1330                 sad_ha = sad_pkg_ha(pkg);
1331                 if (sad_ha)
1332                         ch_add = 4;
1333
1334                 if (a7mode) {
1335                         /* MCChanShiftUpEnable */
1336                         pci_read_config_dword(pvt->pci_ha0,
1337                                               HASWELL_HASYSDEFEATURE2, &reg);
1338                         shiftup = GET_BITFIELD(reg, 22, 22);
1339                 }
1340
1341                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
1342                          idx, *socket, sad_ha, shiftup);
1343         } else {
1344                 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
1345                 idx = (addr >> 6) & 7;
1346                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
1347                 *socket = sad_pkg_socket(pkg);
1348                 sad_ha = sad_pkg_ha(pkg);
1349                 if (sad_ha)
1350                         ch_add = 4;
1351                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
1352                          idx, *socket, sad_ha);
1353         }
1354
1355         *ha = sad_ha;
1356
1357         /*
1358          * Move to the proper node structure, in order to access the
1359          * right PCI registers
1360          */
1361         new_mci = get_mci_for_node_id(*socket);
1362         if (!new_mci) {
1363                 sprintf(msg, "Struct for socket #%u wasn't initialized",
1364                         *socket);
1365                 return -EINVAL;
1366         }
1367         mci = new_mci;
1368         pvt = mci->pvt_info;
1369
1370         /*
1371          * Step 2) Get memory channel
1372          */
1373         prv = 0;
1374         if (pvt->info.type == SANDY_BRIDGE)
1375                 pci_ha = pvt->pci_ha0;
1376         else {
1377                 if (sad_ha)
1378                         pci_ha = pvt->pci_ha1;
1379                 else
1380                         pci_ha = pvt->pci_ha0;
1381         }
1382         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1383                 pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
1384                 limit = TAD_LIMIT(reg);
1385                 if (limit <= prv) {
1386                         sprintf(msg, "Can't discover the memory channel");
1387                         return -EINVAL;
1388                 }
1389                 if  (addr <= limit)
1390                         break;
1391                 prv = limit;
1392         }
1393         if (n_tads == MAX_TAD) {
1394                 sprintf(msg, "Can't discover the memory channel");
1395                 return -EINVAL;
1396         }
1397
1398         ch_way = TAD_CH(reg) + 1;
1399         sck_way = TAD_SOCK(reg);
1400
1401         if (ch_way == 3)
1402                 idx = addr >> 6;
1403         else
1404                 idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
1405         idx = idx % ch_way;
1406
1407         /*
1408          * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
1409          */
1410         switch (idx) {
1411         case 0:
1412                 base_ch = TAD_TGT0(reg);
1413                 break;
1414         case 1:
1415                 base_ch = TAD_TGT1(reg);
1416                 break;
1417         case 2:
1418                 base_ch = TAD_TGT2(reg);
1419                 break;
1420         case 3:
1421                 base_ch = TAD_TGT3(reg);
1422                 break;
1423         default:
1424                 sprintf(msg, "Can't discover the TAD target");
1425                 return -EINVAL;
1426         }
1427         *channel_mask = 1 << base_ch;
1428
1429         pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
1430                                 tad_ch_nilv_offset[n_tads],
1431                                 &tad_offset);
1432
1433         if (pvt->is_mirrored) {
1434                 *channel_mask |= 1 << ((base_ch + 2) % 4);
1435                 switch(ch_way) {
1436                 case 2:
1437                 case 4:
1438                         sck_xch = (1 << sck_way) * (ch_way >> 1);
1439                         break;
1440                 default:
1441                         sprintf(msg, "Invalid mirror set. Can't decode addr");
1442                         return -EINVAL;
1443                 }
1444         } else
1445                 sck_xch = (1 << sck_way) * ch_way;
1446
1447         if (pvt->is_lockstep)
1448                 *channel_mask |= 1 << ((base_ch + 1) % 4);
1449
1450         offset = TAD_OFFSET(tad_offset);
1451
1452         edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
1453                  n_tads,
1454                  addr,
1455                  limit,
1456                  sck_way,
1457                  ch_way,
1458                  offset,
1459                  idx,
1460                  base_ch,
1461                  *channel_mask);
1462
1463         /* Calculate channel address */
1464         /* Remove the TAD offset */
1465
1466         if (offset > addr) {
1467                 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
1468                         offset, addr);
1469                 return -EINVAL;
1470         }
1471
1472         ch_addr = addr - offset;
1473         ch_addr >>= (6 + shiftup);
1474         ch_addr /= sck_xch;
1475         ch_addr <<= (6 + shiftup);
1476         ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
1477
1478         /*
1479          * Step 3) Decode rank
1480          */
1481         for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
1482                 pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
1483                                       rir_way_limit[n_rir],
1484                                       &reg);
1485
1486                 if (!IS_RIR_VALID(reg))
1487                         continue;
1488
1489                 limit = pvt->info.rir_limit(reg);
1490                 gb = div_u64_rem(limit >> 20, 1024, &mb);
1491                 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1492                          n_rir,
1493                          gb, (mb*1000)/1024,
1494                          limit,
1495                          1 << RIR_WAY(reg));
1496                 if  (ch_addr <= limit)
1497                         break;
1498         }
1499         if (n_rir == MAX_RIR_RANGES) {
1500                 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
1501                         ch_addr);
1502                 return -EINVAL;
1503         }
1504         rir_way = RIR_WAY(reg);
1505
1506         if (pvt->is_close_pg)
1507                 idx = (ch_addr >> 6);
1508         else
1509                 idx = (ch_addr >> 13);  /* FIXME: Datasheet says to shift by 15 */
1510         idx %= 1 << rir_way;
1511
1512         pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
1513                               rir_offset[n_rir][idx],
1514                               &reg);
1515         *rank = RIR_RNK_TGT(reg);
1516
1517         edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1518                  n_rir,
1519                  ch_addr,
1520                  limit,
1521                  rir_way,
1522                  idx);
1523
1524         return 0;
1525 }
1526
1527 /****************************************************************************
1528         Device initialization routines: put/get, init/exit
1529  ****************************************************************************/
1530
1531 /*
1532  *      sbridge_put_all_devices 'put' all the devices that we have
1533  *                              reserved via 'get'
1534  */
1535 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
1536 {
1537         int i;
1538
1539         edac_dbg(0, "\n");
1540         for (i = 0; i < sbridge_dev->n_devs; i++) {
1541                 struct pci_dev *pdev = sbridge_dev->pdev[i];
1542                 if (!pdev)
1543                         continue;
1544                 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1545                          pdev->bus->number,
1546                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1547                 pci_dev_put(pdev);
1548         }
1549 }
1550
1551 static void sbridge_put_all_devices(void)
1552 {
1553         struct sbridge_dev *sbridge_dev, *tmp;
1554
1555         list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
1556                 sbridge_put_devices(sbridge_dev);
1557                 free_sbridge_dev(sbridge_dev);
1558         }
1559 }
1560
1561 static int sbridge_get_onedevice(struct pci_dev **prev,
1562                                  u8 *num_mc,
1563                                  const struct pci_id_table *table,
1564                                  const unsigned devno)
1565 {
1566         struct sbridge_dev *sbridge_dev;
1567         const struct pci_id_descr *dev_descr = &table->descr[devno];
1568         struct pci_dev *pdev = NULL;
1569         u8 bus = 0;
1570
1571         sbridge_printk(KERN_DEBUG,
1572                 "Seeking for: PCI ID %04x:%04x\n",
1573                 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1574
1575         pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1576                               dev_descr->dev_id, *prev);
1577
1578         if (!pdev) {
1579                 if (*prev) {
1580                         *prev = pdev;
1581                         return 0;
1582                 }
1583
1584                 if (dev_descr->optional)
1585                         return 0;
1586
1587                 /* if the HA wasn't found */
1588                 if (devno == 0)
1589                         return -ENODEV;
1590
1591                 sbridge_printk(KERN_INFO,
1592                         "Device not found: %04x:%04x\n",
1593                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1594
1595                 /* End of list, leave */
1596                 return -ENODEV;
1597         }
1598         bus = pdev->bus->number;
1599
1600         sbridge_dev = get_sbridge_dev(bus);
1601         if (!sbridge_dev) {
1602                 sbridge_dev = alloc_sbridge_dev(bus, table);
1603                 if (!sbridge_dev) {
1604                         pci_dev_put(pdev);
1605                         return -ENOMEM;
1606                 }
1607                 (*num_mc)++;
1608         }
1609
1610         if (sbridge_dev->pdev[devno]) {
1611                 sbridge_printk(KERN_ERR,
1612                         "Duplicated device for %04x:%04x\n",
1613                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1614                 pci_dev_put(pdev);
1615                 return -ENODEV;
1616         }
1617
1618         sbridge_dev->pdev[devno] = pdev;
1619
1620         /* Be sure that the device is enabled */
1621         if (unlikely(pci_enable_device(pdev) < 0)) {
1622                 sbridge_printk(KERN_ERR,
1623                         "Couldn't enable %04x:%04x\n",
1624                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1625                 return -ENODEV;
1626         }
1627
1628         edac_dbg(0, "Detected %04x:%04x\n",
1629                  PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1630
1631         /*
1632          * As stated on drivers/pci/search.c, the reference count for
1633          * @from is always decremented if it is not %NULL. So, as we need
1634          * to get all devices up to null, we need to do a get for the device
1635          */
1636         pci_dev_get(pdev);
1637
1638         *prev = pdev;
1639
1640         return 0;
1641 }
1642
1643 /*
1644  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
1645  *                           devices we want to reference for this driver.
1646  * @num_mc: pointer to the memory controllers count, to be incremented in case
1647  *          of success.
1648  * @table: model specific table
1649  *
1650  * returns 0 in case of success or error code
1651  */
1652 static int sbridge_get_all_devices(u8 *num_mc,
1653                                    const struct pci_id_table *table)
1654 {
1655         int i, rc;
1656         struct pci_dev *pdev = NULL;
1657
1658         while (table && table->descr) {
1659                 for (i = 0; i < table->n_devs; i++) {
1660                         pdev = NULL;
1661                         do {
1662                                 rc = sbridge_get_onedevice(&pdev, num_mc,
1663                                                            table, i);
1664                                 if (rc < 0) {
1665                                         if (i == 0) {
1666                                                 i = table->n_devs;
1667                                                 break;
1668                                         }
1669                                         sbridge_put_all_devices();
1670                                         return -ENODEV;
1671                                 }
1672                         } while (pdev);
1673                 }
1674                 table++;
1675         }
1676
1677         return 0;
1678 }
1679
1680 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
1681                                  struct sbridge_dev *sbridge_dev)
1682 {
1683         struct sbridge_pvt *pvt = mci->pvt_info;
1684         struct pci_dev *pdev;
1685         u8 saw_chan_mask = 0;
1686         int i;
1687
1688         for (i = 0; i < sbridge_dev->n_devs; i++) {
1689                 pdev = sbridge_dev->pdev[i];
1690                 if (!pdev)
1691                         continue;
1692
1693                 switch (pdev->device) {
1694                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
1695                         pvt->pci_sad0 = pdev;
1696                         break;
1697                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
1698                         pvt->pci_sad1 = pdev;
1699                         break;
1700                 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
1701                         pvt->pci_br0 = pdev;
1702                         break;
1703                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
1704                         pvt->pci_ha0 = pdev;
1705                         break;
1706                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
1707                         pvt->pci_ta = pdev;
1708                         break;
1709                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
1710                         pvt->pci_ras = pdev;
1711                         break;
1712                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
1713                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
1714                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
1715                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
1716                 {
1717                         int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
1718                         pvt->pci_tad[id] = pdev;
1719                         saw_chan_mask |= 1 << id;
1720                 }
1721                         break;
1722                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
1723                         pvt->pci_ddrio = pdev;
1724                         break;
1725                 default:
1726                         goto error;
1727                 }
1728
1729                 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
1730                          pdev->vendor, pdev->device,
1731                          sbridge_dev->bus,
1732                          pdev);
1733         }
1734
1735         /* Check if everything were registered */
1736         if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1737             !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta)
1738                 goto enodev;
1739
1740         if (saw_chan_mask != 0x0f)
1741                 goto enodev;
1742         return 0;
1743
1744 enodev:
1745         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1746         return -ENODEV;
1747
1748 error:
1749         sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
1750                        PCI_VENDOR_ID_INTEL, pdev->device);
1751         return -EINVAL;
1752 }
1753
1754 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
1755                                  struct sbridge_dev *sbridge_dev)
1756 {
1757         struct sbridge_pvt *pvt = mci->pvt_info;
1758         struct pci_dev *pdev;
1759         u8 saw_chan_mask = 0;
1760         int i;
1761
1762         for (i = 0; i < sbridge_dev->n_devs; i++) {
1763                 pdev = sbridge_dev->pdev[i];
1764                 if (!pdev)
1765                         continue;
1766
1767                 switch (pdev->device) {
1768                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
1769                         pvt->pci_ha0 = pdev;
1770                         break;
1771                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
1772                         pvt->pci_ta = pdev;
1773                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
1774                         pvt->pci_ras = pdev;
1775                         break;
1776                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
1777                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
1778                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
1779                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
1780                 {
1781                         int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
1782                         pvt->pci_tad[id] = pdev;
1783                         saw_chan_mask |= 1 << id;
1784                 }
1785                         break;
1786                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
1787                         pvt->pci_ddrio = pdev;
1788                         break;
1789                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
1790                         pvt->pci_ddrio = pdev;
1791                         break;
1792                 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
1793                         pvt->pci_sad0 = pdev;
1794                         break;
1795                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
1796                         pvt->pci_br0 = pdev;
1797                         break;
1798                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
1799                         pvt->pci_br1 = pdev;
1800                         break;
1801                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
1802                         pvt->pci_ha1 = pdev;
1803                         break;
1804                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
1805                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
1806                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
1807                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
1808                 {
1809                         int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 4;
1810                         pvt->pci_tad[id] = pdev;
1811                         saw_chan_mask |= 1 << id;
1812                 }
1813                         break;
1814                 default:
1815                         goto error;
1816                 }
1817
1818                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1819                          sbridge_dev->bus,
1820                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1821                          pdev);
1822         }
1823
1824         /* Check if everything were registered */
1825         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
1826             !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  ||
1827             !pvt->pci_ta)
1828                 goto enodev;
1829
1830         if (saw_chan_mask != 0x0f && /* -EN */
1831             saw_chan_mask != 0x33 && /* -EP */
1832             saw_chan_mask != 0xff)   /* -EX */
1833                 goto enodev;
1834         return 0;
1835
1836 enodev:
1837         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1838         return -ENODEV;
1839
1840 error:
1841         sbridge_printk(KERN_ERR,
1842                        "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
1843                         pdev->device);
1844         return -EINVAL;
1845 }
1846
1847 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
1848                                  struct sbridge_dev *sbridge_dev)
1849 {
1850         struct sbridge_pvt *pvt = mci->pvt_info;
1851         struct pci_dev *pdev;
1852         u8 saw_chan_mask = 0;
1853         int i;
1854
1855         /* there's only one device per system; not tied to any bus */
1856         if (pvt->info.pci_vtd == NULL)
1857                 /* result will be checked later */
1858                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
1859                                                    PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
1860                                                    NULL);
1861
1862         for (i = 0; i < sbridge_dev->n_devs; i++) {
1863                 pdev = sbridge_dev->pdev[i];
1864                 if (!pdev)
1865                         continue;
1866
1867                 switch (pdev->device) {
1868                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
1869                         pvt->pci_sad0 = pdev;
1870                         break;
1871                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
1872                         pvt->pci_sad1 = pdev;
1873                         break;
1874                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
1875                         pvt->pci_ha0 = pdev;
1876                         break;
1877                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
1878                         pvt->pci_ta = pdev;
1879                         break;
1880                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
1881                         pvt->pci_ras = pdev;
1882                         break;
1883                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
1884                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
1885                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
1886                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
1887                 {
1888                         int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0;
1889
1890                         pvt->pci_tad[id] = pdev;
1891                         saw_chan_mask |= 1 << id;
1892                 }
1893                         break;
1894                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
1895                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
1896                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
1897                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
1898                 {
1899                         int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 + 4;
1900
1901                         pvt->pci_tad[id] = pdev;
1902                         saw_chan_mask |= 1 << id;
1903                 }
1904                         break;
1905                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
1906                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
1907                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
1908                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
1909                         if (!pvt->pci_ddrio)
1910                                 pvt->pci_ddrio = pdev;
1911                         break;
1912                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
1913                         pvt->pci_ha1 = pdev;
1914                         break;
1915                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
1916                         pvt->pci_ha1_ta = pdev;
1917                         break;
1918                 default:
1919                         break;
1920                 }
1921
1922                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1923                          sbridge_dev->bus,
1924                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1925                          pdev);
1926         }
1927
1928         /* Check if everything were registered */
1929         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
1930             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
1931                 goto enodev;
1932
1933         if (saw_chan_mask != 0x0f && /* -EN */
1934             saw_chan_mask != 0x33 && /* -EP */
1935             saw_chan_mask != 0xff)   /* -EX */
1936                 goto enodev;
1937         return 0;
1938
1939 enodev:
1940         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1941         return -ENODEV;
1942 }
1943
1944 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
1945                                  struct sbridge_dev *sbridge_dev)
1946 {
1947         struct sbridge_pvt *pvt = mci->pvt_info;
1948         struct pci_dev *pdev;
1949         u8 saw_chan_mask = 0;
1950         int i;
1951
1952         /* there's only one device per system; not tied to any bus */
1953         if (pvt->info.pci_vtd == NULL)
1954                 /* result will be checked later */
1955                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
1956                                                    PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
1957                                                    NULL);
1958
1959         for (i = 0; i < sbridge_dev->n_devs; i++) {
1960                 pdev = sbridge_dev->pdev[i];
1961                 if (!pdev)
1962                         continue;
1963
1964                 switch (pdev->device) {
1965                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
1966                         pvt->pci_sad0 = pdev;
1967                         break;
1968                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
1969                         pvt->pci_sad1 = pdev;
1970                         break;
1971                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
1972                         pvt->pci_ha0 = pdev;
1973                         break;
1974                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
1975                         pvt->pci_ta = pdev;
1976                         break;
1977                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL:
1978                         pvt->pci_ras = pdev;
1979                         break;
1980                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
1981                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
1982                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
1983                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
1984                 {
1985                         int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0;
1986                         pvt->pci_tad[id] = pdev;
1987                         saw_chan_mask |= 1 << id;
1988                 }
1989                         break;
1990                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
1991                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
1992                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
1993                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
1994                 {
1995                         int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 + 4;
1996                         pvt->pci_tad[id] = pdev;
1997                         saw_chan_mask |= 1 << id;
1998                 }
1999                         break;
2000                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2001                         pvt->pci_ddrio = pdev;
2002                         break;
2003                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2004                         pvt->pci_ha1 = pdev;
2005                         break;
2006                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2007                         pvt->pci_ha1_ta = pdev;
2008                         break;
2009                 default:
2010                         break;
2011                 }
2012
2013                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2014                          sbridge_dev->bus,
2015                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2016                          pdev);
2017         }
2018
2019         /* Check if everything were registered */
2020         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2021             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2022                 goto enodev;
2023
2024         if (saw_chan_mask != 0x0f && /* -EN */
2025             saw_chan_mask != 0x33 && /* -EP */
2026             saw_chan_mask != 0xff)   /* -EX */
2027                 goto enodev;
2028         return 0;
2029
2030 enodev:
2031         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2032         return -ENODEV;
2033 }
2034
2035 /****************************************************************************
2036                         Error check routines
2037  ****************************************************************************/
2038
2039 /*
2040  * While Sandy Bridge has error count registers, SMI BIOS read values from
2041  * and resets the counters. So, they are not reliable for the OS to read
2042  * from them. So, we have no option but to just trust on whatever MCE is
2043  * telling us about the errors.
2044  */
2045 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2046                                     const struct mce *m)
2047 {
2048         struct mem_ctl_info *new_mci;
2049         struct sbridge_pvt *pvt = mci->pvt_info;
2050         enum hw_event_mc_err_type tp_event;
2051         char *type, *optype, msg[256];
2052         bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2053         bool overflow = GET_BITFIELD(m->status, 62, 62);
2054         bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2055         bool recoverable;
2056         u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2057         u32 mscod = GET_BITFIELD(m->status, 16, 31);
2058         u32 errcode = GET_BITFIELD(m->status, 0, 15);
2059         u32 channel = GET_BITFIELD(m->status, 0, 3);
2060         u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2061         long channel_mask, first_channel;
2062         u8  rank, socket, ha;
2063         int rc, dimm;
2064         char *area_type = NULL;
2065
2066         if (pvt->info.type != SANDY_BRIDGE)
2067                 recoverable = true;
2068         else
2069                 recoverable = GET_BITFIELD(m->status, 56, 56);
2070
2071         if (uncorrected_error) {
2072                 if (ripv) {
2073                         type = "FATAL";
2074                         tp_event = HW_EVENT_ERR_FATAL;
2075                 } else {
2076                         type = "NON_FATAL";
2077                         tp_event = HW_EVENT_ERR_UNCORRECTED;
2078                 }
2079         } else {
2080                 type = "CORRECTED";
2081                 tp_event = HW_EVENT_ERR_CORRECTED;
2082         }
2083
2084         /*
2085          * According with Table 15-9 of the Intel Architecture spec vol 3A,
2086          * memory errors should fit in this mask:
2087          *      000f 0000 1mmm cccc (binary)
2088          * where:
2089          *      f = Correction Report Filtering Bit. If 1, subsequent errors
2090          *          won't be shown
2091          *      mmm = error type
2092          *      cccc = channel
2093          * If the mask doesn't match, report an error to the parsing logic
2094          */
2095         if (! ((errcode & 0xef80) == 0x80)) {
2096                 optype = "Can't parse: it is not a mem";
2097         } else {
2098                 switch (optypenum) {
2099                 case 0:
2100                         optype = "generic undef request error";
2101                         break;
2102                 case 1:
2103                         optype = "memory read error";
2104                         break;
2105                 case 2:
2106                         optype = "memory write error";
2107                         break;
2108                 case 3:
2109                         optype = "addr/cmd error";
2110                         break;
2111                 case 4:
2112                         optype = "memory scrubbing error";
2113                         break;
2114                 default:
2115                         optype = "reserved";
2116                         break;
2117                 }
2118         }
2119
2120         /* Only decode errors with an valid address (ADDRV) */
2121         if (!GET_BITFIELD(m->status, 58, 58))
2122                 return;
2123
2124         rc = get_memory_error_data(mci, m->addr, &socket, &ha,
2125                                    &channel_mask, &rank, &area_type, msg);
2126         if (rc < 0)
2127                 goto err_parsing;
2128         new_mci = get_mci_for_node_id(socket);
2129         if (!new_mci) {
2130                 strcpy(msg, "Error: socket got corrupted!");
2131                 goto err_parsing;
2132         }
2133         mci = new_mci;
2134         pvt = mci->pvt_info;
2135
2136         first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
2137
2138         if (rank < 4)
2139                 dimm = 0;
2140         else if (rank < 8)
2141                 dimm = 1;
2142         else
2143                 dimm = 2;
2144
2145
2146         /*
2147          * FIXME: On some memory configurations (mirror, lockstep), the
2148          * Memory Controller can't point the error to a single DIMM. The
2149          * EDAC core should be handling the channel mask, in order to point
2150          * to the group of dimm's where the error may be happening.
2151          */
2152         if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
2153                 channel = first_channel;
2154
2155         snprintf(msg, sizeof(msg),
2156                  "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
2157                  overflow ? " OVERFLOW" : "",
2158                  (uncorrected_error && recoverable) ? " recoverable" : "",
2159                  area_type,
2160                  mscod, errcode,
2161                  socket, ha,
2162                  channel_mask,
2163                  rank);
2164
2165         edac_dbg(0, "%s\n", msg);
2166
2167         /* FIXME: need support for channel mask */
2168
2169         if (channel == CHANNEL_UNSPECIFIED)
2170                 channel = -1;
2171
2172         /* Call the helper to output message */
2173         edac_mc_handle_error(tp_event, mci, core_err_cnt,
2174                              m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
2175                              4*ha+channel, dimm, -1,
2176                              optype, msg);
2177         return;
2178 err_parsing:
2179         edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
2180                              -1, -1, -1,
2181                              msg, "");
2182
2183 }
2184
2185 /*
2186  *      sbridge_check_error     Retrieve and process errors reported by the
2187  *                              hardware. Called by the Core module.
2188  */
2189 static void sbridge_check_error(struct mem_ctl_info *mci)
2190 {
2191         struct sbridge_pvt *pvt = mci->pvt_info;
2192         int i;
2193         unsigned count = 0;
2194         struct mce *m;
2195
2196         /*
2197          * MCE first step: Copy all mce errors into a temporary buffer
2198          * We use a double buffering here, to reduce the risk of
2199          * loosing an error.
2200          */
2201         smp_rmb();
2202         count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
2203                 % MCE_LOG_LEN;
2204         if (!count)
2205                 return;
2206
2207         m = pvt->mce_outentry;
2208         if (pvt->mce_in + count > MCE_LOG_LEN) {
2209                 unsigned l = MCE_LOG_LEN - pvt->mce_in;
2210
2211                 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
2212                 smp_wmb();
2213                 pvt->mce_in = 0;
2214                 count -= l;
2215                 m += l;
2216         }
2217         memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
2218         smp_wmb();
2219         pvt->mce_in += count;
2220
2221         smp_rmb();
2222         if (pvt->mce_overrun) {
2223                 sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
2224                               pvt->mce_overrun);
2225                 smp_wmb();
2226                 pvt->mce_overrun = 0;
2227         }
2228
2229         /*
2230          * MCE second step: parse errors and display
2231          */
2232         for (i = 0; i < count; i++)
2233                 sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
2234 }
2235
2236 /*
2237  * sbridge_mce_check_error      Replicates mcelog routine to get errors
2238  *                              This routine simply queues mcelog errors, and
2239  *                              return. The error itself should be handled later
2240  *                              by sbridge_check_error.
2241  * WARNING: As this routine should be called at NMI time, extra care should
2242  * be taken to avoid deadlocks, and to be as fast as possible.
2243  */
2244 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
2245                                    void *data)
2246 {
2247         struct mce *mce = (struct mce *)data;
2248         struct mem_ctl_info *mci;
2249         struct sbridge_pvt *pvt;
2250         char *type;
2251
2252         if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
2253                 return NOTIFY_DONE;
2254
2255         mci = get_mci_for_node_id(mce->socketid);
2256         if (!mci)
2257                 return NOTIFY_DONE;
2258         pvt = mci->pvt_info;
2259
2260         /*
2261          * Just let mcelog handle it if the error is
2262          * outside the memory controller. A memory error
2263          * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
2264          * bit 12 has an special meaning.
2265          */
2266         if ((mce->status & 0xefff) >> 7 != 1)
2267                 return NOTIFY_DONE;
2268
2269         if (mce->mcgstatus & MCG_STATUS_MCIP)
2270                 type = "Exception";
2271         else
2272                 type = "Event";
2273
2274         sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
2275
2276         sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
2277                           "Bank %d: %016Lx\n", mce->extcpu, type,
2278                           mce->mcgstatus, mce->bank, mce->status);
2279         sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
2280         sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
2281         sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
2282
2283         sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
2284                           "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
2285                           mce->time, mce->socketid, mce->apicid);
2286
2287         smp_rmb();
2288         if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
2289                 smp_wmb();
2290                 pvt->mce_overrun++;
2291                 return NOTIFY_DONE;
2292         }
2293
2294         /* Copy memory error at the ringbuffer */
2295         memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
2296         smp_wmb();
2297         pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
2298
2299         /* Handle fatal errors immediately */
2300         if (mce->mcgstatus & 1)
2301                 sbridge_check_error(mci);
2302
2303         /* Advice mcelog that the error were handled */
2304         return NOTIFY_STOP;
2305 }
2306
2307 static struct notifier_block sbridge_mce_dec = {
2308         .notifier_call      = sbridge_mce_check_error,
2309 };
2310
2311 /****************************************************************************
2312                         EDAC register/unregister logic
2313  ****************************************************************************/
2314
2315 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
2316 {
2317         struct mem_ctl_info *mci = sbridge_dev->mci;
2318         struct sbridge_pvt *pvt;
2319
2320         if (unlikely(!mci || !mci->pvt_info)) {
2321                 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
2322
2323                 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
2324                 return;
2325         }
2326
2327         pvt = mci->pvt_info;
2328
2329         edac_dbg(0, "MC: mci = %p, dev = %p\n",
2330                  mci, &sbridge_dev->pdev[0]->dev);
2331
2332         /* Remove MC sysfs nodes */
2333         edac_mc_del_mc(mci->pdev);
2334
2335         edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
2336         kfree(mci->ctl_name);
2337         edac_mc_free(mci);
2338         sbridge_dev->mci = NULL;
2339 }
2340
2341 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
2342 {
2343         struct mem_ctl_info *mci;
2344         struct edac_mc_layer layers[2];
2345         struct sbridge_pvt *pvt;
2346         struct pci_dev *pdev = sbridge_dev->pdev[0];
2347         int rc;
2348
2349         /* Check the number of active and not disabled channels */
2350         rc = check_if_ecc_is_active(sbridge_dev->bus, type);
2351         if (unlikely(rc < 0))
2352                 return rc;
2353
2354         /* allocate a new MC control structure */
2355         layers[0].type = EDAC_MC_LAYER_CHANNEL;
2356         layers[0].size = NUM_CHANNELS;
2357         layers[0].is_virt_csrow = false;
2358         layers[1].type = EDAC_MC_LAYER_SLOT;
2359         layers[1].size = MAX_DIMMS;
2360         layers[1].is_virt_csrow = true;
2361         mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
2362                             sizeof(*pvt));
2363
2364         if (unlikely(!mci))
2365                 return -ENOMEM;
2366
2367         edac_dbg(0, "MC: mci = %p, dev = %p\n",
2368                  mci, &pdev->dev);
2369
2370         pvt = mci->pvt_info;
2371         memset(pvt, 0, sizeof(*pvt));
2372
2373         /* Associate sbridge_dev and mci for future usage */
2374         pvt->sbridge_dev = sbridge_dev;
2375         sbridge_dev->mci = mci;
2376
2377         mci->mtype_cap = MEM_FLAG_DDR3;
2378         mci->edac_ctl_cap = EDAC_FLAG_NONE;
2379         mci->edac_cap = EDAC_FLAG_NONE;
2380         mci->mod_name = "sbridge_edac.c";
2381         mci->mod_ver = SBRIDGE_REVISION;
2382         mci->dev_name = pci_name(pdev);
2383         mci->ctl_page_to_phys = NULL;
2384
2385         /* Set the function pointer to an actual operation function */
2386         mci->edac_check = sbridge_check_error;
2387
2388         pvt->info.type = type;
2389         switch (type) {
2390         case IVY_BRIDGE:
2391                 pvt->info.rankcfgr = IB_RANK_CFG_A;
2392                 pvt->info.get_tolm = ibridge_get_tolm;
2393                 pvt->info.get_tohm = ibridge_get_tohm;
2394                 pvt->info.dram_rule = ibridge_dram_rule;
2395                 pvt->info.get_memory_type = get_memory_type;
2396                 pvt->info.get_node_id = get_node_id;
2397                 pvt->info.rir_limit = rir_limit;
2398                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2399                 pvt->info.interleave_list = ibridge_interleave_list;
2400                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2401                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
2402                 pvt->info.get_width = ibridge_get_width;
2403                 mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
2404
2405                 /* Store pci devices at mci for faster access */
2406                 rc = ibridge_mci_bind_devs(mci, sbridge_dev);
2407                 if (unlikely(rc < 0))
2408                         goto fail0;
2409                 break;
2410         case SANDY_BRIDGE:
2411                 pvt->info.rankcfgr = SB_RANK_CFG_A;
2412                 pvt->info.get_tolm = sbridge_get_tolm;
2413                 pvt->info.get_tohm = sbridge_get_tohm;
2414                 pvt->info.dram_rule = sbridge_dram_rule;
2415                 pvt->info.get_memory_type = get_memory_type;
2416                 pvt->info.get_node_id = get_node_id;
2417                 pvt->info.rir_limit = rir_limit;
2418                 pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
2419                 pvt->info.interleave_list = sbridge_interleave_list;
2420                 pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
2421                 pvt->info.interleave_pkg = sbridge_interleave_pkg;
2422                 pvt->info.get_width = sbridge_get_width;
2423                 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
2424
2425                 /* Store pci devices at mci for faster access */
2426                 rc = sbridge_mci_bind_devs(mci, sbridge_dev);
2427                 if (unlikely(rc < 0))
2428                         goto fail0;
2429                 break;
2430         case HASWELL:
2431                 /* rankcfgr isn't used */
2432                 pvt->info.get_tolm = haswell_get_tolm;
2433                 pvt->info.get_tohm = haswell_get_tohm;
2434                 pvt->info.dram_rule = ibridge_dram_rule;
2435                 pvt->info.get_memory_type = haswell_get_memory_type;
2436                 pvt->info.get_node_id = haswell_get_node_id;
2437                 pvt->info.rir_limit = haswell_rir_limit;
2438                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2439                 pvt->info.interleave_list = ibridge_interleave_list;
2440                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2441                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
2442                 pvt->info.get_width = ibridge_get_width;
2443                 mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
2444
2445                 /* Store pci devices at mci for faster access */
2446                 rc = haswell_mci_bind_devs(mci, sbridge_dev);
2447                 if (unlikely(rc < 0))
2448                         goto fail0;
2449                 break;
2450         case BROADWELL:
2451                 /* rankcfgr isn't used */
2452                 pvt->info.get_tolm = haswell_get_tolm;
2453                 pvt->info.get_tohm = haswell_get_tohm;
2454                 pvt->info.dram_rule = ibridge_dram_rule;
2455                 pvt->info.get_memory_type = haswell_get_memory_type;
2456                 pvt->info.get_node_id = haswell_get_node_id;
2457                 pvt->info.rir_limit = haswell_rir_limit;
2458                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2459                 pvt->info.interleave_list = ibridge_interleave_list;
2460                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2461                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
2462                 pvt->info.get_width = broadwell_get_width;
2463                 mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx);
2464
2465                 /* Store pci devices at mci for faster access */
2466                 rc = broadwell_mci_bind_devs(mci, sbridge_dev);
2467                 if (unlikely(rc < 0))
2468                         goto fail0;
2469                 break;
2470         }
2471
2472         /* Get dimm basic config and the memory layout */
2473         get_dimm_config(mci);
2474         get_memory_layout(mci);
2475
2476         /* record ptr to the generic device */
2477         mci->pdev = &pdev->dev;
2478
2479         /* add this new MC control structure to EDAC's list of MCs */
2480         if (unlikely(edac_mc_add_mc(mci))) {
2481                 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2482                 rc = -EINVAL;
2483                 goto fail0;
2484         }
2485
2486         return 0;
2487
2488 fail0:
2489         kfree(mci->ctl_name);
2490         edac_mc_free(mci);
2491         sbridge_dev->mci = NULL;
2492         return rc;
2493 }
2494
2495 /*
2496  *      sbridge_probe   Probe for ONE instance of device to see if it is
2497  *                      present.
2498  *      return:
2499  *              0 for FOUND a device
2500  *              < 0 for error code
2501  */
2502
2503 static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2504 {
2505         int rc = -ENODEV;
2506         u8 mc, num_mc = 0;
2507         struct sbridge_dev *sbridge_dev;
2508         enum type type = SANDY_BRIDGE;
2509
2510         /* get the pci devices we want to reserve for our use */
2511         mutex_lock(&sbridge_edac_lock);
2512
2513         /*
2514          * All memory controllers are allocated at the first pass.
2515          */
2516         if (unlikely(probed >= 1)) {
2517                 mutex_unlock(&sbridge_edac_lock);
2518                 return -ENODEV;
2519         }
2520         probed++;
2521
2522         switch (pdev->device) {
2523         case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2524                 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_ibridge_table);
2525                 type = IVY_BRIDGE;
2526                 break;
2527         case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2528                 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_sbridge_table);
2529                 type = SANDY_BRIDGE;
2530                 break;
2531         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2532                 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_haswell_table);
2533                 type = HASWELL;
2534                 break;
2535         case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2536                 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_broadwell_table);
2537                 type = BROADWELL;
2538                 break;
2539         }
2540         if (unlikely(rc < 0)) {
2541                 edac_dbg(0, "couldn't get all devices for 0x%x\n", pdev->device);
2542                 goto fail0;
2543         }
2544
2545         mc = 0;
2546
2547         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
2548                 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
2549                          mc, mc + 1, num_mc);
2550
2551                 sbridge_dev->mc = mc++;
2552                 rc = sbridge_register_mci(sbridge_dev, type);
2553                 if (unlikely(rc < 0))
2554                         goto fail1;
2555         }
2556
2557         sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
2558
2559         mutex_unlock(&sbridge_edac_lock);
2560         return 0;
2561
2562 fail1:
2563         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
2564                 sbridge_unregister_mci(sbridge_dev);
2565
2566         sbridge_put_all_devices();
2567 fail0:
2568         mutex_unlock(&sbridge_edac_lock);
2569         return rc;
2570 }
2571
2572 /*
2573  *      sbridge_remove  destructor for one instance of device
2574  *
2575  */
2576 static void sbridge_remove(struct pci_dev *pdev)
2577 {
2578         struct sbridge_dev *sbridge_dev;
2579
2580         edac_dbg(0, "\n");
2581
2582         /*
2583          * we have a trouble here: pdev value for removal will be wrong, since
2584          * it will point to the X58 register used to detect that the machine
2585          * is a Nehalem or upper design. However, due to the way several PCI
2586          * devices are grouped together to provide MC functionality, we need
2587          * to use a different method for releasing the devices
2588          */
2589
2590         mutex_lock(&sbridge_edac_lock);
2591
2592         if (unlikely(!probed)) {
2593                 mutex_unlock(&sbridge_edac_lock);
2594                 return;
2595         }
2596
2597         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
2598                 sbridge_unregister_mci(sbridge_dev);
2599
2600         /* Release PCI resources */
2601         sbridge_put_all_devices();
2602
2603         probed--;
2604
2605         mutex_unlock(&sbridge_edac_lock);
2606 }
2607
2608 MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
2609
2610 /*
2611  *      sbridge_driver  pci_driver structure for this module
2612  *
2613  */
2614 static struct pci_driver sbridge_driver = {
2615         .name     = "sbridge_edac",
2616         .probe    = sbridge_probe,
2617         .remove   = sbridge_remove,
2618         .id_table = sbridge_pci_tbl,
2619 };
2620
2621 /*
2622  *      sbridge_init            Module entry function
2623  *                      Try to initialize this module for its devices
2624  */
2625 static int __init sbridge_init(void)
2626 {
2627         int pci_rc;
2628
2629         edac_dbg(2, "\n");
2630
2631         /* Ensure that the OPSTATE is set correctly for POLL or NMI */
2632         opstate_init();
2633
2634         pci_rc = pci_register_driver(&sbridge_driver);
2635         if (pci_rc >= 0) {
2636                 mce_register_decode_chain(&sbridge_mce_dec);
2637                 if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
2638                         sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
2639                 return 0;
2640         }
2641
2642         sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
2643                       pci_rc);
2644
2645         return pci_rc;
2646 }
2647
2648 /*
2649  *      sbridge_exit()  Module exit function
2650  *                      Unregister the driver
2651  */
2652 static void __exit sbridge_exit(void)
2653 {
2654         edac_dbg(2, "\n");
2655         pci_unregister_driver(&sbridge_driver);
2656         mce_unregister_decode_chain(&sbridge_mce_dec);
2657 }
2658
2659 module_init(sbridge_init);
2660 module_exit(sbridge_exit);
2661
2662 module_param(edac_op_state, int, 0444);
2663 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2664
2665 MODULE_LICENSE("GPL");
2666 MODULE_AUTHOR("Mauro Carvalho Chehab");
2667 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2668 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
2669                    SBRIDGE_REVISION);