]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/amd/amdgpu/sdma_v2_4.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / drivers / gpu / drm / amd / amdgpu / sdma_v2_4.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Alex Deucher
23  */
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 #include "vi.h"
30 #include "vid.h"
31
32 #include "oss/oss_2_4_d.h"
33 #include "oss/oss_2_4_sh_mask.h"
34
35 #include "gmc/gmc_7_1_d.h"
36 #include "gmc/gmc_7_1_sh_mask.h"
37
38 #include "gca/gfx_8_0_d.h"
39 #include "gca/gfx_8_0_enum.h"
40 #include "gca/gfx_8_0_sh_mask.h"
41
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44
45 #include "iceland_sdma_pkt_open.h"
46
47 static void sdma_v2_4_set_ring_funcs(struct amdgpu_device *adev);
48 static void sdma_v2_4_set_buffer_funcs(struct amdgpu_device *adev);
49 static void sdma_v2_4_set_vm_pte_funcs(struct amdgpu_device *adev);
50 static void sdma_v2_4_set_irq_funcs(struct amdgpu_device *adev);
51
52 MODULE_FIRMWARE("amdgpu/topaz_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/topaz_sdma1.bin");
54
55 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
56 {
57         SDMA0_REGISTER_OFFSET,
58         SDMA1_REGISTER_OFFSET
59 };
60
61 static const u32 golden_settings_iceland_a11[] =
62 {
63         mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
64         mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
65         mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
66         mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
67 };
68
69 static const u32 iceland_mgcg_cgcg_init[] =
70 {
71         mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
72         mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
73 };
74
75 /*
76  * sDMA - System DMA
77  * Starting with CIK, the GPU has new asynchronous
78  * DMA engines.  These engines are used for compute
79  * and gfx.  There are two DMA engines (SDMA0, SDMA1)
80  * and each one supports 1 ring buffer used for gfx
81  * and 2 queues used for compute.
82  *
83  * The programming model is very similar to the CP
84  * (ring buffer, IBs, etc.), but sDMA has it's own
85  * packet format that is different from the PM4 format
86  * used by the CP. sDMA supports copying data, writing
87  * embedded data, solid fills, and a number of other
88  * things.  It also has support for tiling/detiling of
89  * buffers.
90  */
91
92 static void sdma_v2_4_init_golden_registers(struct amdgpu_device *adev)
93 {
94         switch (adev->asic_type) {
95         case CHIP_TOPAZ:
96                 amdgpu_program_register_sequence(adev,
97                                                  iceland_mgcg_cgcg_init,
98                                                  (const u32)ARRAY_SIZE(iceland_mgcg_cgcg_init));
99                 amdgpu_program_register_sequence(adev,
100                                                  golden_settings_iceland_a11,
101                                                  (const u32)ARRAY_SIZE(golden_settings_iceland_a11));
102                 break;
103         default:
104                 break;
105         }
106 }
107
108 static void sdma_v2_4_free_microcode(struct amdgpu_device *adev)
109 {
110         int i;
111         for (i = 0; i < adev->sdma.num_instances; i++) {
112                 release_firmware(adev->sdma.instance[i].fw);
113                 adev->sdma.instance[i].fw = NULL;
114         }
115 }
116
117 /**
118  * sdma_v2_4_init_microcode - load ucode images from disk
119  *
120  * @adev: amdgpu_device pointer
121  *
122  * Use the firmware interface to load the ucode images into
123  * the driver (not loaded into hw).
124  * Returns 0 on success, error on failure.
125  */
126 static int sdma_v2_4_init_microcode(struct amdgpu_device *adev)
127 {
128         const char *chip_name;
129         char fw_name[30];
130         int err = 0, i;
131         struct amdgpu_firmware_info *info = NULL;
132         const struct common_firmware_header *header = NULL;
133         const struct sdma_firmware_header_v1_0 *hdr;
134
135         DRM_DEBUG("\n");
136
137         switch (adev->asic_type) {
138         case CHIP_TOPAZ:
139                 chip_name = "topaz";
140                 break;
141         default: BUG();
142         }
143
144         for (i = 0; i < adev->sdma.num_instances; i++) {
145                 if (i == 0)
146                         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
147                 else
148                         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
149                 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
150                 if (err)
151                         goto out;
152                 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
153                 if (err)
154                         goto out;
155                 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
156                 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
157                 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
158                 if (adev->sdma.instance[i].feature_version >= 20)
159                         adev->sdma.instance[i].burst_nop = true;
160
161                 if (adev->firmware.smu_load) {
162                         info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
163                         info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
164                         info->fw = adev->sdma.instance[i].fw;
165                         header = (const struct common_firmware_header *)info->fw->data;
166                         adev->firmware.fw_size +=
167                                 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
168                 }
169         }
170
171 out:
172         if (err) {
173                 printk(KERN_ERR
174                        "sdma_v2_4: Failed to load firmware \"%s\"\n",
175                        fw_name);
176                 for (i = 0; i < adev->sdma.num_instances; i++) {
177                         release_firmware(adev->sdma.instance[i].fw);
178                         adev->sdma.instance[i].fw = NULL;
179                 }
180         }
181         return err;
182 }
183
184 /**
185  * sdma_v2_4_ring_get_rptr - get the current read pointer
186  *
187  * @ring: amdgpu ring pointer
188  *
189  * Get the current rptr from the hardware (VI+).
190  */
191 static uint32_t sdma_v2_4_ring_get_rptr(struct amdgpu_ring *ring)
192 {
193         u32 rptr;
194
195         /* XXX check if swapping is necessary on BE */
196         rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
197
198         return rptr;
199 }
200
201 /**
202  * sdma_v2_4_ring_get_wptr - get the current write pointer
203  *
204  * @ring: amdgpu ring pointer
205  *
206  * Get the current wptr from the hardware (VI+).
207  */
208 static uint32_t sdma_v2_4_ring_get_wptr(struct amdgpu_ring *ring)
209 {
210         struct amdgpu_device *adev = ring->adev;
211         int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
212         u32 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
213
214         return wptr;
215 }
216
217 /**
218  * sdma_v2_4_ring_set_wptr - commit the write pointer
219  *
220  * @ring: amdgpu ring pointer
221  *
222  * Write the wptr back to the hardware (VI+).
223  */
224 static void sdma_v2_4_ring_set_wptr(struct amdgpu_ring *ring)
225 {
226         struct amdgpu_device *adev = ring->adev;
227         int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
228
229         WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
230 }
231
232 static void sdma_v2_4_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
233 {
234         struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
235         int i;
236
237         for (i = 0; i < count; i++)
238                 if (sdma && sdma->burst_nop && (i == 0))
239                         amdgpu_ring_write(ring, ring->nop |
240                                 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
241                 else
242                         amdgpu_ring_write(ring, ring->nop);
243 }
244
245 /**
246  * sdma_v2_4_ring_emit_ib - Schedule an IB on the DMA engine
247  *
248  * @ring: amdgpu ring pointer
249  * @ib: IB object to schedule
250  *
251  * Schedule an IB in the DMA ring (VI).
252  */
253 static void sdma_v2_4_ring_emit_ib(struct amdgpu_ring *ring,
254                                    struct amdgpu_ib *ib,
255                                    unsigned vm_id, bool ctx_switch)
256 {
257         u32 vmid = vm_id & 0xf;
258         u32 next_rptr = ring->wptr + 5;
259
260         while ((next_rptr & 7) != 2)
261                 next_rptr++;
262
263         next_rptr += 6;
264
265         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
266                           SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
267         amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
268         amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
269         amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
270         amdgpu_ring_write(ring, next_rptr);
271
272         /* IB packet must end on a 8 DW boundary */
273         sdma_v2_4_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
274
275         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
276                           SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
277         /* base must be 32 byte aligned */
278         amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
279         amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
280         amdgpu_ring_write(ring, ib->length_dw);
281         amdgpu_ring_write(ring, 0);
282         amdgpu_ring_write(ring, 0);
283
284 }
285
286 /**
287  * sdma_v2_4_hdp_flush_ring_emit - emit an hdp flush on the DMA ring
288  *
289  * @ring: amdgpu ring pointer
290  *
291  * Emit an hdp flush packet on the requested DMA ring.
292  */
293 static void sdma_v2_4_ring_emit_hdp_flush(struct amdgpu_ring *ring)
294 {
295         u32 ref_and_mask = 0;
296
297         if (ring == &ring->adev->sdma.instance[0].ring)
298                 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
299         else
300                 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
301
302         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
303                           SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
304                           SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
305         amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
306         amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
307         amdgpu_ring_write(ring, ref_and_mask); /* reference */
308         amdgpu_ring_write(ring, ref_and_mask); /* mask */
309         amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
310                           SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
311 }
312
313 static void sdma_v2_4_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
314 {
315         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
316                           SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
317         amdgpu_ring_write(ring, mmHDP_DEBUG0);
318         amdgpu_ring_write(ring, 1);
319 }
320 /**
321  * sdma_v2_4_ring_emit_fence - emit a fence on the DMA ring
322  *
323  * @ring: amdgpu ring pointer
324  * @fence: amdgpu fence object
325  *
326  * Add a DMA fence packet to the ring to write
327  * the fence seq number and DMA trap packet to generate
328  * an interrupt if needed (VI).
329  */
330 static void sdma_v2_4_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
331                                       unsigned flags)
332 {
333         bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
334         /* write the fence */
335         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
336         amdgpu_ring_write(ring, lower_32_bits(addr));
337         amdgpu_ring_write(ring, upper_32_bits(addr));
338         amdgpu_ring_write(ring, lower_32_bits(seq));
339
340         /* optionally write high bits as well */
341         if (write64bit) {
342                 addr += 4;
343                 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
344                 amdgpu_ring_write(ring, lower_32_bits(addr));
345                 amdgpu_ring_write(ring, upper_32_bits(addr));
346                 amdgpu_ring_write(ring, upper_32_bits(seq));
347         }
348
349         /* generate an interrupt */
350         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
351         amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
352 }
353
354 /**
355  * sdma_v2_4_gfx_stop - stop the gfx async dma engines
356  *
357  * @adev: amdgpu_device pointer
358  *
359  * Stop the gfx async dma ring buffers (VI).
360  */
361 static void sdma_v2_4_gfx_stop(struct amdgpu_device *adev)
362 {
363         struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
364         struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
365         u32 rb_cntl, ib_cntl;
366         int i;
367
368         if ((adev->mman.buffer_funcs_ring == sdma0) ||
369             (adev->mman.buffer_funcs_ring == sdma1))
370                 amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
371
372         for (i = 0; i < adev->sdma.num_instances; i++) {
373                 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
374                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
375                 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
376                 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
377                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
378                 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
379         }
380         sdma0->ready = false;
381         sdma1->ready = false;
382 }
383
384 /**
385  * sdma_v2_4_rlc_stop - stop the compute async dma engines
386  *
387  * @adev: amdgpu_device pointer
388  *
389  * Stop the compute async dma queues (VI).
390  */
391 static void sdma_v2_4_rlc_stop(struct amdgpu_device *adev)
392 {
393         /* XXX todo */
394 }
395
396 /**
397  * sdma_v2_4_enable - stop the async dma engines
398  *
399  * @adev: amdgpu_device pointer
400  * @enable: enable/disable the DMA MEs.
401  *
402  * Halt or unhalt the async dma engines (VI).
403  */
404 static void sdma_v2_4_enable(struct amdgpu_device *adev, bool enable)
405 {
406         u32 f32_cntl;
407         int i;
408
409         if (enable == false) {
410                 sdma_v2_4_gfx_stop(adev);
411                 sdma_v2_4_rlc_stop(adev);
412         }
413
414         for (i = 0; i < adev->sdma.num_instances; i++) {
415                 f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
416                 if (enable)
417                         f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
418                 else
419                         f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
420                 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
421         }
422 }
423
424 /**
425  * sdma_v2_4_gfx_resume - setup and start the async dma engines
426  *
427  * @adev: amdgpu_device pointer
428  *
429  * Set up the gfx DMA ring buffers and enable them (VI).
430  * Returns 0 for success, error for failure.
431  */
432 static int sdma_v2_4_gfx_resume(struct amdgpu_device *adev)
433 {
434         struct amdgpu_ring *ring;
435         u32 rb_cntl, ib_cntl;
436         u32 rb_bufsz;
437         u32 wb_offset;
438         int i, j, r;
439
440         for (i = 0; i < adev->sdma.num_instances; i++) {
441                 ring = &adev->sdma.instance[i].ring;
442                 wb_offset = (ring->rptr_offs * 4);
443
444                 mutex_lock(&adev->srbm_mutex);
445                 for (j = 0; j < 16; j++) {
446                         vi_srbm_select(adev, 0, 0, 0, j);
447                         /* SDMA GFX */
448                         WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
449                         WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
450                 }
451                 vi_srbm_select(adev, 0, 0, 0, 0);
452                 mutex_unlock(&adev->srbm_mutex);
453
454                 WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
455                        adev->gfx.config.gb_addr_config & 0x70);
456
457                 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
458
459                 /* Set ring buffer size in dwords */
460                 rb_bufsz = order_base_2(ring->ring_size / 4);
461                 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
462                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
463 #ifdef __BIG_ENDIAN
464                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
465                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
466                                         RPTR_WRITEBACK_SWAP_ENABLE, 1);
467 #endif
468                 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
469
470                 /* Initialize the ring buffer's read and write pointers */
471                 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
472                 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
473                 WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
474                 WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
475
476                 /* set the wb address whether it's enabled or not */
477                 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
478                        upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
479                 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
480                        lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
481
482                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
483
484                 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
485                 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
486
487                 ring->wptr = 0;
488                 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
489
490                 /* enable DMA RB */
491                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
492                 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
493
494                 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
495                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
496 #ifdef __BIG_ENDIAN
497                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
498 #endif
499                 /* enable DMA IBs */
500                 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
501
502                 ring->ready = true;
503         }
504
505         sdma_v2_4_enable(adev, true);
506         for (i = 0; i < adev->sdma.num_instances; i++) {
507                 ring = &adev->sdma.instance[i].ring;
508                 r = amdgpu_ring_test_ring(ring);
509                 if (r) {
510                         ring->ready = false;
511                         return r;
512                 }
513
514                 if (adev->mman.buffer_funcs_ring == ring)
515                         amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
516         }
517
518         return 0;
519 }
520
521 /**
522  * sdma_v2_4_rlc_resume - setup and start the async dma engines
523  *
524  * @adev: amdgpu_device pointer
525  *
526  * Set up the compute DMA queues and enable them (VI).
527  * Returns 0 for success, error for failure.
528  */
529 static int sdma_v2_4_rlc_resume(struct amdgpu_device *adev)
530 {
531         /* XXX todo */
532         return 0;
533 }
534
535 /**
536  * sdma_v2_4_load_microcode - load the sDMA ME ucode
537  *
538  * @adev: amdgpu_device pointer
539  *
540  * Loads the sDMA0/1 ucode.
541  * Returns 0 for success, -EINVAL if the ucode is not available.
542  */
543 static int sdma_v2_4_load_microcode(struct amdgpu_device *adev)
544 {
545         const struct sdma_firmware_header_v1_0 *hdr;
546         const __le32 *fw_data;
547         u32 fw_size;
548         int i, j;
549
550         /* halt the MEs */
551         sdma_v2_4_enable(adev, false);
552
553         for (i = 0; i < adev->sdma.num_instances; i++) {
554                 if (!adev->sdma.instance[i].fw)
555                         return -EINVAL;
556                 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
557                 amdgpu_ucode_print_sdma_hdr(&hdr->header);
558                 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
559                 fw_data = (const __le32 *)
560                         (adev->sdma.instance[i].fw->data +
561                          le32_to_cpu(hdr->header.ucode_array_offset_bytes));
562                 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
563                 for (j = 0; j < fw_size; j++)
564                         WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
565                 WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
566         }
567
568         return 0;
569 }
570
571 /**
572  * sdma_v2_4_start - setup and start the async dma engines
573  *
574  * @adev: amdgpu_device pointer
575  *
576  * Set up the DMA engines and enable them (VI).
577  * Returns 0 for success, error for failure.
578  */
579 static int sdma_v2_4_start(struct amdgpu_device *adev)
580 {
581         int r;
582
583         if (!adev->firmware.smu_load) {
584                 r = sdma_v2_4_load_microcode(adev);
585                 if (r)
586                         return r;
587         } else {
588                 r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
589                                                 AMDGPU_UCODE_ID_SDMA0);
590                 if (r)
591                         return -EINVAL;
592                 r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
593                                                 AMDGPU_UCODE_ID_SDMA1);
594                 if (r)
595                         return -EINVAL;
596         }
597
598         /* halt the engine before programing */
599         sdma_v2_4_enable(adev, false);
600
601         /* start the gfx rings and rlc compute queues */
602         r = sdma_v2_4_gfx_resume(adev);
603         if (r)
604                 return r;
605         r = sdma_v2_4_rlc_resume(adev);
606         if (r)
607                 return r;
608
609         return 0;
610 }
611
612 /**
613  * sdma_v2_4_ring_test_ring - simple async dma engine test
614  *
615  * @ring: amdgpu_ring structure holding ring information
616  *
617  * Test the DMA engine by writing using it to write an
618  * value to memory. (VI).
619  * Returns 0 for success, error for failure.
620  */
621 static int sdma_v2_4_ring_test_ring(struct amdgpu_ring *ring)
622 {
623         struct amdgpu_device *adev = ring->adev;
624         unsigned i;
625         unsigned index;
626         int r;
627         u32 tmp;
628         u64 gpu_addr;
629
630         r = amdgpu_wb_get(adev, &index);
631         if (r) {
632                 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
633                 return r;
634         }
635
636         gpu_addr = adev->wb.gpu_addr + (index * 4);
637         tmp = 0xCAFEDEAD;
638         adev->wb.wb[index] = cpu_to_le32(tmp);
639
640         r = amdgpu_ring_alloc(ring, 5);
641         if (r) {
642                 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
643                 amdgpu_wb_free(adev, index);
644                 return r;
645         }
646
647         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
648                           SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
649         amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
650         amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
651         amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
652         amdgpu_ring_write(ring, 0xDEADBEEF);
653         amdgpu_ring_commit(ring);
654
655         for (i = 0; i < adev->usec_timeout; i++) {
656                 tmp = le32_to_cpu(adev->wb.wb[index]);
657                 if (tmp == 0xDEADBEEF)
658                         break;
659                 DRM_UDELAY(1);
660         }
661
662         if (i < adev->usec_timeout) {
663                 DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
664         } else {
665                 DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
666                           ring->idx, tmp);
667                 r = -EINVAL;
668         }
669         amdgpu_wb_free(adev, index);
670
671         return r;
672 }
673
674 /**
675  * sdma_v2_4_ring_test_ib - test an IB on the DMA engine
676  *
677  * @ring: amdgpu_ring structure holding ring information
678  *
679  * Test a simple IB in the DMA ring (VI).
680  * Returns 0 on success, error on failure.
681  */
682 static int sdma_v2_4_ring_test_ib(struct amdgpu_ring *ring)
683 {
684         struct amdgpu_device *adev = ring->adev;
685         struct amdgpu_ib ib;
686         struct fence *f = NULL;
687         unsigned i;
688         unsigned index;
689         int r;
690         u32 tmp = 0;
691         u64 gpu_addr;
692
693         r = amdgpu_wb_get(adev, &index);
694         if (r) {
695                 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
696                 return r;
697         }
698
699         gpu_addr = adev->wb.gpu_addr + (index * 4);
700         tmp = 0xCAFEDEAD;
701         adev->wb.wb[index] = cpu_to_le32(tmp);
702         memset(&ib, 0, sizeof(ib));
703         r = amdgpu_ib_get(adev, NULL, 256, &ib);
704         if (r) {
705                 DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
706                 goto err0;
707         }
708
709         ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
710                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
711         ib.ptr[1] = lower_32_bits(gpu_addr);
712         ib.ptr[2] = upper_32_bits(gpu_addr);
713         ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
714         ib.ptr[4] = 0xDEADBEEF;
715         ib.ptr[5] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
716         ib.ptr[6] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
717         ib.ptr[7] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
718         ib.length_dw = 8;
719
720         r = amdgpu_ib_schedule(ring, 1, &ib, NULL, NULL, &f);
721         if (r)
722                 goto err1;
723
724         r = fence_wait(f, false);
725         if (r) {
726                 DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
727                 goto err1;
728         }
729         for (i = 0; i < adev->usec_timeout; i++) {
730                 tmp = le32_to_cpu(adev->wb.wb[index]);
731                 if (tmp == 0xDEADBEEF)
732                         break;
733                 DRM_UDELAY(1);
734         }
735         if (i < adev->usec_timeout) {
736                 DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
737                          ring->idx, i);
738                 goto err1;
739         } else {
740                 DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
741                 r = -EINVAL;
742         }
743
744 err1:
745         fence_put(f);
746         amdgpu_ib_free(adev, &ib, NULL);
747         fence_put(f);
748 err0:
749         amdgpu_wb_free(adev, index);
750         return r;
751 }
752
753 /**
754  * sdma_v2_4_vm_copy_pte - update PTEs by copying them from the GART
755  *
756  * @ib: indirect buffer to fill with commands
757  * @pe: addr of the page entry
758  * @src: src addr to copy from
759  * @count: number of page entries to update
760  *
761  * Update PTEs by copying them from the GART using sDMA (CIK).
762  */
763 static void sdma_v2_4_vm_copy_pte(struct amdgpu_ib *ib,
764                                   uint64_t pe, uint64_t src,
765                                   unsigned count)
766 {
767         while (count) {
768                 unsigned bytes = count * 8;
769                 if (bytes > 0x1FFFF8)
770                         bytes = 0x1FFFF8;
771
772                 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
773                         SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
774                 ib->ptr[ib->length_dw++] = bytes;
775                 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
776                 ib->ptr[ib->length_dw++] = lower_32_bits(src);
777                 ib->ptr[ib->length_dw++] = upper_32_bits(src);
778                 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
779                 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
780
781                 pe += bytes;
782                 src += bytes;
783                 count -= bytes / 8;
784         }
785 }
786
787 /**
788  * sdma_v2_4_vm_write_pte - update PTEs by writing them manually
789  *
790  * @ib: indirect buffer to fill with commands
791  * @pe: addr of the page entry
792  * @addr: dst addr to write into pe
793  * @count: number of page entries to update
794  * @incr: increase next addr by incr bytes
795  * @flags: access flags
796  *
797  * Update PTEs by writing them manually using sDMA (CIK).
798  */
799 static void sdma_v2_4_vm_write_pte(struct amdgpu_ib *ib,
800                                    const dma_addr_t *pages_addr, uint64_t pe,
801                                    uint64_t addr, unsigned count,
802                                    uint32_t incr, uint32_t flags)
803 {
804         uint64_t value;
805         unsigned ndw;
806
807         while (count) {
808                 ndw = count * 2;
809                 if (ndw > 0xFFFFE)
810                         ndw = 0xFFFFE;
811
812                 /* for non-physically contiguous pages (system) */
813                 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
814                         SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
815                 ib->ptr[ib->length_dw++] = pe;
816                 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
817                 ib->ptr[ib->length_dw++] = ndw;
818                 for (; ndw > 0; ndw -= 2, --count, pe += 8) {
819                         value = amdgpu_vm_map_gart(pages_addr, addr);
820                         addr += incr;
821                         value |= flags;
822                         ib->ptr[ib->length_dw++] = value;
823                         ib->ptr[ib->length_dw++] = upper_32_bits(value);
824                 }
825         }
826 }
827
828 /**
829  * sdma_v2_4_vm_set_pte_pde - update the page tables using sDMA
830  *
831  * @ib: indirect buffer to fill with commands
832  * @pe: addr of the page entry
833  * @addr: dst addr to write into pe
834  * @count: number of page entries to update
835  * @incr: increase next addr by incr bytes
836  * @flags: access flags
837  *
838  * Update the page tables using sDMA (CIK).
839  */
840 static void sdma_v2_4_vm_set_pte_pde(struct amdgpu_ib *ib,
841                                      uint64_t pe,
842                                      uint64_t addr, unsigned count,
843                                      uint32_t incr, uint32_t flags)
844 {
845         uint64_t value;
846         unsigned ndw;
847
848         while (count) {
849                 ndw = count;
850                 if (ndw > 0x7FFFF)
851                         ndw = 0x7FFFF;
852
853                 if (flags & AMDGPU_PTE_VALID)
854                         value = addr;
855                 else
856                         value = 0;
857
858                 /* for physically contiguous pages (vram) */
859                 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
860                 ib->ptr[ib->length_dw++] = pe; /* dst addr */
861                 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
862                 ib->ptr[ib->length_dw++] = flags; /* mask */
863                 ib->ptr[ib->length_dw++] = 0;
864                 ib->ptr[ib->length_dw++] = value; /* value */
865                 ib->ptr[ib->length_dw++] = upper_32_bits(value);
866                 ib->ptr[ib->length_dw++] = incr; /* increment size */
867                 ib->ptr[ib->length_dw++] = 0;
868                 ib->ptr[ib->length_dw++] = ndw; /* number of entries */
869
870                 pe += ndw * 8;
871                 addr += ndw * incr;
872                 count -= ndw;
873         }
874 }
875
876 /**
877  * sdma_v2_4_ring_pad_ib - pad the IB to the required number of dw
878  *
879  * @ib: indirect buffer to fill with padding
880  *
881  */
882 static void sdma_v2_4_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
883 {
884         struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
885         u32 pad_count;
886         int i;
887
888         pad_count = (8 - (ib->length_dw & 0x7)) % 8;
889         for (i = 0; i < pad_count; i++)
890                 if (sdma && sdma->burst_nop && (i == 0))
891                         ib->ptr[ib->length_dw++] =
892                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
893                                 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
894                 else
895                         ib->ptr[ib->length_dw++] =
896                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
897 }
898
899 /**
900  * sdma_v2_4_ring_emit_pipeline_sync - sync the pipeline
901  *
902  * @ring: amdgpu_ring pointer
903  *
904  * Make sure all previous operations are completed (CIK).
905  */
906 static void sdma_v2_4_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
907 {
908         uint32_t seq = ring->fence_drv.sync_seq;
909         uint64_t addr = ring->fence_drv.gpu_addr;
910
911         /* wait for idle */
912         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
913                           SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
914                           SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
915                           SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
916         amdgpu_ring_write(ring, addr & 0xfffffffc);
917         amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
918         amdgpu_ring_write(ring, seq); /* reference */
919         amdgpu_ring_write(ring, 0xfffffff); /* mask */
920         amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
921                           SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
922 }
923
924 /**
925  * sdma_v2_4_ring_emit_vm_flush - cik vm flush using sDMA
926  *
927  * @ring: amdgpu_ring pointer
928  * @vm: amdgpu_vm pointer
929  *
930  * Update the page table base and flush the VM TLB
931  * using sDMA (VI).
932  */
933 static void sdma_v2_4_ring_emit_vm_flush(struct amdgpu_ring *ring,
934                                          unsigned vm_id, uint64_t pd_addr)
935 {
936         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
937                           SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
938         if (vm_id < 8) {
939                 amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
940         } else {
941                 amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
942         }
943         amdgpu_ring_write(ring, pd_addr >> 12);
944
945         /* flush TLB */
946         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
947                           SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
948         amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
949         amdgpu_ring_write(ring, 1 << vm_id);
950
951         /* wait for flush */
952         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
953                           SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
954                           SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
955         amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
956         amdgpu_ring_write(ring, 0);
957         amdgpu_ring_write(ring, 0); /* reference */
958         amdgpu_ring_write(ring, 0); /* mask */
959         amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
960                           SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
961 }
962
963 static int sdma_v2_4_early_init(void *handle)
964 {
965         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
966
967         adev->sdma.num_instances = SDMA_MAX_INSTANCE;
968
969         sdma_v2_4_set_ring_funcs(adev);
970         sdma_v2_4_set_buffer_funcs(adev);
971         sdma_v2_4_set_vm_pte_funcs(adev);
972         sdma_v2_4_set_irq_funcs(adev);
973
974         return 0;
975 }
976
977 static int sdma_v2_4_sw_init(void *handle)
978 {
979         struct amdgpu_ring *ring;
980         int r, i;
981         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
982
983         /* SDMA trap event */
984         r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
985         if (r)
986                 return r;
987
988         /* SDMA Privileged inst */
989         r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
990         if (r)
991                 return r;
992
993         /* SDMA Privileged inst */
994         r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
995         if (r)
996                 return r;
997
998         r = sdma_v2_4_init_microcode(adev);
999         if (r) {
1000                 DRM_ERROR("Failed to load sdma firmware!\n");
1001                 return r;
1002         }
1003
1004         for (i = 0; i < adev->sdma.num_instances; i++) {
1005                 ring = &adev->sdma.instance[i].ring;
1006                 ring->ring_obj = NULL;
1007                 ring->use_doorbell = false;
1008                 sprintf(ring->name, "sdma%d", i);
1009                 r = amdgpu_ring_init(adev, ring, 1024,
1010                                      SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
1011                                      &adev->sdma.trap_irq,
1012                                      (i == 0) ?
1013                                      AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1,
1014                                      AMDGPU_RING_TYPE_SDMA);
1015                 if (r)
1016                         return r;
1017         }
1018
1019         return r;
1020 }
1021
1022 static int sdma_v2_4_sw_fini(void *handle)
1023 {
1024         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1025         int i;
1026
1027         for (i = 0; i < adev->sdma.num_instances; i++)
1028                 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1029
1030         sdma_v2_4_free_microcode(adev);
1031         return 0;
1032 }
1033
1034 static int sdma_v2_4_hw_init(void *handle)
1035 {
1036         int r;
1037         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1038
1039         sdma_v2_4_init_golden_registers(adev);
1040
1041         r = sdma_v2_4_start(adev);
1042         if (r)
1043                 return r;
1044
1045         return r;
1046 }
1047
1048 static int sdma_v2_4_hw_fini(void *handle)
1049 {
1050         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1051
1052         sdma_v2_4_enable(adev, false);
1053
1054         return 0;
1055 }
1056
1057 static int sdma_v2_4_suspend(void *handle)
1058 {
1059         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1060
1061         return sdma_v2_4_hw_fini(adev);
1062 }
1063
1064 static int sdma_v2_4_resume(void *handle)
1065 {
1066         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1067
1068         return sdma_v2_4_hw_init(adev);
1069 }
1070
1071 static bool sdma_v2_4_is_idle(void *handle)
1072 {
1073         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1074         u32 tmp = RREG32(mmSRBM_STATUS2);
1075
1076         if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1077                    SRBM_STATUS2__SDMA1_BUSY_MASK))
1078             return false;
1079
1080         return true;
1081 }
1082
1083 static int sdma_v2_4_wait_for_idle(void *handle)
1084 {
1085         unsigned i;
1086         u32 tmp;
1087         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1088
1089         for (i = 0; i < adev->usec_timeout; i++) {
1090                 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1091                                 SRBM_STATUS2__SDMA1_BUSY_MASK);
1092
1093                 if (!tmp)
1094                         return 0;
1095                 udelay(1);
1096         }
1097         return -ETIMEDOUT;
1098 }
1099
1100 static int sdma_v2_4_soft_reset(void *handle)
1101 {
1102         u32 srbm_soft_reset = 0;
1103         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1104         u32 tmp = RREG32(mmSRBM_STATUS2);
1105
1106         if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
1107                 /* sdma0 */
1108                 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
1109                 tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1110                 WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
1111                 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1112         }
1113         if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
1114                 /* sdma1 */
1115                 tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
1116                 tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
1117                 WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
1118                 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1119         }
1120
1121         if (srbm_soft_reset) {
1122                 tmp = RREG32(mmSRBM_SOFT_RESET);
1123                 tmp |= srbm_soft_reset;
1124                 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1125                 WREG32(mmSRBM_SOFT_RESET, tmp);
1126                 tmp = RREG32(mmSRBM_SOFT_RESET);
1127
1128                 udelay(50);
1129
1130                 tmp &= ~srbm_soft_reset;
1131                 WREG32(mmSRBM_SOFT_RESET, tmp);
1132                 tmp = RREG32(mmSRBM_SOFT_RESET);
1133
1134                 /* Wait a little for things to settle down */
1135                 udelay(50);
1136         }
1137
1138         return 0;
1139 }
1140
1141 static int sdma_v2_4_set_trap_irq_state(struct amdgpu_device *adev,
1142                                         struct amdgpu_irq_src *src,
1143                                         unsigned type,
1144                                         enum amdgpu_interrupt_state state)
1145 {
1146         u32 sdma_cntl;
1147
1148         switch (type) {
1149         case AMDGPU_SDMA_IRQ_TRAP0:
1150                 switch (state) {
1151                 case AMDGPU_IRQ_STATE_DISABLE:
1152                         sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1153                         sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1154                         WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1155                         break;
1156                 case AMDGPU_IRQ_STATE_ENABLE:
1157                         sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1158                         sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1159                         WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1160                         break;
1161                 default:
1162                         break;
1163                 }
1164                 break;
1165         case AMDGPU_SDMA_IRQ_TRAP1:
1166                 switch (state) {
1167                 case AMDGPU_IRQ_STATE_DISABLE:
1168                         sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1169                         sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1170                         WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1171                         break;
1172                 case AMDGPU_IRQ_STATE_ENABLE:
1173                         sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1174                         sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1175                         WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1176                         break;
1177                 default:
1178                         break;
1179                 }
1180                 break;
1181         default:
1182                 break;
1183         }
1184         return 0;
1185 }
1186
1187 static int sdma_v2_4_process_trap_irq(struct amdgpu_device *adev,
1188                                       struct amdgpu_irq_src *source,
1189                                       struct amdgpu_iv_entry *entry)
1190 {
1191         u8 instance_id, queue_id;
1192
1193         instance_id = (entry->ring_id & 0x3) >> 0;
1194         queue_id = (entry->ring_id & 0xc) >> 2;
1195         DRM_DEBUG("IH: SDMA trap\n");
1196         switch (instance_id) {
1197         case 0:
1198                 switch (queue_id) {
1199                 case 0:
1200                         amdgpu_fence_process(&adev->sdma.instance[0].ring);
1201                         break;
1202                 case 1:
1203                         /* XXX compute */
1204                         break;
1205                 case 2:
1206                         /* XXX compute */
1207                         break;
1208                 }
1209                 break;
1210         case 1:
1211                 switch (queue_id) {
1212                 case 0:
1213                         amdgpu_fence_process(&adev->sdma.instance[1].ring);
1214                         break;
1215                 case 1:
1216                         /* XXX compute */
1217                         break;
1218                 case 2:
1219                         /* XXX compute */
1220                         break;
1221                 }
1222                 break;
1223         }
1224         return 0;
1225 }
1226
1227 static int sdma_v2_4_process_illegal_inst_irq(struct amdgpu_device *adev,
1228                                               struct amdgpu_irq_src *source,
1229                                               struct amdgpu_iv_entry *entry)
1230 {
1231         DRM_ERROR("Illegal instruction in SDMA command stream\n");
1232         schedule_work(&adev->reset_work);
1233         return 0;
1234 }
1235
1236 static int sdma_v2_4_set_clockgating_state(void *handle,
1237                                           enum amd_clockgating_state state)
1238 {
1239         /* XXX handled via the smc on VI */
1240         return 0;
1241 }
1242
1243 static int sdma_v2_4_set_powergating_state(void *handle,
1244                                           enum amd_powergating_state state)
1245 {
1246         return 0;
1247 }
1248
1249 const struct amd_ip_funcs sdma_v2_4_ip_funcs = {
1250         .name = "sdma_v2_4",
1251         .early_init = sdma_v2_4_early_init,
1252         .late_init = NULL,
1253         .sw_init = sdma_v2_4_sw_init,
1254         .sw_fini = sdma_v2_4_sw_fini,
1255         .hw_init = sdma_v2_4_hw_init,
1256         .hw_fini = sdma_v2_4_hw_fini,
1257         .suspend = sdma_v2_4_suspend,
1258         .resume = sdma_v2_4_resume,
1259         .is_idle = sdma_v2_4_is_idle,
1260         .wait_for_idle = sdma_v2_4_wait_for_idle,
1261         .soft_reset = sdma_v2_4_soft_reset,
1262         .set_clockgating_state = sdma_v2_4_set_clockgating_state,
1263         .set_powergating_state = sdma_v2_4_set_powergating_state,
1264 };
1265
1266 static const struct amdgpu_ring_funcs sdma_v2_4_ring_funcs = {
1267         .get_rptr = sdma_v2_4_ring_get_rptr,
1268         .get_wptr = sdma_v2_4_ring_get_wptr,
1269         .set_wptr = sdma_v2_4_ring_set_wptr,
1270         .parse_cs = NULL,
1271         .emit_ib = sdma_v2_4_ring_emit_ib,
1272         .emit_fence = sdma_v2_4_ring_emit_fence,
1273         .emit_pipeline_sync = sdma_v2_4_ring_emit_pipeline_sync,
1274         .emit_vm_flush = sdma_v2_4_ring_emit_vm_flush,
1275         .emit_hdp_flush = sdma_v2_4_ring_emit_hdp_flush,
1276         .emit_hdp_invalidate = sdma_v2_4_ring_emit_hdp_invalidate,
1277         .test_ring = sdma_v2_4_ring_test_ring,
1278         .test_ib = sdma_v2_4_ring_test_ib,
1279         .insert_nop = sdma_v2_4_ring_insert_nop,
1280         .pad_ib = sdma_v2_4_ring_pad_ib,
1281 };
1282
1283 static void sdma_v2_4_set_ring_funcs(struct amdgpu_device *adev)
1284 {
1285         int i;
1286
1287         for (i = 0; i < adev->sdma.num_instances; i++)
1288                 adev->sdma.instance[i].ring.funcs = &sdma_v2_4_ring_funcs;
1289 }
1290
1291 static const struct amdgpu_irq_src_funcs sdma_v2_4_trap_irq_funcs = {
1292         .set = sdma_v2_4_set_trap_irq_state,
1293         .process = sdma_v2_4_process_trap_irq,
1294 };
1295
1296 static const struct amdgpu_irq_src_funcs sdma_v2_4_illegal_inst_irq_funcs = {
1297         .process = sdma_v2_4_process_illegal_inst_irq,
1298 };
1299
1300 static void sdma_v2_4_set_irq_funcs(struct amdgpu_device *adev)
1301 {
1302         adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1303         adev->sdma.trap_irq.funcs = &sdma_v2_4_trap_irq_funcs;
1304         adev->sdma.illegal_inst_irq.funcs = &sdma_v2_4_illegal_inst_irq_funcs;
1305 }
1306
1307 /**
1308  * sdma_v2_4_emit_copy_buffer - copy buffer using the sDMA engine
1309  *
1310  * @ring: amdgpu_ring structure holding ring information
1311  * @src_offset: src GPU address
1312  * @dst_offset: dst GPU address
1313  * @byte_count: number of bytes to xfer
1314  *
1315  * Copy GPU buffers using the DMA engine (VI).
1316  * Used by the amdgpu ttm implementation to move pages if
1317  * registered as the asic copy callback.
1318  */
1319 static void sdma_v2_4_emit_copy_buffer(struct amdgpu_ib *ib,
1320                                        uint64_t src_offset,
1321                                        uint64_t dst_offset,
1322                                        uint32_t byte_count)
1323 {
1324         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1325                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1326         ib->ptr[ib->length_dw++] = byte_count;
1327         ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1328         ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1329         ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1330         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1331         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1332 }
1333
1334 /**
1335  * sdma_v2_4_emit_fill_buffer - fill buffer using the sDMA engine
1336  *
1337  * @ring: amdgpu_ring structure holding ring information
1338  * @src_data: value to write to buffer
1339  * @dst_offset: dst GPU address
1340  * @byte_count: number of bytes to xfer
1341  *
1342  * Fill GPU buffers using the DMA engine (VI).
1343  */
1344 static void sdma_v2_4_emit_fill_buffer(struct amdgpu_ib *ib,
1345                                        uint32_t src_data,
1346                                        uint64_t dst_offset,
1347                                        uint32_t byte_count)
1348 {
1349         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1350         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1351         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1352         ib->ptr[ib->length_dw++] = src_data;
1353         ib->ptr[ib->length_dw++] = byte_count;
1354 }
1355
1356 static const struct amdgpu_buffer_funcs sdma_v2_4_buffer_funcs = {
1357         .copy_max_bytes = 0x1fffff,
1358         .copy_num_dw = 7,
1359         .emit_copy_buffer = sdma_v2_4_emit_copy_buffer,
1360
1361         .fill_max_bytes = 0x1fffff,
1362         .fill_num_dw = 7,
1363         .emit_fill_buffer = sdma_v2_4_emit_fill_buffer,
1364 };
1365
1366 static void sdma_v2_4_set_buffer_funcs(struct amdgpu_device *adev)
1367 {
1368         if (adev->mman.buffer_funcs == NULL) {
1369                 adev->mman.buffer_funcs = &sdma_v2_4_buffer_funcs;
1370                 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1371         }
1372 }
1373
1374 static const struct amdgpu_vm_pte_funcs sdma_v2_4_vm_pte_funcs = {
1375         .copy_pte = sdma_v2_4_vm_copy_pte,
1376         .write_pte = sdma_v2_4_vm_write_pte,
1377         .set_pte_pde = sdma_v2_4_vm_set_pte_pde,
1378 };
1379
1380 static void sdma_v2_4_set_vm_pte_funcs(struct amdgpu_device *adev)
1381 {
1382         unsigned i;
1383
1384         if (adev->vm_manager.vm_pte_funcs == NULL) {
1385                 adev->vm_manager.vm_pte_funcs = &sdma_v2_4_vm_pte_funcs;
1386                 for (i = 0; i < adev->sdma.num_instances; i++)
1387                         adev->vm_manager.vm_pte_rings[i] =
1388                                 &adev->sdma.instance[i].ring;
1389
1390                 adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
1391         }
1392 }