]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/amd/powerplay/hwmgr/tonga_processpptables.c
Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / drivers / gpu / drm / amd / powerplay / hwmgr / tonga_processpptables.c
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/fb.h>
26
27 #include "tonga_processpptables.h"
28 #include "ppatomctrl.h"
29 #include "atombios.h"
30 #include "pp_debug.h"
31 #include "hwmgr.h"
32 #include "cgs_common.h"
33 #include "tonga_pptable.h"
34
35 /**
36  * Private Function used during initialization.
37  * @param hwmgr Pointer to the hardware manager.
38  * @param setIt A flag indication if the capability should be set (TRUE) or reset (FALSE).
39  * @param cap Which capability to set/reset.
40  */
41 static void set_hw_cap(struct pp_hwmgr *hwmgr, bool setIt, enum phm_platform_caps cap)
42 {
43         if (setIt)
44                 phm_cap_set(hwmgr->platform_descriptor.platformCaps, cap);
45         else
46                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, cap);
47 }
48
49
50 /**
51  * Private Function used during initialization.
52  * @param hwmgr Pointer to the hardware manager.
53  * @param powerplay_caps the bit array (from BIOS) of capability bits.
54  * @exception the current implementation always returns 1.
55  */
56 static int set_platform_caps(struct pp_hwmgr *hwmgr, uint32_t powerplay_caps)
57 {
58         PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE16____),
59                 "ATOM_PP_PLATFORM_CAP_ASPM_L1 is not supported!", continue);
60         PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE64____),
61                 "ATOM_PP_PLATFORM_CAP_GEMINIPRIMARY is not supported!", continue);
62         PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE512____),
63                 "ATOM_PP_PLATFORM_CAP_SIDEPORTCONTROL is not supported!", continue);
64         PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE1024____),
65                 "ATOM_PP_PLATFORM_CAP_TURNOFFPLL_ASPML1 is not supported!", continue);
66         PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE2048____),
67                 "ATOM_PP_PLATFORM_CAP_HTLINKCONTROL is not supported!", continue);
68
69         set_hw_cap(
70                         hwmgr,
71                         0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_POWERPLAY),
72                         PHM_PlatformCaps_PowerPlaySupport
73                   );
74
75         set_hw_cap(
76                         hwmgr,
77                         0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_SBIOSPOWERSOURCE),
78                         PHM_PlatformCaps_BiosPowerSourceControl
79                   );
80
81         set_hw_cap(
82                         hwmgr,
83                         0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_HARDWAREDC),
84                         PHM_PlatformCaps_AutomaticDCTransition
85                   );
86
87         set_hw_cap(
88                         hwmgr,
89                         0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_MVDD_CONTROL),
90                         PHM_PlatformCaps_EnableMVDDControl
91                   );
92
93         set_hw_cap(
94                         hwmgr,
95                         0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_VDDCI_CONTROL),
96                         PHM_PlatformCaps_ControlVDDCI
97                   );
98
99         set_hw_cap(
100                         hwmgr,
101                         0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_VDDGFX_CONTROL),
102                         PHM_PlatformCaps_ControlVDDGFX
103                   );
104
105         set_hw_cap(
106                         hwmgr,
107                         0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_BACO),
108                         PHM_PlatformCaps_BACO
109                   );
110
111         set_hw_cap(
112                         hwmgr,
113                         0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_DISABLE_VOLTAGE_ISLAND),
114                         PHM_PlatformCaps_DisableVoltageIsland
115                   );
116
117         set_hw_cap(
118                         hwmgr,
119                         0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_COMBINE_PCC_WITH_THERMAL_SIGNAL),
120                         PHM_PlatformCaps_CombinePCCWithThermalSignal
121                   );
122
123         set_hw_cap(
124                         hwmgr,
125                         0 != (powerplay_caps & ATOM_TONGA_PLATFORM_LOAD_POST_PRODUCTION_FIRMWARE),
126                         PHM_PlatformCaps_LoadPostProductionFirmware
127                   );
128
129         return 0;
130 }
131
132 /**
133  * Private Function to get the PowerPlay Table Address.
134  */
135 const void *get_powerplay_table(struct pp_hwmgr *hwmgr)
136 {
137         int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
138
139         u16 size;
140         u8 frev, crev;
141         void *table_address = (void *)hwmgr->soft_pp_table;
142
143         if (!table_address) {
144                 table_address = (ATOM_Tonga_POWERPLAYTABLE *)
145                                 cgs_atom_get_data_table(hwmgr->device,
146                                                 index, &size, &frev, &crev);
147                 hwmgr->soft_pp_table = table_address;   /*Cache the result in RAM.*/
148                 hwmgr->soft_pp_table_size = size;
149         }
150
151         return table_address;
152 }
153
154 static int get_vddc_lookup_table(
155                 struct pp_hwmgr *hwmgr,
156                 phm_ppt_v1_voltage_lookup_table **lookup_table,
157                 const ATOM_Tonga_Voltage_Lookup_Table   *vddc_lookup_pp_tables,
158                 uint32_t        max_levels
159                 )
160 {
161         uint32_t table_size, i;
162         phm_ppt_v1_voltage_lookup_table *table;
163
164         PP_ASSERT_WITH_CODE((0 != vddc_lookup_pp_tables->ucNumEntries),
165                 "Invalid CAC Leakage PowerPlay Table!", return 1);
166
167         table_size = sizeof(uint32_t) +
168                 sizeof(phm_ppt_v1_voltage_lookup_record) * max_levels;
169
170         table = (phm_ppt_v1_voltage_lookup_table *)
171                 kzalloc(table_size, GFP_KERNEL);
172
173         if (NULL == table)
174                 return -ENOMEM;
175
176         memset(table, 0x00, table_size);
177
178         table->count = vddc_lookup_pp_tables->ucNumEntries;
179
180         for (i = 0; i < vddc_lookup_pp_tables->ucNumEntries; i++) {
181                 table->entries[i].us_calculated = 0;
182                 table->entries[i].us_vdd =
183                         vddc_lookup_pp_tables->entries[i].usVdd;
184                 table->entries[i].us_cac_low =
185                         vddc_lookup_pp_tables->entries[i].usCACLow;
186                 table->entries[i].us_cac_mid =
187                         vddc_lookup_pp_tables->entries[i].usCACMid;
188                 table->entries[i].us_cac_high =
189                         vddc_lookup_pp_tables->entries[i].usCACHigh;
190         }
191
192         *lookup_table = table;
193
194         return 0;
195 }
196
197 /**
198  * Private Function used during initialization.
199  * Initialize Platform Power Management Parameter table
200  * @param hwmgr Pointer to the hardware manager.
201  * @param atom_ppm_table Pointer to PPM table in VBIOS
202  */
203 static int get_platform_power_management_table(
204                 struct pp_hwmgr *hwmgr,
205                 ATOM_Tonga_PPM_Table *atom_ppm_table)
206 {
207         struct phm_ppm_table *ptr = kzalloc(sizeof(ATOM_Tonga_PPM_Table), GFP_KERNEL);
208         struct phm_ppt_v1_information *pp_table_information =
209                 (struct phm_ppt_v1_information *)(hwmgr->pptable);
210
211         if (NULL == ptr)
212                 return -ENOMEM;
213
214         ptr->ppm_design
215                 = atom_ppm_table->ucPpmDesign;
216         ptr->cpu_core_number
217                 = atom_ppm_table->usCpuCoreNumber;
218         ptr->platform_tdp
219                 = atom_ppm_table->ulPlatformTDP;
220         ptr->small_ac_platform_tdp
221                 = atom_ppm_table->ulSmallACPlatformTDP;
222         ptr->platform_tdc
223                 = atom_ppm_table->ulPlatformTDC;
224         ptr->small_ac_platform_tdc
225                 = atom_ppm_table->ulSmallACPlatformTDC;
226         ptr->apu_tdp
227                 = atom_ppm_table->ulApuTDP;
228         ptr->dgpu_tdp
229                 = atom_ppm_table->ulDGpuTDP;
230         ptr->dgpu_ulv_power
231                 = atom_ppm_table->ulDGpuUlvPower;
232         ptr->tj_max
233                 = atom_ppm_table->ulTjmax;
234
235         pp_table_information->ppm_parameter_table = ptr;
236
237         return 0;
238 }
239
240 /**
241  * Private Function used during initialization.
242  * Initialize TDP limits for DPM2
243  * @param hwmgr Pointer to the hardware manager.
244  * @param powerplay_table Pointer to the PowerPlay Table.
245  */
246 static int init_dpm_2_parameters(
247                 struct pp_hwmgr *hwmgr,
248                 const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
249                 )
250 {
251         int result = 0;
252         struct phm_ppt_v1_information *pp_table_information = (struct phm_ppt_v1_information *)(hwmgr->pptable);
253         ATOM_Tonga_PPM_Table *atom_ppm_table;
254         uint32_t disable_ppm = 0;
255         uint32_t disable_power_control = 0;
256
257         pp_table_information->us_ulv_voltage_offset =
258                 le16_to_cpu(powerplay_table->usUlvVoltageOffset);
259
260         pp_table_information->ppm_parameter_table = NULL;
261         pp_table_information->vddc_lookup_table = NULL;
262         pp_table_information->vddgfx_lookup_table = NULL;
263         /* TDP limits */
264         hwmgr->platform_descriptor.TDPODLimit =
265                 le16_to_cpu(powerplay_table->usPowerControlLimit);
266         hwmgr->platform_descriptor.TDPAdjustment = 0;
267         hwmgr->platform_descriptor.VidAdjustment = 0;
268         hwmgr->platform_descriptor.VidAdjustmentPolarity = 0;
269         hwmgr->platform_descriptor.VidMinLimit = 0;
270         hwmgr->platform_descriptor.VidMaxLimit = 1500000;
271         hwmgr->platform_descriptor.VidStep = 6250;
272
273         disable_power_control = 0;
274         if (0 == disable_power_control) {
275                 /* enable TDP overdrive (PowerControl) feature as well if supported */
276                 if (hwmgr->platform_descriptor.TDPODLimit != 0)
277                         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
278                         PHM_PlatformCaps_PowerControl);
279         }
280
281         if (0 != powerplay_table->usVddcLookupTableOffset) {
282                 const ATOM_Tonga_Voltage_Lookup_Table *pVddcCACTable =
283                         (ATOM_Tonga_Voltage_Lookup_Table *)(((unsigned long)powerplay_table) +
284                         le16_to_cpu(powerplay_table->usVddcLookupTableOffset));
285
286                 result = get_vddc_lookup_table(hwmgr,
287                         &pp_table_information->vddc_lookup_table, pVddcCACTable, 16);
288         }
289
290         if (0 != powerplay_table->usVddgfxLookupTableOffset) {
291                 const ATOM_Tonga_Voltage_Lookup_Table *pVddgfxCACTable =
292                         (ATOM_Tonga_Voltage_Lookup_Table *)(((unsigned long)powerplay_table) +
293                         le16_to_cpu(powerplay_table->usVddgfxLookupTableOffset));
294
295                 result = get_vddc_lookup_table(hwmgr,
296                         &pp_table_information->vddgfx_lookup_table, pVddgfxCACTable, 16);
297         }
298
299         disable_ppm = 0;
300         if (0 == disable_ppm) {
301                 atom_ppm_table = (ATOM_Tonga_PPM_Table *)
302                         (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usPPMTableOffset));
303
304                 if (0 != powerplay_table->usPPMTableOffset) {
305                         if (get_platform_power_management_table(hwmgr, atom_ppm_table) == 0) {
306                                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
307                                         PHM_PlatformCaps_EnablePlatformPowerManagement);
308                         }
309                 }
310         }
311
312         return result;
313 }
314
315 static int get_valid_clk(
316                 struct pp_hwmgr *hwmgr,
317                 struct phm_clock_array **clk_table,
318                 const phm_ppt_v1_clock_voltage_dependency_table  * clk_volt_pp_table
319                 )
320 {
321         uint32_t table_size, i;
322         struct phm_clock_array *table;
323
324         PP_ASSERT_WITH_CODE((0 != clk_volt_pp_table->count),
325                 "Invalid PowerPlay Table!", return -1);
326
327         table_size = sizeof(uint32_t) +
328                 sizeof(uint32_t) * clk_volt_pp_table->count;
329
330         table = (struct phm_clock_array *)kzalloc(table_size, GFP_KERNEL);
331
332         if (NULL == table)
333                 return -ENOMEM;
334
335         memset(table, 0x00, table_size);
336
337         table->count = (uint32_t)clk_volt_pp_table->count;
338
339         for (i = 0; i < table->count; i++)
340                 table->values[i] = (uint32_t)clk_volt_pp_table->entries[i].clk;
341
342         *clk_table = table;
343
344         return 0;
345 }
346
347 static int get_hard_limits(
348                 struct pp_hwmgr *hwmgr,
349                 struct phm_clock_and_voltage_limits *limits,
350                 const ATOM_Tonga_Hard_Limit_Table * limitable
351                 )
352 {
353         PP_ASSERT_WITH_CODE((0 != limitable->ucNumEntries), "Invalid PowerPlay Table!", return -1);
354
355         /* currently we always take entries[0] parameters */
356         limits->sclk = (uint32_t)limitable->entries[0].ulSCLKLimit;
357         limits->mclk = (uint32_t)limitable->entries[0].ulMCLKLimit;
358         limits->vddc = (uint16_t)limitable->entries[0].usVddcLimit;
359         limits->vddci = (uint16_t)limitable->entries[0].usVddciLimit;
360         limits->vddgfx = (uint16_t)limitable->entries[0].usVddgfxLimit;
361
362         return 0;
363 }
364
365 static int get_mclk_voltage_dependency_table(
366                 struct pp_hwmgr *hwmgr,
367                 phm_ppt_v1_clock_voltage_dependency_table **pp_tonga_mclk_dep_table,
368                 const ATOM_Tonga_MCLK_Dependency_Table * mclk_dep_table
369                 )
370 {
371         uint32_t table_size, i;
372         phm_ppt_v1_clock_voltage_dependency_table *mclk_table;
373
374         PP_ASSERT_WITH_CODE((0 != mclk_dep_table->ucNumEntries),
375                 "Invalid PowerPlay Table!", return -1);
376
377         table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record)
378                 * mclk_dep_table->ucNumEntries;
379
380         mclk_table = (phm_ppt_v1_clock_voltage_dependency_table *)
381                 kzalloc(table_size, GFP_KERNEL);
382
383         if (NULL == mclk_table)
384                 return -ENOMEM;
385
386         memset(mclk_table, 0x00, table_size);
387
388         mclk_table->count = (uint32_t)mclk_dep_table->ucNumEntries;
389
390         for (i = 0; i < mclk_dep_table->ucNumEntries; i++) {
391                 mclk_table->entries[i].vddInd =
392                         mclk_dep_table->entries[i].ucVddcInd;
393                 mclk_table->entries[i].vdd_offset =
394                         mclk_dep_table->entries[i].usVddgfxOffset;
395                 mclk_table->entries[i].vddci =
396                         mclk_dep_table->entries[i].usVddci;
397                 mclk_table->entries[i].mvdd =
398                         mclk_dep_table->entries[i].usMvdd;
399                 mclk_table->entries[i].clk =
400                         mclk_dep_table->entries[i].ulMclk;
401         }
402
403         *pp_tonga_mclk_dep_table = mclk_table;
404
405         return 0;
406 }
407
408 static int get_sclk_voltage_dependency_table(
409                 struct pp_hwmgr *hwmgr,
410                 phm_ppt_v1_clock_voltage_dependency_table **pp_tonga_sclk_dep_table,
411                 const PPTable_Generic_SubTable_Header *sclk_dep_table
412                 )
413 {
414         uint32_t table_size, i;
415         phm_ppt_v1_clock_voltage_dependency_table *sclk_table;
416
417         if (sclk_dep_table->ucRevId < 1) {
418                 const ATOM_Tonga_SCLK_Dependency_Table *tonga_table =
419                             (ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table;
420
421                 PP_ASSERT_WITH_CODE((0 != tonga_table->ucNumEntries),
422                         "Invalid PowerPlay Table!", return -1);
423
424                 table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record)
425                         * tonga_table->ucNumEntries;
426
427                 sclk_table = (phm_ppt_v1_clock_voltage_dependency_table *)
428                         kzalloc(table_size, GFP_KERNEL);
429
430                 if (NULL == sclk_table)
431                         return -ENOMEM;
432
433                 memset(sclk_table, 0x00, table_size);
434
435                 sclk_table->count = (uint32_t)tonga_table->ucNumEntries;
436
437                 for (i = 0; i < tonga_table->ucNumEntries; i++) {
438                         sclk_table->entries[i].vddInd =
439                                 tonga_table->entries[i].ucVddInd;
440                         sclk_table->entries[i].vdd_offset =
441                                 tonga_table->entries[i].usVddcOffset;
442                         sclk_table->entries[i].clk =
443                                 tonga_table->entries[i].ulSclk;
444                         sclk_table->entries[i].cks_enable =
445                                 (((tonga_table->entries[i].ucCKSVOffsetandDisable & 0x80) >> 7) == 0) ? 1 : 0;
446                         sclk_table->entries[i].cks_voffset =
447                                 (tonga_table->entries[i].ucCKSVOffsetandDisable & 0x7F);
448                 }
449         } else {
450                 const ATOM_Polaris_SCLK_Dependency_Table *polaris_table =
451                             (ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table;
452
453                 PP_ASSERT_WITH_CODE((0 != polaris_table->ucNumEntries),
454                         "Invalid PowerPlay Table!", return -1);
455
456                 table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record)
457                         * polaris_table->ucNumEntries;
458
459                 sclk_table = (phm_ppt_v1_clock_voltage_dependency_table *)
460                         kzalloc(table_size, GFP_KERNEL);
461
462                 if (NULL == sclk_table)
463                         return -ENOMEM;
464
465                 memset(sclk_table, 0x00, table_size);
466
467                 sclk_table->count = (uint32_t)polaris_table->ucNumEntries;
468
469                 for (i = 0; i < polaris_table->ucNumEntries; i++) {
470                         sclk_table->entries[i].vddInd =
471                                 polaris_table->entries[i].ucVddInd;
472                         sclk_table->entries[i].vdd_offset =
473                                 polaris_table->entries[i].usVddcOffset;
474                         sclk_table->entries[i].clk =
475                                 polaris_table->entries[i].ulSclk;
476                         sclk_table->entries[i].cks_enable =
477                                 (((polaris_table->entries[i].ucCKSVOffsetandDisable & 0x80) >> 7) == 0) ? 1 : 0;
478                         sclk_table->entries[i].cks_voffset =
479                                 (polaris_table->entries[i].ucCKSVOffsetandDisable & 0x7F);
480                         sclk_table->entries[i].sclk_offset = polaris_table->entries[i].ulSclkOffset;
481                 }
482         }
483         *pp_tonga_sclk_dep_table = sclk_table;
484
485         return 0;
486 }
487
488 static int get_pcie_table(
489                 struct pp_hwmgr *hwmgr,
490                 phm_ppt_v1_pcie_table **pp_tonga_pcie_table,
491                 const PPTable_Generic_SubTable_Header * pTable
492                 )
493 {
494         uint32_t table_size, i, pcie_count;
495         phm_ppt_v1_pcie_table *pcie_table;
496         struct phm_ppt_v1_information *pp_table_information =
497                 (struct phm_ppt_v1_information *)(hwmgr->pptable);
498
499         if (pTable->ucRevId < 1) {
500                 const ATOM_Tonga_PCIE_Table *atom_pcie_table = (ATOM_Tonga_PCIE_Table *)pTable;
501                 PP_ASSERT_WITH_CODE((atom_pcie_table->ucNumEntries != 0),
502                         "Invalid PowerPlay Table!", return -1);
503
504                 table_size = sizeof(uint32_t) +
505                         sizeof(phm_ppt_v1_pcie_record) * atom_pcie_table->ucNumEntries;
506
507                 pcie_table = (phm_ppt_v1_pcie_table *)kzalloc(table_size, GFP_KERNEL);
508
509                 if (pcie_table == NULL)
510                         return -ENOMEM;
511
512                 memset(pcie_table, 0x00, table_size);
513
514                 /*
515                 * Make sure the number of pcie entries are less than or equal to sclk dpm levels.
516                 * Since first PCIE entry is for ULV, #pcie has to be <= SclkLevel + 1.
517                 */
518                 pcie_count = (pp_table_information->vdd_dep_on_sclk->count) + 1;
519                 if ((uint32_t)atom_pcie_table->ucNumEntries <= pcie_count)
520                         pcie_count = (uint32_t)atom_pcie_table->ucNumEntries;
521                 else
522                         printk(KERN_ERR "[ powerplay ] Number of Pcie Entries exceed the number of SCLK Dpm Levels! \
523                         Disregarding the excess entries... \n");
524
525                 pcie_table->count = pcie_count;
526
527                 for (i = 0; i < pcie_count; i++) {
528                         pcie_table->entries[i].gen_speed =
529                                 atom_pcie_table->entries[i].ucPCIEGenSpeed;
530                         pcie_table->entries[i].lane_width =
531                                 atom_pcie_table->entries[i].usPCIELaneWidth;
532                 }
533
534                 *pp_tonga_pcie_table = pcie_table;
535         } else {
536                 /* Polaris10/Polaris11 and newer. */
537                 const ATOM_Polaris10_PCIE_Table *atom_pcie_table = (ATOM_Polaris10_PCIE_Table *)pTable;
538                 PP_ASSERT_WITH_CODE((atom_pcie_table->ucNumEntries != 0),
539                         "Invalid PowerPlay Table!", return -1);
540
541                 table_size = sizeof(uint32_t) +
542                         sizeof(phm_ppt_v1_pcie_record) * atom_pcie_table->ucNumEntries;
543
544                 pcie_table = (phm_ppt_v1_pcie_table *)kzalloc(table_size, GFP_KERNEL);
545
546                 if (pcie_table == NULL)
547                         return -ENOMEM;
548
549                 memset(pcie_table, 0x00, table_size);
550
551                 /*
552                 * Make sure the number of pcie entries are less than or equal to sclk dpm levels.
553                 * Since first PCIE entry is for ULV, #pcie has to be <= SclkLevel + 1.
554                 */
555                 pcie_count = (pp_table_information->vdd_dep_on_sclk->count) + 1;
556                 if ((uint32_t)atom_pcie_table->ucNumEntries <= pcie_count)
557                         pcie_count = (uint32_t)atom_pcie_table->ucNumEntries;
558                 else
559                         printk(KERN_ERR "[ powerplay ] Number of Pcie Entries exceed the number of SCLK Dpm Levels! \
560                         Disregarding the excess entries... \n");
561
562                 pcie_table->count = pcie_count;
563
564                 for (i = 0; i < pcie_count; i++) {
565                         pcie_table->entries[i].gen_speed =
566                                 atom_pcie_table->entries[i].ucPCIEGenSpeed;
567                         pcie_table->entries[i].lane_width =
568                                 atom_pcie_table->entries[i].usPCIELaneWidth;
569                         pcie_table->entries[i].pcie_sclk =
570                                 atom_pcie_table->entries[i].ulPCIE_Sclk;
571                 }
572
573                 *pp_tonga_pcie_table = pcie_table;
574         }
575
576         return 0;
577 }
578
579 static int get_cac_tdp_table(
580                 struct pp_hwmgr *hwmgr,
581                 struct phm_cac_tdp_table **cac_tdp_table,
582                 const PPTable_Generic_SubTable_Header * table
583                 )
584 {
585         uint32_t table_size;
586         struct phm_cac_tdp_table *tdp_table;
587
588         table_size = sizeof(uint32_t) + sizeof(struct phm_cac_tdp_table);
589         tdp_table = kzalloc(table_size, GFP_KERNEL);
590
591         if (NULL == tdp_table)
592                 return -ENOMEM;
593
594         memset(tdp_table, 0x00, table_size);
595
596         hwmgr->dyn_state.cac_dtp_table = kzalloc(table_size, GFP_KERNEL);
597
598         if (NULL == hwmgr->dyn_state.cac_dtp_table) {
599                 kfree(tdp_table);
600                 return -ENOMEM;
601         }
602
603         memset(hwmgr->dyn_state.cac_dtp_table, 0x00, table_size);
604
605         if (table->ucRevId < 3) {
606                 const ATOM_Tonga_PowerTune_Table *tonga_table =
607                         (ATOM_Tonga_PowerTune_Table *)table;
608                 tdp_table->usTDP = tonga_table->usTDP;
609                 tdp_table->usConfigurableTDP =
610                         tonga_table->usConfigurableTDP;
611                 tdp_table->usTDC = tonga_table->usTDC;
612                 tdp_table->usBatteryPowerLimit =
613                         tonga_table->usBatteryPowerLimit;
614                 tdp_table->usSmallPowerLimit =
615                         tonga_table->usSmallPowerLimit;
616                 tdp_table->usLowCACLeakage =
617                         tonga_table->usLowCACLeakage;
618                 tdp_table->usHighCACLeakage =
619                         tonga_table->usHighCACLeakage;
620                 tdp_table->usMaximumPowerDeliveryLimit =
621                         tonga_table->usMaximumPowerDeliveryLimit;
622                 tdp_table->usDefaultTargetOperatingTemp =
623                         tonga_table->usTjMax;
624                 tdp_table->usTargetOperatingTemp =
625                         tonga_table->usTjMax; /*Set the initial temp to the same as default */
626                 tdp_table->usPowerTuneDataSetID =
627                         tonga_table->usPowerTuneDataSetID;
628                 tdp_table->usSoftwareShutdownTemp =
629                         tonga_table->usSoftwareShutdownTemp;
630                 tdp_table->usClockStretchAmount =
631                         tonga_table->usClockStretchAmount;
632         } else {   /* Fiji and newer */
633                 const ATOM_Fiji_PowerTune_Table *fijitable =
634                         (ATOM_Fiji_PowerTune_Table *)table;
635                 tdp_table->usTDP = fijitable->usTDP;
636                 tdp_table->usConfigurableTDP = fijitable->usConfigurableTDP;
637                 tdp_table->usTDC = fijitable->usTDC;
638                 tdp_table->usBatteryPowerLimit = fijitable->usBatteryPowerLimit;
639                 tdp_table->usSmallPowerLimit = fijitable->usSmallPowerLimit;
640                 tdp_table->usLowCACLeakage = fijitable->usLowCACLeakage;
641                 tdp_table->usHighCACLeakage = fijitable->usHighCACLeakage;
642                 tdp_table->usMaximumPowerDeliveryLimit =
643                         fijitable->usMaximumPowerDeliveryLimit;
644                 tdp_table->usDefaultTargetOperatingTemp =
645                         fijitable->usTjMax;
646                 tdp_table->usTargetOperatingTemp =
647                         fijitable->usTjMax; /*Set the initial temp to the same as default */
648                 tdp_table->usPowerTuneDataSetID =
649                         fijitable->usPowerTuneDataSetID;
650                 tdp_table->usSoftwareShutdownTemp =
651                         fijitable->usSoftwareShutdownTemp;
652                 tdp_table->usClockStretchAmount =
653                         fijitable->usClockStretchAmount;
654                 tdp_table->usTemperatureLimitHotspot =
655                         fijitable->usTemperatureLimitHotspot;
656                 tdp_table->usTemperatureLimitLiquid1 =
657                         fijitable->usTemperatureLimitLiquid1;
658                 tdp_table->usTemperatureLimitLiquid2 =
659                         fijitable->usTemperatureLimitLiquid2;
660                 tdp_table->usTemperatureLimitVrVddc =
661                         fijitable->usTemperatureLimitVrVddc;
662                 tdp_table->usTemperatureLimitVrMvdd =
663                         fijitable->usTemperatureLimitVrMvdd;
664                 tdp_table->usTemperatureLimitPlx =
665                         fijitable->usTemperatureLimitPlx;
666                 tdp_table->ucLiquid1_I2C_address =
667                         fijitable->ucLiquid1_I2C_address;
668                 tdp_table->ucLiquid2_I2C_address =
669                         fijitable->ucLiquid2_I2C_address;
670                 tdp_table->ucLiquid_I2C_Line =
671                         fijitable->ucLiquid_I2C_Line;
672                 tdp_table->ucVr_I2C_address = fijitable->ucVr_I2C_address;
673                 tdp_table->ucVr_I2C_Line = fijitable->ucVr_I2C_Line;
674                 tdp_table->ucPlx_I2C_address = fijitable->ucPlx_I2C_address;
675                 tdp_table->ucPlx_I2C_Line = fijitable->ucPlx_I2C_Line;
676         }
677
678         *cac_tdp_table = tdp_table;
679
680         return 0;
681 }
682
683 static int get_mm_clock_voltage_table(
684                 struct pp_hwmgr *hwmgr,
685                 phm_ppt_v1_mm_clock_voltage_dependency_table **tonga_mm_table,
686                 const ATOM_Tonga_MM_Dependency_Table * mm_dependency_table
687                 )
688 {
689         uint32_t table_size, i;
690         const ATOM_Tonga_MM_Dependency_Record *mm_dependency_record;
691         phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table;
692
693         PP_ASSERT_WITH_CODE((0 != mm_dependency_table->ucNumEntries),
694                 "Invalid PowerPlay Table!", return -1);
695         table_size = sizeof(uint32_t) +
696                 sizeof(phm_ppt_v1_mm_clock_voltage_dependency_record)
697                 * mm_dependency_table->ucNumEntries;
698         mm_table = (phm_ppt_v1_mm_clock_voltage_dependency_table *)
699                 kzalloc(table_size, GFP_KERNEL);
700
701         if (NULL == mm_table)
702                 return -ENOMEM;
703
704         memset(mm_table, 0x00, table_size);
705
706         mm_table->count = mm_dependency_table->ucNumEntries;
707
708         for (i = 0; i < mm_dependency_table->ucNumEntries; i++) {
709                 mm_dependency_record = &mm_dependency_table->entries[i];
710                 mm_table->entries[i].vddcInd = mm_dependency_record->ucVddcInd;
711                 mm_table->entries[i].vddgfx_offset = mm_dependency_record->usVddgfxOffset;
712                 mm_table->entries[i].aclk = mm_dependency_record->ulAClk;
713                 mm_table->entries[i].samclock = mm_dependency_record->ulSAMUClk;
714                 mm_table->entries[i].eclk = mm_dependency_record->ulEClk;
715                 mm_table->entries[i].vclk = mm_dependency_record->ulVClk;
716                 mm_table->entries[i].dclk = mm_dependency_record->ulDClk;
717         }
718
719         *tonga_mm_table = mm_table;
720
721         return 0;
722 }
723
724 /**
725  * Private Function used during initialization.
726  * Initialize clock voltage dependency
727  * @param hwmgr Pointer to the hardware manager.
728  * @param powerplay_table Pointer to the PowerPlay Table.
729  */
730 static int init_clock_voltage_dependency(
731                 struct pp_hwmgr *hwmgr,
732                 const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
733                 )
734 {
735         int result = 0;
736         struct phm_ppt_v1_information *pp_table_information =
737                 (struct phm_ppt_v1_information *)(hwmgr->pptable);
738
739         const ATOM_Tonga_MM_Dependency_Table *mm_dependency_table =
740                 (const ATOM_Tonga_MM_Dependency_Table *)(((unsigned long) powerplay_table) +
741                 le16_to_cpu(powerplay_table->usMMDependencyTableOffset));
742         const PPTable_Generic_SubTable_Header *pPowerTuneTable =
743                 (const PPTable_Generic_SubTable_Header *)(((unsigned long) powerplay_table) +
744                 le16_to_cpu(powerplay_table->usPowerTuneTableOffset));
745         const ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
746                 (const ATOM_Tonga_MCLK_Dependency_Table *)(((unsigned long) powerplay_table) +
747                 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
748         const PPTable_Generic_SubTable_Header *sclk_dep_table =
749                 (const PPTable_Generic_SubTable_Header *)(((unsigned long) powerplay_table) +
750                 le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
751         const ATOM_Tonga_Hard_Limit_Table *pHardLimits =
752                 (const ATOM_Tonga_Hard_Limit_Table *)(((unsigned long) powerplay_table) +
753                 le16_to_cpu(powerplay_table->usHardLimitTableOffset));
754         const PPTable_Generic_SubTable_Header *pcie_table =
755                 (const PPTable_Generic_SubTable_Header *)(((unsigned long) powerplay_table) +
756                 le16_to_cpu(powerplay_table->usPCIETableOffset));
757
758         pp_table_information->vdd_dep_on_sclk = NULL;
759         pp_table_information->vdd_dep_on_mclk = NULL;
760         pp_table_information->mm_dep_table = NULL;
761         pp_table_information->pcie_table = NULL;
762
763         if (powerplay_table->usMMDependencyTableOffset != 0)
764                 result = get_mm_clock_voltage_table(hwmgr,
765                 &pp_table_information->mm_dep_table, mm_dependency_table);
766
767         if (result == 0 && powerplay_table->usPowerTuneTableOffset != 0)
768                 result = get_cac_tdp_table(hwmgr,
769                 &pp_table_information->cac_dtp_table, pPowerTuneTable);
770
771         if (result == 0 && powerplay_table->usSclkDependencyTableOffset != 0)
772                 result = get_sclk_voltage_dependency_table(hwmgr,
773                 &pp_table_information->vdd_dep_on_sclk, sclk_dep_table);
774
775         if (result == 0 && powerplay_table->usMclkDependencyTableOffset != 0)
776                 result = get_mclk_voltage_dependency_table(hwmgr,
777                 &pp_table_information->vdd_dep_on_mclk, mclk_dep_table);
778
779         if (result == 0 && powerplay_table->usPCIETableOffset != 0)
780                 result = get_pcie_table(hwmgr,
781                 &pp_table_information->pcie_table, pcie_table);
782
783         if (result == 0 && powerplay_table->usHardLimitTableOffset != 0)
784                 result = get_hard_limits(hwmgr,
785                 &pp_table_information->max_clock_voltage_on_dc, pHardLimits);
786
787         hwmgr->dyn_state.max_clock_voltage_on_dc.sclk =
788                 pp_table_information->max_clock_voltage_on_dc.sclk;
789         hwmgr->dyn_state.max_clock_voltage_on_dc.mclk =
790                 pp_table_information->max_clock_voltage_on_dc.mclk;
791         hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
792                 pp_table_information->max_clock_voltage_on_dc.vddc;
793         hwmgr->dyn_state.max_clock_voltage_on_dc.vddci =
794                 pp_table_information->max_clock_voltage_on_dc.vddci;
795
796         if (result == 0 && (NULL != pp_table_information->vdd_dep_on_mclk)
797                 && (0 != pp_table_information->vdd_dep_on_mclk->count))
798                 result = get_valid_clk(hwmgr, &pp_table_information->valid_mclk_values,
799                 pp_table_information->vdd_dep_on_mclk);
800
801         if (result == 0 && (NULL != pp_table_information->vdd_dep_on_sclk)
802                 && (0 != pp_table_information->vdd_dep_on_sclk->count))
803                 result = get_valid_clk(hwmgr, &pp_table_information->valid_sclk_values,
804                 pp_table_information->vdd_dep_on_sclk);
805
806         return result;
807 }
808
809 /** Retrieves the (signed) Overdrive limits from VBIOS.
810  * The max engine clock, memory clock and max temperature come from the firmware info table.
811  *
812  * The information is placed into the platform descriptor.
813  *
814  * @param hwmgr source of the VBIOS table and owner of the platform descriptor to be updated.
815  * @param powerplay_table the address of the PowerPlay table.
816  *
817  * @return 1 as long as the firmware info table was present and of a supported version.
818  */
819 static int init_over_drive_limits(
820                 struct pp_hwmgr *hwmgr,
821                 const ATOM_Tonga_POWERPLAYTABLE *powerplay_table)
822 {
823         hwmgr->platform_descriptor.overdriveLimit.engineClock =
824                 le16_to_cpu(powerplay_table->ulMaxODEngineClock);
825         hwmgr->platform_descriptor.overdriveLimit.memoryClock =
826                 le16_to_cpu(powerplay_table->ulMaxODMemoryClock);
827
828         hwmgr->platform_descriptor.minOverdriveVDDC = 0;
829         hwmgr->platform_descriptor.maxOverdriveVDDC = 0;
830         hwmgr->platform_descriptor.overdriveVDDCStep = 0;
831
832         if (hwmgr->platform_descriptor.overdriveLimit.engineClock > 0 \
833                 && hwmgr->platform_descriptor.overdriveLimit.memoryClock > 0) {
834                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
835                         PHM_PlatformCaps_ACOverdriveSupport);
836         }
837
838         return 0;
839 }
840
841 /**
842  * Private Function used during initialization.
843  * Inspect the PowerPlay table for obvious signs of corruption.
844  * @param hwmgr Pointer to the hardware manager.
845  * @param powerplay_table Pointer to the PowerPlay Table.
846  * @exception This implementation always returns 1.
847  */
848 static int init_thermal_controller(
849                 struct pp_hwmgr *hwmgr,
850                 const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
851                 )
852 {
853         const PPTable_Generic_SubTable_Header *fan_table;
854         ATOM_Tonga_Thermal_Controller *thermal_controller;
855
856         thermal_controller = (ATOM_Tonga_Thermal_Controller *)
857                 (((unsigned long)powerplay_table) +
858                 le16_to_cpu(powerplay_table->usThermalControllerOffset));
859         PP_ASSERT_WITH_CODE((0 != powerplay_table->usThermalControllerOffset),
860                 "Thermal controller table not set!", return -1);
861
862         hwmgr->thermal_controller.ucType = thermal_controller->ucType;
863         hwmgr->thermal_controller.ucI2cLine = thermal_controller->ucI2cLine;
864         hwmgr->thermal_controller.ucI2cAddress = thermal_controller->ucI2cAddress;
865
866         hwmgr->thermal_controller.fanInfo.bNoFan =
867                 (0 != (thermal_controller->ucFanParameters & ATOM_TONGA_PP_FANPARAMETERS_NOFAN));
868
869         hwmgr->thermal_controller.fanInfo.ucTachometerPulsesPerRevolution =
870                 thermal_controller->ucFanParameters &
871                 ATOM_TONGA_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK;
872
873         hwmgr->thermal_controller.fanInfo.ulMinRPM
874                 = thermal_controller->ucFanMinRPM * 100UL;
875         hwmgr->thermal_controller.fanInfo.ulMaxRPM
876                 = thermal_controller->ucFanMaxRPM * 100UL;
877
878         set_hw_cap(
879                         hwmgr,
880                         ATOM_TONGA_PP_THERMALCONTROLLER_NONE != hwmgr->thermal_controller.ucType,
881                         PHM_PlatformCaps_ThermalController
882                   );
883
884         if (0 == powerplay_table->usFanTableOffset)
885                 return 0;
886
887         fan_table = (const PPTable_Generic_SubTable_Header *)
888                 (((unsigned long)powerplay_table) +
889                 le16_to_cpu(powerplay_table->usFanTableOffset));
890
891         PP_ASSERT_WITH_CODE((0 != powerplay_table->usFanTableOffset),
892                 "Fan table not set!", return -1);
893         PP_ASSERT_WITH_CODE((0 < fan_table->ucRevId),
894                 "Unsupported fan table format!", return -1);
895
896         hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay
897                 = 100000;
898         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
899                 PHM_PlatformCaps_MicrocodeFanControl);
900
901         if (fan_table->ucRevId < 8) {
902                 const ATOM_Tonga_Fan_Table *tonga_fan_table =
903                         (ATOM_Tonga_Fan_Table *)fan_table;
904                 hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst
905                         = tonga_fan_table->ucTHyst;
906                 hwmgr->thermal_controller.advanceFanControlParameters.usTMin
907                         = tonga_fan_table->usTMin;
908                 hwmgr->thermal_controller.advanceFanControlParameters.usTMed
909                         = tonga_fan_table->usTMed;
910                 hwmgr->thermal_controller.advanceFanControlParameters.usTHigh
911                         = tonga_fan_table->usTHigh;
912                 hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin
913                         = tonga_fan_table->usPWMMin;
914                 hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed
915                         = tonga_fan_table->usPWMMed;
916                 hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh
917                         = tonga_fan_table->usPWMHigh;
918                 hwmgr->thermal_controller.advanceFanControlParameters.usTMax
919                         = 10900;                  /* hard coded */
920                 hwmgr->thermal_controller.advanceFanControlParameters.usTMax
921                         = tonga_fan_table->usTMax;
922                 hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode
923                         = tonga_fan_table->ucFanControlMode;
924                 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM
925                         = tonga_fan_table->usFanPWMMax;
926                 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity
927                         = 4836;
928                 hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity
929                         = tonga_fan_table->usFanOutputSensitivity;
930                 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM
931                         = tonga_fan_table->usFanRPMMax;
932                 hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit
933                         = (tonga_fan_table->ulMinFanSCLKAcousticLimit / 100); /* PPTable stores it in 10Khz unit for 2 decimal places.  SMC wants MHz. */
934                 hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature
935                         = tonga_fan_table->ucTargetTemperature;
936                 hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit
937                         = tonga_fan_table->ucMinimumPWMLimit;
938         } else {
939                 const ATOM_Fiji_Fan_Table *fiji_fan_table =
940                         (ATOM_Fiji_Fan_Table *)fan_table;
941                 hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst
942                         = fiji_fan_table->ucTHyst;
943                 hwmgr->thermal_controller.advanceFanControlParameters.usTMin
944                         = fiji_fan_table->usTMin;
945                 hwmgr->thermal_controller.advanceFanControlParameters.usTMed
946                         = fiji_fan_table->usTMed;
947                 hwmgr->thermal_controller.advanceFanControlParameters.usTHigh
948                         = fiji_fan_table->usTHigh;
949                 hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin
950                         = fiji_fan_table->usPWMMin;
951                 hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed
952                         = fiji_fan_table->usPWMMed;
953                 hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh
954                         = fiji_fan_table->usPWMHigh;
955                 hwmgr->thermal_controller.advanceFanControlParameters.usTMax
956                         = fiji_fan_table->usTMax;
957                 hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode
958                         = fiji_fan_table->ucFanControlMode;
959                 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM
960                         = fiji_fan_table->usFanPWMMax;
961                 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity
962                         = 4836;
963                 hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity
964                         = fiji_fan_table->usFanOutputSensitivity;
965                 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM
966                         = fiji_fan_table->usFanRPMMax;
967                 hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit
968                         = (fiji_fan_table->ulMinFanSCLKAcousticLimit / 100); /* PPTable stores it in 10Khz unit for 2 decimal places.  SMC wants MHz. */
969                 hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature
970                         = fiji_fan_table->ucTargetTemperature;
971                 hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit
972                         = fiji_fan_table->ucMinimumPWMLimit;
973
974                 hwmgr->thermal_controller.advanceFanControlParameters.usFanGainEdge
975                         = fiji_fan_table->usFanGainEdge;
976                 hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHotspot
977                         = fiji_fan_table->usFanGainHotspot;
978                 hwmgr->thermal_controller.advanceFanControlParameters.usFanGainLiquid
979                         = fiji_fan_table->usFanGainLiquid;
980                 hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrVddc
981                         = fiji_fan_table->usFanGainVrVddc;
982                 hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrMvdd
983                         = fiji_fan_table->usFanGainVrMvdd;
984                 hwmgr->thermal_controller.advanceFanControlParameters.usFanGainPlx
985                         = fiji_fan_table->usFanGainPlx;
986                 hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHbm
987                         = fiji_fan_table->usFanGainHbm;
988         }
989
990         return 0;
991 }
992
993 /**
994  * Private Function used during initialization.
995  * Inspect the PowerPlay table for obvious signs of corruption.
996  * @param hwmgr Pointer to the hardware manager.
997  * @param powerplay_table Pointer to the PowerPlay Table.
998  * @exception 2 if the powerplay table is incorrect.
999  */
1000 static int check_powerplay_tables(
1001                 struct pp_hwmgr *hwmgr,
1002                 const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
1003                 )
1004 {
1005         const ATOM_Tonga_State_Array *state_arrays;
1006
1007         state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)powerplay_table) +
1008                 le16_to_cpu(powerplay_table->usStateArrayOffset));
1009
1010         PP_ASSERT_WITH_CODE((ATOM_Tonga_TABLE_REVISION_TONGA <=
1011                 powerplay_table->sHeader.ucTableFormatRevision),
1012                 "Unsupported PPTable format!", return -1);
1013         PP_ASSERT_WITH_CODE((0 != powerplay_table->usStateArrayOffset),
1014                 "State table is not set!", return -1);
1015         PP_ASSERT_WITH_CODE((0 < powerplay_table->sHeader.usStructureSize),
1016                 "Invalid PowerPlay Table!", return -1);
1017         PP_ASSERT_WITH_CODE((0 < state_arrays->ucNumEntries),
1018                 "Invalid PowerPlay Table!", return -1);
1019
1020         return 0;
1021 }
1022
1023 int tonga_pp_tables_initialize(struct pp_hwmgr *hwmgr)
1024 {
1025         int result = 0;
1026         const ATOM_Tonga_POWERPLAYTABLE *powerplay_table;
1027
1028         hwmgr->pptable = kzalloc(sizeof(struct phm_ppt_v1_information), GFP_KERNEL);
1029
1030         PP_ASSERT_WITH_CODE((NULL != hwmgr->pptable),
1031                             "Failed to allocate hwmgr->pptable!", return -ENOMEM);
1032
1033         memset(hwmgr->pptable, 0x00, sizeof(struct phm_ppt_v1_information));
1034
1035         powerplay_table = get_powerplay_table(hwmgr);
1036
1037         PP_ASSERT_WITH_CODE((NULL != powerplay_table),
1038                 "Missing PowerPlay Table!", return -1);
1039
1040         result = check_powerplay_tables(hwmgr, powerplay_table);
1041
1042         PP_ASSERT_WITH_CODE((result == 0),
1043                             "check_powerplay_tables failed", return result);
1044
1045         result = set_platform_caps(hwmgr,
1046                                    le32_to_cpu(powerplay_table->ulPlatformCaps));
1047
1048         PP_ASSERT_WITH_CODE((result == 0),
1049                             "set_platform_caps failed", return result);
1050
1051         result = init_thermal_controller(hwmgr, powerplay_table);
1052
1053         PP_ASSERT_WITH_CODE((result == 0),
1054                             "init_thermal_controller failed", return result);
1055
1056         result = init_over_drive_limits(hwmgr, powerplay_table);
1057
1058         PP_ASSERT_WITH_CODE((result == 0),
1059                             "init_over_drive_limits failed", return result);
1060
1061         result = init_clock_voltage_dependency(hwmgr, powerplay_table);
1062
1063         PP_ASSERT_WITH_CODE((result == 0),
1064                             "init_clock_voltage_dependency failed", return result);
1065
1066         result = init_dpm_2_parameters(hwmgr, powerplay_table);
1067
1068         PP_ASSERT_WITH_CODE((result == 0),
1069                             "init_dpm_2_parameters failed", return result);
1070
1071         return result;
1072 }
1073
1074 int tonga_pp_tables_uninitialize(struct pp_hwmgr *hwmgr)
1075 {
1076         int result = 0;
1077         struct phm_ppt_v1_information *pp_table_information =
1078                 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1079
1080         if (NULL != hwmgr->soft_pp_table)
1081                 hwmgr->soft_pp_table = NULL;
1082
1083         kfree(pp_table_information->vdd_dep_on_sclk);
1084         pp_table_information->vdd_dep_on_sclk = NULL;
1085
1086         kfree(pp_table_information->vdd_dep_on_mclk);
1087         pp_table_information->vdd_dep_on_mclk = NULL;
1088
1089         kfree(pp_table_information->valid_mclk_values);
1090         pp_table_information->valid_mclk_values = NULL;
1091
1092         kfree(pp_table_information->valid_sclk_values);
1093         pp_table_information->valid_sclk_values = NULL;
1094
1095         kfree(pp_table_information->vddc_lookup_table);
1096         pp_table_information->vddc_lookup_table = NULL;
1097
1098         kfree(pp_table_information->vddgfx_lookup_table);
1099         pp_table_information->vddgfx_lookup_table = NULL;
1100
1101         kfree(pp_table_information->mm_dep_table);
1102         pp_table_information->mm_dep_table = NULL;
1103
1104         kfree(pp_table_information->cac_dtp_table);
1105         pp_table_information->cac_dtp_table = NULL;
1106
1107         kfree(hwmgr->dyn_state.cac_dtp_table);
1108         hwmgr->dyn_state.cac_dtp_table = NULL;
1109
1110         kfree(pp_table_information->ppm_parameter_table);
1111         pp_table_information->ppm_parameter_table = NULL;
1112
1113         kfree(pp_table_information->pcie_table);
1114         pp_table_information->pcie_table = NULL;
1115
1116         kfree(hwmgr->pptable);
1117         hwmgr->pptable = NULL;
1118
1119         return result;
1120 }
1121
1122 const struct pp_table_func tonga_pptable_funcs = {
1123         .pptable_init = tonga_pp_tables_initialize,
1124         .pptable_fini = tonga_pp_tables_uninitialize,
1125 };
1126
1127 int tonga_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr)
1128 {
1129         const ATOM_Tonga_State_Array * state_arrays;
1130         const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr);
1131
1132         PP_ASSERT_WITH_CODE((NULL != pp_table),
1133                         "Missing PowerPlay Table!", return -1);
1134         PP_ASSERT_WITH_CODE((pp_table->sHeader.ucTableFormatRevision >=
1135                         ATOM_Tonga_TABLE_REVISION_TONGA),
1136                         "Incorrect PowerPlay table revision!", return -1);
1137
1138         state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)pp_table) +
1139                         le16_to_cpu(pp_table->usStateArrayOffset));
1140
1141         return (uint32_t)(state_arrays->ucNumEntries);
1142 }
1143
1144 /**
1145 * Private function to convert flags stored in the BIOS to software flags in PowerPlay.
1146 */
1147 static uint32_t make_classification_flags(struct pp_hwmgr *hwmgr,
1148                 uint16_t classification, uint16_t classification2)
1149 {
1150         uint32_t result = 0;
1151
1152         if (classification & ATOM_PPLIB_CLASSIFICATION_BOOT)
1153                 result |= PP_StateClassificationFlag_Boot;
1154
1155         if (classification & ATOM_PPLIB_CLASSIFICATION_THERMAL)
1156                 result |= PP_StateClassificationFlag_Thermal;
1157
1158         if (classification & ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE)
1159                 result |= PP_StateClassificationFlag_LimitedPowerSource;
1160
1161         if (classification & ATOM_PPLIB_CLASSIFICATION_REST)
1162                 result |= PP_StateClassificationFlag_Rest;
1163
1164         if (classification & ATOM_PPLIB_CLASSIFICATION_FORCED)
1165                 result |= PP_StateClassificationFlag_Forced;
1166
1167         if (classification & ATOM_PPLIB_CLASSIFICATION_ACPI)
1168                 result |= PP_StateClassificationFlag_ACPI;
1169
1170         if (classification2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2)
1171                 result |= PP_StateClassificationFlag_LimitedPowerSource_2;
1172
1173         return result;
1174 }
1175
1176 /**
1177 * Create a Power State out of an entry in the PowerPlay table.
1178 * This function is called by the hardware back-end.
1179 * @param hwmgr Pointer to the hardware manager.
1180 * @param entry_index The index of the entry to be extracted from the table.
1181 * @param power_state The address of the PowerState instance being created.
1182 * @return -1 if the entry cannot be retrieved.
1183 */
1184 int tonga_get_powerplay_table_entry(struct pp_hwmgr *hwmgr,
1185                 uint32_t entry_index, struct pp_power_state *power_state,
1186                 int (*call_back_func)(struct pp_hwmgr *, void *,
1187                                 struct pp_power_state *, void *, uint32_t))
1188 {
1189         int result = 0;
1190         const ATOM_Tonga_State_Array * state_arrays;
1191         const ATOM_Tonga_State *state_entry;
1192         const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr);
1193
1194         PP_ASSERT_WITH_CODE((NULL != pp_table), "Missing PowerPlay Table!", return -1;);
1195         power_state->classification.bios_index = entry_index;
1196
1197         if (pp_table->sHeader.ucTableFormatRevision >=
1198                         ATOM_Tonga_TABLE_REVISION_TONGA) {
1199                 state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)pp_table) +
1200                                 le16_to_cpu(pp_table->usStateArrayOffset));
1201
1202                 PP_ASSERT_WITH_CODE((0 < pp_table->usStateArrayOffset),
1203                                 "Invalid PowerPlay Table State Array Offset.", return -1);
1204                 PP_ASSERT_WITH_CODE((0 < state_arrays->ucNumEntries),
1205                                 "Invalid PowerPlay Table State Array.", return -1);
1206                 PP_ASSERT_WITH_CODE((entry_index <= state_arrays->ucNumEntries),
1207                                 "Invalid PowerPlay Table State Array Entry.", return -1);
1208
1209                 state_entry = &(state_arrays->states[entry_index]);
1210
1211                 result = call_back_func(hwmgr, (void *)state_entry, power_state,
1212                                 (void *)pp_table,
1213                                 make_classification_flags(hwmgr,
1214                                         le16_to_cpu(state_entry->usClassification),
1215                                         le16_to_cpu(state_entry->usClassification2)));
1216         }
1217
1218         if (!result && (power_state->classification.flags &
1219                         PP_StateClassificationFlag_Boot))
1220                 result = hwmgr->hwmgr_func->patch_boot_state(hwmgr, &(power_state->hardware));
1221
1222         return result;
1223 }