]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/gvt/gtt.c
HID: rmi: Support the Lenovo Thinkpad X1 Tablet dock using hid-rmi
[karo-tx-linux.git] / drivers / gpu / drm / i915 / gvt / gtt.c
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40
41 static bool enable_out_of_sync = false;
42 static int preallocated_oos_pages = 8192;
43
44 /*
45  * validate a gm address and related range size,
46  * translate it to host gm address
47  */
48 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
49 {
50         if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
51                         && !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
52                 gvt_err("vgpu%d: invalid range gmadr 0x%llx size 0x%x\n",
53                                 vgpu->id, addr, size);
54                 return false;
55         }
56         return true;
57 }
58
59 /* translate a guest gmadr to host gmadr */
60 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
61 {
62         if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
63                  "invalid guest gmadr %llx\n", g_addr))
64                 return -EACCES;
65
66         if (vgpu_gmadr_is_aperture(vgpu, g_addr))
67                 *h_addr = vgpu_aperture_gmadr_base(vgpu)
68                           + (g_addr - vgpu_aperture_offset(vgpu));
69         else
70                 *h_addr = vgpu_hidden_gmadr_base(vgpu)
71                           + (g_addr - vgpu_hidden_offset(vgpu));
72         return 0;
73 }
74
75 /* translate a host gmadr to guest gmadr */
76 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
77 {
78         if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
79                  "invalid host gmadr %llx\n", h_addr))
80                 return -EACCES;
81
82         if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
83                 *g_addr = vgpu_aperture_gmadr_base(vgpu)
84                         + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
85         else
86                 *g_addr = vgpu_hidden_gmadr_base(vgpu)
87                         + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
88         return 0;
89 }
90
91 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
92                              unsigned long *h_index)
93 {
94         u64 h_addr;
95         int ret;
96
97         ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << GTT_PAGE_SHIFT,
98                                        &h_addr);
99         if (ret)
100                 return ret;
101
102         *h_index = h_addr >> GTT_PAGE_SHIFT;
103         return 0;
104 }
105
106 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
107                              unsigned long *g_index)
108 {
109         u64 g_addr;
110         int ret;
111
112         ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << GTT_PAGE_SHIFT,
113                                        &g_addr);
114         if (ret)
115                 return ret;
116
117         *g_index = g_addr >> GTT_PAGE_SHIFT;
118         return 0;
119 }
120
121 #define gtt_type_is_entry(type) \
122         (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
123          && type != GTT_TYPE_PPGTT_PTE_ENTRY \
124          && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
125
126 #define gtt_type_is_pt(type) \
127         (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
128
129 #define gtt_type_is_pte_pt(type) \
130         (type == GTT_TYPE_PPGTT_PTE_PT)
131
132 #define gtt_type_is_root_pointer(type) \
133         (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
134
135 #define gtt_init_entry(e, t, p, v) do { \
136         (e)->type = t; \
137         (e)->pdev = p; \
138         memcpy(&(e)->val64, &v, sizeof(v)); \
139 } while (0)
140
141 /*
142  * Mappings between GTT_TYPE* enumerations.
143  * Following information can be found according to the given type:
144  * - type of next level page table
145  * - type of entry inside this level page table
146  * - type of entry with PSE set
147  *
148  * If the given type doesn't have such a kind of information,
149  * e.g. give a l4 root entry type, then request to get its PSE type,
150  * give a PTE page table type, then request to get its next level page
151  * table type, as we know l4 root entry doesn't have a PSE bit,
152  * and a PTE page table doesn't have a next level page table type,
153  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
154  * page table.
155  */
156
157 struct gtt_type_table_entry {
158         int entry_type;
159         int next_pt_type;
160         int pse_entry_type;
161 };
162
163 #define GTT_TYPE_TABLE_ENTRY(type, e_type, npt_type, pse_type) \
164         [type] = { \
165                 .entry_type = e_type, \
166                 .next_pt_type = npt_type, \
167                 .pse_entry_type = pse_type, \
168         }
169
170 static struct gtt_type_table_entry gtt_type_table[] = {
171         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
172                         GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
173                         GTT_TYPE_PPGTT_PML4_PT,
174                         GTT_TYPE_INVALID),
175         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
176                         GTT_TYPE_PPGTT_PML4_ENTRY,
177                         GTT_TYPE_PPGTT_PDP_PT,
178                         GTT_TYPE_INVALID),
179         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
180                         GTT_TYPE_PPGTT_PML4_ENTRY,
181                         GTT_TYPE_PPGTT_PDP_PT,
182                         GTT_TYPE_INVALID),
183         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
184                         GTT_TYPE_PPGTT_PDP_ENTRY,
185                         GTT_TYPE_PPGTT_PDE_PT,
186                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
187         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
188                         GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
189                         GTT_TYPE_PPGTT_PDE_PT,
190                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
191         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
192                         GTT_TYPE_PPGTT_PDP_ENTRY,
193                         GTT_TYPE_PPGTT_PDE_PT,
194                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
195         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
196                         GTT_TYPE_PPGTT_PDE_ENTRY,
197                         GTT_TYPE_PPGTT_PTE_PT,
198                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
199         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
200                         GTT_TYPE_PPGTT_PDE_ENTRY,
201                         GTT_TYPE_PPGTT_PTE_PT,
202                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
203         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
204                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
205                         GTT_TYPE_INVALID,
206                         GTT_TYPE_INVALID),
207         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
208                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
209                         GTT_TYPE_INVALID,
210                         GTT_TYPE_INVALID),
211         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
212                         GTT_TYPE_PPGTT_PDE_ENTRY,
213                         GTT_TYPE_INVALID,
214                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
215         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
216                         GTT_TYPE_PPGTT_PDP_ENTRY,
217                         GTT_TYPE_INVALID,
218                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
219         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
220                         GTT_TYPE_GGTT_PTE,
221                         GTT_TYPE_INVALID,
222                         GTT_TYPE_INVALID),
223 };
224
225 static inline int get_next_pt_type(int type)
226 {
227         return gtt_type_table[type].next_pt_type;
228 }
229
230 static inline int get_entry_type(int type)
231 {
232         return gtt_type_table[type].entry_type;
233 }
234
235 static inline int get_pse_type(int type)
236 {
237         return gtt_type_table[type].pse_entry_type;
238 }
239
240 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
241 {
242         void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
243         u64 pte;
244
245 #ifdef readq
246         pte = readq(addr);
247 #else
248         pte = ioread32(addr);
249         pte |= (u64)ioread32(addr + 4) << 32;
250 #endif
251         return pte;
252 }
253
254 static void write_pte64(struct drm_i915_private *dev_priv,
255                 unsigned long index, u64 pte)
256 {
257         void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
258
259 #ifdef writeq
260         writeq(pte, addr);
261 #else
262         iowrite32((u32)pte, addr);
263         iowrite32(pte >> 32, addr + 4);
264 #endif
265         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
266         POSTING_READ(GFX_FLSH_CNTL_GEN6);
267 }
268
269 static inline struct intel_gvt_gtt_entry *gtt_get_entry64(void *pt,
270                 struct intel_gvt_gtt_entry *e,
271                 unsigned long index, bool hypervisor_access, unsigned long gpa,
272                 struct intel_vgpu *vgpu)
273 {
274         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
275         int ret;
276
277         if (WARN_ON(info->gtt_entry_size != 8))
278                 return e;
279
280         if (hypervisor_access) {
281                 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
282                                 (index << info->gtt_entry_size_shift),
283                                 &e->val64, 8);
284                 WARN_ON(ret);
285         } else if (!pt) {
286                 e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
287         } else {
288                 e->val64 = *((u64 *)pt + index);
289         }
290         return e;
291 }
292
293 static inline struct intel_gvt_gtt_entry *gtt_set_entry64(void *pt,
294                 struct intel_gvt_gtt_entry *e,
295                 unsigned long index, bool hypervisor_access, unsigned long gpa,
296                 struct intel_vgpu *vgpu)
297 {
298         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
299         int ret;
300
301         if (WARN_ON(info->gtt_entry_size != 8))
302                 return e;
303
304         if (hypervisor_access) {
305                 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
306                                 (index << info->gtt_entry_size_shift),
307                                 &e->val64, 8);
308                 WARN_ON(ret);
309         } else if (!pt) {
310                 write_pte64(vgpu->gvt->dev_priv, index, e->val64);
311         } else {
312                 *((u64 *)pt + index) = e->val64;
313         }
314         return e;
315 }
316
317 #define GTT_HAW 46
318
319 #define ADDR_1G_MASK (((1UL << (GTT_HAW - 30 + 1)) - 1) << 30)
320 #define ADDR_2M_MASK (((1UL << (GTT_HAW - 21 + 1)) - 1) << 21)
321 #define ADDR_4K_MASK (((1UL << (GTT_HAW - 12 + 1)) - 1) << 12)
322
323 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
324 {
325         unsigned long pfn;
326
327         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
328                 pfn = (e->val64 & ADDR_1G_MASK) >> 12;
329         else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
330                 pfn = (e->val64 & ADDR_2M_MASK) >> 12;
331         else
332                 pfn = (e->val64 & ADDR_4K_MASK) >> 12;
333         return pfn;
334 }
335
336 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
337 {
338         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
339                 e->val64 &= ~ADDR_1G_MASK;
340                 pfn &= (ADDR_1G_MASK >> 12);
341         } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
342                 e->val64 &= ~ADDR_2M_MASK;
343                 pfn &= (ADDR_2M_MASK >> 12);
344         } else {
345                 e->val64 &= ~ADDR_4K_MASK;
346                 pfn &= (ADDR_4K_MASK >> 12);
347         }
348
349         e->val64 |= (pfn << 12);
350 }
351
352 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
353 {
354         /* Entry doesn't have PSE bit. */
355         if (get_pse_type(e->type) == GTT_TYPE_INVALID)
356                 return false;
357
358         e->type = get_entry_type(e->type);
359         if (!(e->val64 & (1 << 7)))
360                 return false;
361
362         e->type = get_pse_type(e->type);
363         return true;
364 }
365
366 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
367 {
368         /*
369          * i915 writes PDP root pointer registers without present bit,
370          * it also works, so we need to treat root pointer entry
371          * specifically.
372          */
373         if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
374                         || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
375                 return (e->val64 != 0);
376         else
377                 return (e->val64 & (1 << 0));
378 }
379
380 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
381 {
382         e->val64 &= ~(1 << 0);
383 }
384
385 /*
386  * Per-platform GMA routines.
387  */
388 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
389 {
390         unsigned long x = (gma >> GTT_PAGE_SHIFT);
391
392         trace_gma_index(__func__, gma, x);
393         return x;
394 }
395
396 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
397 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
398 { \
399         unsigned long x = (exp); \
400         trace_gma_index(__func__, gma, x); \
401         return x; \
402 }
403
404 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
405 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
406 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
407 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
408 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
409
410 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
411         .get_entry = gtt_get_entry64,
412         .set_entry = gtt_set_entry64,
413         .clear_present = gtt_entry_clear_present,
414         .test_present = gen8_gtt_test_present,
415         .test_pse = gen8_gtt_test_pse,
416         .get_pfn = gen8_gtt_get_pfn,
417         .set_pfn = gen8_gtt_set_pfn,
418 };
419
420 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
421         .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
422         .gma_to_pte_index = gen8_gma_to_pte_index,
423         .gma_to_pde_index = gen8_gma_to_pde_index,
424         .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
425         .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
426         .gma_to_pml4_index = gen8_gma_to_pml4_index,
427 };
428
429 static int gtt_entry_p2m(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *p,
430                 struct intel_gvt_gtt_entry *m)
431 {
432         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
433         unsigned long gfn, mfn;
434
435         *m = *p;
436
437         if (!ops->test_present(p))
438                 return 0;
439
440         gfn = ops->get_pfn(p);
441
442         mfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, gfn);
443         if (mfn == INTEL_GVT_INVALID_ADDR) {
444                 gvt_err("fail to translate gfn: 0x%lx\n", gfn);
445                 return -ENXIO;
446         }
447
448         ops->set_pfn(m, mfn);
449         return 0;
450 }
451
452 /*
453  * MM helpers.
454  */
455 struct intel_gvt_gtt_entry *intel_vgpu_mm_get_entry(struct intel_vgpu_mm *mm,
456                 void *page_table, struct intel_gvt_gtt_entry *e,
457                 unsigned long index)
458 {
459         struct intel_gvt *gvt = mm->vgpu->gvt;
460         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
461
462         e->type = mm->page_table_entry_type;
463
464         ops->get_entry(page_table, e, index, false, 0, mm->vgpu);
465         ops->test_pse(e);
466         return e;
467 }
468
469 struct intel_gvt_gtt_entry *intel_vgpu_mm_set_entry(struct intel_vgpu_mm *mm,
470                 void *page_table, struct intel_gvt_gtt_entry *e,
471                 unsigned long index)
472 {
473         struct intel_gvt *gvt = mm->vgpu->gvt;
474         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
475
476         return ops->set_entry(page_table, e, index, false, 0, mm->vgpu);
477 }
478
479 /*
480  * PPGTT shadow page table helpers.
481  */
482 static inline struct intel_gvt_gtt_entry *ppgtt_spt_get_entry(
483                 struct intel_vgpu_ppgtt_spt *spt,
484                 void *page_table, int type,
485                 struct intel_gvt_gtt_entry *e, unsigned long index,
486                 bool guest)
487 {
488         struct intel_gvt *gvt = spt->vgpu->gvt;
489         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
490
491         e->type = get_entry_type(type);
492
493         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
494                 return e;
495
496         ops->get_entry(page_table, e, index, guest,
497                         spt->guest_page.gfn << GTT_PAGE_SHIFT,
498                         spt->vgpu);
499         ops->test_pse(e);
500         return e;
501 }
502
503 static inline struct intel_gvt_gtt_entry *ppgtt_spt_set_entry(
504                 struct intel_vgpu_ppgtt_spt *spt,
505                 void *page_table, int type,
506                 struct intel_gvt_gtt_entry *e, unsigned long index,
507                 bool guest)
508 {
509         struct intel_gvt *gvt = spt->vgpu->gvt;
510         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
511
512         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
513                 return e;
514
515         return ops->set_entry(page_table, e, index, guest,
516                         spt->guest_page.gfn << GTT_PAGE_SHIFT,
517                         spt->vgpu);
518 }
519
520 #define ppgtt_get_guest_entry(spt, e, index) \
521         ppgtt_spt_get_entry(spt, NULL, \
522                 spt->guest_page_type, e, index, true)
523
524 #define ppgtt_set_guest_entry(spt, e, index) \
525         ppgtt_spt_set_entry(spt, NULL, \
526                 spt->guest_page_type, e, index, true)
527
528 #define ppgtt_get_shadow_entry(spt, e, index) \
529         ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
530                 spt->shadow_page.type, e, index, false)
531
532 #define ppgtt_set_shadow_entry(spt, e, index) \
533         ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
534                 spt->shadow_page.type, e, index, false)
535
536 /**
537  * intel_vgpu_init_guest_page - init a guest page data structure
538  * @vgpu: a vGPU
539  * @p: a guest page data structure
540  * @gfn: guest memory page frame number
541  * @handler: function will be called when target guest memory page has
542  * been modified.
543  *
544  * This function is called when user wants to track a guest memory page.
545  *
546  * Returns:
547  * Zero on success, negative error code if failed.
548  */
549 int intel_vgpu_init_guest_page(struct intel_vgpu *vgpu,
550                 struct intel_vgpu_guest_page *p,
551                 unsigned long gfn,
552                 int (*handler)(void *, u64, void *, int),
553                 void *data)
554 {
555         INIT_HLIST_NODE(&p->node);
556
557         p->writeprotection = false;
558         p->gfn = gfn;
559         p->handler = handler;
560         p->data = data;
561         p->oos_page = NULL;
562         p->write_cnt = 0;
563
564         hash_add(vgpu->gtt.guest_page_hash_table, &p->node, p->gfn);
565         return 0;
566 }
567
568 static int detach_oos_page(struct intel_vgpu *vgpu,
569                 struct intel_vgpu_oos_page *oos_page);
570
571 /**
572  * intel_vgpu_clean_guest_page - release the resource owned by guest page data
573  * structure
574  * @vgpu: a vGPU
575  * @p: a tracked guest page
576  *
577  * This function is called when user tries to stop tracking a guest memory
578  * page.
579  */
580 void intel_vgpu_clean_guest_page(struct intel_vgpu *vgpu,
581                 struct intel_vgpu_guest_page *p)
582 {
583         if (!hlist_unhashed(&p->node))
584                 hash_del(&p->node);
585
586         if (p->oos_page)
587                 detach_oos_page(vgpu, p->oos_page);
588
589         if (p->writeprotection)
590                 intel_gvt_hypervisor_unset_wp_page(vgpu, p);
591 }
592
593 /**
594  * intel_vgpu_find_guest_page - find a guest page data structure by GFN.
595  * @vgpu: a vGPU
596  * @gfn: guest memory page frame number
597  *
598  * This function is called when emulation logic wants to know if a trapped GFN
599  * is a tracked guest page.
600  *
601  * Returns:
602  * Pointer to guest page data structure, NULL if failed.
603  */
604 struct intel_vgpu_guest_page *intel_vgpu_find_guest_page(
605                 struct intel_vgpu *vgpu, unsigned long gfn)
606 {
607         struct intel_vgpu_guest_page *p;
608
609         hash_for_each_possible(vgpu->gtt.guest_page_hash_table,
610                 p, node, gfn) {
611                 if (p->gfn == gfn)
612                         return p;
613         }
614         return NULL;
615 }
616
617 static inline int init_shadow_page(struct intel_vgpu *vgpu,
618                 struct intel_vgpu_shadow_page *p, int type)
619 {
620         p->vaddr = page_address(p->page);
621         p->type = type;
622
623         INIT_HLIST_NODE(&p->node);
624
625         p->mfn = intel_gvt_hypervisor_virt_to_mfn(p->vaddr);
626         if (p->mfn == INTEL_GVT_INVALID_ADDR)
627                 return -EFAULT;
628
629         hash_add(vgpu->gtt.shadow_page_hash_table, &p->node, p->mfn);
630         return 0;
631 }
632
633 static inline void clean_shadow_page(struct intel_vgpu_shadow_page *p)
634 {
635         if (!hlist_unhashed(&p->node))
636                 hash_del(&p->node);
637 }
638
639 static inline struct intel_vgpu_shadow_page *find_shadow_page(
640                 struct intel_vgpu *vgpu, unsigned long mfn)
641 {
642         struct intel_vgpu_shadow_page *p;
643
644         hash_for_each_possible(vgpu->gtt.shadow_page_hash_table,
645                 p, node, mfn) {
646                 if (p->mfn == mfn)
647                         return p;
648         }
649         return NULL;
650 }
651
652 #define guest_page_to_ppgtt_spt(ptr) \
653         container_of(ptr, struct intel_vgpu_ppgtt_spt, guest_page)
654
655 #define shadow_page_to_ppgtt_spt(ptr) \
656         container_of(ptr, struct intel_vgpu_ppgtt_spt, shadow_page)
657
658 static void *alloc_spt(gfp_t gfp_mask)
659 {
660         struct intel_vgpu_ppgtt_spt *spt;
661
662         spt = kzalloc(sizeof(*spt), gfp_mask);
663         if (!spt)
664                 return NULL;
665
666         spt->shadow_page.page = alloc_page(gfp_mask);
667         if (!spt->shadow_page.page) {
668                 kfree(spt);
669                 return NULL;
670         }
671         return spt;
672 }
673
674 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
675 {
676         __free_page(spt->shadow_page.page);
677         kfree(spt);
678 }
679
680 static void ppgtt_free_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
681 {
682         trace_spt_free(spt->vgpu->id, spt, spt->shadow_page.type);
683
684         clean_shadow_page(&spt->shadow_page);
685         intel_vgpu_clean_guest_page(spt->vgpu, &spt->guest_page);
686         list_del_init(&spt->post_shadow_list);
687
688         free_spt(spt);
689 }
690
691 static void ppgtt_free_all_shadow_page(struct intel_vgpu *vgpu)
692 {
693         struct hlist_node *n;
694         struct intel_vgpu_shadow_page *sp;
695         int i;
696
697         hash_for_each_safe(vgpu->gtt.shadow_page_hash_table, i, n, sp, node)
698                 ppgtt_free_shadow_page(shadow_page_to_ppgtt_spt(sp));
699 }
700
701 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
702                 u64 pa, void *p_data, int bytes);
703
704 static int ppgtt_write_protection_handler(void *gp, u64 pa,
705                 void *p_data, int bytes)
706 {
707         struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
708         int ret;
709
710         if (bytes != 4 && bytes != 8)
711                 return -EINVAL;
712
713         if (!gpt->writeprotection)
714                 return -EINVAL;
715
716         ret = ppgtt_handle_guest_write_page_table_bytes(gp,
717                 pa, p_data, bytes);
718         if (ret)
719                 return ret;
720         return ret;
721 }
722
723 static int reclaim_one_mm(struct intel_gvt *gvt);
724
725 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_shadow_page(
726                 struct intel_vgpu *vgpu, int type, unsigned long gfn)
727 {
728         struct intel_vgpu_ppgtt_spt *spt = NULL;
729         int ret;
730
731 retry:
732         spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
733         if (!spt) {
734                 if (reclaim_one_mm(vgpu->gvt))
735                         goto retry;
736
737                 gvt_err("fail to allocate ppgtt shadow page\n");
738                 return ERR_PTR(-ENOMEM);
739         }
740
741         spt->vgpu = vgpu;
742         spt->guest_page_type = type;
743         atomic_set(&spt->refcount, 1);
744         INIT_LIST_HEAD(&spt->post_shadow_list);
745
746         /*
747          * TODO: guest page type may be different with shadow page type,
748          *       when we support PSE page in future.
749          */
750         ret = init_shadow_page(vgpu, &spt->shadow_page, type);
751         if (ret) {
752                 gvt_err("fail to initialize shadow page for spt\n");
753                 goto err;
754         }
755
756         ret = intel_vgpu_init_guest_page(vgpu, &spt->guest_page,
757                         gfn, ppgtt_write_protection_handler, NULL);
758         if (ret) {
759                 gvt_err("fail to initialize guest page for spt\n");
760                 goto err;
761         }
762
763         trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
764         return spt;
765 err:
766         ppgtt_free_shadow_page(spt);
767         return ERR_PTR(ret);
768 }
769
770 static struct intel_vgpu_ppgtt_spt *ppgtt_find_shadow_page(
771                 struct intel_vgpu *vgpu, unsigned long mfn)
772 {
773         struct intel_vgpu_shadow_page *p = find_shadow_page(vgpu, mfn);
774
775         if (p)
776                 return shadow_page_to_ppgtt_spt(p);
777
778         gvt_err("vgpu%d: fail to find ppgtt shadow page: 0x%lx\n",
779                         vgpu->id, mfn);
780         return NULL;
781 }
782
783 #define pt_entry_size_shift(spt) \
784         ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
785
786 #define pt_entries(spt) \
787         (GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
788
789 #define for_each_present_guest_entry(spt, e, i) \
790         for (i = 0; i < pt_entries(spt); i++) \
791         if (spt->vgpu->gvt->gtt.pte_ops->test_present( \
792                 ppgtt_get_guest_entry(spt, e, i)))
793
794 #define for_each_present_shadow_entry(spt, e, i) \
795         for (i = 0; i < pt_entries(spt); i++) \
796         if (spt->vgpu->gvt->gtt.pte_ops->test_present( \
797                 ppgtt_get_shadow_entry(spt, e, i)))
798
799 static void ppgtt_get_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
800 {
801         int v = atomic_read(&spt->refcount);
802
803         trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
804
805         atomic_inc(&spt->refcount);
806 }
807
808 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
809
810 static int ppgtt_invalidate_shadow_page_by_shadow_entry(struct intel_vgpu *vgpu,
811                 struct intel_gvt_gtt_entry *e)
812 {
813         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
814         struct intel_vgpu_ppgtt_spt *s;
815         intel_gvt_gtt_type_t cur_pt_type;
816
817         if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(e->type))))
818                 return -EINVAL;
819
820         if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
821                 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
822                 cur_pt_type = get_next_pt_type(e->type) + 1;
823                 if (ops->get_pfn(e) ==
824                         vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
825                         return 0;
826         }
827         s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
828         if (!s) {
829                 gvt_err("vgpu%d: fail to find shadow page: mfn: 0x%lx\n",
830                                 vgpu->id, ops->get_pfn(e));
831                 return -ENXIO;
832         }
833         return ppgtt_invalidate_shadow_page(s);
834 }
835
836 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
837 {
838         struct intel_gvt_gtt_entry e;
839         unsigned long index;
840         int ret;
841         int v = atomic_read(&spt->refcount);
842
843         trace_spt_change(spt->vgpu->id, "die", spt,
844                         spt->guest_page.gfn, spt->shadow_page.type);
845
846         trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
847
848         if (atomic_dec_return(&spt->refcount) > 0)
849                 return 0;
850
851         if (gtt_type_is_pte_pt(spt->shadow_page.type))
852                 goto release;
853
854         for_each_present_shadow_entry(spt, &e, index) {
855                 if (!gtt_type_is_pt(get_next_pt_type(e.type))) {
856                         gvt_err("GVT doesn't support pse bit for now\n");
857                         return -EINVAL;
858                 }
859                 ret = ppgtt_invalidate_shadow_page_by_shadow_entry(
860                                 spt->vgpu, &e);
861                 if (ret)
862                         goto fail;
863         }
864 release:
865         trace_spt_change(spt->vgpu->id, "release", spt,
866                         spt->guest_page.gfn, spt->shadow_page.type);
867         ppgtt_free_shadow_page(spt);
868         return 0;
869 fail:
870         gvt_err("vgpu%d: fail: shadow page %p shadow entry 0x%llx type %d\n",
871                         spt->vgpu->id, spt, e.val64, e.type);
872         return ret;
873 }
874
875 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
876
877 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_shadow_page_by_guest_entry(
878                 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
879 {
880         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
881         struct intel_vgpu_ppgtt_spt *s = NULL;
882         struct intel_vgpu_guest_page *g;
883         int ret;
884
885         if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(we->type)))) {
886                 ret = -EINVAL;
887                 goto fail;
888         }
889
890         g = intel_vgpu_find_guest_page(vgpu, ops->get_pfn(we));
891         if (g) {
892                 s = guest_page_to_ppgtt_spt(g);
893                 ppgtt_get_shadow_page(s);
894         } else {
895                 int type = get_next_pt_type(we->type);
896
897                 s = ppgtt_alloc_shadow_page(vgpu, type, ops->get_pfn(we));
898                 if (IS_ERR(s)) {
899                         ret = PTR_ERR(s);
900                         goto fail;
901                 }
902
903                 ret = intel_gvt_hypervisor_set_wp_page(vgpu, &s->guest_page);
904                 if (ret)
905                         goto fail;
906
907                 ret = ppgtt_populate_shadow_page(s);
908                 if (ret)
909                         goto fail;
910
911                 trace_spt_change(vgpu->id, "new", s, s->guest_page.gfn,
912                         s->shadow_page.type);
913         }
914         return s;
915 fail:
916         gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d\n",
917                         vgpu->id, s, we->val64, we->type);
918         return ERR_PTR(ret);
919 }
920
921 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
922                 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
923 {
924         struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
925
926         se->type = ge->type;
927         se->val64 = ge->val64;
928
929         ops->set_pfn(se, s->shadow_page.mfn);
930 }
931
932 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
933 {
934         struct intel_vgpu *vgpu = spt->vgpu;
935         struct intel_vgpu_ppgtt_spt *s;
936         struct intel_gvt_gtt_entry se, ge;
937         unsigned long i;
938         int ret;
939
940         trace_spt_change(spt->vgpu->id, "born", spt,
941                         spt->guest_page.gfn, spt->shadow_page.type);
942
943         if (gtt_type_is_pte_pt(spt->shadow_page.type)) {
944                 for_each_present_guest_entry(spt, &ge, i) {
945                         ret = gtt_entry_p2m(vgpu, &ge, &se);
946                         if (ret)
947                                 goto fail;
948                         ppgtt_set_shadow_entry(spt, &se, i);
949                 }
950                 return 0;
951         }
952
953         for_each_present_guest_entry(spt, &ge, i) {
954                 if (!gtt_type_is_pt(get_next_pt_type(ge.type))) {
955                         gvt_err("GVT doesn't support pse bit now\n");
956                         ret = -EINVAL;
957                         goto fail;
958                 }
959
960                 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
961                 if (IS_ERR(s)) {
962                         ret = PTR_ERR(s);
963                         goto fail;
964                 }
965                 ppgtt_get_shadow_entry(spt, &se, i);
966                 ppgtt_generate_shadow_entry(&se, s, &ge);
967                 ppgtt_set_shadow_entry(spt, &se, i);
968         }
969         return 0;
970 fail:
971         gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d\n",
972                         vgpu->id, spt, ge.val64, ge.type);
973         return ret;
974 }
975
976 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_guest_page *gpt,
977                 unsigned long index)
978 {
979         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
980         struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
981         struct intel_vgpu *vgpu = spt->vgpu;
982         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
983         struct intel_gvt_gtt_entry e;
984         int ret;
985
986         ppgtt_get_shadow_entry(spt, &e, index);
987
988         trace_gpt_change(spt->vgpu->id, "remove", spt, sp->type, e.val64,
989                          index);
990
991         if (!ops->test_present(&e))
992                 return 0;
993
994         if (ops->get_pfn(&e) == vgpu->gtt.scratch_pt[sp->type].page_mfn)
995                 return 0;
996
997         if (gtt_type_is_pt(get_next_pt_type(e.type))) {
998                 struct intel_vgpu_ppgtt_spt *s =
999                         ppgtt_find_shadow_page(vgpu, ops->get_pfn(&e));
1000                 if (!s) {
1001                         gvt_err("fail to find guest page\n");
1002                         ret = -ENXIO;
1003                         goto fail;
1004                 }
1005                 ret = ppgtt_invalidate_shadow_page(s);
1006                 if (ret)
1007                         goto fail;
1008         }
1009         ops->set_pfn(&e, vgpu->gtt.scratch_pt[sp->type].page_mfn);
1010         ppgtt_set_shadow_entry(spt, &e, index);
1011         return 0;
1012 fail:
1013         gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d\n",
1014                         vgpu->id, spt, e.val64, e.type);
1015         return ret;
1016 }
1017
1018 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_guest_page *gpt,
1019                 struct intel_gvt_gtt_entry *we, unsigned long index)
1020 {
1021         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1022         struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
1023         struct intel_vgpu *vgpu = spt->vgpu;
1024         struct intel_gvt_gtt_entry m;
1025         struct intel_vgpu_ppgtt_spt *s;
1026         int ret;
1027
1028         trace_gpt_change(spt->vgpu->id, "add", spt, sp->type,
1029                 we->val64, index);
1030
1031         if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1032                 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, we);
1033                 if (IS_ERR(s)) {
1034                         ret = PTR_ERR(s);
1035                         goto fail;
1036                 }
1037                 ppgtt_get_shadow_entry(spt, &m, index);
1038                 ppgtt_generate_shadow_entry(&m, s, we);
1039                 ppgtt_set_shadow_entry(spt, &m, index);
1040         } else {
1041                 ret = gtt_entry_p2m(vgpu, we, &m);
1042                 if (ret)
1043                         goto fail;
1044                 ppgtt_set_shadow_entry(spt, &m, index);
1045         }
1046         return 0;
1047 fail:
1048         gvt_err("vgpu%d: fail: spt %p guest entry 0x%llx type %d\n", vgpu->id,
1049                         spt, we->val64, we->type);
1050         return ret;
1051 }
1052
1053 static int sync_oos_page(struct intel_vgpu *vgpu,
1054                 struct intel_vgpu_oos_page *oos_page)
1055 {
1056         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1057         struct intel_gvt *gvt = vgpu->gvt;
1058         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1059         struct intel_vgpu_ppgtt_spt *spt =
1060                 guest_page_to_ppgtt_spt(oos_page->guest_page);
1061         struct intel_gvt_gtt_entry old, new, m;
1062         int index;
1063         int ret;
1064
1065         trace_oos_change(vgpu->id, "sync", oos_page->id,
1066                         oos_page->guest_page, spt->guest_page_type);
1067
1068         old.type = new.type = get_entry_type(spt->guest_page_type);
1069         old.val64 = new.val64 = 0;
1070
1071         for (index = 0; index < (GTT_PAGE_SIZE >> info->gtt_entry_size_shift);
1072                 index++) {
1073                 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1074                 ops->get_entry(NULL, &new, index, true,
1075                         oos_page->guest_page->gfn << PAGE_SHIFT, vgpu);
1076
1077                 if (old.val64 == new.val64
1078                         && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1079                         continue;
1080
1081                 trace_oos_sync(vgpu->id, oos_page->id,
1082                                 oos_page->guest_page, spt->guest_page_type,
1083                                 new.val64, index);
1084
1085                 ret = gtt_entry_p2m(vgpu, &new, &m);
1086                 if (ret)
1087                         return ret;
1088
1089                 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1090                 ppgtt_set_shadow_entry(spt, &m, index);
1091         }
1092
1093         oos_page->guest_page->write_cnt = 0;
1094         list_del_init(&spt->post_shadow_list);
1095         return 0;
1096 }
1097
1098 static int detach_oos_page(struct intel_vgpu *vgpu,
1099                 struct intel_vgpu_oos_page *oos_page)
1100 {
1101         struct intel_gvt *gvt = vgpu->gvt;
1102         struct intel_vgpu_ppgtt_spt *spt =
1103                 guest_page_to_ppgtt_spt(oos_page->guest_page);
1104
1105         trace_oos_change(vgpu->id, "detach", oos_page->id,
1106                         oos_page->guest_page, spt->guest_page_type);
1107
1108         oos_page->guest_page->write_cnt = 0;
1109         oos_page->guest_page->oos_page = NULL;
1110         oos_page->guest_page = NULL;
1111
1112         list_del_init(&oos_page->vm_list);
1113         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1114
1115         return 0;
1116 }
1117
1118 static int attach_oos_page(struct intel_vgpu *vgpu,
1119                 struct intel_vgpu_oos_page *oos_page,
1120                 struct intel_vgpu_guest_page *gpt)
1121 {
1122         struct intel_gvt *gvt = vgpu->gvt;
1123         int ret;
1124
1125         ret = intel_gvt_hypervisor_read_gpa(vgpu, gpt->gfn << GTT_PAGE_SHIFT,
1126                 oos_page->mem, GTT_PAGE_SIZE);
1127         if (ret)
1128                 return ret;
1129
1130         oos_page->guest_page = gpt;
1131         gpt->oos_page = oos_page;
1132
1133         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1134
1135         trace_oos_change(vgpu->id, "attach", gpt->oos_page->id,
1136                         gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1137         return 0;
1138 }
1139
1140 static int ppgtt_set_guest_page_sync(struct intel_vgpu *vgpu,
1141                 struct intel_vgpu_guest_page *gpt)
1142 {
1143         int ret;
1144
1145         ret = intel_gvt_hypervisor_set_wp_page(vgpu, gpt);
1146         if (ret)
1147                 return ret;
1148
1149         trace_oos_change(vgpu->id, "set page sync", gpt->oos_page->id,
1150                         gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1151
1152         list_del_init(&gpt->oos_page->vm_list);
1153         return sync_oos_page(vgpu, gpt->oos_page);
1154 }
1155
1156 static int ppgtt_allocate_oos_page(struct intel_vgpu *vgpu,
1157                 struct intel_vgpu_guest_page *gpt)
1158 {
1159         struct intel_gvt *gvt = vgpu->gvt;
1160         struct intel_gvt_gtt *gtt = &gvt->gtt;
1161         struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1162         int ret;
1163
1164         WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1165
1166         if (list_empty(&gtt->oos_page_free_list_head)) {
1167                 oos_page = container_of(gtt->oos_page_use_list_head.next,
1168                         struct intel_vgpu_oos_page, list);
1169                 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1170                 if (ret)
1171                         return ret;
1172                 ret = detach_oos_page(vgpu, oos_page);
1173                 if (ret)
1174                         return ret;
1175         } else
1176                 oos_page = container_of(gtt->oos_page_free_list_head.next,
1177                         struct intel_vgpu_oos_page, list);
1178         return attach_oos_page(vgpu, oos_page, gpt);
1179 }
1180
1181 static int ppgtt_set_guest_page_oos(struct intel_vgpu *vgpu,
1182                 struct intel_vgpu_guest_page *gpt)
1183 {
1184         struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1185
1186         if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1187                 return -EINVAL;
1188
1189         trace_oos_change(vgpu->id, "set page out of sync", gpt->oos_page->id,
1190                         gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1191
1192         list_add_tail(&oos_page->vm_list, &vgpu->gtt.oos_page_list_head);
1193         return intel_gvt_hypervisor_unset_wp_page(vgpu, gpt);
1194 }
1195
1196 /**
1197  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1198  * @vgpu: a vGPU
1199  *
1200  * This function is called before submitting a guest workload to host,
1201  * to sync all the out-of-synced shadow for vGPU
1202  *
1203  * Returns:
1204  * Zero on success, negative error code if failed.
1205  */
1206 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1207 {
1208         struct list_head *pos, *n;
1209         struct intel_vgpu_oos_page *oos_page;
1210         int ret;
1211
1212         if (!enable_out_of_sync)
1213                 return 0;
1214
1215         list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1216                 oos_page = container_of(pos,
1217                                 struct intel_vgpu_oos_page, vm_list);
1218                 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1219                 if (ret)
1220                         return ret;
1221         }
1222         return 0;
1223 }
1224
1225 /*
1226  * The heart of PPGTT shadow page table.
1227  */
1228 static int ppgtt_handle_guest_write_page_table(
1229                 struct intel_vgpu_guest_page *gpt,
1230                 struct intel_gvt_gtt_entry *we, unsigned long index)
1231 {
1232         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1233         struct intel_vgpu *vgpu = spt->vgpu;
1234         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1235
1236         int ret;
1237         int new_present;
1238
1239         new_present = ops->test_present(we);
1240
1241         ret = ppgtt_handle_guest_entry_removal(gpt, index);
1242         if (ret)
1243                 goto fail;
1244
1245         if (new_present) {
1246                 ret = ppgtt_handle_guest_entry_add(gpt, we, index);
1247                 if (ret)
1248                         goto fail;
1249         }
1250         return 0;
1251 fail:
1252         gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d.\n",
1253                         vgpu->id, spt, we->val64, we->type);
1254         return ret;
1255 }
1256
1257 static inline bool can_do_out_of_sync(struct intel_vgpu_guest_page *gpt)
1258 {
1259         return enable_out_of_sync
1260                 && gtt_type_is_pte_pt(
1261                         guest_page_to_ppgtt_spt(gpt)->guest_page_type)
1262                 && gpt->write_cnt >= 2;
1263 }
1264
1265 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1266                 unsigned long index)
1267 {
1268         set_bit(index, spt->post_shadow_bitmap);
1269         if (!list_empty(&spt->post_shadow_list))
1270                 return;
1271
1272         list_add_tail(&spt->post_shadow_list,
1273                         &spt->vgpu->gtt.post_shadow_list_head);
1274 }
1275
1276 /**
1277  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1278  * @vgpu: a vGPU
1279  *
1280  * This function is called before submitting a guest workload to host,
1281  * to flush all the post shadows for a vGPU.
1282  *
1283  * Returns:
1284  * Zero on success, negative error code if failed.
1285  */
1286 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1287 {
1288         struct list_head *pos, *n;
1289         struct intel_vgpu_ppgtt_spt *spt;
1290         struct intel_gvt_gtt_entry ge;
1291         unsigned long index;
1292         int ret;
1293
1294         list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1295                 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1296                                 post_shadow_list);
1297
1298                 for_each_set_bit(index, spt->post_shadow_bitmap,
1299                                 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1300                         ppgtt_get_guest_entry(spt, &ge, index);
1301
1302                         ret = ppgtt_handle_guest_write_page_table(
1303                                         &spt->guest_page, &ge, index);
1304                         if (ret)
1305                                 return ret;
1306                         clear_bit(index, spt->post_shadow_bitmap);
1307                 }
1308                 list_del_init(&spt->post_shadow_list);
1309         }
1310         return 0;
1311 }
1312
1313 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
1314                 u64 pa, void *p_data, int bytes)
1315 {
1316         struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
1317         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1318         struct intel_vgpu *vgpu = spt->vgpu;
1319         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1320         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1321         struct intel_gvt_gtt_entry we;
1322         unsigned long index;
1323         int ret;
1324
1325         index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1326
1327         ppgtt_get_guest_entry(spt, &we, index);
1328
1329         ops->test_pse(&we);
1330
1331         if (bytes == info->gtt_entry_size) {
1332                 ret = ppgtt_handle_guest_write_page_table(gpt, &we, index);
1333                 if (ret)
1334                         return ret;
1335         } else {
1336                 if (!test_bit(index, spt->post_shadow_bitmap)) {
1337                         ret = ppgtt_handle_guest_entry_removal(gpt, index);
1338                         if (ret)
1339                                 return ret;
1340                 }
1341
1342                 ppgtt_set_post_shadow(spt, index);
1343         }
1344
1345         if (!enable_out_of_sync)
1346                 return 0;
1347
1348         gpt->write_cnt++;
1349
1350         if (gpt->oos_page)
1351                 ops->set_entry(gpt->oos_page->mem, &we, index,
1352                                 false, 0, vgpu);
1353
1354         if (can_do_out_of_sync(gpt)) {
1355                 if (!gpt->oos_page)
1356                         ppgtt_allocate_oos_page(vgpu, gpt);
1357
1358                 ret = ppgtt_set_guest_page_oos(vgpu, gpt);
1359                 if (ret < 0)
1360                         return ret;
1361         }
1362         return 0;
1363 }
1364
1365 /*
1366  * mm page table allocation policy for bdw+
1367  *  - for ggtt, only virtual page table will be allocated.
1368  *  - for ppgtt, dedicated virtual/shadow page table will be allocated.
1369  */
1370 static int gen8_mm_alloc_page_table(struct intel_vgpu_mm *mm)
1371 {
1372         struct intel_vgpu *vgpu = mm->vgpu;
1373         struct intel_gvt *gvt = vgpu->gvt;
1374         const struct intel_gvt_device_info *info = &gvt->device_info;
1375         void *mem;
1376
1377         if (mm->type == INTEL_GVT_MM_PPGTT) {
1378                 mm->page_table_entry_cnt = 4;
1379                 mm->page_table_entry_size = mm->page_table_entry_cnt *
1380                         info->gtt_entry_size;
1381                 mem = kzalloc(mm->has_shadow_page_table ?
1382                         mm->page_table_entry_size * 2
1383                                 : mm->page_table_entry_size,
1384                         GFP_ATOMIC);
1385                 if (!mem)
1386                         return -ENOMEM;
1387                 mm->virtual_page_table = mem;
1388                 if (!mm->has_shadow_page_table)
1389                         return 0;
1390                 mm->shadow_page_table = mem + mm->page_table_entry_size;
1391         } else if (mm->type == INTEL_GVT_MM_GGTT) {
1392                 mm->page_table_entry_cnt =
1393                         (gvt_ggtt_gm_sz(gvt) >> GTT_PAGE_SHIFT);
1394                 mm->page_table_entry_size = mm->page_table_entry_cnt *
1395                         info->gtt_entry_size;
1396                 mem = vzalloc(mm->page_table_entry_size);
1397                 if (!mem)
1398                         return -ENOMEM;
1399                 mm->virtual_page_table = mem;
1400         }
1401         return 0;
1402 }
1403
1404 static void gen8_mm_free_page_table(struct intel_vgpu_mm *mm)
1405 {
1406         if (mm->type == INTEL_GVT_MM_PPGTT) {
1407                 kfree(mm->virtual_page_table);
1408         } else if (mm->type == INTEL_GVT_MM_GGTT) {
1409                 if (mm->virtual_page_table)
1410                         vfree(mm->virtual_page_table);
1411         }
1412         mm->virtual_page_table = mm->shadow_page_table = NULL;
1413 }
1414
1415 static void invalidate_mm(struct intel_vgpu_mm *mm)
1416 {
1417         struct intel_vgpu *vgpu = mm->vgpu;
1418         struct intel_gvt *gvt = vgpu->gvt;
1419         struct intel_gvt_gtt *gtt = &gvt->gtt;
1420         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1421         struct intel_gvt_gtt_entry se;
1422         int i;
1423
1424         if (WARN_ON(!mm->has_shadow_page_table || !mm->shadowed))
1425                 return;
1426
1427         for (i = 0; i < mm->page_table_entry_cnt; i++) {
1428                 ppgtt_get_shadow_root_entry(mm, &se, i);
1429                 if (!ops->test_present(&se))
1430                         continue;
1431                 ppgtt_invalidate_shadow_page_by_shadow_entry(
1432                                 vgpu, &se);
1433                 se.val64 = 0;
1434                 ppgtt_set_shadow_root_entry(mm, &se, i);
1435
1436                 trace_gpt_change(vgpu->id, "destroy root pointer",
1437                                 NULL, se.type, se.val64, i);
1438         }
1439         mm->shadowed = false;
1440 }
1441
1442 /**
1443  * intel_vgpu_destroy_mm - destroy a mm object
1444  * @mm: a kref object
1445  *
1446  * This function is used to destroy a mm object for vGPU
1447  *
1448  */
1449 void intel_vgpu_destroy_mm(struct kref *mm_ref)
1450 {
1451         struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1452         struct intel_vgpu *vgpu = mm->vgpu;
1453         struct intel_gvt *gvt = vgpu->gvt;
1454         struct intel_gvt_gtt *gtt = &gvt->gtt;
1455
1456         if (!mm->initialized)
1457                 goto out;
1458
1459         list_del(&mm->list);
1460         list_del(&mm->lru_list);
1461
1462         if (mm->has_shadow_page_table)
1463                 invalidate_mm(mm);
1464
1465         gtt->mm_free_page_table(mm);
1466 out:
1467         kfree(mm);
1468 }
1469
1470 static int shadow_mm(struct intel_vgpu_mm *mm)
1471 {
1472         struct intel_vgpu *vgpu = mm->vgpu;
1473         struct intel_gvt *gvt = vgpu->gvt;
1474         struct intel_gvt_gtt *gtt = &gvt->gtt;
1475         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1476         struct intel_vgpu_ppgtt_spt *spt;
1477         struct intel_gvt_gtt_entry ge, se;
1478         int i;
1479         int ret;
1480
1481         if (WARN_ON(!mm->has_shadow_page_table || mm->shadowed))
1482                 return 0;
1483
1484         mm->shadowed = true;
1485
1486         for (i = 0; i < mm->page_table_entry_cnt; i++) {
1487                 ppgtt_get_guest_root_entry(mm, &ge, i);
1488                 if (!ops->test_present(&ge))
1489                         continue;
1490
1491                 trace_gpt_change(vgpu->id, __func__, NULL,
1492                                 ge.type, ge.val64, i);
1493
1494                 spt = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
1495                 if (IS_ERR(spt)) {
1496                         gvt_err("fail to populate guest root pointer\n");
1497                         ret = PTR_ERR(spt);
1498                         goto fail;
1499                 }
1500                 ppgtt_generate_shadow_entry(&se, spt, &ge);
1501                 ppgtt_set_shadow_root_entry(mm, &se, i);
1502
1503                 trace_gpt_change(vgpu->id, "populate root pointer",
1504                                 NULL, se.type, se.val64, i);
1505         }
1506         return 0;
1507 fail:
1508         invalidate_mm(mm);
1509         return ret;
1510 }
1511
1512 /**
1513  * intel_vgpu_create_mm - create a mm object for a vGPU
1514  * @vgpu: a vGPU
1515  * @mm_type: mm object type, should be PPGTT or GGTT
1516  * @virtual_page_table: page table root pointers. Could be NULL if user wants
1517  *      to populate shadow later.
1518  * @page_table_level: describe the page table level of the mm object
1519  * @pde_base_index: pde root pointer base in GGTT MMIO.
1520  *
1521  * This function is used to create a mm object for a vGPU.
1522  *
1523  * Returns:
1524  * Zero on success, negative error code in pointer if failed.
1525  */
1526 struct intel_vgpu_mm *intel_vgpu_create_mm(struct intel_vgpu *vgpu,
1527                 int mm_type, void *virtual_page_table, int page_table_level,
1528                 u32 pde_base_index)
1529 {
1530         struct intel_gvt *gvt = vgpu->gvt;
1531         struct intel_gvt_gtt *gtt = &gvt->gtt;
1532         struct intel_vgpu_mm *mm;
1533         int ret;
1534
1535         mm = kzalloc(sizeof(*mm), GFP_ATOMIC);
1536         if (!mm) {
1537                 ret = -ENOMEM;
1538                 goto fail;
1539         }
1540
1541         mm->type = mm_type;
1542
1543         if (page_table_level == 1)
1544                 mm->page_table_entry_type = GTT_TYPE_GGTT_PTE;
1545         else if (page_table_level == 3)
1546                 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1547         else if (page_table_level == 4)
1548                 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1549         else {
1550                 WARN_ON(1);
1551                 ret = -EINVAL;
1552                 goto fail;
1553         }
1554
1555         mm->page_table_level = page_table_level;
1556         mm->pde_base_index = pde_base_index;
1557
1558         mm->vgpu = vgpu;
1559         mm->has_shadow_page_table = !!(mm_type == INTEL_GVT_MM_PPGTT);
1560
1561         kref_init(&mm->ref);
1562         atomic_set(&mm->pincount, 0);
1563         INIT_LIST_HEAD(&mm->list);
1564         INIT_LIST_HEAD(&mm->lru_list);
1565         list_add_tail(&mm->list, &vgpu->gtt.mm_list_head);
1566
1567         ret = gtt->mm_alloc_page_table(mm);
1568         if (ret) {
1569                 gvt_err("fail to allocate page table for mm\n");
1570                 goto fail;
1571         }
1572
1573         mm->initialized = true;
1574
1575         if (virtual_page_table)
1576                 memcpy(mm->virtual_page_table, virtual_page_table,
1577                                 mm->page_table_entry_size);
1578
1579         if (mm->has_shadow_page_table) {
1580                 ret = shadow_mm(mm);
1581                 if (ret)
1582                         goto fail;
1583                 list_add_tail(&mm->lru_list, &gvt->gtt.mm_lru_list_head);
1584         }
1585         return mm;
1586 fail:
1587         gvt_err("fail to create mm\n");
1588         if (mm)
1589                 intel_gvt_mm_unreference(mm);
1590         return ERR_PTR(ret);
1591 }
1592
1593 /**
1594  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1595  * @mm: a vGPU mm object
1596  *
1597  * This function is called when user doesn't want to use a vGPU mm object
1598  */
1599 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1600 {
1601         if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1602                 return;
1603
1604         atomic_dec(&mm->pincount);
1605 }
1606
1607 /**
1608  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1609  * @vgpu: a vGPU
1610  *
1611  * This function is called when user wants to use a vGPU mm object. If this
1612  * mm object hasn't been shadowed yet, the shadow will be populated at this
1613  * time.
1614  *
1615  * Returns:
1616  * Zero on success, negative error code if failed.
1617  */
1618 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1619 {
1620         int ret;
1621
1622         if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1623                 return 0;
1624
1625         atomic_inc(&mm->pincount);
1626
1627         if (!mm->shadowed) {
1628                 ret = shadow_mm(mm);
1629                 if (ret)
1630                         return ret;
1631         }
1632
1633         list_del_init(&mm->lru_list);
1634         list_add_tail(&mm->lru_list, &mm->vgpu->gvt->gtt.mm_lru_list_head);
1635         return 0;
1636 }
1637
1638 static int reclaim_one_mm(struct intel_gvt *gvt)
1639 {
1640         struct intel_vgpu_mm *mm;
1641         struct list_head *pos, *n;
1642
1643         list_for_each_safe(pos, n, &gvt->gtt.mm_lru_list_head) {
1644                 mm = container_of(pos, struct intel_vgpu_mm, lru_list);
1645
1646                 if (mm->type != INTEL_GVT_MM_PPGTT)
1647                         continue;
1648                 if (atomic_read(&mm->pincount))
1649                         continue;
1650
1651                 list_del_init(&mm->lru_list);
1652                 invalidate_mm(mm);
1653                 return 1;
1654         }
1655         return 0;
1656 }
1657
1658 /*
1659  * GMA translation APIs.
1660  */
1661 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1662                 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1663 {
1664         struct intel_vgpu *vgpu = mm->vgpu;
1665         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1666         struct intel_vgpu_ppgtt_spt *s;
1667
1668         if (WARN_ON(!mm->has_shadow_page_table))
1669                 return -EINVAL;
1670
1671         s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
1672         if (!s)
1673                 return -ENXIO;
1674
1675         if (!guest)
1676                 ppgtt_get_shadow_entry(s, e, index);
1677         else
1678                 ppgtt_get_guest_entry(s, e, index);
1679         return 0;
1680 }
1681
1682 /**
1683  * intel_vgpu_gma_to_gpa - translate a gma to GPA
1684  * @mm: mm object. could be a PPGTT or GGTT mm object
1685  * @gma: graphics memory address in this mm object
1686  *
1687  * This function is used to translate a graphics memory address in specific
1688  * graphics memory space to guest physical address.
1689  *
1690  * Returns:
1691  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
1692  */
1693 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
1694 {
1695         struct intel_vgpu *vgpu = mm->vgpu;
1696         struct intel_gvt *gvt = vgpu->gvt;
1697         struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
1698         struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
1699         unsigned long gpa = INTEL_GVT_INVALID_ADDR;
1700         unsigned long gma_index[4];
1701         struct intel_gvt_gtt_entry e;
1702         int i, index;
1703         int ret;
1704
1705         if (mm->type != INTEL_GVT_MM_GGTT && mm->type != INTEL_GVT_MM_PPGTT)
1706                 return INTEL_GVT_INVALID_ADDR;
1707
1708         if (mm->type == INTEL_GVT_MM_GGTT) {
1709                 if (!vgpu_gmadr_is_valid(vgpu, gma))
1710                         goto err;
1711
1712                 ggtt_get_guest_entry(mm, &e,
1713                         gma_ops->gma_to_ggtt_pte_index(gma));
1714                 gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1715                         + (gma & ~GTT_PAGE_MASK);
1716
1717                 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
1718                 return gpa;
1719         }
1720
1721         switch (mm->page_table_level) {
1722         case 4:
1723                 ppgtt_get_shadow_root_entry(mm, &e, 0);
1724                 gma_index[0] = gma_ops->gma_to_pml4_index(gma);
1725                 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
1726                 gma_index[2] = gma_ops->gma_to_pde_index(gma);
1727                 gma_index[3] = gma_ops->gma_to_pte_index(gma);
1728                 index = 4;
1729                 break;
1730         case 3:
1731                 ppgtt_get_shadow_root_entry(mm, &e,
1732                                 gma_ops->gma_to_l3_pdp_index(gma));
1733                 gma_index[0] = gma_ops->gma_to_pde_index(gma);
1734                 gma_index[1] = gma_ops->gma_to_pte_index(gma);
1735                 index = 2;
1736                 break;
1737         case 2:
1738                 ppgtt_get_shadow_root_entry(mm, &e,
1739                                 gma_ops->gma_to_pde_index(gma));
1740                 gma_index[0] = gma_ops->gma_to_pte_index(gma);
1741                 index = 1;
1742                 break;
1743         default:
1744                 WARN_ON(1);
1745                 goto err;
1746         }
1747
1748         /* walk into the shadow page table and get gpa from guest entry */
1749         for (i = 0; i < index; i++) {
1750                 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
1751                         (i == index - 1));
1752                 if (ret)
1753                         goto err;
1754         }
1755
1756         gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1757                 + (gma & ~GTT_PAGE_MASK);
1758
1759         trace_gma_translate(vgpu->id, "ppgtt", 0,
1760                         mm->page_table_level, gma, gpa);
1761         return gpa;
1762 err:
1763         gvt_err("invalid mm type: %d gma %lx\n", mm->type, gma);
1764         return INTEL_GVT_INVALID_ADDR;
1765 }
1766
1767 static int emulate_gtt_mmio_read(struct intel_vgpu *vgpu,
1768         unsigned int off, void *p_data, unsigned int bytes)
1769 {
1770         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1771         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1772         unsigned long index = off >> info->gtt_entry_size_shift;
1773         struct intel_gvt_gtt_entry e;
1774
1775         if (bytes != 4 && bytes != 8)
1776                 return -EINVAL;
1777
1778         ggtt_get_guest_entry(ggtt_mm, &e, index);
1779         memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
1780                         bytes);
1781         return 0;
1782 }
1783
1784 /**
1785  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
1786  * @vgpu: a vGPU
1787  * @off: register offset
1788  * @p_data: data will be returned to guest
1789  * @bytes: data length
1790  *
1791  * This function is used to emulate the GTT MMIO register read
1792  *
1793  * Returns:
1794  * Zero on success, error code if failed.
1795  */
1796 int intel_vgpu_emulate_gtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
1797         void *p_data, unsigned int bytes)
1798 {
1799         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1800         int ret;
1801
1802         if (bytes != 4 && bytes != 8)
1803                 return -EINVAL;
1804
1805         off -= info->gtt_start_offset;
1806         ret = emulate_gtt_mmio_read(vgpu, off, p_data, bytes);
1807         return ret;
1808 }
1809
1810 static int emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1811         void *p_data, unsigned int bytes)
1812 {
1813         struct intel_gvt *gvt = vgpu->gvt;
1814         const struct intel_gvt_device_info *info = &gvt->device_info;
1815         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1816         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1817         unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
1818         unsigned long gma;
1819         struct intel_gvt_gtt_entry e, m;
1820         int ret;
1821
1822         if (bytes != 4 && bytes != 8)
1823                 return -EINVAL;
1824
1825         gma = g_gtt_index << GTT_PAGE_SHIFT;
1826
1827         /* the VM may configure the whole GM space when ballooning is used */
1828         if (WARN_ONCE(!vgpu_gmadr_is_valid(vgpu, gma),
1829                                 "vgpu%d: found oob ggtt write, offset %x\n",
1830                                 vgpu->id, off)) {
1831                 return 0;
1832         }
1833
1834         ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
1835
1836         memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
1837                         bytes);
1838
1839         if (ops->test_present(&e)) {
1840                 ret = gtt_entry_p2m(vgpu, &e, &m);
1841                 if (ret) {
1842                         gvt_err("vgpu%d: fail to translate guest gtt entry\n",
1843                                         vgpu->id);
1844                         return ret;
1845                 }
1846         } else {
1847                 m = e;
1848                 m.val64 = 0;
1849         }
1850
1851         ggtt_set_shadow_entry(ggtt_mm, &m, g_gtt_index);
1852         ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
1853         return 0;
1854 }
1855
1856 /*
1857  * intel_vgpu_emulate_gtt_mmio_write - emulate GTT MMIO register write
1858  * @vgpu: a vGPU
1859  * @off: register offset
1860  * @p_data: data from guest write
1861  * @bytes: data length
1862  *
1863  * This function is used to emulate the GTT MMIO register write
1864  *
1865  * Returns:
1866  * Zero on success, error code if failed.
1867  */
1868 int intel_vgpu_emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1869         void *p_data, unsigned int bytes)
1870 {
1871         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1872         int ret;
1873
1874         if (bytes != 4 && bytes != 8)
1875                 return -EINVAL;
1876
1877         off -= info->gtt_start_offset;
1878         ret = emulate_gtt_mmio_write(vgpu, off, p_data, bytes);
1879         return ret;
1880 }
1881
1882 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
1883                 intel_gvt_gtt_type_t type)
1884 {
1885         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1886         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1887         int page_entry_num = GTT_PAGE_SIZE >>
1888                                 vgpu->gvt->device_info.gtt_entry_size_shift;
1889         struct page *scratch_pt;
1890         unsigned long mfn;
1891         int i;
1892         void *p;
1893
1894         if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
1895                 return -EINVAL;
1896
1897         scratch_pt = alloc_page(GFP_KERNEL | GFP_ATOMIC | __GFP_ZERO);
1898         if (!scratch_pt) {
1899                 gvt_err("fail to allocate scratch page\n");
1900                 return -ENOMEM;
1901         }
1902
1903         p = kmap_atomic(scratch_pt);
1904         mfn = intel_gvt_hypervisor_virt_to_mfn(p);
1905         if (mfn == INTEL_GVT_INVALID_ADDR) {
1906                 gvt_err("fail to translate vaddr:0x%llx\n", (u64)p);
1907                 kunmap_atomic(p);
1908                 __free_page(scratch_pt);
1909                 return -EFAULT;
1910         }
1911         gtt->scratch_pt[type].page_mfn = mfn;
1912         gtt->scratch_pt[type].page = scratch_pt;
1913         gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
1914                         vgpu->id, type, mfn);
1915
1916         /* Build the tree by full filled the scratch pt with the entries which
1917          * point to the next level scratch pt or scratch page. The
1918          * scratch_pt[type] indicate the scratch pt/scratch page used by the
1919          * 'type' pt.
1920          * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
1921          * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scatch_pt it self
1922          * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
1923          */
1924         if (type > GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) {
1925                 struct intel_gvt_gtt_entry se;
1926
1927                 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
1928                 se.type = get_entry_type(type - 1);
1929                 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
1930
1931                 /* The entry parameters like present/writeable/cache type
1932                  * set to the same as i915's scratch page tree.
1933                  */
1934                 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
1935                 if (type == GTT_TYPE_PPGTT_PDE_PT)
1936                         se.val64 |= PPAT_CACHED_INDEX;
1937
1938                 for (i = 0; i < page_entry_num; i++)
1939                         ops->set_entry(p, &se, i, false, 0, vgpu);
1940         }
1941
1942         kunmap_atomic(p);
1943
1944         return 0;
1945 }
1946
1947 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
1948 {
1949         int i;
1950
1951         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
1952                 if (vgpu->gtt.scratch_pt[i].page != NULL) {
1953                         __free_page(vgpu->gtt.scratch_pt[i].page);
1954                         vgpu->gtt.scratch_pt[i].page = NULL;
1955                         vgpu->gtt.scratch_pt[i].page_mfn = 0;
1956                 }
1957         }
1958
1959         return 0;
1960 }
1961
1962 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
1963 {
1964         int i, ret;
1965
1966         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
1967                 ret = alloc_scratch_pages(vgpu, i);
1968                 if (ret)
1969                         goto err;
1970         }
1971
1972         return 0;
1973
1974 err:
1975         release_scratch_page_tree(vgpu);
1976         return ret;
1977 }
1978
1979 /**
1980  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
1981  * @vgpu: a vGPU
1982  *
1983  * This function is used to initialize per-vGPU graphics memory virtualization
1984  * components.
1985  *
1986  * Returns:
1987  * Zero on success, error code if failed.
1988  */
1989 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
1990 {
1991         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1992         struct intel_vgpu_mm *ggtt_mm;
1993
1994         hash_init(gtt->guest_page_hash_table);
1995         hash_init(gtt->shadow_page_hash_table);
1996
1997         INIT_LIST_HEAD(&gtt->mm_list_head);
1998         INIT_LIST_HEAD(&gtt->oos_page_list_head);
1999         INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2000
2001         ggtt_mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_GGTT,
2002                         NULL, 1, 0);
2003         if (IS_ERR(ggtt_mm)) {
2004                 gvt_err("fail to create mm for ggtt.\n");
2005                 return PTR_ERR(ggtt_mm);
2006         }
2007
2008         gtt->ggtt_mm = ggtt_mm;
2009
2010         return create_scratch_page_tree(vgpu);
2011 }
2012
2013 /**
2014  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2015  * @vgpu: a vGPU
2016  *
2017  * This function is used to clean up per-vGPU graphics memory virtualization
2018  * components.
2019  *
2020  * Returns:
2021  * Zero on success, error code if failed.
2022  */
2023 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2024 {
2025         struct list_head *pos, *n;
2026         struct intel_vgpu_mm *mm;
2027
2028         ppgtt_free_all_shadow_page(vgpu);
2029         release_scratch_page_tree(vgpu);
2030
2031         list_for_each_safe(pos, n, &vgpu->gtt.mm_list_head) {
2032                 mm = container_of(pos, struct intel_vgpu_mm, list);
2033                 vgpu->gvt->gtt.mm_free_page_table(mm);
2034                 list_del(&mm->list);
2035                 list_del(&mm->lru_list);
2036                 kfree(mm);
2037         }
2038 }
2039
2040 static void clean_spt_oos(struct intel_gvt *gvt)
2041 {
2042         struct intel_gvt_gtt *gtt = &gvt->gtt;
2043         struct list_head *pos, *n;
2044         struct intel_vgpu_oos_page *oos_page;
2045
2046         WARN(!list_empty(&gtt->oos_page_use_list_head),
2047                 "someone is still using oos page\n");
2048
2049         list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2050                 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2051                 list_del(&oos_page->list);
2052                 kfree(oos_page);
2053         }
2054 }
2055
2056 static int setup_spt_oos(struct intel_gvt *gvt)
2057 {
2058         struct intel_gvt_gtt *gtt = &gvt->gtt;
2059         struct intel_vgpu_oos_page *oos_page;
2060         int i;
2061         int ret;
2062
2063         INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2064         INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2065
2066         for (i = 0; i < preallocated_oos_pages; i++) {
2067                 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2068                 if (!oos_page) {
2069                         gvt_err("fail to pre-allocate oos page\n");
2070                         ret = -ENOMEM;
2071                         goto fail;
2072                 }
2073
2074                 INIT_LIST_HEAD(&oos_page->list);
2075                 INIT_LIST_HEAD(&oos_page->vm_list);
2076                 oos_page->id = i;
2077                 list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2078         }
2079
2080         gvt_dbg_mm("%d oos pages preallocated\n", i);
2081
2082         return 0;
2083 fail:
2084         clean_spt_oos(gvt);
2085         return ret;
2086 }
2087
2088 /**
2089  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2090  * @vgpu: a vGPU
2091  * @page_table_level: PPGTT page table level
2092  * @root_entry: PPGTT page table root pointers
2093  *
2094  * This function is used to find a PPGTT mm object from mm object pool
2095  *
2096  * Returns:
2097  * pointer to mm object on success, NULL if failed.
2098  */
2099 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2100                 int page_table_level, void *root_entry)
2101 {
2102         struct list_head *pos;
2103         struct intel_vgpu_mm *mm;
2104         u64 *src, *dst;
2105
2106         list_for_each(pos, &vgpu->gtt.mm_list_head) {
2107                 mm = container_of(pos, struct intel_vgpu_mm, list);
2108                 if (mm->type != INTEL_GVT_MM_PPGTT)
2109                         continue;
2110
2111                 if (mm->page_table_level != page_table_level)
2112                         continue;
2113
2114                 src = root_entry;
2115                 dst = mm->virtual_page_table;
2116
2117                 if (page_table_level == 3) {
2118                         if (src[0] == dst[0]
2119                                         && src[1] == dst[1]
2120                                         && src[2] == dst[2]
2121                                         && src[3] == dst[3])
2122                                 return mm;
2123                 } else {
2124                         if (src[0] == dst[0])
2125                                 return mm;
2126                 }
2127         }
2128         return NULL;
2129 }
2130
2131 /**
2132  * intel_vgpu_g2v_create_ppgtt_mm - create a PPGTT mm object from
2133  * g2v notification
2134  * @vgpu: a vGPU
2135  * @page_table_level: PPGTT page table level
2136  *
2137  * This function is used to create a PPGTT mm object from a guest to GVT-g
2138  * notification.
2139  *
2140  * Returns:
2141  * Zero on success, negative error code if failed.
2142  */
2143 int intel_vgpu_g2v_create_ppgtt_mm(struct intel_vgpu *vgpu,
2144                 int page_table_level)
2145 {
2146         u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2147         struct intel_vgpu_mm *mm;
2148
2149         if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2150                 return -EINVAL;
2151
2152         mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2153         if (mm) {
2154                 intel_gvt_mm_reference(mm);
2155         } else {
2156                 mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_PPGTT,
2157                                 pdp, page_table_level, 0);
2158                 if (IS_ERR(mm)) {
2159                         gvt_err("fail to create mm\n");
2160                         return PTR_ERR(mm);
2161                 }
2162         }
2163         return 0;
2164 }
2165
2166 /**
2167  * intel_vgpu_g2v_destroy_ppgtt_mm - destroy a PPGTT mm object from
2168  * g2v notification
2169  * @vgpu: a vGPU
2170  * @page_table_level: PPGTT page table level
2171  *
2172  * This function is used to create a PPGTT mm object from a guest to GVT-g
2173  * notification.
2174  *
2175  * Returns:
2176  * Zero on success, negative error code if failed.
2177  */
2178 int intel_vgpu_g2v_destroy_ppgtt_mm(struct intel_vgpu *vgpu,
2179                 int page_table_level)
2180 {
2181         u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2182         struct intel_vgpu_mm *mm;
2183
2184         if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2185                 return -EINVAL;
2186
2187         mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2188         if (!mm) {
2189                 gvt_err("fail to find ppgtt instance.\n");
2190                 return -EINVAL;
2191         }
2192         intel_gvt_mm_unreference(mm);
2193         return 0;
2194 }
2195
2196 /**
2197  * intel_gvt_init_gtt - initialize mm components of a GVT device
2198  * @gvt: GVT device
2199  *
2200  * This function is called at the initialization stage, to initialize
2201  * the mm components of a GVT device.
2202  *
2203  * Returns:
2204  * zero on success, negative error code if failed.
2205  */
2206 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2207 {
2208         int ret;
2209
2210         gvt_dbg_core("init gtt\n");
2211
2212         if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)) {
2213                 gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2214                 gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2215                 gvt->gtt.mm_alloc_page_table = gen8_mm_alloc_page_table;
2216                 gvt->gtt.mm_free_page_table = gen8_mm_free_page_table;
2217         } else {
2218                 return -ENODEV;
2219         }
2220
2221         if (enable_out_of_sync) {
2222                 ret = setup_spt_oos(gvt);
2223                 if (ret) {
2224                         gvt_err("fail to initialize SPT oos\n");
2225                         return ret;
2226                 }
2227         }
2228         INIT_LIST_HEAD(&gvt->gtt.mm_lru_list_head);
2229         return 0;
2230 }
2231
2232 /**
2233  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2234  * @gvt: GVT device
2235  *
2236  * This function is called at the driver unloading stage, to clean up the
2237  * the mm components of a GVT device.
2238  *
2239  */
2240 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2241 {
2242         if (enable_out_of_sync)
2243                 clean_spt_oos(gvt);
2244 }