]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_debugfs.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50  * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53                        struct dentry *ent,
54                        const void *key)
55 {
56         struct drm_info_node *node;
57
58         node = kmalloc(sizeof(*node), GFP_KERNEL);
59         if (node == NULL) {
60                 debugfs_remove(ent);
61                 return -ENOMEM;
62         }
63
64         node->minor = minor;
65         node->dent = ent;
66         node->info_ent = (void *) key;
67
68         mutex_lock(&minor->debugfs_lock);
69         list_add(&node->list, &minor->debugfs_list);
70         mutex_unlock(&minor->debugfs_lock);
71
72         return 0;
73 }
74
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77         struct drm_info_node *node = m->private;
78         struct drm_device *dev = node->minor->dev;
79         const struct intel_device_info *info = INTEL_INFO(dev);
80
81         seq_printf(m, "gen: %d\n", info->gen);
82         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88
89         return 0;
90 }
91
92 static const char get_active_flag(struct drm_i915_gem_object *obj)
93 {
94         return obj->active ? '*' : ' ';
95 }
96
97 static const char get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99         return obj->pin_display ? 'p' : ' ';
100 }
101
102 static const char get_tiling_flag(struct drm_i915_gem_object *obj)
103 {
104         switch (obj->tiling_mode) {
105         default:
106         case I915_TILING_NONE: return ' ';
107         case I915_TILING_X: return 'X';
108         case I915_TILING_Y: return 'Y';
109         }
110 }
111
112 static inline const char get_global_flag(struct drm_i915_gem_object *obj)
113 {
114         return i915_gem_obj_to_ggtt(obj) ? 'g' : ' ';
115 }
116
117 static inline const char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
118 {
119         return obj->mapping ? 'M' : ' ';
120 }
121
122 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
123 {
124         u64 size = 0;
125         struct i915_vma *vma;
126
127         list_for_each_entry(vma, &obj->vma_list, obj_link) {
128                 if (vma->is_ggtt && drm_mm_node_allocated(&vma->node))
129                         size += vma->node.size;
130         }
131
132         return size;
133 }
134
135 static void
136 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
137 {
138         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
139         struct intel_engine_cs *engine;
140         struct i915_vma *vma;
141         int pin_count = 0;
142         enum intel_engine_id id;
143
144         lockdep_assert_held(&obj->base.dev->struct_mutex);
145
146         seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x [ ",
147                    &obj->base,
148                    get_active_flag(obj),
149                    get_pin_flag(obj),
150                    get_tiling_flag(obj),
151                    get_global_flag(obj),
152                    get_pin_mapped_flag(obj),
153                    obj->base.size / 1024,
154                    obj->base.read_domains,
155                    obj->base.write_domain);
156         for_each_engine_id(engine, dev_priv, id)
157                 seq_printf(m, "%x ",
158                                 i915_gem_request_get_seqno(obj->last_read_req[id]));
159         seq_printf(m, "] %x %x%s%s%s",
160                    i915_gem_request_get_seqno(obj->last_write_req),
161                    i915_gem_request_get_seqno(obj->last_fenced_req),
162                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
163                    obj->dirty ? " dirty" : "",
164                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
165         if (obj->base.name)
166                 seq_printf(m, " (name: %d)", obj->base.name);
167         list_for_each_entry(vma, &obj->vma_list, obj_link) {
168                 if (vma->pin_count > 0)
169                         pin_count++;
170         }
171         seq_printf(m, " (pinned x %d)", pin_count);
172         if (obj->pin_display)
173                 seq_printf(m, " (display)");
174         if (obj->fence_reg != I915_FENCE_REG_NONE)
175                 seq_printf(m, " (fence: %d)", obj->fence_reg);
176         list_for_each_entry(vma, &obj->vma_list, obj_link) {
177                 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
178                            vma->is_ggtt ? "g" : "pp",
179                            vma->node.start, vma->node.size);
180                 if (vma->is_ggtt)
181                         seq_printf(m, ", type: %u", vma->ggtt_view.type);
182                 seq_puts(m, ")");
183         }
184         if (obj->stolen)
185                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
186         if (obj->pin_display || obj->fault_mappable) {
187                 char s[3], *t = s;
188                 if (obj->pin_display)
189                         *t++ = 'p';
190                 if (obj->fault_mappable)
191                         *t++ = 'f';
192                 *t = '\0';
193                 seq_printf(m, " (%s mappable)", s);
194         }
195         if (obj->last_write_req != NULL)
196                 seq_printf(m, " (%s)",
197                            i915_gem_request_get_engine(obj->last_write_req)->name);
198         if (obj->frontbuffer_bits)
199                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
200 }
201
202 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
203 {
204         seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
205         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
206         seq_putc(m, ' ');
207 }
208
209 static int i915_gem_object_list_info(struct seq_file *m, void *data)
210 {
211         struct drm_info_node *node = m->private;
212         uintptr_t list = (uintptr_t) node->info_ent->data;
213         struct list_head *head;
214         struct drm_device *dev = node->minor->dev;
215         struct drm_i915_private *dev_priv = to_i915(dev);
216         struct i915_ggtt *ggtt = &dev_priv->ggtt;
217         struct i915_vma *vma;
218         u64 total_obj_size, total_gtt_size;
219         int count, ret;
220
221         ret = mutex_lock_interruptible(&dev->struct_mutex);
222         if (ret)
223                 return ret;
224
225         /* FIXME: the user of this interface might want more than just GGTT */
226         switch (list) {
227         case ACTIVE_LIST:
228                 seq_puts(m, "Active:\n");
229                 head = &ggtt->base.active_list;
230                 break;
231         case INACTIVE_LIST:
232                 seq_puts(m, "Inactive:\n");
233                 head = &ggtt->base.inactive_list;
234                 break;
235         default:
236                 mutex_unlock(&dev->struct_mutex);
237                 return -EINVAL;
238         }
239
240         total_obj_size = total_gtt_size = count = 0;
241         list_for_each_entry(vma, head, vm_link) {
242                 seq_printf(m, "   ");
243                 describe_obj(m, vma->obj);
244                 seq_printf(m, "\n");
245                 total_obj_size += vma->obj->base.size;
246                 total_gtt_size += vma->node.size;
247                 count++;
248         }
249         mutex_unlock(&dev->struct_mutex);
250
251         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
252                    count, total_obj_size, total_gtt_size);
253         return 0;
254 }
255
256 static int obj_rank_by_stolen(void *priv,
257                               struct list_head *A, struct list_head *B)
258 {
259         struct drm_i915_gem_object *a =
260                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
261         struct drm_i915_gem_object *b =
262                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
263
264         if (a->stolen->start < b->stolen->start)
265                 return -1;
266         if (a->stolen->start > b->stolen->start)
267                 return 1;
268         return 0;
269 }
270
271 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
272 {
273         struct drm_info_node *node = m->private;
274         struct drm_device *dev = node->minor->dev;
275         struct drm_i915_private *dev_priv = dev->dev_private;
276         struct drm_i915_gem_object *obj;
277         u64 total_obj_size, total_gtt_size;
278         LIST_HEAD(stolen);
279         int count, ret;
280
281         ret = mutex_lock_interruptible(&dev->struct_mutex);
282         if (ret)
283                 return ret;
284
285         total_obj_size = total_gtt_size = count = 0;
286         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
287                 if (obj->stolen == NULL)
288                         continue;
289
290                 list_add(&obj->obj_exec_link, &stolen);
291
292                 total_obj_size += obj->base.size;
293                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
294                 count++;
295         }
296         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
297                 if (obj->stolen == NULL)
298                         continue;
299
300                 list_add(&obj->obj_exec_link, &stolen);
301
302                 total_obj_size += obj->base.size;
303                 count++;
304         }
305         list_sort(NULL, &stolen, obj_rank_by_stolen);
306         seq_puts(m, "Stolen:\n");
307         while (!list_empty(&stolen)) {
308                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
309                 seq_puts(m, "   ");
310                 describe_obj(m, obj);
311                 seq_putc(m, '\n');
312                 list_del_init(&obj->obj_exec_link);
313         }
314         mutex_unlock(&dev->struct_mutex);
315
316         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
317                    count, total_obj_size, total_gtt_size);
318         return 0;
319 }
320
321 #define count_objects(list, member) do { \
322         list_for_each_entry(obj, list, member) { \
323                 size += i915_gem_obj_total_ggtt_size(obj); \
324                 ++count; \
325                 if (obj->map_and_fenceable) { \
326                         mappable_size += i915_gem_obj_ggtt_size(obj); \
327                         ++mappable_count; \
328                 } \
329         } \
330 } while (0)
331
332 struct file_stats {
333         struct drm_i915_file_private *file_priv;
334         unsigned long count;
335         u64 total, unbound;
336         u64 global, shared;
337         u64 active, inactive;
338 };
339
340 static int per_file_stats(int id, void *ptr, void *data)
341 {
342         struct drm_i915_gem_object *obj = ptr;
343         struct file_stats *stats = data;
344         struct i915_vma *vma;
345
346         stats->count++;
347         stats->total += obj->base.size;
348
349         if (obj->base.name || obj->base.dma_buf)
350                 stats->shared += obj->base.size;
351
352         if (USES_FULL_PPGTT(obj->base.dev)) {
353                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
354                         struct i915_hw_ppgtt *ppgtt;
355
356                         if (!drm_mm_node_allocated(&vma->node))
357                                 continue;
358
359                         if (vma->is_ggtt) {
360                                 stats->global += obj->base.size;
361                                 continue;
362                         }
363
364                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
365                         if (ppgtt->file_priv != stats->file_priv)
366                                 continue;
367
368                         if (obj->active) /* XXX per-vma statistic */
369                                 stats->active += obj->base.size;
370                         else
371                                 stats->inactive += obj->base.size;
372
373                         return 0;
374                 }
375         } else {
376                 if (i915_gem_obj_ggtt_bound(obj)) {
377                         stats->global += obj->base.size;
378                         if (obj->active)
379                                 stats->active += obj->base.size;
380                         else
381                                 stats->inactive += obj->base.size;
382                         return 0;
383                 }
384         }
385
386         if (!list_empty(&obj->global_list))
387                 stats->unbound += obj->base.size;
388
389         return 0;
390 }
391
392 #define print_file_stats(m, name, stats) do { \
393         if (stats.count) \
394                 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
395                            name, \
396                            stats.count, \
397                            stats.total, \
398                            stats.active, \
399                            stats.inactive, \
400                            stats.global, \
401                            stats.shared, \
402                            stats.unbound); \
403 } while (0)
404
405 static void print_batch_pool_stats(struct seq_file *m,
406                                    struct drm_i915_private *dev_priv)
407 {
408         struct drm_i915_gem_object *obj;
409         struct file_stats stats;
410         struct intel_engine_cs *engine;
411         int j;
412
413         memset(&stats, 0, sizeof(stats));
414
415         for_each_engine(engine, dev_priv) {
416                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
417                         list_for_each_entry(obj,
418                                             &engine->batch_pool.cache_list[j],
419                                             batch_pool_link)
420                                 per_file_stats(0, obj, &stats);
421                 }
422         }
423
424         print_file_stats(m, "[k]batch pool", stats);
425 }
426
427 #define count_vmas(list, member) do { \
428         list_for_each_entry(vma, list, member) { \
429                 size += i915_gem_obj_total_ggtt_size(vma->obj); \
430                 ++count; \
431                 if (vma->obj->map_and_fenceable) { \
432                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
433                         ++mappable_count; \
434                 } \
435         } \
436 } while (0)
437
438 static int i915_gem_object_info(struct seq_file *m, void* data)
439 {
440         struct drm_info_node *node = m->private;
441         struct drm_device *dev = node->minor->dev;
442         struct drm_i915_private *dev_priv = to_i915(dev);
443         struct i915_ggtt *ggtt = &dev_priv->ggtt;
444         u32 count, mappable_count, purgeable_count;
445         u64 size, mappable_size, purgeable_size;
446         unsigned long pin_mapped_count = 0, pin_mapped_purgeable_count = 0;
447         u64 pin_mapped_size = 0, pin_mapped_purgeable_size = 0;
448         struct drm_i915_gem_object *obj;
449         struct drm_file *file;
450         struct i915_vma *vma;
451         int ret;
452
453         ret = mutex_lock_interruptible(&dev->struct_mutex);
454         if (ret)
455                 return ret;
456
457         seq_printf(m, "%u objects, %zu bytes\n",
458                    dev_priv->mm.object_count,
459                    dev_priv->mm.object_memory);
460
461         size = count = mappable_size = mappable_count = 0;
462         count_objects(&dev_priv->mm.bound_list, global_list);
463         seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
464                    count, mappable_count, size, mappable_size);
465
466         size = count = mappable_size = mappable_count = 0;
467         count_vmas(&ggtt->base.active_list, vm_link);
468         seq_printf(m, "  %u [%u] active objects, %llu [%llu] bytes\n",
469                    count, mappable_count, size, mappable_size);
470
471         size = count = mappable_size = mappable_count = 0;
472         count_vmas(&ggtt->base.inactive_list, vm_link);
473         seq_printf(m, "  %u [%u] inactive objects, %llu [%llu] bytes\n",
474                    count, mappable_count, size, mappable_size);
475
476         size = count = purgeable_size = purgeable_count = 0;
477         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
478                 size += obj->base.size, ++count;
479                 if (obj->madv == I915_MADV_DONTNEED)
480                         purgeable_size += obj->base.size, ++purgeable_count;
481                 if (obj->mapping) {
482                         pin_mapped_count++;
483                         pin_mapped_size += obj->base.size;
484                         if (obj->pages_pin_count == 0) {
485                                 pin_mapped_purgeable_count++;
486                                 pin_mapped_purgeable_size += obj->base.size;
487                         }
488                 }
489         }
490         seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
491
492         size = count = mappable_size = mappable_count = 0;
493         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
494                 if (obj->fault_mappable) {
495                         size += i915_gem_obj_ggtt_size(obj);
496                         ++count;
497                 }
498                 if (obj->pin_display) {
499                         mappable_size += i915_gem_obj_ggtt_size(obj);
500                         ++mappable_count;
501                 }
502                 if (obj->madv == I915_MADV_DONTNEED) {
503                         purgeable_size += obj->base.size;
504                         ++purgeable_count;
505                 }
506                 if (obj->mapping) {
507                         pin_mapped_count++;
508                         pin_mapped_size += obj->base.size;
509                         if (obj->pages_pin_count == 0) {
510                                 pin_mapped_purgeable_count++;
511                                 pin_mapped_purgeable_size += obj->base.size;
512                         }
513                 }
514         }
515         seq_printf(m, "%u purgeable objects, %llu bytes\n",
516                    purgeable_count, purgeable_size);
517         seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
518                    mappable_count, mappable_size);
519         seq_printf(m, "%u fault mappable objects, %llu bytes\n",
520                    count, size);
521         seq_printf(m,
522                    "%lu [%lu] pin mapped objects, %llu [%llu] bytes [purgeable]\n",
523                    pin_mapped_count, pin_mapped_purgeable_count,
524                    pin_mapped_size, pin_mapped_purgeable_size);
525
526         seq_printf(m, "%llu [%llu] gtt total\n",
527                    ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
528
529         seq_putc(m, '\n');
530         print_batch_pool_stats(m, dev_priv);
531
532         mutex_unlock(&dev->struct_mutex);
533
534         mutex_lock(&dev->filelist_mutex);
535         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
536                 struct file_stats stats;
537                 struct task_struct *task;
538
539                 memset(&stats, 0, sizeof(stats));
540                 stats.file_priv = file->driver_priv;
541                 spin_lock(&file->table_lock);
542                 idr_for_each(&file->object_idr, per_file_stats, &stats);
543                 spin_unlock(&file->table_lock);
544                 /*
545                  * Although we have a valid reference on file->pid, that does
546                  * not guarantee that the task_struct who called get_pid() is
547                  * still alive (e.g. get_pid(current) => fork() => exit()).
548                  * Therefore, we need to protect this ->comm access using RCU.
549                  */
550                 rcu_read_lock();
551                 task = pid_task(file->pid, PIDTYPE_PID);
552                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
553                 rcu_read_unlock();
554         }
555         mutex_unlock(&dev->filelist_mutex);
556
557         return 0;
558 }
559
560 static int i915_gem_gtt_info(struct seq_file *m, void *data)
561 {
562         struct drm_info_node *node = m->private;
563         struct drm_device *dev = node->minor->dev;
564         uintptr_t list = (uintptr_t) node->info_ent->data;
565         struct drm_i915_private *dev_priv = dev->dev_private;
566         struct drm_i915_gem_object *obj;
567         u64 total_obj_size, total_gtt_size;
568         int count, ret;
569
570         ret = mutex_lock_interruptible(&dev->struct_mutex);
571         if (ret)
572                 return ret;
573
574         total_obj_size = total_gtt_size = count = 0;
575         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
576                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
577                         continue;
578
579                 seq_puts(m, "   ");
580                 describe_obj(m, obj);
581                 seq_putc(m, '\n');
582                 total_obj_size += obj->base.size;
583                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
584                 count++;
585         }
586
587         mutex_unlock(&dev->struct_mutex);
588
589         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
590                    count, total_obj_size, total_gtt_size);
591
592         return 0;
593 }
594
595 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
596 {
597         struct drm_info_node *node = m->private;
598         struct drm_device *dev = node->minor->dev;
599         struct drm_i915_private *dev_priv = dev->dev_private;
600         struct intel_crtc *crtc;
601         int ret;
602
603         ret = mutex_lock_interruptible(&dev->struct_mutex);
604         if (ret)
605                 return ret;
606
607         for_each_intel_crtc(dev, crtc) {
608                 const char pipe = pipe_name(crtc->pipe);
609                 const char plane = plane_name(crtc->plane);
610                 struct intel_unpin_work *work;
611
612                 spin_lock_irq(&dev->event_lock);
613                 work = crtc->unpin_work;
614                 if (work == NULL) {
615                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
616                                    pipe, plane);
617                 } else {
618                         u32 addr;
619
620                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
621                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
622                                            pipe, plane);
623                         } else {
624                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
625                                            pipe, plane);
626                         }
627                         if (work->flip_queued_req) {
628                                 struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
629
630                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
631                                            engine->name,
632                                            i915_gem_request_get_seqno(work->flip_queued_req),
633                                            dev_priv->next_seqno,
634                                            engine->get_seqno(engine),
635                                            i915_gem_request_completed(work->flip_queued_req, true));
636                         } else
637                                 seq_printf(m, "Flip not associated with any ring\n");
638                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
639                                    work->flip_queued_vblank,
640                                    work->flip_ready_vblank,
641                                    drm_crtc_vblank_count(&crtc->base));
642                         if (work->enable_stall_check)
643                                 seq_puts(m, "Stall check enabled, ");
644                         else
645                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
646                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
647
648                         if (INTEL_INFO(dev)->gen >= 4)
649                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
650                         else
651                                 addr = I915_READ(DSPADDR(crtc->plane));
652                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
653
654                         if (work->pending_flip_obj) {
655                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
656                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
657                         }
658                 }
659                 spin_unlock_irq(&dev->event_lock);
660         }
661
662         mutex_unlock(&dev->struct_mutex);
663
664         return 0;
665 }
666
667 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
668 {
669         struct drm_info_node *node = m->private;
670         struct drm_device *dev = node->minor->dev;
671         struct drm_i915_private *dev_priv = dev->dev_private;
672         struct drm_i915_gem_object *obj;
673         struct intel_engine_cs *engine;
674         int total = 0;
675         int ret, j;
676
677         ret = mutex_lock_interruptible(&dev->struct_mutex);
678         if (ret)
679                 return ret;
680
681         for_each_engine(engine, dev_priv) {
682                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
683                         int count;
684
685                         count = 0;
686                         list_for_each_entry(obj,
687                                             &engine->batch_pool.cache_list[j],
688                                             batch_pool_link)
689                                 count++;
690                         seq_printf(m, "%s cache[%d]: %d objects\n",
691                                    engine->name, j, count);
692
693                         list_for_each_entry(obj,
694                                             &engine->batch_pool.cache_list[j],
695                                             batch_pool_link) {
696                                 seq_puts(m, "   ");
697                                 describe_obj(m, obj);
698                                 seq_putc(m, '\n');
699                         }
700
701                         total += count;
702                 }
703         }
704
705         seq_printf(m, "total: %d\n", total);
706
707         mutex_unlock(&dev->struct_mutex);
708
709         return 0;
710 }
711
712 static int i915_gem_request_info(struct seq_file *m, void *data)
713 {
714         struct drm_info_node *node = m->private;
715         struct drm_device *dev = node->minor->dev;
716         struct drm_i915_private *dev_priv = dev->dev_private;
717         struct intel_engine_cs *engine;
718         struct drm_i915_gem_request *req;
719         int ret, any;
720
721         ret = mutex_lock_interruptible(&dev->struct_mutex);
722         if (ret)
723                 return ret;
724
725         any = 0;
726         for_each_engine(engine, dev_priv) {
727                 int count;
728
729                 count = 0;
730                 list_for_each_entry(req, &engine->request_list, list)
731                         count++;
732                 if (count == 0)
733                         continue;
734
735                 seq_printf(m, "%s requests: %d\n", engine->name, count);
736                 list_for_each_entry(req, &engine->request_list, list) {
737                         struct task_struct *task;
738
739                         rcu_read_lock();
740                         task = NULL;
741                         if (req->pid)
742                                 task = pid_task(req->pid, PIDTYPE_PID);
743                         seq_printf(m, "    %x @ %d: %s [%d]\n",
744                                    req->seqno,
745                                    (int) (jiffies - req->emitted_jiffies),
746                                    task ? task->comm : "<unknown>",
747                                    task ? task->pid : -1);
748                         rcu_read_unlock();
749                 }
750
751                 any++;
752         }
753         mutex_unlock(&dev->struct_mutex);
754
755         if (any == 0)
756                 seq_puts(m, "No requests\n");
757
758         return 0;
759 }
760
761 static void i915_ring_seqno_info(struct seq_file *m,
762                                  struct intel_engine_cs *engine)
763 {
764         seq_printf(m, "Current sequence (%s): %x\n",
765                    engine->name, engine->get_seqno(engine));
766         seq_printf(m, "Current user interrupts (%s): %x\n",
767                    engine->name, READ_ONCE(engine->user_interrupts));
768 }
769
770 static int i915_gem_seqno_info(struct seq_file *m, void *data)
771 {
772         struct drm_info_node *node = m->private;
773         struct drm_device *dev = node->minor->dev;
774         struct drm_i915_private *dev_priv = dev->dev_private;
775         struct intel_engine_cs *engine;
776         int ret;
777
778         ret = mutex_lock_interruptible(&dev->struct_mutex);
779         if (ret)
780                 return ret;
781         intel_runtime_pm_get(dev_priv);
782
783         for_each_engine(engine, dev_priv)
784                 i915_ring_seqno_info(m, engine);
785
786         intel_runtime_pm_put(dev_priv);
787         mutex_unlock(&dev->struct_mutex);
788
789         return 0;
790 }
791
792
793 static int i915_interrupt_info(struct seq_file *m, void *data)
794 {
795         struct drm_info_node *node = m->private;
796         struct drm_device *dev = node->minor->dev;
797         struct drm_i915_private *dev_priv = dev->dev_private;
798         struct intel_engine_cs *engine;
799         int ret, i, pipe;
800
801         ret = mutex_lock_interruptible(&dev->struct_mutex);
802         if (ret)
803                 return ret;
804         intel_runtime_pm_get(dev_priv);
805
806         if (IS_CHERRYVIEW(dev)) {
807                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
808                            I915_READ(GEN8_MASTER_IRQ));
809
810                 seq_printf(m, "Display IER:\t%08x\n",
811                            I915_READ(VLV_IER));
812                 seq_printf(m, "Display IIR:\t%08x\n",
813                            I915_READ(VLV_IIR));
814                 seq_printf(m, "Display IIR_RW:\t%08x\n",
815                            I915_READ(VLV_IIR_RW));
816                 seq_printf(m, "Display IMR:\t%08x\n",
817                            I915_READ(VLV_IMR));
818                 for_each_pipe(dev_priv, pipe)
819                         seq_printf(m, "Pipe %c stat:\t%08x\n",
820                                    pipe_name(pipe),
821                                    I915_READ(PIPESTAT(pipe)));
822
823                 seq_printf(m, "Port hotplug:\t%08x\n",
824                            I915_READ(PORT_HOTPLUG_EN));
825                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
826                            I915_READ(VLV_DPFLIPSTAT));
827                 seq_printf(m, "DPINVGTT:\t%08x\n",
828                            I915_READ(DPINVGTT));
829
830                 for (i = 0; i < 4; i++) {
831                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
832                                    i, I915_READ(GEN8_GT_IMR(i)));
833                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
834                                    i, I915_READ(GEN8_GT_IIR(i)));
835                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
836                                    i, I915_READ(GEN8_GT_IER(i)));
837                 }
838
839                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
840                            I915_READ(GEN8_PCU_IMR));
841                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
842                            I915_READ(GEN8_PCU_IIR));
843                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
844                            I915_READ(GEN8_PCU_IER));
845         } else if (INTEL_INFO(dev)->gen >= 8) {
846                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
847                            I915_READ(GEN8_MASTER_IRQ));
848
849                 for (i = 0; i < 4; i++) {
850                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
851                                    i, I915_READ(GEN8_GT_IMR(i)));
852                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
853                                    i, I915_READ(GEN8_GT_IIR(i)));
854                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
855                                    i, I915_READ(GEN8_GT_IER(i)));
856                 }
857
858                 for_each_pipe(dev_priv, pipe) {
859                         enum intel_display_power_domain power_domain;
860
861                         power_domain = POWER_DOMAIN_PIPE(pipe);
862                         if (!intel_display_power_get_if_enabled(dev_priv,
863                                                                 power_domain)) {
864                                 seq_printf(m, "Pipe %c power disabled\n",
865                                            pipe_name(pipe));
866                                 continue;
867                         }
868                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
869                                    pipe_name(pipe),
870                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
871                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
872                                    pipe_name(pipe),
873                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
874                         seq_printf(m, "Pipe %c IER:\t%08x\n",
875                                    pipe_name(pipe),
876                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
877
878                         intel_display_power_put(dev_priv, power_domain);
879                 }
880
881                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
882                            I915_READ(GEN8_DE_PORT_IMR));
883                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
884                            I915_READ(GEN8_DE_PORT_IIR));
885                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
886                            I915_READ(GEN8_DE_PORT_IER));
887
888                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
889                            I915_READ(GEN8_DE_MISC_IMR));
890                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
891                            I915_READ(GEN8_DE_MISC_IIR));
892                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
893                            I915_READ(GEN8_DE_MISC_IER));
894
895                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
896                            I915_READ(GEN8_PCU_IMR));
897                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
898                            I915_READ(GEN8_PCU_IIR));
899                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
900                            I915_READ(GEN8_PCU_IER));
901         } else if (IS_VALLEYVIEW(dev)) {
902                 seq_printf(m, "Display IER:\t%08x\n",
903                            I915_READ(VLV_IER));
904                 seq_printf(m, "Display IIR:\t%08x\n",
905                            I915_READ(VLV_IIR));
906                 seq_printf(m, "Display IIR_RW:\t%08x\n",
907                            I915_READ(VLV_IIR_RW));
908                 seq_printf(m, "Display IMR:\t%08x\n",
909                            I915_READ(VLV_IMR));
910                 for_each_pipe(dev_priv, pipe)
911                         seq_printf(m, "Pipe %c stat:\t%08x\n",
912                                    pipe_name(pipe),
913                                    I915_READ(PIPESTAT(pipe)));
914
915                 seq_printf(m, "Master IER:\t%08x\n",
916                            I915_READ(VLV_MASTER_IER));
917
918                 seq_printf(m, "Render IER:\t%08x\n",
919                            I915_READ(GTIER));
920                 seq_printf(m, "Render IIR:\t%08x\n",
921                            I915_READ(GTIIR));
922                 seq_printf(m, "Render IMR:\t%08x\n",
923                            I915_READ(GTIMR));
924
925                 seq_printf(m, "PM IER:\t\t%08x\n",
926                            I915_READ(GEN6_PMIER));
927                 seq_printf(m, "PM IIR:\t\t%08x\n",
928                            I915_READ(GEN6_PMIIR));
929                 seq_printf(m, "PM IMR:\t\t%08x\n",
930                            I915_READ(GEN6_PMIMR));
931
932                 seq_printf(m, "Port hotplug:\t%08x\n",
933                            I915_READ(PORT_HOTPLUG_EN));
934                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
935                            I915_READ(VLV_DPFLIPSTAT));
936                 seq_printf(m, "DPINVGTT:\t%08x\n",
937                            I915_READ(DPINVGTT));
938
939         } else if (!HAS_PCH_SPLIT(dev)) {
940                 seq_printf(m, "Interrupt enable:    %08x\n",
941                            I915_READ(IER));
942                 seq_printf(m, "Interrupt identity:  %08x\n",
943                            I915_READ(IIR));
944                 seq_printf(m, "Interrupt mask:      %08x\n",
945                            I915_READ(IMR));
946                 for_each_pipe(dev_priv, pipe)
947                         seq_printf(m, "Pipe %c stat:         %08x\n",
948                                    pipe_name(pipe),
949                                    I915_READ(PIPESTAT(pipe)));
950         } else {
951                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
952                            I915_READ(DEIER));
953                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
954                            I915_READ(DEIIR));
955                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
956                            I915_READ(DEIMR));
957                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
958                            I915_READ(SDEIER));
959                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
960                            I915_READ(SDEIIR));
961                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
962                            I915_READ(SDEIMR));
963                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
964                            I915_READ(GTIER));
965                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
966                            I915_READ(GTIIR));
967                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
968                            I915_READ(GTIMR));
969         }
970         for_each_engine(engine, dev_priv) {
971                 if (INTEL_INFO(dev)->gen >= 6) {
972                         seq_printf(m,
973                                    "Graphics Interrupt mask (%s):       %08x\n",
974                                    engine->name, I915_READ_IMR(engine));
975                 }
976                 i915_ring_seqno_info(m, engine);
977         }
978         intel_runtime_pm_put(dev_priv);
979         mutex_unlock(&dev->struct_mutex);
980
981         return 0;
982 }
983
984 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
985 {
986         struct drm_info_node *node = m->private;
987         struct drm_device *dev = node->minor->dev;
988         struct drm_i915_private *dev_priv = dev->dev_private;
989         int i, ret;
990
991         ret = mutex_lock_interruptible(&dev->struct_mutex);
992         if (ret)
993                 return ret;
994
995         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
996         for (i = 0; i < dev_priv->num_fence_regs; i++) {
997                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
998
999                 seq_printf(m, "Fence %d, pin count = %d, object = ",
1000                            i, dev_priv->fence_regs[i].pin_count);
1001                 if (obj == NULL)
1002                         seq_puts(m, "unused");
1003                 else
1004                         describe_obj(m, obj);
1005                 seq_putc(m, '\n');
1006         }
1007
1008         mutex_unlock(&dev->struct_mutex);
1009         return 0;
1010 }
1011
1012 static int i915_hws_info(struct seq_file *m, void *data)
1013 {
1014         struct drm_info_node *node = m->private;
1015         struct drm_device *dev = node->minor->dev;
1016         struct drm_i915_private *dev_priv = dev->dev_private;
1017         struct intel_engine_cs *engine;
1018         const u32 *hws;
1019         int i;
1020
1021         engine = &dev_priv->engine[(uintptr_t)node->info_ent->data];
1022         hws = engine->status_page.page_addr;
1023         if (hws == NULL)
1024                 return 0;
1025
1026         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
1027                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1028                            i * 4,
1029                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
1030         }
1031         return 0;
1032 }
1033
1034 static ssize_t
1035 i915_error_state_write(struct file *filp,
1036                        const char __user *ubuf,
1037                        size_t cnt,
1038                        loff_t *ppos)
1039 {
1040         struct i915_error_state_file_priv *error_priv = filp->private_data;
1041         struct drm_device *dev = error_priv->dev;
1042         int ret;
1043
1044         DRM_DEBUG_DRIVER("Resetting error state\n");
1045
1046         ret = mutex_lock_interruptible(&dev->struct_mutex);
1047         if (ret)
1048                 return ret;
1049
1050         i915_destroy_error_state(dev);
1051         mutex_unlock(&dev->struct_mutex);
1052
1053         return cnt;
1054 }
1055
1056 static int i915_error_state_open(struct inode *inode, struct file *file)
1057 {
1058         struct drm_device *dev = inode->i_private;
1059         struct i915_error_state_file_priv *error_priv;
1060
1061         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1062         if (!error_priv)
1063                 return -ENOMEM;
1064
1065         error_priv->dev = dev;
1066
1067         i915_error_state_get(dev, error_priv);
1068
1069         file->private_data = error_priv;
1070
1071         return 0;
1072 }
1073
1074 static int i915_error_state_release(struct inode *inode, struct file *file)
1075 {
1076         struct i915_error_state_file_priv *error_priv = file->private_data;
1077
1078         i915_error_state_put(error_priv);
1079         kfree(error_priv);
1080
1081         return 0;
1082 }
1083
1084 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1085                                      size_t count, loff_t *pos)
1086 {
1087         struct i915_error_state_file_priv *error_priv = file->private_data;
1088         struct drm_i915_error_state_buf error_str;
1089         loff_t tmp_pos = 0;
1090         ssize_t ret_count = 0;
1091         int ret;
1092
1093         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1094         if (ret)
1095                 return ret;
1096
1097         ret = i915_error_state_to_str(&error_str, error_priv);
1098         if (ret)
1099                 goto out;
1100
1101         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1102                                             error_str.buf,
1103                                             error_str.bytes);
1104
1105         if (ret_count < 0)
1106                 ret = ret_count;
1107         else
1108                 *pos = error_str.start + ret_count;
1109 out:
1110         i915_error_state_buf_release(&error_str);
1111         return ret ?: ret_count;
1112 }
1113
1114 static const struct file_operations i915_error_state_fops = {
1115         .owner = THIS_MODULE,
1116         .open = i915_error_state_open,
1117         .read = i915_error_state_read,
1118         .write = i915_error_state_write,
1119         .llseek = default_llseek,
1120         .release = i915_error_state_release,
1121 };
1122
1123 static int
1124 i915_next_seqno_get(void *data, u64 *val)
1125 {
1126         struct drm_device *dev = data;
1127         struct drm_i915_private *dev_priv = dev->dev_private;
1128         int ret;
1129
1130         ret = mutex_lock_interruptible(&dev->struct_mutex);
1131         if (ret)
1132                 return ret;
1133
1134         *val = dev_priv->next_seqno;
1135         mutex_unlock(&dev->struct_mutex);
1136
1137         return 0;
1138 }
1139
1140 static int
1141 i915_next_seqno_set(void *data, u64 val)
1142 {
1143         struct drm_device *dev = data;
1144         int ret;
1145
1146         ret = mutex_lock_interruptible(&dev->struct_mutex);
1147         if (ret)
1148                 return ret;
1149
1150         ret = i915_gem_set_seqno(dev, val);
1151         mutex_unlock(&dev->struct_mutex);
1152
1153         return ret;
1154 }
1155
1156 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1157                         i915_next_seqno_get, i915_next_seqno_set,
1158                         "0x%llx\n");
1159
1160 static int i915_frequency_info(struct seq_file *m, void *unused)
1161 {
1162         struct drm_info_node *node = m->private;
1163         struct drm_device *dev = node->minor->dev;
1164         struct drm_i915_private *dev_priv = dev->dev_private;
1165         int ret = 0;
1166
1167         intel_runtime_pm_get(dev_priv);
1168
1169         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1170
1171         if (IS_GEN5(dev)) {
1172                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1173                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1174
1175                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1176                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1177                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1178                            MEMSTAT_VID_SHIFT);
1179                 seq_printf(m, "Current P-state: %d\n",
1180                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1181         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1182                 u32 freq_sts;
1183
1184                 mutex_lock(&dev_priv->rps.hw_lock);
1185                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1186                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1187                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1188
1189                 seq_printf(m, "actual GPU freq: %d MHz\n",
1190                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1191
1192                 seq_printf(m, "current GPU freq: %d MHz\n",
1193                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1194
1195                 seq_printf(m, "max GPU freq: %d MHz\n",
1196                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1197
1198                 seq_printf(m, "min GPU freq: %d MHz\n",
1199                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1200
1201                 seq_printf(m, "idle GPU freq: %d MHz\n",
1202                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1203
1204                 seq_printf(m,
1205                            "efficient (RPe) frequency: %d MHz\n",
1206                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1207                 mutex_unlock(&dev_priv->rps.hw_lock);
1208         } else if (INTEL_INFO(dev)->gen >= 6) {
1209                 u32 rp_state_limits;
1210                 u32 gt_perf_status;
1211                 u32 rp_state_cap;
1212                 u32 rpmodectl, rpinclimit, rpdeclimit;
1213                 u32 rpstat, cagf, reqf;
1214                 u32 rpupei, rpcurup, rpprevup;
1215                 u32 rpdownei, rpcurdown, rpprevdown;
1216                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1217                 int max_freq;
1218
1219                 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1220                 if (IS_BROXTON(dev)) {
1221                         rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1222                         gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1223                 } else {
1224                         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1225                         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1226                 }
1227
1228                 /* RPSTAT1 is in the GT power well */
1229                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1230                 if (ret)
1231                         goto out;
1232
1233                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1234
1235                 reqf = I915_READ(GEN6_RPNSWREQ);
1236                 if (IS_GEN9(dev))
1237                         reqf >>= 23;
1238                 else {
1239                         reqf &= ~GEN6_TURBO_DISABLE;
1240                         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1241                                 reqf >>= 24;
1242                         else
1243                                 reqf >>= 25;
1244                 }
1245                 reqf = intel_gpu_freq(dev_priv, reqf);
1246
1247                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1248                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1249                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1250
1251                 rpstat = I915_READ(GEN6_RPSTAT1);
1252                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1253                 rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1254                 rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1255                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1256                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1257                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1258                 if (IS_GEN9(dev))
1259                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1260                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1261                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1262                 else
1263                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1264                 cagf = intel_gpu_freq(dev_priv, cagf);
1265
1266                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1267                 mutex_unlock(&dev->struct_mutex);
1268
1269                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1270                         pm_ier = I915_READ(GEN6_PMIER);
1271                         pm_imr = I915_READ(GEN6_PMIMR);
1272                         pm_isr = I915_READ(GEN6_PMISR);
1273                         pm_iir = I915_READ(GEN6_PMIIR);
1274                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1275                 } else {
1276                         pm_ier = I915_READ(GEN8_GT_IER(2));
1277                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1278                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1279                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1280                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1281                 }
1282                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1283                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1284                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1285                 seq_printf(m, "Render p-state ratio: %d\n",
1286                            (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1287                 seq_printf(m, "Render p-state VID: %d\n",
1288                            gt_perf_status & 0xff);
1289                 seq_printf(m, "Render p-state limit: %d\n",
1290                            rp_state_limits & 0xff);
1291                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1292                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1293                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1294                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1295                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1296                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1297                 seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1298                            rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1299                 seq_printf(m, "RP CUR UP: %d (%dus)\n",
1300                            rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1301                 seq_printf(m, "RP PREV UP: %d (%dus)\n",
1302                            rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1303                 seq_printf(m, "Up threshold: %d%%\n",
1304                            dev_priv->rps.up_threshold);
1305
1306                 seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1307                            rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1308                 seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1309                            rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1310                 seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1311                            rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1312                 seq_printf(m, "Down threshold: %d%%\n",
1313                            dev_priv->rps.down_threshold);
1314
1315                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1316                             rp_state_cap >> 16) & 0xff;
1317                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1318                              GEN9_FREQ_SCALER : 1);
1319                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1320                            intel_gpu_freq(dev_priv, max_freq));
1321
1322                 max_freq = (rp_state_cap & 0xff00) >> 8;
1323                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1324                              GEN9_FREQ_SCALER : 1);
1325                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1326                            intel_gpu_freq(dev_priv, max_freq));
1327
1328                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1329                             rp_state_cap >> 0) & 0xff;
1330                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1331                              GEN9_FREQ_SCALER : 1);
1332                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1333                            intel_gpu_freq(dev_priv, max_freq));
1334                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1335                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1336
1337                 seq_printf(m, "Current freq: %d MHz\n",
1338                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1339                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1340                 seq_printf(m, "Idle freq: %d MHz\n",
1341                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1342                 seq_printf(m, "Min freq: %d MHz\n",
1343                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1344                 seq_printf(m, "Max freq: %d MHz\n",
1345                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1346                 seq_printf(m,
1347                            "efficient (RPe) frequency: %d MHz\n",
1348                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1349         } else {
1350                 seq_puts(m, "no P-state info available\n");
1351         }
1352
1353         seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1354         seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1355         seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1356
1357 out:
1358         intel_runtime_pm_put(dev_priv);
1359         return ret;
1360 }
1361
1362 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1363 {
1364         struct drm_info_node *node = m->private;
1365         struct drm_device *dev = node->minor->dev;
1366         struct drm_i915_private *dev_priv = dev->dev_private;
1367         struct intel_engine_cs *engine;
1368         u64 acthd[I915_NUM_ENGINES];
1369         u32 seqno[I915_NUM_ENGINES];
1370         u32 instdone[I915_NUM_INSTDONE_REG];
1371         enum intel_engine_id id;
1372         int j;
1373
1374         if (!i915.enable_hangcheck) {
1375                 seq_printf(m, "Hangcheck disabled\n");
1376                 return 0;
1377         }
1378
1379         intel_runtime_pm_get(dev_priv);
1380
1381         for_each_engine_id(engine, dev_priv, id) {
1382                 acthd[id] = intel_ring_get_active_head(engine);
1383                 seqno[id] = engine->get_seqno(engine);
1384         }
1385
1386         i915_get_extra_instdone(dev, instdone);
1387
1388         intel_runtime_pm_put(dev_priv);
1389
1390         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1391                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1392                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1393                                             jiffies));
1394         } else
1395                 seq_printf(m, "Hangcheck inactive\n");
1396
1397         for_each_engine_id(engine, dev_priv, id) {
1398                 seq_printf(m, "%s:\n", engine->name);
1399                 seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
1400                            engine->hangcheck.seqno,
1401                            seqno[id],
1402                            engine->last_submitted_seqno);
1403                 seq_printf(m, "\tuser interrupts = %x [current %x]\n",
1404                            engine->hangcheck.user_interrupts,
1405                            READ_ONCE(engine->user_interrupts));
1406                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1407                            (long long)engine->hangcheck.acthd,
1408                            (long long)acthd[id]);
1409                 seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
1410                 seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
1411
1412                 if (engine->id == RCS) {
1413                         seq_puts(m, "\tinstdone read =");
1414
1415                         for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1416                                 seq_printf(m, " 0x%08x", instdone[j]);
1417
1418                         seq_puts(m, "\n\tinstdone accu =");
1419
1420                         for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1421                                 seq_printf(m, " 0x%08x",
1422                                            engine->hangcheck.instdone[j]);
1423
1424                         seq_puts(m, "\n");
1425                 }
1426         }
1427
1428         return 0;
1429 }
1430
1431 static int ironlake_drpc_info(struct seq_file *m)
1432 {
1433         struct drm_info_node *node = m->private;
1434         struct drm_device *dev = node->minor->dev;
1435         struct drm_i915_private *dev_priv = dev->dev_private;
1436         u32 rgvmodectl, rstdbyctl;
1437         u16 crstandvid;
1438         int ret;
1439
1440         ret = mutex_lock_interruptible(&dev->struct_mutex);
1441         if (ret)
1442                 return ret;
1443         intel_runtime_pm_get(dev_priv);
1444
1445         rgvmodectl = I915_READ(MEMMODECTL);
1446         rstdbyctl = I915_READ(RSTDBYCTL);
1447         crstandvid = I915_READ16(CRSTANDVID);
1448
1449         intel_runtime_pm_put(dev_priv);
1450         mutex_unlock(&dev->struct_mutex);
1451
1452         seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1453         seq_printf(m, "Boost freq: %d\n",
1454                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1455                    MEMMODE_BOOST_FREQ_SHIFT);
1456         seq_printf(m, "HW control enabled: %s\n",
1457                    yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1458         seq_printf(m, "SW control enabled: %s\n",
1459                    yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1460         seq_printf(m, "Gated voltage change: %s\n",
1461                    yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1462         seq_printf(m, "Starting frequency: P%d\n",
1463                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1464         seq_printf(m, "Max P-state: P%d\n",
1465                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1466         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1467         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1468         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1469         seq_printf(m, "Render standby enabled: %s\n",
1470                    yesno(!(rstdbyctl & RCX_SW_EXIT)));
1471         seq_puts(m, "Current RS state: ");
1472         switch (rstdbyctl & RSX_STATUS_MASK) {
1473         case RSX_STATUS_ON:
1474                 seq_puts(m, "on\n");
1475                 break;
1476         case RSX_STATUS_RC1:
1477                 seq_puts(m, "RC1\n");
1478                 break;
1479         case RSX_STATUS_RC1E:
1480                 seq_puts(m, "RC1E\n");
1481                 break;
1482         case RSX_STATUS_RS1:
1483                 seq_puts(m, "RS1\n");
1484                 break;
1485         case RSX_STATUS_RS2:
1486                 seq_puts(m, "RS2 (RC6)\n");
1487                 break;
1488         case RSX_STATUS_RS3:
1489                 seq_puts(m, "RC3 (RC6+)\n");
1490                 break;
1491         default:
1492                 seq_puts(m, "unknown\n");
1493                 break;
1494         }
1495
1496         return 0;
1497 }
1498
1499 static int i915_forcewake_domains(struct seq_file *m, void *data)
1500 {
1501         struct drm_info_node *node = m->private;
1502         struct drm_device *dev = node->minor->dev;
1503         struct drm_i915_private *dev_priv = dev->dev_private;
1504         struct intel_uncore_forcewake_domain *fw_domain;
1505
1506         spin_lock_irq(&dev_priv->uncore.lock);
1507         for_each_fw_domain(fw_domain, dev_priv) {
1508                 seq_printf(m, "%s.wake_count = %u\n",
1509                            intel_uncore_forcewake_domain_to_str(fw_domain->id),
1510                            fw_domain->wake_count);
1511         }
1512         spin_unlock_irq(&dev_priv->uncore.lock);
1513
1514         return 0;
1515 }
1516
1517 static int vlv_drpc_info(struct seq_file *m)
1518 {
1519         struct drm_info_node *node = m->private;
1520         struct drm_device *dev = node->minor->dev;
1521         struct drm_i915_private *dev_priv = dev->dev_private;
1522         u32 rpmodectl1, rcctl1, pw_status;
1523
1524         intel_runtime_pm_get(dev_priv);
1525
1526         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1527         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1528         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1529
1530         intel_runtime_pm_put(dev_priv);
1531
1532         seq_printf(m, "Video Turbo Mode: %s\n",
1533                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1534         seq_printf(m, "Turbo enabled: %s\n",
1535                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1536         seq_printf(m, "HW control enabled: %s\n",
1537                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1538         seq_printf(m, "SW control enabled: %s\n",
1539                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1540                           GEN6_RP_MEDIA_SW_MODE));
1541         seq_printf(m, "RC6 Enabled: %s\n",
1542                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1543                                         GEN6_RC_CTL_EI_MODE(1))));
1544         seq_printf(m, "Render Power Well: %s\n",
1545                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1546         seq_printf(m, "Media Power Well: %s\n",
1547                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1548
1549         seq_printf(m, "Render RC6 residency since boot: %u\n",
1550                    I915_READ(VLV_GT_RENDER_RC6));
1551         seq_printf(m, "Media RC6 residency since boot: %u\n",
1552                    I915_READ(VLV_GT_MEDIA_RC6));
1553
1554         return i915_forcewake_domains(m, NULL);
1555 }
1556
1557 static int gen6_drpc_info(struct seq_file *m)
1558 {
1559         struct drm_info_node *node = m->private;
1560         struct drm_device *dev = node->minor->dev;
1561         struct drm_i915_private *dev_priv = dev->dev_private;
1562         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1563         unsigned forcewake_count;
1564         int count = 0, ret;
1565
1566         ret = mutex_lock_interruptible(&dev->struct_mutex);
1567         if (ret)
1568                 return ret;
1569         intel_runtime_pm_get(dev_priv);
1570
1571         spin_lock_irq(&dev_priv->uncore.lock);
1572         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1573         spin_unlock_irq(&dev_priv->uncore.lock);
1574
1575         if (forcewake_count) {
1576                 seq_puts(m, "RC information inaccurate because somebody "
1577                             "holds a forcewake reference \n");
1578         } else {
1579                 /* NB: we cannot use forcewake, else we read the wrong values */
1580                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1581                         udelay(10);
1582                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1583         }
1584
1585         gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1586         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1587
1588         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1589         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1590         mutex_unlock(&dev->struct_mutex);
1591         mutex_lock(&dev_priv->rps.hw_lock);
1592         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1593         mutex_unlock(&dev_priv->rps.hw_lock);
1594
1595         intel_runtime_pm_put(dev_priv);
1596
1597         seq_printf(m, "Video Turbo Mode: %s\n",
1598                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1599         seq_printf(m, "HW control enabled: %s\n",
1600                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1601         seq_printf(m, "SW control enabled: %s\n",
1602                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1603                           GEN6_RP_MEDIA_SW_MODE));
1604         seq_printf(m, "RC1e Enabled: %s\n",
1605                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1606         seq_printf(m, "RC6 Enabled: %s\n",
1607                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1608         seq_printf(m, "Deep RC6 Enabled: %s\n",
1609                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1610         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1611                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1612         seq_puts(m, "Current RC state: ");
1613         switch (gt_core_status & GEN6_RCn_MASK) {
1614         case GEN6_RC0:
1615                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1616                         seq_puts(m, "Core Power Down\n");
1617                 else
1618                         seq_puts(m, "on\n");
1619                 break;
1620         case GEN6_RC3:
1621                 seq_puts(m, "RC3\n");
1622                 break;
1623         case GEN6_RC6:
1624                 seq_puts(m, "RC6\n");
1625                 break;
1626         case GEN6_RC7:
1627                 seq_puts(m, "RC7\n");
1628                 break;
1629         default:
1630                 seq_puts(m, "Unknown\n");
1631                 break;
1632         }
1633
1634         seq_printf(m, "Core Power Down: %s\n",
1635                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1636
1637         /* Not exactly sure what this is */
1638         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1639                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1640         seq_printf(m, "RC6 residency since boot: %u\n",
1641                    I915_READ(GEN6_GT_GFX_RC6));
1642         seq_printf(m, "RC6+ residency since boot: %u\n",
1643                    I915_READ(GEN6_GT_GFX_RC6p));
1644         seq_printf(m, "RC6++ residency since boot: %u\n",
1645                    I915_READ(GEN6_GT_GFX_RC6pp));
1646
1647         seq_printf(m, "RC6   voltage: %dmV\n",
1648                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1649         seq_printf(m, "RC6+  voltage: %dmV\n",
1650                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1651         seq_printf(m, "RC6++ voltage: %dmV\n",
1652                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1653         return 0;
1654 }
1655
1656 static int i915_drpc_info(struct seq_file *m, void *unused)
1657 {
1658         struct drm_info_node *node = m->private;
1659         struct drm_device *dev = node->minor->dev;
1660
1661         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1662                 return vlv_drpc_info(m);
1663         else if (INTEL_INFO(dev)->gen >= 6)
1664                 return gen6_drpc_info(m);
1665         else
1666                 return ironlake_drpc_info(m);
1667 }
1668
1669 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1670 {
1671         struct drm_info_node *node = m->private;
1672         struct drm_device *dev = node->minor->dev;
1673         struct drm_i915_private *dev_priv = dev->dev_private;
1674
1675         seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1676                    dev_priv->fb_tracking.busy_bits);
1677
1678         seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1679                    dev_priv->fb_tracking.flip_bits);
1680
1681         return 0;
1682 }
1683
1684 static int i915_fbc_status(struct seq_file *m, void *unused)
1685 {
1686         struct drm_info_node *node = m->private;
1687         struct drm_device *dev = node->minor->dev;
1688         struct drm_i915_private *dev_priv = dev->dev_private;
1689
1690         if (!HAS_FBC(dev)) {
1691                 seq_puts(m, "FBC unsupported on this chipset\n");
1692                 return 0;
1693         }
1694
1695         intel_runtime_pm_get(dev_priv);
1696         mutex_lock(&dev_priv->fbc.lock);
1697
1698         if (intel_fbc_is_active(dev_priv))
1699                 seq_puts(m, "FBC enabled\n");
1700         else
1701                 seq_printf(m, "FBC disabled: %s\n",
1702                            dev_priv->fbc.no_fbc_reason);
1703
1704         if (INTEL_INFO(dev_priv)->gen >= 7)
1705                 seq_printf(m, "Compressing: %s\n",
1706                            yesno(I915_READ(FBC_STATUS2) &
1707                                  FBC_COMPRESSION_MASK));
1708
1709         mutex_unlock(&dev_priv->fbc.lock);
1710         intel_runtime_pm_put(dev_priv);
1711
1712         return 0;
1713 }
1714
1715 static int i915_fbc_fc_get(void *data, u64 *val)
1716 {
1717         struct drm_device *dev = data;
1718         struct drm_i915_private *dev_priv = dev->dev_private;
1719
1720         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1721                 return -ENODEV;
1722
1723         *val = dev_priv->fbc.false_color;
1724
1725         return 0;
1726 }
1727
1728 static int i915_fbc_fc_set(void *data, u64 val)
1729 {
1730         struct drm_device *dev = data;
1731         struct drm_i915_private *dev_priv = dev->dev_private;
1732         u32 reg;
1733
1734         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1735                 return -ENODEV;
1736
1737         mutex_lock(&dev_priv->fbc.lock);
1738
1739         reg = I915_READ(ILK_DPFC_CONTROL);
1740         dev_priv->fbc.false_color = val;
1741
1742         I915_WRITE(ILK_DPFC_CONTROL, val ?
1743                    (reg | FBC_CTL_FALSE_COLOR) :
1744                    (reg & ~FBC_CTL_FALSE_COLOR));
1745
1746         mutex_unlock(&dev_priv->fbc.lock);
1747         return 0;
1748 }
1749
1750 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1751                         i915_fbc_fc_get, i915_fbc_fc_set,
1752                         "%llu\n");
1753
1754 static int i915_ips_status(struct seq_file *m, void *unused)
1755 {
1756         struct drm_info_node *node = m->private;
1757         struct drm_device *dev = node->minor->dev;
1758         struct drm_i915_private *dev_priv = dev->dev_private;
1759
1760         if (!HAS_IPS(dev)) {
1761                 seq_puts(m, "not supported\n");
1762                 return 0;
1763         }
1764
1765         intel_runtime_pm_get(dev_priv);
1766
1767         seq_printf(m, "Enabled by kernel parameter: %s\n",
1768                    yesno(i915.enable_ips));
1769
1770         if (INTEL_INFO(dev)->gen >= 8) {
1771                 seq_puts(m, "Currently: unknown\n");
1772         } else {
1773                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1774                         seq_puts(m, "Currently: enabled\n");
1775                 else
1776                         seq_puts(m, "Currently: disabled\n");
1777         }
1778
1779         intel_runtime_pm_put(dev_priv);
1780
1781         return 0;
1782 }
1783
1784 static int i915_sr_status(struct seq_file *m, void *unused)
1785 {
1786         struct drm_info_node *node = m->private;
1787         struct drm_device *dev = node->minor->dev;
1788         struct drm_i915_private *dev_priv = dev->dev_private;
1789         bool sr_enabled = false;
1790
1791         intel_runtime_pm_get(dev_priv);
1792
1793         if (HAS_PCH_SPLIT(dev))
1794                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1795         else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1796                  IS_I945G(dev) || IS_I945GM(dev))
1797                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1798         else if (IS_I915GM(dev))
1799                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1800         else if (IS_PINEVIEW(dev))
1801                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1802         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1803                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1804
1805         intel_runtime_pm_put(dev_priv);
1806
1807         seq_printf(m, "self-refresh: %s\n",
1808                    sr_enabled ? "enabled" : "disabled");
1809
1810         return 0;
1811 }
1812
1813 static int i915_emon_status(struct seq_file *m, void *unused)
1814 {
1815         struct drm_info_node *node = m->private;
1816         struct drm_device *dev = node->minor->dev;
1817         struct drm_i915_private *dev_priv = dev->dev_private;
1818         unsigned long temp, chipset, gfx;
1819         int ret;
1820
1821         if (!IS_GEN5(dev))
1822                 return -ENODEV;
1823
1824         ret = mutex_lock_interruptible(&dev->struct_mutex);
1825         if (ret)
1826                 return ret;
1827
1828         temp = i915_mch_val(dev_priv);
1829         chipset = i915_chipset_val(dev_priv);
1830         gfx = i915_gfx_val(dev_priv);
1831         mutex_unlock(&dev->struct_mutex);
1832
1833         seq_printf(m, "GMCH temp: %ld\n", temp);
1834         seq_printf(m, "Chipset power: %ld\n", chipset);
1835         seq_printf(m, "GFX power: %ld\n", gfx);
1836         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1837
1838         return 0;
1839 }
1840
1841 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1842 {
1843         struct drm_info_node *node = m->private;
1844         struct drm_device *dev = node->minor->dev;
1845         struct drm_i915_private *dev_priv = dev->dev_private;
1846         int ret = 0;
1847         int gpu_freq, ia_freq;
1848         unsigned int max_gpu_freq, min_gpu_freq;
1849
1850         if (!HAS_CORE_RING_FREQ(dev)) {
1851                 seq_puts(m, "unsupported on this chipset\n");
1852                 return 0;
1853         }
1854
1855         intel_runtime_pm_get(dev_priv);
1856
1857         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1858
1859         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1860         if (ret)
1861                 goto out;
1862
1863         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1864                 /* Convert GT frequency to 50 HZ units */
1865                 min_gpu_freq =
1866                         dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1867                 max_gpu_freq =
1868                         dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1869         } else {
1870                 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1871                 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1872         }
1873
1874         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1875
1876         for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1877                 ia_freq = gpu_freq;
1878                 sandybridge_pcode_read(dev_priv,
1879                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1880                                        &ia_freq);
1881                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1882                            intel_gpu_freq(dev_priv, (gpu_freq *
1883                                 (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1884                                  GEN9_FREQ_SCALER : 1))),
1885                            ((ia_freq >> 0) & 0xff) * 100,
1886                            ((ia_freq >> 8) & 0xff) * 100);
1887         }
1888
1889         mutex_unlock(&dev_priv->rps.hw_lock);
1890
1891 out:
1892         intel_runtime_pm_put(dev_priv);
1893         return ret;
1894 }
1895
1896 static int i915_opregion(struct seq_file *m, void *unused)
1897 {
1898         struct drm_info_node *node = m->private;
1899         struct drm_device *dev = node->minor->dev;
1900         struct drm_i915_private *dev_priv = dev->dev_private;
1901         struct intel_opregion *opregion = &dev_priv->opregion;
1902         int ret;
1903
1904         ret = mutex_lock_interruptible(&dev->struct_mutex);
1905         if (ret)
1906                 goto out;
1907
1908         if (opregion->header)
1909                 seq_write(m, opregion->header, OPREGION_SIZE);
1910
1911         mutex_unlock(&dev->struct_mutex);
1912
1913 out:
1914         return 0;
1915 }
1916
1917 static int i915_vbt(struct seq_file *m, void *unused)
1918 {
1919         struct drm_info_node *node = m->private;
1920         struct drm_device *dev = node->minor->dev;
1921         struct drm_i915_private *dev_priv = dev->dev_private;
1922         struct intel_opregion *opregion = &dev_priv->opregion;
1923
1924         if (opregion->vbt)
1925                 seq_write(m, opregion->vbt, opregion->vbt_size);
1926
1927         return 0;
1928 }
1929
1930 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1931 {
1932         struct drm_info_node *node = m->private;
1933         struct drm_device *dev = node->minor->dev;
1934         struct intel_framebuffer *fbdev_fb = NULL;
1935         struct drm_framebuffer *drm_fb;
1936         int ret;
1937
1938         ret = mutex_lock_interruptible(&dev->struct_mutex);
1939         if (ret)
1940                 return ret;
1941
1942 #ifdef CONFIG_DRM_FBDEV_EMULATION
1943        if (to_i915(dev)->fbdev) {
1944                fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
1945
1946                seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1947                          fbdev_fb->base.width,
1948                          fbdev_fb->base.height,
1949                          fbdev_fb->base.depth,
1950                          fbdev_fb->base.bits_per_pixel,
1951                          fbdev_fb->base.modifier[0],
1952                          drm_framebuffer_read_refcount(&fbdev_fb->base));
1953                describe_obj(m, fbdev_fb->obj);
1954                seq_putc(m, '\n');
1955        }
1956 #endif
1957
1958         mutex_lock(&dev->mode_config.fb_lock);
1959         drm_for_each_fb(drm_fb, dev) {
1960                 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1961                 if (fb == fbdev_fb)
1962                         continue;
1963
1964                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1965                            fb->base.width,
1966                            fb->base.height,
1967                            fb->base.depth,
1968                            fb->base.bits_per_pixel,
1969                            fb->base.modifier[0],
1970                            drm_framebuffer_read_refcount(&fb->base));
1971                 describe_obj(m, fb->obj);
1972                 seq_putc(m, '\n');
1973         }
1974         mutex_unlock(&dev->mode_config.fb_lock);
1975         mutex_unlock(&dev->struct_mutex);
1976
1977         return 0;
1978 }
1979
1980 static void describe_ctx_ringbuf(struct seq_file *m,
1981                                  struct intel_ringbuffer *ringbuf)
1982 {
1983         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1984                    ringbuf->space, ringbuf->head, ringbuf->tail,
1985                    ringbuf->last_retired_head);
1986 }
1987
1988 static int i915_context_status(struct seq_file *m, void *unused)
1989 {
1990         struct drm_info_node *node = m->private;
1991         struct drm_device *dev = node->minor->dev;
1992         struct drm_i915_private *dev_priv = dev->dev_private;
1993         struct intel_engine_cs *engine;
1994         struct intel_context *ctx;
1995         enum intel_engine_id id;
1996         int ret;
1997
1998         ret = mutex_lock_interruptible(&dev->struct_mutex);
1999         if (ret)
2000                 return ret;
2001
2002         list_for_each_entry(ctx, &dev_priv->context_list, link) {
2003                 if (!i915.enable_execlists &&
2004                     ctx->legacy_hw_ctx.rcs_state == NULL)
2005                         continue;
2006
2007                 seq_puts(m, "HW context ");
2008                 describe_ctx(m, ctx);
2009                 if (ctx == dev_priv->kernel_context)
2010                         seq_printf(m, "(kernel context) ");
2011
2012                 if (i915.enable_execlists) {
2013                         seq_putc(m, '\n');
2014                         for_each_engine_id(engine, dev_priv, id) {
2015                                 struct drm_i915_gem_object *ctx_obj =
2016                                         ctx->engine[id].state;
2017                                 struct intel_ringbuffer *ringbuf =
2018                                         ctx->engine[id].ringbuf;
2019
2020                                 seq_printf(m, "%s: ", engine->name);
2021                                 if (ctx_obj)
2022                                         describe_obj(m, ctx_obj);
2023                                 if (ringbuf)
2024                                         describe_ctx_ringbuf(m, ringbuf);
2025                                 seq_putc(m, '\n');
2026                         }
2027                 } else {
2028                         describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
2029                 }
2030
2031                 seq_putc(m, '\n');
2032         }
2033
2034         mutex_unlock(&dev->struct_mutex);
2035
2036         return 0;
2037 }
2038
2039 static void i915_dump_lrc_obj(struct seq_file *m,
2040                               struct intel_context *ctx,
2041                               struct intel_engine_cs *engine)
2042 {
2043         struct page *page;
2044         uint32_t *reg_state;
2045         int j;
2046         struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
2047         unsigned long ggtt_offset = 0;
2048
2049         if (ctx_obj == NULL) {
2050                 seq_printf(m, "Context on %s with no gem object\n",
2051                            engine->name);
2052                 return;
2053         }
2054
2055         seq_printf(m, "CONTEXT: %s %u\n", engine->name,
2056                    intel_execlists_ctx_id(ctx, engine));
2057
2058         if (!i915_gem_obj_ggtt_bound(ctx_obj))
2059                 seq_puts(m, "\tNot bound in GGTT\n");
2060         else
2061                 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
2062
2063         if (i915_gem_object_get_pages(ctx_obj)) {
2064                 seq_puts(m, "\tFailed to get pages for context object\n");
2065                 return;
2066         }
2067
2068         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2069         if (!WARN_ON(page == NULL)) {
2070                 reg_state = kmap_atomic(page);
2071
2072                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2073                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2074                                    ggtt_offset + 4096 + (j * 4),
2075                                    reg_state[j], reg_state[j + 1],
2076                                    reg_state[j + 2], reg_state[j + 3]);
2077                 }
2078                 kunmap_atomic(reg_state);
2079         }
2080
2081         seq_putc(m, '\n');
2082 }
2083
2084 static int i915_dump_lrc(struct seq_file *m, void *unused)
2085 {
2086         struct drm_info_node *node = (struct drm_info_node *) m->private;
2087         struct drm_device *dev = node->minor->dev;
2088         struct drm_i915_private *dev_priv = dev->dev_private;
2089         struct intel_engine_cs *engine;
2090         struct intel_context *ctx;
2091         int ret;
2092
2093         if (!i915.enable_execlists) {
2094                 seq_printf(m, "Logical Ring Contexts are disabled\n");
2095                 return 0;
2096         }
2097
2098         ret = mutex_lock_interruptible(&dev->struct_mutex);
2099         if (ret)
2100                 return ret;
2101
2102         list_for_each_entry(ctx, &dev_priv->context_list, link)
2103                 if (ctx != dev_priv->kernel_context)
2104                         for_each_engine(engine, dev_priv)
2105                                 i915_dump_lrc_obj(m, ctx, engine);
2106
2107         mutex_unlock(&dev->struct_mutex);
2108
2109         return 0;
2110 }
2111
2112 static int i915_execlists(struct seq_file *m, void *data)
2113 {
2114         struct drm_info_node *node = (struct drm_info_node *)m->private;
2115         struct drm_device *dev = node->minor->dev;
2116         struct drm_i915_private *dev_priv = dev->dev_private;
2117         struct intel_engine_cs *engine;
2118         u32 status_pointer;
2119         u8 read_pointer;
2120         u8 write_pointer;
2121         u32 status;
2122         u32 ctx_id;
2123         struct list_head *cursor;
2124         int i, ret;
2125
2126         if (!i915.enable_execlists) {
2127                 seq_puts(m, "Logical Ring Contexts are disabled\n");
2128                 return 0;
2129         }
2130
2131         ret = mutex_lock_interruptible(&dev->struct_mutex);
2132         if (ret)
2133                 return ret;
2134
2135         intel_runtime_pm_get(dev_priv);
2136
2137         for_each_engine(engine, dev_priv) {
2138                 struct drm_i915_gem_request *head_req = NULL;
2139                 int count = 0;
2140
2141                 seq_printf(m, "%s\n", engine->name);
2142
2143                 status = I915_READ(RING_EXECLIST_STATUS_LO(engine));
2144                 ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(engine));
2145                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2146                            status, ctx_id);
2147
2148                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
2149                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2150
2151                 read_pointer = engine->next_context_status_buffer;
2152                 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
2153                 if (read_pointer > write_pointer)
2154                         write_pointer += GEN8_CSB_ENTRIES;
2155                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2156                            read_pointer, write_pointer);
2157
2158                 for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
2159                         status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, i));
2160                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, i));
2161
2162                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2163                                    i, status, ctx_id);
2164                 }
2165
2166                 spin_lock_bh(&engine->execlist_lock);
2167                 list_for_each(cursor, &engine->execlist_queue)
2168                         count++;
2169                 head_req = list_first_entry_or_null(&engine->execlist_queue,
2170                                                     struct drm_i915_gem_request,
2171                                                     execlist_link);
2172                 spin_unlock_bh(&engine->execlist_lock);
2173
2174                 seq_printf(m, "\t%d requests in queue\n", count);
2175                 if (head_req) {
2176                         seq_printf(m, "\tHead request id: %u\n",
2177                                    intel_execlists_ctx_id(head_req->ctx, engine));
2178                         seq_printf(m, "\tHead request tail: %u\n",
2179                                    head_req->tail);
2180                 }
2181
2182                 seq_putc(m, '\n');
2183         }
2184
2185         intel_runtime_pm_put(dev_priv);
2186         mutex_unlock(&dev->struct_mutex);
2187
2188         return 0;
2189 }
2190
2191 static const char *swizzle_string(unsigned swizzle)
2192 {
2193         switch (swizzle) {
2194         case I915_BIT_6_SWIZZLE_NONE:
2195                 return "none";
2196         case I915_BIT_6_SWIZZLE_9:
2197                 return "bit9";
2198         case I915_BIT_6_SWIZZLE_9_10:
2199                 return "bit9/bit10";
2200         case I915_BIT_6_SWIZZLE_9_11:
2201                 return "bit9/bit11";
2202         case I915_BIT_6_SWIZZLE_9_10_11:
2203                 return "bit9/bit10/bit11";
2204         case I915_BIT_6_SWIZZLE_9_17:
2205                 return "bit9/bit17";
2206         case I915_BIT_6_SWIZZLE_9_10_17:
2207                 return "bit9/bit10/bit17";
2208         case I915_BIT_6_SWIZZLE_UNKNOWN:
2209                 return "unknown";
2210         }
2211
2212         return "bug";
2213 }
2214
2215 static int i915_swizzle_info(struct seq_file *m, void *data)
2216 {
2217         struct drm_info_node *node = m->private;
2218         struct drm_device *dev = node->minor->dev;
2219         struct drm_i915_private *dev_priv = dev->dev_private;
2220         int ret;
2221
2222         ret = mutex_lock_interruptible(&dev->struct_mutex);
2223         if (ret)
2224                 return ret;
2225         intel_runtime_pm_get(dev_priv);
2226
2227         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2228                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2229         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2230                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2231
2232         if (IS_GEN3(dev) || IS_GEN4(dev)) {
2233                 seq_printf(m, "DDC = 0x%08x\n",
2234                            I915_READ(DCC));
2235                 seq_printf(m, "DDC2 = 0x%08x\n",
2236                            I915_READ(DCC2));
2237                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2238                            I915_READ16(C0DRB3));
2239                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2240                            I915_READ16(C1DRB3));
2241         } else if (INTEL_INFO(dev)->gen >= 6) {
2242                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2243                            I915_READ(MAD_DIMM_C0));
2244                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2245                            I915_READ(MAD_DIMM_C1));
2246                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2247                            I915_READ(MAD_DIMM_C2));
2248                 seq_printf(m, "TILECTL = 0x%08x\n",
2249                            I915_READ(TILECTL));
2250                 if (INTEL_INFO(dev)->gen >= 8)
2251                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2252                                    I915_READ(GAMTARBMODE));
2253                 else
2254                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2255                                    I915_READ(ARB_MODE));
2256                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2257                            I915_READ(DISP_ARB_CTL));
2258         }
2259
2260         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2261                 seq_puts(m, "L-shaped memory detected\n");
2262
2263         intel_runtime_pm_put(dev_priv);
2264         mutex_unlock(&dev->struct_mutex);
2265
2266         return 0;
2267 }
2268
2269 static int per_file_ctx(int id, void *ptr, void *data)
2270 {
2271         struct intel_context *ctx = ptr;
2272         struct seq_file *m = data;
2273         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2274
2275         if (!ppgtt) {
2276                 seq_printf(m, "  no ppgtt for context %d\n",
2277                            ctx->user_handle);
2278                 return 0;
2279         }
2280
2281         if (i915_gem_context_is_default(ctx))
2282                 seq_puts(m, "  default context:\n");
2283         else
2284                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2285         ppgtt->debug_dump(ppgtt, m);
2286
2287         return 0;
2288 }
2289
2290 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2291 {
2292         struct drm_i915_private *dev_priv = dev->dev_private;
2293         struct intel_engine_cs *engine;
2294         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2295         int i;
2296
2297         if (!ppgtt)
2298                 return;
2299
2300         for_each_engine(engine, dev_priv) {
2301                 seq_printf(m, "%s\n", engine->name);
2302                 for (i = 0; i < 4; i++) {
2303                         u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2304                         pdp <<= 32;
2305                         pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2306                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2307                 }
2308         }
2309 }
2310
2311 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2312 {
2313         struct drm_i915_private *dev_priv = dev->dev_private;
2314         struct intel_engine_cs *engine;
2315
2316         if (INTEL_INFO(dev)->gen == 6)
2317                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2318
2319         for_each_engine(engine, dev_priv) {
2320                 seq_printf(m, "%s\n", engine->name);
2321                 if (INTEL_INFO(dev)->gen == 7)
2322                         seq_printf(m, "GFX_MODE: 0x%08x\n",
2323                                    I915_READ(RING_MODE_GEN7(engine)));
2324                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2325                            I915_READ(RING_PP_DIR_BASE(engine)));
2326                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2327                            I915_READ(RING_PP_DIR_BASE_READ(engine)));
2328                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2329                            I915_READ(RING_PP_DIR_DCLV(engine)));
2330         }
2331         if (dev_priv->mm.aliasing_ppgtt) {
2332                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2333
2334                 seq_puts(m, "aliasing PPGTT:\n");
2335                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2336
2337                 ppgtt->debug_dump(ppgtt, m);
2338         }
2339
2340         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2341 }
2342
2343 static int i915_ppgtt_info(struct seq_file *m, void *data)
2344 {
2345         struct drm_info_node *node = m->private;
2346         struct drm_device *dev = node->minor->dev;
2347         struct drm_i915_private *dev_priv = dev->dev_private;
2348         struct drm_file *file;
2349
2350         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2351         if (ret)
2352                 return ret;
2353         intel_runtime_pm_get(dev_priv);
2354
2355         if (INTEL_INFO(dev)->gen >= 8)
2356                 gen8_ppgtt_info(m, dev);
2357         else if (INTEL_INFO(dev)->gen >= 6)
2358                 gen6_ppgtt_info(m, dev);
2359
2360         mutex_lock(&dev->filelist_mutex);
2361         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2362                 struct drm_i915_file_private *file_priv = file->driver_priv;
2363                 struct task_struct *task;
2364
2365                 task = get_pid_task(file->pid, PIDTYPE_PID);
2366                 if (!task) {
2367                         ret = -ESRCH;
2368                         goto out_unlock;
2369                 }
2370                 seq_printf(m, "\nproc: %s\n", task->comm);
2371                 put_task_struct(task);
2372                 idr_for_each(&file_priv->context_idr, per_file_ctx,
2373                              (void *)(unsigned long)m);
2374         }
2375 out_unlock:
2376         mutex_unlock(&dev->filelist_mutex);
2377
2378         intel_runtime_pm_put(dev_priv);
2379         mutex_unlock(&dev->struct_mutex);
2380
2381         return ret;
2382 }
2383
2384 static int count_irq_waiters(struct drm_i915_private *i915)
2385 {
2386         struct intel_engine_cs *engine;
2387         int count = 0;
2388
2389         for_each_engine(engine, i915)
2390                 count += engine->irq_refcount;
2391
2392         return count;
2393 }
2394
2395 static int i915_rps_boost_info(struct seq_file *m, void *data)
2396 {
2397         struct drm_info_node *node = m->private;
2398         struct drm_device *dev = node->minor->dev;
2399         struct drm_i915_private *dev_priv = dev->dev_private;
2400         struct drm_file *file;
2401
2402         seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2403         seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2404         seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2405         seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2406                    intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2407                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2408                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2409                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2410                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2411
2412         mutex_lock(&dev->filelist_mutex);
2413         spin_lock(&dev_priv->rps.client_lock);
2414         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2415                 struct drm_i915_file_private *file_priv = file->driver_priv;
2416                 struct task_struct *task;
2417
2418                 rcu_read_lock();
2419                 task = pid_task(file->pid, PIDTYPE_PID);
2420                 seq_printf(m, "%s [%d]: %d boosts%s\n",
2421                            task ? task->comm : "<unknown>",
2422                            task ? task->pid : -1,
2423                            file_priv->rps.boosts,
2424                            list_empty(&file_priv->rps.link) ? "" : ", active");
2425                 rcu_read_unlock();
2426         }
2427         seq_printf(m, "Semaphore boosts: %d%s\n",
2428                    dev_priv->rps.semaphores.boosts,
2429                    list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2430         seq_printf(m, "MMIO flip boosts: %d%s\n",
2431                    dev_priv->rps.mmioflips.boosts,
2432                    list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2433         seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2434         spin_unlock(&dev_priv->rps.client_lock);
2435         mutex_unlock(&dev->filelist_mutex);
2436
2437         return 0;
2438 }
2439
2440 static int i915_llc(struct seq_file *m, void *data)
2441 {
2442         struct drm_info_node *node = m->private;
2443         struct drm_device *dev = node->minor->dev;
2444         struct drm_i915_private *dev_priv = dev->dev_private;
2445         const bool edram = INTEL_GEN(dev_priv) > 8;
2446
2447         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2448         seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2449                    intel_uncore_edram_size(dev_priv)/1024/1024);
2450
2451         return 0;
2452 }
2453
2454 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2455 {
2456         struct drm_info_node *node = m->private;
2457         struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
2458         struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2459         u32 tmp, i;
2460
2461         if (!HAS_GUC_UCODE(dev_priv))
2462                 return 0;
2463
2464         seq_printf(m, "GuC firmware status:\n");
2465         seq_printf(m, "\tpath: %s\n",
2466                 guc_fw->guc_fw_path);
2467         seq_printf(m, "\tfetch: %s\n",
2468                 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2469         seq_printf(m, "\tload: %s\n",
2470                 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2471         seq_printf(m, "\tversion wanted: %d.%d\n",
2472                 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2473         seq_printf(m, "\tversion found: %d.%d\n",
2474                 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2475         seq_printf(m, "\theader: offset is %d; size = %d\n",
2476                 guc_fw->header_offset, guc_fw->header_size);
2477         seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2478                 guc_fw->ucode_offset, guc_fw->ucode_size);
2479         seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2480                 guc_fw->rsa_offset, guc_fw->rsa_size);
2481
2482         tmp = I915_READ(GUC_STATUS);
2483
2484         seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2485         seq_printf(m, "\tBootrom status = 0x%x\n",
2486                 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2487         seq_printf(m, "\tuKernel status = 0x%x\n",
2488                 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2489         seq_printf(m, "\tMIA Core status = 0x%x\n",
2490                 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2491         seq_puts(m, "\nScratch registers:\n");
2492         for (i = 0; i < 16; i++)
2493                 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2494
2495         return 0;
2496 }
2497
2498 static void i915_guc_client_info(struct seq_file *m,
2499                                  struct drm_i915_private *dev_priv,
2500                                  struct i915_guc_client *client)
2501 {
2502         struct intel_engine_cs *engine;
2503         uint64_t tot = 0;
2504
2505         seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2506                 client->priority, client->ctx_index, client->proc_desc_offset);
2507         seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2508                 client->doorbell_id, client->doorbell_offset, client->cookie);
2509         seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2510                 client->wq_size, client->wq_offset, client->wq_tail);
2511
2512         seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2513         seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2514         seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2515
2516         for_each_engine(engine, dev_priv) {
2517                 seq_printf(m, "\tSubmissions: %llu %s\n",
2518                                 client->submissions[engine->guc_id],
2519                                 engine->name);
2520                 tot += client->submissions[engine->guc_id];
2521         }
2522         seq_printf(m, "\tTotal: %llu\n", tot);
2523 }
2524
2525 static int i915_guc_info(struct seq_file *m, void *data)
2526 {
2527         struct drm_info_node *node = m->private;
2528         struct drm_device *dev = node->minor->dev;
2529         struct drm_i915_private *dev_priv = dev->dev_private;
2530         struct intel_guc guc;
2531         struct i915_guc_client client = {};
2532         struct intel_engine_cs *engine;
2533         u64 total = 0;
2534
2535         if (!HAS_GUC_SCHED(dev_priv))
2536                 return 0;
2537
2538         if (mutex_lock_interruptible(&dev->struct_mutex))
2539                 return 0;
2540
2541         /* Take a local copy of the GuC data, so we can dump it at leisure */
2542         guc = dev_priv->guc;
2543         if (guc.execbuf_client)
2544                 client = *guc.execbuf_client;
2545
2546         mutex_unlock(&dev->struct_mutex);
2547
2548         seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2549         seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2550         seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2551         seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2552         seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2553
2554         seq_printf(m, "\nGuC submissions:\n");
2555         for_each_engine(engine, dev_priv) {
2556                 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2557                         engine->name, guc.submissions[engine->guc_id],
2558                         guc.last_seqno[engine->guc_id]);
2559                 total += guc.submissions[engine->guc_id];
2560         }
2561         seq_printf(m, "\t%s: %llu\n", "Total", total);
2562
2563         seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2564         i915_guc_client_info(m, dev_priv, &client);
2565
2566         /* Add more as required ... */
2567
2568         return 0;
2569 }
2570
2571 static int i915_guc_log_dump(struct seq_file *m, void *data)
2572 {
2573         struct drm_info_node *node = m->private;
2574         struct drm_device *dev = node->minor->dev;
2575         struct drm_i915_private *dev_priv = dev->dev_private;
2576         struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2577         u32 *log;
2578         int i = 0, pg;
2579
2580         if (!log_obj)
2581                 return 0;
2582
2583         for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2584                 log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2585
2586                 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2587                         seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2588                                    *(log + i), *(log + i + 1),
2589                                    *(log + i + 2), *(log + i + 3));
2590
2591                 kunmap_atomic(log);
2592         }
2593
2594         seq_putc(m, '\n');
2595
2596         return 0;
2597 }
2598
2599 static int i915_edp_psr_status(struct seq_file *m, void *data)
2600 {
2601         struct drm_info_node *node = m->private;
2602         struct drm_device *dev = node->minor->dev;
2603         struct drm_i915_private *dev_priv = dev->dev_private;
2604         u32 psrperf = 0;
2605         u32 stat[3];
2606         enum pipe pipe;
2607         bool enabled = false;
2608
2609         if (!HAS_PSR(dev)) {
2610                 seq_puts(m, "PSR not supported\n");
2611                 return 0;
2612         }
2613
2614         intel_runtime_pm_get(dev_priv);
2615
2616         mutex_lock(&dev_priv->psr.lock);
2617         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2618         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2619         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2620         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2621         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2622                    dev_priv->psr.busy_frontbuffer_bits);
2623         seq_printf(m, "Re-enable work scheduled: %s\n",
2624                    yesno(work_busy(&dev_priv->psr.work.work)));
2625
2626         if (HAS_DDI(dev))
2627                 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2628         else {
2629                 for_each_pipe(dev_priv, pipe) {
2630                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2631                                 VLV_EDP_PSR_CURR_STATE_MASK;
2632                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2633                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2634                                 enabled = true;
2635                 }
2636         }
2637
2638         seq_printf(m, "Main link in standby mode: %s\n",
2639                    yesno(dev_priv->psr.link_standby));
2640
2641         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2642
2643         if (!HAS_DDI(dev))
2644                 for_each_pipe(dev_priv, pipe) {
2645                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2646                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2647                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2648                 }
2649         seq_puts(m, "\n");
2650
2651         /*
2652          * VLV/CHV PSR has no kind of performance counter
2653          * SKL+ Perf counter is reset to 0 everytime DC state is entered
2654          */
2655         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2656                 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2657                         EDP_PSR_PERF_CNT_MASK;
2658
2659                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2660         }
2661         mutex_unlock(&dev_priv->psr.lock);
2662
2663         intel_runtime_pm_put(dev_priv);
2664         return 0;
2665 }
2666
2667 static int i915_sink_crc(struct seq_file *m, void *data)
2668 {
2669         struct drm_info_node *node = m->private;
2670         struct drm_device *dev = node->minor->dev;
2671         struct intel_encoder *encoder;
2672         struct intel_connector *connector;
2673         struct intel_dp *intel_dp = NULL;
2674         int ret;
2675         u8 crc[6];
2676
2677         drm_modeset_lock_all(dev);
2678         for_each_intel_connector(dev, connector) {
2679
2680                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2681                         continue;
2682
2683                 if (!connector->base.encoder)
2684                         continue;
2685
2686                 encoder = to_intel_encoder(connector->base.encoder);
2687                 if (encoder->type != INTEL_OUTPUT_EDP)
2688                         continue;
2689
2690                 intel_dp = enc_to_intel_dp(&encoder->base);
2691
2692                 ret = intel_dp_sink_crc(intel_dp, crc);
2693                 if (ret)
2694                         goto out;
2695
2696                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2697                            crc[0], crc[1], crc[2],
2698                            crc[3], crc[4], crc[5]);
2699                 goto out;
2700         }
2701         ret = -ENODEV;
2702 out:
2703         drm_modeset_unlock_all(dev);
2704         return ret;
2705 }
2706
2707 static int i915_energy_uJ(struct seq_file *m, void *data)
2708 {
2709         struct drm_info_node *node = m->private;
2710         struct drm_device *dev = node->minor->dev;
2711         struct drm_i915_private *dev_priv = dev->dev_private;
2712         u64 power;
2713         u32 units;
2714
2715         if (INTEL_INFO(dev)->gen < 6)
2716                 return -ENODEV;
2717
2718         intel_runtime_pm_get(dev_priv);
2719
2720         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2721         power = (power & 0x1f00) >> 8;
2722         units = 1000000 / (1 << power); /* convert to uJ */
2723         power = I915_READ(MCH_SECP_NRG_STTS);
2724         power *= units;
2725
2726         intel_runtime_pm_put(dev_priv);
2727
2728         seq_printf(m, "%llu", (long long unsigned)power);
2729
2730         return 0;
2731 }
2732
2733 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2734 {
2735         struct drm_info_node *node = m->private;
2736         struct drm_device *dev = node->minor->dev;
2737         struct drm_i915_private *dev_priv = dev->dev_private;
2738
2739         if (!HAS_RUNTIME_PM(dev_priv))
2740                 seq_puts(m, "Runtime power management not supported\n");
2741
2742         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2743         seq_printf(m, "IRQs disabled: %s\n",
2744                    yesno(!intel_irqs_enabled(dev_priv)));
2745 #ifdef CONFIG_PM
2746         seq_printf(m, "Usage count: %d\n",
2747                    atomic_read(&dev->dev->power.usage_count));
2748 #else
2749         seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2750 #endif
2751         seq_printf(m, "PCI device power state: %s [%d]\n",
2752                    pci_power_name(dev_priv->dev->pdev->current_state),
2753                    dev_priv->dev->pdev->current_state);
2754
2755         return 0;
2756 }
2757
2758 static int i915_power_domain_info(struct seq_file *m, void *unused)
2759 {
2760         struct drm_info_node *node = m->private;
2761         struct drm_device *dev = node->minor->dev;
2762         struct drm_i915_private *dev_priv = dev->dev_private;
2763         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2764         int i;
2765
2766         mutex_lock(&power_domains->lock);
2767
2768         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2769         for (i = 0; i < power_domains->power_well_count; i++) {
2770                 struct i915_power_well *power_well;
2771                 enum intel_display_power_domain power_domain;
2772
2773                 power_well = &power_domains->power_wells[i];
2774                 seq_printf(m, "%-25s %d\n", power_well->name,
2775                            power_well->count);
2776
2777                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2778                      power_domain++) {
2779                         if (!(BIT(power_domain) & power_well->domains))
2780                                 continue;
2781
2782                         seq_printf(m, "  %-23s %d\n",
2783                                  intel_display_power_domain_str(power_domain),
2784                                  power_domains->domain_use_count[power_domain]);
2785                 }
2786         }
2787
2788         mutex_unlock(&power_domains->lock);
2789
2790         return 0;
2791 }
2792
2793 static int i915_dmc_info(struct seq_file *m, void *unused)
2794 {
2795         struct drm_info_node *node = m->private;
2796         struct drm_device *dev = node->minor->dev;
2797         struct drm_i915_private *dev_priv = dev->dev_private;
2798         struct intel_csr *csr;
2799
2800         if (!HAS_CSR(dev)) {
2801                 seq_puts(m, "not supported\n");
2802                 return 0;
2803         }
2804
2805         csr = &dev_priv->csr;
2806
2807         intel_runtime_pm_get(dev_priv);
2808
2809         seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2810         seq_printf(m, "path: %s\n", csr->fw_path);
2811
2812         if (!csr->dmc_payload)
2813                 goto out;
2814
2815         seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2816                    CSR_VERSION_MINOR(csr->version));
2817
2818         if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
2819                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2820                            I915_READ(SKL_CSR_DC3_DC5_COUNT));
2821                 seq_printf(m, "DC5 -> DC6 count: %d\n",
2822                            I915_READ(SKL_CSR_DC5_DC6_COUNT));
2823         } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
2824                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2825                            I915_READ(BXT_CSR_DC3_DC5_COUNT));
2826         }
2827
2828 out:
2829         seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2830         seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2831         seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2832
2833         intel_runtime_pm_put(dev_priv);
2834
2835         return 0;
2836 }
2837
2838 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2839                                  struct drm_display_mode *mode)
2840 {
2841         int i;
2842
2843         for (i = 0; i < tabs; i++)
2844                 seq_putc(m, '\t');
2845
2846         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2847                    mode->base.id, mode->name,
2848                    mode->vrefresh, mode->clock,
2849                    mode->hdisplay, mode->hsync_start,
2850                    mode->hsync_end, mode->htotal,
2851                    mode->vdisplay, mode->vsync_start,
2852                    mode->vsync_end, mode->vtotal,
2853                    mode->type, mode->flags);
2854 }
2855
2856 static void intel_encoder_info(struct seq_file *m,
2857                                struct intel_crtc *intel_crtc,
2858                                struct intel_encoder *intel_encoder)
2859 {
2860         struct drm_info_node *node = m->private;
2861         struct drm_device *dev = node->minor->dev;
2862         struct drm_crtc *crtc = &intel_crtc->base;
2863         struct intel_connector *intel_connector;
2864         struct drm_encoder *encoder;
2865
2866         encoder = &intel_encoder->base;
2867         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2868                    encoder->base.id, encoder->name);
2869         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2870                 struct drm_connector *connector = &intel_connector->base;
2871                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2872                            connector->base.id,
2873                            connector->name,
2874                            drm_get_connector_status_name(connector->status));
2875                 if (connector->status == connector_status_connected) {
2876                         struct drm_display_mode *mode = &crtc->mode;
2877                         seq_printf(m, ", mode:\n");
2878                         intel_seq_print_mode(m, 2, mode);
2879                 } else {
2880                         seq_putc(m, '\n');
2881                 }
2882         }
2883 }
2884
2885 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2886 {
2887         struct drm_info_node *node = m->private;
2888         struct drm_device *dev = node->minor->dev;
2889         struct drm_crtc *crtc = &intel_crtc->base;
2890         struct intel_encoder *intel_encoder;
2891         struct drm_plane_state *plane_state = crtc->primary->state;
2892         struct drm_framebuffer *fb = plane_state->fb;
2893
2894         if (fb)
2895                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2896                            fb->base.id, plane_state->src_x >> 16,
2897                            plane_state->src_y >> 16, fb->width, fb->height);
2898         else
2899                 seq_puts(m, "\tprimary plane disabled\n");
2900         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2901                 intel_encoder_info(m, intel_crtc, intel_encoder);
2902 }
2903
2904 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2905 {
2906         struct drm_display_mode *mode = panel->fixed_mode;
2907
2908         seq_printf(m, "\tfixed mode:\n");
2909         intel_seq_print_mode(m, 2, mode);
2910 }
2911
2912 static void intel_dp_info(struct seq_file *m,
2913                           struct intel_connector *intel_connector)
2914 {
2915         struct intel_encoder *intel_encoder = intel_connector->encoder;
2916         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2917
2918         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2919         seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2920         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2921                 intel_panel_info(m, &intel_connector->panel);
2922 }
2923
2924 static void intel_hdmi_info(struct seq_file *m,
2925                             struct intel_connector *intel_connector)
2926 {
2927         struct intel_encoder *intel_encoder = intel_connector->encoder;
2928         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2929
2930         seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2931 }
2932
2933 static void intel_lvds_info(struct seq_file *m,
2934                             struct intel_connector *intel_connector)
2935 {
2936         intel_panel_info(m, &intel_connector->panel);
2937 }
2938
2939 static void intel_connector_info(struct seq_file *m,
2940                                  struct drm_connector *connector)
2941 {
2942         struct intel_connector *intel_connector = to_intel_connector(connector);
2943         struct intel_encoder *intel_encoder = intel_connector->encoder;
2944         struct drm_display_mode *mode;
2945
2946         seq_printf(m, "connector %d: type %s, status: %s\n",
2947                    connector->base.id, connector->name,
2948                    drm_get_connector_status_name(connector->status));
2949         if (connector->status == connector_status_connected) {
2950                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2951                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2952                            connector->display_info.width_mm,
2953                            connector->display_info.height_mm);
2954                 seq_printf(m, "\tsubpixel order: %s\n",
2955                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2956                 seq_printf(m, "\tCEA rev: %d\n",
2957                            connector->display_info.cea_rev);
2958         }
2959         if (intel_encoder) {
2960                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2961                     intel_encoder->type == INTEL_OUTPUT_EDP)
2962                         intel_dp_info(m, intel_connector);
2963                 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2964                         intel_hdmi_info(m, intel_connector);
2965                 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2966                         intel_lvds_info(m, intel_connector);
2967         }
2968
2969         seq_printf(m, "\tmodes:\n");
2970         list_for_each_entry(mode, &connector->modes, head)
2971                 intel_seq_print_mode(m, 2, mode);
2972 }
2973
2974 static bool cursor_active(struct drm_device *dev, int pipe)
2975 {
2976         struct drm_i915_private *dev_priv = dev->dev_private;
2977         u32 state;
2978
2979         if (IS_845G(dev) || IS_I865G(dev))
2980                 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2981         else
2982                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2983
2984         return state;
2985 }
2986
2987 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2988 {
2989         struct drm_i915_private *dev_priv = dev->dev_private;
2990         u32 pos;
2991
2992         pos = I915_READ(CURPOS(pipe));
2993
2994         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2995         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2996                 *x = -*x;
2997
2998         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2999         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
3000                 *y = -*y;
3001
3002         return cursor_active(dev, pipe);
3003 }
3004
3005 static const char *plane_type(enum drm_plane_type type)
3006 {
3007         switch (type) {
3008         case DRM_PLANE_TYPE_OVERLAY:
3009                 return "OVL";
3010         case DRM_PLANE_TYPE_PRIMARY:
3011                 return "PRI";
3012         case DRM_PLANE_TYPE_CURSOR:
3013                 return "CUR";
3014         /*
3015          * Deliberately omitting default: to generate compiler warnings
3016          * when a new drm_plane_type gets added.
3017          */
3018         }
3019
3020         return "unknown";
3021 }
3022
3023 static const char *plane_rotation(unsigned int rotation)
3024 {
3025         static char buf[48];
3026         /*
3027          * According to doc only one DRM_ROTATE_ is allowed but this
3028          * will print them all to visualize if the values are misused
3029          */
3030         snprintf(buf, sizeof(buf),
3031                  "%s%s%s%s%s%s(0x%08x)",
3032                  (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
3033                  (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
3034                  (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
3035                  (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
3036                  (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
3037                  (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
3038                  rotation);
3039
3040         return buf;
3041 }
3042
3043 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3044 {
3045         struct drm_info_node *node = m->private;
3046         struct drm_device *dev = node->minor->dev;
3047         struct intel_plane *intel_plane;
3048
3049         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3050                 struct drm_plane_state *state;
3051                 struct drm_plane *plane = &intel_plane->base;
3052
3053                 if (!plane->state) {
3054                         seq_puts(m, "plane->state is NULL!\n");
3055                         continue;
3056                 }
3057
3058                 state = plane->state;
3059
3060                 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3061                            plane->base.id,
3062                            plane_type(intel_plane->base.type),
3063                            state->crtc_x, state->crtc_y,
3064                            state->crtc_w, state->crtc_h,
3065                            (state->src_x >> 16),
3066                            ((state->src_x & 0xffff) * 15625) >> 10,
3067                            (state->src_y >> 16),
3068                            ((state->src_y & 0xffff) * 15625) >> 10,
3069                            (state->src_w >> 16),
3070                            ((state->src_w & 0xffff) * 15625) >> 10,
3071                            (state->src_h >> 16),
3072                            ((state->src_h & 0xffff) * 15625) >> 10,
3073                            state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
3074                            plane_rotation(state->rotation));
3075         }
3076 }
3077
3078 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3079 {
3080         struct intel_crtc_state *pipe_config;
3081         int num_scalers = intel_crtc->num_scalers;
3082         int i;
3083
3084         pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3085
3086         /* Not all platformas have a scaler */
3087         if (num_scalers) {
3088                 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3089                            num_scalers,
3090                            pipe_config->scaler_state.scaler_users,
3091                            pipe_config->scaler_state.scaler_id);
3092
3093                 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3094                         struct intel_scaler *sc =
3095                                         &pipe_config->scaler_state.scalers[i];
3096
3097                         seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3098                                    i, yesno(sc->in_use), sc->mode);
3099                 }
3100                 seq_puts(m, "\n");
3101         } else {
3102                 seq_puts(m, "\tNo scalers available on this platform\n");
3103         }
3104 }
3105
3106 static int i915_display_info(struct seq_file *m, void *unused)
3107 {
3108         struct drm_info_node *node = m->private;
3109         struct drm_device *dev = node->minor->dev;
3110         struct drm_i915_private *dev_priv = dev->dev_private;
3111         struct intel_crtc *crtc;
3112         struct drm_connector *connector;
3113
3114         intel_runtime_pm_get(dev_priv);
3115         drm_modeset_lock_all(dev);
3116         seq_printf(m, "CRTC info\n");
3117         seq_printf(m, "---------\n");
3118         for_each_intel_crtc(dev, crtc) {
3119                 bool active;
3120                 struct intel_crtc_state *pipe_config;
3121                 int x, y;
3122
3123                 pipe_config = to_intel_crtc_state(crtc->base.state);
3124
3125                 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3126                            crtc->base.base.id, pipe_name(crtc->pipe),
3127                            yesno(pipe_config->base.active),
3128                            pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3129                            yesno(pipe_config->dither), pipe_config->pipe_bpp);
3130
3131                 if (pipe_config->base.active) {
3132                         intel_crtc_info(m, crtc);
3133
3134                         active = cursor_position(dev, crtc->pipe, &x, &y);
3135                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3136                                    yesno(crtc->cursor_base),
3137                                    x, y, crtc->base.cursor->state->crtc_w,
3138                                    crtc->base.cursor->state->crtc_h,
3139                                    crtc->cursor_addr, yesno(active));
3140                         intel_scaler_info(m, crtc);
3141                         intel_plane_info(m, crtc);
3142                 }
3143
3144                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3145                            yesno(!crtc->cpu_fifo_underrun_disabled),
3146                            yesno(!crtc->pch_fifo_underrun_disabled));
3147         }
3148
3149         seq_printf(m, "\n");
3150         seq_printf(m, "Connector info\n");
3151         seq_printf(m, "--------------\n");
3152         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3153                 intel_connector_info(m, connector);
3154         }
3155         drm_modeset_unlock_all(dev);
3156         intel_runtime_pm_put(dev_priv);
3157
3158         return 0;
3159 }
3160
3161 static int i915_semaphore_status(struct seq_file *m, void *unused)
3162 {
3163         struct drm_info_node *node = (struct drm_info_node *) m->private;
3164         struct drm_device *dev = node->minor->dev;
3165         struct drm_i915_private *dev_priv = dev->dev_private;
3166         struct intel_engine_cs *engine;
3167         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3168         enum intel_engine_id id;
3169         int j, ret;
3170
3171         if (!i915_semaphore_is_enabled(dev)) {
3172                 seq_puts(m, "Semaphores are disabled\n");
3173                 return 0;
3174         }
3175
3176         ret = mutex_lock_interruptible(&dev->struct_mutex);
3177         if (ret)
3178                 return ret;
3179         intel_runtime_pm_get(dev_priv);
3180
3181         if (IS_BROADWELL(dev)) {
3182                 struct page *page;
3183                 uint64_t *seqno;
3184
3185                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3186
3187                 seqno = (uint64_t *)kmap_atomic(page);
3188                 for_each_engine_id(engine, dev_priv, id) {
3189                         uint64_t offset;
3190
3191                         seq_printf(m, "%s\n", engine->name);
3192
3193                         seq_puts(m, "  Last signal:");
3194                         for (j = 0; j < num_rings; j++) {
3195                                 offset = id * I915_NUM_ENGINES + j;
3196                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3197                                            seqno[offset], offset * 8);
3198                         }
3199                         seq_putc(m, '\n');
3200
3201                         seq_puts(m, "  Last wait:  ");
3202                         for (j = 0; j < num_rings; j++) {
3203                                 offset = id + (j * I915_NUM_ENGINES);
3204                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3205                                            seqno[offset], offset * 8);
3206                         }
3207                         seq_putc(m, '\n');
3208
3209                 }
3210                 kunmap_atomic(seqno);
3211         } else {
3212                 seq_puts(m, "  Last signal:");
3213                 for_each_engine(engine, dev_priv)
3214                         for (j = 0; j < num_rings; j++)
3215                                 seq_printf(m, "0x%08x\n",
3216                                            I915_READ(engine->semaphore.mbox.signal[j]));
3217                 seq_putc(m, '\n');
3218         }
3219
3220         seq_puts(m, "\nSync seqno:\n");
3221         for_each_engine(engine, dev_priv) {
3222                 for (j = 0; j < num_rings; j++)
3223                         seq_printf(m, "  0x%08x ",
3224                                    engine->semaphore.sync_seqno[j]);
3225                 seq_putc(m, '\n');
3226         }
3227         seq_putc(m, '\n');
3228
3229         intel_runtime_pm_put(dev_priv);
3230         mutex_unlock(&dev->struct_mutex);
3231         return 0;
3232 }
3233
3234 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3235 {
3236         struct drm_info_node *node = (struct drm_info_node *) m->private;
3237         struct drm_device *dev = node->minor->dev;
3238         struct drm_i915_private *dev_priv = dev->dev_private;
3239         int i;
3240
3241         drm_modeset_lock_all(dev);
3242         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3243                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3244
3245                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3246                 seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3247                            pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
3248                 seq_printf(m, " tracked hardware state:\n");
3249                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3250                 seq_printf(m, " dpll_md: 0x%08x\n",
3251                            pll->config.hw_state.dpll_md);
3252                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3253                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3254                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3255         }
3256         drm_modeset_unlock_all(dev);
3257
3258         return 0;
3259 }
3260
3261 static int i915_wa_registers(struct seq_file *m, void *unused)
3262 {
3263         int i;
3264         int ret;
3265         struct intel_engine_cs *engine;
3266         struct drm_info_node *node = (struct drm_info_node *) m->private;
3267         struct drm_device *dev = node->minor->dev;
3268         struct drm_i915_private *dev_priv = dev->dev_private;
3269         struct i915_workarounds *workarounds = &dev_priv->workarounds;
3270         enum intel_engine_id id;
3271
3272         ret = mutex_lock_interruptible(&dev->struct_mutex);
3273         if (ret)
3274                 return ret;
3275
3276         intel_runtime_pm_get(dev_priv);
3277
3278         seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3279         for_each_engine_id(engine, dev_priv, id)
3280                 seq_printf(m, "HW whitelist count for %s: %d\n",
3281                            engine->name, workarounds->hw_whitelist_count[id]);
3282         for (i = 0; i < workarounds->count; ++i) {
3283                 i915_reg_t addr;
3284                 u32 mask, value, read;
3285                 bool ok;
3286
3287                 addr = workarounds->reg[i].addr;
3288                 mask = workarounds->reg[i].mask;
3289                 value = workarounds->reg[i].value;
3290                 read = I915_READ(addr);
3291                 ok = (value & mask) == (read & mask);
3292                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3293                            i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3294         }
3295
3296         intel_runtime_pm_put(dev_priv);
3297         mutex_unlock(&dev->struct_mutex);
3298
3299         return 0;
3300 }
3301
3302 static int i915_ddb_info(struct seq_file *m, void *unused)
3303 {
3304         struct drm_info_node *node = m->private;
3305         struct drm_device *dev = node->minor->dev;
3306         struct drm_i915_private *dev_priv = dev->dev_private;
3307         struct skl_ddb_allocation *ddb;
3308         struct skl_ddb_entry *entry;
3309         enum pipe pipe;
3310         int plane;
3311
3312         if (INTEL_INFO(dev)->gen < 9)
3313                 return 0;
3314
3315         drm_modeset_lock_all(dev);
3316
3317         ddb = &dev_priv->wm.skl_hw.ddb;
3318
3319         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3320
3321         for_each_pipe(dev_priv, pipe) {
3322                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3323
3324                 for_each_plane(dev_priv, pipe, plane) {
3325                         entry = &ddb->plane[pipe][plane];
3326                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3327                                    entry->start, entry->end,
3328                                    skl_ddb_entry_size(entry));
3329                 }
3330
3331                 entry = &ddb->plane[pipe][PLANE_CURSOR];
3332                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3333                            entry->end, skl_ddb_entry_size(entry));
3334         }
3335
3336         drm_modeset_unlock_all(dev);
3337
3338         return 0;
3339 }
3340
3341 static void drrs_status_per_crtc(struct seq_file *m,
3342                 struct drm_device *dev, struct intel_crtc *intel_crtc)
3343 {
3344         struct intel_encoder *intel_encoder;
3345         struct drm_i915_private *dev_priv = dev->dev_private;
3346         struct i915_drrs *drrs = &dev_priv->drrs;
3347         int vrefresh = 0;
3348
3349         for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3350                 /* Encoder connected on this CRTC */
3351                 switch (intel_encoder->type) {
3352                 case INTEL_OUTPUT_EDP:
3353                         seq_puts(m, "eDP:\n");
3354                         break;
3355                 case INTEL_OUTPUT_DSI:
3356                         seq_puts(m, "DSI:\n");
3357                         break;
3358                 case INTEL_OUTPUT_HDMI:
3359                         seq_puts(m, "HDMI:\n");
3360                         break;
3361                 case INTEL_OUTPUT_DISPLAYPORT:
3362                         seq_puts(m, "DP:\n");
3363                         break;
3364                 default:
3365                         seq_printf(m, "Other encoder (id=%d).\n",
3366                                                 intel_encoder->type);
3367                         return;
3368                 }
3369         }
3370
3371         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3372                 seq_puts(m, "\tVBT: DRRS_type: Static");
3373         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3374                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3375         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3376                 seq_puts(m, "\tVBT: DRRS_type: None");
3377         else
3378                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3379
3380         seq_puts(m, "\n\n");
3381
3382         if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3383                 struct intel_panel *panel;
3384
3385                 mutex_lock(&drrs->mutex);
3386                 /* DRRS Supported */
3387                 seq_puts(m, "\tDRRS Supported: Yes\n");
3388
3389                 /* disable_drrs() will make drrs->dp NULL */
3390                 if (!drrs->dp) {
3391                         seq_puts(m, "Idleness DRRS: Disabled");
3392                         mutex_unlock(&drrs->mutex);
3393                         return;
3394                 }
3395
3396                 panel = &drrs->dp->attached_connector->panel;
3397                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3398                                         drrs->busy_frontbuffer_bits);
3399
3400                 seq_puts(m, "\n\t\t");
3401                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3402                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3403                         vrefresh = panel->fixed_mode->vrefresh;
3404                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3405                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3406                         vrefresh = panel->downclock_mode->vrefresh;
3407                 } else {
3408                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
3409                                                 drrs->refresh_rate_type);
3410                         mutex_unlock(&drrs->mutex);
3411                         return;
3412                 }
3413                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3414
3415                 seq_puts(m, "\n\t\t");
3416                 mutex_unlock(&drrs->mutex);
3417         } else {
3418                 /* DRRS not supported. Print the VBT parameter*/
3419                 seq_puts(m, "\tDRRS Supported : No");
3420         }
3421         seq_puts(m, "\n");
3422 }
3423
3424 static int i915_drrs_status(struct seq_file *m, void *unused)
3425 {
3426         struct drm_info_node *node = m->private;
3427         struct drm_device *dev = node->minor->dev;
3428         struct intel_crtc *intel_crtc;
3429         int active_crtc_cnt = 0;
3430
3431         for_each_intel_crtc(dev, intel_crtc) {
3432                 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3433
3434                 if (intel_crtc->base.state->active) {
3435                         active_crtc_cnt++;
3436                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3437
3438                         drrs_status_per_crtc(m, dev, intel_crtc);
3439                 }
3440
3441                 drm_modeset_unlock(&intel_crtc->base.mutex);
3442         }
3443
3444         if (!active_crtc_cnt)
3445                 seq_puts(m, "No active crtc found\n");
3446
3447         return 0;
3448 }
3449
3450 struct pipe_crc_info {
3451         const char *name;
3452         struct drm_device *dev;
3453         enum pipe pipe;
3454 };
3455
3456 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3457 {
3458         struct drm_info_node *node = (struct drm_info_node *) m->private;
3459         struct drm_device *dev = node->minor->dev;
3460         struct drm_encoder *encoder;
3461         struct intel_encoder *intel_encoder;
3462         struct intel_digital_port *intel_dig_port;
3463         drm_modeset_lock_all(dev);
3464         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3465                 intel_encoder = to_intel_encoder(encoder);
3466                 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3467                         continue;
3468                 intel_dig_port = enc_to_dig_port(encoder);
3469                 if (!intel_dig_port->dp.can_mst)
3470                         continue;
3471                 seq_printf(m, "MST Source Port %c\n",
3472                            port_name(intel_dig_port->port));
3473                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3474         }
3475         drm_modeset_unlock_all(dev);
3476         return 0;
3477 }
3478
3479 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3480 {
3481         struct pipe_crc_info *info = inode->i_private;
3482         struct drm_i915_private *dev_priv = info->dev->dev_private;
3483         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3484
3485         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3486                 return -ENODEV;
3487
3488         spin_lock_irq(&pipe_crc->lock);
3489
3490         if (pipe_crc->opened) {
3491                 spin_unlock_irq(&pipe_crc->lock);
3492                 return -EBUSY; /* already open */
3493         }
3494
3495         pipe_crc->opened = true;
3496         filep->private_data = inode->i_private;
3497
3498         spin_unlock_irq(&pipe_crc->lock);
3499
3500         return 0;
3501 }
3502
3503 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3504 {
3505         struct pipe_crc_info *info = inode->i_private;
3506         struct drm_i915_private *dev_priv = info->dev->dev_private;
3507         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3508
3509         spin_lock_irq(&pipe_crc->lock);
3510         pipe_crc->opened = false;
3511         spin_unlock_irq(&pipe_crc->lock);
3512
3513         return 0;
3514 }
3515
3516 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3517 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
3518 /* account for \'0' */
3519 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
3520
3521 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3522 {
3523         assert_spin_locked(&pipe_crc->lock);
3524         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3525                         INTEL_PIPE_CRC_ENTRIES_NR);
3526 }
3527
3528 static ssize_t
3529 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3530                    loff_t *pos)
3531 {
3532         struct pipe_crc_info *info = filep->private_data;
3533         struct drm_device *dev = info->dev;
3534         struct drm_i915_private *dev_priv = dev->dev_private;
3535         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3536         char buf[PIPE_CRC_BUFFER_LEN];
3537         int n_entries;
3538         ssize_t bytes_read;
3539
3540         /*
3541          * Don't allow user space to provide buffers not big enough to hold
3542          * a line of data.
3543          */
3544         if (count < PIPE_CRC_LINE_LEN)
3545                 return -EINVAL;
3546
3547         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3548                 return 0;
3549
3550         /* nothing to read */
3551         spin_lock_irq(&pipe_crc->lock);
3552         while (pipe_crc_data_count(pipe_crc) == 0) {
3553                 int ret;
3554
3555                 if (filep->f_flags & O_NONBLOCK) {
3556                         spin_unlock_irq(&pipe_crc->lock);
3557                         return -EAGAIN;
3558                 }
3559
3560                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3561                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3562                 if (ret) {
3563                         spin_unlock_irq(&pipe_crc->lock);
3564                         return ret;
3565                 }
3566         }
3567
3568         /* We now have one or more entries to read */
3569         n_entries = count / PIPE_CRC_LINE_LEN;
3570
3571         bytes_read = 0;
3572         while (n_entries > 0) {
3573                 struct intel_pipe_crc_entry *entry =
3574                         &pipe_crc->entries[pipe_crc->tail];
3575                 int ret;
3576
3577                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3578                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3579                         break;
3580
3581                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3582                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3583
3584                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3585                                        "%8u %8x %8x %8x %8x %8x\n",
3586                                        entry->frame, entry->crc[0],
3587                                        entry->crc[1], entry->crc[2],
3588                                        entry->crc[3], entry->crc[4]);
3589
3590                 spin_unlock_irq(&pipe_crc->lock);
3591
3592                 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3593                 if (ret == PIPE_CRC_LINE_LEN)
3594                         return -EFAULT;
3595
3596                 user_buf += PIPE_CRC_LINE_LEN;
3597                 n_entries--;
3598
3599                 spin_lock_irq(&pipe_crc->lock);
3600         }
3601
3602         spin_unlock_irq(&pipe_crc->lock);
3603
3604         return bytes_read;
3605 }
3606
3607 static const struct file_operations i915_pipe_crc_fops = {
3608         .owner = THIS_MODULE,
3609         .open = i915_pipe_crc_open,
3610         .read = i915_pipe_crc_read,
3611         .release = i915_pipe_crc_release,
3612 };
3613
3614 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3615         {
3616                 .name = "i915_pipe_A_crc",
3617                 .pipe = PIPE_A,
3618         },
3619         {
3620                 .name = "i915_pipe_B_crc",
3621                 .pipe = PIPE_B,
3622         },
3623         {
3624                 .name = "i915_pipe_C_crc",
3625                 .pipe = PIPE_C,
3626         },
3627 };
3628
3629 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3630                                 enum pipe pipe)
3631 {
3632         struct drm_device *dev = minor->dev;
3633         struct dentry *ent;
3634         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3635
3636         info->dev = dev;
3637         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3638                                   &i915_pipe_crc_fops);
3639         if (!ent)
3640                 return -ENOMEM;
3641
3642         return drm_add_fake_info_node(minor, ent, info);
3643 }
3644
3645 static const char * const pipe_crc_sources[] = {
3646         "none",
3647         "plane1",
3648         "plane2",
3649         "pf",
3650         "pipe",
3651         "TV",
3652         "DP-B",
3653         "DP-C",
3654         "DP-D",
3655         "auto",
3656 };
3657
3658 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3659 {
3660         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3661         return pipe_crc_sources[source];
3662 }
3663
3664 static int display_crc_ctl_show(struct seq_file *m, void *data)
3665 {
3666         struct drm_device *dev = m->private;
3667         struct drm_i915_private *dev_priv = dev->dev_private;
3668         int i;
3669
3670         for (i = 0; i < I915_MAX_PIPES; i++)
3671                 seq_printf(m, "%c %s\n", pipe_name(i),
3672                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3673
3674         return 0;
3675 }
3676
3677 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3678 {
3679         struct drm_device *dev = inode->i_private;
3680
3681         return single_open(file, display_crc_ctl_show, dev);
3682 }
3683
3684 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3685                                  uint32_t *val)
3686 {
3687         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3688                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3689
3690         switch (*source) {
3691         case INTEL_PIPE_CRC_SOURCE_PIPE:
3692                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3693                 break;
3694         case INTEL_PIPE_CRC_SOURCE_NONE:
3695                 *val = 0;
3696                 break;
3697         default:
3698                 return -EINVAL;
3699         }
3700
3701         return 0;
3702 }
3703
3704 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3705                                      enum intel_pipe_crc_source *source)
3706 {
3707         struct intel_encoder *encoder;
3708         struct intel_crtc *crtc;
3709         struct intel_digital_port *dig_port;
3710         int ret = 0;
3711
3712         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3713
3714         drm_modeset_lock_all(dev);
3715         for_each_intel_encoder(dev, encoder) {
3716                 if (!encoder->base.crtc)
3717                         continue;
3718
3719                 crtc = to_intel_crtc(encoder->base.crtc);
3720
3721                 if (crtc->pipe != pipe)
3722                         continue;
3723
3724                 switch (encoder->type) {
3725                 case INTEL_OUTPUT_TVOUT:
3726                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3727                         break;
3728                 case INTEL_OUTPUT_DISPLAYPORT:
3729                 case INTEL_OUTPUT_EDP:
3730                         dig_port = enc_to_dig_port(&encoder->base);
3731                         switch (dig_port->port) {
3732                         case PORT_B:
3733                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3734                                 break;
3735                         case PORT_C:
3736                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3737                                 break;
3738                         case PORT_D:
3739                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3740                                 break;
3741                         default:
3742                                 WARN(1, "nonexisting DP port %c\n",
3743                                      port_name(dig_port->port));
3744                                 break;
3745                         }
3746                         break;
3747                 default:
3748                         break;
3749                 }
3750         }
3751         drm_modeset_unlock_all(dev);
3752
3753         return ret;
3754 }
3755
3756 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3757                                 enum pipe pipe,
3758                                 enum intel_pipe_crc_source *source,
3759                                 uint32_t *val)
3760 {
3761         struct drm_i915_private *dev_priv = dev->dev_private;
3762         bool need_stable_symbols = false;
3763
3764         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3765                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3766                 if (ret)
3767                         return ret;
3768         }
3769
3770         switch (*source) {
3771         case INTEL_PIPE_CRC_SOURCE_PIPE:
3772                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3773                 break;
3774         case INTEL_PIPE_CRC_SOURCE_DP_B:
3775                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3776                 need_stable_symbols = true;
3777                 break;
3778         case INTEL_PIPE_CRC_SOURCE_DP_C:
3779                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3780                 need_stable_symbols = true;
3781                 break;
3782         case INTEL_PIPE_CRC_SOURCE_DP_D:
3783                 if (!IS_CHERRYVIEW(dev))
3784                         return -EINVAL;
3785                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3786                 need_stable_symbols = true;
3787                 break;
3788         case INTEL_PIPE_CRC_SOURCE_NONE:
3789                 *val = 0;
3790                 break;
3791         default:
3792                 return -EINVAL;
3793         }
3794
3795         /*
3796          * When the pipe CRC tap point is after the transcoders we need
3797          * to tweak symbol-level features to produce a deterministic series of
3798          * symbols for a given frame. We need to reset those features only once
3799          * a frame (instead of every nth symbol):
3800          *   - DC-balance: used to ensure a better clock recovery from the data
3801          *     link (SDVO)
3802          *   - DisplayPort scrambling: used for EMI reduction
3803          */
3804         if (need_stable_symbols) {
3805                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3806
3807                 tmp |= DC_BALANCE_RESET_VLV;
3808                 switch (pipe) {
3809                 case PIPE_A:
3810                         tmp |= PIPE_A_SCRAMBLE_RESET;
3811                         break;
3812                 case PIPE_B:
3813                         tmp |= PIPE_B_SCRAMBLE_RESET;
3814                         break;
3815                 case PIPE_C:
3816                         tmp |= PIPE_C_SCRAMBLE_RESET;
3817                         break;
3818                 default:
3819                         return -EINVAL;
3820                 }
3821                 I915_WRITE(PORT_DFT2_G4X, tmp);
3822         }
3823
3824         return 0;
3825 }
3826
3827 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3828                                  enum pipe pipe,
3829                                  enum intel_pipe_crc_source *source,
3830                                  uint32_t *val)
3831 {
3832         struct drm_i915_private *dev_priv = dev->dev_private;
3833         bool need_stable_symbols = false;
3834
3835         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3836                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3837                 if (ret)
3838                         return ret;
3839         }
3840
3841         switch (*source) {
3842         case INTEL_PIPE_CRC_SOURCE_PIPE:
3843                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3844                 break;
3845         case INTEL_PIPE_CRC_SOURCE_TV:
3846                 if (!SUPPORTS_TV(dev))
3847                         return -EINVAL;
3848                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3849                 break;
3850         case INTEL_PIPE_CRC_SOURCE_DP_B:
3851                 if (!IS_G4X(dev))
3852                         return -EINVAL;
3853                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3854                 need_stable_symbols = true;
3855                 break;
3856         case INTEL_PIPE_CRC_SOURCE_DP_C:
3857                 if (!IS_G4X(dev))
3858                         return -EINVAL;
3859                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3860                 need_stable_symbols = true;
3861                 break;
3862         case INTEL_PIPE_CRC_SOURCE_DP_D:
3863                 if (!IS_G4X(dev))
3864                         return -EINVAL;
3865                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3866                 need_stable_symbols = true;
3867                 break;
3868         case INTEL_PIPE_CRC_SOURCE_NONE:
3869                 *val = 0;
3870                 break;
3871         default:
3872                 return -EINVAL;
3873         }
3874
3875         /*
3876          * When the pipe CRC tap point is after the transcoders we need
3877          * to tweak symbol-level features to produce a deterministic series of
3878          * symbols for a given frame. We need to reset those features only once
3879          * a frame (instead of every nth symbol):
3880          *   - DC-balance: used to ensure a better clock recovery from the data
3881          *     link (SDVO)
3882          *   - DisplayPort scrambling: used for EMI reduction
3883          */
3884         if (need_stable_symbols) {
3885                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3886
3887                 WARN_ON(!IS_G4X(dev));
3888
3889                 I915_WRITE(PORT_DFT_I9XX,
3890                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3891
3892                 if (pipe == PIPE_A)
3893                         tmp |= PIPE_A_SCRAMBLE_RESET;
3894                 else
3895                         tmp |= PIPE_B_SCRAMBLE_RESET;
3896
3897                 I915_WRITE(PORT_DFT2_G4X, tmp);
3898         }
3899
3900         return 0;
3901 }
3902
3903 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3904                                          enum pipe pipe)
3905 {
3906         struct drm_i915_private *dev_priv = dev->dev_private;
3907         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3908
3909         switch (pipe) {
3910         case PIPE_A:
3911                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3912                 break;
3913         case PIPE_B:
3914                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3915                 break;
3916         case PIPE_C:
3917                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3918                 break;
3919         default:
3920                 return;
3921         }
3922         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3923                 tmp &= ~DC_BALANCE_RESET_VLV;
3924         I915_WRITE(PORT_DFT2_G4X, tmp);
3925
3926 }
3927
3928 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3929                                          enum pipe pipe)
3930 {
3931         struct drm_i915_private *dev_priv = dev->dev_private;
3932         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3933
3934         if (pipe == PIPE_A)
3935                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3936         else
3937                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3938         I915_WRITE(PORT_DFT2_G4X, tmp);
3939
3940         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3941                 I915_WRITE(PORT_DFT_I9XX,
3942                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3943         }
3944 }
3945
3946 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3947                                 uint32_t *val)
3948 {
3949         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3950                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3951
3952         switch (*source) {
3953         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3954                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3955                 break;
3956         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3957                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3958                 break;
3959         case INTEL_PIPE_CRC_SOURCE_PIPE:
3960                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3961                 break;
3962         case INTEL_PIPE_CRC_SOURCE_NONE:
3963                 *val = 0;
3964                 break;
3965         default:
3966                 return -EINVAL;
3967         }
3968
3969         return 0;
3970 }
3971
3972 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
3973 {
3974         struct drm_i915_private *dev_priv = dev->dev_private;
3975         struct intel_crtc *crtc =
3976                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3977         struct intel_crtc_state *pipe_config;
3978         struct drm_atomic_state *state;
3979         int ret = 0;
3980
3981         drm_modeset_lock_all(dev);
3982         state = drm_atomic_state_alloc(dev);
3983         if (!state) {
3984                 ret = -ENOMEM;
3985                 goto out;
3986         }
3987
3988         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
3989         pipe_config = intel_atomic_get_crtc_state(state, crtc);
3990         if (IS_ERR(pipe_config)) {
3991                 ret = PTR_ERR(pipe_config);
3992                 goto out;
3993         }
3994
3995         pipe_config->pch_pfit.force_thru = enable;
3996         if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3997             pipe_config->pch_pfit.enabled != enable)
3998                 pipe_config->base.connectors_changed = true;
3999
4000         ret = drm_atomic_commit(state);
4001 out:
4002         drm_modeset_unlock_all(dev);
4003         WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
4004         if (ret)
4005                 drm_atomic_state_free(state);
4006 }
4007
4008 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
4009                                 enum pipe pipe,
4010                                 enum intel_pipe_crc_source *source,
4011                                 uint32_t *val)
4012 {
4013         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
4014                 *source = INTEL_PIPE_CRC_SOURCE_PF;
4015
4016         switch (*source) {
4017         case INTEL_PIPE_CRC_SOURCE_PLANE1:
4018                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
4019                 break;
4020         case INTEL_PIPE_CRC_SOURCE_PLANE2:
4021                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
4022                 break;
4023         case INTEL_PIPE_CRC_SOURCE_PF:
4024                 if (IS_HASWELL(dev) && pipe == PIPE_A)
4025                         hsw_trans_edp_pipe_A_crc_wa(dev, true);
4026
4027                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
4028                 break;
4029         case INTEL_PIPE_CRC_SOURCE_NONE:
4030                 *val = 0;
4031                 break;
4032         default:
4033                 return -EINVAL;
4034         }
4035
4036         return 0;
4037 }
4038
4039 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
4040                                enum intel_pipe_crc_source source)
4041 {
4042         struct drm_i915_private *dev_priv = dev->dev_private;
4043         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4044         struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
4045                                                                         pipe));
4046         enum intel_display_power_domain power_domain;
4047         u32 val = 0; /* shut up gcc */
4048         int ret;
4049
4050         if (pipe_crc->source == source)
4051                 return 0;
4052
4053         /* forbid changing the source without going back to 'none' */
4054         if (pipe_crc->source && source)
4055                 return -EINVAL;
4056
4057         power_domain = POWER_DOMAIN_PIPE(pipe);
4058         if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4059                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4060                 return -EIO;
4061         }
4062
4063         if (IS_GEN2(dev))
4064                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4065         else if (INTEL_INFO(dev)->gen < 5)
4066                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4067         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4068                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4069         else if (IS_GEN5(dev) || IS_GEN6(dev))
4070                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4071         else
4072                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4073
4074         if (ret != 0)
4075                 goto out;
4076
4077         /* none -> real source transition */
4078         if (source) {
4079                 struct intel_pipe_crc_entry *entries;
4080
4081                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4082                                  pipe_name(pipe), pipe_crc_source_name(source));
4083
4084                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4085                                   sizeof(pipe_crc->entries[0]),
4086                                   GFP_KERNEL);
4087                 if (!entries) {
4088                         ret = -ENOMEM;
4089                         goto out;
4090                 }
4091
4092                 /*
4093                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4094                  * enabled and disabled dynamically based on package C states,
4095                  * user space can't make reliable use of the CRCs, so let's just
4096                  * completely disable it.
4097                  */
4098                 hsw_disable_ips(crtc);
4099
4100                 spin_lock_irq(&pipe_crc->lock);
4101                 kfree(pipe_crc->entries);
4102                 pipe_crc->entries = entries;
4103                 pipe_crc->head = 0;
4104                 pipe_crc->tail = 0;
4105                 spin_unlock_irq(&pipe_crc->lock);
4106         }
4107
4108         pipe_crc->source = source;
4109
4110         I915_WRITE(PIPE_CRC_CTL(pipe), val);
4111         POSTING_READ(PIPE_CRC_CTL(pipe));
4112
4113         /* real source -> none transition */
4114         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4115                 struct intel_pipe_crc_entry *entries;
4116                 struct intel_crtc *crtc =
4117                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4118
4119                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4120                                  pipe_name(pipe));
4121
4122                 drm_modeset_lock(&crtc->base.mutex, NULL);
4123                 if (crtc->base.state->active)
4124                         intel_wait_for_vblank(dev, pipe);
4125                 drm_modeset_unlock(&crtc->base.mutex);
4126
4127                 spin_lock_irq(&pipe_crc->lock);
4128                 entries = pipe_crc->entries;
4129                 pipe_crc->entries = NULL;
4130                 pipe_crc->head = 0;
4131                 pipe_crc->tail = 0;
4132                 spin_unlock_irq(&pipe_crc->lock);
4133
4134                 kfree(entries);
4135
4136                 if (IS_G4X(dev))
4137                         g4x_undo_pipe_scramble_reset(dev, pipe);
4138                 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4139                         vlv_undo_pipe_scramble_reset(dev, pipe);
4140                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
4141                         hsw_trans_edp_pipe_A_crc_wa(dev, false);
4142
4143                 hsw_enable_ips(crtc);
4144         }
4145
4146         ret = 0;
4147
4148 out:
4149         intel_display_power_put(dev_priv, power_domain);
4150
4151         return ret;
4152 }
4153
4154 /*
4155  * Parse pipe CRC command strings:
4156  *   command: wsp* object wsp+ name wsp+ source wsp*
4157  *   object: 'pipe'
4158  *   name: (A | B | C)
4159  *   source: (none | plane1 | plane2 | pf)
4160  *   wsp: (#0x20 | #0x9 | #0xA)+
4161  *
4162  * eg.:
4163  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
4164  *  "pipe A none"    ->  Stop CRC
4165  */
4166 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4167 {
4168         int n_words = 0;
4169
4170         while (*buf) {
4171                 char *end;
4172
4173                 /* skip leading white space */
4174                 buf = skip_spaces(buf);
4175                 if (!*buf)
4176                         break;  /* end of buffer */
4177
4178                 /* find end of word */
4179                 for (end = buf; *end && !isspace(*end); end++)
4180                         ;
4181
4182                 if (n_words == max_words) {
4183                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4184                                          max_words);
4185                         return -EINVAL; /* ran out of words[] before bytes */
4186                 }
4187
4188                 if (*end)
4189                         *end++ = '\0';
4190                 words[n_words++] = buf;
4191                 buf = end;
4192         }
4193
4194         return n_words;
4195 }
4196
4197 enum intel_pipe_crc_object {
4198         PIPE_CRC_OBJECT_PIPE,
4199 };
4200
4201 static const char * const pipe_crc_objects[] = {
4202         "pipe",
4203 };
4204
4205 static int
4206 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4207 {
4208         int i;
4209
4210         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4211                 if (!strcmp(buf, pipe_crc_objects[i])) {
4212                         *o = i;
4213                         return 0;
4214                     }
4215
4216         return -EINVAL;
4217 }
4218
4219 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4220 {
4221         const char name = buf[0];
4222
4223         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4224                 return -EINVAL;
4225
4226         *pipe = name - 'A';
4227
4228         return 0;
4229 }
4230
4231 static int
4232 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4233 {
4234         int i;
4235
4236         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4237                 if (!strcmp(buf, pipe_crc_sources[i])) {
4238                         *s = i;
4239                         return 0;
4240                     }
4241
4242         return -EINVAL;
4243 }
4244
4245 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4246 {
4247 #define N_WORDS 3
4248         int n_words;
4249         char *words[N_WORDS];
4250         enum pipe pipe;
4251         enum intel_pipe_crc_object object;
4252         enum intel_pipe_crc_source source;
4253
4254         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4255         if (n_words != N_WORDS) {
4256                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4257                                  N_WORDS);
4258                 return -EINVAL;
4259         }
4260
4261         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4262                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4263                 return -EINVAL;
4264         }
4265
4266         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4267                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4268                 return -EINVAL;
4269         }
4270
4271         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4272                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4273                 return -EINVAL;
4274         }
4275
4276         return pipe_crc_set_source(dev, pipe, source);
4277 }
4278
4279 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4280                                      size_t len, loff_t *offp)
4281 {
4282         struct seq_file *m = file->private_data;
4283         struct drm_device *dev = m->private;
4284         char *tmpbuf;
4285         int ret;
4286
4287         if (len == 0)
4288                 return 0;
4289
4290         if (len > PAGE_SIZE - 1) {
4291                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4292                                  PAGE_SIZE);
4293                 return -E2BIG;
4294         }
4295
4296         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4297         if (!tmpbuf)
4298                 return -ENOMEM;
4299
4300         if (copy_from_user(tmpbuf, ubuf, len)) {
4301                 ret = -EFAULT;
4302                 goto out;
4303         }
4304         tmpbuf[len] = '\0';
4305
4306         ret = display_crc_ctl_parse(dev, tmpbuf, len);
4307
4308 out:
4309         kfree(tmpbuf);
4310         if (ret < 0)
4311                 return ret;
4312
4313         *offp += len;
4314         return len;
4315 }
4316
4317 static const struct file_operations i915_display_crc_ctl_fops = {
4318         .owner = THIS_MODULE,
4319         .open = display_crc_ctl_open,
4320         .read = seq_read,
4321         .llseek = seq_lseek,
4322         .release = single_release,
4323         .write = display_crc_ctl_write
4324 };
4325
4326 static ssize_t i915_displayport_test_active_write(struct file *file,
4327                                             const char __user *ubuf,
4328                                             size_t len, loff_t *offp)
4329 {
4330         char *input_buffer;
4331         int status = 0;
4332         struct drm_device *dev;
4333         struct drm_connector *connector;
4334         struct list_head *connector_list;
4335         struct intel_dp *intel_dp;
4336         int val = 0;
4337
4338         dev = ((struct seq_file *)file->private_data)->private;
4339
4340         connector_list = &dev->mode_config.connector_list;
4341
4342         if (len == 0)
4343                 return 0;
4344
4345         input_buffer = kmalloc(len + 1, GFP_KERNEL);
4346         if (!input_buffer)
4347                 return -ENOMEM;
4348
4349         if (copy_from_user(input_buffer, ubuf, len)) {
4350                 status = -EFAULT;
4351                 goto out;
4352         }
4353
4354         input_buffer[len] = '\0';
4355         DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4356
4357         list_for_each_entry(connector, connector_list, head) {
4358
4359                 if (connector->connector_type !=
4360                     DRM_MODE_CONNECTOR_DisplayPort)
4361                         continue;
4362
4363                 if (connector->status == connector_status_connected &&
4364                     connector->encoder != NULL) {
4365                         intel_dp = enc_to_intel_dp(connector->encoder);
4366                         status = kstrtoint(input_buffer, 10, &val);
4367                         if (status < 0)
4368                                 goto out;
4369                         DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4370                         /* To prevent erroneous activation of the compliance
4371                          * testing code, only accept an actual value of 1 here
4372                          */
4373                         if (val == 1)
4374                                 intel_dp->compliance_test_active = 1;
4375                         else
4376                                 intel_dp->compliance_test_active = 0;
4377                 }
4378         }
4379 out:
4380         kfree(input_buffer);
4381         if (status < 0)
4382                 return status;
4383
4384         *offp += len;
4385         return len;
4386 }
4387
4388 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4389 {
4390         struct drm_device *dev = m->private;
4391         struct drm_connector *connector;
4392         struct list_head *connector_list = &dev->mode_config.connector_list;
4393         struct intel_dp *intel_dp;
4394
4395         list_for_each_entry(connector, connector_list, head) {
4396
4397                 if (connector->connector_type !=
4398                     DRM_MODE_CONNECTOR_DisplayPort)
4399                         continue;
4400
4401                 if (connector->status == connector_status_connected &&
4402                     connector->encoder != NULL) {
4403                         intel_dp = enc_to_intel_dp(connector->encoder);
4404                         if (intel_dp->compliance_test_active)
4405                                 seq_puts(m, "1");
4406                         else
4407                                 seq_puts(m, "0");
4408                 } else
4409                         seq_puts(m, "0");
4410         }
4411
4412         return 0;
4413 }
4414
4415 static int i915_displayport_test_active_open(struct inode *inode,
4416                                        struct file *file)
4417 {
4418         struct drm_device *dev = inode->i_private;
4419
4420         return single_open(file, i915_displayport_test_active_show, dev);
4421 }
4422
4423 static const struct file_operations i915_displayport_test_active_fops = {
4424         .owner = THIS_MODULE,
4425         .open = i915_displayport_test_active_open,
4426         .read = seq_read,
4427         .llseek = seq_lseek,
4428         .release = single_release,
4429         .write = i915_displayport_test_active_write
4430 };
4431
4432 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4433 {
4434         struct drm_device *dev = m->private;
4435         struct drm_connector *connector;
4436         struct list_head *connector_list = &dev->mode_config.connector_list;
4437         struct intel_dp *intel_dp;
4438
4439         list_for_each_entry(connector, connector_list, head) {
4440
4441                 if (connector->connector_type !=
4442                     DRM_MODE_CONNECTOR_DisplayPort)
4443                         continue;
4444
4445                 if (connector->status == connector_status_connected &&
4446                     connector->encoder != NULL) {
4447                         intel_dp = enc_to_intel_dp(connector->encoder);
4448                         seq_printf(m, "%lx", intel_dp->compliance_test_data);
4449                 } else
4450                         seq_puts(m, "0");
4451         }
4452
4453         return 0;
4454 }
4455 static int i915_displayport_test_data_open(struct inode *inode,
4456                                        struct file *file)
4457 {
4458         struct drm_device *dev = inode->i_private;
4459
4460         return single_open(file, i915_displayport_test_data_show, dev);
4461 }
4462
4463 static const struct file_operations i915_displayport_test_data_fops = {
4464         .owner = THIS_MODULE,
4465         .open = i915_displayport_test_data_open,
4466         .read = seq_read,
4467         .llseek = seq_lseek,
4468         .release = single_release
4469 };
4470
4471 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4472 {
4473         struct drm_device *dev = m->private;
4474         struct drm_connector *connector;
4475         struct list_head *connector_list = &dev->mode_config.connector_list;
4476         struct intel_dp *intel_dp;
4477
4478         list_for_each_entry(connector, connector_list, head) {
4479
4480                 if (connector->connector_type !=
4481                     DRM_MODE_CONNECTOR_DisplayPort)
4482                         continue;
4483
4484                 if (connector->status == connector_status_connected &&
4485                     connector->encoder != NULL) {
4486                         intel_dp = enc_to_intel_dp(connector->encoder);
4487                         seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4488                 } else
4489                         seq_puts(m, "0");
4490         }
4491
4492         return 0;
4493 }
4494
4495 static int i915_displayport_test_type_open(struct inode *inode,
4496                                        struct file *file)
4497 {
4498         struct drm_device *dev = inode->i_private;
4499
4500         return single_open(file, i915_displayport_test_type_show, dev);
4501 }
4502
4503 static const struct file_operations i915_displayport_test_type_fops = {
4504         .owner = THIS_MODULE,
4505         .open = i915_displayport_test_type_open,
4506         .read = seq_read,
4507         .llseek = seq_lseek,
4508         .release = single_release
4509 };
4510
4511 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4512 {
4513         struct drm_device *dev = m->private;
4514         int level;
4515         int num_levels;
4516
4517         if (IS_CHERRYVIEW(dev))
4518                 num_levels = 3;
4519         else if (IS_VALLEYVIEW(dev))
4520                 num_levels = 1;
4521         else
4522                 num_levels = ilk_wm_max_level(dev) + 1;
4523
4524         drm_modeset_lock_all(dev);
4525
4526         for (level = 0; level < num_levels; level++) {
4527                 unsigned int latency = wm[level];
4528
4529                 /*
4530                  * - WM1+ latency values in 0.5us units
4531                  * - latencies are in us on gen9/vlv/chv
4532                  */
4533                 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
4534                     IS_CHERRYVIEW(dev))
4535                         latency *= 10;
4536                 else if (level > 0)
4537                         latency *= 5;
4538
4539                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4540                            level, wm[level], latency / 10, latency % 10);
4541         }
4542
4543         drm_modeset_unlock_all(dev);
4544 }
4545
4546 static int pri_wm_latency_show(struct seq_file *m, void *data)
4547 {
4548         struct drm_device *dev = m->private;
4549         struct drm_i915_private *dev_priv = dev->dev_private;
4550         const uint16_t *latencies;
4551
4552         if (INTEL_INFO(dev)->gen >= 9)
4553                 latencies = dev_priv->wm.skl_latency;
4554         else
4555                 latencies = to_i915(dev)->wm.pri_latency;
4556
4557         wm_latency_show(m, latencies);
4558
4559         return 0;
4560 }
4561
4562 static int spr_wm_latency_show(struct seq_file *m, void *data)
4563 {
4564         struct drm_device *dev = m->private;
4565         struct drm_i915_private *dev_priv = dev->dev_private;
4566         const uint16_t *latencies;
4567
4568         if (INTEL_INFO(dev)->gen >= 9)
4569                 latencies = dev_priv->wm.skl_latency;
4570         else
4571                 latencies = to_i915(dev)->wm.spr_latency;
4572
4573         wm_latency_show(m, latencies);
4574
4575         return 0;
4576 }
4577
4578 static int cur_wm_latency_show(struct seq_file *m, void *data)
4579 {
4580         struct drm_device *dev = m->private;
4581         struct drm_i915_private *dev_priv = dev->dev_private;
4582         const uint16_t *latencies;
4583
4584         if (INTEL_INFO(dev)->gen >= 9)
4585                 latencies = dev_priv->wm.skl_latency;
4586         else
4587                 latencies = to_i915(dev)->wm.cur_latency;
4588
4589         wm_latency_show(m, latencies);
4590
4591         return 0;
4592 }
4593
4594 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4595 {
4596         struct drm_device *dev = inode->i_private;
4597
4598         if (INTEL_INFO(dev)->gen < 5)
4599                 return -ENODEV;
4600
4601         return single_open(file, pri_wm_latency_show, dev);
4602 }
4603
4604 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4605 {
4606         struct drm_device *dev = inode->i_private;
4607
4608         if (HAS_GMCH_DISPLAY(dev))
4609                 return -ENODEV;
4610
4611         return single_open(file, spr_wm_latency_show, dev);
4612 }
4613
4614 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4615 {
4616         struct drm_device *dev = inode->i_private;
4617
4618         if (HAS_GMCH_DISPLAY(dev))
4619                 return -ENODEV;
4620
4621         return single_open(file, cur_wm_latency_show, dev);
4622 }
4623
4624 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4625                                 size_t len, loff_t *offp, uint16_t wm[8])
4626 {
4627         struct seq_file *m = file->private_data;
4628         struct drm_device *dev = m->private;
4629         uint16_t new[8] = { 0 };
4630         int num_levels;
4631         int level;
4632         int ret;
4633         char tmp[32];
4634
4635         if (IS_CHERRYVIEW(dev))
4636                 num_levels = 3;
4637         else if (IS_VALLEYVIEW(dev))
4638                 num_levels = 1;
4639         else
4640                 num_levels = ilk_wm_max_level(dev) + 1;
4641
4642         if (len >= sizeof(tmp))
4643                 return -EINVAL;
4644
4645         if (copy_from_user(tmp, ubuf, len))
4646                 return -EFAULT;
4647
4648         tmp[len] = '\0';
4649
4650         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4651                      &new[0], &new[1], &new[2], &new[3],
4652                      &new[4], &new[5], &new[6], &new[7]);
4653         if (ret != num_levels)
4654                 return -EINVAL;
4655
4656         drm_modeset_lock_all(dev);
4657
4658         for (level = 0; level < num_levels; level++)
4659                 wm[level] = new[level];
4660
4661         drm_modeset_unlock_all(dev);
4662
4663         return len;
4664 }
4665
4666
4667 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4668                                     size_t len, loff_t *offp)
4669 {
4670         struct seq_file *m = file->private_data;
4671         struct drm_device *dev = m->private;
4672         struct drm_i915_private *dev_priv = dev->dev_private;
4673         uint16_t *latencies;
4674
4675         if (INTEL_INFO(dev)->gen >= 9)
4676                 latencies = dev_priv->wm.skl_latency;
4677         else
4678                 latencies = to_i915(dev)->wm.pri_latency;
4679
4680         return wm_latency_write(file, ubuf, len, offp, latencies);
4681 }
4682
4683 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4684                                     size_t len, loff_t *offp)
4685 {
4686         struct seq_file *m = file->private_data;
4687         struct drm_device *dev = m->private;
4688         struct drm_i915_private *dev_priv = dev->dev_private;
4689         uint16_t *latencies;
4690
4691         if (INTEL_INFO(dev)->gen >= 9)
4692                 latencies = dev_priv->wm.skl_latency;
4693         else
4694                 latencies = to_i915(dev)->wm.spr_latency;
4695
4696         return wm_latency_write(file, ubuf, len, offp, latencies);
4697 }
4698
4699 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4700                                     size_t len, loff_t *offp)
4701 {
4702         struct seq_file *m = file->private_data;
4703         struct drm_device *dev = m->private;
4704         struct drm_i915_private *dev_priv = dev->dev_private;
4705         uint16_t *latencies;
4706
4707         if (INTEL_INFO(dev)->gen >= 9)
4708                 latencies = dev_priv->wm.skl_latency;
4709         else
4710                 latencies = to_i915(dev)->wm.cur_latency;
4711
4712         return wm_latency_write(file, ubuf, len, offp, latencies);
4713 }
4714
4715 static const struct file_operations i915_pri_wm_latency_fops = {
4716         .owner = THIS_MODULE,
4717         .open = pri_wm_latency_open,
4718         .read = seq_read,
4719         .llseek = seq_lseek,
4720         .release = single_release,
4721         .write = pri_wm_latency_write
4722 };
4723
4724 static const struct file_operations i915_spr_wm_latency_fops = {
4725         .owner = THIS_MODULE,
4726         .open = spr_wm_latency_open,
4727         .read = seq_read,
4728         .llseek = seq_lseek,
4729         .release = single_release,
4730         .write = spr_wm_latency_write
4731 };
4732
4733 static const struct file_operations i915_cur_wm_latency_fops = {
4734         .owner = THIS_MODULE,
4735         .open = cur_wm_latency_open,
4736         .read = seq_read,
4737         .llseek = seq_lseek,
4738         .release = single_release,
4739         .write = cur_wm_latency_write
4740 };
4741
4742 static int
4743 i915_wedged_get(void *data, u64 *val)
4744 {
4745         struct drm_device *dev = data;
4746         struct drm_i915_private *dev_priv = dev->dev_private;
4747
4748         *val = i915_terminally_wedged(&dev_priv->gpu_error);
4749
4750         return 0;
4751 }
4752
4753 static int
4754 i915_wedged_set(void *data, u64 val)
4755 {
4756         struct drm_device *dev = data;
4757         struct drm_i915_private *dev_priv = dev->dev_private;
4758
4759         /*
4760          * There is no safeguard against this debugfs entry colliding
4761          * with the hangcheck calling same i915_handle_error() in
4762          * parallel, causing an explosion. For now we assume that the
4763          * test harness is responsible enough not to inject gpu hangs
4764          * while it is writing to 'i915_wedged'
4765          */
4766
4767         if (i915_reset_in_progress(&dev_priv->gpu_error))
4768                 return -EAGAIN;
4769
4770         intel_runtime_pm_get(dev_priv);
4771
4772         i915_handle_error(dev, val,
4773                           "Manually setting wedged to %llu", val);
4774
4775         intel_runtime_pm_put(dev_priv);
4776
4777         return 0;
4778 }
4779
4780 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4781                         i915_wedged_get, i915_wedged_set,
4782                         "%llu\n");
4783
4784 static int
4785 i915_ring_stop_get(void *data, u64 *val)
4786 {
4787         struct drm_device *dev = data;
4788         struct drm_i915_private *dev_priv = dev->dev_private;
4789
4790         *val = dev_priv->gpu_error.stop_rings;
4791
4792         return 0;
4793 }
4794
4795 static int
4796 i915_ring_stop_set(void *data, u64 val)
4797 {
4798         struct drm_device *dev = data;
4799         struct drm_i915_private *dev_priv = dev->dev_private;
4800         int ret;
4801
4802         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4803
4804         ret = mutex_lock_interruptible(&dev->struct_mutex);
4805         if (ret)
4806                 return ret;
4807
4808         dev_priv->gpu_error.stop_rings = val;
4809         mutex_unlock(&dev->struct_mutex);
4810
4811         return 0;
4812 }
4813
4814 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4815                         i915_ring_stop_get, i915_ring_stop_set,
4816                         "0x%08llx\n");
4817
4818 static int
4819 i915_ring_missed_irq_get(void *data, u64 *val)
4820 {
4821         struct drm_device *dev = data;
4822         struct drm_i915_private *dev_priv = dev->dev_private;
4823
4824         *val = dev_priv->gpu_error.missed_irq_rings;
4825         return 0;
4826 }
4827
4828 static int
4829 i915_ring_missed_irq_set(void *data, u64 val)
4830 {
4831         struct drm_device *dev = data;
4832         struct drm_i915_private *dev_priv = dev->dev_private;
4833         int ret;
4834
4835         /* Lock against concurrent debugfs callers */
4836         ret = mutex_lock_interruptible(&dev->struct_mutex);
4837         if (ret)
4838                 return ret;
4839         dev_priv->gpu_error.missed_irq_rings = val;
4840         mutex_unlock(&dev->struct_mutex);
4841
4842         return 0;
4843 }
4844
4845 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4846                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4847                         "0x%08llx\n");
4848
4849 static int
4850 i915_ring_test_irq_get(void *data, u64 *val)
4851 {
4852         struct drm_device *dev = data;
4853         struct drm_i915_private *dev_priv = dev->dev_private;
4854
4855         *val = dev_priv->gpu_error.test_irq_rings;
4856
4857         return 0;
4858 }
4859
4860 static int
4861 i915_ring_test_irq_set(void *data, u64 val)
4862 {
4863         struct drm_device *dev = data;
4864         struct drm_i915_private *dev_priv = dev->dev_private;
4865         int ret;
4866
4867         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4868
4869         /* Lock against concurrent debugfs callers */
4870         ret = mutex_lock_interruptible(&dev->struct_mutex);
4871         if (ret)
4872                 return ret;
4873
4874         dev_priv->gpu_error.test_irq_rings = val;
4875         mutex_unlock(&dev->struct_mutex);
4876
4877         return 0;
4878 }
4879
4880 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4881                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4882                         "0x%08llx\n");
4883
4884 #define DROP_UNBOUND 0x1
4885 #define DROP_BOUND 0x2
4886 #define DROP_RETIRE 0x4
4887 #define DROP_ACTIVE 0x8
4888 #define DROP_ALL (DROP_UNBOUND | \
4889                   DROP_BOUND | \
4890                   DROP_RETIRE | \
4891                   DROP_ACTIVE)
4892 static int
4893 i915_drop_caches_get(void *data, u64 *val)
4894 {
4895         *val = DROP_ALL;
4896
4897         return 0;
4898 }
4899
4900 static int
4901 i915_drop_caches_set(void *data, u64 val)
4902 {
4903         struct drm_device *dev = data;
4904         struct drm_i915_private *dev_priv = dev->dev_private;
4905         int ret;
4906
4907         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4908
4909         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4910          * on ioctls on -EAGAIN. */
4911         ret = mutex_lock_interruptible(&dev->struct_mutex);
4912         if (ret)
4913                 return ret;
4914
4915         if (val & DROP_ACTIVE) {
4916                 ret = i915_gpu_idle(dev);
4917                 if (ret)
4918                         goto unlock;
4919         }
4920
4921         if (val & (DROP_RETIRE | DROP_ACTIVE))
4922                 i915_gem_retire_requests(dev);
4923
4924         if (val & DROP_BOUND)
4925                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4926
4927         if (val & DROP_UNBOUND)
4928                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4929
4930 unlock:
4931         mutex_unlock(&dev->struct_mutex);
4932
4933         return ret;
4934 }
4935
4936 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4937                         i915_drop_caches_get, i915_drop_caches_set,
4938                         "0x%08llx\n");
4939
4940 static int
4941 i915_max_freq_get(void *data, u64 *val)
4942 {
4943         struct drm_device *dev = data;
4944         struct drm_i915_private *dev_priv = dev->dev_private;
4945         int ret;
4946
4947         if (INTEL_INFO(dev)->gen < 6)
4948                 return -ENODEV;
4949
4950         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4951
4952         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4953         if (ret)
4954                 return ret;
4955
4956         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4957         mutex_unlock(&dev_priv->rps.hw_lock);
4958
4959         return 0;
4960 }
4961
4962 static int
4963 i915_max_freq_set(void *data, u64 val)
4964 {
4965         struct drm_device *dev = data;
4966         struct drm_i915_private *dev_priv = dev->dev_private;
4967         u32 hw_max, hw_min;
4968         int ret;
4969
4970         if (INTEL_INFO(dev)->gen < 6)
4971                 return -ENODEV;
4972
4973         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4974
4975         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4976
4977         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4978         if (ret)
4979                 return ret;
4980
4981         /*
4982          * Turbo will still be enabled, but won't go above the set value.
4983          */
4984         val = intel_freq_opcode(dev_priv, val);
4985
4986         hw_max = dev_priv->rps.max_freq;
4987         hw_min = dev_priv->rps.min_freq;
4988
4989         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4990                 mutex_unlock(&dev_priv->rps.hw_lock);
4991                 return -EINVAL;
4992         }
4993
4994         dev_priv->rps.max_freq_softlimit = val;
4995
4996         intel_set_rps(dev, val);
4997
4998         mutex_unlock(&dev_priv->rps.hw_lock);
4999
5000         return 0;
5001 }
5002
5003 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
5004                         i915_max_freq_get, i915_max_freq_set,
5005                         "%llu\n");
5006
5007 static int
5008 i915_min_freq_get(void *data, u64 *val)
5009 {
5010         struct drm_device *dev = data;
5011         struct drm_i915_private *dev_priv = dev->dev_private;
5012         int ret;
5013
5014         if (INTEL_INFO(dev)->gen < 6)
5015                 return -ENODEV;
5016
5017         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5018
5019         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5020         if (ret)
5021                 return ret;
5022
5023         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
5024         mutex_unlock(&dev_priv->rps.hw_lock);
5025
5026         return 0;
5027 }
5028
5029 static int
5030 i915_min_freq_set(void *data, u64 val)
5031 {
5032         struct drm_device *dev = data;
5033         struct drm_i915_private *dev_priv = dev->dev_private;
5034         u32 hw_max, hw_min;
5035         int ret;
5036
5037         if (INTEL_INFO(dev)->gen < 6)
5038                 return -ENODEV;
5039
5040         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5041
5042         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
5043
5044         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5045         if (ret)
5046                 return ret;
5047
5048         /*
5049          * Turbo will still be enabled, but won't go below the set value.
5050          */
5051         val = intel_freq_opcode(dev_priv, val);
5052
5053         hw_max = dev_priv->rps.max_freq;
5054         hw_min = dev_priv->rps.min_freq;
5055
5056         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5057                 mutex_unlock(&dev_priv->rps.hw_lock);
5058                 return -EINVAL;
5059         }
5060
5061         dev_priv->rps.min_freq_softlimit = val;
5062
5063         intel_set_rps(dev, val);
5064
5065         mutex_unlock(&dev_priv->rps.hw_lock);
5066
5067         return 0;
5068 }
5069
5070 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5071                         i915_min_freq_get, i915_min_freq_set,
5072                         "%llu\n");
5073
5074 static int
5075 i915_cache_sharing_get(void *data, u64 *val)
5076 {
5077         struct drm_device *dev = data;
5078         struct drm_i915_private *dev_priv = dev->dev_private;
5079         u32 snpcr;
5080         int ret;
5081
5082         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5083                 return -ENODEV;
5084
5085         ret = mutex_lock_interruptible(&dev->struct_mutex);
5086         if (ret)
5087                 return ret;
5088         intel_runtime_pm_get(dev_priv);
5089
5090         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5091
5092         intel_runtime_pm_put(dev_priv);
5093         mutex_unlock(&dev_priv->dev->struct_mutex);
5094
5095         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5096
5097         return 0;
5098 }
5099
5100 static int
5101 i915_cache_sharing_set(void *data, u64 val)
5102 {
5103         struct drm_device *dev = data;
5104         struct drm_i915_private *dev_priv = dev->dev_private;
5105         u32 snpcr;
5106
5107         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5108                 return -ENODEV;
5109
5110         if (val > 3)
5111                 return -EINVAL;
5112
5113         intel_runtime_pm_get(dev_priv);
5114         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5115
5116         /* Update the cache sharing policy here as well */
5117         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5118         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5119         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5120         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5121
5122         intel_runtime_pm_put(dev_priv);
5123         return 0;
5124 }
5125
5126 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5127                         i915_cache_sharing_get, i915_cache_sharing_set,
5128                         "%llu\n");
5129
5130 struct sseu_dev_status {
5131         unsigned int slice_total;
5132         unsigned int subslice_total;
5133         unsigned int subslice_per_slice;
5134         unsigned int eu_total;
5135         unsigned int eu_per_subslice;
5136 };
5137
5138 static void cherryview_sseu_device_status(struct drm_device *dev,
5139                                           struct sseu_dev_status *stat)
5140 {
5141         struct drm_i915_private *dev_priv = dev->dev_private;
5142         int ss_max = 2;
5143         int ss;
5144         u32 sig1[ss_max], sig2[ss_max];
5145
5146         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5147         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5148         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5149         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5150
5151         for (ss = 0; ss < ss_max; ss++) {
5152                 unsigned int eu_cnt;
5153
5154                 if (sig1[ss] & CHV_SS_PG_ENABLE)
5155                         /* skip disabled subslice */
5156                         continue;
5157
5158                 stat->slice_total = 1;
5159                 stat->subslice_per_slice++;
5160                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5161                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5162                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5163                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5164                 stat->eu_total += eu_cnt;
5165                 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
5166         }
5167         stat->subslice_total = stat->subslice_per_slice;
5168 }
5169
5170 static void gen9_sseu_device_status(struct drm_device *dev,
5171                                     struct sseu_dev_status *stat)
5172 {
5173         struct drm_i915_private *dev_priv = dev->dev_private;
5174         int s_max = 3, ss_max = 4;
5175         int s, ss;
5176         u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5177
5178         /* BXT has a single slice and at most 3 subslices. */
5179         if (IS_BROXTON(dev)) {
5180                 s_max = 1;
5181                 ss_max = 3;
5182         }
5183
5184         for (s = 0; s < s_max; s++) {
5185                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5186                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5187                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5188         }
5189
5190         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5191                      GEN9_PGCTL_SSA_EU19_ACK |
5192                      GEN9_PGCTL_SSA_EU210_ACK |
5193                      GEN9_PGCTL_SSA_EU311_ACK;
5194         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5195                      GEN9_PGCTL_SSB_EU19_ACK |
5196                      GEN9_PGCTL_SSB_EU210_ACK |
5197                      GEN9_PGCTL_SSB_EU311_ACK;
5198
5199         for (s = 0; s < s_max; s++) {
5200                 unsigned int ss_cnt = 0;
5201
5202                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5203                         /* skip disabled slice */
5204                         continue;
5205
5206                 stat->slice_total++;
5207
5208                 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
5209                         ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5210
5211                 for (ss = 0; ss < ss_max; ss++) {
5212                         unsigned int eu_cnt;
5213
5214                         if (IS_BROXTON(dev) &&
5215                             !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5216                                 /* skip disabled subslice */
5217                                 continue;
5218
5219                         if (IS_BROXTON(dev))
5220                                 ss_cnt++;
5221
5222                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5223                                                eu_mask[ss%2]);
5224                         stat->eu_total += eu_cnt;
5225                         stat->eu_per_subslice = max(stat->eu_per_subslice,
5226                                                     eu_cnt);
5227                 }
5228
5229                 stat->subslice_total += ss_cnt;
5230                 stat->subslice_per_slice = max(stat->subslice_per_slice,
5231                                                ss_cnt);
5232         }
5233 }
5234
5235 static void broadwell_sseu_device_status(struct drm_device *dev,
5236                                          struct sseu_dev_status *stat)
5237 {
5238         struct drm_i915_private *dev_priv = dev->dev_private;
5239         int s;
5240         u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5241
5242         stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5243
5244         if (stat->slice_total) {
5245                 stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5246                 stat->subslice_total = stat->slice_total *
5247                                        stat->subslice_per_slice;
5248                 stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5249                 stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5250
5251                 /* subtract fused off EU(s) from enabled slice(s) */
5252                 for (s = 0; s < stat->slice_total; s++) {
5253                         u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5254
5255                         stat->eu_total -= hweight8(subslice_7eu);
5256                 }
5257         }
5258 }
5259
5260 static int i915_sseu_status(struct seq_file *m, void *unused)
5261 {
5262         struct drm_info_node *node = (struct drm_info_node *) m->private;
5263         struct drm_device *dev = node->minor->dev;
5264         struct sseu_dev_status stat;
5265
5266         if (INTEL_INFO(dev)->gen < 8)
5267                 return -ENODEV;
5268
5269         seq_puts(m, "SSEU Device Info\n");
5270         seq_printf(m, "  Available Slice Total: %u\n",
5271                    INTEL_INFO(dev)->slice_total);
5272         seq_printf(m, "  Available Subslice Total: %u\n",
5273                    INTEL_INFO(dev)->subslice_total);
5274         seq_printf(m, "  Available Subslice Per Slice: %u\n",
5275                    INTEL_INFO(dev)->subslice_per_slice);
5276         seq_printf(m, "  Available EU Total: %u\n",
5277                    INTEL_INFO(dev)->eu_total);
5278         seq_printf(m, "  Available EU Per Subslice: %u\n",
5279                    INTEL_INFO(dev)->eu_per_subslice);
5280         seq_printf(m, "  Has Slice Power Gating: %s\n",
5281                    yesno(INTEL_INFO(dev)->has_slice_pg));
5282         seq_printf(m, "  Has Subslice Power Gating: %s\n",
5283                    yesno(INTEL_INFO(dev)->has_subslice_pg));
5284         seq_printf(m, "  Has EU Power Gating: %s\n",
5285                    yesno(INTEL_INFO(dev)->has_eu_pg));
5286
5287         seq_puts(m, "SSEU Device Status\n");
5288         memset(&stat, 0, sizeof(stat));
5289         if (IS_CHERRYVIEW(dev)) {
5290                 cherryview_sseu_device_status(dev, &stat);
5291         } else if (IS_BROADWELL(dev)) {
5292                 broadwell_sseu_device_status(dev, &stat);
5293         } else if (INTEL_INFO(dev)->gen >= 9) {
5294                 gen9_sseu_device_status(dev, &stat);
5295         }
5296         seq_printf(m, "  Enabled Slice Total: %u\n",
5297                    stat.slice_total);
5298         seq_printf(m, "  Enabled Subslice Total: %u\n",
5299                    stat.subslice_total);
5300         seq_printf(m, "  Enabled Subslice Per Slice: %u\n",
5301                    stat.subslice_per_slice);
5302         seq_printf(m, "  Enabled EU Total: %u\n",
5303                    stat.eu_total);
5304         seq_printf(m, "  Enabled EU Per Subslice: %u\n",
5305                    stat.eu_per_subslice);
5306
5307         return 0;
5308 }
5309
5310 static int i915_forcewake_open(struct inode *inode, struct file *file)
5311 {
5312         struct drm_device *dev = inode->i_private;
5313         struct drm_i915_private *dev_priv = dev->dev_private;
5314
5315         if (INTEL_INFO(dev)->gen < 6)
5316                 return 0;
5317
5318         intel_runtime_pm_get(dev_priv);
5319         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5320
5321         return 0;
5322 }
5323
5324 static int i915_forcewake_release(struct inode *inode, struct file *file)
5325 {
5326         struct drm_device *dev = inode->i_private;
5327         struct drm_i915_private *dev_priv = dev->dev_private;
5328
5329         if (INTEL_INFO(dev)->gen < 6)
5330                 return 0;
5331
5332         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5333         intel_runtime_pm_put(dev_priv);
5334
5335         return 0;
5336 }
5337
5338 static const struct file_operations i915_forcewake_fops = {
5339         .owner = THIS_MODULE,
5340         .open = i915_forcewake_open,
5341         .release = i915_forcewake_release,
5342 };
5343
5344 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5345 {
5346         struct drm_device *dev = minor->dev;
5347         struct dentry *ent;
5348
5349         ent = debugfs_create_file("i915_forcewake_user",
5350                                   S_IRUSR,
5351                                   root, dev,
5352                                   &i915_forcewake_fops);
5353         if (!ent)
5354                 return -ENOMEM;
5355
5356         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5357 }
5358
5359 static int i915_debugfs_create(struct dentry *root,
5360                                struct drm_minor *minor,
5361                                const char *name,
5362                                const struct file_operations *fops)
5363 {
5364         struct drm_device *dev = minor->dev;
5365         struct dentry *ent;
5366
5367         ent = debugfs_create_file(name,
5368                                   S_IRUGO | S_IWUSR,
5369                                   root, dev,
5370                                   fops);
5371         if (!ent)
5372                 return -ENOMEM;
5373
5374         return drm_add_fake_info_node(minor, ent, fops);
5375 }
5376
5377 static const struct drm_info_list i915_debugfs_list[] = {
5378         {"i915_capabilities", i915_capabilities, 0},
5379         {"i915_gem_objects", i915_gem_object_info, 0},
5380         {"i915_gem_gtt", i915_gem_gtt_info, 0},
5381         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5382         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5383         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5384         {"i915_gem_stolen", i915_gem_stolen_list_info },
5385         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5386         {"i915_gem_request", i915_gem_request_info, 0},
5387         {"i915_gem_seqno", i915_gem_seqno_info, 0},
5388         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5389         {"i915_gem_interrupt", i915_interrupt_info, 0},
5390         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5391         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5392         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5393         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5394         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5395         {"i915_guc_info", i915_guc_info, 0},
5396         {"i915_guc_load_status", i915_guc_load_status_info, 0},
5397         {"i915_guc_log_dump", i915_guc_log_dump, 0},
5398         {"i915_frequency_info", i915_frequency_info, 0},
5399         {"i915_hangcheck_info", i915_hangcheck_info, 0},
5400         {"i915_drpc_info", i915_drpc_info, 0},
5401         {"i915_emon_status", i915_emon_status, 0},
5402         {"i915_ring_freq_table", i915_ring_freq_table, 0},
5403         {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5404         {"i915_fbc_status", i915_fbc_status, 0},
5405         {"i915_ips_status", i915_ips_status, 0},
5406         {"i915_sr_status", i915_sr_status, 0},
5407         {"i915_opregion", i915_opregion, 0},
5408         {"i915_vbt", i915_vbt, 0},
5409         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5410         {"i915_context_status", i915_context_status, 0},
5411         {"i915_dump_lrc", i915_dump_lrc, 0},
5412         {"i915_execlists", i915_execlists, 0},
5413         {"i915_forcewake_domains", i915_forcewake_domains, 0},
5414         {"i915_swizzle_info", i915_swizzle_info, 0},
5415         {"i915_ppgtt_info", i915_ppgtt_info, 0},
5416         {"i915_llc", i915_llc, 0},
5417         {"i915_edp_psr_status", i915_edp_psr_status, 0},
5418         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5419         {"i915_energy_uJ", i915_energy_uJ, 0},
5420         {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5421         {"i915_power_domain_info", i915_power_domain_info, 0},
5422         {"i915_dmc_info", i915_dmc_info, 0},
5423         {"i915_display_info", i915_display_info, 0},
5424         {"i915_semaphore_status", i915_semaphore_status, 0},
5425         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5426         {"i915_dp_mst_info", i915_dp_mst_info, 0},
5427         {"i915_wa_registers", i915_wa_registers, 0},
5428         {"i915_ddb_info", i915_ddb_info, 0},
5429         {"i915_sseu_status", i915_sseu_status, 0},
5430         {"i915_drrs_status", i915_drrs_status, 0},
5431         {"i915_rps_boost_info", i915_rps_boost_info, 0},
5432 };
5433 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5434
5435 static const struct i915_debugfs_files {
5436         const char *name;
5437         const struct file_operations *fops;
5438 } i915_debugfs_files[] = {
5439         {"i915_wedged", &i915_wedged_fops},
5440         {"i915_max_freq", &i915_max_freq_fops},
5441         {"i915_min_freq", &i915_min_freq_fops},
5442         {"i915_cache_sharing", &i915_cache_sharing_fops},
5443         {"i915_ring_stop", &i915_ring_stop_fops},
5444         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5445         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5446         {"i915_gem_drop_caches", &i915_drop_caches_fops},
5447         {"i915_error_state", &i915_error_state_fops},
5448         {"i915_next_seqno", &i915_next_seqno_fops},
5449         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5450         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5451         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5452         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5453         {"i915_fbc_false_color", &i915_fbc_fc_fops},
5454         {"i915_dp_test_data", &i915_displayport_test_data_fops},
5455         {"i915_dp_test_type", &i915_displayport_test_type_fops},
5456         {"i915_dp_test_active", &i915_displayport_test_active_fops}
5457 };
5458
5459 void intel_display_crc_init(struct drm_device *dev)
5460 {
5461         struct drm_i915_private *dev_priv = dev->dev_private;
5462         enum pipe pipe;
5463
5464         for_each_pipe(dev_priv, pipe) {
5465                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5466
5467                 pipe_crc->opened = false;
5468                 spin_lock_init(&pipe_crc->lock);
5469                 init_waitqueue_head(&pipe_crc->wq);
5470         }
5471 }
5472
5473 int i915_debugfs_init(struct drm_minor *minor)
5474 {
5475         int ret, i;
5476
5477         ret = i915_forcewake_create(minor->debugfs_root, minor);
5478         if (ret)
5479                 return ret;
5480
5481         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5482                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5483                 if (ret)
5484                         return ret;
5485         }
5486
5487         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5488                 ret = i915_debugfs_create(minor->debugfs_root, minor,
5489                                           i915_debugfs_files[i].name,
5490                                           i915_debugfs_files[i].fops);
5491                 if (ret)
5492                         return ret;
5493         }
5494
5495         return drm_debugfs_create_files(i915_debugfs_list,
5496                                         I915_DEBUGFS_ENTRIES,
5497                                         minor->debugfs_root, minor);
5498 }
5499
5500 void i915_debugfs_cleanup(struct drm_minor *minor)
5501 {
5502         int i;
5503
5504         drm_debugfs_remove_files(i915_debugfs_list,
5505                                  I915_DEBUGFS_ENTRIES, minor);
5506
5507         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5508                                  1, minor);
5509
5510         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5511                 struct drm_info_list *info_list =
5512                         (struct drm_info_list *)&i915_pipe_crc_data[i];
5513
5514                 drm_debugfs_remove_files(info_list, 1, minor);
5515         }
5516
5517         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5518                 struct drm_info_list *info_list =
5519                         (struct drm_info_list *) i915_debugfs_files[i].fops;
5520
5521                 drm_debugfs_remove_files(info_list, 1, minor);
5522         }
5523 }
5524
5525 struct dpcd_block {
5526         /* DPCD dump start address. */
5527         unsigned int offset;
5528         /* DPCD dump end address, inclusive. If unset, .size will be used. */
5529         unsigned int end;
5530         /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5531         size_t size;
5532         /* Only valid for eDP. */
5533         bool edp;
5534 };
5535
5536 static const struct dpcd_block i915_dpcd_debug[] = {
5537         { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5538         { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5539         { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5540         { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5541         { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5542         { .offset = DP_SET_POWER },
5543         { .offset = DP_EDP_DPCD_REV },
5544         { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5545         { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5546         { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5547 };
5548
5549 static int i915_dpcd_show(struct seq_file *m, void *data)
5550 {
5551         struct drm_connector *connector = m->private;
5552         struct intel_dp *intel_dp =
5553                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5554         uint8_t buf[16];
5555         ssize_t err;
5556         int i;
5557
5558         if (connector->status != connector_status_connected)
5559                 return -ENODEV;
5560
5561         for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5562                 const struct dpcd_block *b = &i915_dpcd_debug[i];
5563                 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5564
5565                 if (b->edp &&
5566                     connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5567                         continue;
5568
5569                 /* low tech for now */
5570                 if (WARN_ON(size > sizeof(buf)))
5571                         continue;
5572
5573                 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5574                 if (err <= 0) {
5575                         DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5576                                   size, b->offset, err);
5577                         continue;
5578                 }
5579
5580                 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5581         }
5582
5583         return 0;
5584 }
5585
5586 static int i915_dpcd_open(struct inode *inode, struct file *file)
5587 {
5588         return single_open(file, i915_dpcd_show, inode->i_private);
5589 }
5590
5591 static const struct file_operations i915_dpcd_fops = {
5592         .owner = THIS_MODULE,
5593         .open = i915_dpcd_open,
5594         .read = seq_read,
5595         .llseek = seq_lseek,
5596         .release = single_release,
5597 };
5598
5599 /**
5600  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5601  * @connector: pointer to a registered drm_connector
5602  *
5603  * Cleanup will be done by drm_connector_unregister() through a call to
5604  * drm_debugfs_connector_remove().
5605  *
5606  * Returns 0 on success, negative error codes on error.
5607  */
5608 int i915_debugfs_connector_add(struct drm_connector *connector)
5609 {
5610         struct dentry *root = connector->debugfs_entry;
5611
5612         /* The connector must have been registered beforehands. */
5613         if (!root)
5614                 return -ENODEV;
5615
5616         if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5617             connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5618                 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5619                                     &i915_dpcd_fops);
5620
5621         return 0;
5622 }