]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge remote-tracking branch 'cgroup/for-next'
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51                                   enum i915_cache_level level)
52 {
53         return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59                 return true;
60
61         return obj->pin_display;
62 }
63
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66                                   size_t size)
67 {
68         spin_lock(&dev_priv->mm.object_stat_lock);
69         dev_priv->mm.object_count++;
70         dev_priv->mm.object_memory += size;
71         spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75                                      size_t size)
76 {
77         spin_lock(&dev_priv->mm.object_stat_lock);
78         dev_priv->mm.object_count--;
79         dev_priv->mm.object_memory -= size;
80         spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86         int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89                    i915_terminally_wedged(error))
90         if (EXIT_COND)
91                 return 0;
92
93         /*
94          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95          * userspace. If it takes that long something really bad is going on and
96          * we should simply try to bail out and fail as gracefully as possible.
97          */
98         ret = wait_event_interruptible_timeout(error->reset_queue,
99                                                EXIT_COND,
100                                                10*HZ);
101         if (ret == 0) {
102                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103                 return -EIO;
104         } else if (ret < 0) {
105                 return ret;
106         }
107 #undef EXIT_COND
108
109         return 0;
110 }
111
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114         struct drm_i915_private *dev_priv = dev->dev_private;
115         int ret;
116
117         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118         if (ret)
119                 return ret;
120
121         ret = mutex_lock_interruptible(&dev->struct_mutex);
122         if (ret)
123                 return ret;
124
125         WARN_ON(i915_verify_lists(dev));
126         return 0;
127 }
128
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131                             struct drm_file *file)
132 {
133         struct drm_i915_private *dev_priv = dev->dev_private;
134         struct drm_i915_gem_get_aperture *args = data;
135         struct i915_gtt *ggtt = &dev_priv->gtt;
136         struct i915_vma *vma;
137         size_t pinned;
138
139         pinned = 0;
140         mutex_lock(&dev->struct_mutex);
141         list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142                 if (vma->pin_count)
143                         pinned += vma->node.size;
144         list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145                 if (vma->pin_count)
146                         pinned += vma->node.size;
147         mutex_unlock(&dev->struct_mutex);
148
149         args->aper_size = dev_priv->gtt.base.total;
150         args->aper_available_size = args->aper_size - pinned;
151
152         return 0;
153 }
154
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159         char *vaddr = obj->phys_handle->vaddr;
160         struct sg_table *st;
161         struct scatterlist *sg;
162         int i;
163
164         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165                 return -EINVAL;
166
167         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168                 struct page *page;
169                 char *src;
170
171                 page = shmem_read_mapping_page(mapping, i);
172                 if (IS_ERR(page))
173                         return PTR_ERR(page);
174
175                 src = kmap_atomic(page);
176                 memcpy(vaddr, src, PAGE_SIZE);
177                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178                 kunmap_atomic(src);
179
180                 page_cache_release(page);
181                 vaddr += PAGE_SIZE;
182         }
183
184         i915_gem_chipset_flush(obj->base.dev);
185
186         st = kmalloc(sizeof(*st), GFP_KERNEL);
187         if (st == NULL)
188                 return -ENOMEM;
189
190         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191                 kfree(st);
192                 return -ENOMEM;
193         }
194
195         sg = st->sgl;
196         sg->offset = 0;
197         sg->length = obj->base.size;
198
199         sg_dma_address(sg) = obj->phys_handle->busaddr;
200         sg_dma_len(sg) = obj->base.size;
201
202         obj->pages = st;
203         return 0;
204 }
205
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209         int ret;
210
211         BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213         ret = i915_gem_object_set_to_cpu_domain(obj, true);
214         if (ret) {
215                 /* In the event of a disaster, abandon all caches and
216                  * hope for the best.
217                  */
218                 WARN_ON(ret != -EIO);
219                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220         }
221
222         if (obj->madv == I915_MADV_DONTNEED)
223                 obj->dirty = 0;
224
225         if (obj->dirty) {
226                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227                 char *vaddr = obj->phys_handle->vaddr;
228                 int i;
229
230                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231                         struct page *page;
232                         char *dst;
233
234                         page = shmem_read_mapping_page(mapping, i);
235                         if (IS_ERR(page))
236                                 continue;
237
238                         dst = kmap_atomic(page);
239                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
240                         memcpy(dst, vaddr, PAGE_SIZE);
241                         kunmap_atomic(dst);
242
243                         set_page_dirty(page);
244                         if (obj->madv == I915_MADV_WILLNEED)
245                                 mark_page_accessed(page);
246                         page_cache_release(page);
247                         vaddr += PAGE_SIZE;
248                 }
249                 obj->dirty = 0;
250         }
251
252         sg_free_table(obj->pages);
253         kfree(obj->pages);
254 }
255
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259         drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263         .get_pages = i915_gem_object_get_pages_phys,
264         .put_pages = i915_gem_object_put_pages_phys,
265         .release = i915_gem_object_release_phys,
266 };
267
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271         struct i915_vma *vma, *next;
272         int ret;
273
274         drm_gem_object_reference(&obj->base);
275         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276                 if (i915_vma_unbind(vma))
277                         break;
278
279         ret = i915_gem_object_put_pages(obj);
280         drm_gem_object_unreference(&obj->base);
281
282         return ret;
283 }
284
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287                             int align)
288 {
289         drm_dma_handle_t *phys;
290         int ret;
291
292         if (obj->phys_handle) {
293                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294                         return -EBUSY;
295
296                 return 0;
297         }
298
299         if (obj->madv != I915_MADV_WILLNEED)
300                 return -EFAULT;
301
302         if (obj->base.filp == NULL)
303                 return -EINVAL;
304
305         ret = drop_pages(obj);
306         if (ret)
307                 return ret;
308
309         /* create a new object */
310         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311         if (!phys)
312                 return -ENOMEM;
313
314         obj->phys_handle = phys;
315         obj->ops = &i915_gem_phys_ops;
316
317         return i915_gem_object_get_pages(obj);
318 }
319
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322                      struct drm_i915_gem_pwrite *args,
323                      struct drm_file *file_priv)
324 {
325         struct drm_device *dev = obj->base.dev;
326         void *vaddr = obj->phys_handle->vaddr + args->offset;
327         char __user *user_data = to_user_ptr(args->data_ptr);
328         int ret = 0;
329
330         /* We manually control the domain here and pretend that it
331          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332          */
333         ret = i915_gem_object_wait_rendering(obj, false);
334         if (ret)
335                 return ret;
336
337         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339                 unsigned long unwritten;
340
341                 /* The physical object once assigned is fixed for the lifetime
342                  * of the obj, so we can safely drop the lock and continue
343                  * to access vaddr.
344                  */
345                 mutex_unlock(&dev->struct_mutex);
346                 unwritten = copy_from_user(vaddr, user_data, args->size);
347                 mutex_lock(&dev->struct_mutex);
348                 if (unwritten) {
349                         ret = -EFAULT;
350                         goto out;
351                 }
352         }
353
354         drm_clflush_virt_range(vaddr, args->size);
355         i915_gem_chipset_flush(dev);
356
357 out:
358         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359         return ret;
360 }
361
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364         struct drm_i915_private *dev_priv = dev->dev_private;
365         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371         kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
375 i915_gem_create(struct drm_file *file,
376                 struct drm_device *dev,
377                 uint64_t size,
378                 uint32_t *handle_p)
379 {
380         struct drm_i915_gem_object *obj;
381         int ret;
382         u32 handle;
383
384         size = roundup(size, PAGE_SIZE);
385         if (size == 0)
386                 return -EINVAL;
387
388         /* Allocate the new object */
389         obj = i915_gem_alloc_object(dev, size);
390         if (obj == NULL)
391                 return -ENOMEM;
392
393         ret = drm_gem_handle_create(file, &obj->base, &handle);
394         /* drop reference from allocate - handle holds it now */
395         drm_gem_object_unreference_unlocked(&obj->base);
396         if (ret)
397                 return ret;
398
399         *handle_p = handle;
400         return 0;
401 }
402
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405                      struct drm_device *dev,
406                      struct drm_mode_create_dumb *args)
407 {
408         /* have to work out size/pitch and return them */
409         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410         args->size = args->pitch * args->height;
411         return i915_gem_create(file, dev,
412                                args->size, &args->handle);
413 }
414
415 /**
416  * Creates a new mm object and returns a handle to it.
417  */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420                       struct drm_file *file)
421 {
422         struct drm_i915_gem_create *args = data;
423
424         return i915_gem_create(file, dev,
425                                args->size, &args->handle);
426 }
427
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430                         const char *gpu_vaddr, int gpu_offset,
431                         int length)
432 {
433         int ret, cpu_offset = 0;
434
435         while (length > 0) {
436                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437                 int this_length = min(cacheline_end - gpu_offset, length);
438                 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441                                      gpu_vaddr + swizzled_gpu_offset,
442                                      this_length);
443                 if (ret)
444                         return ret + length;
445
446                 cpu_offset += this_length;
447                 gpu_offset += this_length;
448                 length -= this_length;
449         }
450
451         return 0;
452 }
453
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456                           const char __user *cpu_vaddr,
457                           int length)
458 {
459         int ret, cpu_offset = 0;
460
461         while (length > 0) {
462                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463                 int this_length = min(cacheline_end - gpu_offset, length);
464                 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467                                        cpu_vaddr + cpu_offset,
468                                        this_length);
469                 if (ret)
470                         return ret + length;
471
472                 cpu_offset += this_length;
473                 gpu_offset += this_length;
474                 length -= this_length;
475         }
476
477         return 0;
478 }
479
480 /*
481  * Pins the specified object's pages and synchronizes the object with
482  * GPU accesses. Sets needs_clflush to non-zero if the caller should
483  * flush the object from the CPU cache.
484  */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486                                     int *needs_clflush)
487 {
488         int ret;
489
490         *needs_clflush = 0;
491
492         if (!obj->base.filp)
493                 return -EINVAL;
494
495         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496                 /* If we're not in the cpu read domain, set ourself into the gtt
497                  * read domain and manually flush cachelines (if required). This
498                  * optimizes for the case when the gpu will dirty the data
499                  * anyway again before the next pread happens. */
500                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501                                                         obj->cache_level);
502                 ret = i915_gem_object_wait_rendering(obj, true);
503                 if (ret)
504                         return ret;
505         }
506
507         ret = i915_gem_object_get_pages(obj);
508         if (ret)
509                 return ret;
510
511         i915_gem_object_pin_pages(obj);
512
513         return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517  * Flushes invalid cachelines before reading the target if
518  * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521                  char __user *user_data,
522                  bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524         char *vaddr;
525         int ret;
526
527         if (unlikely(page_do_bit17_swizzling))
528                 return -EINVAL;
529
530         vaddr = kmap_atomic(page);
531         if (needs_clflush)
532                 drm_clflush_virt_range(vaddr + shmem_page_offset,
533                                        page_length);
534         ret = __copy_to_user_inatomic(user_data,
535                                       vaddr + shmem_page_offset,
536                                       page_length);
537         kunmap_atomic(vaddr);
538
539         return ret ? -EFAULT : 0;
540 }
541
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544                              bool swizzled)
545 {
546         if (unlikely(swizzled)) {
547                 unsigned long start = (unsigned long) addr;
548                 unsigned long end = (unsigned long) addr + length;
549
550                 /* For swizzling simply ensure that we always flush both
551                  * channels. Lame, but simple and it works. Swizzled
552                  * pwrite/pread is far from a hotpath - current userspace
553                  * doesn't use it at all. */
554                 start = round_down(start, 128);
555                 end = round_up(end, 128);
556
557                 drm_clflush_virt_range((void *)start, end - start);
558         } else {
559                 drm_clflush_virt_range(addr, length);
560         }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565  * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568                  char __user *user_data,
569                  bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571         char *vaddr;
572         int ret;
573
574         vaddr = kmap(page);
575         if (needs_clflush)
576                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577                                              page_length,
578                                              page_do_bit17_swizzling);
579
580         if (page_do_bit17_swizzling)
581                 ret = __copy_to_user_swizzled(user_data,
582                                               vaddr, shmem_page_offset,
583                                               page_length);
584         else
585                 ret = __copy_to_user(user_data,
586                                      vaddr + shmem_page_offset,
587                                      page_length);
588         kunmap(page);
589
590         return ret ? - EFAULT : 0;
591 }
592
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595                      struct drm_i915_gem_object *obj,
596                      struct drm_i915_gem_pread *args,
597                      struct drm_file *file)
598 {
599         char __user *user_data;
600         ssize_t remain;
601         loff_t offset;
602         int shmem_page_offset, page_length, ret = 0;
603         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604         int prefaulted = 0;
605         int needs_clflush = 0;
606         struct sg_page_iter sg_iter;
607
608         user_data = to_user_ptr(args->data_ptr);
609         remain = args->size;
610
611         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614         if (ret)
615                 return ret;
616
617         offset = args->offset;
618
619         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620                          offset >> PAGE_SHIFT) {
621                 struct page *page = sg_page_iter_page(&sg_iter);
622
623                 if (remain <= 0)
624                         break;
625
626                 /* Operation in this page
627                  *
628                  * shmem_page_offset = offset within page in shmem file
629                  * page_length = bytes to copy for this page
630                  */
631                 shmem_page_offset = offset_in_page(offset);
632                 page_length = remain;
633                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634                         page_length = PAGE_SIZE - shmem_page_offset;
635
636                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637                         (page_to_phys(page) & (1 << 17)) != 0;
638
639                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640                                        user_data, page_do_bit17_swizzling,
641                                        needs_clflush);
642                 if (ret == 0)
643                         goto next_page;
644
645                 mutex_unlock(&dev->struct_mutex);
646
647                 if (likely(!i915.prefault_disable) && !prefaulted) {
648                         ret = fault_in_multipages_writeable(user_data, remain);
649                         /* Userspace is tricking us, but we've already clobbered
650                          * its pages with the prefault and promised to write the
651                          * data up to the first fault. Hence ignore any errors
652                          * and just continue. */
653                         (void)ret;
654                         prefaulted = 1;
655                 }
656
657                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658                                        user_data, page_do_bit17_swizzling,
659                                        needs_clflush);
660
661                 mutex_lock(&dev->struct_mutex);
662
663                 if (ret)
664                         goto out;
665
666 next_page:
667                 remain -= page_length;
668                 user_data += page_length;
669                 offset += page_length;
670         }
671
672 out:
673         i915_gem_object_unpin_pages(obj);
674
675         return ret;
676 }
677
678 /**
679  * Reads data from the object referenced by handle.
680  *
681  * On error, the contents of *data are undefined.
682  */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685                      struct drm_file *file)
686 {
687         struct drm_i915_gem_pread *args = data;
688         struct drm_i915_gem_object *obj;
689         int ret = 0;
690
691         if (args->size == 0)
692                 return 0;
693
694         if (!access_ok(VERIFY_WRITE,
695                        to_user_ptr(args->data_ptr),
696                        args->size))
697                 return -EFAULT;
698
699         ret = i915_mutex_lock_interruptible(dev);
700         if (ret)
701                 return ret;
702
703         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704         if (&obj->base == NULL) {
705                 ret = -ENOENT;
706                 goto unlock;
707         }
708
709         /* Bounds check source.  */
710         if (args->offset > obj->base.size ||
711             args->size > obj->base.size - args->offset) {
712                 ret = -EINVAL;
713                 goto out;
714         }
715
716         /* prime objects have no backing filp to GEM pread/pwrite
717          * pages from.
718          */
719         if (!obj->base.filp) {
720                 ret = -EINVAL;
721                 goto out;
722         }
723
724         trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726         ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729         drm_gem_object_unreference(&obj->base);
730 unlock:
731         mutex_unlock(&dev->struct_mutex);
732         return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736  * page faults in the source data
737  */
738
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741                 loff_t page_base, int page_offset,
742                 char __user *user_data,
743                 int length)
744 {
745         void __iomem *vaddr_atomic;
746         void *vaddr;
747         unsigned long unwritten;
748
749         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750         /* We can use the cpu mem copy function because this is X86. */
751         vaddr = (void __force*)vaddr_atomic + page_offset;
752         unwritten = __copy_from_user_inatomic_nocache(vaddr,
753                                                       user_data, length);
754         io_mapping_unmap_atomic(vaddr_atomic);
755         return unwritten;
756 }
757
758 /**
759  * This is the fast pwrite path, where we copy the data directly from the
760  * user into the GTT, uncached.
761  */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764                          struct drm_i915_gem_object *obj,
765                          struct drm_i915_gem_pwrite *args,
766                          struct drm_file *file)
767 {
768         struct drm_i915_private *dev_priv = dev->dev_private;
769         ssize_t remain;
770         loff_t offset, page_base;
771         char __user *user_data;
772         int page_offset, page_length, ret;
773
774         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775         if (ret)
776                 goto out;
777
778         ret = i915_gem_object_set_to_gtt_domain(obj, true);
779         if (ret)
780                 goto out_unpin;
781
782         ret = i915_gem_object_put_fence(obj);
783         if (ret)
784                 goto out_unpin;
785
786         user_data = to_user_ptr(args->data_ptr);
787         remain = args->size;
788
789         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791         intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793         while (remain > 0) {
794                 /* Operation in this page
795                  *
796                  * page_base = page offset within aperture
797                  * page_offset = offset within page
798                  * page_length = bytes to copy for this page
799                  */
800                 page_base = offset & PAGE_MASK;
801                 page_offset = offset_in_page(offset);
802                 page_length = remain;
803                 if ((page_offset + remain) > PAGE_SIZE)
804                         page_length = PAGE_SIZE - page_offset;
805
806                 /* If we get a fault while copying data, then (presumably) our
807                  * source page isn't available.  Return the error and we'll
808                  * retry in the slow path.
809                  */
810                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
811                                     page_offset, user_data, page_length)) {
812                         ret = -EFAULT;
813                         goto out_flush;
814                 }
815
816                 remain -= page_length;
817                 user_data += page_length;
818                 offset += page_length;
819         }
820
821 out_flush:
822         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824         i915_gem_object_ggtt_unpin(obj);
825 out:
826         return ret;
827 }
828
829 /* Per-page copy function for the shmem pwrite fastpath.
830  * Flushes invalid cachelines before writing to the target if
831  * needs_clflush_before is set and flushes out any written cachelines after
832  * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835                   char __user *user_data,
836                   bool page_do_bit17_swizzling,
837                   bool needs_clflush_before,
838                   bool needs_clflush_after)
839 {
840         char *vaddr;
841         int ret;
842
843         if (unlikely(page_do_bit17_swizzling))
844                 return -EINVAL;
845
846         vaddr = kmap_atomic(page);
847         if (needs_clflush_before)
848                 drm_clflush_virt_range(vaddr + shmem_page_offset,
849                                        page_length);
850         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851                                         user_data, page_length);
852         if (needs_clflush_after)
853                 drm_clflush_virt_range(vaddr + shmem_page_offset,
854                                        page_length);
855         kunmap_atomic(vaddr);
856
857         return ret ? -EFAULT : 0;
858 }
859
860 /* Only difference to the fast-path function is that this can handle bit17
861  * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864                   char __user *user_data,
865                   bool page_do_bit17_swizzling,
866                   bool needs_clflush_before,
867                   bool needs_clflush_after)
868 {
869         char *vaddr;
870         int ret;
871
872         vaddr = kmap(page);
873         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875                                              page_length,
876                                              page_do_bit17_swizzling);
877         if (page_do_bit17_swizzling)
878                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879                                                 user_data,
880                                                 page_length);
881         else
882                 ret = __copy_from_user(vaddr + shmem_page_offset,
883                                        user_data,
884                                        page_length);
885         if (needs_clflush_after)
886                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887                                              page_length,
888                                              page_do_bit17_swizzling);
889         kunmap(page);
890
891         return ret ? -EFAULT : 0;
892 }
893
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896                       struct drm_i915_gem_object *obj,
897                       struct drm_i915_gem_pwrite *args,
898                       struct drm_file *file)
899 {
900         ssize_t remain;
901         loff_t offset;
902         char __user *user_data;
903         int shmem_page_offset, page_length, ret = 0;
904         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905         int hit_slowpath = 0;
906         int needs_clflush_after = 0;
907         int needs_clflush_before = 0;
908         struct sg_page_iter sg_iter;
909
910         user_data = to_user_ptr(args->data_ptr);
911         remain = args->size;
912
913         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916                 /* If we're not in the cpu write domain, set ourself into the gtt
917                  * write domain and manually flush cachelines (if required). This
918                  * optimizes for the case when the gpu will use the data
919                  * right away and we therefore have to clflush anyway. */
920                 needs_clflush_after = cpu_write_needs_clflush(obj);
921                 ret = i915_gem_object_wait_rendering(obj, false);
922                 if (ret)
923                         return ret;
924         }
925         /* Same trick applies to invalidate partially written cachelines read
926          * before writing. */
927         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928                 needs_clflush_before =
929                         !cpu_cache_is_coherent(dev, obj->cache_level);
930
931         ret = i915_gem_object_get_pages(obj);
932         if (ret)
933                 return ret;
934
935         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937         i915_gem_object_pin_pages(obj);
938
939         offset = args->offset;
940         obj->dirty = 1;
941
942         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943                          offset >> PAGE_SHIFT) {
944                 struct page *page = sg_page_iter_page(&sg_iter);
945                 int partial_cacheline_write;
946
947                 if (remain <= 0)
948                         break;
949
950                 /* Operation in this page
951                  *
952                  * shmem_page_offset = offset within page in shmem file
953                  * page_length = bytes to copy for this page
954                  */
955                 shmem_page_offset = offset_in_page(offset);
956
957                 page_length = remain;
958                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959                         page_length = PAGE_SIZE - shmem_page_offset;
960
961                 /* If we don't overwrite a cacheline completely we need to be
962                  * careful to have up-to-date data by first clflushing. Don't
963                  * overcomplicate things and flush the entire patch. */
964                 partial_cacheline_write = needs_clflush_before &&
965                         ((shmem_page_offset | page_length)
966                                 & (boot_cpu_data.x86_clflush_size - 1));
967
968                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969                         (page_to_phys(page) & (1 << 17)) != 0;
970
971                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972                                         user_data, page_do_bit17_swizzling,
973                                         partial_cacheline_write,
974                                         needs_clflush_after);
975                 if (ret == 0)
976                         goto next_page;
977
978                 hit_slowpath = 1;
979                 mutex_unlock(&dev->struct_mutex);
980                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981                                         user_data, page_do_bit17_swizzling,
982                                         partial_cacheline_write,
983                                         needs_clflush_after);
984
985                 mutex_lock(&dev->struct_mutex);
986
987                 if (ret)
988                         goto out;
989
990 next_page:
991                 remain -= page_length;
992                 user_data += page_length;
993                 offset += page_length;
994         }
995
996 out:
997         i915_gem_object_unpin_pages(obj);
998
999         if (hit_slowpath) {
1000                 /*
1001                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1002                  * cachelines in-line while writing and the object moved
1003                  * out of the cpu write domain while we've dropped the lock.
1004                  */
1005                 if (!needs_clflush_after &&
1006                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007                         if (i915_gem_clflush_object(obj, obj->pin_display))
1008                                 needs_clflush_after = true;
1009                 }
1010         }
1011
1012         if (needs_clflush_after)
1013                 i915_gem_chipset_flush(dev);
1014         else
1015                 obj->cache_dirty = true;
1016
1017         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018         return ret;
1019 }
1020
1021 /**
1022  * Writes data to the object referenced by handle.
1023  *
1024  * On error, the contents of the buffer that were to be modified are undefined.
1025  */
1026 int
1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028                       struct drm_file *file)
1029 {
1030         struct drm_i915_private *dev_priv = dev->dev_private;
1031         struct drm_i915_gem_pwrite *args = data;
1032         struct drm_i915_gem_object *obj;
1033         int ret;
1034
1035         if (args->size == 0)
1036                 return 0;
1037
1038         if (!access_ok(VERIFY_READ,
1039                        to_user_ptr(args->data_ptr),
1040                        args->size))
1041                 return -EFAULT;
1042
1043         if (likely(!i915.prefault_disable)) {
1044                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045                                                    args->size);
1046                 if (ret)
1047                         return -EFAULT;
1048         }
1049
1050         intel_runtime_pm_get(dev_priv);
1051
1052         ret = i915_mutex_lock_interruptible(dev);
1053         if (ret)
1054                 goto put_rpm;
1055
1056         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057         if (&obj->base == NULL) {
1058                 ret = -ENOENT;
1059                 goto unlock;
1060         }
1061
1062         /* Bounds check destination. */
1063         if (args->offset > obj->base.size ||
1064             args->size > obj->base.size - args->offset) {
1065                 ret = -EINVAL;
1066                 goto out;
1067         }
1068
1069         /* prime objects have no backing filp to GEM pread/pwrite
1070          * pages from.
1071          */
1072         if (!obj->base.filp) {
1073                 ret = -EINVAL;
1074                 goto out;
1075         }
1076
1077         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
1079         ret = -EFAULT;
1080         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081          * it would end up going through the fenced access, and we'll get
1082          * different detiling behavior between reading and writing.
1083          * pread/pwrite currently are reading and writing from the CPU
1084          * perspective, requiring manual detiling by the client.
1085          */
1086         if (obj->tiling_mode == I915_TILING_NONE &&
1087             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088             cpu_write_needs_clflush(obj)) {
1089                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090                 /* Note that the gtt paths might fail with non-page-backed user
1091                  * pointers (e.g. gtt mappings when moving data between
1092                  * textures). Fallback to the shmem path in that case. */
1093         }
1094
1095         if (ret == -EFAULT || ret == -ENOSPC) {
1096                 if (obj->phys_handle)
1097                         ret = i915_gem_phys_pwrite(obj, args, file);
1098                 else
1099                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100         }
1101
1102 out:
1103         drm_gem_object_unreference(&obj->base);
1104 unlock:
1105         mutex_unlock(&dev->struct_mutex);
1106 put_rpm:
1107         intel_runtime_pm_put(dev_priv);
1108
1109         return ret;
1110 }
1111
1112 int
1113 i915_gem_check_wedge(struct i915_gpu_error *error,
1114                      bool interruptible)
1115 {
1116         if (i915_reset_in_progress(error)) {
1117                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118                  * -EIO unconditionally for these. */
1119                 if (!interruptible)
1120                         return -EIO;
1121
1122                 /* Recovery complete, but the reset failed ... */
1123                 if (i915_terminally_wedged(error))
1124                         return -EIO;
1125
1126                 /*
1127                  * Check if GPU Reset is in progress - we need intel_ring_begin
1128                  * to work properly to reinit the hw state while the gpu is
1129                  * still marked as reset-in-progress. Handle this with a flag.
1130                  */
1131                 if (!error->reload_in_reset)
1132                         return -EAGAIN;
1133         }
1134
1135         return 0;
1136 }
1137
1138 static void fake_irq(unsigned long data)
1139 {
1140         wake_up_process((struct task_struct *)data);
1141 }
1142
1143 static bool missed_irq(struct drm_i915_private *dev_priv,
1144                        struct intel_engine_cs *ring)
1145 {
1146         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147 }
1148
1149 static int __i915_spin_request(struct drm_i915_gem_request *req)
1150 {
1151         unsigned long timeout;
1152
1153         if (i915_gem_request_get_ring(req)->irq_refcount)
1154                 return -EBUSY;
1155
1156         timeout = jiffies + 1;
1157         while (!need_resched()) {
1158                 if (i915_gem_request_completed(req, true))
1159                         return 0;
1160
1161                 if (time_after_eq(jiffies, timeout))
1162                         break;
1163
1164                 cpu_relax_lowlatency();
1165         }
1166         if (i915_gem_request_completed(req, false))
1167                 return 0;
1168
1169         return -EAGAIN;
1170 }
1171
1172 /**
1173  * __i915_wait_request - wait until execution of request has finished
1174  * @req: duh!
1175  * @reset_counter: reset sequence associated with the given request
1176  * @interruptible: do an interruptible wait (normally yes)
1177  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1178  *
1179  * Note: It is of utmost importance that the passed in seqno and reset_counter
1180  * values have been read by the caller in an smp safe manner. Where read-side
1181  * locks are involved, it is sufficient to read the reset_counter before
1182  * unlocking the lock that protects the seqno. For lockless tricks, the
1183  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1184  * inserted.
1185  *
1186  * Returns 0 if the request was found within the alloted time. Else returns the
1187  * errno with remaining time filled in timeout argument.
1188  */
1189 int __i915_wait_request(struct drm_i915_gem_request *req,
1190                         unsigned reset_counter,
1191                         bool interruptible,
1192                         s64 *timeout,
1193                         struct intel_rps_client *rps)
1194 {
1195         struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1196         struct drm_device *dev = ring->dev;
1197         struct drm_i915_private *dev_priv = dev->dev_private;
1198         const bool irq_test_in_progress =
1199                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1200         DEFINE_WAIT(wait);
1201         unsigned long timeout_expire;
1202         s64 before, now;
1203         int ret;
1204
1205         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1206
1207         if (list_empty(&req->list))
1208                 return 0;
1209
1210         if (i915_gem_request_completed(req, true))
1211                 return 0;
1212
1213         timeout_expire = timeout ?
1214                 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1215
1216         if (INTEL_INFO(dev_priv)->gen >= 6)
1217                 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1218
1219         /* Record current time in case interrupted by signal, or wedged */
1220         trace_i915_gem_request_wait_begin(req);
1221         before = ktime_get_raw_ns();
1222
1223         /* Optimistic spin for the next jiffie before touching IRQs */
1224         ret = __i915_spin_request(req);
1225         if (ret == 0)
1226                 goto out;
1227
1228         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1229                 ret = -ENODEV;
1230                 goto out;
1231         }
1232
1233         for (;;) {
1234                 struct timer_list timer;
1235
1236                 prepare_to_wait(&ring->irq_queue, &wait,
1237                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1238
1239                 /* We need to check whether any gpu reset happened in between
1240                  * the caller grabbing the seqno and now ... */
1241                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1242                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1243                          * is truely gone. */
1244                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1245                         if (ret == 0)
1246                                 ret = -EAGAIN;
1247                         break;
1248                 }
1249
1250                 if (i915_gem_request_completed(req, false)) {
1251                         ret = 0;
1252                         break;
1253                 }
1254
1255                 if (interruptible && signal_pending(current)) {
1256                         ret = -ERESTARTSYS;
1257                         break;
1258                 }
1259
1260                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1261                         ret = -ETIME;
1262                         break;
1263                 }
1264
1265                 timer.function = NULL;
1266                 if (timeout || missed_irq(dev_priv, ring)) {
1267                         unsigned long expire;
1268
1269                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1270                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1271                         mod_timer(&timer, expire);
1272                 }
1273
1274                 io_schedule();
1275
1276                 if (timer.function) {
1277                         del_singleshot_timer_sync(&timer);
1278                         destroy_timer_on_stack(&timer);
1279                 }
1280         }
1281         if (!irq_test_in_progress)
1282                 ring->irq_put(ring);
1283
1284         finish_wait(&ring->irq_queue, &wait);
1285
1286 out:
1287         now = ktime_get_raw_ns();
1288         trace_i915_gem_request_wait_end(req);
1289
1290         if (timeout) {
1291                 s64 tres = *timeout - (now - before);
1292
1293                 *timeout = tres < 0 ? 0 : tres;
1294
1295                 /*
1296                  * Apparently ktime isn't accurate enough and occasionally has a
1297                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1298                  * things up to make the test happy. We allow up to 1 jiffy.
1299                  *
1300                  * This is a regrssion from the timespec->ktime conversion.
1301                  */
1302                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1303                         *timeout = 0;
1304         }
1305
1306         return ret;
1307 }
1308
1309 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1310                                    struct drm_file *file)
1311 {
1312         struct drm_i915_private *dev_private;
1313         struct drm_i915_file_private *file_priv;
1314
1315         WARN_ON(!req || !file || req->file_priv);
1316
1317         if (!req || !file)
1318                 return -EINVAL;
1319
1320         if (req->file_priv)
1321                 return -EINVAL;
1322
1323         dev_private = req->ring->dev->dev_private;
1324         file_priv = file->driver_priv;
1325
1326         spin_lock(&file_priv->mm.lock);
1327         req->file_priv = file_priv;
1328         list_add_tail(&req->client_list, &file_priv->mm.request_list);
1329         spin_unlock(&file_priv->mm.lock);
1330
1331         req->pid = get_pid(task_pid(current));
1332
1333         return 0;
1334 }
1335
1336 static inline void
1337 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1338 {
1339         struct drm_i915_file_private *file_priv = request->file_priv;
1340
1341         if (!file_priv)
1342                 return;
1343
1344         spin_lock(&file_priv->mm.lock);
1345         list_del(&request->client_list);
1346         request->file_priv = NULL;
1347         spin_unlock(&file_priv->mm.lock);
1348
1349         put_pid(request->pid);
1350         request->pid = NULL;
1351 }
1352
1353 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1354 {
1355         trace_i915_gem_request_retire(request);
1356
1357         /* We know the GPU must have read the request to have
1358          * sent us the seqno + interrupt, so use the position
1359          * of tail of the request to update the last known position
1360          * of the GPU head.
1361          *
1362          * Note this requires that we are always called in request
1363          * completion order.
1364          */
1365         request->ringbuf->last_retired_head = request->postfix;
1366
1367         list_del_init(&request->list);
1368         i915_gem_request_remove_from_client(request);
1369
1370         i915_gem_request_unreference(request);
1371 }
1372
1373 static void
1374 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1375 {
1376         struct intel_engine_cs *engine = req->ring;
1377         struct drm_i915_gem_request *tmp;
1378
1379         lockdep_assert_held(&engine->dev->struct_mutex);
1380
1381         if (list_empty(&req->list))
1382                 return;
1383
1384         do {
1385                 tmp = list_first_entry(&engine->request_list,
1386                                        typeof(*tmp), list);
1387
1388                 i915_gem_request_retire(tmp);
1389         } while (tmp != req);
1390
1391         WARN_ON(i915_verify_lists(engine->dev));
1392 }
1393
1394 /**
1395  * Waits for a request to be signaled, and cleans up the
1396  * request and object lists appropriately for that event.
1397  */
1398 int
1399 i915_wait_request(struct drm_i915_gem_request *req)
1400 {
1401         struct drm_device *dev;
1402         struct drm_i915_private *dev_priv;
1403         bool interruptible;
1404         int ret;
1405
1406         BUG_ON(req == NULL);
1407
1408         dev = req->ring->dev;
1409         dev_priv = dev->dev_private;
1410         interruptible = dev_priv->mm.interruptible;
1411
1412         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1413
1414         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1415         if (ret)
1416                 return ret;
1417
1418         ret = __i915_wait_request(req,
1419                                   atomic_read(&dev_priv->gpu_error.reset_counter),
1420                                   interruptible, NULL, NULL);
1421         if (ret)
1422                 return ret;
1423
1424         __i915_gem_request_retire__upto(req);
1425         return 0;
1426 }
1427
1428 /**
1429  * Ensures that all rendering to the object has completed and the object is
1430  * safe to unbind from the GTT or access from the CPU.
1431  */
1432 int
1433 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1434                                bool readonly)
1435 {
1436         int ret, i;
1437
1438         if (!obj->active)
1439                 return 0;
1440
1441         if (readonly) {
1442                 if (obj->last_write_req != NULL) {
1443                         ret = i915_wait_request(obj->last_write_req);
1444                         if (ret)
1445                                 return ret;
1446
1447                         i = obj->last_write_req->ring->id;
1448                         if (obj->last_read_req[i] == obj->last_write_req)
1449                                 i915_gem_object_retire__read(obj, i);
1450                         else
1451                                 i915_gem_object_retire__write(obj);
1452                 }
1453         } else {
1454                 for (i = 0; i < I915_NUM_RINGS; i++) {
1455                         if (obj->last_read_req[i] == NULL)
1456                                 continue;
1457
1458                         ret = i915_wait_request(obj->last_read_req[i]);
1459                         if (ret)
1460                                 return ret;
1461
1462                         i915_gem_object_retire__read(obj, i);
1463                 }
1464                 RQ_BUG_ON(obj->active);
1465         }
1466
1467         return 0;
1468 }
1469
1470 static void
1471 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1472                                struct drm_i915_gem_request *req)
1473 {
1474         int ring = req->ring->id;
1475
1476         if (obj->last_read_req[ring] == req)
1477                 i915_gem_object_retire__read(obj, ring);
1478         else if (obj->last_write_req == req)
1479                 i915_gem_object_retire__write(obj);
1480
1481         __i915_gem_request_retire__upto(req);
1482 }
1483
1484 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1485  * as the object state may change during this call.
1486  */
1487 static __must_check int
1488 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1489                                             struct intel_rps_client *rps,
1490                                             bool readonly)
1491 {
1492         struct drm_device *dev = obj->base.dev;
1493         struct drm_i915_private *dev_priv = dev->dev_private;
1494         struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1495         unsigned reset_counter;
1496         int ret, i, n = 0;
1497
1498         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1499         BUG_ON(!dev_priv->mm.interruptible);
1500
1501         if (!obj->active)
1502                 return 0;
1503
1504         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1505         if (ret)
1506                 return ret;
1507
1508         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1509
1510         if (readonly) {
1511                 struct drm_i915_gem_request *req;
1512
1513                 req = obj->last_write_req;
1514                 if (req == NULL)
1515                         return 0;
1516
1517                 requests[n++] = i915_gem_request_reference(req);
1518         } else {
1519                 for (i = 0; i < I915_NUM_RINGS; i++) {
1520                         struct drm_i915_gem_request *req;
1521
1522                         req = obj->last_read_req[i];
1523                         if (req == NULL)
1524                                 continue;
1525
1526                         requests[n++] = i915_gem_request_reference(req);
1527                 }
1528         }
1529
1530         mutex_unlock(&dev->struct_mutex);
1531         for (i = 0; ret == 0 && i < n; i++)
1532                 ret = __i915_wait_request(requests[i], reset_counter, true,
1533                                           NULL, rps);
1534         mutex_lock(&dev->struct_mutex);
1535
1536         for (i = 0; i < n; i++) {
1537                 if (ret == 0)
1538                         i915_gem_object_retire_request(obj, requests[i]);
1539                 i915_gem_request_unreference(requests[i]);
1540         }
1541
1542         return ret;
1543 }
1544
1545 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1546 {
1547         struct drm_i915_file_private *fpriv = file->driver_priv;
1548         return &fpriv->rps;
1549 }
1550
1551 /**
1552  * Called when user space prepares to use an object with the CPU, either
1553  * through the mmap ioctl's mapping or a GTT mapping.
1554  */
1555 int
1556 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1557                           struct drm_file *file)
1558 {
1559         struct drm_i915_gem_set_domain *args = data;
1560         struct drm_i915_gem_object *obj;
1561         uint32_t read_domains = args->read_domains;
1562         uint32_t write_domain = args->write_domain;
1563         int ret;
1564
1565         /* Only handle setting domains to types used by the CPU. */
1566         if (write_domain & I915_GEM_GPU_DOMAINS)
1567                 return -EINVAL;
1568
1569         if (read_domains & I915_GEM_GPU_DOMAINS)
1570                 return -EINVAL;
1571
1572         /* Having something in the write domain implies it's in the read
1573          * domain, and only that read domain.  Enforce that in the request.
1574          */
1575         if (write_domain != 0 && read_domains != write_domain)
1576                 return -EINVAL;
1577
1578         ret = i915_mutex_lock_interruptible(dev);
1579         if (ret)
1580                 return ret;
1581
1582         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1583         if (&obj->base == NULL) {
1584                 ret = -ENOENT;
1585                 goto unlock;
1586         }
1587
1588         /* Try to flush the object off the GPU without holding the lock.
1589          * We will repeat the flush holding the lock in the normal manner
1590          * to catch cases where we are gazumped.
1591          */
1592         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1593                                                           to_rps_client(file),
1594                                                           !write_domain);
1595         if (ret)
1596                 goto unref;
1597
1598         if (read_domains & I915_GEM_DOMAIN_GTT)
1599                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1600         else
1601                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1602
1603         if (write_domain != 0)
1604                 intel_fb_obj_invalidate(obj,
1605                                         write_domain == I915_GEM_DOMAIN_GTT ?
1606                                         ORIGIN_GTT : ORIGIN_CPU);
1607
1608 unref:
1609         drm_gem_object_unreference(&obj->base);
1610 unlock:
1611         mutex_unlock(&dev->struct_mutex);
1612         return ret;
1613 }
1614
1615 /**
1616  * Called when user space has done writes to this buffer
1617  */
1618 int
1619 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1620                          struct drm_file *file)
1621 {
1622         struct drm_i915_gem_sw_finish *args = data;
1623         struct drm_i915_gem_object *obj;
1624         int ret = 0;
1625
1626         ret = i915_mutex_lock_interruptible(dev);
1627         if (ret)
1628                 return ret;
1629
1630         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1631         if (&obj->base == NULL) {
1632                 ret = -ENOENT;
1633                 goto unlock;
1634         }
1635
1636         /* Pinned buffers may be scanout, so flush the cache */
1637         if (obj->pin_display)
1638                 i915_gem_object_flush_cpu_write_domain(obj);
1639
1640         drm_gem_object_unreference(&obj->base);
1641 unlock:
1642         mutex_unlock(&dev->struct_mutex);
1643         return ret;
1644 }
1645
1646 /**
1647  * Maps the contents of an object, returning the address it is mapped
1648  * into.
1649  *
1650  * While the mapping holds a reference on the contents of the object, it doesn't
1651  * imply a ref on the object itself.
1652  *
1653  * IMPORTANT:
1654  *
1655  * DRM driver writers who look a this function as an example for how to do GEM
1656  * mmap support, please don't implement mmap support like here. The modern way
1657  * to implement DRM mmap support is with an mmap offset ioctl (like
1658  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1659  * That way debug tooling like valgrind will understand what's going on, hiding
1660  * the mmap call in a driver private ioctl will break that. The i915 driver only
1661  * does cpu mmaps this way because we didn't know better.
1662  */
1663 int
1664 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1665                     struct drm_file *file)
1666 {
1667         struct drm_i915_gem_mmap *args = data;
1668         struct drm_gem_object *obj;
1669         unsigned long addr;
1670
1671         if (args->flags & ~(I915_MMAP_WC))
1672                 return -EINVAL;
1673
1674         if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1675                 return -ENODEV;
1676
1677         obj = drm_gem_object_lookup(dev, file, args->handle);
1678         if (obj == NULL)
1679                 return -ENOENT;
1680
1681         /* prime objects have no backing filp to GEM mmap
1682          * pages from.
1683          */
1684         if (!obj->filp) {
1685                 drm_gem_object_unreference_unlocked(obj);
1686                 return -EINVAL;
1687         }
1688
1689         addr = vm_mmap(obj->filp, 0, args->size,
1690                        PROT_READ | PROT_WRITE, MAP_SHARED,
1691                        args->offset);
1692         if (args->flags & I915_MMAP_WC) {
1693                 struct mm_struct *mm = current->mm;
1694                 struct vm_area_struct *vma;
1695
1696                 down_write(&mm->mmap_sem);
1697                 vma = find_vma(mm, addr);
1698                 if (vma)
1699                         vma->vm_page_prot =
1700                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1701                 else
1702                         addr = -ENOMEM;
1703                 up_write(&mm->mmap_sem);
1704         }
1705         drm_gem_object_unreference_unlocked(obj);
1706         if (IS_ERR((void *)addr))
1707                 return addr;
1708
1709         args->addr_ptr = (uint64_t) addr;
1710
1711         return 0;
1712 }
1713
1714 /**
1715  * i915_gem_fault - fault a page into the GTT
1716  * @vma: VMA in question
1717  * @vmf: fault info
1718  *
1719  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1720  * from userspace.  The fault handler takes care of binding the object to
1721  * the GTT (if needed), allocating and programming a fence register (again,
1722  * only if needed based on whether the old reg is still valid or the object
1723  * is tiled) and inserting a new PTE into the faulting process.
1724  *
1725  * Note that the faulting process may involve evicting existing objects
1726  * from the GTT and/or fence registers to make room.  So performance may
1727  * suffer if the GTT working set is large or there are few fence registers
1728  * left.
1729  */
1730 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1731 {
1732         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1733         struct drm_device *dev = obj->base.dev;
1734         struct drm_i915_private *dev_priv = dev->dev_private;
1735         struct i915_ggtt_view view = i915_ggtt_view_normal;
1736         pgoff_t page_offset;
1737         unsigned long pfn;
1738         int ret = 0;
1739         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1740
1741         intel_runtime_pm_get(dev_priv);
1742
1743         /* We don't use vmf->pgoff since that has the fake offset */
1744         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1745                 PAGE_SHIFT;
1746
1747         ret = i915_mutex_lock_interruptible(dev);
1748         if (ret)
1749                 goto out;
1750
1751         trace_i915_gem_object_fault(obj, page_offset, true, write);
1752
1753         /* Try to flush the object off the GPU first without holding the lock.
1754          * Upon reacquiring the lock, we will perform our sanity checks and then
1755          * repeat the flush holding the lock in the normal manner to catch cases
1756          * where we are gazumped.
1757          */
1758         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1759         if (ret)
1760                 goto unlock;
1761
1762         /* Access to snoopable pages through the GTT is incoherent. */
1763         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1764                 ret = -EFAULT;
1765                 goto unlock;
1766         }
1767
1768         /* Use a partial view if the object is bigger than the aperture. */
1769         if (obj->base.size >= dev_priv->gtt.mappable_end &&
1770             obj->tiling_mode == I915_TILING_NONE) {
1771                 static const unsigned int chunk_size = 256; // 1 MiB
1772
1773                 memset(&view, 0, sizeof(view));
1774                 view.type = I915_GGTT_VIEW_PARTIAL;
1775                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1776                 view.params.partial.size =
1777                         min_t(unsigned int,
1778                               chunk_size,
1779                               (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1780                               view.params.partial.offset);
1781         }
1782
1783         /* Now pin it into the GTT if needed */
1784         ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1785         if (ret)
1786                 goto unlock;
1787
1788         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1789         if (ret)
1790                 goto unpin;
1791
1792         ret = i915_gem_object_get_fence(obj);
1793         if (ret)
1794                 goto unpin;
1795
1796         /* Finally, remap it using the new GTT offset */
1797         pfn = dev_priv->gtt.mappable_base +
1798                 i915_gem_obj_ggtt_offset_view(obj, &view);
1799         pfn >>= PAGE_SHIFT;
1800
1801         if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1802                 /* Overriding existing pages in partial view does not cause
1803                  * us any trouble as TLBs are still valid because the fault
1804                  * is due to userspace losing part of the mapping or never
1805                  * having accessed it before (at this partials' range).
1806                  */
1807                 unsigned long base = vma->vm_start +
1808                                      (view.params.partial.offset << PAGE_SHIFT);
1809                 unsigned int i;
1810
1811                 for (i = 0; i < view.params.partial.size; i++) {
1812                         ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1813                         if (ret)
1814                                 break;
1815                 }
1816
1817                 obj->fault_mappable = true;
1818         } else {
1819                 if (!obj->fault_mappable) {
1820                         unsigned long size = min_t(unsigned long,
1821                                                    vma->vm_end - vma->vm_start,
1822                                                    obj->base.size);
1823                         int i;
1824
1825                         for (i = 0; i < size >> PAGE_SHIFT; i++) {
1826                                 ret = vm_insert_pfn(vma,
1827                                                     (unsigned long)vma->vm_start + i * PAGE_SIZE,
1828                                                     pfn + i);
1829                                 if (ret)
1830                                         break;
1831                         }
1832
1833                         obj->fault_mappable = true;
1834                 } else
1835                         ret = vm_insert_pfn(vma,
1836                                             (unsigned long)vmf->virtual_address,
1837                                             pfn + page_offset);
1838         }
1839 unpin:
1840         i915_gem_object_ggtt_unpin_view(obj, &view);
1841 unlock:
1842         mutex_unlock(&dev->struct_mutex);
1843 out:
1844         switch (ret) {
1845         case -EIO:
1846                 /*
1847                  * We eat errors when the gpu is terminally wedged to avoid
1848                  * userspace unduly crashing (gl has no provisions for mmaps to
1849                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1850                  * and so needs to be reported.
1851                  */
1852                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1853                         ret = VM_FAULT_SIGBUS;
1854                         break;
1855                 }
1856         case -EAGAIN:
1857                 /*
1858                  * EAGAIN means the gpu is hung and we'll wait for the error
1859                  * handler to reset everything when re-faulting in
1860                  * i915_mutex_lock_interruptible.
1861                  */
1862         case 0:
1863         case -ERESTARTSYS:
1864         case -EINTR:
1865         case -EBUSY:
1866                 /*
1867                  * EBUSY is ok: this just means that another thread
1868                  * already did the job.
1869                  */
1870                 ret = VM_FAULT_NOPAGE;
1871                 break;
1872         case -ENOMEM:
1873                 ret = VM_FAULT_OOM;
1874                 break;
1875         case -ENOSPC:
1876         case -EFAULT:
1877                 ret = VM_FAULT_SIGBUS;
1878                 break;
1879         default:
1880                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1881                 ret = VM_FAULT_SIGBUS;
1882                 break;
1883         }
1884
1885         intel_runtime_pm_put(dev_priv);
1886         return ret;
1887 }
1888
1889 /**
1890  * i915_gem_release_mmap - remove physical page mappings
1891  * @obj: obj in question
1892  *
1893  * Preserve the reservation of the mmapping with the DRM core code, but
1894  * relinquish ownership of the pages back to the system.
1895  *
1896  * It is vital that we remove the page mapping if we have mapped a tiled
1897  * object through the GTT and then lose the fence register due to
1898  * resource pressure. Similarly if the object has been moved out of the
1899  * aperture, than pages mapped into userspace must be revoked. Removing the
1900  * mapping will then trigger a page fault on the next user access, allowing
1901  * fixup by i915_gem_fault().
1902  */
1903 void
1904 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1905 {
1906         if (!obj->fault_mappable)
1907                 return;
1908
1909         drm_vma_node_unmap(&obj->base.vma_node,
1910                            obj->base.dev->anon_inode->i_mapping);
1911         obj->fault_mappable = false;
1912 }
1913
1914 void
1915 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1916 {
1917         struct drm_i915_gem_object *obj;
1918
1919         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1920                 i915_gem_release_mmap(obj);
1921 }
1922
1923 uint32_t
1924 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1925 {
1926         uint32_t gtt_size;
1927
1928         if (INTEL_INFO(dev)->gen >= 4 ||
1929             tiling_mode == I915_TILING_NONE)
1930                 return size;
1931
1932         /* Previous chips need a power-of-two fence region when tiling */
1933         if (INTEL_INFO(dev)->gen == 3)
1934                 gtt_size = 1024*1024;
1935         else
1936                 gtt_size = 512*1024;
1937
1938         while (gtt_size < size)
1939                 gtt_size <<= 1;
1940
1941         return gtt_size;
1942 }
1943
1944 /**
1945  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1946  * @obj: object to check
1947  *
1948  * Return the required GTT alignment for an object, taking into account
1949  * potential fence register mapping.
1950  */
1951 uint32_t
1952 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1953                            int tiling_mode, bool fenced)
1954 {
1955         /*
1956          * Minimum alignment is 4k (GTT page size), but might be greater
1957          * if a fence register is needed for the object.
1958          */
1959         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1960             tiling_mode == I915_TILING_NONE)
1961                 return 4096;
1962
1963         /*
1964          * Previous chips need to be aligned to the size of the smallest
1965          * fence register that can contain the object.
1966          */
1967         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1968 }
1969
1970 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1971 {
1972         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1973         int ret;
1974
1975         if (drm_vma_node_has_offset(&obj->base.vma_node))
1976                 return 0;
1977
1978         dev_priv->mm.shrinker_no_lock_stealing = true;
1979
1980         ret = drm_gem_create_mmap_offset(&obj->base);
1981         if (ret != -ENOSPC)
1982                 goto out;
1983
1984         /* Badly fragmented mmap space? The only way we can recover
1985          * space is by destroying unwanted objects. We can't randomly release
1986          * mmap_offsets as userspace expects them to be persistent for the
1987          * lifetime of the objects. The closest we can is to release the
1988          * offsets on purgeable objects by truncating it and marking it purged,
1989          * which prevents userspace from ever using that object again.
1990          */
1991         i915_gem_shrink(dev_priv,
1992                         obj->base.size >> PAGE_SHIFT,
1993                         I915_SHRINK_BOUND |
1994                         I915_SHRINK_UNBOUND |
1995                         I915_SHRINK_PURGEABLE);
1996         ret = drm_gem_create_mmap_offset(&obj->base);
1997         if (ret != -ENOSPC)
1998                 goto out;
1999
2000         i915_gem_shrink_all(dev_priv);
2001         ret = drm_gem_create_mmap_offset(&obj->base);
2002 out:
2003         dev_priv->mm.shrinker_no_lock_stealing = false;
2004
2005         return ret;
2006 }
2007
2008 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2009 {
2010         drm_gem_free_mmap_offset(&obj->base);
2011 }
2012
2013 int
2014 i915_gem_mmap_gtt(struct drm_file *file,
2015                   struct drm_device *dev,
2016                   uint32_t handle,
2017                   uint64_t *offset)
2018 {
2019         struct drm_i915_gem_object *obj;
2020         int ret;
2021
2022         ret = i915_mutex_lock_interruptible(dev);
2023         if (ret)
2024                 return ret;
2025
2026         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2027         if (&obj->base == NULL) {
2028                 ret = -ENOENT;
2029                 goto unlock;
2030         }
2031
2032         if (obj->madv != I915_MADV_WILLNEED) {
2033                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2034                 ret = -EFAULT;
2035                 goto out;
2036         }
2037
2038         ret = i915_gem_object_create_mmap_offset(obj);
2039         if (ret)
2040                 goto out;
2041
2042         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2043
2044 out:
2045         drm_gem_object_unreference(&obj->base);
2046 unlock:
2047         mutex_unlock(&dev->struct_mutex);
2048         return ret;
2049 }
2050
2051 /**
2052  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2053  * @dev: DRM device
2054  * @data: GTT mapping ioctl data
2055  * @file: GEM object info
2056  *
2057  * Simply returns the fake offset to userspace so it can mmap it.
2058  * The mmap call will end up in drm_gem_mmap(), which will set things
2059  * up so we can get faults in the handler above.
2060  *
2061  * The fault handler will take care of binding the object into the GTT
2062  * (since it may have been evicted to make room for something), allocating
2063  * a fence register, and mapping the appropriate aperture address into
2064  * userspace.
2065  */
2066 int
2067 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2068                         struct drm_file *file)
2069 {
2070         struct drm_i915_gem_mmap_gtt *args = data;
2071
2072         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2073 }
2074
2075 /* Immediately discard the backing storage */
2076 static void
2077 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2078 {
2079         i915_gem_object_free_mmap_offset(obj);
2080
2081         if (obj->base.filp == NULL)
2082                 return;
2083
2084         /* Our goal here is to return as much of the memory as
2085          * is possible back to the system as we are called from OOM.
2086          * To do this we must instruct the shmfs to drop all of its
2087          * backing pages, *now*.
2088          */
2089         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2090         obj->madv = __I915_MADV_PURGED;
2091 }
2092
2093 /* Try to discard unwanted pages */
2094 static void
2095 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2096 {
2097         struct address_space *mapping;
2098
2099         switch (obj->madv) {
2100         case I915_MADV_DONTNEED:
2101                 i915_gem_object_truncate(obj);
2102         case __I915_MADV_PURGED:
2103                 return;
2104         }
2105
2106         if (obj->base.filp == NULL)
2107                 return;
2108
2109         mapping = file_inode(obj->base.filp)->i_mapping,
2110         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2111 }
2112
2113 static void
2114 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2115 {
2116         struct sg_page_iter sg_iter;
2117         int ret;
2118
2119         BUG_ON(obj->madv == __I915_MADV_PURGED);
2120
2121         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2122         if (ret) {
2123                 /* In the event of a disaster, abandon all caches and
2124                  * hope for the best.
2125                  */
2126                 WARN_ON(ret != -EIO);
2127                 i915_gem_clflush_object(obj, true);
2128                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2129         }
2130
2131         i915_gem_gtt_finish_object(obj);
2132
2133         if (i915_gem_object_needs_bit17_swizzle(obj))
2134                 i915_gem_object_save_bit_17_swizzle(obj);
2135
2136         if (obj->madv == I915_MADV_DONTNEED)
2137                 obj->dirty = 0;
2138
2139         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2140                 struct page *page = sg_page_iter_page(&sg_iter);
2141
2142                 if (obj->dirty)
2143                         set_page_dirty(page);
2144
2145                 if (obj->madv == I915_MADV_WILLNEED)
2146                         mark_page_accessed(page);
2147
2148                 page_cache_release(page);
2149         }
2150         obj->dirty = 0;
2151
2152         sg_free_table(obj->pages);
2153         kfree(obj->pages);
2154 }
2155
2156 int
2157 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2158 {
2159         const struct drm_i915_gem_object_ops *ops = obj->ops;
2160
2161         if (obj->pages == NULL)
2162                 return 0;
2163
2164         if (obj->pages_pin_count)
2165                 return -EBUSY;
2166
2167         BUG_ON(i915_gem_obj_bound_any(obj));
2168
2169         /* ->put_pages might need to allocate memory for the bit17 swizzle
2170          * array, hence protect them from being reaped by removing them from gtt
2171          * lists early. */
2172         list_del(&obj->global_list);
2173
2174         ops->put_pages(obj);
2175         obj->pages = NULL;
2176
2177         i915_gem_object_invalidate(obj);
2178
2179         return 0;
2180 }
2181
2182 static int
2183 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2184 {
2185         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2186         int page_count, i;
2187         struct address_space *mapping;
2188         struct sg_table *st;
2189         struct scatterlist *sg;
2190         struct sg_page_iter sg_iter;
2191         struct page *page;
2192         unsigned long last_pfn = 0;     /* suppress gcc warning */
2193         int ret;
2194         gfp_t gfp;
2195
2196         /* Assert that the object is not currently in any GPU domain. As it
2197          * wasn't in the GTT, there shouldn't be any way it could have been in
2198          * a GPU cache
2199          */
2200         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2201         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2202
2203         st = kmalloc(sizeof(*st), GFP_KERNEL);
2204         if (st == NULL)
2205                 return -ENOMEM;
2206
2207         page_count = obj->base.size / PAGE_SIZE;
2208         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2209                 kfree(st);
2210                 return -ENOMEM;
2211         }
2212
2213         /* Get the list of pages out of our struct file.  They'll be pinned
2214          * at this point until we release them.
2215          *
2216          * Fail silently without starting the shrinker
2217          */
2218         mapping = file_inode(obj->base.filp)->i_mapping;
2219         gfp = mapping_gfp_mask(mapping);
2220         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2221         gfp &= ~(__GFP_IO | __GFP_WAIT);
2222         sg = st->sgl;
2223         st->nents = 0;
2224         for (i = 0; i < page_count; i++) {
2225                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2226                 if (IS_ERR(page)) {
2227                         i915_gem_shrink(dev_priv,
2228                                         page_count,
2229                                         I915_SHRINK_BOUND |
2230                                         I915_SHRINK_UNBOUND |
2231                                         I915_SHRINK_PURGEABLE);
2232                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2233                 }
2234                 if (IS_ERR(page)) {
2235                         /* We've tried hard to allocate the memory by reaping
2236                          * our own buffer, now let the real VM do its job and
2237                          * go down in flames if truly OOM.
2238                          */
2239                         i915_gem_shrink_all(dev_priv);
2240                         page = shmem_read_mapping_page(mapping, i);
2241                         if (IS_ERR(page)) {
2242                                 ret = PTR_ERR(page);
2243                                 goto err_pages;
2244                         }
2245                 }
2246 #ifdef CONFIG_SWIOTLB
2247                 if (swiotlb_nr_tbl()) {
2248                         st->nents++;
2249                         sg_set_page(sg, page, PAGE_SIZE, 0);
2250                         sg = sg_next(sg);
2251                         continue;
2252                 }
2253 #endif
2254                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2255                         if (i)
2256                                 sg = sg_next(sg);
2257                         st->nents++;
2258                         sg_set_page(sg, page, PAGE_SIZE, 0);
2259                 } else {
2260                         sg->length += PAGE_SIZE;
2261                 }
2262                 last_pfn = page_to_pfn(page);
2263
2264                 /* Check that the i965g/gm workaround works. */
2265                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2266         }
2267 #ifdef CONFIG_SWIOTLB
2268         if (!swiotlb_nr_tbl())
2269 #endif
2270                 sg_mark_end(sg);
2271         obj->pages = st;
2272
2273         ret = i915_gem_gtt_prepare_object(obj);
2274         if (ret)
2275                 goto err_pages;
2276
2277         if (i915_gem_object_needs_bit17_swizzle(obj))
2278                 i915_gem_object_do_bit_17_swizzle(obj);
2279
2280         if (obj->tiling_mode != I915_TILING_NONE &&
2281             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2282                 i915_gem_object_pin_pages(obj);
2283
2284         return 0;
2285
2286 err_pages:
2287         sg_mark_end(sg);
2288         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2289                 page_cache_release(sg_page_iter_page(&sg_iter));
2290         sg_free_table(st);
2291         kfree(st);
2292
2293         /* shmemfs first checks if there is enough memory to allocate the page
2294          * and reports ENOSPC should there be insufficient, along with the usual
2295          * ENOMEM for a genuine allocation failure.
2296          *
2297          * We use ENOSPC in our driver to mean that we have run out of aperture
2298          * space and so want to translate the error from shmemfs back to our
2299          * usual understanding of ENOMEM.
2300          */
2301         if (ret == -ENOSPC)
2302                 ret = -ENOMEM;
2303
2304         return ret;
2305 }
2306
2307 /* Ensure that the associated pages are gathered from the backing storage
2308  * and pinned into our object. i915_gem_object_get_pages() may be called
2309  * multiple times before they are released by a single call to
2310  * i915_gem_object_put_pages() - once the pages are no longer referenced
2311  * either as a result of memory pressure (reaping pages under the shrinker)
2312  * or as the object is itself released.
2313  */
2314 int
2315 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2316 {
2317         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2318         const struct drm_i915_gem_object_ops *ops = obj->ops;
2319         int ret;
2320
2321         if (obj->pages)
2322                 return 0;
2323
2324         if (obj->madv != I915_MADV_WILLNEED) {
2325                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2326                 return -EFAULT;
2327         }
2328
2329         BUG_ON(obj->pages_pin_count);
2330
2331         ret = ops->get_pages(obj);
2332         if (ret)
2333                 return ret;
2334
2335         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2336
2337         obj->get_page.sg = obj->pages->sgl;
2338         obj->get_page.last = 0;
2339
2340         return 0;
2341 }
2342
2343 void i915_vma_move_to_active(struct i915_vma *vma,
2344                              struct drm_i915_gem_request *req)
2345 {
2346         struct drm_i915_gem_object *obj = vma->obj;
2347         struct intel_engine_cs *ring;
2348
2349         ring = i915_gem_request_get_ring(req);
2350
2351         /* Add a reference if we're newly entering the active list. */
2352         if (obj->active == 0)
2353                 drm_gem_object_reference(&obj->base);
2354         obj->active |= intel_ring_flag(ring);
2355
2356         list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2357         i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2358
2359         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2360 }
2361
2362 static void
2363 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2364 {
2365         RQ_BUG_ON(obj->last_write_req == NULL);
2366         RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2367
2368         i915_gem_request_assign(&obj->last_write_req, NULL);
2369         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2370 }
2371
2372 static void
2373 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2374 {
2375         struct i915_vma *vma;
2376
2377         RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2378         RQ_BUG_ON(!(obj->active & (1 << ring)));
2379
2380         list_del_init(&obj->ring_list[ring]);
2381         i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2382
2383         if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2384                 i915_gem_object_retire__write(obj);
2385
2386         obj->active &= ~(1 << ring);
2387         if (obj->active)
2388                 return;
2389
2390         /* Bump our place on the bound list to keep it roughly in LRU order
2391          * so that we don't steal from recently used but inactive objects
2392          * (unless we are forced to ofc!)
2393          */
2394         list_move_tail(&obj->global_list,
2395                        &to_i915(obj->base.dev)->mm.bound_list);
2396
2397         list_for_each_entry(vma, &obj->vma_list, vma_link) {
2398                 if (!list_empty(&vma->mm_list))
2399                         list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2400         }
2401
2402         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2403         drm_gem_object_unreference(&obj->base);
2404 }
2405
2406 static int
2407 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2408 {
2409         struct drm_i915_private *dev_priv = dev->dev_private;
2410         struct intel_engine_cs *ring;
2411         int ret, i, j;
2412
2413         /* Carefully retire all requests without writing to the rings */
2414         for_each_ring(ring, dev_priv, i) {
2415                 ret = intel_ring_idle(ring);
2416                 if (ret)
2417                         return ret;
2418         }
2419         i915_gem_retire_requests(dev);
2420
2421         /* Finally reset hw state */
2422         for_each_ring(ring, dev_priv, i) {
2423                 intel_ring_init_seqno(ring, seqno);
2424
2425                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2426                         ring->semaphore.sync_seqno[j] = 0;
2427         }
2428
2429         return 0;
2430 }
2431
2432 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2433 {
2434         struct drm_i915_private *dev_priv = dev->dev_private;
2435         int ret;
2436
2437         if (seqno == 0)
2438                 return -EINVAL;
2439
2440         /* HWS page needs to be set less than what we
2441          * will inject to ring
2442          */
2443         ret = i915_gem_init_seqno(dev, seqno - 1);
2444         if (ret)
2445                 return ret;
2446
2447         /* Carefully set the last_seqno value so that wrap
2448          * detection still works
2449          */
2450         dev_priv->next_seqno = seqno;
2451         dev_priv->last_seqno = seqno - 1;
2452         if (dev_priv->last_seqno == 0)
2453                 dev_priv->last_seqno--;
2454
2455         return 0;
2456 }
2457
2458 int
2459 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2460 {
2461         struct drm_i915_private *dev_priv = dev->dev_private;
2462
2463         /* reserve 0 for non-seqno */
2464         if (dev_priv->next_seqno == 0) {
2465                 int ret = i915_gem_init_seqno(dev, 0);
2466                 if (ret)
2467                         return ret;
2468
2469                 dev_priv->next_seqno = 1;
2470         }
2471
2472         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2473         return 0;
2474 }
2475
2476 /*
2477  * NB: This function is not allowed to fail. Doing so would mean the the
2478  * request is not being tracked for completion but the work itself is
2479  * going to happen on the hardware. This would be a Bad Thing(tm).
2480  */
2481 void __i915_add_request(struct drm_i915_gem_request *request,
2482                         struct drm_i915_gem_object *obj,
2483                         bool flush_caches)
2484 {
2485         struct intel_engine_cs *ring;
2486         struct drm_i915_private *dev_priv;
2487         struct intel_ringbuffer *ringbuf;
2488         u32 request_start;
2489         int ret;
2490
2491         if (WARN_ON(request == NULL))
2492                 return;
2493
2494         ring = request->ring;
2495         dev_priv = ring->dev->dev_private;
2496         ringbuf = request->ringbuf;
2497
2498         /*
2499          * To ensure that this call will not fail, space for its emissions
2500          * should already have been reserved in the ring buffer. Let the ring
2501          * know that it is time to use that space up.
2502          */
2503         intel_ring_reserved_space_use(ringbuf);
2504
2505         request_start = intel_ring_get_tail(ringbuf);
2506         /*
2507          * Emit any outstanding flushes - execbuf can fail to emit the flush
2508          * after having emitted the batchbuffer command. Hence we need to fix
2509          * things up similar to emitting the lazy request. The difference here
2510          * is that the flush _must_ happen before the next request, no matter
2511          * what.
2512          */
2513         if (flush_caches) {
2514                 if (i915.enable_execlists)
2515                         ret = logical_ring_flush_all_caches(request);
2516                 else
2517                         ret = intel_ring_flush_all_caches(request);
2518                 /* Not allowed to fail! */
2519                 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2520         }
2521
2522         /* Record the position of the start of the request so that
2523          * should we detect the updated seqno part-way through the
2524          * GPU processing the request, we never over-estimate the
2525          * position of the head.
2526          */
2527         request->postfix = intel_ring_get_tail(ringbuf);
2528
2529         if (i915.enable_execlists)
2530                 ret = ring->emit_request(request);
2531         else {
2532                 ret = ring->add_request(request);
2533
2534                 request->tail = intel_ring_get_tail(ringbuf);
2535         }
2536         /* Not allowed to fail! */
2537         WARN(ret, "emit|add_request failed: %d!\n", ret);
2538
2539         request->head = request_start;
2540
2541         /* Whilst this request exists, batch_obj will be on the
2542          * active_list, and so will hold the active reference. Only when this
2543          * request is retired will the the batch_obj be moved onto the
2544          * inactive_list and lose its active reference. Hence we do not need
2545          * to explicitly hold another reference here.
2546          */
2547         request->batch_obj = obj;
2548
2549         request->emitted_jiffies = jiffies;
2550         ring->last_submitted_seqno = request->seqno;
2551         list_add_tail(&request->list, &ring->request_list);
2552
2553         trace_i915_gem_request_add(request);
2554
2555         i915_queue_hangcheck(ring->dev);
2556
2557         queue_delayed_work(dev_priv->wq,
2558                            &dev_priv->mm.retire_work,
2559                            round_jiffies_up_relative(HZ));
2560         intel_mark_busy(dev_priv->dev);
2561
2562         /* Sanity check that the reserved size was large enough. */
2563         intel_ring_reserved_space_end(ringbuf);
2564 }
2565
2566 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2567                                    const struct intel_context *ctx)
2568 {
2569         unsigned long elapsed;
2570
2571         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2572
2573         if (ctx->hang_stats.banned)
2574                 return true;
2575
2576         if (ctx->hang_stats.ban_period_seconds &&
2577             elapsed <= ctx->hang_stats.ban_period_seconds) {
2578                 if (!i915_gem_context_is_default(ctx)) {
2579                         DRM_DEBUG("context hanging too fast, banning!\n");
2580                         return true;
2581                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2582                         if (i915_stop_ring_allow_warn(dev_priv))
2583                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2584                         return true;
2585                 }
2586         }
2587
2588         return false;
2589 }
2590
2591 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2592                                   struct intel_context *ctx,
2593                                   const bool guilty)
2594 {
2595         struct i915_ctx_hang_stats *hs;
2596
2597         if (WARN_ON(!ctx))
2598                 return;
2599
2600         hs = &ctx->hang_stats;
2601
2602         if (guilty) {
2603                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2604                 hs->batch_active++;
2605                 hs->guilty_ts = get_seconds();
2606         } else {
2607                 hs->batch_pending++;
2608         }
2609 }
2610
2611 void i915_gem_request_free(struct kref *req_ref)
2612 {
2613         struct drm_i915_gem_request *req = container_of(req_ref,
2614                                                  typeof(*req), ref);
2615         struct intel_context *ctx = req->ctx;
2616
2617         if (req->file_priv)
2618                 i915_gem_request_remove_from_client(req);
2619
2620         if (ctx) {
2621                 if (i915.enable_execlists) {
2622                         if (ctx != req->ring->default_context)
2623                                 intel_lr_context_unpin(req);
2624                 }
2625
2626                 i915_gem_context_unreference(ctx);
2627         }
2628
2629         kmem_cache_free(req->i915->requests, req);
2630 }
2631
2632 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2633                            struct intel_context *ctx,
2634                            struct drm_i915_gem_request **req_out)
2635 {
2636         struct drm_i915_private *dev_priv = to_i915(ring->dev);
2637         struct drm_i915_gem_request *req;
2638         int ret;
2639
2640         if (!req_out)
2641                 return -EINVAL;
2642
2643         *req_out = NULL;
2644
2645         req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2646         if (req == NULL)
2647                 return -ENOMEM;
2648
2649         ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2650         if (ret)
2651                 goto err;
2652
2653         kref_init(&req->ref);
2654         req->i915 = dev_priv;
2655         req->ring = ring;
2656         req->ctx  = ctx;
2657         i915_gem_context_reference(req->ctx);
2658
2659         if (i915.enable_execlists)
2660                 ret = intel_logical_ring_alloc_request_extras(req);
2661         else
2662                 ret = intel_ring_alloc_request_extras(req);
2663         if (ret) {
2664                 i915_gem_context_unreference(req->ctx);
2665                 goto err;
2666         }
2667
2668         /*
2669          * Reserve space in the ring buffer for all the commands required to
2670          * eventually emit this request. This is to guarantee that the
2671          * i915_add_request() call can't fail. Note that the reserve may need
2672          * to be redone if the request is not actually submitted straight
2673          * away, e.g. because a GPU scheduler has deferred it.
2674          */
2675         if (i915.enable_execlists)
2676                 ret = intel_logical_ring_reserve_space(req);
2677         else
2678                 ret = intel_ring_reserve_space(req);
2679         if (ret) {
2680                 /*
2681                  * At this point, the request is fully allocated even if not
2682                  * fully prepared. Thus it can be cleaned up using the proper
2683                  * free code.
2684                  */
2685                 i915_gem_request_cancel(req);
2686                 return ret;
2687         }
2688
2689         *req_out = req;
2690         return 0;
2691
2692 err:
2693         kmem_cache_free(dev_priv->requests, req);
2694         return ret;
2695 }
2696
2697 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2698 {
2699         intel_ring_reserved_space_cancel(req->ringbuf);
2700
2701         i915_gem_request_unreference(req);
2702 }
2703
2704 struct drm_i915_gem_request *
2705 i915_gem_find_active_request(struct intel_engine_cs *ring)
2706 {
2707         struct drm_i915_gem_request *request;
2708
2709         list_for_each_entry(request, &ring->request_list, list) {
2710                 if (i915_gem_request_completed(request, false))
2711                         continue;
2712
2713                 return request;
2714         }
2715
2716         return NULL;
2717 }
2718
2719 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2720                                        struct intel_engine_cs *ring)
2721 {
2722         struct drm_i915_gem_request *request;
2723         bool ring_hung;
2724
2725         request = i915_gem_find_active_request(ring);
2726
2727         if (request == NULL)
2728                 return;
2729
2730         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2731
2732         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2733
2734         list_for_each_entry_continue(request, &ring->request_list, list)
2735                 i915_set_reset_status(dev_priv, request->ctx, false);
2736 }
2737
2738 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2739                                         struct intel_engine_cs *ring)
2740 {
2741         while (!list_empty(&ring->active_list)) {
2742                 struct drm_i915_gem_object *obj;
2743
2744                 obj = list_first_entry(&ring->active_list,
2745                                        struct drm_i915_gem_object,
2746                                        ring_list[ring->id]);
2747
2748                 i915_gem_object_retire__read(obj, ring->id);
2749         }
2750
2751         /*
2752          * Clear the execlists queue up before freeing the requests, as those
2753          * are the ones that keep the context and ringbuffer backing objects
2754          * pinned in place.
2755          */
2756         while (!list_empty(&ring->execlist_queue)) {
2757                 struct drm_i915_gem_request *submit_req;
2758
2759                 submit_req = list_first_entry(&ring->execlist_queue,
2760                                 struct drm_i915_gem_request,
2761                                 execlist_link);
2762                 list_del(&submit_req->execlist_link);
2763
2764                 if (submit_req->ctx != ring->default_context)
2765                         intel_lr_context_unpin(submit_req);
2766
2767                 i915_gem_request_unreference(submit_req);
2768         }
2769
2770         /*
2771          * We must free the requests after all the corresponding objects have
2772          * been moved off active lists. Which is the same order as the normal
2773          * retire_requests function does. This is important if object hold
2774          * implicit references on things like e.g. ppgtt address spaces through
2775          * the request.
2776          */
2777         while (!list_empty(&ring->request_list)) {
2778                 struct drm_i915_gem_request *request;
2779
2780                 request = list_first_entry(&ring->request_list,
2781                                            struct drm_i915_gem_request,
2782                                            list);
2783
2784                 i915_gem_request_retire(request);
2785         }
2786 }
2787
2788 void i915_gem_reset(struct drm_device *dev)
2789 {
2790         struct drm_i915_private *dev_priv = dev->dev_private;
2791         struct intel_engine_cs *ring;
2792         int i;
2793
2794         /*
2795          * Before we free the objects from the requests, we need to inspect
2796          * them for finding the guilty party. As the requests only borrow
2797          * their reference to the objects, the inspection must be done first.
2798          */
2799         for_each_ring(ring, dev_priv, i)
2800                 i915_gem_reset_ring_status(dev_priv, ring);
2801
2802         for_each_ring(ring, dev_priv, i)
2803                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2804
2805         i915_gem_context_reset(dev);
2806
2807         i915_gem_restore_fences(dev);
2808
2809         WARN_ON(i915_verify_lists(dev));
2810 }
2811
2812 /**
2813  * This function clears the request list as sequence numbers are passed.
2814  */
2815 void
2816 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2817 {
2818         WARN_ON(i915_verify_lists(ring->dev));
2819
2820         /* Retire requests first as we use it above for the early return.
2821          * If we retire requests last, we may use a later seqno and so clear
2822          * the requests lists without clearing the active list, leading to
2823          * confusion.
2824          */
2825         while (!list_empty(&ring->request_list)) {
2826                 struct drm_i915_gem_request *request;
2827
2828                 request = list_first_entry(&ring->request_list,
2829                                            struct drm_i915_gem_request,
2830                                            list);
2831
2832                 if (!i915_gem_request_completed(request, true))
2833                         break;
2834
2835                 i915_gem_request_retire(request);
2836         }
2837
2838         /* Move any buffers on the active list that are no longer referenced
2839          * by the ringbuffer to the flushing/inactive lists as appropriate,
2840          * before we free the context associated with the requests.
2841          */
2842         while (!list_empty(&ring->active_list)) {
2843                 struct drm_i915_gem_object *obj;
2844
2845                 obj = list_first_entry(&ring->active_list,
2846                                       struct drm_i915_gem_object,
2847                                       ring_list[ring->id]);
2848
2849                 if (!list_empty(&obj->last_read_req[ring->id]->list))
2850                         break;
2851
2852                 i915_gem_object_retire__read(obj, ring->id);
2853         }
2854
2855         if (unlikely(ring->trace_irq_req &&
2856                      i915_gem_request_completed(ring->trace_irq_req, true))) {
2857                 ring->irq_put(ring);
2858                 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2859         }
2860
2861         WARN_ON(i915_verify_lists(ring->dev));
2862 }
2863
2864 bool
2865 i915_gem_retire_requests(struct drm_device *dev)
2866 {
2867         struct drm_i915_private *dev_priv = dev->dev_private;
2868         struct intel_engine_cs *ring;
2869         bool idle = true;
2870         int i;
2871
2872         for_each_ring(ring, dev_priv, i) {
2873                 i915_gem_retire_requests_ring(ring);
2874                 idle &= list_empty(&ring->request_list);
2875                 if (i915.enable_execlists) {
2876                         unsigned long flags;
2877
2878                         spin_lock_irqsave(&ring->execlist_lock, flags);
2879                         idle &= list_empty(&ring->execlist_queue);
2880                         spin_unlock_irqrestore(&ring->execlist_lock, flags);
2881
2882                         intel_execlists_retire_requests(ring);
2883                 }
2884         }
2885
2886         if (idle)
2887                 mod_delayed_work(dev_priv->wq,
2888                                    &dev_priv->mm.idle_work,
2889                                    msecs_to_jiffies(100));
2890
2891         return idle;
2892 }
2893
2894 static void
2895 i915_gem_retire_work_handler(struct work_struct *work)
2896 {
2897         struct drm_i915_private *dev_priv =
2898                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2899         struct drm_device *dev = dev_priv->dev;
2900         bool idle;
2901
2902         /* Come back later if the device is busy... */
2903         idle = false;
2904         if (mutex_trylock(&dev->struct_mutex)) {
2905                 idle = i915_gem_retire_requests(dev);
2906                 mutex_unlock(&dev->struct_mutex);
2907         }
2908         if (!idle)
2909                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2910                                    round_jiffies_up_relative(HZ));
2911 }
2912
2913 static void
2914 i915_gem_idle_work_handler(struct work_struct *work)
2915 {
2916         struct drm_i915_private *dev_priv =
2917                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2918         struct drm_device *dev = dev_priv->dev;
2919         struct intel_engine_cs *ring;
2920         int i;
2921
2922         for_each_ring(ring, dev_priv, i)
2923                 if (!list_empty(&ring->request_list))
2924                         return;
2925
2926         intel_mark_idle(dev);
2927
2928         if (mutex_trylock(&dev->struct_mutex)) {
2929                 struct intel_engine_cs *ring;
2930                 int i;
2931
2932                 for_each_ring(ring, dev_priv, i)
2933                         i915_gem_batch_pool_fini(&ring->batch_pool);
2934
2935                 mutex_unlock(&dev->struct_mutex);
2936         }
2937 }
2938
2939 /**
2940  * Ensures that an object will eventually get non-busy by flushing any required
2941  * write domains, emitting any outstanding lazy request and retiring and
2942  * completed requests.
2943  */
2944 static int
2945 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2946 {
2947         int i;
2948
2949         if (!obj->active)
2950                 return 0;
2951
2952         for (i = 0; i < I915_NUM_RINGS; i++) {
2953                 struct drm_i915_gem_request *req;
2954
2955                 req = obj->last_read_req[i];
2956                 if (req == NULL)
2957                         continue;
2958
2959                 if (list_empty(&req->list))
2960                         goto retire;
2961
2962                 if (i915_gem_request_completed(req, true)) {
2963                         __i915_gem_request_retire__upto(req);
2964 retire:
2965                         i915_gem_object_retire__read(obj, i);
2966                 }
2967         }
2968
2969         return 0;
2970 }
2971
2972 /**
2973  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2974  * @DRM_IOCTL_ARGS: standard ioctl arguments
2975  *
2976  * Returns 0 if successful, else an error is returned with the remaining time in
2977  * the timeout parameter.
2978  *  -ETIME: object is still busy after timeout
2979  *  -ERESTARTSYS: signal interrupted the wait
2980  *  -ENONENT: object doesn't exist
2981  * Also possible, but rare:
2982  *  -EAGAIN: GPU wedged
2983  *  -ENOMEM: damn
2984  *  -ENODEV: Internal IRQ fail
2985  *  -E?: The add request failed
2986  *
2987  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2988  * non-zero timeout parameter the wait ioctl will wait for the given number of
2989  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2990  * without holding struct_mutex the object may become re-busied before this
2991  * function completes. A similar but shorter * race condition exists in the busy
2992  * ioctl
2993  */
2994 int
2995 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2996 {
2997         struct drm_i915_private *dev_priv = dev->dev_private;
2998         struct drm_i915_gem_wait *args = data;
2999         struct drm_i915_gem_object *obj;
3000         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3001         unsigned reset_counter;
3002         int i, n = 0;
3003         int ret;
3004
3005         if (args->flags != 0)
3006                 return -EINVAL;
3007
3008         ret = i915_mutex_lock_interruptible(dev);
3009         if (ret)
3010                 return ret;
3011
3012         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3013         if (&obj->base == NULL) {
3014                 mutex_unlock(&dev->struct_mutex);
3015                 return -ENOENT;
3016         }
3017
3018         /* Need to make sure the object gets inactive eventually. */
3019         ret = i915_gem_object_flush_active(obj);
3020         if (ret)
3021                 goto out;
3022
3023         if (!obj->active)
3024                 goto out;
3025
3026         /* Do this after OLR check to make sure we make forward progress polling
3027          * on this IOCTL with a timeout == 0 (like busy ioctl)
3028          */
3029         if (args->timeout_ns == 0) {
3030                 ret = -ETIME;
3031                 goto out;
3032         }
3033
3034         drm_gem_object_unreference(&obj->base);
3035         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3036
3037         for (i = 0; i < I915_NUM_RINGS; i++) {
3038                 if (obj->last_read_req[i] == NULL)
3039                         continue;
3040
3041                 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3042         }
3043
3044         mutex_unlock(&dev->struct_mutex);
3045
3046         for (i = 0; i < n; i++) {
3047                 if (ret == 0)
3048                         ret = __i915_wait_request(req[i], reset_counter, true,
3049                                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3050                                                   file->driver_priv);
3051                 i915_gem_request_unreference__unlocked(req[i]);
3052         }
3053         return ret;
3054
3055 out:
3056         drm_gem_object_unreference(&obj->base);
3057         mutex_unlock(&dev->struct_mutex);
3058         return ret;
3059 }
3060
3061 static int
3062 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3063                        struct intel_engine_cs *to,
3064                        struct drm_i915_gem_request *from_req,
3065                        struct drm_i915_gem_request **to_req)
3066 {
3067         struct intel_engine_cs *from;
3068         int ret;
3069
3070         from = i915_gem_request_get_ring(from_req);
3071         if (to == from)
3072                 return 0;
3073
3074         if (i915_gem_request_completed(from_req, true))
3075                 return 0;
3076
3077         if (!i915_semaphore_is_enabled(obj->base.dev)) {
3078                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3079                 ret = __i915_wait_request(from_req,
3080                                           atomic_read(&i915->gpu_error.reset_counter),
3081                                           i915->mm.interruptible,
3082                                           NULL,
3083                                           &i915->rps.semaphores);
3084                 if (ret)
3085                         return ret;
3086
3087                 i915_gem_object_retire_request(obj, from_req);
3088         } else {
3089                 int idx = intel_ring_sync_index(from, to);
3090                 u32 seqno = i915_gem_request_get_seqno(from_req);
3091
3092                 WARN_ON(!to_req);
3093
3094                 if (seqno <= from->semaphore.sync_seqno[idx])
3095                         return 0;
3096
3097                 if (*to_req == NULL) {
3098                         ret = i915_gem_request_alloc(to, to->default_context, to_req);
3099                         if (ret)
3100                                 return ret;
3101                 }
3102
3103                 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3104                 ret = to->semaphore.sync_to(*to_req, from, seqno);
3105                 if (ret)
3106                         return ret;
3107
3108                 /* We use last_read_req because sync_to()
3109                  * might have just caused seqno wrap under
3110                  * the radar.
3111                  */
3112                 from->semaphore.sync_seqno[idx] =
3113                         i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3114         }
3115
3116         return 0;
3117 }
3118
3119 /**
3120  * i915_gem_object_sync - sync an object to a ring.
3121  *
3122  * @obj: object which may be in use on another ring.
3123  * @to: ring we wish to use the object on. May be NULL.
3124  * @to_req: request we wish to use the object for. See below.
3125  *          This will be allocated and returned if a request is
3126  *          required but not passed in.
3127  *
3128  * This code is meant to abstract object synchronization with the GPU.
3129  * Calling with NULL implies synchronizing the object with the CPU
3130  * rather than a particular GPU ring. Conceptually we serialise writes
3131  * between engines inside the GPU. We only allow one engine to write
3132  * into a buffer at any time, but multiple readers. To ensure each has
3133  * a coherent view of memory, we must:
3134  *
3135  * - If there is an outstanding write request to the object, the new
3136  *   request must wait for it to complete (either CPU or in hw, requests
3137  *   on the same ring will be naturally ordered).
3138  *
3139  * - If we are a write request (pending_write_domain is set), the new
3140  *   request must wait for outstanding read requests to complete.
3141  *
3142  * For CPU synchronisation (NULL to) no request is required. For syncing with
3143  * rings to_req must be non-NULL. However, a request does not have to be
3144  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3145  * request will be allocated automatically and returned through *to_req. Note
3146  * that it is not guaranteed that commands will be emitted (because the system
3147  * might already be idle). Hence there is no need to create a request that
3148  * might never have any work submitted. Note further that if a request is
3149  * returned in *to_req, it is the responsibility of the caller to submit
3150  * that request (after potentially adding more work to it).
3151  *
3152  * Returns 0 if successful, else propagates up the lower layer error.
3153  */
3154 int
3155 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3156                      struct intel_engine_cs *to,
3157                      struct drm_i915_gem_request **to_req)
3158 {
3159         const bool readonly = obj->base.pending_write_domain == 0;
3160         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3161         int ret, i, n;
3162
3163         if (!obj->active)
3164                 return 0;
3165
3166         if (to == NULL)
3167                 return i915_gem_object_wait_rendering(obj, readonly);
3168
3169         n = 0;
3170         if (readonly) {
3171                 if (obj->last_write_req)
3172                         req[n++] = obj->last_write_req;
3173         } else {
3174                 for (i = 0; i < I915_NUM_RINGS; i++)
3175                         if (obj->last_read_req[i])
3176                                 req[n++] = obj->last_read_req[i];
3177         }
3178         for (i = 0; i < n; i++) {
3179                 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3180                 if (ret)
3181                         return ret;
3182         }
3183
3184         return 0;
3185 }
3186
3187 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3188 {
3189         u32 old_write_domain, old_read_domains;
3190
3191         /* Force a pagefault for domain tracking on next user access */
3192         i915_gem_release_mmap(obj);
3193
3194         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3195                 return;
3196
3197         /* Wait for any direct GTT access to complete */
3198         mb();
3199
3200         old_read_domains = obj->base.read_domains;
3201         old_write_domain = obj->base.write_domain;
3202
3203         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3204         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3205
3206         trace_i915_gem_object_change_domain(obj,
3207                                             old_read_domains,
3208                                             old_write_domain);
3209 }
3210
3211 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3212 {
3213         struct drm_i915_gem_object *obj = vma->obj;
3214         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3215         int ret;
3216
3217         if (list_empty(&vma->vma_link))
3218                 return 0;
3219
3220         if (!drm_mm_node_allocated(&vma->node)) {
3221                 i915_gem_vma_destroy(vma);
3222                 return 0;
3223         }
3224
3225         if (vma->pin_count)
3226                 return -EBUSY;
3227
3228         BUG_ON(obj->pages == NULL);
3229
3230         if (wait) {
3231                 ret = i915_gem_object_wait_rendering(obj, false);
3232                 if (ret)
3233                         return ret;
3234         }
3235
3236         if (i915_is_ggtt(vma->vm) &&
3237             vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3238                 i915_gem_object_finish_gtt(obj);
3239
3240                 /* release the fence reg _after_ flushing */
3241                 ret = i915_gem_object_put_fence(obj);
3242                 if (ret)
3243                         return ret;
3244         }
3245
3246         trace_i915_vma_unbind(vma);
3247
3248         vma->vm->unbind_vma(vma);
3249         vma->bound = 0;
3250
3251         list_del_init(&vma->mm_list);
3252         if (i915_is_ggtt(vma->vm)) {
3253                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3254                         obj->map_and_fenceable = false;
3255                 } else if (vma->ggtt_view.pages) {
3256                         sg_free_table(vma->ggtt_view.pages);
3257                         kfree(vma->ggtt_view.pages);
3258                 }
3259                 vma->ggtt_view.pages = NULL;
3260         }
3261
3262         drm_mm_remove_node(&vma->node);
3263         i915_gem_vma_destroy(vma);
3264
3265         /* Since the unbound list is global, only move to that list if
3266          * no more VMAs exist. */
3267         if (list_empty(&obj->vma_list))
3268                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3269
3270         /* And finally now the object is completely decoupled from this vma,
3271          * we can drop its hold on the backing storage and allow it to be
3272          * reaped by the shrinker.
3273          */
3274         i915_gem_object_unpin_pages(obj);
3275
3276         return 0;
3277 }
3278
3279 int i915_vma_unbind(struct i915_vma *vma)
3280 {
3281         return __i915_vma_unbind(vma, true);
3282 }
3283
3284 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3285 {
3286         return __i915_vma_unbind(vma, false);
3287 }
3288
3289 int i915_gpu_idle(struct drm_device *dev)
3290 {
3291         struct drm_i915_private *dev_priv = dev->dev_private;
3292         struct intel_engine_cs *ring;
3293         int ret, i;
3294
3295         /* Flush everything onto the inactive list. */
3296         for_each_ring(ring, dev_priv, i) {
3297                 if (!i915.enable_execlists) {
3298                         struct drm_i915_gem_request *req;
3299
3300                         ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3301                         if (ret)
3302                                 return ret;
3303
3304                         ret = i915_switch_context(req);
3305                         if (ret) {
3306                                 i915_gem_request_cancel(req);
3307                                 return ret;
3308                         }
3309
3310                         i915_add_request_no_flush(req);
3311                 }
3312
3313                 ret = intel_ring_idle(ring);
3314                 if (ret)
3315                         return ret;
3316         }
3317
3318         WARN_ON(i915_verify_lists(dev));
3319         return 0;
3320 }
3321
3322 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3323                                      unsigned long cache_level)
3324 {
3325         struct drm_mm_node *gtt_space = &vma->node;
3326         struct drm_mm_node *other;
3327
3328         /*
3329          * On some machines we have to be careful when putting differing types
3330          * of snoopable memory together to avoid the prefetcher crossing memory
3331          * domains and dying. During vm initialisation, we decide whether or not
3332          * these constraints apply and set the drm_mm.color_adjust
3333          * appropriately.
3334          */
3335         if (vma->vm->mm.color_adjust == NULL)
3336                 return true;
3337
3338         if (!drm_mm_node_allocated(gtt_space))
3339                 return true;
3340
3341         if (list_empty(&gtt_space->node_list))
3342                 return true;
3343
3344         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3345         if (other->allocated && !other->hole_follows && other->color != cache_level)
3346                 return false;
3347
3348         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3349         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3350                 return false;
3351
3352         return true;
3353 }
3354
3355 /**
3356  * Finds free space in the GTT aperture and binds the object or a view of it
3357  * there.
3358  */
3359 static struct i915_vma *
3360 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3361                            struct i915_address_space *vm,
3362                            const struct i915_ggtt_view *ggtt_view,
3363                            unsigned alignment,
3364                            uint64_t flags)
3365 {
3366         struct drm_device *dev = obj->base.dev;
3367         struct drm_i915_private *dev_priv = dev->dev_private;
3368         u32 fence_alignment, unfenced_alignment;
3369         u32 search_flag, alloc_flag;
3370         u64 start, end;
3371         u64 size, fence_size;
3372         struct i915_vma *vma;
3373         int ret;
3374
3375         if (i915_is_ggtt(vm)) {
3376                 u32 view_size;
3377
3378                 if (WARN_ON(!ggtt_view))
3379                         return ERR_PTR(-EINVAL);
3380
3381                 view_size = i915_ggtt_view_size(obj, ggtt_view);
3382
3383                 fence_size = i915_gem_get_gtt_size(dev,
3384                                                    view_size,
3385                                                    obj->tiling_mode);
3386                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3387                                                              view_size,
3388                                                              obj->tiling_mode,
3389                                                              true);
3390                 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3391                                                                 view_size,
3392                                                                 obj->tiling_mode,
3393                                                                 false);
3394                 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3395         } else {
3396                 fence_size = i915_gem_get_gtt_size(dev,
3397                                                    obj->base.size,
3398                                                    obj->tiling_mode);
3399                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3400                                                              obj->base.size,
3401                                                              obj->tiling_mode,
3402                                                              true);
3403                 unfenced_alignment =
3404                         i915_gem_get_gtt_alignment(dev,
3405                                                    obj->base.size,
3406                                                    obj->tiling_mode,
3407                                                    false);
3408                 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3409         }
3410
3411         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3412         end = vm->total;
3413         if (flags & PIN_MAPPABLE)
3414                 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3415         if (flags & PIN_ZONE_4G)
3416                 end = min_t(u64, end, (1ULL << 32));
3417
3418         if (alignment == 0)
3419                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3420                                                 unfenced_alignment;
3421         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3422                 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3423                           ggtt_view ? ggtt_view->type : 0,
3424                           alignment);
3425                 return ERR_PTR(-EINVAL);
3426         }
3427
3428         /* If binding the object/GGTT view requires more space than the entire
3429          * aperture has, reject it early before evicting everything in a vain
3430          * attempt to find space.
3431          */
3432         if (size > end) {
3433                 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3434                           ggtt_view ? ggtt_view->type : 0,
3435                           size,
3436                           flags & PIN_MAPPABLE ? "mappable" : "total",
3437                           end);
3438                 return ERR_PTR(-E2BIG);
3439         }
3440
3441         ret = i915_gem_object_get_pages(obj);
3442         if (ret)
3443                 return ERR_PTR(ret);
3444
3445         i915_gem_object_pin_pages(obj);
3446
3447         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3448                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3449
3450         if (IS_ERR(vma))
3451                 goto err_unpin;
3452
3453         if (flags & PIN_HIGH) {
3454                 search_flag = DRM_MM_SEARCH_BELOW;
3455                 alloc_flag = DRM_MM_CREATE_TOP;
3456         } else {
3457                 search_flag = DRM_MM_SEARCH_DEFAULT;
3458                 alloc_flag = DRM_MM_CREATE_DEFAULT;
3459         }
3460
3461 search_free:
3462         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3463                                                   size, alignment,
3464                                                   obj->cache_level,
3465                                                   start, end,
3466                                                   search_flag,
3467                                                   alloc_flag);
3468         if (ret) {
3469                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3470                                                obj->cache_level,
3471                                                start, end,
3472                                                flags);
3473                 if (ret == 0)
3474                         goto search_free;
3475
3476                 goto err_free_vma;
3477         }
3478         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3479                 ret = -EINVAL;
3480                 goto err_remove_node;
3481         }
3482
3483         trace_i915_vma_bind(vma, flags);
3484         ret = i915_vma_bind(vma, obj->cache_level, flags);
3485         if (ret)
3486                 goto err_remove_node;
3487
3488         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3489         list_add_tail(&vma->mm_list, &vm->inactive_list);
3490
3491         return vma;
3492
3493 err_remove_node:
3494         drm_mm_remove_node(&vma->node);
3495 err_free_vma:
3496         i915_gem_vma_destroy(vma);
3497         vma = ERR_PTR(ret);
3498 err_unpin:
3499         i915_gem_object_unpin_pages(obj);
3500         return vma;
3501 }
3502
3503 bool
3504 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3505                         bool force)
3506 {
3507         /* If we don't have a page list set up, then we're not pinned
3508          * to GPU, and we can ignore the cache flush because it'll happen
3509          * again at bind time.
3510          */
3511         if (obj->pages == NULL)
3512                 return false;
3513
3514         /*
3515          * Stolen memory is always coherent with the GPU as it is explicitly
3516          * marked as wc by the system, or the system is cache-coherent.
3517          */
3518         if (obj->stolen || obj->phys_handle)
3519                 return false;
3520
3521         /* If the GPU is snooping the contents of the CPU cache,
3522          * we do not need to manually clear the CPU cache lines.  However,
3523          * the caches are only snooped when the render cache is
3524          * flushed/invalidated.  As we always have to emit invalidations
3525          * and flushes when moving into and out of the RENDER domain, correct
3526          * snooping behaviour occurs naturally as the result of our domain
3527          * tracking.
3528          */
3529         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3530                 obj->cache_dirty = true;
3531                 return false;
3532         }
3533
3534         trace_i915_gem_object_clflush(obj);
3535         drm_clflush_sg(obj->pages);
3536         obj->cache_dirty = false;
3537
3538         return true;
3539 }
3540
3541 /** Flushes the GTT write domain for the object if it's dirty. */
3542 static void
3543 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3544 {
3545         uint32_t old_write_domain;
3546
3547         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3548                 return;
3549
3550         /* No actual flushing is required for the GTT write domain.  Writes
3551          * to it immediately go to main memory as far as we know, so there's
3552          * no chipset flush.  It also doesn't land in render cache.
3553          *
3554          * However, we do have to enforce the order so that all writes through
3555          * the GTT land before any writes to the device, such as updates to
3556          * the GATT itself.
3557          */
3558         wmb();
3559
3560         old_write_domain = obj->base.write_domain;
3561         obj->base.write_domain = 0;
3562
3563         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3564
3565         trace_i915_gem_object_change_domain(obj,
3566                                             obj->base.read_domains,
3567                                             old_write_domain);
3568 }
3569
3570 /** Flushes the CPU write domain for the object if it's dirty. */
3571 static void
3572 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3573 {
3574         uint32_t old_write_domain;
3575
3576         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3577                 return;
3578
3579         if (i915_gem_clflush_object(obj, obj->pin_display))
3580                 i915_gem_chipset_flush(obj->base.dev);
3581
3582         old_write_domain = obj->base.write_domain;
3583         obj->base.write_domain = 0;
3584
3585         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3586
3587         trace_i915_gem_object_change_domain(obj,
3588                                             obj->base.read_domains,
3589                                             old_write_domain);
3590 }
3591
3592 /**
3593  * Moves a single object to the GTT read, and possibly write domain.
3594  *
3595  * This function returns when the move is complete, including waiting on
3596  * flushes to occur.
3597  */
3598 int
3599 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3600 {
3601         uint32_t old_write_domain, old_read_domains;
3602         struct i915_vma *vma;
3603         int ret;
3604
3605         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3606                 return 0;
3607
3608         ret = i915_gem_object_wait_rendering(obj, !write);
3609         if (ret)
3610                 return ret;
3611
3612         /* Flush and acquire obj->pages so that we are coherent through
3613          * direct access in memory with previous cached writes through
3614          * shmemfs and that our cache domain tracking remains valid.
3615          * For example, if the obj->filp was moved to swap without us
3616          * being notified and releasing the pages, we would mistakenly
3617          * continue to assume that the obj remained out of the CPU cached
3618          * domain.
3619          */
3620         ret = i915_gem_object_get_pages(obj);
3621         if (ret)
3622                 return ret;
3623
3624         i915_gem_object_flush_cpu_write_domain(obj);
3625
3626         /* Serialise direct access to this object with the barriers for
3627          * coherent writes from the GPU, by effectively invalidating the
3628          * GTT domain upon first access.
3629          */
3630         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3631                 mb();
3632
3633         old_write_domain = obj->base.write_domain;
3634         old_read_domains = obj->base.read_domains;
3635
3636         /* It should now be out of any other write domains, and we can update
3637          * the domain values for our changes.
3638          */
3639         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3640         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3641         if (write) {
3642                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3643                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3644                 obj->dirty = 1;
3645         }
3646
3647         trace_i915_gem_object_change_domain(obj,
3648                                             old_read_domains,
3649                                             old_write_domain);
3650
3651         /* And bump the LRU for this access */
3652         vma = i915_gem_obj_to_ggtt(obj);
3653         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3654                 list_move_tail(&vma->mm_list,
3655                                &to_i915(obj->base.dev)->gtt.base.inactive_list);
3656
3657         return 0;
3658 }
3659
3660 /**
3661  * Changes the cache-level of an object across all VMA.
3662  *
3663  * After this function returns, the object will be in the new cache-level
3664  * across all GTT and the contents of the backing storage will be coherent,
3665  * with respect to the new cache-level. In order to keep the backing storage
3666  * coherent for all users, we only allow a single cache level to be set
3667  * globally on the object and prevent it from being changed whilst the
3668  * hardware is reading from the object. That is if the object is currently
3669  * on the scanout it will be set to uncached (or equivalent display
3670  * cache coherency) and all non-MOCS GPU access will also be uncached so
3671  * that all direct access to the scanout remains coherent.
3672  */
3673 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3674                                     enum i915_cache_level cache_level)
3675 {
3676         struct drm_device *dev = obj->base.dev;
3677         struct i915_vma *vma, *next;
3678         bool bound = false;
3679         int ret = 0;
3680
3681         if (obj->cache_level == cache_level)
3682                 goto out;
3683
3684         /* Inspect the list of currently bound VMA and unbind any that would
3685          * be invalid given the new cache-level. This is principally to
3686          * catch the issue of the CS prefetch crossing page boundaries and
3687          * reading an invalid PTE on older architectures.
3688          */
3689         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3690                 if (!drm_mm_node_allocated(&vma->node))
3691                         continue;
3692
3693                 if (vma->pin_count) {
3694                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3695                         return -EBUSY;
3696                 }
3697
3698                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3699                         ret = i915_vma_unbind(vma);
3700                         if (ret)
3701                                 return ret;
3702                 } else
3703                         bound = true;
3704         }
3705
3706         /* We can reuse the existing drm_mm nodes but need to change the
3707          * cache-level on the PTE. We could simply unbind them all and
3708          * rebind with the correct cache-level on next use. However since
3709          * we already have a valid slot, dma mapping, pages etc, we may as
3710          * rewrite the PTE in the belief that doing so tramples upon less
3711          * state and so involves less work.
3712          */
3713         if (bound) {
3714                 /* Before we change the PTE, the GPU must not be accessing it.
3715                  * If we wait upon the object, we know that all the bound
3716                  * VMA are no longer active.
3717                  */
3718                 ret = i915_gem_object_wait_rendering(obj, false);
3719                 if (ret)
3720                         return ret;
3721
3722                 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3723                         /* Access to snoopable pages through the GTT is
3724                          * incoherent and on some machines causes a hard
3725                          * lockup. Relinquish the CPU mmaping to force
3726                          * userspace to refault in the pages and we can
3727                          * then double check if the GTT mapping is still
3728                          * valid for that pointer access.
3729                          */
3730                         i915_gem_release_mmap(obj);
3731
3732                         /* As we no longer need a fence for GTT access,
3733                          * we can relinquish it now (and so prevent having
3734                          * to steal a fence from someone else on the next
3735                          * fence request). Note GPU activity would have
3736                          * dropped the fence as all snoopable access is
3737                          * supposed to be linear.
3738                          */
3739                         ret = i915_gem_object_put_fence(obj);
3740                         if (ret)
3741                                 return ret;
3742                 } else {
3743                         /* We either have incoherent backing store and
3744                          * so no GTT access or the architecture is fully
3745                          * coherent. In such cases, existing GTT mmaps
3746                          * ignore the cache bit in the PTE and we can
3747                          * rewrite it without confusing the GPU or having
3748                          * to force userspace to fault back in its mmaps.
3749                          */
3750                 }
3751
3752                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3753                         if (!drm_mm_node_allocated(&vma->node))
3754                                 continue;
3755
3756                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3757                         if (ret)
3758                                 return ret;
3759                 }
3760         }
3761
3762         list_for_each_entry(vma, &obj->vma_list, vma_link)
3763                 vma->node.color = cache_level;
3764         obj->cache_level = cache_level;
3765
3766 out:
3767         /* Flush the dirty CPU caches to the backing storage so that the
3768          * object is now coherent at its new cache level (with respect
3769          * to the access domain).
3770          */
3771         if (obj->cache_dirty &&
3772             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3773             cpu_write_needs_clflush(obj)) {
3774                 if (i915_gem_clflush_object(obj, true))
3775                         i915_gem_chipset_flush(obj->base.dev);
3776         }
3777
3778         return 0;
3779 }
3780
3781 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3782                                struct drm_file *file)
3783 {
3784         struct drm_i915_gem_caching *args = data;
3785         struct drm_i915_gem_object *obj;
3786
3787         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3788         if (&obj->base == NULL)
3789                 return -ENOENT;
3790
3791         switch (obj->cache_level) {
3792         case I915_CACHE_LLC:
3793         case I915_CACHE_L3_LLC:
3794                 args->caching = I915_CACHING_CACHED;
3795                 break;
3796
3797         case I915_CACHE_WT:
3798                 args->caching = I915_CACHING_DISPLAY;
3799                 break;
3800
3801         default:
3802                 args->caching = I915_CACHING_NONE;
3803                 break;
3804         }
3805
3806         drm_gem_object_unreference_unlocked(&obj->base);
3807         return 0;
3808 }
3809
3810 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3811                                struct drm_file *file)
3812 {
3813         struct drm_i915_gem_caching *args = data;
3814         struct drm_i915_gem_object *obj;
3815         enum i915_cache_level level;
3816         int ret;
3817
3818         switch (args->caching) {
3819         case I915_CACHING_NONE:
3820                 level = I915_CACHE_NONE;
3821                 break;
3822         case I915_CACHING_CACHED:
3823                 /*
3824                  * Due to a HW issue on BXT A stepping, GPU stores via a
3825                  * snooped mapping may leave stale data in a corresponding CPU
3826                  * cacheline, whereas normally such cachelines would get
3827                  * invalidated.
3828                  */
3829                 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)
3830                         return -ENODEV;
3831
3832                 level = I915_CACHE_LLC;
3833                 break;
3834         case I915_CACHING_DISPLAY:
3835                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3836                 break;
3837         default:
3838                 return -EINVAL;
3839         }
3840
3841         ret = i915_mutex_lock_interruptible(dev);
3842         if (ret)
3843                 return ret;
3844
3845         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3846         if (&obj->base == NULL) {
3847                 ret = -ENOENT;
3848                 goto unlock;
3849         }
3850
3851         ret = i915_gem_object_set_cache_level(obj, level);
3852
3853         drm_gem_object_unreference(&obj->base);
3854 unlock:
3855         mutex_unlock(&dev->struct_mutex);
3856         return ret;
3857 }
3858
3859 /*
3860  * Prepare buffer for display plane (scanout, cursors, etc).
3861  * Can be called from an uninterruptible phase (modesetting) and allows
3862  * any flushes to be pipelined (for pageflips).
3863  */
3864 int
3865 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3866                                      u32 alignment,
3867                                      struct intel_engine_cs *pipelined,
3868                                      struct drm_i915_gem_request **pipelined_request,
3869                                      const struct i915_ggtt_view *view)
3870 {
3871         u32 old_read_domains, old_write_domain;
3872         int ret;
3873
3874         ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
3875         if (ret)
3876                 return ret;
3877
3878         /* Mark the pin_display early so that we account for the
3879          * display coherency whilst setting up the cache domains.
3880          */
3881         obj->pin_display++;
3882
3883         /* The display engine is not coherent with the LLC cache on gen6.  As
3884          * a result, we make sure that the pinning that is about to occur is
3885          * done with uncached PTEs. This is lowest common denominator for all
3886          * chipsets.
3887          *
3888          * However for gen6+, we could do better by using the GFDT bit instead
3889          * of uncaching, which would allow us to flush all the LLC-cached data
3890          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3891          */
3892         ret = i915_gem_object_set_cache_level(obj,
3893                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3894         if (ret)
3895                 goto err_unpin_display;
3896
3897         /* As the user may map the buffer once pinned in the display plane
3898          * (e.g. libkms for the bootup splash), we have to ensure that we
3899          * always use map_and_fenceable for all scanout buffers.
3900          */
3901         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3902                                        view->type == I915_GGTT_VIEW_NORMAL ?
3903                                        PIN_MAPPABLE : 0);
3904         if (ret)
3905                 goto err_unpin_display;
3906
3907         i915_gem_object_flush_cpu_write_domain(obj);
3908
3909         old_write_domain = obj->base.write_domain;
3910         old_read_domains = obj->base.read_domains;
3911
3912         /* It should now be out of any other write domains, and we can update
3913          * the domain values for our changes.
3914          */
3915         obj->base.write_domain = 0;
3916         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3917
3918         trace_i915_gem_object_change_domain(obj,
3919                                             old_read_domains,
3920                                             old_write_domain);
3921
3922         return 0;
3923
3924 err_unpin_display:
3925         obj->pin_display--;
3926         return ret;
3927 }
3928
3929 void
3930 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3931                                          const struct i915_ggtt_view *view)
3932 {
3933         if (WARN_ON(obj->pin_display == 0))
3934                 return;
3935
3936         i915_gem_object_ggtt_unpin_view(obj, view);
3937
3938         obj->pin_display--;
3939 }
3940
3941 /**
3942  * Moves a single object to the CPU read, and possibly write domain.
3943  *
3944  * This function returns when the move is complete, including waiting on
3945  * flushes to occur.
3946  */
3947 int
3948 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3949 {
3950         uint32_t old_write_domain, old_read_domains;
3951         int ret;
3952
3953         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3954                 return 0;
3955
3956         ret = i915_gem_object_wait_rendering(obj, !write);
3957         if (ret)
3958                 return ret;
3959
3960         i915_gem_object_flush_gtt_write_domain(obj);
3961
3962         old_write_domain = obj->base.write_domain;
3963         old_read_domains = obj->base.read_domains;
3964
3965         /* Flush the CPU cache if it's still invalid. */
3966         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3967                 i915_gem_clflush_object(obj, false);
3968
3969                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3970         }
3971
3972         /* It should now be out of any other write domains, and we can update
3973          * the domain values for our changes.
3974          */
3975         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3976
3977         /* If we're writing through the CPU, then the GPU read domains will
3978          * need to be invalidated at next use.
3979          */
3980         if (write) {
3981                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3982                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3983         }
3984
3985         trace_i915_gem_object_change_domain(obj,
3986                                             old_read_domains,
3987                                             old_write_domain);
3988
3989         return 0;
3990 }
3991
3992 /* Throttle our rendering by waiting until the ring has completed our requests
3993  * emitted over 20 msec ago.
3994  *
3995  * Note that if we were to use the current jiffies each time around the loop,
3996  * we wouldn't escape the function with any frames outstanding if the time to
3997  * render a frame was over 20ms.
3998  *
3999  * This should get us reasonable parallelism between CPU and GPU but also
4000  * relatively low latency when blocking on a particular request to finish.
4001  */
4002 static int
4003 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4004 {
4005         struct drm_i915_private *dev_priv = dev->dev_private;
4006         struct drm_i915_file_private *file_priv = file->driver_priv;
4007         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4008         struct drm_i915_gem_request *request, *target = NULL;
4009         unsigned reset_counter;
4010         int ret;
4011
4012         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4013         if (ret)
4014                 return ret;
4015
4016         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4017         if (ret)
4018                 return ret;
4019
4020         spin_lock(&file_priv->mm.lock);
4021         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4022                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4023                         break;
4024
4025                 /*
4026                  * Note that the request might not have been submitted yet.
4027                  * In which case emitted_jiffies will be zero.
4028                  */
4029                 if (!request->emitted_jiffies)
4030                         continue;
4031
4032                 target = request;
4033         }
4034         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4035         if (target)
4036                 i915_gem_request_reference(target);
4037         spin_unlock(&file_priv->mm.lock);
4038
4039         if (target == NULL)
4040                 return 0;
4041
4042         ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4043         if (ret == 0)
4044                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4045
4046         i915_gem_request_unreference__unlocked(target);
4047
4048         return ret;
4049 }
4050
4051 static bool
4052 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4053 {
4054         struct drm_i915_gem_object *obj = vma->obj;
4055
4056         if (alignment &&
4057             vma->node.start & (alignment - 1))
4058                 return true;
4059
4060         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4061                 return true;
4062
4063         if (flags & PIN_OFFSET_BIAS &&
4064             vma->node.start < (flags & PIN_OFFSET_MASK))
4065                 return true;
4066
4067         return false;
4068 }
4069
4070 static int
4071 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4072                        struct i915_address_space *vm,
4073                        const struct i915_ggtt_view *ggtt_view,
4074                        uint32_t alignment,
4075                        uint64_t flags)
4076 {
4077         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4078         struct i915_vma *vma;
4079         unsigned bound;
4080         int ret;
4081
4082         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4083                 return -ENODEV;
4084
4085         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4086                 return -EINVAL;
4087
4088         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4089                 return -EINVAL;
4090
4091         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4092                 return -EINVAL;
4093
4094         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4095                           i915_gem_obj_to_vma(obj, vm);
4096
4097         if (IS_ERR(vma))
4098                 return PTR_ERR(vma);
4099
4100         if (vma) {
4101                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4102                         return -EBUSY;
4103
4104                 if (i915_vma_misplaced(vma, alignment, flags)) {
4105                         WARN(vma->pin_count,
4106                              "bo is already pinned in %s with incorrect alignment:"
4107                              " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4108                              " obj->map_and_fenceable=%d\n",
4109                              ggtt_view ? "ggtt" : "ppgtt",
4110                              upper_32_bits(vma->node.start),
4111                              lower_32_bits(vma->node.start),
4112                              alignment,
4113                              !!(flags & PIN_MAPPABLE),
4114                              obj->map_and_fenceable);
4115                         ret = i915_vma_unbind(vma);
4116                         if (ret)
4117                                 return ret;
4118
4119                         vma = NULL;
4120                 }
4121         }
4122
4123         bound = vma ? vma->bound : 0;
4124         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4125                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4126                                                  flags);
4127                 if (IS_ERR(vma))
4128                         return PTR_ERR(vma);
4129         } else {
4130                 ret = i915_vma_bind(vma, obj->cache_level, flags);
4131                 if (ret)
4132                         return ret;
4133         }
4134
4135         if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4136             (bound ^ vma->bound) & GLOBAL_BIND) {
4137                 bool mappable, fenceable;
4138                 u32 fence_size, fence_alignment;
4139
4140                 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4141                                                    obj->base.size,
4142                                                    obj->tiling_mode);
4143                 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4144                                                              obj->base.size,
4145                                                              obj->tiling_mode,
4146                                                              true);
4147
4148                 fenceable = (vma->node.size == fence_size &&
4149                              (vma->node.start & (fence_alignment - 1)) == 0);
4150
4151                 mappable = (vma->node.start + fence_size <=
4152                             dev_priv->gtt.mappable_end);
4153
4154                 obj->map_and_fenceable = mappable && fenceable;
4155
4156                 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4157         }
4158
4159         vma->pin_count++;
4160         return 0;
4161 }
4162
4163 int
4164 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4165                     struct i915_address_space *vm,
4166                     uint32_t alignment,
4167                     uint64_t flags)
4168 {
4169         return i915_gem_object_do_pin(obj, vm,
4170                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4171                                       alignment, flags);
4172 }
4173
4174 int
4175 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4176                          const struct i915_ggtt_view *view,
4177                          uint32_t alignment,
4178                          uint64_t flags)
4179 {
4180         if (WARN_ONCE(!view, "no view specified"))
4181                 return -EINVAL;
4182
4183         return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4184                                       alignment, flags | PIN_GLOBAL);
4185 }
4186
4187 void
4188 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4189                                 const struct i915_ggtt_view *view)
4190 {
4191         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4192
4193         BUG_ON(!vma);
4194         WARN_ON(vma->pin_count == 0);
4195         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4196
4197         --vma->pin_count;
4198 }
4199
4200 int
4201 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4202                     struct drm_file *file)
4203 {
4204         struct drm_i915_gem_busy *args = data;
4205         struct drm_i915_gem_object *obj;
4206         int ret;
4207
4208         ret = i915_mutex_lock_interruptible(dev);
4209         if (ret)
4210                 return ret;
4211
4212         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4213         if (&obj->base == NULL) {
4214                 ret = -ENOENT;
4215                 goto unlock;
4216         }
4217
4218         /* Count all active objects as busy, even if they are currently not used
4219          * by the gpu. Users of this interface expect objects to eventually
4220          * become non-busy without any further actions, therefore emit any
4221          * necessary flushes here.
4222          */
4223         ret = i915_gem_object_flush_active(obj);
4224         if (ret)
4225                 goto unref;
4226
4227         BUILD_BUG_ON(I915_NUM_RINGS > 16);
4228         args->busy = obj->active << 16;
4229         if (obj->last_write_req)
4230                 args->busy |= obj->last_write_req->ring->id;
4231
4232 unref:
4233         drm_gem_object_unreference(&obj->base);
4234 unlock:
4235         mutex_unlock(&dev->struct_mutex);
4236         return ret;
4237 }
4238
4239 int
4240 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4241                         struct drm_file *file_priv)
4242 {
4243         return i915_gem_ring_throttle(dev, file_priv);
4244 }
4245
4246 int
4247 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4248                        struct drm_file *file_priv)
4249 {
4250         struct drm_i915_private *dev_priv = dev->dev_private;
4251         struct drm_i915_gem_madvise *args = data;
4252         struct drm_i915_gem_object *obj;
4253         int ret;
4254
4255         switch (args->madv) {
4256         case I915_MADV_DONTNEED:
4257         case I915_MADV_WILLNEED:
4258             break;
4259         default:
4260             return -EINVAL;
4261         }
4262
4263         ret = i915_mutex_lock_interruptible(dev);
4264         if (ret)
4265                 return ret;
4266
4267         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4268         if (&obj->base == NULL) {
4269                 ret = -ENOENT;
4270                 goto unlock;
4271         }
4272
4273         if (i915_gem_obj_is_pinned(obj)) {
4274                 ret = -EINVAL;
4275                 goto out;
4276         }
4277
4278         if (obj->pages &&
4279             obj->tiling_mode != I915_TILING_NONE &&
4280             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4281                 if (obj->madv == I915_MADV_WILLNEED)
4282                         i915_gem_object_unpin_pages(obj);
4283                 if (args->madv == I915_MADV_WILLNEED)
4284                         i915_gem_object_pin_pages(obj);
4285         }
4286
4287         if (obj->madv != __I915_MADV_PURGED)
4288                 obj->madv = args->madv;
4289
4290         /* if the object is no longer attached, discard its backing storage */
4291         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4292                 i915_gem_object_truncate(obj);
4293
4294         args->retained = obj->madv != __I915_MADV_PURGED;
4295
4296 out:
4297         drm_gem_object_unreference(&obj->base);
4298 unlock:
4299         mutex_unlock(&dev->struct_mutex);
4300         return ret;
4301 }
4302
4303 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4304                           const struct drm_i915_gem_object_ops *ops)
4305 {
4306         int i;
4307
4308         INIT_LIST_HEAD(&obj->global_list);
4309         for (i = 0; i < I915_NUM_RINGS; i++)
4310                 INIT_LIST_HEAD(&obj->ring_list[i]);
4311         INIT_LIST_HEAD(&obj->obj_exec_link);
4312         INIT_LIST_HEAD(&obj->vma_list);
4313         INIT_LIST_HEAD(&obj->batch_pool_link);
4314
4315         obj->ops = ops;
4316
4317         obj->fence_reg = I915_FENCE_REG_NONE;
4318         obj->madv = I915_MADV_WILLNEED;
4319
4320         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4321 }
4322
4323 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4324         .get_pages = i915_gem_object_get_pages_gtt,
4325         .put_pages = i915_gem_object_put_pages_gtt,
4326 };
4327
4328 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4329                                                   size_t size)
4330 {
4331         struct drm_i915_gem_object *obj;
4332         struct address_space *mapping;
4333         gfp_t mask;
4334
4335         obj = i915_gem_object_alloc(dev);
4336         if (obj == NULL)
4337                 return NULL;
4338
4339         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4340                 i915_gem_object_free(obj);
4341                 return NULL;
4342         }
4343
4344         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4345         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4346                 /* 965gm cannot relocate objects above 4GiB. */
4347                 mask &= ~__GFP_HIGHMEM;
4348                 mask |= __GFP_DMA32;
4349         }
4350
4351         mapping = file_inode(obj->base.filp)->i_mapping;
4352         mapping_set_gfp_mask(mapping, mask);
4353
4354         i915_gem_object_init(obj, &i915_gem_object_ops);
4355
4356         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4357         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4358
4359         if (HAS_LLC(dev)) {
4360                 /* On some devices, we can have the GPU use the LLC (the CPU
4361                  * cache) for about a 10% performance improvement
4362                  * compared to uncached.  Graphics requests other than
4363                  * display scanout are coherent with the CPU in
4364                  * accessing this cache.  This means in this mode we
4365                  * don't need to clflush on the CPU side, and on the
4366                  * GPU side we only need to flush internal caches to
4367                  * get data visible to the CPU.
4368                  *
4369                  * However, we maintain the display planes as UC, and so
4370                  * need to rebind when first used as such.
4371                  */
4372                 obj->cache_level = I915_CACHE_LLC;
4373         } else
4374                 obj->cache_level = I915_CACHE_NONE;
4375
4376         trace_i915_gem_object_create(obj);
4377
4378         return obj;
4379 }
4380
4381 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4382 {
4383         /* If we are the last user of the backing storage (be it shmemfs
4384          * pages or stolen etc), we know that the pages are going to be
4385          * immediately released. In this case, we can then skip copying
4386          * back the contents from the GPU.
4387          */
4388
4389         if (obj->madv != I915_MADV_WILLNEED)
4390                 return false;
4391
4392         if (obj->base.filp == NULL)
4393                 return true;
4394
4395         /* At first glance, this looks racy, but then again so would be
4396          * userspace racing mmap against close. However, the first external
4397          * reference to the filp can only be obtained through the
4398          * i915_gem_mmap_ioctl() which safeguards us against the user
4399          * acquiring such a reference whilst we are in the middle of
4400          * freeing the object.
4401          */
4402         return atomic_long_read(&obj->base.filp->f_count) == 1;
4403 }
4404
4405 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4406 {
4407         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4408         struct drm_device *dev = obj->base.dev;
4409         struct drm_i915_private *dev_priv = dev->dev_private;
4410         struct i915_vma *vma, *next;
4411
4412         intel_runtime_pm_get(dev_priv);
4413
4414         trace_i915_gem_object_destroy(obj);
4415
4416         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4417                 int ret;
4418
4419                 vma->pin_count = 0;
4420                 ret = i915_vma_unbind(vma);
4421                 if (WARN_ON(ret == -ERESTARTSYS)) {
4422                         bool was_interruptible;
4423
4424                         was_interruptible = dev_priv->mm.interruptible;
4425                         dev_priv->mm.interruptible = false;
4426
4427                         WARN_ON(i915_vma_unbind(vma));
4428
4429                         dev_priv->mm.interruptible = was_interruptible;
4430                 }
4431         }
4432
4433         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4434          * before progressing. */
4435         if (obj->stolen)
4436                 i915_gem_object_unpin_pages(obj);
4437
4438         WARN_ON(obj->frontbuffer_bits);
4439
4440         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4441             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4442             obj->tiling_mode != I915_TILING_NONE)
4443                 i915_gem_object_unpin_pages(obj);
4444
4445         if (WARN_ON(obj->pages_pin_count))
4446                 obj->pages_pin_count = 0;
4447         if (discard_backing_storage(obj))
4448                 obj->madv = I915_MADV_DONTNEED;
4449         i915_gem_object_put_pages(obj);
4450         i915_gem_object_free_mmap_offset(obj);
4451
4452         BUG_ON(obj->pages);
4453
4454         if (obj->base.import_attach)
4455                 drm_prime_gem_destroy(&obj->base, NULL);
4456
4457         if (obj->ops->release)
4458                 obj->ops->release(obj);
4459
4460         drm_gem_object_release(&obj->base);
4461         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4462
4463         kfree(obj->bit_17);
4464         i915_gem_object_free(obj);
4465
4466         intel_runtime_pm_put(dev_priv);
4467 }
4468
4469 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4470                                      struct i915_address_space *vm)
4471 {
4472         struct i915_vma *vma;
4473         list_for_each_entry(vma, &obj->vma_list, vma_link) {
4474                 if (i915_is_ggtt(vma->vm) &&
4475                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4476                         continue;
4477                 if (vma->vm == vm)
4478                         return vma;
4479         }
4480         return NULL;
4481 }
4482
4483 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4484                                            const struct i915_ggtt_view *view)
4485 {
4486         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4487         struct i915_vma *vma;
4488
4489         if (WARN_ONCE(!view, "no view specified"))
4490                 return ERR_PTR(-EINVAL);
4491
4492         list_for_each_entry(vma, &obj->vma_list, vma_link)
4493                 if (vma->vm == ggtt &&
4494                     i915_ggtt_view_equal(&vma->ggtt_view, view))
4495                         return vma;
4496         return NULL;
4497 }
4498
4499 void i915_gem_vma_destroy(struct i915_vma *vma)
4500 {
4501         struct i915_address_space *vm = NULL;
4502         WARN_ON(vma->node.allocated);
4503
4504         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4505         if (!list_empty(&vma->exec_list))
4506                 return;
4507
4508         vm = vma->vm;
4509
4510         if (!i915_is_ggtt(vm))
4511                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4512
4513         list_del(&vma->vma_link);
4514
4515         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4516 }
4517
4518 static void
4519 i915_gem_stop_ringbuffers(struct drm_device *dev)
4520 {
4521         struct drm_i915_private *dev_priv = dev->dev_private;
4522         struct intel_engine_cs *ring;
4523         int i;
4524
4525         for_each_ring(ring, dev_priv, i)
4526                 dev_priv->gt.stop_ring(ring);
4527 }
4528
4529 int
4530 i915_gem_suspend(struct drm_device *dev)
4531 {
4532         struct drm_i915_private *dev_priv = dev->dev_private;
4533         int ret = 0;
4534
4535         mutex_lock(&dev->struct_mutex);
4536         ret = i915_gpu_idle(dev);
4537         if (ret)
4538                 goto err;
4539
4540         i915_gem_retire_requests(dev);
4541
4542         i915_gem_stop_ringbuffers(dev);
4543         mutex_unlock(&dev->struct_mutex);
4544
4545         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4546         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4547         flush_delayed_work(&dev_priv->mm.idle_work);
4548
4549         /* Assert that we sucessfully flushed all the work and
4550          * reset the GPU back to its idle, low power state.
4551          */
4552         WARN_ON(dev_priv->mm.busy);
4553
4554         return 0;
4555
4556 err:
4557         mutex_unlock(&dev->struct_mutex);
4558         return ret;
4559 }
4560
4561 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4562 {
4563         struct intel_engine_cs *ring = req->ring;
4564         struct drm_device *dev = ring->dev;
4565         struct drm_i915_private *dev_priv = dev->dev_private;
4566         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4567         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4568         int i, ret;
4569
4570         if (!HAS_L3_DPF(dev) || !remap_info)
4571                 return 0;
4572
4573         ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4574         if (ret)
4575                 return ret;
4576
4577         /*
4578          * Note: We do not worry about the concurrent register cacheline hang
4579          * here because no other code should access these registers other than
4580          * at initialization time.
4581          */
4582         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4583                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4584                 intel_ring_emit(ring, reg_base + i);
4585                 intel_ring_emit(ring, remap_info[i/4]);
4586         }
4587
4588         intel_ring_advance(ring);
4589
4590         return ret;
4591 }
4592
4593 void i915_gem_init_swizzling(struct drm_device *dev)
4594 {
4595         struct drm_i915_private *dev_priv = dev->dev_private;
4596
4597         if (INTEL_INFO(dev)->gen < 5 ||
4598             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4599                 return;
4600
4601         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4602                                  DISP_TILE_SURFACE_SWIZZLING);
4603
4604         if (IS_GEN5(dev))
4605                 return;
4606
4607         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4608         if (IS_GEN6(dev))
4609                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4610         else if (IS_GEN7(dev))
4611                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4612         else if (IS_GEN8(dev))
4613                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4614         else
4615                 BUG();
4616 }
4617
4618 static void init_unused_ring(struct drm_device *dev, u32 base)
4619 {
4620         struct drm_i915_private *dev_priv = dev->dev_private;
4621
4622         I915_WRITE(RING_CTL(base), 0);
4623         I915_WRITE(RING_HEAD(base), 0);
4624         I915_WRITE(RING_TAIL(base), 0);
4625         I915_WRITE(RING_START(base), 0);
4626 }
4627
4628 static void init_unused_rings(struct drm_device *dev)
4629 {
4630         if (IS_I830(dev)) {
4631                 init_unused_ring(dev, PRB1_BASE);
4632                 init_unused_ring(dev, SRB0_BASE);
4633                 init_unused_ring(dev, SRB1_BASE);
4634                 init_unused_ring(dev, SRB2_BASE);
4635                 init_unused_ring(dev, SRB3_BASE);
4636         } else if (IS_GEN2(dev)) {
4637                 init_unused_ring(dev, SRB0_BASE);
4638                 init_unused_ring(dev, SRB1_BASE);
4639         } else if (IS_GEN3(dev)) {
4640                 init_unused_ring(dev, PRB1_BASE);
4641                 init_unused_ring(dev, PRB2_BASE);
4642         }
4643 }
4644
4645 int i915_gem_init_rings(struct drm_device *dev)
4646 {
4647         struct drm_i915_private *dev_priv = dev->dev_private;
4648         int ret;
4649
4650         ret = intel_init_render_ring_buffer(dev);
4651         if (ret)
4652                 return ret;
4653
4654         if (HAS_BSD(dev)) {
4655                 ret = intel_init_bsd_ring_buffer(dev);
4656                 if (ret)
4657                         goto cleanup_render_ring;
4658         }
4659
4660         if (HAS_BLT(dev)) {
4661                 ret = intel_init_blt_ring_buffer(dev);
4662                 if (ret)
4663                         goto cleanup_bsd_ring;
4664         }
4665
4666         if (HAS_VEBOX(dev)) {
4667                 ret = intel_init_vebox_ring_buffer(dev);
4668                 if (ret)
4669                         goto cleanup_blt_ring;
4670         }
4671
4672         if (HAS_BSD2(dev)) {
4673                 ret = intel_init_bsd2_ring_buffer(dev);
4674                 if (ret)
4675                         goto cleanup_vebox_ring;
4676         }
4677
4678         return 0;
4679
4680 cleanup_vebox_ring:
4681         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4682 cleanup_blt_ring:
4683         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4684 cleanup_bsd_ring:
4685         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4686 cleanup_render_ring:
4687         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4688
4689         return ret;
4690 }
4691
4692 int
4693 i915_gem_init_hw(struct drm_device *dev)
4694 {
4695         struct drm_i915_private *dev_priv = dev->dev_private;
4696         struct intel_engine_cs *ring;
4697         int ret, i, j;
4698
4699         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4700                 return -EIO;
4701
4702         /* Double layer security blanket, see i915_gem_init() */
4703         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4704
4705         if (dev_priv->ellc_size)
4706                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4707
4708         if (IS_HASWELL(dev))
4709                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4710                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4711
4712         if (HAS_PCH_NOP(dev)) {
4713                 if (IS_IVYBRIDGE(dev)) {
4714                         u32 temp = I915_READ(GEN7_MSG_CTL);
4715                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4716                         I915_WRITE(GEN7_MSG_CTL, temp);
4717                 } else if (INTEL_INFO(dev)->gen >= 7) {
4718                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4719                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4720                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4721                 }
4722         }
4723
4724         i915_gem_init_swizzling(dev);
4725
4726         /*
4727          * At least 830 can leave some of the unused rings
4728          * "active" (ie. head != tail) after resume which
4729          * will prevent c3 entry. Makes sure all unused rings
4730          * are totally idle.
4731          */
4732         init_unused_rings(dev);
4733
4734         BUG_ON(!dev_priv->ring[RCS].default_context);
4735
4736         ret = i915_ppgtt_init_hw(dev);
4737         if (ret) {
4738                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4739                 goto out;
4740         }
4741
4742         /* Need to do basic initialisation of all rings first: */
4743         for_each_ring(ring, dev_priv, i) {
4744                 ret = ring->init_hw(ring);
4745                 if (ret)
4746                         goto out;
4747         }
4748
4749         /* We can't enable contexts until all firmware is loaded */
4750         if (HAS_GUC_UCODE(dev)) {
4751                 ret = intel_guc_ucode_load(dev);
4752                 if (ret) {
4753                         /*
4754                          * If we got an error and GuC submission is enabled, map
4755                          * the error to -EIO so the GPU will be declared wedged.
4756                          * OTOH, if we didn't intend to use the GuC anyway, just
4757                          * discard the error and carry on.
4758                          */
4759                         DRM_ERROR("Failed to initialize GuC, error %d%s\n", ret,
4760                                   i915.enable_guc_submission ? "" :
4761                                   " (ignored)");
4762                         ret = i915.enable_guc_submission ? -EIO : 0;
4763                         if (ret)
4764                                 goto out;
4765                 }
4766         }
4767
4768         /*
4769          * Increment the next seqno by 0x100 so we have a visible break
4770          * on re-initialisation
4771          */
4772         ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4773         if (ret)
4774                 goto out;
4775
4776         /* Now it is safe to go back round and do everything else: */
4777         for_each_ring(ring, dev_priv, i) {
4778                 struct drm_i915_gem_request *req;
4779
4780                 WARN_ON(!ring->default_context);
4781
4782                 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4783                 if (ret) {
4784                         i915_gem_cleanup_ringbuffer(dev);
4785                         goto out;
4786                 }
4787
4788                 if (ring->id == RCS) {
4789                         for (j = 0; j < NUM_L3_SLICES(dev); j++)
4790                                 i915_gem_l3_remap(req, j);
4791                 }
4792
4793                 ret = i915_ppgtt_init_ring(req);
4794                 if (ret && ret != -EIO) {
4795                         DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4796                         i915_gem_request_cancel(req);
4797                         i915_gem_cleanup_ringbuffer(dev);
4798                         goto out;
4799                 }
4800
4801                 ret = i915_gem_context_enable(req);
4802                 if (ret && ret != -EIO) {
4803                         DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4804                         i915_gem_request_cancel(req);
4805                         i915_gem_cleanup_ringbuffer(dev);
4806                         goto out;
4807                 }
4808
4809                 i915_add_request_no_flush(req);
4810         }
4811
4812 out:
4813         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4814         return ret;
4815 }
4816
4817 int i915_gem_init(struct drm_device *dev)
4818 {
4819         struct drm_i915_private *dev_priv = dev->dev_private;
4820         int ret;
4821
4822         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4823                         i915.enable_execlists);
4824
4825         mutex_lock(&dev->struct_mutex);
4826
4827         if (IS_VALLEYVIEW(dev)) {
4828                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4829                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4830                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4831                               VLV_GTLC_ALLOWWAKEACK), 10))
4832                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4833         }
4834
4835         if (!i915.enable_execlists) {
4836                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4837                 dev_priv->gt.init_rings = i915_gem_init_rings;
4838                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4839                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4840         } else {
4841                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4842                 dev_priv->gt.init_rings = intel_logical_rings_init;
4843                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4844                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4845         }
4846
4847         /* This is just a security blanket to placate dragons.
4848          * On some systems, we very sporadically observe that the first TLBs
4849          * used by the CS may be stale, despite us poking the TLB reset. If
4850          * we hold the forcewake during initialisation these problems
4851          * just magically go away.
4852          */
4853         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4854
4855         ret = i915_gem_init_userptr(dev);
4856         if (ret)
4857                 goto out_unlock;
4858
4859         i915_gem_init_global_gtt(dev);
4860
4861         ret = i915_gem_context_init(dev);
4862         if (ret)
4863                 goto out_unlock;
4864
4865         ret = dev_priv->gt.init_rings(dev);
4866         if (ret)
4867                 goto out_unlock;
4868
4869         ret = i915_gem_init_hw(dev);
4870         if (ret == -EIO) {
4871                 /* Allow ring initialisation to fail by marking the GPU as
4872                  * wedged. But we only want to do this where the GPU is angry,
4873                  * for all other failure, such as an allocation failure, bail.
4874                  */
4875                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4876                 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4877                 ret = 0;
4878         }
4879
4880 out_unlock:
4881         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4882         mutex_unlock(&dev->struct_mutex);
4883
4884         return ret;
4885 }
4886
4887 void
4888 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4889 {
4890         struct drm_i915_private *dev_priv = dev->dev_private;
4891         struct intel_engine_cs *ring;
4892         int i;
4893
4894         for_each_ring(ring, dev_priv, i)
4895                 dev_priv->gt.cleanup_ring(ring);
4896
4897     if (i915.enable_execlists)
4898             /*
4899              * Neither the BIOS, ourselves or any other kernel
4900              * expects the system to be in execlists mode on startup,
4901              * so we need to reset the GPU back to legacy mode.
4902              */
4903             intel_gpu_reset(dev);
4904 }
4905
4906 static void
4907 init_ring_lists(struct intel_engine_cs *ring)
4908 {
4909         INIT_LIST_HEAD(&ring->active_list);
4910         INIT_LIST_HEAD(&ring->request_list);
4911 }
4912
4913 void
4914 i915_gem_load(struct drm_device *dev)
4915 {
4916         struct drm_i915_private *dev_priv = dev->dev_private;
4917         int i;
4918
4919         dev_priv->objects =
4920                 kmem_cache_create("i915_gem_object",
4921                                   sizeof(struct drm_i915_gem_object), 0,
4922                                   SLAB_HWCACHE_ALIGN,
4923                                   NULL);
4924         dev_priv->vmas =
4925                 kmem_cache_create("i915_gem_vma",
4926                                   sizeof(struct i915_vma), 0,
4927                                   SLAB_HWCACHE_ALIGN,
4928                                   NULL);
4929         dev_priv->requests =
4930                 kmem_cache_create("i915_gem_request",
4931                                   sizeof(struct drm_i915_gem_request), 0,
4932                                   SLAB_HWCACHE_ALIGN,
4933                                   NULL);
4934
4935         INIT_LIST_HEAD(&dev_priv->vm_list);
4936         INIT_LIST_HEAD(&dev_priv->context_list);
4937         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4938         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4939         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4940         for (i = 0; i < I915_NUM_RINGS; i++)
4941                 init_ring_lists(&dev_priv->ring[i]);
4942         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4943                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4944         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4945                           i915_gem_retire_work_handler);
4946         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4947                           i915_gem_idle_work_handler);
4948         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4949
4950         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4951
4952         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4953                 dev_priv->num_fence_regs = 32;
4954         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4955                 dev_priv->num_fence_regs = 16;
4956         else
4957                 dev_priv->num_fence_regs = 8;
4958
4959         if (intel_vgpu_active(dev))
4960                 dev_priv->num_fence_regs =
4961                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4962
4963         /*
4964          * Set initial sequence number for requests.
4965          * Using this number allows the wraparound to happen early,
4966          * catching any obvious problems.
4967          */
4968         dev_priv->next_seqno = ((u32)~0 - 0x1100);
4969         dev_priv->last_seqno = ((u32)~0 - 0x1101);
4970
4971         /* Initialize fence registers to zero */
4972         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4973         i915_gem_restore_fences(dev);
4974
4975         i915_gem_detect_bit_6_swizzle(dev);
4976         init_waitqueue_head(&dev_priv->pending_flip_queue);
4977
4978         dev_priv->mm.interruptible = true;
4979
4980         i915_gem_shrinker_init(dev_priv);
4981
4982         mutex_init(&dev_priv->fb_tracking.lock);
4983 }
4984
4985 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4986 {
4987         struct drm_i915_file_private *file_priv = file->driver_priv;
4988
4989         /* Clean up our request list when the client is going away, so that
4990          * later retire_requests won't dereference our soon-to-be-gone
4991          * file_priv.
4992          */
4993         spin_lock(&file_priv->mm.lock);
4994         while (!list_empty(&file_priv->mm.request_list)) {
4995                 struct drm_i915_gem_request *request;
4996
4997                 request = list_first_entry(&file_priv->mm.request_list,
4998                                            struct drm_i915_gem_request,
4999                                            client_list);
5000                 list_del(&request->client_list);
5001                 request->file_priv = NULL;
5002         }
5003         spin_unlock(&file_priv->mm.lock);
5004
5005         if (!list_empty(&file_priv->rps.link)) {
5006                 spin_lock(&to_i915(dev)->rps.client_lock);
5007                 list_del(&file_priv->rps.link);
5008                 spin_unlock(&to_i915(dev)->rps.client_lock);
5009         }
5010 }
5011
5012 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5013 {
5014         struct drm_i915_file_private *file_priv;
5015         int ret;
5016
5017         DRM_DEBUG_DRIVER("\n");
5018
5019         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5020         if (!file_priv)
5021                 return -ENOMEM;
5022
5023         file->driver_priv = file_priv;
5024         file_priv->dev_priv = dev->dev_private;
5025         file_priv->file = file;
5026         INIT_LIST_HEAD(&file_priv->rps.link);
5027
5028         spin_lock_init(&file_priv->mm.lock);
5029         INIT_LIST_HEAD(&file_priv->mm.request_list);
5030
5031         ret = i915_gem_context_open(dev, file);
5032         if (ret)
5033                 kfree(file_priv);
5034
5035         return ret;
5036 }
5037
5038 /**
5039  * i915_gem_track_fb - update frontbuffer tracking
5040  * @old: current GEM buffer for the frontbuffer slots
5041  * @new: new GEM buffer for the frontbuffer slots
5042  * @frontbuffer_bits: bitmask of frontbuffer slots
5043  *
5044  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5045  * from @old and setting them in @new. Both @old and @new can be NULL.
5046  */
5047 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5048                        struct drm_i915_gem_object *new,
5049                        unsigned frontbuffer_bits)
5050 {
5051         if (old) {
5052                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5053                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5054                 old->frontbuffer_bits &= ~frontbuffer_bits;
5055         }
5056
5057         if (new) {
5058                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5059                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5060                 new->frontbuffer_bits |= frontbuffer_bits;
5061         }
5062 }
5063
5064 /* All the new VM stuff */
5065 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5066                         struct i915_address_space *vm)
5067 {
5068         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5069         struct i915_vma *vma;
5070
5071         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5072
5073         list_for_each_entry(vma, &o->vma_list, vma_link) {
5074                 if (i915_is_ggtt(vma->vm) &&
5075                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5076                         continue;
5077                 if (vma->vm == vm)
5078                         return vma->node.start;
5079         }
5080
5081         WARN(1, "%s vma for this object not found.\n",
5082              i915_is_ggtt(vm) ? "global" : "ppgtt");
5083         return -1;
5084 }
5085
5086 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5087                                   const struct i915_ggtt_view *view)
5088 {
5089         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5090         struct i915_vma *vma;
5091
5092         list_for_each_entry(vma, &o->vma_list, vma_link)
5093                 if (vma->vm == ggtt &&
5094                     i915_ggtt_view_equal(&vma->ggtt_view, view))
5095                         return vma->node.start;
5096
5097         WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5098         return -1;
5099 }
5100
5101 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5102                         struct i915_address_space *vm)
5103 {
5104         struct i915_vma *vma;
5105
5106         list_for_each_entry(vma, &o->vma_list, vma_link) {
5107                 if (i915_is_ggtt(vma->vm) &&
5108                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5109                         continue;
5110                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5111                         return true;
5112         }
5113
5114         return false;
5115 }
5116
5117 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5118                                   const struct i915_ggtt_view *view)
5119 {
5120         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5121         struct i915_vma *vma;
5122
5123         list_for_each_entry(vma, &o->vma_list, vma_link)
5124                 if (vma->vm == ggtt &&
5125                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5126                     drm_mm_node_allocated(&vma->node))
5127                         return true;
5128
5129         return false;
5130 }
5131
5132 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5133 {
5134         struct i915_vma *vma;
5135
5136         list_for_each_entry(vma, &o->vma_list, vma_link)
5137                 if (drm_mm_node_allocated(&vma->node))
5138                         return true;
5139
5140         return false;
5141 }
5142
5143 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5144                                 struct i915_address_space *vm)
5145 {
5146         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5147         struct i915_vma *vma;
5148
5149         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5150
5151         BUG_ON(list_empty(&o->vma_list));
5152
5153         list_for_each_entry(vma, &o->vma_list, vma_link) {
5154                 if (i915_is_ggtt(vma->vm) &&
5155                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5156                         continue;
5157                 if (vma->vm == vm)
5158                         return vma->node.size;
5159         }
5160         return 0;
5161 }
5162
5163 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5164 {
5165         struct i915_vma *vma;
5166         list_for_each_entry(vma, &obj->vma_list, vma_link)
5167                 if (vma->pin_count > 0)
5168                         return true;
5169
5170         return false;
5171 }
5172
5173 /* Allocate a new GEM object and fill it with the supplied data */
5174 struct drm_i915_gem_object *
5175 i915_gem_object_create_from_data(struct drm_device *dev,
5176                                  const void *data, size_t size)
5177 {
5178         struct drm_i915_gem_object *obj;
5179         struct sg_table *sg;
5180         size_t bytes;
5181         int ret;
5182
5183         obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5184         if (IS_ERR_OR_NULL(obj))
5185                 return obj;
5186
5187         ret = i915_gem_object_set_to_cpu_domain(obj, true);
5188         if (ret)
5189                 goto fail;
5190
5191         ret = i915_gem_object_get_pages(obj);
5192         if (ret)
5193                 goto fail;
5194
5195         i915_gem_object_pin_pages(obj);
5196         sg = obj->pages;
5197         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5198         i915_gem_object_unpin_pages(obj);
5199
5200         if (WARN_ON(bytes != size)) {
5201                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5202                 ret = -EFAULT;
5203                 goto fail;
5204         }
5205
5206         return obj;
5207
5208 fail:
5209         drm_gem_object_unreference(&obj->base);
5210         return ERR_PTR(ret);
5211 }