]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Separate intel_frontbuffer into its own header
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_dmabuf.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/pci.h>
43 #include <linux/dma-buf.h>
44
45 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47
48 static bool cpu_cache_is_coherent(struct drm_device *dev,
49                                   enum i915_cache_level level)
50 {
51         return HAS_LLC(dev) || level != I915_CACHE_NONE;
52 }
53
54 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
55 {
56         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
57                 return false;
58
59         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
60                 return true;
61
62         return obj->pin_display;
63 }
64
65 static int
66 insert_mappable_node(struct drm_i915_private *i915,
67                      struct drm_mm_node *node, u32 size)
68 {
69         memset(node, 0, sizeof(*node));
70         return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
71                                                    size, 0, 0, 0,
72                                                    i915->ggtt.mappable_end,
73                                                    DRM_MM_SEARCH_DEFAULT,
74                                                    DRM_MM_CREATE_DEFAULT);
75 }
76
77 static void
78 remove_mappable_node(struct drm_mm_node *node)
79 {
80         drm_mm_remove_node(node);
81 }
82
83 /* some bookkeeping */
84 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
85                                   size_t size)
86 {
87         spin_lock(&dev_priv->mm.object_stat_lock);
88         dev_priv->mm.object_count++;
89         dev_priv->mm.object_memory += size;
90         spin_unlock(&dev_priv->mm.object_stat_lock);
91 }
92
93 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
94                                      size_t size)
95 {
96         spin_lock(&dev_priv->mm.object_stat_lock);
97         dev_priv->mm.object_count--;
98         dev_priv->mm.object_memory -= size;
99         spin_unlock(&dev_priv->mm.object_stat_lock);
100 }
101
102 static int
103 i915_gem_wait_for_error(struct i915_gpu_error *error)
104 {
105         int ret;
106
107         if (!i915_reset_in_progress(error))
108                 return 0;
109
110         /*
111          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112          * userspace. If it takes that long something really bad is going on and
113          * we should simply try to bail out and fail as gracefully as possible.
114          */
115         ret = wait_event_interruptible_timeout(error->reset_queue,
116                                                !i915_reset_in_progress(error),
117                                                10*HZ);
118         if (ret == 0) {
119                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120                 return -EIO;
121         } else if (ret < 0) {
122                 return ret;
123         } else {
124                 return 0;
125         }
126 }
127
128 int i915_mutex_lock_interruptible(struct drm_device *dev)
129 {
130         struct drm_i915_private *dev_priv = to_i915(dev);
131         int ret;
132
133         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134         if (ret)
135                 return ret;
136
137         ret = mutex_lock_interruptible(&dev->struct_mutex);
138         if (ret)
139                 return ret;
140
141         return 0;
142 }
143
144 int
145 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146                             struct drm_file *file)
147 {
148         struct drm_i915_private *dev_priv = to_i915(dev);
149         struct i915_ggtt *ggtt = &dev_priv->ggtt;
150         struct drm_i915_gem_get_aperture *args = data;
151         struct i915_vma *vma;
152         size_t pinned;
153
154         pinned = 0;
155         mutex_lock(&dev->struct_mutex);
156         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157                 if (i915_vma_is_pinned(vma))
158                         pinned += vma->node.size;
159         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160                 if (i915_vma_is_pinned(vma))
161                         pinned += vma->node.size;
162         mutex_unlock(&dev->struct_mutex);
163
164         args->aper_size = ggtt->base.total;
165         args->aper_available_size = args->aper_size - pinned;
166
167         return 0;
168 }
169
170 static int
171 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172 {
173         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
174         char *vaddr = obj->phys_handle->vaddr;
175         struct sg_table *st;
176         struct scatterlist *sg;
177         int i;
178
179         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
180                 return -EINVAL;
181
182         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
183                 struct page *page;
184                 char *src;
185
186                 page = shmem_read_mapping_page(mapping, i);
187                 if (IS_ERR(page))
188                         return PTR_ERR(page);
189
190                 src = kmap_atomic(page);
191                 memcpy(vaddr, src, PAGE_SIZE);
192                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
193                 kunmap_atomic(src);
194
195                 put_page(page);
196                 vaddr += PAGE_SIZE;
197         }
198
199         i915_gem_chipset_flush(to_i915(obj->base.dev));
200
201         st = kmalloc(sizeof(*st), GFP_KERNEL);
202         if (st == NULL)
203                 return -ENOMEM;
204
205         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
206                 kfree(st);
207                 return -ENOMEM;
208         }
209
210         sg = st->sgl;
211         sg->offset = 0;
212         sg->length = obj->base.size;
213
214         sg_dma_address(sg) = obj->phys_handle->busaddr;
215         sg_dma_len(sg) = obj->base.size;
216
217         obj->pages = st;
218         return 0;
219 }
220
221 static void
222 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
223 {
224         int ret;
225
226         BUG_ON(obj->madv == __I915_MADV_PURGED);
227
228         ret = i915_gem_object_set_to_cpu_domain(obj, true);
229         if (WARN_ON(ret)) {
230                 /* In the event of a disaster, abandon all caches and
231                  * hope for the best.
232                  */
233                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234         }
235
236         if (obj->madv == I915_MADV_DONTNEED)
237                 obj->dirty = 0;
238
239         if (obj->dirty) {
240                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241                 char *vaddr = obj->phys_handle->vaddr;
242                 int i;
243
244                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245                         struct page *page;
246                         char *dst;
247
248                         page = shmem_read_mapping_page(mapping, i);
249                         if (IS_ERR(page))
250                                 continue;
251
252                         dst = kmap_atomic(page);
253                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
254                         memcpy(dst, vaddr, PAGE_SIZE);
255                         kunmap_atomic(dst);
256
257                         set_page_dirty(page);
258                         if (obj->madv == I915_MADV_WILLNEED)
259                                 mark_page_accessed(page);
260                         put_page(page);
261                         vaddr += PAGE_SIZE;
262                 }
263                 obj->dirty = 0;
264         }
265
266         sg_free_table(obj->pages);
267         kfree(obj->pages);
268 }
269
270 static void
271 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
272 {
273         drm_pci_free(obj->base.dev, obj->phys_handle);
274 }
275
276 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
277         .get_pages = i915_gem_object_get_pages_phys,
278         .put_pages = i915_gem_object_put_pages_phys,
279         .release = i915_gem_object_release_phys,
280 };
281
282 int
283 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
284 {
285         struct i915_vma *vma;
286         LIST_HEAD(still_in_list);
287         int ret;
288
289         /* The vma will only be freed if it is marked as closed, and if we wait
290          * upon rendering to the vma, we may unbind anything in the list.
291          */
292         while ((vma = list_first_entry_or_null(&obj->vma_list,
293                                                struct i915_vma,
294                                                obj_link))) {
295                 list_move_tail(&vma->obj_link, &still_in_list);
296                 ret = i915_vma_unbind(vma);
297                 if (ret)
298                         break;
299         }
300         list_splice(&still_in_list, &obj->vma_list);
301
302         return ret;
303 }
304
305 int
306 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
307                             int align)
308 {
309         drm_dma_handle_t *phys;
310         int ret;
311
312         if (obj->phys_handle) {
313                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
314                         return -EBUSY;
315
316                 return 0;
317         }
318
319         if (obj->madv != I915_MADV_WILLNEED)
320                 return -EFAULT;
321
322         if (obj->base.filp == NULL)
323                 return -EINVAL;
324
325         ret = i915_gem_object_unbind(obj);
326         if (ret)
327                 return ret;
328
329         ret = i915_gem_object_put_pages(obj);
330         if (ret)
331                 return ret;
332
333         /* create a new object */
334         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
335         if (!phys)
336                 return -ENOMEM;
337
338         obj->phys_handle = phys;
339         obj->ops = &i915_gem_phys_ops;
340
341         return i915_gem_object_get_pages(obj);
342 }
343
344 static int
345 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
346                      struct drm_i915_gem_pwrite *args,
347                      struct drm_file *file_priv)
348 {
349         struct drm_device *dev = obj->base.dev;
350         void *vaddr = obj->phys_handle->vaddr + args->offset;
351         char __user *user_data = u64_to_user_ptr(args->data_ptr);
352         int ret = 0;
353
354         /* We manually control the domain here and pretend that it
355          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
356          */
357         ret = i915_gem_object_wait_rendering(obj, false);
358         if (ret)
359                 return ret;
360
361         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
362         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
363                 unsigned long unwritten;
364
365                 /* The physical object once assigned is fixed for the lifetime
366                  * of the obj, so we can safely drop the lock and continue
367                  * to access vaddr.
368                  */
369                 mutex_unlock(&dev->struct_mutex);
370                 unwritten = copy_from_user(vaddr, user_data, args->size);
371                 mutex_lock(&dev->struct_mutex);
372                 if (unwritten) {
373                         ret = -EFAULT;
374                         goto out;
375                 }
376         }
377
378         drm_clflush_virt_range(vaddr, args->size);
379         i915_gem_chipset_flush(to_i915(dev));
380
381 out:
382         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
383         return ret;
384 }
385
386 void *i915_gem_object_alloc(struct drm_device *dev)
387 {
388         struct drm_i915_private *dev_priv = to_i915(dev);
389         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
390 }
391
392 void i915_gem_object_free(struct drm_i915_gem_object *obj)
393 {
394         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
395         kmem_cache_free(dev_priv->objects, obj);
396 }
397
398 static int
399 i915_gem_create(struct drm_file *file,
400                 struct drm_device *dev,
401                 uint64_t size,
402                 uint32_t *handle_p)
403 {
404         struct drm_i915_gem_object *obj;
405         int ret;
406         u32 handle;
407
408         size = roundup(size, PAGE_SIZE);
409         if (size == 0)
410                 return -EINVAL;
411
412         /* Allocate the new object */
413         obj = i915_gem_object_create(dev, size);
414         if (IS_ERR(obj))
415                 return PTR_ERR(obj);
416
417         ret = drm_gem_handle_create(file, &obj->base, &handle);
418         /* drop reference from allocate - handle holds it now */
419         i915_gem_object_put_unlocked(obj);
420         if (ret)
421                 return ret;
422
423         *handle_p = handle;
424         return 0;
425 }
426
427 int
428 i915_gem_dumb_create(struct drm_file *file,
429                      struct drm_device *dev,
430                      struct drm_mode_create_dumb *args)
431 {
432         /* have to work out size/pitch and return them */
433         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
434         args->size = args->pitch * args->height;
435         return i915_gem_create(file, dev,
436                                args->size, &args->handle);
437 }
438
439 /**
440  * Creates a new mm object and returns a handle to it.
441  * @dev: drm device pointer
442  * @data: ioctl data blob
443  * @file: drm file pointer
444  */
445 int
446 i915_gem_create_ioctl(struct drm_device *dev, void *data,
447                       struct drm_file *file)
448 {
449         struct drm_i915_gem_create *args = data;
450
451         return i915_gem_create(file, dev,
452                                args->size, &args->handle);
453 }
454
455 static inline int
456 __copy_to_user_swizzled(char __user *cpu_vaddr,
457                         const char *gpu_vaddr, int gpu_offset,
458                         int length)
459 {
460         int ret, cpu_offset = 0;
461
462         while (length > 0) {
463                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
464                 int this_length = min(cacheline_end - gpu_offset, length);
465                 int swizzled_gpu_offset = gpu_offset ^ 64;
466
467                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
468                                      gpu_vaddr + swizzled_gpu_offset,
469                                      this_length);
470                 if (ret)
471                         return ret + length;
472
473                 cpu_offset += this_length;
474                 gpu_offset += this_length;
475                 length -= this_length;
476         }
477
478         return 0;
479 }
480
481 static inline int
482 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
483                           const char __user *cpu_vaddr,
484                           int length)
485 {
486         int ret, cpu_offset = 0;
487
488         while (length > 0) {
489                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
490                 int this_length = min(cacheline_end - gpu_offset, length);
491                 int swizzled_gpu_offset = gpu_offset ^ 64;
492
493                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
494                                        cpu_vaddr + cpu_offset,
495                                        this_length);
496                 if (ret)
497                         return ret + length;
498
499                 cpu_offset += this_length;
500                 gpu_offset += this_length;
501                 length -= this_length;
502         }
503
504         return 0;
505 }
506
507 /*
508  * Pins the specified object's pages and synchronizes the object with
509  * GPU accesses. Sets needs_clflush to non-zero if the caller should
510  * flush the object from the CPU cache.
511  */
512 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
513                                     int *needs_clflush)
514 {
515         int ret;
516
517         *needs_clflush = 0;
518
519         if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
520                 return -EINVAL;
521
522         ret = i915_gem_object_wait_rendering(obj, true);
523         if (ret)
524                 return ret;
525
526         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
527                 /* If we're not in the cpu read domain, set ourself into the gtt
528                  * read domain and manually flush cachelines (if required). This
529                  * optimizes for the case when the gpu will dirty the data
530                  * anyway again before the next pread happens. */
531                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
532                                                         obj->cache_level);
533         }
534
535         ret = i915_gem_object_get_pages(obj);
536         if (ret)
537                 return ret;
538
539         i915_gem_object_pin_pages(obj);
540
541         return ret;
542 }
543
544 /* Per-page copy function for the shmem pread fastpath.
545  * Flushes invalid cachelines before reading the target if
546  * needs_clflush is set. */
547 static int
548 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
549                  char __user *user_data,
550                  bool page_do_bit17_swizzling, bool needs_clflush)
551 {
552         char *vaddr;
553         int ret;
554
555         if (unlikely(page_do_bit17_swizzling))
556                 return -EINVAL;
557
558         vaddr = kmap_atomic(page);
559         if (needs_clflush)
560                 drm_clflush_virt_range(vaddr + shmem_page_offset,
561                                        page_length);
562         ret = __copy_to_user_inatomic(user_data,
563                                       vaddr + shmem_page_offset,
564                                       page_length);
565         kunmap_atomic(vaddr);
566
567         return ret ? -EFAULT : 0;
568 }
569
570 static void
571 shmem_clflush_swizzled_range(char *addr, unsigned long length,
572                              bool swizzled)
573 {
574         if (unlikely(swizzled)) {
575                 unsigned long start = (unsigned long) addr;
576                 unsigned long end = (unsigned long) addr + length;
577
578                 /* For swizzling simply ensure that we always flush both
579                  * channels. Lame, but simple and it works. Swizzled
580                  * pwrite/pread is far from a hotpath - current userspace
581                  * doesn't use it at all. */
582                 start = round_down(start, 128);
583                 end = round_up(end, 128);
584
585                 drm_clflush_virt_range((void *)start, end - start);
586         } else {
587                 drm_clflush_virt_range(addr, length);
588         }
589
590 }
591
592 /* Only difference to the fast-path function is that this can handle bit17
593  * and uses non-atomic copy and kmap functions. */
594 static int
595 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
596                  char __user *user_data,
597                  bool page_do_bit17_swizzling, bool needs_clflush)
598 {
599         char *vaddr;
600         int ret;
601
602         vaddr = kmap(page);
603         if (needs_clflush)
604                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
605                                              page_length,
606                                              page_do_bit17_swizzling);
607
608         if (page_do_bit17_swizzling)
609                 ret = __copy_to_user_swizzled(user_data,
610                                               vaddr, shmem_page_offset,
611                                               page_length);
612         else
613                 ret = __copy_to_user(user_data,
614                                      vaddr + shmem_page_offset,
615                                      page_length);
616         kunmap(page);
617
618         return ret ? - EFAULT : 0;
619 }
620
621 static inline unsigned long
622 slow_user_access(struct io_mapping *mapping,
623                  uint64_t page_base, int page_offset,
624                  char __user *user_data,
625                  unsigned long length, bool pwrite)
626 {
627         void __iomem *ioaddr;
628         void *vaddr;
629         uint64_t unwritten;
630
631         ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
632         /* We can use the cpu mem copy function because this is X86. */
633         vaddr = (void __force *)ioaddr + page_offset;
634         if (pwrite)
635                 unwritten = __copy_from_user(vaddr, user_data, length);
636         else
637                 unwritten = __copy_to_user(user_data, vaddr, length);
638
639         io_mapping_unmap(ioaddr);
640         return unwritten;
641 }
642
643 static int
644 i915_gem_gtt_pread(struct drm_device *dev,
645                    struct drm_i915_gem_object *obj, uint64_t size,
646                    uint64_t data_offset, uint64_t data_ptr)
647 {
648         struct drm_i915_private *dev_priv = to_i915(dev);
649         struct i915_ggtt *ggtt = &dev_priv->ggtt;
650         struct drm_mm_node node;
651         char __user *user_data;
652         uint64_t remain;
653         uint64_t offset;
654         int ret;
655
656         ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
657         if (ret) {
658                 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
659                 if (ret)
660                         goto out;
661
662                 ret = i915_gem_object_get_pages(obj);
663                 if (ret) {
664                         remove_mappable_node(&node);
665                         goto out;
666                 }
667
668                 i915_gem_object_pin_pages(obj);
669         } else {
670                 node.start = i915_gem_obj_ggtt_offset(obj);
671                 node.allocated = false;
672                 ret = i915_gem_object_put_fence(obj);
673                 if (ret)
674                         goto out_unpin;
675         }
676
677         ret = i915_gem_object_set_to_gtt_domain(obj, false);
678         if (ret)
679                 goto out_unpin;
680
681         user_data = u64_to_user_ptr(data_ptr);
682         remain = size;
683         offset = data_offset;
684
685         mutex_unlock(&dev->struct_mutex);
686         if (likely(!i915.prefault_disable)) {
687                 ret = fault_in_multipages_writeable(user_data, remain);
688                 if (ret) {
689                         mutex_lock(&dev->struct_mutex);
690                         goto out_unpin;
691                 }
692         }
693
694         while (remain > 0) {
695                 /* Operation in this page
696                  *
697                  * page_base = page offset within aperture
698                  * page_offset = offset within page
699                  * page_length = bytes to copy for this page
700                  */
701                 u32 page_base = node.start;
702                 unsigned page_offset = offset_in_page(offset);
703                 unsigned page_length = PAGE_SIZE - page_offset;
704                 page_length = remain < page_length ? remain : page_length;
705                 if (node.allocated) {
706                         wmb();
707                         ggtt->base.insert_page(&ggtt->base,
708                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
709                                                node.start,
710                                                I915_CACHE_NONE, 0);
711                         wmb();
712                 } else {
713                         page_base += offset & PAGE_MASK;
714                 }
715                 /* This is a slow read/write as it tries to read from
716                  * and write to user memory which may result into page
717                  * faults, and so we cannot perform this under struct_mutex.
718                  */
719                 if (slow_user_access(ggtt->mappable, page_base,
720                                      page_offset, user_data,
721                                      page_length, false)) {
722                         ret = -EFAULT;
723                         break;
724                 }
725
726                 remain -= page_length;
727                 user_data += page_length;
728                 offset += page_length;
729         }
730
731         mutex_lock(&dev->struct_mutex);
732         if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
733                 /* The user has modified the object whilst we tried
734                  * reading from it, and we now have no idea what domain
735                  * the pages should be in. As we have just been touching
736                  * them directly, flush everything back to the GTT
737                  * domain.
738                  */
739                 ret = i915_gem_object_set_to_gtt_domain(obj, false);
740         }
741
742 out_unpin:
743         if (node.allocated) {
744                 wmb();
745                 ggtt->base.clear_range(&ggtt->base,
746                                        node.start, node.size,
747                                        true);
748                 i915_gem_object_unpin_pages(obj);
749                 remove_mappable_node(&node);
750         } else {
751                 i915_gem_object_ggtt_unpin(obj);
752         }
753 out:
754         return ret;
755 }
756
757 static int
758 i915_gem_shmem_pread(struct drm_device *dev,
759                      struct drm_i915_gem_object *obj,
760                      struct drm_i915_gem_pread *args,
761                      struct drm_file *file)
762 {
763         char __user *user_data;
764         ssize_t remain;
765         loff_t offset;
766         int shmem_page_offset, page_length, ret = 0;
767         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
768         int prefaulted = 0;
769         int needs_clflush = 0;
770         struct sg_page_iter sg_iter;
771
772         if (!i915_gem_object_has_struct_page(obj))
773                 return -ENODEV;
774
775         user_data = u64_to_user_ptr(args->data_ptr);
776         remain = args->size;
777
778         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
779
780         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
781         if (ret)
782                 return ret;
783
784         offset = args->offset;
785
786         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
787                          offset >> PAGE_SHIFT) {
788                 struct page *page = sg_page_iter_page(&sg_iter);
789
790                 if (remain <= 0)
791                         break;
792
793                 /* Operation in this page
794                  *
795                  * shmem_page_offset = offset within page in shmem file
796                  * page_length = bytes to copy for this page
797                  */
798                 shmem_page_offset = offset_in_page(offset);
799                 page_length = remain;
800                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
801                         page_length = PAGE_SIZE - shmem_page_offset;
802
803                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
804                         (page_to_phys(page) & (1 << 17)) != 0;
805
806                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
807                                        user_data, page_do_bit17_swizzling,
808                                        needs_clflush);
809                 if (ret == 0)
810                         goto next_page;
811
812                 mutex_unlock(&dev->struct_mutex);
813
814                 if (likely(!i915.prefault_disable) && !prefaulted) {
815                         ret = fault_in_multipages_writeable(user_data, remain);
816                         /* Userspace is tricking us, but we've already clobbered
817                          * its pages with the prefault and promised to write the
818                          * data up to the first fault. Hence ignore any errors
819                          * and just continue. */
820                         (void)ret;
821                         prefaulted = 1;
822                 }
823
824                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
825                                        user_data, page_do_bit17_swizzling,
826                                        needs_clflush);
827
828                 mutex_lock(&dev->struct_mutex);
829
830                 if (ret)
831                         goto out;
832
833 next_page:
834                 remain -= page_length;
835                 user_data += page_length;
836                 offset += page_length;
837         }
838
839 out:
840         i915_gem_object_unpin_pages(obj);
841
842         return ret;
843 }
844
845 /**
846  * Reads data from the object referenced by handle.
847  * @dev: drm device pointer
848  * @data: ioctl data blob
849  * @file: drm file pointer
850  *
851  * On error, the contents of *data are undefined.
852  */
853 int
854 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
855                      struct drm_file *file)
856 {
857         struct drm_i915_gem_pread *args = data;
858         struct drm_i915_gem_object *obj;
859         int ret = 0;
860
861         if (args->size == 0)
862                 return 0;
863
864         if (!access_ok(VERIFY_WRITE,
865                        u64_to_user_ptr(args->data_ptr),
866                        args->size))
867                 return -EFAULT;
868
869         ret = i915_mutex_lock_interruptible(dev);
870         if (ret)
871                 return ret;
872
873         obj = i915_gem_object_lookup(file, args->handle);
874         if (!obj) {
875                 ret = -ENOENT;
876                 goto unlock;
877         }
878
879         /* Bounds check source.  */
880         if (args->offset > obj->base.size ||
881             args->size > obj->base.size - args->offset) {
882                 ret = -EINVAL;
883                 goto out;
884         }
885
886         trace_i915_gem_object_pread(obj, args->offset, args->size);
887
888         ret = i915_gem_shmem_pread(dev, obj, args, file);
889
890         /* pread for non shmem backed objects */
891         if (ret == -EFAULT || ret == -ENODEV) {
892                 intel_runtime_pm_get(to_i915(dev));
893                 ret = i915_gem_gtt_pread(dev, obj, args->size,
894                                         args->offset, args->data_ptr);
895                 intel_runtime_pm_put(to_i915(dev));
896         }
897
898 out:
899         i915_gem_object_put(obj);
900 unlock:
901         mutex_unlock(&dev->struct_mutex);
902         return ret;
903 }
904
905 /* This is the fast write path which cannot handle
906  * page faults in the source data
907  */
908
909 static inline int
910 fast_user_write(struct io_mapping *mapping,
911                 loff_t page_base, int page_offset,
912                 char __user *user_data,
913                 int length)
914 {
915         void __iomem *vaddr_atomic;
916         void *vaddr;
917         unsigned long unwritten;
918
919         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
920         /* We can use the cpu mem copy function because this is X86. */
921         vaddr = (void __force*)vaddr_atomic + page_offset;
922         unwritten = __copy_from_user_inatomic_nocache(vaddr,
923                                                       user_data, length);
924         io_mapping_unmap_atomic(vaddr_atomic);
925         return unwritten;
926 }
927
928 /**
929  * This is the fast pwrite path, where we copy the data directly from the
930  * user into the GTT, uncached.
931  * @i915: i915 device private data
932  * @obj: i915 gem object
933  * @args: pwrite arguments structure
934  * @file: drm file pointer
935  */
936 static int
937 i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
938                          struct drm_i915_gem_object *obj,
939                          struct drm_i915_gem_pwrite *args,
940                          struct drm_file *file)
941 {
942         struct i915_ggtt *ggtt = &i915->ggtt;
943         struct drm_device *dev = obj->base.dev;
944         struct drm_mm_node node;
945         uint64_t remain, offset;
946         char __user *user_data;
947         int ret;
948         bool hit_slow_path = false;
949
950         if (obj->tiling_mode != I915_TILING_NONE)
951                 return -EFAULT;
952
953         ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
954                                        PIN_MAPPABLE | PIN_NONBLOCK);
955         if (ret) {
956                 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
957                 if (ret)
958                         goto out;
959
960                 ret = i915_gem_object_get_pages(obj);
961                 if (ret) {
962                         remove_mappable_node(&node);
963                         goto out;
964                 }
965
966                 i915_gem_object_pin_pages(obj);
967         } else {
968                 node.start = i915_gem_obj_ggtt_offset(obj);
969                 node.allocated = false;
970                 ret = i915_gem_object_put_fence(obj);
971                 if (ret)
972                         goto out_unpin;
973         }
974
975         ret = i915_gem_object_set_to_gtt_domain(obj, true);
976         if (ret)
977                 goto out_unpin;
978
979         intel_fb_obj_invalidate(obj, ORIGIN_GTT);
980         obj->dirty = true;
981
982         user_data = u64_to_user_ptr(args->data_ptr);
983         offset = args->offset;
984         remain = args->size;
985         while (remain) {
986                 /* Operation in this page
987                  *
988                  * page_base = page offset within aperture
989                  * page_offset = offset within page
990                  * page_length = bytes to copy for this page
991                  */
992                 u32 page_base = node.start;
993                 unsigned page_offset = offset_in_page(offset);
994                 unsigned page_length = PAGE_SIZE - page_offset;
995                 page_length = remain < page_length ? remain : page_length;
996                 if (node.allocated) {
997                         wmb(); /* flush the write before we modify the GGTT */
998                         ggtt->base.insert_page(&ggtt->base,
999                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1000                                                node.start, I915_CACHE_NONE, 0);
1001                         wmb(); /* flush modifications to the GGTT (insert_page) */
1002                 } else {
1003                         page_base += offset & PAGE_MASK;
1004                 }
1005                 /* If we get a fault while copying data, then (presumably) our
1006                  * source page isn't available.  Return the error and we'll
1007                  * retry in the slow path.
1008                  * If the object is non-shmem backed, we retry again with the
1009                  * path that handles page fault.
1010                  */
1011                 if (fast_user_write(ggtt->mappable, page_base,
1012                                     page_offset, user_data, page_length)) {
1013                         hit_slow_path = true;
1014                         mutex_unlock(&dev->struct_mutex);
1015                         if (slow_user_access(ggtt->mappable,
1016                                              page_base,
1017                                              page_offset, user_data,
1018                                              page_length, true)) {
1019                                 ret = -EFAULT;
1020                                 mutex_lock(&dev->struct_mutex);
1021                                 goto out_flush;
1022                         }
1023
1024                         mutex_lock(&dev->struct_mutex);
1025                 }
1026
1027                 remain -= page_length;
1028                 user_data += page_length;
1029                 offset += page_length;
1030         }
1031
1032 out_flush:
1033         if (hit_slow_path) {
1034                 if (ret == 0 &&
1035                     (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1036                         /* The user has modified the object whilst we tried
1037                          * reading from it, and we now have no idea what domain
1038                          * the pages should be in. As we have just been touching
1039                          * them directly, flush everything back to the GTT
1040                          * domain.
1041                          */
1042                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1043                 }
1044         }
1045
1046         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
1047 out_unpin:
1048         if (node.allocated) {
1049                 wmb();
1050                 ggtt->base.clear_range(&ggtt->base,
1051                                        node.start, node.size,
1052                                        true);
1053                 i915_gem_object_unpin_pages(obj);
1054                 remove_mappable_node(&node);
1055         } else {
1056                 i915_gem_object_ggtt_unpin(obj);
1057         }
1058 out:
1059         return ret;
1060 }
1061
1062 /* Per-page copy function for the shmem pwrite fastpath.
1063  * Flushes invalid cachelines before writing to the target if
1064  * needs_clflush_before is set and flushes out any written cachelines after
1065  * writing if needs_clflush is set. */
1066 static int
1067 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1068                   char __user *user_data,
1069                   bool page_do_bit17_swizzling,
1070                   bool needs_clflush_before,
1071                   bool needs_clflush_after)
1072 {
1073         char *vaddr;
1074         int ret;
1075
1076         if (unlikely(page_do_bit17_swizzling))
1077                 return -EINVAL;
1078
1079         vaddr = kmap_atomic(page);
1080         if (needs_clflush_before)
1081                 drm_clflush_virt_range(vaddr + shmem_page_offset,
1082                                        page_length);
1083         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1084                                         user_data, page_length);
1085         if (needs_clflush_after)
1086                 drm_clflush_virt_range(vaddr + shmem_page_offset,
1087                                        page_length);
1088         kunmap_atomic(vaddr);
1089
1090         return ret ? -EFAULT : 0;
1091 }
1092
1093 /* Only difference to the fast-path function is that this can handle bit17
1094  * and uses non-atomic copy and kmap functions. */
1095 static int
1096 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1097                   char __user *user_data,
1098                   bool page_do_bit17_swizzling,
1099                   bool needs_clflush_before,
1100                   bool needs_clflush_after)
1101 {
1102         char *vaddr;
1103         int ret;
1104
1105         vaddr = kmap(page);
1106         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1107                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1108                                              page_length,
1109                                              page_do_bit17_swizzling);
1110         if (page_do_bit17_swizzling)
1111                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1112                                                 user_data,
1113                                                 page_length);
1114         else
1115                 ret = __copy_from_user(vaddr + shmem_page_offset,
1116                                        user_data,
1117                                        page_length);
1118         if (needs_clflush_after)
1119                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1120                                              page_length,
1121                                              page_do_bit17_swizzling);
1122         kunmap(page);
1123
1124         return ret ? -EFAULT : 0;
1125 }
1126
1127 static int
1128 i915_gem_shmem_pwrite(struct drm_device *dev,
1129                       struct drm_i915_gem_object *obj,
1130                       struct drm_i915_gem_pwrite *args,
1131                       struct drm_file *file)
1132 {
1133         ssize_t remain;
1134         loff_t offset;
1135         char __user *user_data;
1136         int shmem_page_offset, page_length, ret = 0;
1137         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1138         int hit_slowpath = 0;
1139         int needs_clflush_after = 0;
1140         int needs_clflush_before = 0;
1141         struct sg_page_iter sg_iter;
1142
1143         user_data = u64_to_user_ptr(args->data_ptr);
1144         remain = args->size;
1145
1146         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1147
1148         ret = i915_gem_object_wait_rendering(obj, false);
1149         if (ret)
1150                 return ret;
1151
1152         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1153                 /* If we're not in the cpu write domain, set ourself into the gtt
1154                  * write domain and manually flush cachelines (if required). This
1155                  * optimizes for the case when the gpu will use the data
1156                  * right away and we therefore have to clflush anyway. */
1157                 needs_clflush_after = cpu_write_needs_clflush(obj);
1158         }
1159         /* Same trick applies to invalidate partially written cachelines read
1160          * before writing. */
1161         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1162                 needs_clflush_before =
1163                         !cpu_cache_is_coherent(dev, obj->cache_level);
1164
1165         ret = i915_gem_object_get_pages(obj);
1166         if (ret)
1167                 return ret;
1168
1169         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1170
1171         i915_gem_object_pin_pages(obj);
1172
1173         offset = args->offset;
1174         obj->dirty = 1;
1175
1176         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1177                          offset >> PAGE_SHIFT) {
1178                 struct page *page = sg_page_iter_page(&sg_iter);
1179                 int partial_cacheline_write;
1180
1181                 if (remain <= 0)
1182                         break;
1183
1184                 /* Operation in this page
1185                  *
1186                  * shmem_page_offset = offset within page in shmem file
1187                  * page_length = bytes to copy for this page
1188                  */
1189                 shmem_page_offset = offset_in_page(offset);
1190
1191                 page_length = remain;
1192                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1193                         page_length = PAGE_SIZE - shmem_page_offset;
1194
1195                 /* If we don't overwrite a cacheline completely we need to be
1196                  * careful to have up-to-date data by first clflushing. Don't
1197                  * overcomplicate things and flush the entire patch. */
1198                 partial_cacheline_write = needs_clflush_before &&
1199                         ((shmem_page_offset | page_length)
1200                                 & (boot_cpu_data.x86_clflush_size - 1));
1201
1202                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1203                         (page_to_phys(page) & (1 << 17)) != 0;
1204
1205                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1206                                         user_data, page_do_bit17_swizzling,
1207                                         partial_cacheline_write,
1208                                         needs_clflush_after);
1209                 if (ret == 0)
1210                         goto next_page;
1211
1212                 hit_slowpath = 1;
1213                 mutex_unlock(&dev->struct_mutex);
1214                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1215                                         user_data, page_do_bit17_swizzling,
1216                                         partial_cacheline_write,
1217                                         needs_clflush_after);
1218
1219                 mutex_lock(&dev->struct_mutex);
1220
1221                 if (ret)
1222                         goto out;
1223
1224 next_page:
1225                 remain -= page_length;
1226                 user_data += page_length;
1227                 offset += page_length;
1228         }
1229
1230 out:
1231         i915_gem_object_unpin_pages(obj);
1232
1233         if (hit_slowpath) {
1234                 /*
1235                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1236                  * cachelines in-line while writing and the object moved
1237                  * out of the cpu write domain while we've dropped the lock.
1238                  */
1239                 if (!needs_clflush_after &&
1240                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1241                         if (i915_gem_clflush_object(obj, obj->pin_display))
1242                                 needs_clflush_after = true;
1243                 }
1244         }
1245
1246         if (needs_clflush_after)
1247                 i915_gem_chipset_flush(to_i915(dev));
1248         else
1249                 obj->cache_dirty = true;
1250
1251         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1252         return ret;
1253 }
1254
1255 /**
1256  * Writes data to the object referenced by handle.
1257  * @dev: drm device
1258  * @data: ioctl data blob
1259  * @file: drm file
1260  *
1261  * On error, the contents of the buffer that were to be modified are undefined.
1262  */
1263 int
1264 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1265                       struct drm_file *file)
1266 {
1267         struct drm_i915_private *dev_priv = to_i915(dev);
1268         struct drm_i915_gem_pwrite *args = data;
1269         struct drm_i915_gem_object *obj;
1270         int ret;
1271
1272         if (args->size == 0)
1273                 return 0;
1274
1275         if (!access_ok(VERIFY_READ,
1276                        u64_to_user_ptr(args->data_ptr),
1277                        args->size))
1278                 return -EFAULT;
1279
1280         if (likely(!i915.prefault_disable)) {
1281                 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1282                                                    args->size);
1283                 if (ret)
1284                         return -EFAULT;
1285         }
1286
1287         intel_runtime_pm_get(dev_priv);
1288
1289         ret = i915_mutex_lock_interruptible(dev);
1290         if (ret)
1291                 goto put_rpm;
1292
1293         obj = i915_gem_object_lookup(file, args->handle);
1294         if (!obj) {
1295                 ret = -ENOENT;
1296                 goto unlock;
1297         }
1298
1299         /* Bounds check destination. */
1300         if (args->offset > obj->base.size ||
1301             args->size > obj->base.size - args->offset) {
1302                 ret = -EINVAL;
1303                 goto out;
1304         }
1305
1306         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1307
1308         ret = -EFAULT;
1309         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1310          * it would end up going through the fenced access, and we'll get
1311          * different detiling behavior between reading and writing.
1312          * pread/pwrite currently are reading and writing from the CPU
1313          * perspective, requiring manual detiling by the client.
1314          */
1315         if (!i915_gem_object_has_struct_page(obj) ||
1316             cpu_write_needs_clflush(obj)) {
1317                 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1318                 /* Note that the gtt paths might fail with non-page-backed user
1319                  * pointers (e.g. gtt mappings when moving data between
1320                  * textures). Fallback to the shmem path in that case. */
1321         }
1322
1323         if (ret == -EFAULT || ret == -ENOSPC) {
1324                 if (obj->phys_handle)
1325                         ret = i915_gem_phys_pwrite(obj, args, file);
1326                 else if (i915_gem_object_has_struct_page(obj))
1327                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1328                 else
1329                         ret = -ENODEV;
1330         }
1331
1332 out:
1333         i915_gem_object_put(obj);
1334 unlock:
1335         mutex_unlock(&dev->struct_mutex);
1336 put_rpm:
1337         intel_runtime_pm_put(dev_priv);
1338
1339         return ret;
1340 }
1341
1342 /**
1343  * Ensures that all rendering to the object has completed and the object is
1344  * safe to unbind from the GTT or access from the CPU.
1345  * @obj: i915 gem object
1346  * @readonly: waiting for read access or write
1347  */
1348 int
1349 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1350                                bool readonly)
1351 {
1352         struct reservation_object *resv;
1353         struct i915_gem_active *active;
1354         unsigned long active_mask;
1355         int idx, ret;
1356
1357         lockdep_assert_held(&obj->base.dev->struct_mutex);
1358
1359         if (!readonly) {
1360                 active = obj->last_read;
1361                 active_mask = obj->active;
1362         } else {
1363                 active_mask = 1;
1364                 active = &obj->last_write;
1365         }
1366
1367         for_each_active(active_mask, idx) {
1368                 ret = i915_gem_active_wait(&active[idx],
1369                                            &obj->base.dev->struct_mutex);
1370                 if (ret)
1371                         return ret;
1372         }
1373
1374         resv = i915_gem_object_get_dmabuf_resv(obj);
1375         if (resv) {
1376                 long err;
1377
1378                 err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
1379                                                           MAX_SCHEDULE_TIMEOUT);
1380                 if (err < 0)
1381                         return err;
1382         }
1383
1384         return 0;
1385 }
1386
1387 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1388  * as the object state may change during this call.
1389  */
1390 static __must_check int
1391 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1392                                             struct intel_rps_client *rps,
1393                                             bool readonly)
1394 {
1395         struct drm_device *dev = obj->base.dev;
1396         struct drm_i915_private *dev_priv = to_i915(dev);
1397         struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1398         struct i915_gem_active *active;
1399         unsigned long active_mask;
1400         int ret, i, n = 0;
1401
1402         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1403         BUG_ON(!dev_priv->mm.interruptible);
1404
1405         active_mask = obj->active;
1406         if (!active_mask)
1407                 return 0;
1408
1409         if (!readonly) {
1410                 active = obj->last_read;
1411         } else {
1412                 active_mask = 1;
1413                 active = &obj->last_write;
1414         }
1415
1416         for_each_active(active_mask, i) {
1417                 struct drm_i915_gem_request *req;
1418
1419                 req = i915_gem_active_get(&active[i],
1420                                           &obj->base.dev->struct_mutex);
1421                 if (req)
1422                         requests[n++] = req;
1423         }
1424
1425         mutex_unlock(&dev->struct_mutex);
1426         ret = 0;
1427         for (i = 0; ret == 0 && i < n; i++)
1428                 ret = i915_wait_request(requests[i], true, NULL, rps);
1429         mutex_lock(&dev->struct_mutex);
1430
1431         for (i = 0; i < n; i++)
1432                 i915_gem_request_put(requests[i]);
1433
1434         return ret;
1435 }
1436
1437 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1438 {
1439         struct drm_i915_file_private *fpriv = file->driver_priv;
1440         return &fpriv->rps;
1441 }
1442
1443 static enum fb_op_origin
1444 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1445 {
1446         return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
1447                ORIGIN_GTT : ORIGIN_CPU;
1448 }
1449
1450 /**
1451  * Called when user space prepares to use an object with the CPU, either
1452  * through the mmap ioctl's mapping or a GTT mapping.
1453  * @dev: drm device
1454  * @data: ioctl data blob
1455  * @file: drm file
1456  */
1457 int
1458 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1459                           struct drm_file *file)
1460 {
1461         struct drm_i915_gem_set_domain *args = data;
1462         struct drm_i915_gem_object *obj;
1463         uint32_t read_domains = args->read_domains;
1464         uint32_t write_domain = args->write_domain;
1465         int ret;
1466
1467         /* Only handle setting domains to types used by the CPU. */
1468         if (write_domain & I915_GEM_GPU_DOMAINS)
1469                 return -EINVAL;
1470
1471         if (read_domains & I915_GEM_GPU_DOMAINS)
1472                 return -EINVAL;
1473
1474         /* Having something in the write domain implies it's in the read
1475          * domain, and only that read domain.  Enforce that in the request.
1476          */
1477         if (write_domain != 0 && read_domains != write_domain)
1478                 return -EINVAL;
1479
1480         ret = i915_mutex_lock_interruptible(dev);
1481         if (ret)
1482                 return ret;
1483
1484         obj = i915_gem_object_lookup(file, args->handle);
1485         if (!obj) {
1486                 ret = -ENOENT;
1487                 goto unlock;
1488         }
1489
1490         /* Try to flush the object off the GPU without holding the lock.
1491          * We will repeat the flush holding the lock in the normal manner
1492          * to catch cases where we are gazumped.
1493          */
1494         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1495                                                           to_rps_client(file),
1496                                                           !write_domain);
1497         if (ret)
1498                 goto unref;
1499
1500         if (read_domains & I915_GEM_DOMAIN_GTT)
1501                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1502         else
1503                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1504
1505         if (write_domain != 0)
1506                 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1507
1508 unref:
1509         i915_gem_object_put(obj);
1510 unlock:
1511         mutex_unlock(&dev->struct_mutex);
1512         return ret;
1513 }
1514
1515 /**
1516  * Called when user space has done writes to this buffer
1517  * @dev: drm device
1518  * @data: ioctl data blob
1519  * @file: drm file
1520  */
1521 int
1522 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1523                          struct drm_file *file)
1524 {
1525         struct drm_i915_gem_sw_finish *args = data;
1526         struct drm_i915_gem_object *obj;
1527         int ret = 0;
1528
1529         ret = i915_mutex_lock_interruptible(dev);
1530         if (ret)
1531                 return ret;
1532
1533         obj = i915_gem_object_lookup(file, args->handle);
1534         if (!obj) {
1535                 ret = -ENOENT;
1536                 goto unlock;
1537         }
1538
1539         /* Pinned buffers may be scanout, so flush the cache */
1540         if (obj->pin_display)
1541                 i915_gem_object_flush_cpu_write_domain(obj);
1542
1543         i915_gem_object_put(obj);
1544 unlock:
1545         mutex_unlock(&dev->struct_mutex);
1546         return ret;
1547 }
1548
1549 /**
1550  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1551  *                       it is mapped to.
1552  * @dev: drm device
1553  * @data: ioctl data blob
1554  * @file: drm file
1555  *
1556  * While the mapping holds a reference on the contents of the object, it doesn't
1557  * imply a ref on the object itself.
1558  *
1559  * IMPORTANT:
1560  *
1561  * DRM driver writers who look a this function as an example for how to do GEM
1562  * mmap support, please don't implement mmap support like here. The modern way
1563  * to implement DRM mmap support is with an mmap offset ioctl (like
1564  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1565  * That way debug tooling like valgrind will understand what's going on, hiding
1566  * the mmap call in a driver private ioctl will break that. The i915 driver only
1567  * does cpu mmaps this way because we didn't know better.
1568  */
1569 int
1570 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1571                     struct drm_file *file)
1572 {
1573         struct drm_i915_gem_mmap *args = data;
1574         struct drm_i915_gem_object *obj;
1575         unsigned long addr;
1576
1577         if (args->flags & ~(I915_MMAP_WC))
1578                 return -EINVAL;
1579
1580         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1581                 return -ENODEV;
1582
1583         obj = i915_gem_object_lookup(file, args->handle);
1584         if (!obj)
1585                 return -ENOENT;
1586
1587         /* prime objects have no backing filp to GEM mmap
1588          * pages from.
1589          */
1590         if (!obj->base.filp) {
1591                 i915_gem_object_put_unlocked(obj);
1592                 return -EINVAL;
1593         }
1594
1595         addr = vm_mmap(obj->base.filp, 0, args->size,
1596                        PROT_READ | PROT_WRITE, MAP_SHARED,
1597                        args->offset);
1598         if (args->flags & I915_MMAP_WC) {
1599                 struct mm_struct *mm = current->mm;
1600                 struct vm_area_struct *vma;
1601
1602                 if (down_write_killable(&mm->mmap_sem)) {
1603                         i915_gem_object_put_unlocked(obj);
1604                         return -EINTR;
1605                 }
1606                 vma = find_vma(mm, addr);
1607                 if (vma)
1608                         vma->vm_page_prot =
1609                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1610                 else
1611                         addr = -ENOMEM;
1612                 up_write(&mm->mmap_sem);
1613
1614                 /* This may race, but that's ok, it only gets set */
1615                 WRITE_ONCE(obj->has_wc_mmap, true);
1616         }
1617         i915_gem_object_put_unlocked(obj);
1618         if (IS_ERR((void *)addr))
1619                 return addr;
1620
1621         args->addr_ptr = (uint64_t) addr;
1622
1623         return 0;
1624 }
1625
1626 /**
1627  * i915_gem_fault - fault a page into the GTT
1628  * @vma: VMA in question
1629  * @vmf: fault info
1630  *
1631  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1632  * from userspace.  The fault handler takes care of binding the object to
1633  * the GTT (if needed), allocating and programming a fence register (again,
1634  * only if needed based on whether the old reg is still valid or the object
1635  * is tiled) and inserting a new PTE into the faulting process.
1636  *
1637  * Note that the faulting process may involve evicting existing objects
1638  * from the GTT and/or fence registers to make room.  So performance may
1639  * suffer if the GTT working set is large or there are few fence registers
1640  * left.
1641  */
1642 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1643 {
1644         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1645         struct drm_device *dev = obj->base.dev;
1646         struct drm_i915_private *dev_priv = to_i915(dev);
1647         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1648         struct i915_ggtt_view view = i915_ggtt_view_normal;
1649         pgoff_t page_offset;
1650         unsigned long pfn;
1651         int ret = 0;
1652         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1653
1654         intel_runtime_pm_get(dev_priv);
1655
1656         /* We don't use vmf->pgoff since that has the fake offset */
1657         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1658                 PAGE_SHIFT;
1659
1660         ret = i915_mutex_lock_interruptible(dev);
1661         if (ret)
1662                 goto out;
1663
1664         trace_i915_gem_object_fault(obj, page_offset, true, write);
1665
1666         /* Try to flush the object off the GPU first without holding the lock.
1667          * Upon reacquiring the lock, we will perform our sanity checks and then
1668          * repeat the flush holding the lock in the normal manner to catch cases
1669          * where we are gazumped.
1670          */
1671         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1672         if (ret)
1673                 goto unlock;
1674
1675         /* Access to snoopable pages through the GTT is incoherent. */
1676         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1677                 ret = -EFAULT;
1678                 goto unlock;
1679         }
1680
1681         /* Use a partial view if the object is bigger than the aperture. */
1682         if (obj->base.size >= ggtt->mappable_end &&
1683             obj->tiling_mode == I915_TILING_NONE) {
1684                 static const unsigned int chunk_size = 256; // 1 MiB
1685
1686                 memset(&view, 0, sizeof(view));
1687                 view.type = I915_GGTT_VIEW_PARTIAL;
1688                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1689                 view.params.partial.size =
1690                         min_t(unsigned int,
1691                               chunk_size,
1692                               (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1693                               view.params.partial.offset);
1694         }
1695
1696         /* Now pin it into the GTT if needed */
1697         ret = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1698         if (ret)
1699                 goto unlock;
1700
1701         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1702         if (ret)
1703                 goto unpin;
1704
1705         ret = i915_gem_object_get_fence(obj);
1706         if (ret)
1707                 goto unpin;
1708
1709         /* Finally, remap it using the new GTT offset */
1710         pfn = ggtt->mappable_base +
1711                 i915_gem_obj_ggtt_offset_view(obj, &view);
1712         pfn >>= PAGE_SHIFT;
1713
1714         if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1715                 /* Overriding existing pages in partial view does not cause
1716                  * us any trouble as TLBs are still valid because the fault
1717                  * is due to userspace losing part of the mapping or never
1718                  * having accessed it before (at this partials' range).
1719                  */
1720                 unsigned long base = vma->vm_start +
1721                                      (view.params.partial.offset << PAGE_SHIFT);
1722                 unsigned int i;
1723
1724                 for (i = 0; i < view.params.partial.size; i++) {
1725                         ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1726                         if (ret)
1727                                 break;
1728                 }
1729
1730                 obj->fault_mappable = true;
1731         } else {
1732                 if (!obj->fault_mappable) {
1733                         unsigned long size = min_t(unsigned long,
1734                                                    vma->vm_end - vma->vm_start,
1735                                                    obj->base.size);
1736                         int i;
1737
1738                         for (i = 0; i < size >> PAGE_SHIFT; i++) {
1739                                 ret = vm_insert_pfn(vma,
1740                                                     (unsigned long)vma->vm_start + i * PAGE_SIZE,
1741                                                     pfn + i);
1742                                 if (ret)
1743                                         break;
1744                         }
1745
1746                         obj->fault_mappable = true;
1747                 } else
1748                         ret = vm_insert_pfn(vma,
1749                                             (unsigned long)vmf->virtual_address,
1750                                             pfn + page_offset);
1751         }
1752 unpin:
1753         i915_gem_object_ggtt_unpin_view(obj, &view);
1754 unlock:
1755         mutex_unlock(&dev->struct_mutex);
1756 out:
1757         switch (ret) {
1758         case -EIO:
1759                 /*
1760                  * We eat errors when the gpu is terminally wedged to avoid
1761                  * userspace unduly crashing (gl has no provisions for mmaps to
1762                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1763                  * and so needs to be reported.
1764                  */
1765                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1766                         ret = VM_FAULT_SIGBUS;
1767                         break;
1768                 }
1769         case -EAGAIN:
1770                 /*
1771                  * EAGAIN means the gpu is hung and we'll wait for the error
1772                  * handler to reset everything when re-faulting in
1773                  * i915_mutex_lock_interruptible.
1774                  */
1775         case 0:
1776         case -ERESTARTSYS:
1777         case -EINTR:
1778         case -EBUSY:
1779                 /*
1780                  * EBUSY is ok: this just means that another thread
1781                  * already did the job.
1782                  */
1783                 ret = VM_FAULT_NOPAGE;
1784                 break;
1785         case -ENOMEM:
1786                 ret = VM_FAULT_OOM;
1787                 break;
1788         case -ENOSPC:
1789         case -EFAULT:
1790                 ret = VM_FAULT_SIGBUS;
1791                 break;
1792         default:
1793                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1794                 ret = VM_FAULT_SIGBUS;
1795                 break;
1796         }
1797
1798         intel_runtime_pm_put(dev_priv);
1799         return ret;
1800 }
1801
1802 /**
1803  * i915_gem_release_mmap - remove physical page mappings
1804  * @obj: obj in question
1805  *
1806  * Preserve the reservation of the mmapping with the DRM core code, but
1807  * relinquish ownership of the pages back to the system.
1808  *
1809  * It is vital that we remove the page mapping if we have mapped a tiled
1810  * object through the GTT and then lose the fence register due to
1811  * resource pressure. Similarly if the object has been moved out of the
1812  * aperture, than pages mapped into userspace must be revoked. Removing the
1813  * mapping will then trigger a page fault on the next user access, allowing
1814  * fixup by i915_gem_fault().
1815  */
1816 void
1817 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1818 {
1819         /* Serialisation between user GTT access and our code depends upon
1820          * revoking the CPU's PTE whilst the mutex is held. The next user
1821          * pagefault then has to wait until we release the mutex.
1822          */
1823         lockdep_assert_held(&obj->base.dev->struct_mutex);
1824
1825         if (!obj->fault_mappable)
1826                 return;
1827
1828         drm_vma_node_unmap(&obj->base.vma_node,
1829                            obj->base.dev->anon_inode->i_mapping);
1830
1831         /* Ensure that the CPU's PTE are revoked and there are not outstanding
1832          * memory transactions from userspace before we return. The TLB
1833          * flushing implied above by changing the PTE above *should* be
1834          * sufficient, an extra barrier here just provides us with a bit
1835          * of paranoid documentation about our requirement to serialise
1836          * memory writes before touching registers / GSM.
1837          */
1838         wmb();
1839
1840         obj->fault_mappable = false;
1841 }
1842
1843 void
1844 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1845 {
1846         struct drm_i915_gem_object *obj;
1847
1848         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1849                 i915_gem_release_mmap(obj);
1850 }
1851
1852 /**
1853  * i915_gem_get_ggtt_size - return required global GTT size for an object
1854  * @dev_priv: i915 device
1855  * @size: object size
1856  * @tiling_mode: tiling mode
1857  *
1858  * Return the required global GTT size for an object, taking into account
1859  * potential fence register mapping.
1860  */
1861 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
1862                            u64 size, int tiling_mode)
1863 {
1864         u64 ggtt_size;
1865
1866         GEM_BUG_ON(size == 0);
1867
1868         if (INTEL_GEN(dev_priv) >= 4 ||
1869             tiling_mode == I915_TILING_NONE)
1870                 return size;
1871
1872         /* Previous chips need a power-of-two fence region when tiling */
1873         if (IS_GEN3(dev_priv))
1874                 ggtt_size = 1024*1024;
1875         else
1876                 ggtt_size = 512*1024;
1877
1878         while (ggtt_size < size)
1879                 ggtt_size <<= 1;
1880
1881         return ggtt_size;
1882 }
1883
1884 /**
1885  * i915_gem_get_ggtt_alignment - return required global GTT alignment
1886  * @dev_priv: i915 device
1887  * @size: object size
1888  * @tiling_mode: tiling mode
1889  * @fenced: is fenced alignment required or not
1890  *
1891  * Return the required global GTT alignment for an object, taking into account
1892  * potential fence register mapping.
1893  */
1894 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
1895                                 int tiling_mode, bool fenced)
1896 {
1897         GEM_BUG_ON(size == 0);
1898
1899         /*
1900          * Minimum alignment is 4k (GTT page size), but might be greater
1901          * if a fence register is needed for the object.
1902          */
1903         if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
1904             tiling_mode == I915_TILING_NONE)
1905                 return 4096;
1906
1907         /*
1908          * Previous chips need to be aligned to the size of the smallest
1909          * fence register that can contain the object.
1910          */
1911         return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
1912 }
1913
1914 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1915 {
1916         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1917         int ret;
1918
1919         dev_priv->mm.shrinker_no_lock_stealing = true;
1920
1921         ret = drm_gem_create_mmap_offset(&obj->base);
1922         if (ret != -ENOSPC)
1923                 goto out;
1924
1925         /* Badly fragmented mmap space? The only way we can recover
1926          * space is by destroying unwanted objects. We can't randomly release
1927          * mmap_offsets as userspace expects them to be persistent for the
1928          * lifetime of the objects. The closest we can is to release the
1929          * offsets on purgeable objects by truncating it and marking it purged,
1930          * which prevents userspace from ever using that object again.
1931          */
1932         i915_gem_shrink(dev_priv,
1933                         obj->base.size >> PAGE_SHIFT,
1934                         I915_SHRINK_BOUND |
1935                         I915_SHRINK_UNBOUND |
1936                         I915_SHRINK_PURGEABLE);
1937         ret = drm_gem_create_mmap_offset(&obj->base);
1938         if (ret != -ENOSPC)
1939                 goto out;
1940
1941         i915_gem_shrink_all(dev_priv);
1942         ret = drm_gem_create_mmap_offset(&obj->base);
1943 out:
1944         dev_priv->mm.shrinker_no_lock_stealing = false;
1945
1946         return ret;
1947 }
1948
1949 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1950 {
1951         drm_gem_free_mmap_offset(&obj->base);
1952 }
1953
1954 int
1955 i915_gem_mmap_gtt(struct drm_file *file,
1956                   struct drm_device *dev,
1957                   uint32_t handle,
1958                   uint64_t *offset)
1959 {
1960         struct drm_i915_gem_object *obj;
1961         int ret;
1962
1963         ret = i915_mutex_lock_interruptible(dev);
1964         if (ret)
1965                 return ret;
1966
1967         obj = i915_gem_object_lookup(file, handle);
1968         if (!obj) {
1969                 ret = -ENOENT;
1970                 goto unlock;
1971         }
1972
1973         if (obj->madv != I915_MADV_WILLNEED) {
1974                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1975                 ret = -EFAULT;
1976                 goto out;
1977         }
1978
1979         ret = i915_gem_object_create_mmap_offset(obj);
1980         if (ret)
1981                 goto out;
1982
1983         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1984
1985 out:
1986         i915_gem_object_put(obj);
1987 unlock:
1988         mutex_unlock(&dev->struct_mutex);
1989         return ret;
1990 }
1991
1992 /**
1993  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1994  * @dev: DRM device
1995  * @data: GTT mapping ioctl data
1996  * @file: GEM object info
1997  *
1998  * Simply returns the fake offset to userspace so it can mmap it.
1999  * The mmap call will end up in drm_gem_mmap(), which will set things
2000  * up so we can get faults in the handler above.
2001  *
2002  * The fault handler will take care of binding the object into the GTT
2003  * (since it may have been evicted to make room for something), allocating
2004  * a fence register, and mapping the appropriate aperture address into
2005  * userspace.
2006  */
2007 int
2008 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2009                         struct drm_file *file)
2010 {
2011         struct drm_i915_gem_mmap_gtt *args = data;
2012
2013         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2014 }
2015
2016 /* Immediately discard the backing storage */
2017 static void
2018 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2019 {
2020         i915_gem_object_free_mmap_offset(obj);
2021
2022         if (obj->base.filp == NULL)
2023                 return;
2024
2025         /* Our goal here is to return as much of the memory as
2026          * is possible back to the system as we are called from OOM.
2027          * To do this we must instruct the shmfs to drop all of its
2028          * backing pages, *now*.
2029          */
2030         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2031         obj->madv = __I915_MADV_PURGED;
2032 }
2033
2034 /* Try to discard unwanted pages */
2035 static void
2036 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2037 {
2038         struct address_space *mapping;
2039
2040         switch (obj->madv) {
2041         case I915_MADV_DONTNEED:
2042                 i915_gem_object_truncate(obj);
2043         case __I915_MADV_PURGED:
2044                 return;
2045         }
2046
2047         if (obj->base.filp == NULL)
2048                 return;
2049
2050         mapping = file_inode(obj->base.filp)->i_mapping,
2051         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2052 }
2053
2054 static void
2055 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2056 {
2057         struct sgt_iter sgt_iter;
2058         struct page *page;
2059         int ret;
2060
2061         BUG_ON(obj->madv == __I915_MADV_PURGED);
2062
2063         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2064         if (WARN_ON(ret)) {
2065                 /* In the event of a disaster, abandon all caches and
2066                  * hope for the best.
2067                  */
2068                 i915_gem_clflush_object(obj, true);
2069                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2070         }
2071
2072         i915_gem_gtt_finish_object(obj);
2073
2074         if (i915_gem_object_needs_bit17_swizzle(obj))
2075                 i915_gem_object_save_bit_17_swizzle(obj);
2076
2077         if (obj->madv == I915_MADV_DONTNEED)
2078                 obj->dirty = 0;
2079
2080         for_each_sgt_page(page, sgt_iter, obj->pages) {
2081                 if (obj->dirty)
2082                         set_page_dirty(page);
2083
2084                 if (obj->madv == I915_MADV_WILLNEED)
2085                         mark_page_accessed(page);
2086
2087                 put_page(page);
2088         }
2089         obj->dirty = 0;
2090
2091         sg_free_table(obj->pages);
2092         kfree(obj->pages);
2093 }
2094
2095 int
2096 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2097 {
2098         const struct drm_i915_gem_object_ops *ops = obj->ops;
2099
2100         if (obj->pages == NULL)
2101                 return 0;
2102
2103         if (obj->pages_pin_count)
2104                 return -EBUSY;
2105
2106         GEM_BUG_ON(obj->bind_count);
2107
2108         /* ->put_pages might need to allocate memory for the bit17 swizzle
2109          * array, hence protect them from being reaped by removing them from gtt
2110          * lists early. */
2111         list_del(&obj->global_list);
2112
2113         if (obj->mapping) {
2114                 if (is_vmalloc_addr(obj->mapping))
2115                         vunmap(obj->mapping);
2116                 else
2117                         kunmap(kmap_to_page(obj->mapping));
2118                 obj->mapping = NULL;
2119         }
2120
2121         ops->put_pages(obj);
2122         obj->pages = NULL;
2123
2124         i915_gem_object_invalidate(obj);
2125
2126         return 0;
2127 }
2128
2129 static int
2130 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2131 {
2132         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2133         int page_count, i;
2134         struct address_space *mapping;
2135         struct sg_table *st;
2136         struct scatterlist *sg;
2137         struct sgt_iter sgt_iter;
2138         struct page *page;
2139         unsigned long last_pfn = 0;     /* suppress gcc warning */
2140         int ret;
2141         gfp_t gfp;
2142
2143         /* Assert that the object is not currently in any GPU domain. As it
2144          * wasn't in the GTT, there shouldn't be any way it could have been in
2145          * a GPU cache
2146          */
2147         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2148         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2149
2150         st = kmalloc(sizeof(*st), GFP_KERNEL);
2151         if (st == NULL)
2152                 return -ENOMEM;
2153
2154         page_count = obj->base.size / PAGE_SIZE;
2155         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2156                 kfree(st);
2157                 return -ENOMEM;
2158         }
2159
2160         /* Get the list of pages out of our struct file.  They'll be pinned
2161          * at this point until we release them.
2162          *
2163          * Fail silently without starting the shrinker
2164          */
2165         mapping = file_inode(obj->base.filp)->i_mapping;
2166         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2167         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2168         sg = st->sgl;
2169         st->nents = 0;
2170         for (i = 0; i < page_count; i++) {
2171                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2172                 if (IS_ERR(page)) {
2173                         i915_gem_shrink(dev_priv,
2174                                         page_count,
2175                                         I915_SHRINK_BOUND |
2176                                         I915_SHRINK_UNBOUND |
2177                                         I915_SHRINK_PURGEABLE);
2178                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2179                 }
2180                 if (IS_ERR(page)) {
2181                         /* We've tried hard to allocate the memory by reaping
2182                          * our own buffer, now let the real VM do its job and
2183                          * go down in flames if truly OOM.
2184                          */
2185                         i915_gem_shrink_all(dev_priv);
2186                         page = shmem_read_mapping_page(mapping, i);
2187                         if (IS_ERR(page)) {
2188                                 ret = PTR_ERR(page);
2189                                 goto err_pages;
2190                         }
2191                 }
2192 #ifdef CONFIG_SWIOTLB
2193                 if (swiotlb_nr_tbl()) {
2194                         st->nents++;
2195                         sg_set_page(sg, page, PAGE_SIZE, 0);
2196                         sg = sg_next(sg);
2197                         continue;
2198                 }
2199 #endif
2200                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2201                         if (i)
2202                                 sg = sg_next(sg);
2203                         st->nents++;
2204                         sg_set_page(sg, page, PAGE_SIZE, 0);
2205                 } else {
2206                         sg->length += PAGE_SIZE;
2207                 }
2208                 last_pfn = page_to_pfn(page);
2209
2210                 /* Check that the i965g/gm workaround works. */
2211                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2212         }
2213 #ifdef CONFIG_SWIOTLB
2214         if (!swiotlb_nr_tbl())
2215 #endif
2216                 sg_mark_end(sg);
2217         obj->pages = st;
2218
2219         ret = i915_gem_gtt_prepare_object(obj);
2220         if (ret)
2221                 goto err_pages;
2222
2223         if (i915_gem_object_needs_bit17_swizzle(obj))
2224                 i915_gem_object_do_bit_17_swizzle(obj);
2225
2226         if (obj->tiling_mode != I915_TILING_NONE &&
2227             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2228                 i915_gem_object_pin_pages(obj);
2229
2230         return 0;
2231
2232 err_pages:
2233         sg_mark_end(sg);
2234         for_each_sgt_page(page, sgt_iter, st)
2235                 put_page(page);
2236         sg_free_table(st);
2237         kfree(st);
2238
2239         /* shmemfs first checks if there is enough memory to allocate the page
2240          * and reports ENOSPC should there be insufficient, along with the usual
2241          * ENOMEM for a genuine allocation failure.
2242          *
2243          * We use ENOSPC in our driver to mean that we have run out of aperture
2244          * space and so want to translate the error from shmemfs back to our
2245          * usual understanding of ENOMEM.
2246          */
2247         if (ret == -ENOSPC)
2248                 ret = -ENOMEM;
2249
2250         return ret;
2251 }
2252
2253 /* Ensure that the associated pages are gathered from the backing storage
2254  * and pinned into our object. i915_gem_object_get_pages() may be called
2255  * multiple times before they are released by a single call to
2256  * i915_gem_object_put_pages() - once the pages are no longer referenced
2257  * either as a result of memory pressure (reaping pages under the shrinker)
2258  * or as the object is itself released.
2259  */
2260 int
2261 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2262 {
2263         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2264         const struct drm_i915_gem_object_ops *ops = obj->ops;
2265         int ret;
2266
2267         if (obj->pages)
2268                 return 0;
2269
2270         if (obj->madv != I915_MADV_WILLNEED) {
2271                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2272                 return -EFAULT;
2273         }
2274
2275         BUG_ON(obj->pages_pin_count);
2276
2277         ret = ops->get_pages(obj);
2278         if (ret)
2279                 return ret;
2280
2281         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2282
2283         obj->get_page.sg = obj->pages->sgl;
2284         obj->get_page.last = 0;
2285
2286         return 0;
2287 }
2288
2289 /* The 'mapping' part of i915_gem_object_pin_map() below */
2290 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2291 {
2292         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2293         struct sg_table *sgt = obj->pages;
2294         struct sgt_iter sgt_iter;
2295         struct page *page;
2296         struct page *stack_pages[32];
2297         struct page **pages = stack_pages;
2298         unsigned long i = 0;
2299         void *addr;
2300
2301         /* A single page can always be kmapped */
2302         if (n_pages == 1)
2303                 return kmap(sg_page(sgt->sgl));
2304
2305         if (n_pages > ARRAY_SIZE(stack_pages)) {
2306                 /* Too big for stack -- allocate temporary array instead */
2307                 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2308                 if (!pages)
2309                         return NULL;
2310         }
2311
2312         for_each_sgt_page(page, sgt_iter, sgt)
2313                 pages[i++] = page;
2314
2315         /* Check that we have the expected number of pages */
2316         GEM_BUG_ON(i != n_pages);
2317
2318         addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2319
2320         if (pages != stack_pages)
2321                 drm_free_large(pages);
2322
2323         return addr;
2324 }
2325
2326 /* get, pin, and map the pages of the object into kernel space */
2327 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2328 {
2329         int ret;
2330
2331         lockdep_assert_held(&obj->base.dev->struct_mutex);
2332
2333         ret = i915_gem_object_get_pages(obj);
2334         if (ret)
2335                 return ERR_PTR(ret);
2336
2337         i915_gem_object_pin_pages(obj);
2338
2339         if (!obj->mapping) {
2340                 obj->mapping = i915_gem_object_map(obj);
2341                 if (!obj->mapping) {
2342                         i915_gem_object_unpin_pages(obj);
2343                         return ERR_PTR(-ENOMEM);
2344                 }
2345         }
2346
2347         return obj->mapping;
2348 }
2349
2350 static void
2351 i915_gem_object_retire__write(struct i915_gem_active *active,
2352                               struct drm_i915_gem_request *request)
2353 {
2354         struct drm_i915_gem_object *obj =
2355                 container_of(active, struct drm_i915_gem_object, last_write);
2356
2357         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2358 }
2359
2360 static void
2361 i915_gem_object_retire__read(struct i915_gem_active *active,
2362                              struct drm_i915_gem_request *request)
2363 {
2364         int idx = request->engine->id;
2365         struct drm_i915_gem_object *obj =
2366                 container_of(active, struct drm_i915_gem_object, last_read[idx]);
2367
2368         GEM_BUG_ON((obj->active & (1 << idx)) == 0);
2369
2370         obj->active &= ~(1 << idx);
2371         if (obj->active)
2372                 return;
2373
2374         /* Bump our place on the bound list to keep it roughly in LRU order
2375          * so that we don't steal from recently used but inactive objects
2376          * (unless we are forced to ofc!)
2377          */
2378         if (obj->bind_count)
2379                 list_move_tail(&obj->global_list,
2380                                &request->i915->mm.bound_list);
2381
2382         i915_gem_object_put(obj);
2383 }
2384
2385 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2386 {
2387         unsigned long elapsed;
2388
2389         if (ctx->hang_stats.banned)
2390                 return true;
2391
2392         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2393         if (ctx->hang_stats.ban_period_seconds &&
2394             elapsed <= ctx->hang_stats.ban_period_seconds) {
2395                 DRM_DEBUG("context hanging too fast, banning!\n");
2396                 return true;
2397         }
2398
2399         return false;
2400 }
2401
2402 static void i915_set_reset_status(struct i915_gem_context *ctx,
2403                                   const bool guilty)
2404 {
2405         struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2406
2407         if (guilty) {
2408                 hs->banned = i915_context_is_banned(ctx);
2409                 hs->batch_active++;
2410                 hs->guilty_ts = get_seconds();
2411         } else {
2412                 hs->batch_pending++;
2413         }
2414 }
2415
2416 struct drm_i915_gem_request *
2417 i915_gem_find_active_request(struct intel_engine_cs *engine)
2418 {
2419         struct drm_i915_gem_request *request;
2420
2421         /* We are called by the error capture and reset at a random
2422          * point in time. In particular, note that neither is crucially
2423          * ordered with an interrupt. After a hang, the GPU is dead and we
2424          * assume that no more writes can happen (we waited long enough for
2425          * all writes that were in transaction to be flushed) - adding an
2426          * extra delay for a recent interrupt is pointless. Hence, we do
2427          * not need an engine->irq_seqno_barrier() before the seqno reads.
2428          */
2429         list_for_each_entry(request, &engine->request_list, link) {
2430                 if (i915_gem_request_completed(request))
2431                         continue;
2432
2433                 return request;
2434         }
2435
2436         return NULL;
2437 }
2438
2439 static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2440 {
2441         struct drm_i915_gem_request *request;
2442         bool ring_hung;
2443
2444         request = i915_gem_find_active_request(engine);
2445         if (request == NULL)
2446                 return;
2447
2448         ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2449
2450         i915_set_reset_status(request->ctx, ring_hung);
2451         list_for_each_entry_continue(request, &engine->request_list, link)
2452                 i915_set_reset_status(request->ctx, false);
2453 }
2454
2455 static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2456 {
2457         struct intel_ring *ring;
2458
2459         /* Mark all pending requests as complete so that any concurrent
2460          * (lockless) lookup doesn't try and wait upon the request as we
2461          * reset it.
2462          */
2463         intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2464
2465         /*
2466          * Clear the execlists queue up before freeing the requests, as those
2467          * are the ones that keep the context and ringbuffer backing objects
2468          * pinned in place.
2469          */
2470
2471         if (i915.enable_execlists) {
2472                 /* Ensure irq handler finishes or is cancelled. */
2473                 tasklet_kill(&engine->irq_tasklet);
2474
2475                 intel_execlists_cancel_requests(engine);
2476         }
2477
2478         /*
2479          * We must free the requests after all the corresponding objects have
2480          * been moved off active lists. Which is the same order as the normal
2481          * retire_requests function does. This is important if object hold
2482          * implicit references on things like e.g. ppgtt address spaces through
2483          * the request.
2484          */
2485         if (!list_empty(&engine->request_list)) {
2486                 struct drm_i915_gem_request *request;
2487
2488                 request = list_last_entry(&engine->request_list,
2489                                           struct drm_i915_gem_request,
2490                                           link);
2491
2492                 i915_gem_request_retire_upto(request);
2493         }
2494
2495         /* Having flushed all requests from all queues, we know that all
2496          * ringbuffers must now be empty. However, since we do not reclaim
2497          * all space when retiring the request (to prevent HEADs colliding
2498          * with rapid ringbuffer wraparound) the amount of available space
2499          * upon reset is less than when we start. Do one more pass over
2500          * all the ringbuffers to reset last_retired_head.
2501          */
2502         list_for_each_entry(ring, &engine->buffers, link) {
2503                 ring->last_retired_head = ring->tail;
2504                 intel_ring_update_space(ring);
2505         }
2506
2507         engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2508 }
2509
2510 void i915_gem_reset(struct drm_device *dev)
2511 {
2512         struct drm_i915_private *dev_priv = to_i915(dev);
2513         struct intel_engine_cs *engine;
2514
2515         /*
2516          * Before we free the objects from the requests, we need to inspect
2517          * them for finding the guilty party. As the requests only borrow
2518          * their reference to the objects, the inspection must be done first.
2519          */
2520         for_each_engine(engine, dev_priv)
2521                 i915_gem_reset_engine_status(engine);
2522
2523         for_each_engine(engine, dev_priv)
2524                 i915_gem_reset_engine_cleanup(engine);
2525         mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2526
2527         i915_gem_context_reset(dev);
2528
2529         i915_gem_restore_fences(dev);
2530 }
2531
2532 static void
2533 i915_gem_retire_work_handler(struct work_struct *work)
2534 {
2535         struct drm_i915_private *dev_priv =
2536                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
2537         struct drm_device *dev = &dev_priv->drm;
2538
2539         /* Come back later if the device is busy... */
2540         if (mutex_trylock(&dev->struct_mutex)) {
2541                 i915_gem_retire_requests(dev_priv);
2542                 mutex_unlock(&dev->struct_mutex);
2543         }
2544
2545         /* Keep the retire handler running until we are finally idle.
2546          * We do not need to do this test under locking as in the worst-case
2547          * we queue the retire worker once too often.
2548          */
2549         if (READ_ONCE(dev_priv->gt.awake)) {
2550                 i915_queue_hangcheck(dev_priv);
2551                 queue_delayed_work(dev_priv->wq,
2552                                    &dev_priv->gt.retire_work,
2553                                    round_jiffies_up_relative(HZ));
2554         }
2555 }
2556
2557 static void
2558 i915_gem_idle_work_handler(struct work_struct *work)
2559 {
2560         struct drm_i915_private *dev_priv =
2561                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
2562         struct drm_device *dev = &dev_priv->drm;
2563         struct intel_engine_cs *engine;
2564         unsigned int stuck_engines;
2565         bool rearm_hangcheck;
2566
2567         if (!READ_ONCE(dev_priv->gt.awake))
2568                 return;
2569
2570         if (READ_ONCE(dev_priv->gt.active_engines))
2571                 return;
2572
2573         rearm_hangcheck =
2574                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2575
2576         if (!mutex_trylock(&dev->struct_mutex)) {
2577                 /* Currently busy, come back later */
2578                 mod_delayed_work(dev_priv->wq,
2579                                  &dev_priv->gt.idle_work,
2580                                  msecs_to_jiffies(50));
2581                 goto out_rearm;
2582         }
2583
2584         if (dev_priv->gt.active_engines)
2585                 goto out_unlock;
2586
2587         for_each_engine(engine, dev_priv)
2588                 i915_gem_batch_pool_fini(&engine->batch_pool);
2589
2590         GEM_BUG_ON(!dev_priv->gt.awake);
2591         dev_priv->gt.awake = false;
2592         rearm_hangcheck = false;
2593
2594         /* As we have disabled hangcheck, we need to unstick any waiters still
2595          * hanging around. However, as we may be racing against the interrupt
2596          * handler or the waiters themselves, we skip enabling the fake-irq.
2597          */
2598         stuck_engines = intel_kick_waiters(dev_priv);
2599         if (unlikely(stuck_engines))
2600                 DRM_DEBUG_DRIVER("kicked stuck waiters (%x)...missed irq?\n",
2601                                  stuck_engines);
2602
2603         if (INTEL_GEN(dev_priv) >= 6)
2604                 gen6_rps_idle(dev_priv);
2605         intel_runtime_pm_put(dev_priv);
2606 out_unlock:
2607         mutex_unlock(&dev->struct_mutex);
2608
2609 out_rearm:
2610         if (rearm_hangcheck) {
2611                 GEM_BUG_ON(!dev_priv->gt.awake);
2612                 i915_queue_hangcheck(dev_priv);
2613         }
2614 }
2615
2616 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2617 {
2618         struct drm_i915_gem_object *obj = to_intel_bo(gem);
2619         struct drm_i915_file_private *fpriv = file->driver_priv;
2620         struct i915_vma *vma, *vn;
2621
2622         mutex_lock(&obj->base.dev->struct_mutex);
2623         list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2624                 if (vma->vm->file == fpriv)
2625                         i915_vma_close(vma);
2626         mutex_unlock(&obj->base.dev->struct_mutex);
2627 }
2628
2629 /**
2630  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2631  * @dev: drm device pointer
2632  * @data: ioctl data blob
2633  * @file: drm file pointer
2634  *
2635  * Returns 0 if successful, else an error is returned with the remaining time in
2636  * the timeout parameter.
2637  *  -ETIME: object is still busy after timeout
2638  *  -ERESTARTSYS: signal interrupted the wait
2639  *  -ENONENT: object doesn't exist
2640  * Also possible, but rare:
2641  *  -EAGAIN: GPU wedged
2642  *  -ENOMEM: damn
2643  *  -ENODEV: Internal IRQ fail
2644  *  -E?: The add request failed
2645  *
2646  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2647  * non-zero timeout parameter the wait ioctl will wait for the given number of
2648  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2649  * without holding struct_mutex the object may become re-busied before this
2650  * function completes. A similar but shorter * race condition exists in the busy
2651  * ioctl
2652  */
2653 int
2654 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2655 {
2656         struct drm_i915_gem_wait *args = data;
2657         struct drm_i915_gem_object *obj;
2658         struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
2659         int i, n = 0;
2660         int ret;
2661
2662         if (args->flags != 0)
2663                 return -EINVAL;
2664
2665         ret = i915_mutex_lock_interruptible(dev);
2666         if (ret)
2667                 return ret;
2668
2669         obj = i915_gem_object_lookup(file, args->bo_handle);
2670         if (!obj) {
2671                 mutex_unlock(&dev->struct_mutex);
2672                 return -ENOENT;
2673         }
2674
2675         if (!obj->active)
2676                 goto out;
2677
2678         for (i = 0; i < I915_NUM_ENGINES; i++) {
2679                 struct drm_i915_gem_request *req;
2680
2681                 req = i915_gem_active_get(&obj->last_read[i],
2682                                           &obj->base.dev->struct_mutex);
2683                 if (req)
2684                         requests[n++] = req;
2685         }
2686
2687 out:
2688         i915_gem_object_put(obj);
2689         mutex_unlock(&dev->struct_mutex);
2690
2691         for (i = 0; i < n; i++) {
2692                 if (ret == 0)
2693                         ret = i915_wait_request(requests[i], true,
2694                                                 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2695                                                 to_rps_client(file));
2696                 i915_gem_request_put(requests[i]);
2697         }
2698         return ret;
2699 }
2700
2701 static int
2702 __i915_gem_object_sync(struct drm_i915_gem_request *to,
2703                        struct drm_i915_gem_request *from)
2704 {
2705         int ret;
2706
2707         if (to->engine == from->engine)
2708                 return 0;
2709
2710         if (!i915.semaphores) {
2711                 ret = i915_wait_request(from,
2712                                         from->i915->mm.interruptible,
2713                                         NULL,
2714                                         NO_WAITBOOST);
2715                 if (ret)
2716                         return ret;
2717         } else {
2718                 int idx = intel_engine_sync_index(from->engine, to->engine);
2719                 if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
2720                         return 0;
2721
2722                 trace_i915_gem_ring_sync_to(to, from);
2723                 ret = to->engine->semaphore.sync_to(to, from);
2724                 if (ret)
2725                         return ret;
2726
2727                 from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
2728         }
2729
2730         return 0;
2731 }
2732
2733 /**
2734  * i915_gem_object_sync - sync an object to a ring.
2735  *
2736  * @obj: object which may be in use on another ring.
2737  * @to: request we are wishing to use
2738  *
2739  * This code is meant to abstract object synchronization with the GPU.
2740  * Conceptually we serialise writes between engines inside the GPU.
2741  * We only allow one engine to write into a buffer at any time, but
2742  * multiple readers. To ensure each has a coherent view of memory, we must:
2743  *
2744  * - If there is an outstanding write request to the object, the new
2745  *   request must wait for it to complete (either CPU or in hw, requests
2746  *   on the same ring will be naturally ordered).
2747  *
2748  * - If we are a write request (pending_write_domain is set), the new
2749  *   request must wait for outstanding read requests to complete.
2750  *
2751  * Returns 0 if successful, else propagates up the lower layer error.
2752  */
2753 int
2754 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2755                      struct drm_i915_gem_request *to)
2756 {
2757         struct i915_gem_active *active;
2758         unsigned long active_mask;
2759         int idx;
2760
2761         lockdep_assert_held(&obj->base.dev->struct_mutex);
2762
2763         active_mask = obj->active;
2764         if (!active_mask)
2765                 return 0;
2766
2767         if (obj->base.pending_write_domain) {
2768                 active = obj->last_read;
2769         } else {
2770                 active_mask = 1;
2771                 active = &obj->last_write;
2772         }
2773
2774         for_each_active(active_mask, idx) {
2775                 struct drm_i915_gem_request *request;
2776                 int ret;
2777
2778                 request = i915_gem_active_peek(&active[idx],
2779                                                &obj->base.dev->struct_mutex);
2780                 if (!request)
2781                         continue;
2782
2783                 ret = __i915_gem_object_sync(to, request);
2784                 if (ret)
2785                         return ret;
2786         }
2787
2788         return 0;
2789 }
2790
2791 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2792 {
2793         u32 old_write_domain, old_read_domains;
2794
2795         /* Force a pagefault for domain tracking on next user access */
2796         i915_gem_release_mmap(obj);
2797
2798         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2799                 return;
2800
2801         old_read_domains = obj->base.read_domains;
2802         old_write_domain = obj->base.write_domain;
2803
2804         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2805         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2806
2807         trace_i915_gem_object_change_domain(obj,
2808                                             old_read_domains,
2809                                             old_write_domain);
2810 }
2811
2812 static void __i915_vma_iounmap(struct i915_vma *vma)
2813 {
2814         GEM_BUG_ON(i915_vma_is_pinned(vma));
2815
2816         if (vma->iomap == NULL)
2817                 return;
2818
2819         io_mapping_unmap(vma->iomap);
2820         vma->iomap = NULL;
2821 }
2822
2823 int i915_vma_unbind(struct i915_vma *vma)
2824 {
2825         struct drm_i915_gem_object *obj = vma->obj;
2826         unsigned long active;
2827         int ret;
2828
2829         /* First wait upon any activity as retiring the request may
2830          * have side-effects such as unpinning or even unbinding this vma.
2831          */
2832         active = i915_vma_get_active(vma);
2833         if (active) {
2834                 int idx;
2835
2836                 /* When a closed VMA is retired, it is unbound - eek.
2837                  * In order to prevent it from being recursively closed,
2838                  * take a pin on the vma so that the second unbind is
2839                  * aborted.
2840                  */
2841                 __i915_vma_pin(vma);
2842
2843                 for_each_active(active, idx) {
2844                         ret = i915_gem_active_retire(&vma->last_read[idx],
2845                                                    &vma->vm->dev->struct_mutex);
2846                         if (ret)
2847                                 break;
2848                 }
2849
2850                 __i915_vma_unpin(vma);
2851                 if (ret)
2852                         return ret;
2853
2854                 GEM_BUG_ON(i915_vma_is_active(vma));
2855         }
2856
2857         if (i915_vma_is_pinned(vma))
2858                 return -EBUSY;
2859
2860         if (!drm_mm_node_allocated(&vma->node))
2861                 goto destroy;
2862
2863         GEM_BUG_ON(obj->bind_count == 0);
2864         GEM_BUG_ON(!obj->pages);
2865
2866         if (i915_vma_is_ggtt(vma) &&
2867             vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2868                 i915_gem_object_finish_gtt(obj);
2869
2870                 /* release the fence reg _after_ flushing */
2871                 ret = i915_gem_object_put_fence(obj);
2872                 if (ret)
2873                         return ret;
2874
2875                 __i915_vma_iounmap(vma);
2876         }
2877
2878         if (likely(!vma->vm->closed)) {
2879                 trace_i915_vma_unbind(vma);
2880                 vma->vm->unbind_vma(vma);
2881         }
2882         vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2883
2884         drm_mm_remove_node(&vma->node);
2885         list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
2886
2887         if (i915_vma_is_ggtt(vma)) {
2888                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2889                         obj->map_and_fenceable = false;
2890                 } else if (vma->ggtt_view.pages) {
2891                         sg_free_table(vma->ggtt_view.pages);
2892                         kfree(vma->ggtt_view.pages);
2893                 }
2894                 vma->ggtt_view.pages = NULL;
2895         }
2896
2897         /* Since the unbound list is global, only move to that list if
2898          * no more VMAs exist. */
2899         if (--obj->bind_count == 0)
2900                 list_move_tail(&obj->global_list,
2901                                &to_i915(obj->base.dev)->mm.unbound_list);
2902
2903         /* And finally now the object is completely decoupled from this vma,
2904          * we can drop its hold on the backing storage and allow it to be
2905          * reaped by the shrinker.
2906          */
2907         i915_gem_object_unpin_pages(obj);
2908
2909 destroy:
2910         if (unlikely(i915_vma_is_closed(vma)))
2911                 i915_vma_destroy(vma);
2912
2913         return 0;
2914 }
2915
2916 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
2917 {
2918         struct intel_engine_cs *engine;
2919         int ret;
2920
2921         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2922
2923         for_each_engine(engine, dev_priv) {
2924                 if (engine->last_context == NULL)
2925                         continue;
2926
2927                 ret = intel_engine_idle(engine);
2928                 if (ret)
2929                         return ret;
2930         }
2931
2932         return 0;
2933 }
2934
2935 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2936                                      unsigned long cache_level)
2937 {
2938         struct drm_mm_node *gtt_space = &vma->node;
2939         struct drm_mm_node *other;
2940
2941         /*
2942          * On some machines we have to be careful when putting differing types
2943          * of snoopable memory together to avoid the prefetcher crossing memory
2944          * domains and dying. During vm initialisation, we decide whether or not
2945          * these constraints apply and set the drm_mm.color_adjust
2946          * appropriately.
2947          */
2948         if (vma->vm->mm.color_adjust == NULL)
2949                 return true;
2950
2951         if (!drm_mm_node_allocated(gtt_space))
2952                 return true;
2953
2954         if (list_empty(&gtt_space->node_list))
2955                 return true;
2956
2957         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2958         if (other->allocated && !other->hole_follows && other->color != cache_level)
2959                 return false;
2960
2961         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2962         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2963                 return false;
2964
2965         return true;
2966 }
2967
2968 /**
2969  * i915_vma_insert - finds a slot for the vma in its address space
2970  * @vma: the vma
2971  * @size: requested size in bytes (can be larger than the VMA)
2972  * @alignment: required alignment
2973  * @flags: mask of PIN_* flags to use
2974  *
2975  * First we try to allocate some free space that meets the requirements for
2976  * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
2977  * preferrably the oldest idle entry to make room for the new VMA.
2978  *
2979  * Returns:
2980  * 0 on success, negative error code otherwise.
2981  */
2982 static int
2983 i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
2984 {
2985         struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
2986         struct drm_i915_gem_object *obj = vma->obj;
2987         u64 start, end;
2988         u64 min_alignment;
2989         int ret;
2990
2991         GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
2992         GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
2993
2994         size = max(size, vma->size);
2995         if (flags & PIN_MAPPABLE)
2996                 size = i915_gem_get_ggtt_size(dev_priv, size, obj->tiling_mode);
2997
2998         min_alignment =
2999                 i915_gem_get_ggtt_alignment(dev_priv, size, obj->tiling_mode,
3000                                             flags & PIN_MAPPABLE);
3001         if (alignment == 0)
3002                 alignment = min_alignment;
3003         if (alignment & (min_alignment - 1)) {
3004                 DRM_DEBUG("Invalid object alignment requested %llu, minimum %llu\n",
3005                           alignment, min_alignment);
3006                 return -EINVAL;
3007         }
3008
3009         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3010
3011         end = vma->vm->total;
3012         if (flags & PIN_MAPPABLE)
3013                 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3014         if (flags & PIN_ZONE_4G)
3015                 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3016
3017         /* If binding the object/GGTT view requires more space than the entire
3018          * aperture has, reject it early before evicting everything in a vain
3019          * attempt to find space.
3020          */
3021         if (size > end) {
3022                 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3023                           size, obj->base.size,
3024                           flags & PIN_MAPPABLE ? "mappable" : "total",
3025                           end);
3026                 return -E2BIG;
3027         }
3028
3029         ret = i915_gem_object_get_pages(obj);
3030         if (ret)
3031                 return ret;
3032
3033         i915_gem_object_pin_pages(obj);
3034
3035         if (flags & PIN_OFFSET_FIXED) {
3036                 u64 offset = flags & PIN_OFFSET_MASK;
3037                 if (offset & (alignment - 1) || offset > end - size) {
3038                         ret = -EINVAL;
3039                         goto err_unpin;
3040                 }
3041
3042                 vma->node.start = offset;
3043                 vma->node.size = size;
3044                 vma->node.color = obj->cache_level;
3045                 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3046                 if (ret) {
3047                         ret = i915_gem_evict_for_vma(vma);
3048                         if (ret == 0)
3049                                 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3050                         if (ret)
3051                                 goto err_unpin;
3052                 }
3053         } else {
3054                 u32 search_flag, alloc_flag;
3055
3056                 if (flags & PIN_HIGH) {
3057                         search_flag = DRM_MM_SEARCH_BELOW;
3058                         alloc_flag = DRM_MM_CREATE_TOP;
3059                 } else {
3060                         search_flag = DRM_MM_SEARCH_DEFAULT;
3061                         alloc_flag = DRM_MM_CREATE_DEFAULT;
3062                 }
3063
3064                 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3065                  * so we know that we always have a minimum alignment of 4096.
3066                  * The drm_mm range manager is optimised to return results
3067                  * with zero alignment, so where possible use the optimal
3068                  * path.
3069                  */
3070                 if (alignment <= 4096)
3071                         alignment = 0;
3072
3073 search_free:
3074                 ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
3075                                                           &vma->node,
3076                                                           size, alignment,
3077                                                           obj->cache_level,
3078                                                           start, end,
3079                                                           search_flag,
3080                                                           alloc_flag);
3081                 if (ret) {
3082                         ret = i915_gem_evict_something(vma->vm, size, alignment,
3083                                                        obj->cache_level,
3084                                                        start, end,
3085                                                        flags);
3086                         if (ret == 0)
3087                                 goto search_free;
3088
3089                         goto err_unpin;
3090                 }
3091         }
3092         GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3093
3094         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3095         list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3096         obj->bind_count++;
3097
3098         return 0;
3099
3100 err_unpin:
3101         i915_gem_object_unpin_pages(obj);
3102         return ret;
3103 }
3104
3105 bool
3106 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3107                         bool force)
3108 {
3109         /* If we don't have a page list set up, then we're not pinned
3110          * to GPU, and we can ignore the cache flush because it'll happen
3111          * again at bind time.
3112          */
3113         if (obj->pages == NULL)
3114                 return false;
3115
3116         /*
3117          * Stolen memory is always coherent with the GPU as it is explicitly
3118          * marked as wc by the system, or the system is cache-coherent.
3119          */
3120         if (obj->stolen || obj->phys_handle)
3121                 return false;
3122
3123         /* If the GPU is snooping the contents of the CPU cache,
3124          * we do not need to manually clear the CPU cache lines.  However,
3125          * the caches are only snooped when the render cache is
3126          * flushed/invalidated.  As we always have to emit invalidations
3127          * and flushes when moving into and out of the RENDER domain, correct
3128          * snooping behaviour occurs naturally as the result of our domain
3129          * tracking.
3130          */
3131         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3132                 obj->cache_dirty = true;
3133                 return false;
3134         }
3135
3136         trace_i915_gem_object_clflush(obj);
3137         drm_clflush_sg(obj->pages);
3138         obj->cache_dirty = false;
3139
3140         return true;
3141 }
3142
3143 /** Flushes the GTT write domain for the object if it's dirty. */
3144 static void
3145 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3146 {
3147         uint32_t old_write_domain;
3148
3149         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3150                 return;
3151
3152         /* No actual flushing is required for the GTT write domain.  Writes
3153          * to it immediately go to main memory as far as we know, so there's
3154          * no chipset flush.  It also doesn't land in render cache.
3155          *
3156          * However, we do have to enforce the order so that all writes through
3157          * the GTT land before any writes to the device, such as updates to
3158          * the GATT itself.
3159          */
3160         wmb();
3161
3162         old_write_domain = obj->base.write_domain;
3163         obj->base.write_domain = 0;
3164
3165         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3166
3167         trace_i915_gem_object_change_domain(obj,
3168                                             obj->base.read_domains,
3169                                             old_write_domain);
3170 }
3171
3172 /** Flushes the CPU write domain for the object if it's dirty. */
3173 static void
3174 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3175 {
3176         uint32_t old_write_domain;
3177
3178         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3179                 return;
3180
3181         if (i915_gem_clflush_object(obj, obj->pin_display))
3182                 i915_gem_chipset_flush(to_i915(obj->base.dev));
3183
3184         old_write_domain = obj->base.write_domain;
3185         obj->base.write_domain = 0;
3186
3187         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3188
3189         trace_i915_gem_object_change_domain(obj,
3190                                             obj->base.read_domains,
3191                                             old_write_domain);
3192 }
3193
3194 /**
3195  * Moves a single object to the GTT read, and possibly write domain.
3196  * @obj: object to act on
3197  * @write: ask for write access or read only
3198  *
3199  * This function returns when the move is complete, including waiting on
3200  * flushes to occur.
3201  */
3202 int
3203 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3204 {
3205         uint32_t old_write_domain, old_read_domains;
3206         struct i915_vma *vma;
3207         int ret;
3208
3209         ret = i915_gem_object_wait_rendering(obj, !write);
3210         if (ret)
3211                 return ret;
3212
3213         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3214                 return 0;
3215
3216         /* Flush and acquire obj->pages so that we are coherent through
3217          * direct access in memory with previous cached writes through
3218          * shmemfs and that our cache domain tracking remains valid.
3219          * For example, if the obj->filp was moved to swap without us
3220          * being notified and releasing the pages, we would mistakenly
3221          * continue to assume that the obj remained out of the CPU cached
3222          * domain.
3223          */
3224         ret = i915_gem_object_get_pages(obj);
3225         if (ret)
3226                 return ret;
3227
3228         i915_gem_object_flush_cpu_write_domain(obj);
3229
3230         /* Serialise direct access to this object with the barriers for
3231          * coherent writes from the GPU, by effectively invalidating the
3232          * GTT domain upon first access.
3233          */
3234         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3235                 mb();
3236
3237         old_write_domain = obj->base.write_domain;
3238         old_read_domains = obj->base.read_domains;
3239
3240         /* It should now be out of any other write domains, and we can update
3241          * the domain values for our changes.
3242          */
3243         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3244         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3245         if (write) {
3246                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3247                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3248                 obj->dirty = 1;
3249         }
3250
3251         trace_i915_gem_object_change_domain(obj,
3252                                             old_read_domains,
3253                                             old_write_domain);
3254
3255         /* And bump the LRU for this access */
3256         vma = i915_gem_obj_to_ggtt(obj);
3257         if (vma &&
3258             drm_mm_node_allocated(&vma->node) &&
3259             !i915_vma_is_active(vma))
3260                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3261
3262         return 0;
3263 }
3264
3265 /**
3266  * Changes the cache-level of an object across all VMA.
3267  * @obj: object to act on
3268  * @cache_level: new cache level to set for the object
3269  *
3270  * After this function returns, the object will be in the new cache-level
3271  * across all GTT and the contents of the backing storage will be coherent,
3272  * with respect to the new cache-level. In order to keep the backing storage
3273  * coherent for all users, we only allow a single cache level to be set
3274  * globally on the object and prevent it from being changed whilst the
3275  * hardware is reading from the object. That is if the object is currently
3276  * on the scanout it will be set to uncached (or equivalent display
3277  * cache coherency) and all non-MOCS GPU access will also be uncached so
3278  * that all direct access to the scanout remains coherent.
3279  */
3280 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3281                                     enum i915_cache_level cache_level)
3282 {
3283         struct i915_vma *vma;
3284         int ret = 0;
3285
3286         if (obj->cache_level == cache_level)
3287                 goto out;
3288
3289         /* Inspect the list of currently bound VMA and unbind any that would
3290          * be invalid given the new cache-level. This is principally to
3291          * catch the issue of the CS prefetch crossing page boundaries and
3292          * reading an invalid PTE on older architectures.
3293          */
3294 restart:
3295         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3296                 if (!drm_mm_node_allocated(&vma->node))
3297                         continue;
3298
3299                 if (i915_vma_is_pinned(vma)) {
3300                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3301                         return -EBUSY;
3302                 }
3303
3304                 if (i915_gem_valid_gtt_space(vma, cache_level))
3305                         continue;
3306
3307                 ret = i915_vma_unbind(vma);
3308                 if (ret)
3309                         return ret;
3310
3311                 /* As unbinding may affect other elements in the
3312                  * obj->vma_list (due to side-effects from retiring
3313                  * an active vma), play safe and restart the iterator.
3314                  */
3315                 goto restart;
3316         }
3317
3318         /* We can reuse the existing drm_mm nodes but need to change the
3319          * cache-level on the PTE. We could simply unbind them all and
3320          * rebind with the correct cache-level on next use. However since
3321          * we already have a valid slot, dma mapping, pages etc, we may as
3322          * rewrite the PTE in the belief that doing so tramples upon less
3323          * state and so involves less work.
3324          */
3325         if (obj->bind_count) {
3326                 /* Before we change the PTE, the GPU must not be accessing it.
3327                  * If we wait upon the object, we know that all the bound
3328                  * VMA are no longer active.
3329                  */
3330                 ret = i915_gem_object_wait_rendering(obj, false);
3331                 if (ret)
3332                         return ret;
3333
3334                 if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3335                         /* Access to snoopable pages through the GTT is
3336                          * incoherent and on some machines causes a hard
3337                          * lockup. Relinquish the CPU mmaping to force
3338                          * userspace to refault in the pages and we can
3339                          * then double check if the GTT mapping is still
3340                          * valid for that pointer access.
3341                          */
3342                         i915_gem_release_mmap(obj);
3343
3344                         /* As we no longer need a fence for GTT access,
3345                          * we can relinquish it now (and so prevent having
3346                          * to steal a fence from someone else on the next
3347                          * fence request). Note GPU activity would have
3348                          * dropped the fence as all snoopable access is
3349                          * supposed to be linear.
3350                          */
3351                         ret = i915_gem_object_put_fence(obj);
3352                         if (ret)
3353                                 return ret;
3354                 } else {
3355                         /* We either have incoherent backing store and
3356                          * so no GTT access or the architecture is fully
3357                          * coherent. In such cases, existing GTT mmaps
3358                          * ignore the cache bit in the PTE and we can
3359                          * rewrite it without confusing the GPU or having
3360                          * to force userspace to fault back in its mmaps.
3361                          */
3362                 }
3363
3364                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3365                         if (!drm_mm_node_allocated(&vma->node))
3366                                 continue;
3367
3368                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3369                         if (ret)
3370                                 return ret;
3371                 }
3372         }
3373
3374         list_for_each_entry(vma, &obj->vma_list, obj_link)
3375                 vma->node.color = cache_level;
3376         obj->cache_level = cache_level;
3377
3378 out:
3379         /* Flush the dirty CPU caches to the backing storage so that the
3380          * object is now coherent at its new cache level (with respect
3381          * to the access domain).
3382          */
3383         if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3384                 if (i915_gem_clflush_object(obj, true))
3385                         i915_gem_chipset_flush(to_i915(obj->base.dev));
3386         }
3387
3388         return 0;
3389 }
3390
3391 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3392                                struct drm_file *file)
3393 {
3394         struct drm_i915_gem_caching *args = data;
3395         struct drm_i915_gem_object *obj;
3396
3397         obj = i915_gem_object_lookup(file, args->handle);
3398         if (!obj)
3399                 return -ENOENT;
3400
3401         switch (obj->cache_level) {
3402         case I915_CACHE_LLC:
3403         case I915_CACHE_L3_LLC:
3404                 args->caching = I915_CACHING_CACHED;
3405                 break;
3406
3407         case I915_CACHE_WT:
3408                 args->caching = I915_CACHING_DISPLAY;
3409                 break;
3410
3411         default:
3412                 args->caching = I915_CACHING_NONE;
3413                 break;
3414         }
3415
3416         i915_gem_object_put_unlocked(obj);
3417         return 0;
3418 }
3419
3420 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3421                                struct drm_file *file)
3422 {
3423         struct drm_i915_private *dev_priv = to_i915(dev);
3424         struct drm_i915_gem_caching *args = data;
3425         struct drm_i915_gem_object *obj;
3426         enum i915_cache_level level;
3427         int ret;
3428
3429         switch (args->caching) {
3430         case I915_CACHING_NONE:
3431                 level = I915_CACHE_NONE;
3432                 break;
3433         case I915_CACHING_CACHED:
3434                 /*
3435                  * Due to a HW issue on BXT A stepping, GPU stores via a
3436                  * snooped mapping may leave stale data in a corresponding CPU
3437                  * cacheline, whereas normally such cachelines would get
3438                  * invalidated.
3439                  */
3440                 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3441                         return -ENODEV;
3442
3443                 level = I915_CACHE_LLC;
3444                 break;
3445         case I915_CACHING_DISPLAY:
3446                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3447                 break;
3448         default:
3449                 return -EINVAL;
3450         }
3451
3452         intel_runtime_pm_get(dev_priv);
3453
3454         ret = i915_mutex_lock_interruptible(dev);
3455         if (ret)
3456                 goto rpm_put;
3457
3458         obj = i915_gem_object_lookup(file, args->handle);
3459         if (!obj) {
3460                 ret = -ENOENT;
3461                 goto unlock;
3462         }
3463
3464         ret = i915_gem_object_set_cache_level(obj, level);
3465
3466         i915_gem_object_put(obj);
3467 unlock:
3468         mutex_unlock(&dev->struct_mutex);
3469 rpm_put:
3470         intel_runtime_pm_put(dev_priv);
3471
3472         return ret;
3473 }
3474
3475 /*
3476  * Prepare buffer for display plane (scanout, cursors, etc).
3477  * Can be called from an uninterruptible phase (modesetting) and allows
3478  * any flushes to be pipelined (for pageflips).
3479  */
3480 int
3481 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3482                                      u32 alignment,
3483                                      const struct i915_ggtt_view *view)
3484 {
3485         u32 old_read_domains, old_write_domain;
3486         int ret;
3487
3488         /* Mark the pin_display early so that we account for the
3489          * display coherency whilst setting up the cache domains.
3490          */
3491         obj->pin_display++;
3492
3493         /* The display engine is not coherent with the LLC cache on gen6.  As
3494          * a result, we make sure that the pinning that is about to occur is
3495          * done with uncached PTEs. This is lowest common denominator for all
3496          * chipsets.
3497          *
3498          * However for gen6+, we could do better by using the GFDT bit instead
3499          * of uncaching, which would allow us to flush all the LLC-cached data
3500          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3501          */
3502         ret = i915_gem_object_set_cache_level(obj,
3503                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3504         if (ret)
3505                 goto err_unpin_display;
3506
3507         /* As the user may map the buffer once pinned in the display plane
3508          * (e.g. libkms for the bootup splash), we have to ensure that we
3509          * always use map_and_fenceable for all scanout buffers.
3510          */
3511         ret = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3512                                        view->type == I915_GGTT_VIEW_NORMAL ?
3513                                        PIN_MAPPABLE : 0);
3514         if (ret)
3515                 goto err_unpin_display;
3516
3517         i915_gem_object_flush_cpu_write_domain(obj);
3518
3519         old_write_domain = obj->base.write_domain;
3520         old_read_domains = obj->base.read_domains;
3521
3522         /* It should now be out of any other write domains, and we can update
3523          * the domain values for our changes.
3524          */
3525         obj->base.write_domain = 0;
3526         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3527
3528         trace_i915_gem_object_change_domain(obj,
3529                                             old_read_domains,
3530                                             old_write_domain);
3531
3532         return 0;
3533
3534 err_unpin_display:
3535         obj->pin_display--;
3536         return ret;
3537 }
3538
3539 void
3540 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3541                                          const struct i915_ggtt_view *view)
3542 {
3543         if (WARN_ON(obj->pin_display == 0))
3544                 return;
3545
3546         i915_gem_object_ggtt_unpin_view(obj, view);
3547
3548         obj->pin_display--;
3549 }
3550
3551 /**
3552  * Moves a single object to the CPU read, and possibly write domain.
3553  * @obj: object to act on
3554  * @write: requesting write or read-only access
3555  *
3556  * This function returns when the move is complete, including waiting on
3557  * flushes to occur.
3558  */
3559 int
3560 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3561 {
3562         uint32_t old_write_domain, old_read_domains;
3563         int ret;
3564
3565         ret = i915_gem_object_wait_rendering(obj, !write);
3566         if (ret)
3567                 return ret;
3568
3569         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3570                 return 0;
3571
3572         i915_gem_object_flush_gtt_write_domain(obj);
3573
3574         old_write_domain = obj->base.write_domain;
3575         old_read_domains = obj->base.read_domains;
3576
3577         /* Flush the CPU cache if it's still invalid. */
3578         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3579                 i915_gem_clflush_object(obj, false);
3580
3581                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3582         }
3583
3584         /* It should now be out of any other write domains, and we can update
3585          * the domain values for our changes.
3586          */
3587         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3588
3589         /* If we're writing through the CPU, then the GPU read domains will
3590          * need to be invalidated at next use.
3591          */
3592         if (write) {
3593                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3594                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3595         }
3596
3597         trace_i915_gem_object_change_domain(obj,
3598                                             old_read_domains,
3599                                             old_write_domain);
3600
3601         return 0;
3602 }
3603
3604 /* Throttle our rendering by waiting until the ring has completed our requests
3605  * emitted over 20 msec ago.
3606  *
3607  * Note that if we were to use the current jiffies each time around the loop,
3608  * we wouldn't escape the function with any frames outstanding if the time to
3609  * render a frame was over 20ms.
3610  *
3611  * This should get us reasonable parallelism between CPU and GPU but also
3612  * relatively low latency when blocking on a particular request to finish.
3613  */
3614 static int
3615 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3616 {
3617         struct drm_i915_private *dev_priv = to_i915(dev);
3618         struct drm_i915_file_private *file_priv = file->driver_priv;
3619         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3620         struct drm_i915_gem_request *request, *target = NULL;
3621         int ret;
3622
3623         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3624         if (ret)
3625                 return ret;
3626
3627         /* ABI: return -EIO if already wedged */
3628         if (i915_terminally_wedged(&dev_priv->gpu_error))
3629                 return -EIO;
3630
3631         spin_lock(&file_priv->mm.lock);
3632         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3633                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3634                         break;
3635
3636                 /*
3637                  * Note that the request might not have been submitted yet.
3638                  * In which case emitted_jiffies will be zero.
3639                  */
3640                 if (!request->emitted_jiffies)
3641                         continue;
3642
3643                 target = request;
3644         }
3645         if (target)
3646                 i915_gem_request_get(target);
3647         spin_unlock(&file_priv->mm.lock);
3648
3649         if (target == NULL)
3650                 return 0;
3651
3652         ret = i915_wait_request(target, true, NULL, NULL);
3653         i915_gem_request_put(target);
3654
3655         return ret;
3656 }
3657
3658 static bool
3659 i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3660 {
3661         struct drm_i915_gem_object *obj = vma->obj;
3662
3663         if (!drm_mm_node_allocated(&vma->node))
3664                 return false;
3665
3666         if (vma->node.size < size)
3667                 return true;
3668
3669         if (alignment && vma->node.start & (alignment - 1))
3670                 return true;
3671
3672         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
3673                 return true;
3674
3675         if (flags & PIN_OFFSET_BIAS &&
3676             vma->node.start < (flags & PIN_OFFSET_MASK))
3677                 return true;
3678
3679         if (flags & PIN_OFFSET_FIXED &&
3680             vma->node.start != (flags & PIN_OFFSET_MASK))
3681                 return true;
3682
3683         return false;
3684 }
3685
3686 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
3687 {
3688         struct drm_i915_gem_object *obj = vma->obj;
3689         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3690         bool mappable, fenceable;
3691         u32 fence_size, fence_alignment;
3692
3693         fence_size = i915_gem_get_ggtt_size(dev_priv,
3694                                             obj->base.size,
3695                                             obj->tiling_mode);
3696         fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3697                                                       obj->base.size,
3698                                                       obj->tiling_mode,
3699                                                       true);
3700
3701         fenceable = (vma->node.size == fence_size &&
3702                      (vma->node.start & (fence_alignment - 1)) == 0);
3703
3704         mappable = (vma->node.start + fence_size <=
3705                     dev_priv->ggtt.mappable_end);
3706
3707         obj->map_and_fenceable = mappable && fenceable;
3708 }
3709
3710 int __i915_vma_do_pin(struct i915_vma *vma,
3711                       u64 size, u64 alignment, u64 flags)
3712 {
3713         unsigned int bound = vma->flags;
3714         int ret;
3715
3716         GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3717         GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
3718
3719         if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
3720                 ret = -EBUSY;
3721                 goto err;
3722         }
3723
3724         if ((bound & I915_VMA_BIND_MASK) == 0) {
3725                 ret = i915_vma_insert(vma, size, alignment, flags);
3726                 if (ret)
3727                         goto err;
3728         }
3729
3730         ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3731         if (ret)
3732                 goto err;
3733
3734         if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3735                 __i915_vma_set_map_and_fenceable(vma);
3736
3737         GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3738         return 0;
3739
3740 err:
3741         __i915_vma_unpin(vma);
3742         return ret;
3743 }
3744
3745 int
3746 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3747                          const struct i915_ggtt_view *view,
3748                          u64 size,
3749                          u64 alignment,
3750                          u64 flags)
3751 {
3752         struct i915_vma *vma;
3753         int ret;
3754
3755         if (!view)
3756                 view = &i915_ggtt_view_normal;
3757
3758         vma = i915_gem_obj_lookup_or_create_ggtt_vma(obj, view);
3759         if (IS_ERR(vma))
3760                 return PTR_ERR(vma);
3761
3762         if (i915_vma_misplaced(vma, size, alignment, flags)) {
3763                 if (flags & PIN_NONBLOCK &&
3764                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3765                         return -ENOSPC;
3766
3767                 WARN(i915_vma_is_pinned(vma),
3768                      "bo is already pinned in ggtt with incorrect alignment:"
3769                      " offset=%08x %08x, req.alignment=%llx, req.map_and_fenceable=%d,"
3770                      " obj->map_and_fenceable=%d\n",
3771                      upper_32_bits(vma->node.start),
3772                      lower_32_bits(vma->node.start),
3773                      alignment,
3774                      !!(flags & PIN_MAPPABLE),
3775                      obj->map_and_fenceable);
3776                 ret = i915_vma_unbind(vma);
3777                 if (ret)
3778                         return ret;
3779         }
3780
3781         return i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3782 }
3783
3784 void
3785 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
3786                                 const struct i915_ggtt_view *view)
3787 {
3788         i915_vma_unpin(i915_gem_obj_to_ggtt_view(obj, view));
3789 }
3790
3791 int
3792 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3793                     struct drm_file *file)
3794 {
3795         struct drm_i915_gem_busy *args = data;
3796         struct drm_i915_gem_object *obj;
3797         int ret;
3798
3799         ret = i915_mutex_lock_interruptible(dev);
3800         if (ret)
3801                 return ret;
3802
3803         obj = i915_gem_object_lookup(file, args->handle);
3804         if (!obj) {
3805                 ret = -ENOENT;
3806                 goto unlock;
3807         }
3808
3809         /* Count all active objects as busy, even if they are currently not used
3810          * by the gpu. Users of this interface expect objects to eventually
3811          * become non-busy without any further actions.
3812          */
3813         args->busy = 0;
3814         if (obj->active) {
3815                 struct drm_i915_gem_request *req;
3816                 int i;
3817
3818                 for (i = 0; i < I915_NUM_ENGINES; i++) {
3819                         req = i915_gem_active_peek(&obj->last_read[i],
3820                                                    &obj->base.dev->struct_mutex);
3821                         if (req)
3822                                 args->busy |= 1 << (16 + req->engine->exec_id);
3823                 }
3824                 req = i915_gem_active_peek(&obj->last_write,
3825                                            &obj->base.dev->struct_mutex);
3826                 if (req)
3827                         args->busy |= req->engine->exec_id;
3828         }
3829
3830         i915_gem_object_put(obj);
3831 unlock:
3832         mutex_unlock(&dev->struct_mutex);
3833         return ret;
3834 }
3835
3836 int
3837 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3838                         struct drm_file *file_priv)
3839 {
3840         return i915_gem_ring_throttle(dev, file_priv);
3841 }
3842
3843 int
3844 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3845                        struct drm_file *file_priv)
3846 {
3847         struct drm_i915_private *dev_priv = to_i915(dev);
3848         struct drm_i915_gem_madvise *args = data;
3849         struct drm_i915_gem_object *obj;
3850         int ret;
3851
3852         switch (args->madv) {
3853         case I915_MADV_DONTNEED:
3854         case I915_MADV_WILLNEED:
3855             break;
3856         default:
3857             return -EINVAL;
3858         }
3859
3860         ret = i915_mutex_lock_interruptible(dev);
3861         if (ret)
3862                 return ret;
3863
3864         obj = i915_gem_object_lookup(file_priv, args->handle);
3865         if (!obj) {
3866                 ret = -ENOENT;
3867                 goto unlock;
3868         }
3869
3870         if (i915_gem_obj_is_pinned(obj)) {
3871                 ret = -EINVAL;
3872                 goto out;
3873         }
3874
3875         if (obj->pages &&
3876             obj->tiling_mode != I915_TILING_NONE &&
3877             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3878                 if (obj->madv == I915_MADV_WILLNEED)
3879                         i915_gem_object_unpin_pages(obj);
3880                 if (args->madv == I915_MADV_WILLNEED)
3881                         i915_gem_object_pin_pages(obj);
3882         }
3883
3884         if (obj->madv != __I915_MADV_PURGED)
3885                 obj->madv = args->madv;
3886
3887         /* if the object is no longer attached, discard its backing storage */
3888         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
3889                 i915_gem_object_truncate(obj);
3890
3891         args->retained = obj->madv != __I915_MADV_PURGED;
3892
3893 out:
3894         i915_gem_object_put(obj);
3895 unlock:
3896         mutex_unlock(&dev->struct_mutex);
3897         return ret;
3898 }
3899
3900 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3901                           const struct drm_i915_gem_object_ops *ops)
3902 {
3903         int i;
3904
3905         INIT_LIST_HEAD(&obj->global_list);
3906         for (i = 0; i < I915_NUM_ENGINES; i++)
3907                 init_request_active(&obj->last_read[i],
3908                                     i915_gem_object_retire__read);
3909         init_request_active(&obj->last_write,
3910                             i915_gem_object_retire__write);
3911         init_request_active(&obj->last_fence, NULL);
3912         INIT_LIST_HEAD(&obj->obj_exec_link);
3913         INIT_LIST_HEAD(&obj->vma_list);
3914         INIT_LIST_HEAD(&obj->batch_pool_link);
3915
3916         obj->ops = ops;
3917
3918         obj->fence_reg = I915_FENCE_REG_NONE;
3919         obj->madv = I915_MADV_WILLNEED;
3920
3921         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3922 }
3923
3924 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3925         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
3926         .get_pages = i915_gem_object_get_pages_gtt,
3927         .put_pages = i915_gem_object_put_pages_gtt,
3928 };
3929
3930 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
3931                                                   size_t size)
3932 {
3933         struct drm_i915_gem_object *obj;
3934         struct address_space *mapping;
3935         gfp_t mask;
3936         int ret;
3937
3938         obj = i915_gem_object_alloc(dev);
3939         if (obj == NULL)
3940                 return ERR_PTR(-ENOMEM);
3941
3942         ret = drm_gem_object_init(dev, &obj->base, size);
3943         if (ret)
3944                 goto fail;
3945
3946         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3947         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3948                 /* 965gm cannot relocate objects above 4GiB. */
3949                 mask &= ~__GFP_HIGHMEM;
3950                 mask |= __GFP_DMA32;
3951         }
3952
3953         mapping = file_inode(obj->base.filp)->i_mapping;
3954         mapping_set_gfp_mask(mapping, mask);
3955
3956         i915_gem_object_init(obj, &i915_gem_object_ops);
3957
3958         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3959         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3960
3961         if (HAS_LLC(dev)) {
3962                 /* On some devices, we can have the GPU use the LLC (the CPU
3963                  * cache) for about a 10% performance improvement
3964                  * compared to uncached.  Graphics requests other than
3965                  * display scanout are coherent with the CPU in
3966                  * accessing this cache.  This means in this mode we
3967                  * don't need to clflush on the CPU side, and on the
3968                  * GPU side we only need to flush internal caches to
3969                  * get data visible to the CPU.
3970                  *
3971                  * However, we maintain the display planes as UC, and so
3972                  * need to rebind when first used as such.
3973                  */
3974                 obj->cache_level = I915_CACHE_LLC;
3975         } else
3976                 obj->cache_level = I915_CACHE_NONE;
3977
3978         trace_i915_gem_object_create(obj);
3979
3980         return obj;
3981
3982 fail:
3983         i915_gem_object_free(obj);
3984
3985         return ERR_PTR(ret);
3986 }
3987
3988 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
3989 {
3990         /* If we are the last user of the backing storage (be it shmemfs
3991          * pages or stolen etc), we know that the pages are going to be
3992          * immediately released. In this case, we can then skip copying
3993          * back the contents from the GPU.
3994          */
3995
3996         if (obj->madv != I915_MADV_WILLNEED)
3997                 return false;
3998
3999         if (obj->base.filp == NULL)
4000                 return true;
4001
4002         /* At first glance, this looks racy, but then again so would be
4003          * userspace racing mmap against close. However, the first external
4004          * reference to the filp can only be obtained through the
4005          * i915_gem_mmap_ioctl() which safeguards us against the user
4006          * acquiring such a reference whilst we are in the middle of
4007          * freeing the object.
4008          */
4009         return atomic_long_read(&obj->base.filp->f_count) == 1;
4010 }
4011
4012 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4013 {
4014         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4015         struct drm_device *dev = obj->base.dev;
4016         struct drm_i915_private *dev_priv = to_i915(dev);
4017         struct i915_vma *vma, *next;
4018
4019         intel_runtime_pm_get(dev_priv);
4020
4021         trace_i915_gem_object_destroy(obj);
4022
4023         /* All file-owned VMA should have been released by this point through
4024          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4025          * However, the object may also be bound into the global GTT (e.g.
4026          * older GPUs without per-process support, or for direct access through
4027          * the GTT either for the user or for scanout). Those VMA still need to
4028          * unbound now.
4029          */
4030         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4031                 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4032                 GEM_BUG_ON(i915_vma_is_active(vma));
4033                 vma->flags &= ~I915_VMA_PIN_MASK;
4034                 i915_vma_close(vma);
4035         }
4036         GEM_BUG_ON(obj->bind_count);
4037
4038         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4039          * before progressing. */
4040         if (obj->stolen)
4041                 i915_gem_object_unpin_pages(obj);
4042
4043         WARN_ON(obj->frontbuffer_bits);
4044
4045         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4046             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4047             obj->tiling_mode != I915_TILING_NONE)
4048                 i915_gem_object_unpin_pages(obj);
4049
4050         if (WARN_ON(obj->pages_pin_count))
4051                 obj->pages_pin_count = 0;
4052         if (discard_backing_storage(obj))
4053                 obj->madv = I915_MADV_DONTNEED;
4054         i915_gem_object_put_pages(obj);
4055
4056         BUG_ON(obj->pages);
4057
4058         if (obj->base.import_attach)
4059                 drm_prime_gem_destroy(&obj->base, NULL);
4060
4061         if (obj->ops->release)
4062                 obj->ops->release(obj);
4063
4064         drm_gem_object_release(&obj->base);
4065         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4066
4067         kfree(obj->bit_17);
4068         i915_gem_object_free(obj);
4069
4070         intel_runtime_pm_put(dev_priv);
4071 }
4072
4073 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4074                                      struct i915_address_space *vm)
4075 {
4076         struct i915_vma *vma;
4077         list_for_each_entry(vma, &obj->vma_list, obj_link) {
4078                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4079                     vma->vm == vm)
4080                         return vma;
4081         }
4082         return NULL;
4083 }
4084
4085 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4086                                            const struct i915_ggtt_view *view)
4087 {
4088         struct i915_vma *vma;
4089
4090         GEM_BUG_ON(!view);
4091
4092         list_for_each_entry(vma, &obj->vma_list, obj_link)
4093                 if (i915_vma_is_ggtt(vma) &&
4094                     i915_ggtt_view_equal(&vma->ggtt_view, view))
4095                         return vma;
4096         return NULL;
4097 }
4098
4099 static void
4100 i915_gem_stop_engines(struct drm_device *dev)
4101 {
4102         struct drm_i915_private *dev_priv = to_i915(dev);
4103         struct intel_engine_cs *engine;
4104
4105         for_each_engine(engine, dev_priv)
4106                 dev_priv->gt.stop_engine(engine);
4107 }
4108
4109 int
4110 i915_gem_suspend(struct drm_device *dev)
4111 {
4112         struct drm_i915_private *dev_priv = to_i915(dev);
4113         int ret = 0;
4114
4115         intel_suspend_gt_powersave(dev_priv);
4116
4117         mutex_lock(&dev->struct_mutex);
4118
4119         /* We have to flush all the executing contexts to main memory so
4120          * that they can saved in the hibernation image. To ensure the last
4121          * context image is coherent, we have to switch away from it. That
4122          * leaves the dev_priv->kernel_context still active when
4123          * we actually suspend, and its image in memory may not match the GPU
4124          * state. Fortunately, the kernel_context is disposable and we do
4125          * not rely on its state.
4126          */
4127         ret = i915_gem_switch_to_kernel_context(dev_priv);
4128         if (ret)
4129                 goto err;
4130
4131         ret = i915_gem_wait_for_idle(dev_priv);
4132         if (ret)
4133                 goto err;
4134
4135         i915_gem_retire_requests(dev_priv);
4136
4137         /* Note that rather than stopping the engines, all we have to do
4138          * is assert that every RING_HEAD == RING_TAIL (all execution complete)
4139          * and similar for all logical context images (to ensure they are
4140          * all ready for hibernation).
4141          */
4142         i915_gem_stop_engines(dev);
4143         i915_gem_context_lost(dev_priv);
4144         mutex_unlock(&dev->struct_mutex);
4145
4146         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4147         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4148         flush_delayed_work(&dev_priv->gt.idle_work);
4149
4150         /* Assert that we sucessfully flushed all the work and
4151          * reset the GPU back to its idle, low power state.
4152          */
4153         WARN_ON(dev_priv->gt.awake);
4154
4155         return 0;
4156
4157 err:
4158         mutex_unlock(&dev->struct_mutex);
4159         return ret;
4160 }
4161
4162 void i915_gem_resume(struct drm_device *dev)
4163 {
4164         struct drm_i915_private *dev_priv = to_i915(dev);
4165
4166         mutex_lock(&dev->struct_mutex);
4167         i915_gem_restore_gtt_mappings(dev);
4168
4169         /* As we didn't flush the kernel context before suspend, we cannot
4170          * guarantee that the context image is complete. So let's just reset
4171          * it and start again.
4172          */
4173         if (i915.enable_execlists)
4174                 intel_lr_context_reset(dev_priv, dev_priv->kernel_context);
4175
4176         mutex_unlock(&dev->struct_mutex);
4177 }
4178
4179 void i915_gem_init_swizzling(struct drm_device *dev)
4180 {
4181         struct drm_i915_private *dev_priv = to_i915(dev);
4182
4183         if (INTEL_INFO(dev)->gen < 5 ||
4184             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4185                 return;
4186
4187         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4188                                  DISP_TILE_SURFACE_SWIZZLING);
4189
4190         if (IS_GEN5(dev))
4191                 return;
4192
4193         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4194         if (IS_GEN6(dev))
4195                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4196         else if (IS_GEN7(dev))
4197                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4198         else if (IS_GEN8(dev))
4199                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4200         else
4201                 BUG();
4202 }
4203
4204 static void init_unused_ring(struct drm_device *dev, u32 base)
4205 {
4206         struct drm_i915_private *dev_priv = to_i915(dev);
4207
4208         I915_WRITE(RING_CTL(base), 0);
4209         I915_WRITE(RING_HEAD(base), 0);
4210         I915_WRITE(RING_TAIL(base), 0);
4211         I915_WRITE(RING_START(base), 0);
4212 }
4213
4214 static void init_unused_rings(struct drm_device *dev)
4215 {
4216         if (IS_I830(dev)) {
4217                 init_unused_ring(dev, PRB1_BASE);
4218                 init_unused_ring(dev, SRB0_BASE);
4219                 init_unused_ring(dev, SRB1_BASE);
4220                 init_unused_ring(dev, SRB2_BASE);
4221                 init_unused_ring(dev, SRB3_BASE);
4222         } else if (IS_GEN2(dev)) {
4223                 init_unused_ring(dev, SRB0_BASE);
4224                 init_unused_ring(dev, SRB1_BASE);
4225         } else if (IS_GEN3(dev)) {
4226                 init_unused_ring(dev, PRB1_BASE);
4227                 init_unused_ring(dev, PRB2_BASE);
4228         }
4229 }
4230
4231 int
4232 i915_gem_init_hw(struct drm_device *dev)
4233 {
4234         struct drm_i915_private *dev_priv = to_i915(dev);
4235         struct intel_engine_cs *engine;
4236         int ret;
4237
4238         /* Double layer security blanket, see i915_gem_init() */
4239         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4240
4241         if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4242                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4243
4244         if (IS_HASWELL(dev))
4245                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4246                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4247
4248         if (HAS_PCH_NOP(dev)) {
4249                 if (IS_IVYBRIDGE(dev)) {
4250                         u32 temp = I915_READ(GEN7_MSG_CTL);
4251                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4252                         I915_WRITE(GEN7_MSG_CTL, temp);
4253                 } else if (INTEL_INFO(dev)->gen >= 7) {
4254                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4255                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4256                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4257                 }
4258         }
4259
4260         i915_gem_init_swizzling(dev);
4261
4262         /*
4263          * At least 830 can leave some of the unused rings
4264          * "active" (ie. head != tail) after resume which
4265          * will prevent c3 entry. Makes sure all unused rings
4266          * are totally idle.
4267          */
4268         init_unused_rings(dev);
4269
4270         BUG_ON(!dev_priv->kernel_context);
4271
4272         ret = i915_ppgtt_init_hw(dev);
4273         if (ret) {
4274                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4275                 goto out;
4276         }
4277
4278         /* Need to do basic initialisation of all rings first: */
4279         for_each_engine(engine, dev_priv) {
4280                 ret = engine->init_hw(engine);
4281                 if (ret)
4282                         goto out;
4283         }
4284
4285         intel_mocs_init_l3cc_table(dev);
4286
4287         /* We can't enable contexts until all firmware is loaded */
4288         ret = intel_guc_setup(dev);
4289         if (ret)
4290                 goto out;
4291
4292 out:
4293         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4294         return ret;
4295 }
4296
4297 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4298 {
4299         if (INTEL_INFO(dev_priv)->gen < 6)
4300                 return false;
4301
4302         /* TODO: make semaphores and Execlists play nicely together */
4303         if (i915.enable_execlists)
4304                 return false;
4305
4306         if (value >= 0)
4307                 return value;
4308
4309 #ifdef CONFIG_INTEL_IOMMU
4310         /* Enable semaphores on SNB when IO remapping is off */
4311         if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4312                 return false;
4313 #endif
4314
4315         return true;
4316 }
4317
4318 int i915_gem_init(struct drm_device *dev)
4319 {
4320         struct drm_i915_private *dev_priv = to_i915(dev);
4321         int ret;
4322
4323         mutex_lock(&dev->struct_mutex);
4324
4325         if (!i915.enable_execlists) {
4326                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4327                 dev_priv->gt.stop_engine = intel_engine_stop;
4328         } else {
4329                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4330                 dev_priv->gt.stop_engine = intel_logical_ring_stop;
4331         }
4332
4333         /* This is just a security blanket to placate dragons.
4334          * On some systems, we very sporadically observe that the first TLBs
4335          * used by the CS may be stale, despite us poking the TLB reset. If
4336          * we hold the forcewake during initialisation these problems
4337          * just magically go away.
4338          */
4339         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4340
4341         i915_gem_init_userptr(dev_priv);
4342
4343         ret = i915_gem_init_ggtt(dev_priv);
4344         if (ret)
4345                 goto out_unlock;
4346
4347         ret = i915_gem_context_init(dev);
4348         if (ret)
4349                 goto out_unlock;
4350
4351         ret = intel_engines_init(dev);
4352         if (ret)
4353                 goto out_unlock;
4354
4355         ret = i915_gem_init_hw(dev);
4356         if (ret == -EIO) {
4357                 /* Allow engine initialisation to fail by marking the GPU as
4358                  * wedged. But we only want to do this where the GPU is angry,
4359                  * for all other failure, such as an allocation failure, bail.
4360                  */
4361                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4362                 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4363                 ret = 0;
4364         }
4365
4366 out_unlock:
4367         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4368         mutex_unlock(&dev->struct_mutex);
4369
4370         return ret;
4371 }
4372
4373 void
4374 i915_gem_cleanup_engines(struct drm_device *dev)
4375 {
4376         struct drm_i915_private *dev_priv = to_i915(dev);
4377         struct intel_engine_cs *engine;
4378
4379         for_each_engine(engine, dev_priv)
4380                 dev_priv->gt.cleanup_engine(engine);
4381 }
4382
4383 static void
4384 init_engine_lists(struct intel_engine_cs *engine)
4385 {
4386         INIT_LIST_HEAD(&engine->request_list);
4387 }
4388
4389 void
4390 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4391 {
4392         struct drm_device *dev = &dev_priv->drm;
4393
4394         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4395             !IS_CHERRYVIEW(dev_priv))
4396                 dev_priv->num_fence_regs = 32;
4397         else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4398                  IS_I945GM(dev_priv) || IS_G33(dev_priv))
4399                 dev_priv->num_fence_regs = 16;
4400         else
4401                 dev_priv->num_fence_regs = 8;
4402
4403         if (intel_vgpu_active(dev_priv))
4404                 dev_priv->num_fence_regs =
4405                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4406
4407         /* Initialize fence registers to zero */
4408         i915_gem_restore_fences(dev);
4409
4410         i915_gem_detect_bit_6_swizzle(dev);
4411 }
4412
4413 void
4414 i915_gem_load_init(struct drm_device *dev)
4415 {
4416         struct drm_i915_private *dev_priv = to_i915(dev);
4417         int i;
4418
4419         dev_priv->objects =
4420                 kmem_cache_create("i915_gem_object",
4421                                   sizeof(struct drm_i915_gem_object), 0,
4422                                   SLAB_HWCACHE_ALIGN,
4423                                   NULL);
4424         dev_priv->vmas =
4425                 kmem_cache_create("i915_gem_vma",
4426                                   sizeof(struct i915_vma), 0,
4427                                   SLAB_HWCACHE_ALIGN,
4428                                   NULL);
4429         dev_priv->requests =
4430                 kmem_cache_create("i915_gem_request",
4431                                   sizeof(struct drm_i915_gem_request), 0,
4432                                   SLAB_HWCACHE_ALIGN,
4433                                   NULL);
4434
4435         INIT_LIST_HEAD(&dev_priv->context_list);
4436         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4437         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4438         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4439         for (i = 0; i < I915_NUM_ENGINES; i++)
4440                 init_engine_lists(&dev_priv->engine[i]);
4441         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4442                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4443         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4444                           i915_gem_retire_work_handler);
4445         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4446                           i915_gem_idle_work_handler);
4447         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4448         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4449
4450         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4451
4452         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4453
4454         init_waitqueue_head(&dev_priv->pending_flip_queue);
4455
4456         dev_priv->mm.interruptible = true;
4457
4458         mutex_init(&dev_priv->fb_tracking.lock);
4459 }
4460
4461 void i915_gem_load_cleanup(struct drm_device *dev)
4462 {
4463         struct drm_i915_private *dev_priv = to_i915(dev);
4464
4465         kmem_cache_destroy(dev_priv->requests);
4466         kmem_cache_destroy(dev_priv->vmas);
4467         kmem_cache_destroy(dev_priv->objects);
4468 }
4469
4470 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4471 {
4472         struct drm_i915_gem_object *obj;
4473
4474         /* Called just before we write the hibernation image.
4475          *
4476          * We need to update the domain tracking to reflect that the CPU
4477          * will be accessing all the pages to create and restore from the
4478          * hibernation, and so upon restoration those pages will be in the
4479          * CPU domain.
4480          *
4481          * To make sure the hibernation image contains the latest state,
4482          * we update that state just before writing out the image.
4483          */
4484
4485         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
4486                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4487                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4488         }
4489
4490         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4491                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4492                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4493         }
4494
4495         return 0;
4496 }
4497
4498 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4499 {
4500         struct drm_i915_file_private *file_priv = file->driver_priv;
4501         struct drm_i915_gem_request *request;
4502
4503         /* Clean up our request list when the client is going away, so that
4504          * later retire_requests won't dereference our soon-to-be-gone
4505          * file_priv.
4506          */
4507         spin_lock(&file_priv->mm.lock);
4508         list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4509                 request->file_priv = NULL;
4510         spin_unlock(&file_priv->mm.lock);
4511
4512         if (!list_empty(&file_priv->rps.link)) {
4513                 spin_lock(&to_i915(dev)->rps.client_lock);
4514                 list_del(&file_priv->rps.link);
4515                 spin_unlock(&to_i915(dev)->rps.client_lock);
4516         }
4517 }
4518
4519 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4520 {
4521         struct drm_i915_file_private *file_priv;
4522         int ret;
4523
4524         DRM_DEBUG_DRIVER("\n");
4525
4526         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4527         if (!file_priv)
4528                 return -ENOMEM;
4529
4530         file->driver_priv = file_priv;
4531         file_priv->dev_priv = to_i915(dev);
4532         file_priv->file = file;
4533         INIT_LIST_HEAD(&file_priv->rps.link);
4534
4535         spin_lock_init(&file_priv->mm.lock);
4536         INIT_LIST_HEAD(&file_priv->mm.request_list);
4537
4538         file_priv->bsd_engine = -1;
4539
4540         ret = i915_gem_context_open(dev, file);
4541         if (ret)
4542                 kfree(file_priv);
4543
4544         return ret;
4545 }
4546
4547 /**
4548  * i915_gem_track_fb - update frontbuffer tracking
4549  * @old: current GEM buffer for the frontbuffer slots
4550  * @new: new GEM buffer for the frontbuffer slots
4551  * @frontbuffer_bits: bitmask of frontbuffer slots
4552  *
4553  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4554  * from @old and setting them in @new. Both @old and @new can be NULL.
4555  */
4556 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4557                        struct drm_i915_gem_object *new,
4558                        unsigned frontbuffer_bits)
4559 {
4560         if (old) {
4561                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
4562                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
4563                 old->frontbuffer_bits &= ~frontbuffer_bits;
4564         }
4565
4566         if (new) {
4567                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
4568                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
4569                 new->frontbuffer_bits |= frontbuffer_bits;
4570         }
4571 }
4572
4573 /* All the new VM stuff */
4574 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
4575                         struct i915_address_space *vm)
4576 {
4577         struct drm_i915_private *dev_priv = to_i915(o->base.dev);
4578         struct i915_vma *vma;
4579
4580         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4581
4582         list_for_each_entry(vma, &o->vma_list, obj_link) {
4583                 if (i915_vma_is_ggtt(vma) &&
4584                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4585                         continue;
4586                 if (vma->vm == vm)
4587                         return vma->node.start;
4588         }
4589
4590         WARN(1, "%s vma for this object not found.\n",
4591              i915_is_ggtt(vm) ? "global" : "ppgtt");
4592         return -1;
4593 }
4594
4595 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
4596                                   const struct i915_ggtt_view *view)
4597 {
4598         struct i915_vma *vma;
4599
4600         list_for_each_entry(vma, &o->vma_list, obj_link)
4601                 if (i915_vma_is_ggtt(vma) &&
4602                     i915_ggtt_view_equal(&vma->ggtt_view, view))
4603                         return vma->node.start;
4604
4605         WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
4606         return -1;
4607 }
4608
4609 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4610                         struct i915_address_space *vm)
4611 {
4612         struct i915_vma *vma;
4613
4614         list_for_each_entry(vma, &o->vma_list, obj_link) {
4615                 if (i915_vma_is_ggtt(vma) &&
4616                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4617                         continue;
4618                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4619                         return true;
4620         }
4621
4622         return false;
4623 }
4624
4625 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
4626                                   const struct i915_ggtt_view *view)
4627 {
4628         struct i915_vma *vma;
4629
4630         list_for_each_entry(vma, &o->vma_list, obj_link)
4631                 if (i915_vma_is_ggtt(vma) &&
4632                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
4633                     drm_mm_node_allocated(&vma->node))
4634                         return true;
4635
4636         return false;
4637 }
4638
4639 unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
4640 {
4641         struct i915_vma *vma;
4642
4643         GEM_BUG_ON(list_empty(&o->vma_list));
4644
4645         list_for_each_entry(vma, &o->vma_list, obj_link) {
4646                 if (i915_vma_is_ggtt(vma) &&
4647                     vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
4648                         return vma->node.size;
4649         }
4650
4651         return 0;
4652 }
4653
4654 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
4655 {
4656         struct i915_vma *vma;
4657         list_for_each_entry(vma, &obj->vma_list, obj_link)
4658                 if (i915_vma_is_pinned(vma))
4659                         return true;
4660
4661         return false;
4662 }
4663
4664 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4665 struct page *
4666 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
4667 {
4668         struct page *page;
4669
4670         /* Only default objects have per-page dirty tracking */
4671         if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4672                 return NULL;
4673
4674         page = i915_gem_object_get_page(obj, n);
4675         set_page_dirty(page);
4676         return page;
4677 }
4678
4679 /* Allocate a new GEM object and fill it with the supplied data */
4680 struct drm_i915_gem_object *
4681 i915_gem_object_create_from_data(struct drm_device *dev,
4682                                  const void *data, size_t size)
4683 {
4684         struct drm_i915_gem_object *obj;
4685         struct sg_table *sg;
4686         size_t bytes;
4687         int ret;
4688
4689         obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4690         if (IS_ERR(obj))
4691                 return obj;
4692
4693         ret = i915_gem_object_set_to_cpu_domain(obj, true);
4694         if (ret)
4695                 goto fail;
4696
4697         ret = i915_gem_object_get_pages(obj);
4698         if (ret)
4699                 goto fail;
4700
4701         i915_gem_object_pin_pages(obj);
4702         sg = obj->pages;
4703         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4704         obj->dirty = 1;         /* Backing store is now out of date */
4705         i915_gem_object_unpin_pages(obj);
4706
4707         if (WARN_ON(bytes != size)) {
4708                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4709                 ret = -EFAULT;
4710                 goto fail;
4711         }
4712
4713         return obj;
4714
4715 fail:
4716         i915_gem_object_put(obj);
4717         return ERR_PTR(ret);
4718 }