]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51                                   enum i915_cache_level level)
52 {
53         return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59                 return true;
60
61         return obj->pin_display;
62 }
63
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66                                   size_t size)
67 {
68         spin_lock(&dev_priv->mm.object_stat_lock);
69         dev_priv->mm.object_count++;
70         dev_priv->mm.object_memory += size;
71         spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75                                      size_t size)
76 {
77         spin_lock(&dev_priv->mm.object_stat_lock);
78         dev_priv->mm.object_count--;
79         dev_priv->mm.object_memory -= size;
80         spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86         int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89                    i915_terminally_wedged(error))
90         if (EXIT_COND)
91                 return 0;
92
93         /*
94          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95          * userspace. If it takes that long something really bad is going on and
96          * we should simply try to bail out and fail as gracefully as possible.
97          */
98         ret = wait_event_interruptible_timeout(error->reset_queue,
99                                                EXIT_COND,
100                                                10*HZ);
101         if (ret == 0) {
102                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103                 return -EIO;
104         } else if (ret < 0) {
105                 return ret;
106         }
107 #undef EXIT_COND
108
109         return 0;
110 }
111
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114         struct drm_i915_private *dev_priv = dev->dev_private;
115         int ret;
116
117         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118         if (ret)
119                 return ret;
120
121         ret = mutex_lock_interruptible(&dev->struct_mutex);
122         if (ret)
123                 return ret;
124
125         WARN_ON(i915_verify_lists(dev));
126         return 0;
127 }
128
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131                             struct drm_file *file)
132 {
133         struct drm_i915_private *dev_priv = dev->dev_private;
134         struct drm_i915_gem_get_aperture *args = data;
135         struct i915_gtt *ggtt = &dev_priv->gtt;
136         struct i915_vma *vma;
137         size_t pinned;
138
139         pinned = 0;
140         mutex_lock(&dev->struct_mutex);
141         list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142                 if (vma->pin_count)
143                         pinned += vma->node.size;
144         list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145                 if (vma->pin_count)
146                         pinned += vma->node.size;
147         mutex_unlock(&dev->struct_mutex);
148
149         args->aper_size = dev_priv->gtt.base.total;
150         args->aper_available_size = args->aper_size - pinned;
151
152         return 0;
153 }
154
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159         char *vaddr = obj->phys_handle->vaddr;
160         struct sg_table *st;
161         struct scatterlist *sg;
162         int i;
163
164         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165                 return -EINVAL;
166
167         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168                 struct page *page;
169                 char *src;
170
171                 page = shmem_read_mapping_page(mapping, i);
172                 if (IS_ERR(page))
173                         return PTR_ERR(page);
174
175                 src = kmap_atomic(page);
176                 memcpy(vaddr, src, PAGE_SIZE);
177                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178                 kunmap_atomic(src);
179
180                 page_cache_release(page);
181                 vaddr += PAGE_SIZE;
182         }
183
184         i915_gem_chipset_flush(obj->base.dev);
185
186         st = kmalloc(sizeof(*st), GFP_KERNEL);
187         if (st == NULL)
188                 return -ENOMEM;
189
190         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191                 kfree(st);
192                 return -ENOMEM;
193         }
194
195         sg = st->sgl;
196         sg->offset = 0;
197         sg->length = obj->base.size;
198
199         sg_dma_address(sg) = obj->phys_handle->busaddr;
200         sg_dma_len(sg) = obj->base.size;
201
202         obj->pages = st;
203         return 0;
204 }
205
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209         int ret;
210
211         BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213         ret = i915_gem_object_set_to_cpu_domain(obj, true);
214         if (ret) {
215                 /* In the event of a disaster, abandon all caches and
216                  * hope for the best.
217                  */
218                 WARN_ON(ret != -EIO);
219                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220         }
221
222         if (obj->madv == I915_MADV_DONTNEED)
223                 obj->dirty = 0;
224
225         if (obj->dirty) {
226                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227                 char *vaddr = obj->phys_handle->vaddr;
228                 int i;
229
230                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231                         struct page *page;
232                         char *dst;
233
234                         page = shmem_read_mapping_page(mapping, i);
235                         if (IS_ERR(page))
236                                 continue;
237
238                         dst = kmap_atomic(page);
239                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
240                         memcpy(dst, vaddr, PAGE_SIZE);
241                         kunmap_atomic(dst);
242
243                         set_page_dirty(page);
244                         if (obj->madv == I915_MADV_WILLNEED)
245                                 mark_page_accessed(page);
246                         page_cache_release(page);
247                         vaddr += PAGE_SIZE;
248                 }
249                 obj->dirty = 0;
250         }
251
252         sg_free_table(obj->pages);
253         kfree(obj->pages);
254 }
255
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259         drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263         .get_pages = i915_gem_object_get_pages_phys,
264         .put_pages = i915_gem_object_put_pages_phys,
265         .release = i915_gem_object_release_phys,
266 };
267
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271         struct i915_vma *vma, *next;
272         int ret;
273
274         drm_gem_object_reference(&obj->base);
275         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276                 if (i915_vma_unbind(vma))
277                         break;
278
279         ret = i915_gem_object_put_pages(obj);
280         drm_gem_object_unreference(&obj->base);
281
282         return ret;
283 }
284
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287                             int align)
288 {
289         drm_dma_handle_t *phys;
290         int ret;
291
292         if (obj->phys_handle) {
293                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294                         return -EBUSY;
295
296                 return 0;
297         }
298
299         if (obj->madv != I915_MADV_WILLNEED)
300                 return -EFAULT;
301
302         if (obj->base.filp == NULL)
303                 return -EINVAL;
304
305         ret = drop_pages(obj);
306         if (ret)
307                 return ret;
308
309         /* create a new object */
310         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311         if (!phys)
312                 return -ENOMEM;
313
314         obj->phys_handle = phys;
315         obj->ops = &i915_gem_phys_ops;
316
317         return i915_gem_object_get_pages(obj);
318 }
319
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322                      struct drm_i915_gem_pwrite *args,
323                      struct drm_file *file_priv)
324 {
325         struct drm_device *dev = obj->base.dev;
326         void *vaddr = obj->phys_handle->vaddr + args->offset;
327         char __user *user_data = to_user_ptr(args->data_ptr);
328         int ret = 0;
329
330         /* We manually control the domain here and pretend that it
331          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332          */
333         ret = i915_gem_object_wait_rendering(obj, false);
334         if (ret)
335                 return ret;
336
337         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339                 unsigned long unwritten;
340
341                 /* The physical object once assigned is fixed for the lifetime
342                  * of the obj, so we can safely drop the lock and continue
343                  * to access vaddr.
344                  */
345                 mutex_unlock(&dev->struct_mutex);
346                 unwritten = copy_from_user(vaddr, user_data, args->size);
347                 mutex_lock(&dev->struct_mutex);
348                 if (unwritten) {
349                         ret = -EFAULT;
350                         goto out;
351                 }
352         }
353
354         drm_clflush_virt_range(vaddr, args->size);
355         i915_gem_chipset_flush(dev);
356
357 out:
358         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359         return ret;
360 }
361
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364         struct drm_i915_private *dev_priv = dev->dev_private;
365         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371         kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
375 i915_gem_create(struct drm_file *file,
376                 struct drm_device *dev,
377                 uint64_t size,
378                 uint32_t *handle_p)
379 {
380         struct drm_i915_gem_object *obj;
381         int ret;
382         u32 handle;
383
384         size = roundup(size, PAGE_SIZE);
385         if (size == 0)
386                 return -EINVAL;
387
388         /* Allocate the new object */
389         obj = i915_gem_alloc_object(dev, size);
390         if (obj == NULL)
391                 return -ENOMEM;
392
393         ret = drm_gem_handle_create(file, &obj->base, &handle);
394         /* drop reference from allocate - handle holds it now */
395         drm_gem_object_unreference_unlocked(&obj->base);
396         if (ret)
397                 return ret;
398
399         *handle_p = handle;
400         return 0;
401 }
402
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405                      struct drm_device *dev,
406                      struct drm_mode_create_dumb *args)
407 {
408         /* have to work out size/pitch and return them */
409         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410         args->size = args->pitch * args->height;
411         return i915_gem_create(file, dev,
412                                args->size, &args->handle);
413 }
414
415 /**
416  * Creates a new mm object and returns a handle to it.
417  */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420                       struct drm_file *file)
421 {
422         struct drm_i915_gem_create *args = data;
423
424         return i915_gem_create(file, dev,
425                                args->size, &args->handle);
426 }
427
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430                         const char *gpu_vaddr, int gpu_offset,
431                         int length)
432 {
433         int ret, cpu_offset = 0;
434
435         while (length > 0) {
436                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437                 int this_length = min(cacheline_end - gpu_offset, length);
438                 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441                                      gpu_vaddr + swizzled_gpu_offset,
442                                      this_length);
443                 if (ret)
444                         return ret + length;
445
446                 cpu_offset += this_length;
447                 gpu_offset += this_length;
448                 length -= this_length;
449         }
450
451         return 0;
452 }
453
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456                           const char __user *cpu_vaddr,
457                           int length)
458 {
459         int ret, cpu_offset = 0;
460
461         while (length > 0) {
462                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463                 int this_length = min(cacheline_end - gpu_offset, length);
464                 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467                                        cpu_vaddr + cpu_offset,
468                                        this_length);
469                 if (ret)
470                         return ret + length;
471
472                 cpu_offset += this_length;
473                 gpu_offset += this_length;
474                 length -= this_length;
475         }
476
477         return 0;
478 }
479
480 /*
481  * Pins the specified object's pages and synchronizes the object with
482  * GPU accesses. Sets needs_clflush to non-zero if the caller should
483  * flush the object from the CPU cache.
484  */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486                                     int *needs_clflush)
487 {
488         int ret;
489
490         *needs_clflush = 0;
491
492         if (!obj->base.filp)
493                 return -EINVAL;
494
495         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496                 /* If we're not in the cpu read domain, set ourself into the gtt
497                  * read domain and manually flush cachelines (if required). This
498                  * optimizes for the case when the gpu will dirty the data
499                  * anyway again before the next pread happens. */
500                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501                                                         obj->cache_level);
502                 ret = i915_gem_object_wait_rendering(obj, true);
503                 if (ret)
504                         return ret;
505         }
506
507         ret = i915_gem_object_get_pages(obj);
508         if (ret)
509                 return ret;
510
511         i915_gem_object_pin_pages(obj);
512
513         return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517  * Flushes invalid cachelines before reading the target if
518  * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521                  char __user *user_data,
522                  bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524         char *vaddr;
525         int ret;
526
527         if (unlikely(page_do_bit17_swizzling))
528                 return -EINVAL;
529
530         vaddr = kmap_atomic(page);
531         if (needs_clflush)
532                 drm_clflush_virt_range(vaddr + shmem_page_offset,
533                                        page_length);
534         ret = __copy_to_user_inatomic(user_data,
535                                       vaddr + shmem_page_offset,
536                                       page_length);
537         kunmap_atomic(vaddr);
538
539         return ret ? -EFAULT : 0;
540 }
541
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544                              bool swizzled)
545 {
546         if (unlikely(swizzled)) {
547                 unsigned long start = (unsigned long) addr;
548                 unsigned long end = (unsigned long) addr + length;
549
550                 /* For swizzling simply ensure that we always flush both
551                  * channels. Lame, but simple and it works. Swizzled
552                  * pwrite/pread is far from a hotpath - current userspace
553                  * doesn't use it at all. */
554                 start = round_down(start, 128);
555                 end = round_up(end, 128);
556
557                 drm_clflush_virt_range((void *)start, end - start);
558         } else {
559                 drm_clflush_virt_range(addr, length);
560         }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565  * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568                  char __user *user_data,
569                  bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571         char *vaddr;
572         int ret;
573
574         vaddr = kmap(page);
575         if (needs_clflush)
576                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577                                              page_length,
578                                              page_do_bit17_swizzling);
579
580         if (page_do_bit17_swizzling)
581                 ret = __copy_to_user_swizzled(user_data,
582                                               vaddr, shmem_page_offset,
583                                               page_length);
584         else
585                 ret = __copy_to_user(user_data,
586                                      vaddr + shmem_page_offset,
587                                      page_length);
588         kunmap(page);
589
590         return ret ? - EFAULT : 0;
591 }
592
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595                      struct drm_i915_gem_object *obj,
596                      struct drm_i915_gem_pread *args,
597                      struct drm_file *file)
598 {
599         char __user *user_data;
600         ssize_t remain;
601         loff_t offset;
602         int shmem_page_offset, page_length, ret = 0;
603         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604         int prefaulted = 0;
605         int needs_clflush = 0;
606         struct sg_page_iter sg_iter;
607
608         user_data = to_user_ptr(args->data_ptr);
609         remain = args->size;
610
611         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614         if (ret)
615                 return ret;
616
617         offset = args->offset;
618
619         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620                          offset >> PAGE_SHIFT) {
621                 struct page *page = sg_page_iter_page(&sg_iter);
622
623                 if (remain <= 0)
624                         break;
625
626                 /* Operation in this page
627                  *
628                  * shmem_page_offset = offset within page in shmem file
629                  * page_length = bytes to copy for this page
630                  */
631                 shmem_page_offset = offset_in_page(offset);
632                 page_length = remain;
633                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634                         page_length = PAGE_SIZE - shmem_page_offset;
635
636                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637                         (page_to_phys(page) & (1 << 17)) != 0;
638
639                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640                                        user_data, page_do_bit17_swizzling,
641                                        needs_clflush);
642                 if (ret == 0)
643                         goto next_page;
644
645                 mutex_unlock(&dev->struct_mutex);
646
647                 if (likely(!i915.prefault_disable) && !prefaulted) {
648                         ret = fault_in_multipages_writeable(user_data, remain);
649                         /* Userspace is tricking us, but we've already clobbered
650                          * its pages with the prefault and promised to write the
651                          * data up to the first fault. Hence ignore any errors
652                          * and just continue. */
653                         (void)ret;
654                         prefaulted = 1;
655                 }
656
657                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658                                        user_data, page_do_bit17_swizzling,
659                                        needs_clflush);
660
661                 mutex_lock(&dev->struct_mutex);
662
663                 if (ret)
664                         goto out;
665
666 next_page:
667                 remain -= page_length;
668                 user_data += page_length;
669                 offset += page_length;
670         }
671
672 out:
673         i915_gem_object_unpin_pages(obj);
674
675         return ret;
676 }
677
678 /**
679  * Reads data from the object referenced by handle.
680  *
681  * On error, the contents of *data are undefined.
682  */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685                      struct drm_file *file)
686 {
687         struct drm_i915_gem_pread *args = data;
688         struct drm_i915_gem_object *obj;
689         int ret = 0;
690
691         if (args->size == 0)
692                 return 0;
693
694         if (!access_ok(VERIFY_WRITE,
695                        to_user_ptr(args->data_ptr),
696                        args->size))
697                 return -EFAULT;
698
699         ret = i915_mutex_lock_interruptible(dev);
700         if (ret)
701                 return ret;
702
703         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704         if (&obj->base == NULL) {
705                 ret = -ENOENT;
706                 goto unlock;
707         }
708
709         /* Bounds check source.  */
710         if (args->offset > obj->base.size ||
711             args->size > obj->base.size - args->offset) {
712                 ret = -EINVAL;
713                 goto out;
714         }
715
716         /* prime objects have no backing filp to GEM pread/pwrite
717          * pages from.
718          */
719         if (!obj->base.filp) {
720                 ret = -EINVAL;
721                 goto out;
722         }
723
724         trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726         ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729         drm_gem_object_unreference(&obj->base);
730 unlock:
731         mutex_unlock(&dev->struct_mutex);
732         return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736  * page faults in the source data
737  */
738
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741                 loff_t page_base, int page_offset,
742                 char __user *user_data,
743                 int length)
744 {
745         void __iomem *vaddr_atomic;
746         void *vaddr;
747         unsigned long unwritten;
748
749         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750         /* We can use the cpu mem copy function because this is X86. */
751         vaddr = (void __force*)vaddr_atomic + page_offset;
752         unwritten = __copy_from_user_inatomic_nocache(vaddr,
753                                                       user_data, length);
754         io_mapping_unmap_atomic(vaddr_atomic);
755         return unwritten;
756 }
757
758 /**
759  * This is the fast pwrite path, where we copy the data directly from the
760  * user into the GTT, uncached.
761  */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764                          struct drm_i915_gem_object *obj,
765                          struct drm_i915_gem_pwrite *args,
766                          struct drm_file *file)
767 {
768         struct drm_i915_private *dev_priv = dev->dev_private;
769         ssize_t remain;
770         loff_t offset, page_base;
771         char __user *user_data;
772         int page_offset, page_length, ret;
773
774         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775         if (ret)
776                 goto out;
777
778         ret = i915_gem_object_set_to_gtt_domain(obj, true);
779         if (ret)
780                 goto out_unpin;
781
782         ret = i915_gem_object_put_fence(obj);
783         if (ret)
784                 goto out_unpin;
785
786         user_data = to_user_ptr(args->data_ptr);
787         remain = args->size;
788
789         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791         intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793         while (remain > 0) {
794                 /* Operation in this page
795                  *
796                  * page_base = page offset within aperture
797                  * page_offset = offset within page
798                  * page_length = bytes to copy for this page
799                  */
800                 page_base = offset & PAGE_MASK;
801                 page_offset = offset_in_page(offset);
802                 page_length = remain;
803                 if ((page_offset + remain) > PAGE_SIZE)
804                         page_length = PAGE_SIZE - page_offset;
805
806                 /* If we get a fault while copying data, then (presumably) our
807                  * source page isn't available.  Return the error and we'll
808                  * retry in the slow path.
809                  */
810                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
811                                     page_offset, user_data, page_length)) {
812                         ret = -EFAULT;
813                         goto out_flush;
814                 }
815
816                 remain -= page_length;
817                 user_data += page_length;
818                 offset += page_length;
819         }
820
821 out_flush:
822         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824         i915_gem_object_ggtt_unpin(obj);
825 out:
826         return ret;
827 }
828
829 /* Per-page copy function for the shmem pwrite fastpath.
830  * Flushes invalid cachelines before writing to the target if
831  * needs_clflush_before is set and flushes out any written cachelines after
832  * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835                   char __user *user_data,
836                   bool page_do_bit17_swizzling,
837                   bool needs_clflush_before,
838                   bool needs_clflush_after)
839 {
840         char *vaddr;
841         int ret;
842
843         if (unlikely(page_do_bit17_swizzling))
844                 return -EINVAL;
845
846         vaddr = kmap_atomic(page);
847         if (needs_clflush_before)
848                 drm_clflush_virt_range(vaddr + shmem_page_offset,
849                                        page_length);
850         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851                                         user_data, page_length);
852         if (needs_clflush_after)
853                 drm_clflush_virt_range(vaddr + shmem_page_offset,
854                                        page_length);
855         kunmap_atomic(vaddr);
856
857         return ret ? -EFAULT : 0;
858 }
859
860 /* Only difference to the fast-path function is that this can handle bit17
861  * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864                   char __user *user_data,
865                   bool page_do_bit17_swizzling,
866                   bool needs_clflush_before,
867                   bool needs_clflush_after)
868 {
869         char *vaddr;
870         int ret;
871
872         vaddr = kmap(page);
873         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875                                              page_length,
876                                              page_do_bit17_swizzling);
877         if (page_do_bit17_swizzling)
878                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879                                                 user_data,
880                                                 page_length);
881         else
882                 ret = __copy_from_user(vaddr + shmem_page_offset,
883                                        user_data,
884                                        page_length);
885         if (needs_clflush_after)
886                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887                                              page_length,
888                                              page_do_bit17_swizzling);
889         kunmap(page);
890
891         return ret ? -EFAULT : 0;
892 }
893
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896                       struct drm_i915_gem_object *obj,
897                       struct drm_i915_gem_pwrite *args,
898                       struct drm_file *file)
899 {
900         ssize_t remain;
901         loff_t offset;
902         char __user *user_data;
903         int shmem_page_offset, page_length, ret = 0;
904         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905         int hit_slowpath = 0;
906         int needs_clflush_after = 0;
907         int needs_clflush_before = 0;
908         struct sg_page_iter sg_iter;
909
910         user_data = to_user_ptr(args->data_ptr);
911         remain = args->size;
912
913         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916                 /* If we're not in the cpu write domain, set ourself into the gtt
917                  * write domain and manually flush cachelines (if required). This
918                  * optimizes for the case when the gpu will use the data
919                  * right away and we therefore have to clflush anyway. */
920                 needs_clflush_after = cpu_write_needs_clflush(obj);
921                 ret = i915_gem_object_wait_rendering(obj, false);
922                 if (ret)
923                         return ret;
924         }
925         /* Same trick applies to invalidate partially written cachelines read
926          * before writing. */
927         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928                 needs_clflush_before =
929                         !cpu_cache_is_coherent(dev, obj->cache_level);
930
931         ret = i915_gem_object_get_pages(obj);
932         if (ret)
933                 return ret;
934
935         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937         i915_gem_object_pin_pages(obj);
938
939         offset = args->offset;
940         obj->dirty = 1;
941
942         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943                          offset >> PAGE_SHIFT) {
944                 struct page *page = sg_page_iter_page(&sg_iter);
945                 int partial_cacheline_write;
946
947                 if (remain <= 0)
948                         break;
949
950                 /* Operation in this page
951                  *
952                  * shmem_page_offset = offset within page in shmem file
953                  * page_length = bytes to copy for this page
954                  */
955                 shmem_page_offset = offset_in_page(offset);
956
957                 page_length = remain;
958                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959                         page_length = PAGE_SIZE - shmem_page_offset;
960
961                 /* If we don't overwrite a cacheline completely we need to be
962                  * careful to have up-to-date data by first clflushing. Don't
963                  * overcomplicate things and flush the entire patch. */
964                 partial_cacheline_write = needs_clflush_before &&
965                         ((shmem_page_offset | page_length)
966                                 & (boot_cpu_data.x86_clflush_size - 1));
967
968                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969                         (page_to_phys(page) & (1 << 17)) != 0;
970
971                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972                                         user_data, page_do_bit17_swizzling,
973                                         partial_cacheline_write,
974                                         needs_clflush_after);
975                 if (ret == 0)
976                         goto next_page;
977
978                 hit_slowpath = 1;
979                 mutex_unlock(&dev->struct_mutex);
980                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981                                         user_data, page_do_bit17_swizzling,
982                                         partial_cacheline_write,
983                                         needs_clflush_after);
984
985                 mutex_lock(&dev->struct_mutex);
986
987                 if (ret)
988                         goto out;
989
990 next_page:
991                 remain -= page_length;
992                 user_data += page_length;
993                 offset += page_length;
994         }
995
996 out:
997         i915_gem_object_unpin_pages(obj);
998
999         if (hit_slowpath) {
1000                 /*
1001                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1002                  * cachelines in-line while writing and the object moved
1003                  * out of the cpu write domain while we've dropped the lock.
1004                  */
1005                 if (!needs_clflush_after &&
1006                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007                         if (i915_gem_clflush_object(obj, obj->pin_display))
1008                                 i915_gem_chipset_flush(dev);
1009                 }
1010         }
1011
1012         if (needs_clflush_after)
1013                 i915_gem_chipset_flush(dev);
1014
1015         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1016         return ret;
1017 }
1018
1019 /**
1020  * Writes data to the object referenced by handle.
1021  *
1022  * On error, the contents of the buffer that were to be modified are undefined.
1023  */
1024 int
1025 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1026                       struct drm_file *file)
1027 {
1028         struct drm_i915_private *dev_priv = dev->dev_private;
1029         struct drm_i915_gem_pwrite *args = data;
1030         struct drm_i915_gem_object *obj;
1031         int ret;
1032
1033         if (args->size == 0)
1034                 return 0;
1035
1036         if (!access_ok(VERIFY_READ,
1037                        to_user_ptr(args->data_ptr),
1038                        args->size))
1039                 return -EFAULT;
1040
1041         if (likely(!i915.prefault_disable)) {
1042                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1043                                                    args->size);
1044                 if (ret)
1045                         return -EFAULT;
1046         }
1047
1048         intel_runtime_pm_get(dev_priv);
1049
1050         ret = i915_mutex_lock_interruptible(dev);
1051         if (ret)
1052                 goto put_rpm;
1053
1054         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1055         if (&obj->base == NULL) {
1056                 ret = -ENOENT;
1057                 goto unlock;
1058         }
1059
1060         /* Bounds check destination. */
1061         if (args->offset > obj->base.size ||
1062             args->size > obj->base.size - args->offset) {
1063                 ret = -EINVAL;
1064                 goto out;
1065         }
1066
1067         /* prime objects have no backing filp to GEM pread/pwrite
1068          * pages from.
1069          */
1070         if (!obj->base.filp) {
1071                 ret = -EINVAL;
1072                 goto out;
1073         }
1074
1075         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1076
1077         ret = -EFAULT;
1078         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1079          * it would end up going through the fenced access, and we'll get
1080          * different detiling behavior between reading and writing.
1081          * pread/pwrite currently are reading and writing from the CPU
1082          * perspective, requiring manual detiling by the client.
1083          */
1084         if (obj->tiling_mode == I915_TILING_NONE &&
1085             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1086             cpu_write_needs_clflush(obj)) {
1087                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1088                 /* Note that the gtt paths might fail with non-page-backed user
1089                  * pointers (e.g. gtt mappings when moving data between
1090                  * textures). Fallback to the shmem path in that case. */
1091         }
1092
1093         if (ret == -EFAULT || ret == -ENOSPC) {
1094                 if (obj->phys_handle)
1095                         ret = i915_gem_phys_pwrite(obj, args, file);
1096                 else
1097                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1098         }
1099
1100 out:
1101         drm_gem_object_unreference(&obj->base);
1102 unlock:
1103         mutex_unlock(&dev->struct_mutex);
1104 put_rpm:
1105         intel_runtime_pm_put(dev_priv);
1106
1107         return ret;
1108 }
1109
1110 int
1111 i915_gem_check_wedge(struct i915_gpu_error *error,
1112                      bool interruptible)
1113 {
1114         if (i915_reset_in_progress(error)) {
1115                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1116                  * -EIO unconditionally for these. */
1117                 if (!interruptible)
1118                         return -EIO;
1119
1120                 /* Recovery complete, but the reset failed ... */
1121                 if (i915_terminally_wedged(error))
1122                         return -EIO;
1123
1124                 /*
1125                  * Check if GPU Reset is in progress - we need intel_ring_begin
1126                  * to work properly to reinit the hw state while the gpu is
1127                  * still marked as reset-in-progress. Handle this with a flag.
1128                  */
1129                 if (!error->reload_in_reset)
1130                         return -EAGAIN;
1131         }
1132
1133         return 0;
1134 }
1135
1136 static void fake_irq(unsigned long data)
1137 {
1138         wake_up_process((struct task_struct *)data);
1139 }
1140
1141 static bool missed_irq(struct drm_i915_private *dev_priv,
1142                        struct intel_engine_cs *ring)
1143 {
1144         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1145 }
1146
1147 static int __i915_spin_request(struct drm_i915_gem_request *req)
1148 {
1149         unsigned long timeout;
1150
1151         if (i915_gem_request_get_ring(req)->irq_refcount)
1152                 return -EBUSY;
1153
1154         timeout = jiffies + 1;
1155         while (!need_resched()) {
1156                 if (i915_gem_request_completed(req, true))
1157                         return 0;
1158
1159                 if (time_after_eq(jiffies, timeout))
1160                         break;
1161
1162                 cpu_relax_lowlatency();
1163         }
1164         if (i915_gem_request_completed(req, false))
1165                 return 0;
1166
1167         return -EAGAIN;
1168 }
1169
1170 /**
1171  * __i915_wait_request - wait until execution of request has finished
1172  * @req: duh!
1173  * @reset_counter: reset sequence associated with the given request
1174  * @interruptible: do an interruptible wait (normally yes)
1175  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1176  *
1177  * Note: It is of utmost importance that the passed in seqno and reset_counter
1178  * values have been read by the caller in an smp safe manner. Where read-side
1179  * locks are involved, it is sufficient to read the reset_counter before
1180  * unlocking the lock that protects the seqno. For lockless tricks, the
1181  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1182  * inserted.
1183  *
1184  * Returns 0 if the request was found within the alloted time. Else returns the
1185  * errno with remaining time filled in timeout argument.
1186  */
1187 int __i915_wait_request(struct drm_i915_gem_request *req,
1188                         unsigned reset_counter,
1189                         bool interruptible,
1190                         s64 *timeout,
1191                         struct intel_rps_client *rps)
1192 {
1193         struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1194         struct drm_device *dev = ring->dev;
1195         struct drm_i915_private *dev_priv = dev->dev_private;
1196         const bool irq_test_in_progress =
1197                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1198         DEFINE_WAIT(wait);
1199         unsigned long timeout_expire;
1200         s64 before, now;
1201         int ret;
1202
1203         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1204
1205         if (list_empty(&req->list))
1206                 return 0;
1207
1208         if (i915_gem_request_completed(req, true))
1209                 return 0;
1210
1211         timeout_expire = timeout ?
1212                 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1213
1214         if (INTEL_INFO(dev_priv)->gen >= 6)
1215                 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1216
1217         /* Record current time in case interrupted by signal, or wedged */
1218         trace_i915_gem_request_wait_begin(req);
1219         before = ktime_get_raw_ns();
1220
1221         /* Optimistic spin for the next jiffie before touching IRQs */
1222         ret = __i915_spin_request(req);
1223         if (ret == 0)
1224                 goto out;
1225
1226         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1227                 ret = -ENODEV;
1228                 goto out;
1229         }
1230
1231         for (;;) {
1232                 struct timer_list timer;
1233
1234                 prepare_to_wait(&ring->irq_queue, &wait,
1235                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1236
1237                 /* We need to check whether any gpu reset happened in between
1238                  * the caller grabbing the seqno and now ... */
1239                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1240                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1241                          * is truely gone. */
1242                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1243                         if (ret == 0)
1244                                 ret = -EAGAIN;
1245                         break;
1246                 }
1247
1248                 if (i915_gem_request_completed(req, false)) {
1249                         ret = 0;
1250                         break;
1251                 }
1252
1253                 if (interruptible && signal_pending(current)) {
1254                         ret = -ERESTARTSYS;
1255                         break;
1256                 }
1257
1258                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1259                         ret = -ETIME;
1260                         break;
1261                 }
1262
1263                 timer.function = NULL;
1264                 if (timeout || missed_irq(dev_priv, ring)) {
1265                         unsigned long expire;
1266
1267                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1268                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1269                         mod_timer(&timer, expire);
1270                 }
1271
1272                 io_schedule();
1273
1274                 if (timer.function) {
1275                         del_singleshot_timer_sync(&timer);
1276                         destroy_timer_on_stack(&timer);
1277                 }
1278         }
1279         if (!irq_test_in_progress)
1280                 ring->irq_put(ring);
1281
1282         finish_wait(&ring->irq_queue, &wait);
1283
1284 out:
1285         now = ktime_get_raw_ns();
1286         trace_i915_gem_request_wait_end(req);
1287
1288         if (timeout) {
1289                 s64 tres = *timeout - (now - before);
1290
1291                 *timeout = tres < 0 ? 0 : tres;
1292
1293                 /*
1294                  * Apparently ktime isn't accurate enough and occasionally has a
1295                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1296                  * things up to make the test happy. We allow up to 1 jiffy.
1297                  *
1298                  * This is a regrssion from the timespec->ktime conversion.
1299                  */
1300                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1301                         *timeout = 0;
1302         }
1303
1304         return ret;
1305 }
1306
1307 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1308                                    struct drm_file *file)
1309 {
1310         struct drm_i915_private *dev_private;
1311         struct drm_i915_file_private *file_priv;
1312
1313         WARN_ON(!req || !file || req->file_priv);
1314
1315         if (!req || !file)
1316                 return -EINVAL;
1317
1318         if (req->file_priv)
1319                 return -EINVAL;
1320
1321         dev_private = req->ring->dev->dev_private;
1322         file_priv = file->driver_priv;
1323
1324         spin_lock(&file_priv->mm.lock);
1325         req->file_priv = file_priv;
1326         list_add_tail(&req->client_list, &file_priv->mm.request_list);
1327         spin_unlock(&file_priv->mm.lock);
1328
1329         req->pid = get_pid(task_pid(current));
1330
1331         return 0;
1332 }
1333
1334 static inline void
1335 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1336 {
1337         struct drm_i915_file_private *file_priv = request->file_priv;
1338
1339         if (!file_priv)
1340                 return;
1341
1342         spin_lock(&file_priv->mm.lock);
1343         list_del(&request->client_list);
1344         request->file_priv = NULL;
1345         spin_unlock(&file_priv->mm.lock);
1346
1347         put_pid(request->pid);
1348         request->pid = NULL;
1349 }
1350
1351 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1352 {
1353         trace_i915_gem_request_retire(request);
1354
1355         /* We know the GPU must have read the request to have
1356          * sent us the seqno + interrupt, so use the position
1357          * of tail of the request to update the last known position
1358          * of the GPU head.
1359          *
1360          * Note this requires that we are always called in request
1361          * completion order.
1362          */
1363         request->ringbuf->last_retired_head = request->postfix;
1364
1365         list_del_init(&request->list);
1366         i915_gem_request_remove_from_client(request);
1367
1368         i915_gem_request_unreference(request);
1369 }
1370
1371 static void
1372 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1373 {
1374         struct intel_engine_cs *engine = req->ring;
1375         struct drm_i915_gem_request *tmp;
1376
1377         lockdep_assert_held(&engine->dev->struct_mutex);
1378
1379         if (list_empty(&req->list))
1380                 return;
1381
1382         do {
1383                 tmp = list_first_entry(&engine->request_list,
1384                                        typeof(*tmp), list);
1385
1386                 i915_gem_request_retire(tmp);
1387         } while (tmp != req);
1388
1389         WARN_ON(i915_verify_lists(engine->dev));
1390 }
1391
1392 /**
1393  * Waits for a request to be signaled, and cleans up the
1394  * request and object lists appropriately for that event.
1395  */
1396 int
1397 i915_wait_request(struct drm_i915_gem_request *req)
1398 {
1399         struct drm_device *dev;
1400         struct drm_i915_private *dev_priv;
1401         bool interruptible;
1402         int ret;
1403
1404         BUG_ON(req == NULL);
1405
1406         dev = req->ring->dev;
1407         dev_priv = dev->dev_private;
1408         interruptible = dev_priv->mm.interruptible;
1409
1410         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1411
1412         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1413         if (ret)
1414                 return ret;
1415
1416         ret = __i915_wait_request(req,
1417                                   atomic_read(&dev_priv->gpu_error.reset_counter),
1418                                   interruptible, NULL, NULL);
1419         if (ret)
1420                 return ret;
1421
1422         __i915_gem_request_retire__upto(req);
1423         return 0;
1424 }
1425
1426 /**
1427  * Ensures that all rendering to the object has completed and the object is
1428  * safe to unbind from the GTT or access from the CPU.
1429  */
1430 int
1431 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1432                                bool readonly)
1433 {
1434         int ret, i;
1435
1436         if (!obj->active)
1437                 return 0;
1438
1439         if (readonly) {
1440                 if (obj->last_write_req != NULL) {
1441                         ret = i915_wait_request(obj->last_write_req);
1442                         if (ret)
1443                                 return ret;
1444
1445                         i = obj->last_write_req->ring->id;
1446                         if (obj->last_read_req[i] == obj->last_write_req)
1447                                 i915_gem_object_retire__read(obj, i);
1448                         else
1449                                 i915_gem_object_retire__write(obj);
1450                 }
1451         } else {
1452                 for (i = 0; i < I915_NUM_RINGS; i++) {
1453                         if (obj->last_read_req[i] == NULL)
1454                                 continue;
1455
1456                         ret = i915_wait_request(obj->last_read_req[i]);
1457                         if (ret)
1458                                 return ret;
1459
1460                         i915_gem_object_retire__read(obj, i);
1461                 }
1462                 RQ_BUG_ON(obj->active);
1463         }
1464
1465         return 0;
1466 }
1467
1468 static void
1469 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1470                                struct drm_i915_gem_request *req)
1471 {
1472         int ring = req->ring->id;
1473
1474         if (obj->last_read_req[ring] == req)
1475                 i915_gem_object_retire__read(obj, ring);
1476         else if (obj->last_write_req == req)
1477                 i915_gem_object_retire__write(obj);
1478
1479         __i915_gem_request_retire__upto(req);
1480 }
1481
1482 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1483  * as the object state may change during this call.
1484  */
1485 static __must_check int
1486 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1487                                             struct intel_rps_client *rps,
1488                                             bool readonly)
1489 {
1490         struct drm_device *dev = obj->base.dev;
1491         struct drm_i915_private *dev_priv = dev->dev_private;
1492         struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1493         unsigned reset_counter;
1494         int ret, i, n = 0;
1495
1496         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1497         BUG_ON(!dev_priv->mm.interruptible);
1498
1499         if (!obj->active)
1500                 return 0;
1501
1502         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1503         if (ret)
1504                 return ret;
1505
1506         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1507
1508         if (readonly) {
1509                 struct drm_i915_gem_request *req;
1510
1511                 req = obj->last_write_req;
1512                 if (req == NULL)
1513                         return 0;
1514
1515                 requests[n++] = i915_gem_request_reference(req);
1516         } else {
1517                 for (i = 0; i < I915_NUM_RINGS; i++) {
1518                         struct drm_i915_gem_request *req;
1519
1520                         req = obj->last_read_req[i];
1521                         if (req == NULL)
1522                                 continue;
1523
1524                         requests[n++] = i915_gem_request_reference(req);
1525                 }
1526         }
1527
1528         mutex_unlock(&dev->struct_mutex);
1529         for (i = 0; ret == 0 && i < n; i++)
1530                 ret = __i915_wait_request(requests[i], reset_counter, true,
1531                                           NULL, rps);
1532         mutex_lock(&dev->struct_mutex);
1533
1534         for (i = 0; i < n; i++) {
1535                 if (ret == 0)
1536                         i915_gem_object_retire_request(obj, requests[i]);
1537                 i915_gem_request_unreference(requests[i]);
1538         }
1539
1540         return ret;
1541 }
1542
1543 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1544 {
1545         struct drm_i915_file_private *fpriv = file->driver_priv;
1546         return &fpriv->rps;
1547 }
1548
1549 /**
1550  * Called when user space prepares to use an object with the CPU, either
1551  * through the mmap ioctl's mapping or a GTT mapping.
1552  */
1553 int
1554 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1555                           struct drm_file *file)
1556 {
1557         struct drm_i915_gem_set_domain *args = data;
1558         struct drm_i915_gem_object *obj;
1559         uint32_t read_domains = args->read_domains;
1560         uint32_t write_domain = args->write_domain;
1561         int ret;
1562
1563         /* Only handle setting domains to types used by the CPU. */
1564         if (write_domain & I915_GEM_GPU_DOMAINS)
1565                 return -EINVAL;
1566
1567         if (read_domains & I915_GEM_GPU_DOMAINS)
1568                 return -EINVAL;
1569
1570         /* Having something in the write domain implies it's in the read
1571          * domain, and only that read domain.  Enforce that in the request.
1572          */
1573         if (write_domain != 0 && read_domains != write_domain)
1574                 return -EINVAL;
1575
1576         ret = i915_mutex_lock_interruptible(dev);
1577         if (ret)
1578                 return ret;
1579
1580         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1581         if (&obj->base == NULL) {
1582                 ret = -ENOENT;
1583                 goto unlock;
1584         }
1585
1586         /* Try to flush the object off the GPU without holding the lock.
1587          * We will repeat the flush holding the lock in the normal manner
1588          * to catch cases where we are gazumped.
1589          */
1590         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1591                                                           to_rps_client(file),
1592                                                           !write_domain);
1593         if (ret)
1594                 goto unref;
1595
1596         if (read_domains & I915_GEM_DOMAIN_GTT)
1597                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1598         else
1599                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1600
1601         if (write_domain != 0)
1602                 intel_fb_obj_invalidate(obj,
1603                                         write_domain == I915_GEM_DOMAIN_GTT ?
1604                                         ORIGIN_GTT : ORIGIN_CPU);
1605
1606 unref:
1607         drm_gem_object_unreference(&obj->base);
1608 unlock:
1609         mutex_unlock(&dev->struct_mutex);
1610         return ret;
1611 }
1612
1613 /**
1614  * Called when user space has done writes to this buffer
1615  */
1616 int
1617 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1618                          struct drm_file *file)
1619 {
1620         struct drm_i915_gem_sw_finish *args = data;
1621         struct drm_i915_gem_object *obj;
1622         int ret = 0;
1623
1624         ret = i915_mutex_lock_interruptible(dev);
1625         if (ret)
1626                 return ret;
1627
1628         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1629         if (&obj->base == NULL) {
1630                 ret = -ENOENT;
1631                 goto unlock;
1632         }
1633
1634         /* Pinned buffers may be scanout, so flush the cache */
1635         if (obj->pin_display)
1636                 i915_gem_object_flush_cpu_write_domain(obj);
1637
1638         drm_gem_object_unreference(&obj->base);
1639 unlock:
1640         mutex_unlock(&dev->struct_mutex);
1641         return ret;
1642 }
1643
1644 /**
1645  * Maps the contents of an object, returning the address it is mapped
1646  * into.
1647  *
1648  * While the mapping holds a reference on the contents of the object, it doesn't
1649  * imply a ref on the object itself.
1650  *
1651  * IMPORTANT:
1652  *
1653  * DRM driver writers who look a this function as an example for how to do GEM
1654  * mmap support, please don't implement mmap support like here. The modern way
1655  * to implement DRM mmap support is with an mmap offset ioctl (like
1656  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1657  * That way debug tooling like valgrind will understand what's going on, hiding
1658  * the mmap call in a driver private ioctl will break that. The i915 driver only
1659  * does cpu mmaps this way because we didn't know better.
1660  */
1661 int
1662 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1663                     struct drm_file *file)
1664 {
1665         struct drm_i915_gem_mmap *args = data;
1666         struct drm_gem_object *obj;
1667         unsigned long addr;
1668
1669         if (args->flags & ~(I915_MMAP_WC))
1670                 return -EINVAL;
1671
1672         if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1673                 return -ENODEV;
1674
1675         obj = drm_gem_object_lookup(dev, file, args->handle);
1676         if (obj == NULL)
1677                 return -ENOENT;
1678
1679         /* prime objects have no backing filp to GEM mmap
1680          * pages from.
1681          */
1682         if (!obj->filp) {
1683                 drm_gem_object_unreference_unlocked(obj);
1684                 return -EINVAL;
1685         }
1686
1687         addr = vm_mmap(obj->filp, 0, args->size,
1688                        PROT_READ | PROT_WRITE, MAP_SHARED,
1689                        args->offset);
1690         if (args->flags & I915_MMAP_WC) {
1691                 struct mm_struct *mm = current->mm;
1692                 struct vm_area_struct *vma;
1693
1694                 down_write(&mm->mmap_sem);
1695                 vma = find_vma(mm, addr);
1696                 if (vma)
1697                         vma->vm_page_prot =
1698                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1699                 else
1700                         addr = -ENOMEM;
1701                 up_write(&mm->mmap_sem);
1702         }
1703         drm_gem_object_unreference_unlocked(obj);
1704         if (IS_ERR((void *)addr))
1705                 return addr;
1706
1707         args->addr_ptr = (uint64_t) addr;
1708
1709         return 0;
1710 }
1711
1712 /**
1713  * i915_gem_fault - fault a page into the GTT
1714  * vma: VMA in question
1715  * vmf: fault info
1716  *
1717  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1718  * from userspace.  The fault handler takes care of binding the object to
1719  * the GTT (if needed), allocating and programming a fence register (again,
1720  * only if needed based on whether the old reg is still valid or the object
1721  * is tiled) and inserting a new PTE into the faulting process.
1722  *
1723  * Note that the faulting process may involve evicting existing objects
1724  * from the GTT and/or fence registers to make room.  So performance may
1725  * suffer if the GTT working set is large or there are few fence registers
1726  * left.
1727  */
1728 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1729 {
1730         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1731         struct drm_device *dev = obj->base.dev;
1732         struct drm_i915_private *dev_priv = dev->dev_private;
1733         struct i915_ggtt_view view = i915_ggtt_view_normal;
1734         pgoff_t page_offset;
1735         unsigned long pfn;
1736         int ret = 0;
1737         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1738
1739         intel_runtime_pm_get(dev_priv);
1740
1741         /* We don't use vmf->pgoff since that has the fake offset */
1742         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1743                 PAGE_SHIFT;
1744
1745         ret = i915_mutex_lock_interruptible(dev);
1746         if (ret)
1747                 goto out;
1748
1749         trace_i915_gem_object_fault(obj, page_offset, true, write);
1750
1751         /* Try to flush the object off the GPU first without holding the lock.
1752          * Upon reacquiring the lock, we will perform our sanity checks and then
1753          * repeat the flush holding the lock in the normal manner to catch cases
1754          * where we are gazumped.
1755          */
1756         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1757         if (ret)
1758                 goto unlock;
1759
1760         /* Access to snoopable pages through the GTT is incoherent. */
1761         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1762                 ret = -EFAULT;
1763                 goto unlock;
1764         }
1765
1766         /* Use a partial view if the object is bigger than the aperture. */
1767         if (obj->base.size >= dev_priv->gtt.mappable_end &&
1768             obj->tiling_mode == I915_TILING_NONE) {
1769                 static const unsigned int chunk_size = 256; // 1 MiB
1770
1771                 memset(&view, 0, sizeof(view));
1772                 view.type = I915_GGTT_VIEW_PARTIAL;
1773                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1774                 view.params.partial.size =
1775                         min_t(unsigned int,
1776                               chunk_size,
1777                               (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1778                               view.params.partial.offset);
1779         }
1780
1781         /* Now pin it into the GTT if needed */
1782         ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1783         if (ret)
1784                 goto unlock;
1785
1786         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1787         if (ret)
1788                 goto unpin;
1789
1790         ret = i915_gem_object_get_fence(obj);
1791         if (ret)
1792                 goto unpin;
1793
1794         /* Finally, remap it using the new GTT offset */
1795         pfn = dev_priv->gtt.mappable_base +
1796                 i915_gem_obj_ggtt_offset_view(obj, &view);
1797         pfn >>= PAGE_SHIFT;
1798
1799         if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1800                 /* Overriding existing pages in partial view does not cause
1801                  * us any trouble as TLBs are still valid because the fault
1802                  * is due to userspace losing part of the mapping or never
1803                  * having accessed it before (at this partials' range).
1804                  */
1805                 unsigned long base = vma->vm_start +
1806                                      (view.params.partial.offset << PAGE_SHIFT);
1807                 unsigned int i;
1808
1809                 for (i = 0; i < view.params.partial.size; i++) {
1810                         ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1811                         if (ret)
1812                                 break;
1813                 }
1814
1815                 obj->fault_mappable = true;
1816         } else {
1817                 if (!obj->fault_mappable) {
1818                         unsigned long size = min_t(unsigned long,
1819                                                    vma->vm_end - vma->vm_start,
1820                                                    obj->base.size);
1821                         int i;
1822
1823                         for (i = 0; i < size >> PAGE_SHIFT; i++) {
1824                                 ret = vm_insert_pfn(vma,
1825                                                     (unsigned long)vma->vm_start + i * PAGE_SIZE,
1826                                                     pfn + i);
1827                                 if (ret)
1828                                         break;
1829                         }
1830
1831                         obj->fault_mappable = true;
1832                 } else
1833                         ret = vm_insert_pfn(vma,
1834                                             (unsigned long)vmf->virtual_address,
1835                                             pfn + page_offset);
1836         }
1837 unpin:
1838         i915_gem_object_ggtt_unpin_view(obj, &view);
1839 unlock:
1840         mutex_unlock(&dev->struct_mutex);
1841 out:
1842         switch (ret) {
1843         case -EIO:
1844                 /*
1845                  * We eat errors when the gpu is terminally wedged to avoid
1846                  * userspace unduly crashing (gl has no provisions for mmaps to
1847                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1848                  * and so needs to be reported.
1849                  */
1850                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1851                         ret = VM_FAULT_SIGBUS;
1852                         break;
1853                 }
1854         case -EAGAIN:
1855                 /*
1856                  * EAGAIN means the gpu is hung and we'll wait for the error
1857                  * handler to reset everything when re-faulting in
1858                  * i915_mutex_lock_interruptible.
1859                  */
1860         case 0:
1861         case -ERESTARTSYS:
1862         case -EINTR:
1863         case -EBUSY:
1864                 /*
1865                  * EBUSY is ok: this just means that another thread
1866                  * already did the job.
1867                  */
1868                 ret = VM_FAULT_NOPAGE;
1869                 break;
1870         case -ENOMEM:
1871                 ret = VM_FAULT_OOM;
1872                 break;
1873         case -ENOSPC:
1874         case -EFAULT:
1875                 ret = VM_FAULT_SIGBUS;
1876                 break;
1877         default:
1878                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1879                 ret = VM_FAULT_SIGBUS;
1880                 break;
1881         }
1882
1883         intel_runtime_pm_put(dev_priv);
1884         return ret;
1885 }
1886
1887 /**
1888  * i915_gem_release_mmap - remove physical page mappings
1889  * @obj: obj in question
1890  *
1891  * Preserve the reservation of the mmapping with the DRM core code, but
1892  * relinquish ownership of the pages back to the system.
1893  *
1894  * It is vital that we remove the page mapping if we have mapped a tiled
1895  * object through the GTT and then lose the fence register due to
1896  * resource pressure. Similarly if the object has been moved out of the
1897  * aperture, than pages mapped into userspace must be revoked. Removing the
1898  * mapping will then trigger a page fault on the next user access, allowing
1899  * fixup by i915_gem_fault().
1900  */
1901 void
1902 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1903 {
1904         if (!obj->fault_mappable)
1905                 return;
1906
1907         drm_vma_node_unmap(&obj->base.vma_node,
1908                            obj->base.dev->anon_inode->i_mapping);
1909         obj->fault_mappable = false;
1910 }
1911
1912 void
1913 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1914 {
1915         struct drm_i915_gem_object *obj;
1916
1917         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1918                 i915_gem_release_mmap(obj);
1919 }
1920
1921 uint32_t
1922 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1923 {
1924         uint32_t gtt_size;
1925
1926         if (INTEL_INFO(dev)->gen >= 4 ||
1927             tiling_mode == I915_TILING_NONE)
1928                 return size;
1929
1930         /* Previous chips need a power-of-two fence region when tiling */
1931         if (INTEL_INFO(dev)->gen == 3)
1932                 gtt_size = 1024*1024;
1933         else
1934                 gtt_size = 512*1024;
1935
1936         while (gtt_size < size)
1937                 gtt_size <<= 1;
1938
1939         return gtt_size;
1940 }
1941
1942 /**
1943  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1944  * @obj: object to check
1945  *
1946  * Return the required GTT alignment for an object, taking into account
1947  * potential fence register mapping.
1948  */
1949 uint32_t
1950 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1951                            int tiling_mode, bool fenced)
1952 {
1953         /*
1954          * Minimum alignment is 4k (GTT page size), but might be greater
1955          * if a fence register is needed for the object.
1956          */
1957         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1958             tiling_mode == I915_TILING_NONE)
1959                 return 4096;
1960
1961         /*
1962          * Previous chips need to be aligned to the size of the smallest
1963          * fence register that can contain the object.
1964          */
1965         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1966 }
1967
1968 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1969 {
1970         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1971         int ret;
1972
1973         if (drm_vma_node_has_offset(&obj->base.vma_node))
1974                 return 0;
1975
1976         dev_priv->mm.shrinker_no_lock_stealing = true;
1977
1978         ret = drm_gem_create_mmap_offset(&obj->base);
1979         if (ret != -ENOSPC)
1980                 goto out;
1981
1982         /* Badly fragmented mmap space? The only way we can recover
1983          * space is by destroying unwanted objects. We can't randomly release
1984          * mmap_offsets as userspace expects them to be persistent for the
1985          * lifetime of the objects. The closest we can is to release the
1986          * offsets on purgeable objects by truncating it and marking it purged,
1987          * which prevents userspace from ever using that object again.
1988          */
1989         i915_gem_shrink(dev_priv,
1990                         obj->base.size >> PAGE_SHIFT,
1991                         I915_SHRINK_BOUND |
1992                         I915_SHRINK_UNBOUND |
1993                         I915_SHRINK_PURGEABLE);
1994         ret = drm_gem_create_mmap_offset(&obj->base);
1995         if (ret != -ENOSPC)
1996                 goto out;
1997
1998         i915_gem_shrink_all(dev_priv);
1999         ret = drm_gem_create_mmap_offset(&obj->base);
2000 out:
2001         dev_priv->mm.shrinker_no_lock_stealing = false;
2002
2003         return ret;
2004 }
2005
2006 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2007 {
2008         drm_gem_free_mmap_offset(&obj->base);
2009 }
2010
2011 int
2012 i915_gem_mmap_gtt(struct drm_file *file,
2013                   struct drm_device *dev,
2014                   uint32_t handle,
2015                   uint64_t *offset)
2016 {
2017         struct drm_i915_gem_object *obj;
2018         int ret;
2019
2020         ret = i915_mutex_lock_interruptible(dev);
2021         if (ret)
2022                 return ret;
2023
2024         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2025         if (&obj->base == NULL) {
2026                 ret = -ENOENT;
2027                 goto unlock;
2028         }
2029
2030         if (obj->madv != I915_MADV_WILLNEED) {
2031                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2032                 ret = -EFAULT;
2033                 goto out;
2034         }
2035
2036         ret = i915_gem_object_create_mmap_offset(obj);
2037         if (ret)
2038                 goto out;
2039
2040         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2041
2042 out:
2043         drm_gem_object_unreference(&obj->base);
2044 unlock:
2045         mutex_unlock(&dev->struct_mutex);
2046         return ret;
2047 }
2048
2049 /**
2050  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2051  * @dev: DRM device
2052  * @data: GTT mapping ioctl data
2053  * @file: GEM object info
2054  *
2055  * Simply returns the fake offset to userspace so it can mmap it.
2056  * The mmap call will end up in drm_gem_mmap(), which will set things
2057  * up so we can get faults in the handler above.
2058  *
2059  * The fault handler will take care of binding the object into the GTT
2060  * (since it may have been evicted to make room for something), allocating
2061  * a fence register, and mapping the appropriate aperture address into
2062  * userspace.
2063  */
2064 int
2065 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2066                         struct drm_file *file)
2067 {
2068         struct drm_i915_gem_mmap_gtt *args = data;
2069
2070         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2071 }
2072
2073 /* Immediately discard the backing storage */
2074 static void
2075 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2076 {
2077         i915_gem_object_free_mmap_offset(obj);
2078
2079         if (obj->base.filp == NULL)
2080                 return;
2081
2082         /* Our goal here is to return as much of the memory as
2083          * is possible back to the system as we are called from OOM.
2084          * To do this we must instruct the shmfs to drop all of its
2085          * backing pages, *now*.
2086          */
2087         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2088         obj->madv = __I915_MADV_PURGED;
2089 }
2090
2091 /* Try to discard unwanted pages */
2092 static void
2093 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2094 {
2095         struct address_space *mapping;
2096
2097         switch (obj->madv) {
2098         case I915_MADV_DONTNEED:
2099                 i915_gem_object_truncate(obj);
2100         case __I915_MADV_PURGED:
2101                 return;
2102         }
2103
2104         if (obj->base.filp == NULL)
2105                 return;
2106
2107         mapping = file_inode(obj->base.filp)->i_mapping,
2108         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2109 }
2110
2111 static void
2112 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2113 {
2114         struct sg_page_iter sg_iter;
2115         int ret;
2116
2117         BUG_ON(obj->madv == __I915_MADV_PURGED);
2118
2119         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2120         if (ret) {
2121                 /* In the event of a disaster, abandon all caches and
2122                  * hope for the best.
2123                  */
2124                 WARN_ON(ret != -EIO);
2125                 i915_gem_clflush_object(obj, true);
2126                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2127         }
2128
2129         i915_gem_gtt_finish_object(obj);
2130
2131         if (i915_gem_object_needs_bit17_swizzle(obj))
2132                 i915_gem_object_save_bit_17_swizzle(obj);
2133
2134         if (obj->madv == I915_MADV_DONTNEED)
2135                 obj->dirty = 0;
2136
2137         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2138                 struct page *page = sg_page_iter_page(&sg_iter);
2139
2140                 if (obj->dirty)
2141                         set_page_dirty(page);
2142
2143                 if (obj->madv == I915_MADV_WILLNEED)
2144                         mark_page_accessed(page);
2145
2146                 page_cache_release(page);
2147         }
2148         obj->dirty = 0;
2149
2150         sg_free_table(obj->pages);
2151         kfree(obj->pages);
2152 }
2153
2154 int
2155 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2156 {
2157         const struct drm_i915_gem_object_ops *ops = obj->ops;
2158
2159         if (obj->pages == NULL)
2160                 return 0;
2161
2162         if (obj->pages_pin_count)
2163                 return -EBUSY;
2164
2165         BUG_ON(i915_gem_obj_bound_any(obj));
2166
2167         /* ->put_pages might need to allocate memory for the bit17 swizzle
2168          * array, hence protect them from being reaped by removing them from gtt
2169          * lists early. */
2170         list_del(&obj->global_list);
2171
2172         ops->put_pages(obj);
2173         obj->pages = NULL;
2174
2175         i915_gem_object_invalidate(obj);
2176
2177         return 0;
2178 }
2179
2180 static int
2181 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2182 {
2183         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2184         int page_count, i;
2185         struct address_space *mapping;
2186         struct sg_table *st;
2187         struct scatterlist *sg;
2188         struct sg_page_iter sg_iter;
2189         struct page *page;
2190         unsigned long last_pfn = 0;     /* suppress gcc warning */
2191         int ret;
2192         gfp_t gfp;
2193
2194         /* Assert that the object is not currently in any GPU domain. As it
2195          * wasn't in the GTT, there shouldn't be any way it could have been in
2196          * a GPU cache
2197          */
2198         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2199         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2200
2201         st = kmalloc(sizeof(*st), GFP_KERNEL);
2202         if (st == NULL)
2203                 return -ENOMEM;
2204
2205         page_count = obj->base.size / PAGE_SIZE;
2206         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2207                 kfree(st);
2208                 return -ENOMEM;
2209         }
2210
2211         /* Get the list of pages out of our struct file.  They'll be pinned
2212          * at this point until we release them.
2213          *
2214          * Fail silently without starting the shrinker
2215          */
2216         mapping = file_inode(obj->base.filp)->i_mapping;
2217         gfp = mapping_gfp_mask(mapping);
2218         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2219         gfp &= ~(__GFP_IO | __GFP_WAIT);
2220         sg = st->sgl;
2221         st->nents = 0;
2222         for (i = 0; i < page_count; i++) {
2223                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2224                 if (IS_ERR(page)) {
2225                         i915_gem_shrink(dev_priv,
2226                                         page_count,
2227                                         I915_SHRINK_BOUND |
2228                                         I915_SHRINK_UNBOUND |
2229                                         I915_SHRINK_PURGEABLE);
2230                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2231                 }
2232                 if (IS_ERR(page)) {
2233                         /* We've tried hard to allocate the memory by reaping
2234                          * our own buffer, now let the real VM do its job and
2235                          * go down in flames if truly OOM.
2236                          */
2237                         i915_gem_shrink_all(dev_priv);
2238                         page = shmem_read_mapping_page(mapping, i);
2239                         if (IS_ERR(page)) {
2240                                 ret = PTR_ERR(page);
2241                                 goto err_pages;
2242                         }
2243                 }
2244 #ifdef CONFIG_SWIOTLB
2245                 if (swiotlb_nr_tbl()) {
2246                         st->nents++;
2247                         sg_set_page(sg, page, PAGE_SIZE, 0);
2248                         sg = sg_next(sg);
2249                         continue;
2250                 }
2251 #endif
2252                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2253                         if (i)
2254                                 sg = sg_next(sg);
2255                         st->nents++;
2256                         sg_set_page(sg, page, PAGE_SIZE, 0);
2257                 } else {
2258                         sg->length += PAGE_SIZE;
2259                 }
2260                 last_pfn = page_to_pfn(page);
2261
2262                 /* Check that the i965g/gm workaround works. */
2263                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2264         }
2265 #ifdef CONFIG_SWIOTLB
2266         if (!swiotlb_nr_tbl())
2267 #endif
2268                 sg_mark_end(sg);
2269         obj->pages = st;
2270
2271         ret = i915_gem_gtt_prepare_object(obj);
2272         if (ret)
2273                 goto err_pages;
2274
2275         if (i915_gem_object_needs_bit17_swizzle(obj))
2276                 i915_gem_object_do_bit_17_swizzle(obj);
2277
2278         if (obj->tiling_mode != I915_TILING_NONE &&
2279             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2280                 i915_gem_object_pin_pages(obj);
2281
2282         return 0;
2283
2284 err_pages:
2285         sg_mark_end(sg);
2286         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2287                 page_cache_release(sg_page_iter_page(&sg_iter));
2288         sg_free_table(st);
2289         kfree(st);
2290
2291         /* shmemfs first checks if there is enough memory to allocate the page
2292          * and reports ENOSPC should there be insufficient, along with the usual
2293          * ENOMEM for a genuine allocation failure.
2294          *
2295          * We use ENOSPC in our driver to mean that we have run out of aperture
2296          * space and so want to translate the error from shmemfs back to our
2297          * usual understanding of ENOMEM.
2298          */
2299         if (ret == -ENOSPC)
2300                 ret = -ENOMEM;
2301
2302         return ret;
2303 }
2304
2305 /* Ensure that the associated pages are gathered from the backing storage
2306  * and pinned into our object. i915_gem_object_get_pages() may be called
2307  * multiple times before they are released by a single call to
2308  * i915_gem_object_put_pages() - once the pages are no longer referenced
2309  * either as a result of memory pressure (reaping pages under the shrinker)
2310  * or as the object is itself released.
2311  */
2312 int
2313 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2314 {
2315         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2316         const struct drm_i915_gem_object_ops *ops = obj->ops;
2317         int ret;
2318
2319         if (obj->pages)
2320                 return 0;
2321
2322         if (obj->madv != I915_MADV_WILLNEED) {
2323                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2324                 return -EFAULT;
2325         }
2326
2327         BUG_ON(obj->pages_pin_count);
2328
2329         ret = ops->get_pages(obj);
2330         if (ret)
2331                 return ret;
2332
2333         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2334
2335         obj->get_page.sg = obj->pages->sgl;
2336         obj->get_page.last = 0;
2337
2338         return 0;
2339 }
2340
2341 void i915_vma_move_to_active(struct i915_vma *vma,
2342                              struct drm_i915_gem_request *req)
2343 {
2344         struct drm_i915_gem_object *obj = vma->obj;
2345         struct intel_engine_cs *ring;
2346
2347         ring = i915_gem_request_get_ring(req);
2348
2349         /* Add a reference if we're newly entering the active list. */
2350         if (obj->active == 0)
2351                 drm_gem_object_reference(&obj->base);
2352         obj->active |= intel_ring_flag(ring);
2353
2354         list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2355         i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2356
2357         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2358 }
2359
2360 static void
2361 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2362 {
2363         RQ_BUG_ON(obj->last_write_req == NULL);
2364         RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2365
2366         i915_gem_request_assign(&obj->last_write_req, NULL);
2367         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2368 }
2369
2370 static void
2371 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2372 {
2373         struct i915_vma *vma;
2374
2375         RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2376         RQ_BUG_ON(!(obj->active & (1 << ring)));
2377
2378         list_del_init(&obj->ring_list[ring]);
2379         i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2380
2381         if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2382                 i915_gem_object_retire__write(obj);
2383
2384         obj->active &= ~(1 << ring);
2385         if (obj->active)
2386                 return;
2387
2388         /* Bump our place on the bound list to keep it roughly in LRU order
2389          * so that we don't steal from recently used but inactive objects
2390          * (unless we are forced to ofc!)
2391          */
2392         list_move_tail(&obj->global_list,
2393                        &to_i915(obj->base.dev)->mm.bound_list);
2394
2395         list_for_each_entry(vma, &obj->vma_list, vma_link) {
2396                 if (!list_empty(&vma->mm_list))
2397                         list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2398         }
2399
2400         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2401         drm_gem_object_unreference(&obj->base);
2402 }
2403
2404 static int
2405 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2406 {
2407         struct drm_i915_private *dev_priv = dev->dev_private;
2408         struct intel_engine_cs *ring;
2409         int ret, i, j;
2410
2411         /* Carefully retire all requests without writing to the rings */
2412         for_each_ring(ring, dev_priv, i) {
2413                 ret = intel_ring_idle(ring);
2414                 if (ret)
2415                         return ret;
2416         }
2417         i915_gem_retire_requests(dev);
2418
2419         /* Finally reset hw state */
2420         for_each_ring(ring, dev_priv, i) {
2421                 intel_ring_init_seqno(ring, seqno);
2422
2423                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2424                         ring->semaphore.sync_seqno[j] = 0;
2425         }
2426
2427         return 0;
2428 }
2429
2430 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2431 {
2432         struct drm_i915_private *dev_priv = dev->dev_private;
2433         int ret;
2434
2435         if (seqno == 0)
2436                 return -EINVAL;
2437
2438         /* HWS page needs to be set less than what we
2439          * will inject to ring
2440          */
2441         ret = i915_gem_init_seqno(dev, seqno - 1);
2442         if (ret)
2443                 return ret;
2444
2445         /* Carefully set the last_seqno value so that wrap
2446          * detection still works
2447          */
2448         dev_priv->next_seqno = seqno;
2449         dev_priv->last_seqno = seqno - 1;
2450         if (dev_priv->last_seqno == 0)
2451                 dev_priv->last_seqno--;
2452
2453         return 0;
2454 }
2455
2456 int
2457 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2458 {
2459         struct drm_i915_private *dev_priv = dev->dev_private;
2460
2461         /* reserve 0 for non-seqno */
2462         if (dev_priv->next_seqno == 0) {
2463                 int ret = i915_gem_init_seqno(dev, 0);
2464                 if (ret)
2465                         return ret;
2466
2467                 dev_priv->next_seqno = 1;
2468         }
2469
2470         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2471         return 0;
2472 }
2473
2474 /*
2475  * NB: This function is not allowed to fail. Doing so would mean the the
2476  * request is not being tracked for completion but the work itself is
2477  * going to happen on the hardware. This would be a Bad Thing(tm).
2478  */
2479 void __i915_add_request(struct drm_i915_gem_request *request,
2480                         struct drm_i915_gem_object *obj,
2481                         bool flush_caches)
2482 {
2483         struct intel_engine_cs *ring;
2484         struct drm_i915_private *dev_priv;
2485         struct intel_ringbuffer *ringbuf;
2486         u32 request_start;
2487         int ret;
2488
2489         if (WARN_ON(request == NULL))
2490                 return;
2491
2492         ring = request->ring;
2493         dev_priv = ring->dev->dev_private;
2494         ringbuf = request->ringbuf;
2495
2496         /*
2497          * To ensure that this call will not fail, space for its emissions
2498          * should already have been reserved in the ring buffer. Let the ring
2499          * know that it is time to use that space up.
2500          */
2501         intel_ring_reserved_space_use(ringbuf);
2502
2503         request_start = intel_ring_get_tail(ringbuf);
2504         /*
2505          * Emit any outstanding flushes - execbuf can fail to emit the flush
2506          * after having emitted the batchbuffer command. Hence we need to fix
2507          * things up similar to emitting the lazy request. The difference here
2508          * is that the flush _must_ happen before the next request, no matter
2509          * what.
2510          */
2511         if (flush_caches) {
2512                 if (i915.enable_execlists)
2513                         ret = logical_ring_flush_all_caches(request);
2514                 else
2515                         ret = intel_ring_flush_all_caches(request);
2516                 /* Not allowed to fail! */
2517                 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2518         }
2519
2520         /* Record the position of the start of the request so that
2521          * should we detect the updated seqno part-way through the
2522          * GPU processing the request, we never over-estimate the
2523          * position of the head.
2524          */
2525         request->postfix = intel_ring_get_tail(ringbuf);
2526
2527         if (i915.enable_execlists)
2528                 ret = ring->emit_request(request);
2529         else {
2530                 ret = ring->add_request(request);
2531
2532                 request->tail = intel_ring_get_tail(ringbuf);
2533         }
2534         /* Not allowed to fail! */
2535         WARN(ret, "emit|add_request failed: %d!\n", ret);
2536
2537         request->head = request_start;
2538
2539         /* Whilst this request exists, batch_obj will be on the
2540          * active_list, and so will hold the active reference. Only when this
2541          * request is retired will the the batch_obj be moved onto the
2542          * inactive_list and lose its active reference. Hence we do not need
2543          * to explicitly hold another reference here.
2544          */
2545         request->batch_obj = obj;
2546
2547         request->emitted_jiffies = jiffies;
2548         ring->last_submitted_seqno = request->seqno;
2549         list_add_tail(&request->list, &ring->request_list);
2550
2551         trace_i915_gem_request_add(request);
2552
2553         i915_queue_hangcheck(ring->dev);
2554
2555         queue_delayed_work(dev_priv->wq,
2556                            &dev_priv->mm.retire_work,
2557                            round_jiffies_up_relative(HZ));
2558         intel_mark_busy(dev_priv->dev);
2559
2560         /* Sanity check that the reserved size was large enough. */
2561         intel_ring_reserved_space_end(ringbuf);
2562 }
2563
2564 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2565                                    const struct intel_context *ctx)
2566 {
2567         unsigned long elapsed;
2568
2569         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2570
2571         if (ctx->hang_stats.banned)
2572                 return true;
2573
2574         if (ctx->hang_stats.ban_period_seconds &&
2575             elapsed <= ctx->hang_stats.ban_period_seconds) {
2576                 if (!i915_gem_context_is_default(ctx)) {
2577                         DRM_DEBUG("context hanging too fast, banning!\n");
2578                         return true;
2579                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2580                         if (i915_stop_ring_allow_warn(dev_priv))
2581                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2582                         return true;
2583                 }
2584         }
2585
2586         return false;
2587 }
2588
2589 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2590                                   struct intel_context *ctx,
2591                                   const bool guilty)
2592 {
2593         struct i915_ctx_hang_stats *hs;
2594
2595         if (WARN_ON(!ctx))
2596                 return;
2597
2598         hs = &ctx->hang_stats;
2599
2600         if (guilty) {
2601                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2602                 hs->batch_active++;
2603                 hs->guilty_ts = get_seconds();
2604         } else {
2605                 hs->batch_pending++;
2606         }
2607 }
2608
2609 void i915_gem_request_free(struct kref *req_ref)
2610 {
2611         struct drm_i915_gem_request *req = container_of(req_ref,
2612                                                  typeof(*req), ref);
2613         struct intel_context *ctx = req->ctx;
2614
2615         if (req->file_priv)
2616                 i915_gem_request_remove_from_client(req);
2617
2618         if (ctx) {
2619                 if (i915.enable_execlists) {
2620                         if (ctx != req->ring->default_context)
2621                                 intel_lr_context_unpin(req);
2622                 }
2623
2624                 i915_gem_context_unreference(ctx);
2625         }
2626
2627         kmem_cache_free(req->i915->requests, req);
2628 }
2629
2630 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2631                            struct intel_context *ctx,
2632                            struct drm_i915_gem_request **req_out)
2633 {
2634         struct drm_i915_private *dev_priv = to_i915(ring->dev);
2635         struct drm_i915_gem_request *req;
2636         int ret;
2637
2638         if (!req_out)
2639                 return -EINVAL;
2640
2641         *req_out = NULL;
2642
2643         req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2644         if (req == NULL)
2645                 return -ENOMEM;
2646
2647         ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2648         if (ret)
2649                 goto err;
2650
2651         kref_init(&req->ref);
2652         req->i915 = dev_priv;
2653         req->ring = ring;
2654         req->ctx  = ctx;
2655         i915_gem_context_reference(req->ctx);
2656
2657         if (i915.enable_execlists)
2658                 ret = intel_logical_ring_alloc_request_extras(req);
2659         else
2660                 ret = intel_ring_alloc_request_extras(req);
2661         if (ret) {
2662                 i915_gem_context_unreference(req->ctx);
2663                 goto err;
2664         }
2665
2666         /*
2667          * Reserve space in the ring buffer for all the commands required to
2668          * eventually emit this request. This is to guarantee that the
2669          * i915_add_request() call can't fail. Note that the reserve may need
2670          * to be redone if the request is not actually submitted straight
2671          * away, e.g. because a GPU scheduler has deferred it.
2672          */
2673         if (i915.enable_execlists)
2674                 ret = intel_logical_ring_reserve_space(req);
2675         else
2676                 ret = intel_ring_reserve_space(req);
2677         if (ret) {
2678                 /*
2679                  * At this point, the request is fully allocated even if not
2680                  * fully prepared. Thus it can be cleaned up using the proper
2681                  * free code.
2682                  */
2683                 i915_gem_request_cancel(req);
2684                 return ret;
2685         }
2686
2687         *req_out = req;
2688         return 0;
2689
2690 err:
2691         kmem_cache_free(dev_priv->requests, req);
2692         return ret;
2693 }
2694
2695 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2696 {
2697         intel_ring_reserved_space_cancel(req->ringbuf);
2698
2699         i915_gem_request_unreference(req);
2700 }
2701
2702 struct drm_i915_gem_request *
2703 i915_gem_find_active_request(struct intel_engine_cs *ring)
2704 {
2705         struct drm_i915_gem_request *request;
2706
2707         list_for_each_entry(request, &ring->request_list, list) {
2708                 if (i915_gem_request_completed(request, false))
2709                         continue;
2710
2711                 return request;
2712         }
2713
2714         return NULL;
2715 }
2716
2717 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2718                                        struct intel_engine_cs *ring)
2719 {
2720         struct drm_i915_gem_request *request;
2721         bool ring_hung;
2722
2723         request = i915_gem_find_active_request(ring);
2724
2725         if (request == NULL)
2726                 return;
2727
2728         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2729
2730         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2731
2732         list_for_each_entry_continue(request, &ring->request_list, list)
2733                 i915_set_reset_status(dev_priv, request->ctx, false);
2734 }
2735
2736 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2737                                         struct intel_engine_cs *ring)
2738 {
2739         while (!list_empty(&ring->active_list)) {
2740                 struct drm_i915_gem_object *obj;
2741
2742                 obj = list_first_entry(&ring->active_list,
2743                                        struct drm_i915_gem_object,
2744                                        ring_list[ring->id]);
2745
2746                 i915_gem_object_retire__read(obj, ring->id);
2747         }
2748
2749         /*
2750          * Clear the execlists queue up before freeing the requests, as those
2751          * are the ones that keep the context and ringbuffer backing objects
2752          * pinned in place.
2753          */
2754         while (!list_empty(&ring->execlist_queue)) {
2755                 struct drm_i915_gem_request *submit_req;
2756
2757                 submit_req = list_first_entry(&ring->execlist_queue,
2758                                 struct drm_i915_gem_request,
2759                                 execlist_link);
2760                 list_del(&submit_req->execlist_link);
2761
2762                 if (submit_req->ctx != ring->default_context)
2763                         intel_lr_context_unpin(submit_req);
2764
2765                 i915_gem_request_unreference(submit_req);
2766         }
2767
2768         /*
2769          * We must free the requests after all the corresponding objects have
2770          * been moved off active lists. Which is the same order as the normal
2771          * retire_requests function does. This is important if object hold
2772          * implicit references on things like e.g. ppgtt address spaces through
2773          * the request.
2774          */
2775         while (!list_empty(&ring->request_list)) {
2776                 struct drm_i915_gem_request *request;
2777
2778                 request = list_first_entry(&ring->request_list,
2779                                            struct drm_i915_gem_request,
2780                                            list);
2781
2782                 i915_gem_request_retire(request);
2783         }
2784 }
2785
2786 void i915_gem_reset(struct drm_device *dev)
2787 {
2788         struct drm_i915_private *dev_priv = dev->dev_private;
2789         struct intel_engine_cs *ring;
2790         int i;
2791
2792         /*
2793          * Before we free the objects from the requests, we need to inspect
2794          * them for finding the guilty party. As the requests only borrow
2795          * their reference to the objects, the inspection must be done first.
2796          */
2797         for_each_ring(ring, dev_priv, i)
2798                 i915_gem_reset_ring_status(dev_priv, ring);
2799
2800         for_each_ring(ring, dev_priv, i)
2801                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2802
2803         i915_gem_context_reset(dev);
2804
2805         i915_gem_restore_fences(dev);
2806
2807         WARN_ON(i915_verify_lists(dev));
2808 }
2809
2810 /**
2811  * This function clears the request list as sequence numbers are passed.
2812  */
2813 void
2814 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2815 {
2816         WARN_ON(i915_verify_lists(ring->dev));
2817
2818         /* Retire requests first as we use it above for the early return.
2819          * If we retire requests last, we may use a later seqno and so clear
2820          * the requests lists without clearing the active list, leading to
2821          * confusion.
2822          */
2823         while (!list_empty(&ring->request_list)) {
2824                 struct drm_i915_gem_request *request;
2825
2826                 request = list_first_entry(&ring->request_list,
2827                                            struct drm_i915_gem_request,
2828                                            list);
2829
2830                 if (!i915_gem_request_completed(request, true))
2831                         break;
2832
2833                 i915_gem_request_retire(request);
2834         }
2835
2836         /* Move any buffers on the active list that are no longer referenced
2837          * by the ringbuffer to the flushing/inactive lists as appropriate,
2838          * before we free the context associated with the requests.
2839          */
2840         while (!list_empty(&ring->active_list)) {
2841                 struct drm_i915_gem_object *obj;
2842
2843                 obj = list_first_entry(&ring->active_list,
2844                                       struct drm_i915_gem_object,
2845                                       ring_list[ring->id]);
2846
2847                 if (!list_empty(&obj->last_read_req[ring->id]->list))
2848                         break;
2849
2850                 i915_gem_object_retire__read(obj, ring->id);
2851         }
2852
2853         if (unlikely(ring->trace_irq_req &&
2854                      i915_gem_request_completed(ring->trace_irq_req, true))) {
2855                 ring->irq_put(ring);
2856                 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2857         }
2858
2859         WARN_ON(i915_verify_lists(ring->dev));
2860 }
2861
2862 bool
2863 i915_gem_retire_requests(struct drm_device *dev)
2864 {
2865         struct drm_i915_private *dev_priv = dev->dev_private;
2866         struct intel_engine_cs *ring;
2867         bool idle = true;
2868         int i;
2869
2870         for_each_ring(ring, dev_priv, i) {
2871                 i915_gem_retire_requests_ring(ring);
2872                 idle &= list_empty(&ring->request_list);
2873                 if (i915.enable_execlists) {
2874                         unsigned long flags;
2875
2876                         spin_lock_irqsave(&ring->execlist_lock, flags);
2877                         idle &= list_empty(&ring->execlist_queue);
2878                         spin_unlock_irqrestore(&ring->execlist_lock, flags);
2879
2880                         intel_execlists_retire_requests(ring);
2881                 }
2882         }
2883
2884         if (idle)
2885                 mod_delayed_work(dev_priv->wq,
2886                                    &dev_priv->mm.idle_work,
2887                                    msecs_to_jiffies(100));
2888
2889         return idle;
2890 }
2891
2892 static void
2893 i915_gem_retire_work_handler(struct work_struct *work)
2894 {
2895         struct drm_i915_private *dev_priv =
2896                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2897         struct drm_device *dev = dev_priv->dev;
2898         bool idle;
2899
2900         /* Come back later if the device is busy... */
2901         idle = false;
2902         if (mutex_trylock(&dev->struct_mutex)) {
2903                 idle = i915_gem_retire_requests(dev);
2904                 mutex_unlock(&dev->struct_mutex);
2905         }
2906         if (!idle)
2907                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2908                                    round_jiffies_up_relative(HZ));
2909 }
2910
2911 static void
2912 i915_gem_idle_work_handler(struct work_struct *work)
2913 {
2914         struct drm_i915_private *dev_priv =
2915                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2916         struct drm_device *dev = dev_priv->dev;
2917         struct intel_engine_cs *ring;
2918         int i;
2919
2920         for_each_ring(ring, dev_priv, i)
2921                 if (!list_empty(&ring->request_list))
2922                         return;
2923
2924         intel_mark_idle(dev);
2925
2926         if (mutex_trylock(&dev->struct_mutex)) {
2927                 struct intel_engine_cs *ring;
2928                 int i;
2929
2930                 for_each_ring(ring, dev_priv, i)
2931                         i915_gem_batch_pool_fini(&ring->batch_pool);
2932
2933                 mutex_unlock(&dev->struct_mutex);
2934         }
2935 }
2936
2937 /**
2938  * Ensures that an object will eventually get non-busy by flushing any required
2939  * write domains, emitting any outstanding lazy request and retiring and
2940  * completed requests.
2941  */
2942 static int
2943 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2944 {
2945         int i;
2946
2947         if (!obj->active)
2948                 return 0;
2949
2950         for (i = 0; i < I915_NUM_RINGS; i++) {
2951                 struct drm_i915_gem_request *req;
2952
2953                 req = obj->last_read_req[i];
2954                 if (req == NULL)
2955                         continue;
2956
2957                 if (list_empty(&req->list))
2958                         goto retire;
2959
2960                 if (i915_gem_request_completed(req, true)) {
2961                         __i915_gem_request_retire__upto(req);
2962 retire:
2963                         i915_gem_object_retire__read(obj, i);
2964                 }
2965         }
2966
2967         return 0;
2968 }
2969
2970 /**
2971  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2972  * @DRM_IOCTL_ARGS: standard ioctl arguments
2973  *
2974  * Returns 0 if successful, else an error is returned with the remaining time in
2975  * the timeout parameter.
2976  *  -ETIME: object is still busy after timeout
2977  *  -ERESTARTSYS: signal interrupted the wait
2978  *  -ENONENT: object doesn't exist
2979  * Also possible, but rare:
2980  *  -EAGAIN: GPU wedged
2981  *  -ENOMEM: damn
2982  *  -ENODEV: Internal IRQ fail
2983  *  -E?: The add request failed
2984  *
2985  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2986  * non-zero timeout parameter the wait ioctl will wait for the given number of
2987  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2988  * without holding struct_mutex the object may become re-busied before this
2989  * function completes. A similar but shorter * race condition exists in the busy
2990  * ioctl
2991  */
2992 int
2993 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2994 {
2995         struct drm_i915_private *dev_priv = dev->dev_private;
2996         struct drm_i915_gem_wait *args = data;
2997         struct drm_i915_gem_object *obj;
2998         struct drm_i915_gem_request *req[I915_NUM_RINGS];
2999         unsigned reset_counter;
3000         int i, n = 0;
3001         int ret;
3002
3003         if (args->flags != 0)
3004                 return -EINVAL;
3005
3006         ret = i915_mutex_lock_interruptible(dev);
3007         if (ret)
3008                 return ret;
3009
3010         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3011         if (&obj->base == NULL) {
3012                 mutex_unlock(&dev->struct_mutex);
3013                 return -ENOENT;
3014         }
3015
3016         /* Need to make sure the object gets inactive eventually. */
3017         ret = i915_gem_object_flush_active(obj);
3018         if (ret)
3019                 goto out;
3020
3021         if (!obj->active)
3022                 goto out;
3023
3024         /* Do this after OLR check to make sure we make forward progress polling
3025          * on this IOCTL with a timeout == 0 (like busy ioctl)
3026          */
3027         if (args->timeout_ns == 0) {
3028                 ret = -ETIME;
3029                 goto out;
3030         }
3031
3032         drm_gem_object_unreference(&obj->base);
3033         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3034
3035         for (i = 0; i < I915_NUM_RINGS; i++) {
3036                 if (obj->last_read_req[i] == NULL)
3037                         continue;
3038
3039                 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3040         }
3041
3042         mutex_unlock(&dev->struct_mutex);
3043
3044         for (i = 0; i < n; i++) {
3045                 if (ret == 0)
3046                         ret = __i915_wait_request(req[i], reset_counter, true,
3047                                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3048                                                   file->driver_priv);
3049                 i915_gem_request_unreference__unlocked(req[i]);
3050         }
3051         return ret;
3052
3053 out:
3054         drm_gem_object_unreference(&obj->base);
3055         mutex_unlock(&dev->struct_mutex);
3056         return ret;
3057 }
3058
3059 static int
3060 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3061                        struct intel_engine_cs *to,
3062                        struct drm_i915_gem_request *from_req,
3063                        struct drm_i915_gem_request **to_req)
3064 {
3065         struct intel_engine_cs *from;
3066         int ret;
3067
3068         from = i915_gem_request_get_ring(from_req);
3069         if (to == from)
3070                 return 0;
3071
3072         if (i915_gem_request_completed(from_req, true))
3073                 return 0;
3074
3075         if (!i915_semaphore_is_enabled(obj->base.dev)) {
3076                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3077                 ret = __i915_wait_request(from_req,
3078                                           atomic_read(&i915->gpu_error.reset_counter),
3079                                           i915->mm.interruptible,
3080                                           NULL,
3081                                           &i915->rps.semaphores);
3082                 if (ret)
3083                         return ret;
3084
3085                 i915_gem_object_retire_request(obj, from_req);
3086         } else {
3087                 int idx = intel_ring_sync_index(from, to);
3088                 u32 seqno = i915_gem_request_get_seqno(from_req);
3089
3090                 WARN_ON(!to_req);
3091
3092                 if (seqno <= from->semaphore.sync_seqno[idx])
3093                         return 0;
3094
3095                 if (*to_req == NULL) {
3096                         ret = i915_gem_request_alloc(to, to->default_context, to_req);
3097                         if (ret)
3098                                 return ret;
3099                 }
3100
3101                 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3102                 ret = to->semaphore.sync_to(*to_req, from, seqno);
3103                 if (ret)
3104                         return ret;
3105
3106                 /* We use last_read_req because sync_to()
3107                  * might have just caused seqno wrap under
3108                  * the radar.
3109                  */
3110                 from->semaphore.sync_seqno[idx] =
3111                         i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3112         }
3113
3114         return 0;
3115 }
3116
3117 /**
3118  * i915_gem_object_sync - sync an object to a ring.
3119  *
3120  * @obj: object which may be in use on another ring.
3121  * @to: ring we wish to use the object on. May be NULL.
3122  * @to_req: request we wish to use the object for. See below.
3123  *          This will be allocated and returned if a request is
3124  *          required but not passed in.
3125  *
3126  * This code is meant to abstract object synchronization with the GPU.
3127  * Calling with NULL implies synchronizing the object with the CPU
3128  * rather than a particular GPU ring. Conceptually we serialise writes
3129  * between engines inside the GPU. We only allow one engine to write
3130  * into a buffer at any time, but multiple readers. To ensure each has
3131  * a coherent view of memory, we must:
3132  *
3133  * - If there is an outstanding write request to the object, the new
3134  *   request must wait for it to complete (either CPU or in hw, requests
3135  *   on the same ring will be naturally ordered).
3136  *
3137  * - If we are a write request (pending_write_domain is set), the new
3138  *   request must wait for outstanding read requests to complete.
3139  *
3140  * For CPU synchronisation (NULL to) no request is required. For syncing with
3141  * rings to_req must be non-NULL. However, a request does not have to be
3142  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3143  * request will be allocated automatically and returned through *to_req. Note
3144  * that it is not guaranteed that commands will be emitted (because the system
3145  * might already be idle). Hence there is no need to create a request that
3146  * might never have any work submitted. Note further that if a request is
3147  * returned in *to_req, it is the responsibility of the caller to submit
3148  * that request (after potentially adding more work to it).
3149  *
3150  * Returns 0 if successful, else propagates up the lower layer error.
3151  */
3152 int
3153 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3154                      struct intel_engine_cs *to,
3155                      struct drm_i915_gem_request **to_req)
3156 {
3157         const bool readonly = obj->base.pending_write_domain == 0;
3158         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3159         int ret, i, n;
3160
3161         if (!obj->active)
3162                 return 0;
3163
3164         if (to == NULL)
3165                 return i915_gem_object_wait_rendering(obj, readonly);
3166
3167         n = 0;
3168         if (readonly) {
3169                 if (obj->last_write_req)
3170                         req[n++] = obj->last_write_req;
3171         } else {
3172                 for (i = 0; i < I915_NUM_RINGS; i++)
3173                         if (obj->last_read_req[i])
3174                                 req[n++] = obj->last_read_req[i];
3175         }
3176         for (i = 0; i < n; i++) {
3177                 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3178                 if (ret)
3179                         return ret;
3180         }
3181
3182         return 0;
3183 }
3184
3185 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3186 {
3187         u32 old_write_domain, old_read_domains;
3188
3189         /* Force a pagefault for domain tracking on next user access */
3190         i915_gem_release_mmap(obj);
3191
3192         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3193                 return;
3194
3195         /* Wait for any direct GTT access to complete */
3196         mb();
3197
3198         old_read_domains = obj->base.read_domains;
3199         old_write_domain = obj->base.write_domain;
3200
3201         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3202         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3203
3204         trace_i915_gem_object_change_domain(obj,
3205                                             old_read_domains,
3206                                             old_write_domain);
3207 }
3208
3209 int i915_vma_unbind(struct i915_vma *vma)
3210 {
3211         struct drm_i915_gem_object *obj = vma->obj;
3212         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3213         int ret;
3214
3215         if (list_empty(&vma->vma_link))
3216                 return 0;
3217
3218         if (!drm_mm_node_allocated(&vma->node)) {
3219                 i915_gem_vma_destroy(vma);
3220                 return 0;
3221         }
3222
3223         if (vma->pin_count)
3224                 return -EBUSY;
3225
3226         BUG_ON(obj->pages == NULL);
3227
3228         ret = i915_gem_object_wait_rendering(obj, false);
3229         if (ret)
3230                 return ret;
3231         /* Continue on if we fail due to EIO, the GPU is hung so we
3232          * should be safe and we need to cleanup or else we might
3233          * cause memory corruption through use-after-free.
3234          */
3235
3236         if (i915_is_ggtt(vma->vm) &&
3237             vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3238                 i915_gem_object_finish_gtt(obj);
3239
3240                 /* release the fence reg _after_ flushing */
3241                 ret = i915_gem_object_put_fence(obj);
3242                 if (ret)
3243                         return ret;
3244         }
3245
3246         trace_i915_vma_unbind(vma);
3247
3248         vma->vm->unbind_vma(vma);
3249         vma->bound = 0;
3250
3251         list_del_init(&vma->mm_list);
3252         if (i915_is_ggtt(vma->vm)) {
3253                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3254                         obj->map_and_fenceable = false;
3255                 } else if (vma->ggtt_view.pages) {
3256                         sg_free_table(vma->ggtt_view.pages);
3257                         kfree(vma->ggtt_view.pages);
3258                 }
3259                 vma->ggtt_view.pages = NULL;
3260         }
3261
3262         drm_mm_remove_node(&vma->node);
3263         i915_gem_vma_destroy(vma);
3264
3265         /* Since the unbound list is global, only move to that list if
3266          * no more VMAs exist. */
3267         if (list_empty(&obj->vma_list))
3268                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3269
3270         /* And finally now the object is completely decoupled from this vma,
3271          * we can drop its hold on the backing storage and allow it to be
3272          * reaped by the shrinker.
3273          */
3274         i915_gem_object_unpin_pages(obj);
3275
3276         return 0;
3277 }
3278
3279 int i915_gpu_idle(struct drm_device *dev)
3280 {
3281         struct drm_i915_private *dev_priv = dev->dev_private;
3282         struct intel_engine_cs *ring;
3283         int ret, i;
3284
3285         /* Flush everything onto the inactive list. */
3286         for_each_ring(ring, dev_priv, i) {
3287                 if (!i915.enable_execlists) {
3288                         struct drm_i915_gem_request *req;
3289
3290                         ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3291                         if (ret)
3292                                 return ret;
3293
3294                         ret = i915_switch_context(req);
3295                         if (ret) {
3296                                 i915_gem_request_cancel(req);
3297                                 return ret;
3298                         }
3299
3300                         i915_add_request_no_flush(req);
3301                 }
3302
3303                 ret = intel_ring_idle(ring);
3304                 if (ret)
3305                         return ret;
3306         }
3307
3308         WARN_ON(i915_verify_lists(dev));
3309         return 0;
3310 }
3311
3312 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3313                                      unsigned long cache_level)
3314 {
3315         struct drm_mm_node *gtt_space = &vma->node;
3316         struct drm_mm_node *other;
3317
3318         /*
3319          * On some machines we have to be careful when putting differing types
3320          * of snoopable memory together to avoid the prefetcher crossing memory
3321          * domains and dying. During vm initialisation, we decide whether or not
3322          * these constraints apply and set the drm_mm.color_adjust
3323          * appropriately.
3324          */
3325         if (vma->vm->mm.color_adjust == NULL)
3326                 return true;
3327
3328         if (!drm_mm_node_allocated(gtt_space))
3329                 return true;
3330
3331         if (list_empty(&gtt_space->node_list))
3332                 return true;
3333
3334         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3335         if (other->allocated && !other->hole_follows && other->color != cache_level)
3336                 return false;
3337
3338         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3339         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3340                 return false;
3341
3342         return true;
3343 }
3344
3345 /**
3346  * Finds free space in the GTT aperture and binds the object or a view of it
3347  * there.
3348  */
3349 static struct i915_vma *
3350 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3351                            struct i915_address_space *vm,
3352                            const struct i915_ggtt_view *ggtt_view,
3353                            unsigned alignment,
3354                            uint64_t flags)
3355 {
3356         struct drm_device *dev = obj->base.dev;
3357         struct drm_i915_private *dev_priv = dev->dev_private;
3358         u32 size, fence_size, fence_alignment, unfenced_alignment;
3359         u64 start =
3360                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3361         u64 end =
3362                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3363         struct i915_vma *vma;
3364         int ret;
3365
3366         if (i915_is_ggtt(vm)) {
3367                 u32 view_size;
3368
3369                 if (WARN_ON(!ggtt_view))
3370                         return ERR_PTR(-EINVAL);
3371
3372                 view_size = i915_ggtt_view_size(obj, ggtt_view);
3373
3374                 fence_size = i915_gem_get_gtt_size(dev,
3375                                                    view_size,
3376                                                    obj->tiling_mode);
3377                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3378                                                              view_size,
3379                                                              obj->tiling_mode,
3380                                                              true);
3381                 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3382                                                                 view_size,
3383                                                                 obj->tiling_mode,
3384                                                                 false);
3385                 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3386         } else {
3387                 fence_size = i915_gem_get_gtt_size(dev,
3388                                                    obj->base.size,
3389                                                    obj->tiling_mode);
3390                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3391                                                              obj->base.size,
3392                                                              obj->tiling_mode,
3393                                                              true);
3394                 unfenced_alignment =
3395                         i915_gem_get_gtt_alignment(dev,
3396                                                    obj->base.size,
3397                                                    obj->tiling_mode,
3398                                                    false);
3399                 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3400         }
3401
3402         if (alignment == 0)
3403                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3404                                                 unfenced_alignment;
3405         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3406                 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3407                           ggtt_view ? ggtt_view->type : 0,
3408                           alignment);
3409                 return ERR_PTR(-EINVAL);
3410         }
3411
3412         /* If binding the object/GGTT view requires more space than the entire
3413          * aperture has, reject it early before evicting everything in a vain
3414          * attempt to find space.
3415          */
3416         if (size > end) {
3417                 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%llu\n",
3418                           ggtt_view ? ggtt_view->type : 0,
3419                           size,
3420                           flags & PIN_MAPPABLE ? "mappable" : "total",
3421                           end);
3422                 return ERR_PTR(-E2BIG);
3423         }
3424
3425         ret = i915_gem_object_get_pages(obj);
3426         if (ret)
3427                 return ERR_PTR(ret);
3428
3429         i915_gem_object_pin_pages(obj);
3430
3431         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3432                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3433
3434         if (IS_ERR(vma))
3435                 goto err_unpin;
3436
3437 search_free:
3438         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3439                                                   size, alignment,
3440                                                   obj->cache_level,
3441                                                   start, end,
3442                                                   DRM_MM_SEARCH_DEFAULT,
3443                                                   DRM_MM_CREATE_DEFAULT);
3444         if (ret) {
3445                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3446                                                obj->cache_level,
3447                                                start, end,
3448                                                flags);
3449                 if (ret == 0)
3450                         goto search_free;
3451
3452                 goto err_free_vma;
3453         }
3454         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3455                 ret = -EINVAL;
3456                 goto err_remove_node;
3457         }
3458
3459         trace_i915_vma_bind(vma, flags);
3460         ret = i915_vma_bind(vma, obj->cache_level, flags);
3461         if (ret)
3462                 goto err_remove_node;
3463
3464         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3465         list_add_tail(&vma->mm_list, &vm->inactive_list);
3466
3467         return vma;
3468
3469 err_remove_node:
3470         drm_mm_remove_node(&vma->node);
3471 err_free_vma:
3472         i915_gem_vma_destroy(vma);
3473         vma = ERR_PTR(ret);
3474 err_unpin:
3475         i915_gem_object_unpin_pages(obj);
3476         return vma;
3477 }
3478
3479 bool
3480 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3481                         bool force)
3482 {
3483         /* If we don't have a page list set up, then we're not pinned
3484          * to GPU, and we can ignore the cache flush because it'll happen
3485          * again at bind time.
3486          */
3487         if (obj->pages == NULL)
3488                 return false;
3489
3490         /*
3491          * Stolen memory is always coherent with the GPU as it is explicitly
3492          * marked as wc by the system, or the system is cache-coherent.
3493          */
3494         if (obj->stolen || obj->phys_handle)
3495                 return false;
3496
3497         /* If the GPU is snooping the contents of the CPU cache,
3498          * we do not need to manually clear the CPU cache lines.  However,
3499          * the caches are only snooped when the render cache is
3500          * flushed/invalidated.  As we always have to emit invalidations
3501          * and flushes when moving into and out of the RENDER domain, correct
3502          * snooping behaviour occurs naturally as the result of our domain
3503          * tracking.
3504          */
3505         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3506                 obj->cache_dirty = true;
3507                 return false;
3508         }
3509
3510         trace_i915_gem_object_clflush(obj);
3511         drm_clflush_sg(obj->pages);
3512         obj->cache_dirty = false;
3513
3514         return true;
3515 }
3516
3517 /** Flushes the GTT write domain for the object if it's dirty. */
3518 static void
3519 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3520 {
3521         uint32_t old_write_domain;
3522
3523         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3524                 return;
3525
3526         /* No actual flushing is required for the GTT write domain.  Writes
3527          * to it immediately go to main memory as far as we know, so there's
3528          * no chipset flush.  It also doesn't land in render cache.
3529          *
3530          * However, we do have to enforce the order so that all writes through
3531          * the GTT land before any writes to the device, such as updates to
3532          * the GATT itself.
3533          */
3534         wmb();
3535
3536         old_write_domain = obj->base.write_domain;
3537         obj->base.write_domain = 0;
3538
3539         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3540
3541         trace_i915_gem_object_change_domain(obj,
3542                                             obj->base.read_domains,
3543                                             old_write_domain);
3544 }
3545
3546 /** Flushes the CPU write domain for the object if it's dirty. */
3547 static void
3548 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3549 {
3550         uint32_t old_write_domain;
3551
3552         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3553                 return;
3554
3555         if (i915_gem_clflush_object(obj, obj->pin_display))
3556                 i915_gem_chipset_flush(obj->base.dev);
3557
3558         old_write_domain = obj->base.write_domain;
3559         obj->base.write_domain = 0;
3560
3561         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3562
3563         trace_i915_gem_object_change_domain(obj,
3564                                             obj->base.read_domains,
3565                                             old_write_domain);
3566 }
3567
3568 /**
3569  * Moves a single object to the GTT read, and possibly write domain.
3570  *
3571  * This function returns when the move is complete, including waiting on
3572  * flushes to occur.
3573  */
3574 int
3575 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3576 {
3577         uint32_t old_write_domain, old_read_domains;
3578         struct i915_vma *vma;
3579         int ret;
3580
3581         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3582                 return 0;
3583
3584         ret = i915_gem_object_wait_rendering(obj, !write);
3585         if (ret)
3586                 return ret;
3587
3588         /* Flush and acquire obj->pages so that we are coherent through
3589          * direct access in memory with previous cached writes through
3590          * shmemfs and that our cache domain tracking remains valid.
3591          * For example, if the obj->filp was moved to swap without us
3592          * being notified and releasing the pages, we would mistakenly
3593          * continue to assume that the obj remained out of the CPU cached
3594          * domain.
3595          */
3596         ret = i915_gem_object_get_pages(obj);
3597         if (ret)
3598                 return ret;
3599
3600         i915_gem_object_flush_cpu_write_domain(obj);
3601
3602         /* Serialise direct access to this object with the barriers for
3603          * coherent writes from the GPU, by effectively invalidating the
3604          * GTT domain upon first access.
3605          */
3606         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3607                 mb();
3608
3609         old_write_domain = obj->base.write_domain;
3610         old_read_domains = obj->base.read_domains;
3611
3612         /* It should now be out of any other write domains, and we can update
3613          * the domain values for our changes.
3614          */
3615         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3616         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3617         if (write) {
3618                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3619                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3620                 obj->dirty = 1;
3621         }
3622
3623         trace_i915_gem_object_change_domain(obj,
3624                                             old_read_domains,
3625                                             old_write_domain);
3626
3627         /* And bump the LRU for this access */
3628         vma = i915_gem_obj_to_ggtt(obj);
3629         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3630                 list_move_tail(&vma->mm_list,
3631                                &to_i915(obj->base.dev)->gtt.base.inactive_list);
3632
3633         return 0;
3634 }
3635
3636 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3637                                     enum i915_cache_level cache_level)
3638 {
3639         struct drm_device *dev = obj->base.dev;
3640         struct i915_vma *vma, *next;
3641         int ret;
3642
3643         if (obj->cache_level == cache_level)
3644                 return 0;
3645
3646         if (i915_gem_obj_is_pinned(obj)) {
3647                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3648                 return -EBUSY;
3649         }
3650
3651         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3652                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3653                         ret = i915_vma_unbind(vma);
3654                         if (ret)
3655                                 return ret;
3656                 }
3657         }
3658
3659         if (i915_gem_obj_bound_any(obj)) {
3660                 ret = i915_gem_object_wait_rendering(obj, false);
3661                 if (ret)
3662                         return ret;
3663
3664                 i915_gem_object_finish_gtt(obj);
3665
3666                 /* Before SandyBridge, you could not use tiling or fence
3667                  * registers with snooped memory, so relinquish any fences
3668                  * currently pointing to our region in the aperture.
3669                  */
3670                 if (INTEL_INFO(dev)->gen < 6) {
3671                         ret = i915_gem_object_put_fence(obj);
3672                         if (ret)
3673                                 return ret;
3674                 }
3675
3676                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3677                         if (drm_mm_node_allocated(&vma->node)) {
3678                                 ret = i915_vma_bind(vma, cache_level,
3679                                                     PIN_UPDATE);
3680                                 if (ret)
3681                                         return ret;
3682                         }
3683         }
3684
3685         list_for_each_entry(vma, &obj->vma_list, vma_link)
3686                 vma->node.color = cache_level;
3687         obj->cache_level = cache_level;
3688
3689         if (obj->cache_dirty &&
3690             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3691             cpu_write_needs_clflush(obj)) {
3692                 if (i915_gem_clflush_object(obj, true))
3693                         i915_gem_chipset_flush(obj->base.dev);
3694         }
3695
3696         return 0;
3697 }
3698
3699 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3700                                struct drm_file *file)
3701 {
3702         struct drm_i915_gem_caching *args = data;
3703         struct drm_i915_gem_object *obj;
3704
3705         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3706         if (&obj->base == NULL)
3707                 return -ENOENT;
3708
3709         switch (obj->cache_level) {
3710         case I915_CACHE_LLC:
3711         case I915_CACHE_L3_LLC:
3712                 args->caching = I915_CACHING_CACHED;
3713                 break;
3714
3715         case I915_CACHE_WT:
3716                 args->caching = I915_CACHING_DISPLAY;
3717                 break;
3718
3719         default:
3720                 args->caching = I915_CACHING_NONE;
3721                 break;
3722         }
3723
3724         drm_gem_object_unreference_unlocked(&obj->base);
3725         return 0;
3726 }
3727
3728 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3729                                struct drm_file *file)
3730 {
3731         struct drm_i915_gem_caching *args = data;
3732         struct drm_i915_gem_object *obj;
3733         enum i915_cache_level level;
3734         int ret;
3735
3736         switch (args->caching) {
3737         case I915_CACHING_NONE:
3738                 level = I915_CACHE_NONE;
3739                 break;
3740         case I915_CACHING_CACHED:
3741                 level = I915_CACHE_LLC;
3742                 break;
3743         case I915_CACHING_DISPLAY:
3744                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3745                 break;
3746         default:
3747                 return -EINVAL;
3748         }
3749
3750         ret = i915_mutex_lock_interruptible(dev);
3751         if (ret)
3752                 return ret;
3753
3754         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3755         if (&obj->base == NULL) {
3756                 ret = -ENOENT;
3757                 goto unlock;
3758         }
3759
3760         ret = i915_gem_object_set_cache_level(obj, level);
3761
3762         drm_gem_object_unreference(&obj->base);
3763 unlock:
3764         mutex_unlock(&dev->struct_mutex);
3765         return ret;
3766 }
3767
3768 /*
3769  * Prepare buffer for display plane (scanout, cursors, etc).
3770  * Can be called from an uninterruptible phase (modesetting) and allows
3771  * any flushes to be pipelined (for pageflips).
3772  */
3773 int
3774 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3775                                      u32 alignment,
3776                                      struct intel_engine_cs *pipelined,
3777                                      struct drm_i915_gem_request **pipelined_request,
3778                                      const struct i915_ggtt_view *view)
3779 {
3780         u32 old_read_domains, old_write_domain;
3781         int ret;
3782
3783         ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
3784         if (ret)
3785                 return ret;
3786
3787         /* Mark the pin_display early so that we account for the
3788          * display coherency whilst setting up the cache domains.
3789          */
3790         obj->pin_display++;
3791
3792         /* The display engine is not coherent with the LLC cache on gen6.  As
3793          * a result, we make sure that the pinning that is about to occur is
3794          * done with uncached PTEs. This is lowest common denominator for all
3795          * chipsets.
3796          *
3797          * However for gen6+, we could do better by using the GFDT bit instead
3798          * of uncaching, which would allow us to flush all the LLC-cached data
3799          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3800          */
3801         ret = i915_gem_object_set_cache_level(obj,
3802                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3803         if (ret)
3804                 goto err_unpin_display;
3805
3806         /* As the user may map the buffer once pinned in the display plane
3807          * (e.g. libkms for the bootup splash), we have to ensure that we
3808          * always use map_and_fenceable for all scanout buffers.
3809          */
3810         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3811                                        view->type == I915_GGTT_VIEW_NORMAL ?
3812                                        PIN_MAPPABLE : 0);
3813         if (ret)
3814                 goto err_unpin_display;
3815
3816         i915_gem_object_flush_cpu_write_domain(obj);
3817
3818         old_write_domain = obj->base.write_domain;
3819         old_read_domains = obj->base.read_domains;
3820
3821         /* It should now be out of any other write domains, and we can update
3822          * the domain values for our changes.
3823          */
3824         obj->base.write_domain = 0;
3825         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3826
3827         trace_i915_gem_object_change_domain(obj,
3828                                             old_read_domains,
3829                                             old_write_domain);
3830
3831         return 0;
3832
3833 err_unpin_display:
3834         obj->pin_display--;
3835         return ret;
3836 }
3837
3838 void
3839 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3840                                          const struct i915_ggtt_view *view)
3841 {
3842         if (WARN_ON(obj->pin_display == 0))
3843                 return;
3844
3845         i915_gem_object_ggtt_unpin_view(obj, view);
3846
3847         obj->pin_display--;
3848 }
3849
3850 /**
3851  * Moves a single object to the CPU read, and possibly write domain.
3852  *
3853  * This function returns when the move is complete, including waiting on
3854  * flushes to occur.
3855  */
3856 int
3857 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3858 {
3859         uint32_t old_write_domain, old_read_domains;
3860         int ret;
3861
3862         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3863                 return 0;
3864
3865         ret = i915_gem_object_wait_rendering(obj, !write);
3866         if (ret)
3867                 return ret;
3868
3869         i915_gem_object_flush_gtt_write_domain(obj);
3870
3871         old_write_domain = obj->base.write_domain;
3872         old_read_domains = obj->base.read_domains;
3873
3874         /* Flush the CPU cache if it's still invalid. */
3875         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3876                 i915_gem_clflush_object(obj, false);
3877
3878                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3879         }
3880
3881         /* It should now be out of any other write domains, and we can update
3882          * the domain values for our changes.
3883          */
3884         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3885
3886         /* If we're writing through the CPU, then the GPU read domains will
3887          * need to be invalidated at next use.
3888          */
3889         if (write) {
3890                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3891                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3892         }
3893
3894         trace_i915_gem_object_change_domain(obj,
3895                                             old_read_domains,
3896                                             old_write_domain);
3897
3898         return 0;
3899 }
3900
3901 /* Throttle our rendering by waiting until the ring has completed our requests
3902  * emitted over 20 msec ago.
3903  *
3904  * Note that if we were to use the current jiffies each time around the loop,
3905  * we wouldn't escape the function with any frames outstanding if the time to
3906  * render a frame was over 20ms.
3907  *
3908  * This should get us reasonable parallelism between CPU and GPU but also
3909  * relatively low latency when blocking on a particular request to finish.
3910  */
3911 static int
3912 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3913 {
3914         struct drm_i915_private *dev_priv = dev->dev_private;
3915         struct drm_i915_file_private *file_priv = file->driver_priv;
3916         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3917         struct drm_i915_gem_request *request, *target = NULL;
3918         unsigned reset_counter;
3919         int ret;
3920
3921         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3922         if (ret)
3923                 return ret;
3924
3925         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3926         if (ret)
3927                 return ret;
3928
3929         spin_lock(&file_priv->mm.lock);
3930         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3931                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3932                         break;
3933
3934                 /*
3935                  * Note that the request might not have been submitted yet.
3936                  * In which case emitted_jiffies will be zero.
3937                  */
3938                 if (!request->emitted_jiffies)
3939                         continue;
3940
3941                 target = request;
3942         }
3943         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3944         if (target)
3945                 i915_gem_request_reference(target);
3946         spin_unlock(&file_priv->mm.lock);
3947
3948         if (target == NULL)
3949                 return 0;
3950
3951         ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
3952         if (ret == 0)
3953                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3954
3955         i915_gem_request_unreference__unlocked(target);
3956
3957         return ret;
3958 }
3959
3960 static bool
3961 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
3962 {
3963         struct drm_i915_gem_object *obj = vma->obj;
3964
3965         if (alignment &&
3966             vma->node.start & (alignment - 1))
3967                 return true;
3968
3969         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
3970                 return true;
3971
3972         if (flags & PIN_OFFSET_BIAS &&
3973             vma->node.start < (flags & PIN_OFFSET_MASK))
3974                 return true;
3975
3976         return false;
3977 }
3978
3979 static int
3980 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
3981                        struct i915_address_space *vm,
3982                        const struct i915_ggtt_view *ggtt_view,
3983                        uint32_t alignment,
3984                        uint64_t flags)
3985 {
3986         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3987         struct i915_vma *vma;
3988         unsigned bound;
3989         int ret;
3990
3991         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
3992                 return -ENODEV;
3993
3994         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3995                 return -EINVAL;
3996
3997         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
3998                 return -EINVAL;
3999
4000         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4001                 return -EINVAL;
4002
4003         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4004                           i915_gem_obj_to_vma(obj, vm);
4005
4006         if (IS_ERR(vma))
4007                 return PTR_ERR(vma);
4008
4009         if (vma) {
4010                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4011                         return -EBUSY;
4012
4013                 if (i915_vma_misplaced(vma, alignment, flags)) {
4014                         unsigned long offset;
4015                         offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4016                                              i915_gem_obj_offset(obj, vm);
4017                         WARN(vma->pin_count,
4018                              "bo is already pinned in %s with incorrect alignment:"
4019                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4020                              " obj->map_and_fenceable=%d\n",
4021                              ggtt_view ? "ggtt" : "ppgtt",
4022                              offset,
4023                              alignment,
4024                              !!(flags & PIN_MAPPABLE),
4025                              obj->map_and_fenceable);
4026                         ret = i915_vma_unbind(vma);
4027                         if (ret)
4028                                 return ret;
4029
4030                         vma = NULL;
4031                 }
4032         }
4033
4034         bound = vma ? vma->bound : 0;
4035         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4036                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4037                                                  flags);
4038                 if (IS_ERR(vma))
4039                         return PTR_ERR(vma);
4040         } else {
4041                 ret = i915_vma_bind(vma, obj->cache_level, flags);
4042                 if (ret)
4043                         return ret;
4044         }
4045
4046         if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4047             (bound ^ vma->bound) & GLOBAL_BIND) {
4048                 bool mappable, fenceable;
4049                 u32 fence_size, fence_alignment;
4050
4051                 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4052                                                    obj->base.size,
4053                                                    obj->tiling_mode);
4054                 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4055                                                              obj->base.size,
4056                                                              obj->tiling_mode,
4057                                                              true);
4058
4059                 fenceable = (vma->node.size == fence_size &&
4060                              (vma->node.start & (fence_alignment - 1)) == 0);
4061
4062                 mappable = (vma->node.start + fence_size <=
4063                             dev_priv->gtt.mappable_end);
4064
4065                 obj->map_and_fenceable = mappable && fenceable;
4066
4067                 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4068         }
4069
4070         vma->pin_count++;
4071         return 0;
4072 }
4073
4074 int
4075 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4076                     struct i915_address_space *vm,
4077                     uint32_t alignment,
4078                     uint64_t flags)
4079 {
4080         return i915_gem_object_do_pin(obj, vm,
4081                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4082                                       alignment, flags);
4083 }
4084
4085 int
4086 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4087                          const struct i915_ggtt_view *view,
4088                          uint32_t alignment,
4089                          uint64_t flags)
4090 {
4091         if (WARN_ONCE(!view, "no view specified"))
4092                 return -EINVAL;
4093
4094         return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4095                                       alignment, flags | PIN_GLOBAL);
4096 }
4097
4098 void
4099 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4100                                 const struct i915_ggtt_view *view)
4101 {
4102         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4103
4104         BUG_ON(!vma);
4105         WARN_ON(vma->pin_count == 0);
4106         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4107
4108         --vma->pin_count;
4109 }
4110
4111 int
4112 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4113                     struct drm_file *file)
4114 {
4115         struct drm_i915_gem_busy *args = data;
4116         struct drm_i915_gem_object *obj;
4117         int ret;
4118
4119         ret = i915_mutex_lock_interruptible(dev);
4120         if (ret)
4121                 return ret;
4122
4123         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4124         if (&obj->base == NULL) {
4125                 ret = -ENOENT;
4126                 goto unlock;
4127         }
4128
4129         /* Count all active objects as busy, even if they are currently not used
4130          * by the gpu. Users of this interface expect objects to eventually
4131          * become non-busy without any further actions, therefore emit any
4132          * necessary flushes here.
4133          */
4134         ret = i915_gem_object_flush_active(obj);
4135         if (ret)
4136                 goto unref;
4137
4138         BUILD_BUG_ON(I915_NUM_RINGS > 16);
4139         args->busy = obj->active << 16;
4140         if (obj->last_write_req)
4141                 args->busy |= obj->last_write_req->ring->id;
4142
4143 unref:
4144         drm_gem_object_unreference(&obj->base);
4145 unlock:
4146         mutex_unlock(&dev->struct_mutex);
4147         return ret;
4148 }
4149
4150 int
4151 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4152                         struct drm_file *file_priv)
4153 {
4154         return i915_gem_ring_throttle(dev, file_priv);
4155 }
4156
4157 int
4158 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4159                        struct drm_file *file_priv)
4160 {
4161         struct drm_i915_private *dev_priv = dev->dev_private;
4162         struct drm_i915_gem_madvise *args = data;
4163         struct drm_i915_gem_object *obj;
4164         int ret;
4165
4166         switch (args->madv) {
4167         case I915_MADV_DONTNEED:
4168         case I915_MADV_WILLNEED:
4169             break;
4170         default:
4171             return -EINVAL;
4172         }
4173
4174         ret = i915_mutex_lock_interruptible(dev);
4175         if (ret)
4176                 return ret;
4177
4178         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4179         if (&obj->base == NULL) {
4180                 ret = -ENOENT;
4181                 goto unlock;
4182         }
4183
4184         if (i915_gem_obj_is_pinned(obj)) {
4185                 ret = -EINVAL;
4186                 goto out;
4187         }
4188
4189         if (obj->pages &&
4190             obj->tiling_mode != I915_TILING_NONE &&
4191             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4192                 if (obj->madv == I915_MADV_WILLNEED)
4193                         i915_gem_object_unpin_pages(obj);
4194                 if (args->madv == I915_MADV_WILLNEED)
4195                         i915_gem_object_pin_pages(obj);
4196         }
4197
4198         if (obj->madv != __I915_MADV_PURGED)
4199                 obj->madv = args->madv;
4200
4201         /* if the object is no longer attached, discard its backing storage */
4202         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4203                 i915_gem_object_truncate(obj);
4204
4205         args->retained = obj->madv != __I915_MADV_PURGED;
4206
4207 out:
4208         drm_gem_object_unreference(&obj->base);
4209 unlock:
4210         mutex_unlock(&dev->struct_mutex);
4211         return ret;
4212 }
4213
4214 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4215                           const struct drm_i915_gem_object_ops *ops)
4216 {
4217         int i;
4218
4219         INIT_LIST_HEAD(&obj->global_list);
4220         for (i = 0; i < I915_NUM_RINGS; i++)
4221                 INIT_LIST_HEAD(&obj->ring_list[i]);
4222         INIT_LIST_HEAD(&obj->obj_exec_link);
4223         INIT_LIST_HEAD(&obj->vma_list);
4224         INIT_LIST_HEAD(&obj->batch_pool_link);
4225
4226         obj->ops = ops;
4227
4228         obj->fence_reg = I915_FENCE_REG_NONE;
4229         obj->madv = I915_MADV_WILLNEED;
4230
4231         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4232 }
4233
4234 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4235         .get_pages = i915_gem_object_get_pages_gtt,
4236         .put_pages = i915_gem_object_put_pages_gtt,
4237 };
4238
4239 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4240                                                   size_t size)
4241 {
4242         struct drm_i915_gem_object *obj;
4243         struct address_space *mapping;
4244         gfp_t mask;
4245
4246         obj = i915_gem_object_alloc(dev);
4247         if (obj == NULL)
4248                 return NULL;
4249
4250         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4251                 i915_gem_object_free(obj);
4252                 return NULL;
4253         }
4254
4255         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4256         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4257                 /* 965gm cannot relocate objects above 4GiB. */
4258                 mask &= ~__GFP_HIGHMEM;
4259                 mask |= __GFP_DMA32;
4260         }
4261
4262         mapping = file_inode(obj->base.filp)->i_mapping;
4263         mapping_set_gfp_mask(mapping, mask);
4264
4265         i915_gem_object_init(obj, &i915_gem_object_ops);
4266
4267         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4268         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4269
4270         if (HAS_LLC(dev)) {
4271                 /* On some devices, we can have the GPU use the LLC (the CPU
4272                  * cache) for about a 10% performance improvement
4273                  * compared to uncached.  Graphics requests other than
4274                  * display scanout are coherent with the CPU in
4275                  * accessing this cache.  This means in this mode we
4276                  * don't need to clflush on the CPU side, and on the
4277                  * GPU side we only need to flush internal caches to
4278                  * get data visible to the CPU.
4279                  *
4280                  * However, we maintain the display planes as UC, and so
4281                  * need to rebind when first used as such.
4282                  */
4283                 obj->cache_level = I915_CACHE_LLC;
4284         } else
4285                 obj->cache_level = I915_CACHE_NONE;
4286
4287         trace_i915_gem_object_create(obj);
4288
4289         return obj;
4290 }
4291
4292 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4293 {
4294         /* If we are the last user of the backing storage (be it shmemfs
4295          * pages or stolen etc), we know that the pages are going to be
4296          * immediately released. In this case, we can then skip copying
4297          * back the contents from the GPU.
4298          */
4299
4300         if (obj->madv != I915_MADV_WILLNEED)
4301                 return false;
4302
4303         if (obj->base.filp == NULL)
4304                 return true;
4305
4306         /* At first glance, this looks racy, but then again so would be
4307          * userspace racing mmap against close. However, the first external
4308          * reference to the filp can only be obtained through the
4309          * i915_gem_mmap_ioctl() which safeguards us against the user
4310          * acquiring such a reference whilst we are in the middle of
4311          * freeing the object.
4312          */
4313         return atomic_long_read(&obj->base.filp->f_count) == 1;
4314 }
4315
4316 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4317 {
4318         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4319         struct drm_device *dev = obj->base.dev;
4320         struct drm_i915_private *dev_priv = dev->dev_private;
4321         struct i915_vma *vma, *next;
4322
4323         intel_runtime_pm_get(dev_priv);
4324
4325         trace_i915_gem_object_destroy(obj);
4326
4327         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4328                 int ret;
4329
4330                 vma->pin_count = 0;
4331                 ret = i915_vma_unbind(vma);
4332                 if (WARN_ON(ret == -ERESTARTSYS)) {
4333                         bool was_interruptible;
4334
4335                         was_interruptible = dev_priv->mm.interruptible;
4336                         dev_priv->mm.interruptible = false;
4337
4338                         WARN_ON(i915_vma_unbind(vma));
4339
4340                         dev_priv->mm.interruptible = was_interruptible;
4341                 }
4342         }
4343
4344         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4345          * before progressing. */
4346         if (obj->stolen)
4347                 i915_gem_object_unpin_pages(obj);
4348
4349         WARN_ON(obj->frontbuffer_bits);
4350
4351         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4352             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4353             obj->tiling_mode != I915_TILING_NONE)
4354                 i915_gem_object_unpin_pages(obj);
4355
4356         if (WARN_ON(obj->pages_pin_count))
4357                 obj->pages_pin_count = 0;
4358         if (discard_backing_storage(obj))
4359                 obj->madv = I915_MADV_DONTNEED;
4360         i915_gem_object_put_pages(obj);
4361         i915_gem_object_free_mmap_offset(obj);
4362
4363         BUG_ON(obj->pages);
4364
4365         if (obj->base.import_attach)
4366                 drm_prime_gem_destroy(&obj->base, NULL);
4367
4368         if (obj->ops->release)
4369                 obj->ops->release(obj);
4370
4371         drm_gem_object_release(&obj->base);
4372         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4373
4374         kfree(obj->bit_17);
4375         i915_gem_object_free(obj);
4376
4377         intel_runtime_pm_put(dev_priv);
4378 }
4379
4380 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4381                                      struct i915_address_space *vm)
4382 {
4383         struct i915_vma *vma;
4384         list_for_each_entry(vma, &obj->vma_list, vma_link) {
4385                 if (i915_is_ggtt(vma->vm) &&
4386                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4387                         continue;
4388                 if (vma->vm == vm)
4389                         return vma;
4390         }
4391         return NULL;
4392 }
4393
4394 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4395                                            const struct i915_ggtt_view *view)
4396 {
4397         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4398         struct i915_vma *vma;
4399
4400         if (WARN_ONCE(!view, "no view specified"))
4401                 return ERR_PTR(-EINVAL);
4402
4403         list_for_each_entry(vma, &obj->vma_list, vma_link)
4404                 if (vma->vm == ggtt &&
4405                     i915_ggtt_view_equal(&vma->ggtt_view, view))
4406                         return vma;
4407         return NULL;
4408 }
4409
4410 void i915_gem_vma_destroy(struct i915_vma *vma)
4411 {
4412         struct i915_address_space *vm = NULL;
4413         WARN_ON(vma->node.allocated);
4414
4415         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4416         if (!list_empty(&vma->exec_list))
4417                 return;
4418
4419         vm = vma->vm;
4420
4421         if (!i915_is_ggtt(vm))
4422                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4423
4424         list_del(&vma->vma_link);
4425
4426         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4427 }
4428
4429 static void
4430 i915_gem_stop_ringbuffers(struct drm_device *dev)
4431 {
4432         struct drm_i915_private *dev_priv = dev->dev_private;
4433         struct intel_engine_cs *ring;
4434         int i;
4435
4436         for_each_ring(ring, dev_priv, i)
4437                 dev_priv->gt.stop_ring(ring);
4438 }
4439
4440 int
4441 i915_gem_suspend(struct drm_device *dev)
4442 {
4443         struct drm_i915_private *dev_priv = dev->dev_private;
4444         int ret = 0;
4445
4446         mutex_lock(&dev->struct_mutex);
4447         ret = i915_gpu_idle(dev);
4448         if (ret)
4449                 goto err;
4450
4451         i915_gem_retire_requests(dev);
4452
4453         i915_gem_stop_ringbuffers(dev);
4454         mutex_unlock(&dev->struct_mutex);
4455
4456         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4457         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4458         flush_delayed_work(&dev_priv->mm.idle_work);
4459
4460         /* Assert that we sucessfully flushed all the work and
4461          * reset the GPU back to its idle, low power state.
4462          */
4463         WARN_ON(dev_priv->mm.busy);
4464
4465         return 0;
4466
4467 err:
4468         mutex_unlock(&dev->struct_mutex);
4469         return ret;
4470 }
4471
4472 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4473 {
4474         struct intel_engine_cs *ring = req->ring;
4475         struct drm_device *dev = ring->dev;
4476         struct drm_i915_private *dev_priv = dev->dev_private;
4477         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4478         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4479         int i, ret;
4480
4481         if (!HAS_L3_DPF(dev) || !remap_info)
4482                 return 0;
4483
4484         ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4485         if (ret)
4486                 return ret;
4487
4488         /*
4489          * Note: We do not worry about the concurrent register cacheline hang
4490          * here because no other code should access these registers other than
4491          * at initialization time.
4492          */
4493         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4494                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4495                 intel_ring_emit(ring, reg_base + i);
4496                 intel_ring_emit(ring, remap_info[i/4]);
4497         }
4498
4499         intel_ring_advance(ring);
4500
4501         return ret;
4502 }
4503
4504 void i915_gem_init_swizzling(struct drm_device *dev)
4505 {
4506         struct drm_i915_private *dev_priv = dev->dev_private;
4507
4508         if (INTEL_INFO(dev)->gen < 5 ||
4509             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4510                 return;
4511
4512         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4513                                  DISP_TILE_SURFACE_SWIZZLING);
4514
4515         if (IS_GEN5(dev))
4516                 return;
4517
4518         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4519         if (IS_GEN6(dev))
4520                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4521         else if (IS_GEN7(dev))
4522                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4523         else if (IS_GEN8(dev))
4524                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4525         else
4526                 BUG();
4527 }
4528
4529 static bool
4530 intel_enable_blt(struct drm_device *dev)
4531 {
4532         if (!HAS_BLT(dev))
4533                 return false;
4534
4535         /* The blitter was dysfunctional on early prototypes */
4536         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4537                 DRM_INFO("BLT not supported on this pre-production hardware;"
4538                          " graphics performance will be degraded.\n");
4539                 return false;
4540         }
4541
4542         return true;
4543 }
4544
4545 static void init_unused_ring(struct drm_device *dev, u32 base)
4546 {
4547         struct drm_i915_private *dev_priv = dev->dev_private;
4548
4549         I915_WRITE(RING_CTL(base), 0);
4550         I915_WRITE(RING_HEAD(base), 0);
4551         I915_WRITE(RING_TAIL(base), 0);
4552         I915_WRITE(RING_START(base), 0);
4553 }
4554
4555 static void init_unused_rings(struct drm_device *dev)
4556 {
4557         if (IS_I830(dev)) {
4558                 init_unused_ring(dev, PRB1_BASE);
4559                 init_unused_ring(dev, SRB0_BASE);
4560                 init_unused_ring(dev, SRB1_BASE);
4561                 init_unused_ring(dev, SRB2_BASE);
4562                 init_unused_ring(dev, SRB3_BASE);
4563         } else if (IS_GEN2(dev)) {
4564                 init_unused_ring(dev, SRB0_BASE);
4565                 init_unused_ring(dev, SRB1_BASE);
4566         } else if (IS_GEN3(dev)) {
4567                 init_unused_ring(dev, PRB1_BASE);
4568                 init_unused_ring(dev, PRB2_BASE);
4569         }
4570 }
4571
4572 int i915_gem_init_rings(struct drm_device *dev)
4573 {
4574         struct drm_i915_private *dev_priv = dev->dev_private;
4575         int ret;
4576
4577         ret = intel_init_render_ring_buffer(dev);
4578         if (ret)
4579                 return ret;
4580
4581         if (HAS_BSD(dev)) {
4582                 ret = intel_init_bsd_ring_buffer(dev);
4583                 if (ret)
4584                         goto cleanup_render_ring;
4585         }
4586
4587         if (intel_enable_blt(dev)) {
4588                 ret = intel_init_blt_ring_buffer(dev);
4589                 if (ret)
4590                         goto cleanup_bsd_ring;
4591         }
4592
4593         if (HAS_VEBOX(dev)) {
4594                 ret = intel_init_vebox_ring_buffer(dev);
4595                 if (ret)
4596                         goto cleanup_blt_ring;
4597         }
4598
4599         if (HAS_BSD2(dev)) {
4600                 ret = intel_init_bsd2_ring_buffer(dev);
4601                 if (ret)
4602                         goto cleanup_vebox_ring;
4603         }
4604
4605         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4606         if (ret)
4607                 goto cleanup_bsd2_ring;
4608
4609         return 0;
4610
4611 cleanup_bsd2_ring:
4612         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4613 cleanup_vebox_ring:
4614         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4615 cleanup_blt_ring:
4616         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4617 cleanup_bsd_ring:
4618         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4619 cleanup_render_ring:
4620         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4621
4622         return ret;
4623 }
4624
4625 int
4626 i915_gem_init_hw(struct drm_device *dev)
4627 {
4628         struct drm_i915_private *dev_priv = dev->dev_private;
4629         struct intel_engine_cs *ring;
4630         int ret, i, j;
4631
4632         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4633                 return -EIO;
4634
4635         /* Double layer security blanket, see i915_gem_init() */
4636         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4637
4638         if (dev_priv->ellc_size)
4639                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4640
4641         if (IS_HASWELL(dev))
4642                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4643                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4644
4645         if (HAS_PCH_NOP(dev)) {
4646                 if (IS_IVYBRIDGE(dev)) {
4647                         u32 temp = I915_READ(GEN7_MSG_CTL);
4648                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4649                         I915_WRITE(GEN7_MSG_CTL, temp);
4650                 } else if (INTEL_INFO(dev)->gen >= 7) {
4651                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4652                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4653                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4654                 }
4655         }
4656
4657         i915_gem_init_swizzling(dev);
4658
4659         /*
4660          * At least 830 can leave some of the unused rings
4661          * "active" (ie. head != tail) after resume which
4662          * will prevent c3 entry. Makes sure all unused rings
4663          * are totally idle.
4664          */
4665         init_unused_rings(dev);
4666
4667         BUG_ON(!dev_priv->ring[RCS].default_context);
4668
4669         ret = i915_ppgtt_init_hw(dev);
4670         if (ret) {
4671                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4672                 goto out;
4673         }
4674
4675         /* Need to do basic initialisation of all rings first: */
4676         for_each_ring(ring, dev_priv, i) {
4677                 ret = ring->init_hw(ring);
4678                 if (ret)
4679                         goto out;
4680         }
4681
4682         /* Now it is safe to go back round and do everything else: */
4683         for_each_ring(ring, dev_priv, i) {
4684                 struct drm_i915_gem_request *req;
4685
4686                 WARN_ON(!ring->default_context);
4687
4688                 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4689                 if (ret) {
4690                         i915_gem_cleanup_ringbuffer(dev);
4691                         goto out;
4692                 }
4693
4694                 if (ring->id == RCS) {
4695                         for (j = 0; j < NUM_L3_SLICES(dev); j++)
4696                                 i915_gem_l3_remap(req, j);
4697                 }
4698
4699                 ret = i915_ppgtt_init_ring(req);
4700                 if (ret && ret != -EIO) {
4701                         DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4702                         i915_gem_request_cancel(req);
4703                         i915_gem_cleanup_ringbuffer(dev);
4704                         goto out;
4705                 }
4706
4707                 ret = i915_gem_context_enable(req);
4708                 if (ret && ret != -EIO) {
4709                         DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4710                         i915_gem_request_cancel(req);
4711                         i915_gem_cleanup_ringbuffer(dev);
4712                         goto out;
4713                 }
4714
4715                 i915_add_request_no_flush(req);
4716         }
4717
4718 out:
4719         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4720         return ret;
4721 }
4722
4723 int i915_gem_init(struct drm_device *dev)
4724 {
4725         struct drm_i915_private *dev_priv = dev->dev_private;
4726         int ret;
4727
4728         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4729                         i915.enable_execlists);
4730
4731         mutex_lock(&dev->struct_mutex);
4732
4733         if (IS_VALLEYVIEW(dev)) {
4734                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4735                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4736                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4737                               VLV_GTLC_ALLOWWAKEACK), 10))
4738                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4739         }
4740
4741         if (!i915.enable_execlists) {
4742                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4743                 dev_priv->gt.init_rings = i915_gem_init_rings;
4744                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4745                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4746         } else {
4747                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4748                 dev_priv->gt.init_rings = intel_logical_rings_init;
4749                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4750                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4751         }
4752
4753         /* This is just a security blanket to placate dragons.
4754          * On some systems, we very sporadically observe that the first TLBs
4755          * used by the CS may be stale, despite us poking the TLB reset. If
4756          * we hold the forcewake during initialisation these problems
4757          * just magically go away.
4758          */
4759         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4760
4761         ret = i915_gem_init_userptr(dev);
4762         if (ret)
4763                 goto out_unlock;
4764
4765         i915_gem_init_global_gtt(dev);
4766
4767         ret = i915_gem_context_init(dev);
4768         if (ret)
4769                 goto out_unlock;
4770
4771         ret = dev_priv->gt.init_rings(dev);
4772         if (ret)
4773                 goto out_unlock;
4774
4775         ret = i915_gem_init_hw(dev);
4776         if (ret == -EIO) {
4777                 /* Allow ring initialisation to fail by marking the GPU as
4778                  * wedged. But we only want to do this where the GPU is angry,
4779                  * for all other failure, such as an allocation failure, bail.
4780                  */
4781                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4782                 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4783                 ret = 0;
4784         }
4785
4786 out_unlock:
4787         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4788         mutex_unlock(&dev->struct_mutex);
4789
4790         return ret;
4791 }
4792
4793 void
4794 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4795 {
4796         struct drm_i915_private *dev_priv = dev->dev_private;
4797         struct intel_engine_cs *ring;
4798         int i;
4799
4800         for_each_ring(ring, dev_priv, i)
4801                 dev_priv->gt.cleanup_ring(ring);
4802
4803     if (i915.enable_execlists)
4804             /*
4805              * Neither the BIOS, ourselves or any other kernel
4806              * expects the system to be in execlists mode on startup,
4807              * so we need to reset the GPU back to legacy mode.
4808              */
4809             intel_gpu_reset(dev);
4810 }
4811
4812 static void
4813 init_ring_lists(struct intel_engine_cs *ring)
4814 {
4815         INIT_LIST_HEAD(&ring->active_list);
4816         INIT_LIST_HEAD(&ring->request_list);
4817 }
4818
4819 void i915_init_vm(struct drm_i915_private *dev_priv,
4820                   struct i915_address_space *vm)
4821 {
4822         if (!i915_is_ggtt(vm))
4823                 drm_mm_init(&vm->mm, vm->start, vm->total);
4824         vm->dev = dev_priv->dev;
4825         INIT_LIST_HEAD(&vm->active_list);
4826         INIT_LIST_HEAD(&vm->inactive_list);
4827         INIT_LIST_HEAD(&vm->global_link);
4828         list_add_tail(&vm->global_link, &dev_priv->vm_list);
4829 }
4830
4831 void
4832 i915_gem_load(struct drm_device *dev)
4833 {
4834         struct drm_i915_private *dev_priv = dev->dev_private;
4835         int i;
4836
4837         dev_priv->objects =
4838                 kmem_cache_create("i915_gem_object",
4839                                   sizeof(struct drm_i915_gem_object), 0,
4840                                   SLAB_HWCACHE_ALIGN,
4841                                   NULL);
4842         dev_priv->vmas =
4843                 kmem_cache_create("i915_gem_vma",
4844                                   sizeof(struct i915_vma), 0,
4845                                   SLAB_HWCACHE_ALIGN,
4846                                   NULL);
4847         dev_priv->requests =
4848                 kmem_cache_create("i915_gem_request",
4849                                   sizeof(struct drm_i915_gem_request), 0,
4850                                   SLAB_HWCACHE_ALIGN,
4851                                   NULL);
4852
4853         INIT_LIST_HEAD(&dev_priv->vm_list);
4854         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4855
4856         INIT_LIST_HEAD(&dev_priv->context_list);
4857         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4858         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4859         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4860         for (i = 0; i < I915_NUM_RINGS; i++)
4861                 init_ring_lists(&dev_priv->ring[i]);
4862         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4863                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4864         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4865                           i915_gem_retire_work_handler);
4866         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4867                           i915_gem_idle_work_handler);
4868         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4869
4870         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4871
4872         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4873                 dev_priv->num_fence_regs = 32;
4874         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4875                 dev_priv->num_fence_regs = 16;
4876         else
4877                 dev_priv->num_fence_regs = 8;
4878
4879         if (intel_vgpu_active(dev))
4880                 dev_priv->num_fence_regs =
4881                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4882
4883         /* Initialize fence registers to zero */
4884         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4885         i915_gem_restore_fences(dev);
4886
4887         i915_gem_detect_bit_6_swizzle(dev);
4888         init_waitqueue_head(&dev_priv->pending_flip_queue);
4889
4890         dev_priv->mm.interruptible = true;
4891
4892         i915_gem_shrinker_init(dev_priv);
4893
4894         mutex_init(&dev_priv->fb_tracking.lock);
4895 }
4896
4897 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4898 {
4899         struct drm_i915_file_private *file_priv = file->driver_priv;
4900
4901         /* Clean up our request list when the client is going away, so that
4902          * later retire_requests won't dereference our soon-to-be-gone
4903          * file_priv.
4904          */
4905         spin_lock(&file_priv->mm.lock);
4906         while (!list_empty(&file_priv->mm.request_list)) {
4907                 struct drm_i915_gem_request *request;
4908
4909                 request = list_first_entry(&file_priv->mm.request_list,
4910                                            struct drm_i915_gem_request,
4911                                            client_list);
4912                 list_del(&request->client_list);
4913                 request->file_priv = NULL;
4914         }
4915         spin_unlock(&file_priv->mm.lock);
4916
4917         if (!list_empty(&file_priv->rps.link)) {
4918                 spin_lock(&to_i915(dev)->rps.client_lock);
4919                 list_del(&file_priv->rps.link);
4920                 spin_unlock(&to_i915(dev)->rps.client_lock);
4921         }
4922 }
4923
4924 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4925 {
4926         struct drm_i915_file_private *file_priv;
4927         int ret;
4928
4929         DRM_DEBUG_DRIVER("\n");
4930
4931         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4932         if (!file_priv)
4933                 return -ENOMEM;
4934
4935         file->driver_priv = file_priv;
4936         file_priv->dev_priv = dev->dev_private;
4937         file_priv->file = file;
4938         INIT_LIST_HEAD(&file_priv->rps.link);
4939
4940         spin_lock_init(&file_priv->mm.lock);
4941         INIT_LIST_HEAD(&file_priv->mm.request_list);
4942
4943         ret = i915_gem_context_open(dev, file);
4944         if (ret)
4945                 kfree(file_priv);
4946
4947         return ret;
4948 }
4949
4950 /**
4951  * i915_gem_track_fb - update frontbuffer tracking
4952  * old: current GEM buffer for the frontbuffer slots
4953  * new: new GEM buffer for the frontbuffer slots
4954  * frontbuffer_bits: bitmask of frontbuffer slots
4955  *
4956  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4957  * from @old and setting them in @new. Both @old and @new can be NULL.
4958  */
4959 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4960                        struct drm_i915_gem_object *new,
4961                        unsigned frontbuffer_bits)
4962 {
4963         if (old) {
4964                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
4965                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
4966                 old->frontbuffer_bits &= ~frontbuffer_bits;
4967         }
4968
4969         if (new) {
4970                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
4971                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
4972                 new->frontbuffer_bits |= frontbuffer_bits;
4973         }
4974 }
4975
4976 /* All the new VM stuff */
4977 unsigned long
4978 i915_gem_obj_offset(struct drm_i915_gem_object *o,
4979                     struct i915_address_space *vm)
4980 {
4981         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4982         struct i915_vma *vma;
4983
4984         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4985
4986         list_for_each_entry(vma, &o->vma_list, vma_link) {
4987                 if (i915_is_ggtt(vma->vm) &&
4988                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4989                         continue;
4990                 if (vma->vm == vm)
4991                         return vma->node.start;
4992         }
4993
4994         WARN(1, "%s vma for this object not found.\n",
4995              i915_is_ggtt(vm) ? "global" : "ppgtt");
4996         return -1;
4997 }
4998
4999 unsigned long
5000 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5001                               const struct i915_ggtt_view *view)
5002 {
5003         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5004         struct i915_vma *vma;
5005
5006         list_for_each_entry(vma, &o->vma_list, vma_link)
5007                 if (vma->vm == ggtt &&
5008                     i915_ggtt_view_equal(&vma->ggtt_view, view))
5009                         return vma->node.start;
5010
5011         WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5012         return -1;
5013 }
5014
5015 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5016                         struct i915_address_space *vm)
5017 {
5018         struct i915_vma *vma;
5019
5020         list_for_each_entry(vma, &o->vma_list, vma_link) {
5021                 if (i915_is_ggtt(vma->vm) &&
5022                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5023                         continue;
5024                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5025                         return true;
5026         }
5027
5028         return false;
5029 }
5030
5031 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5032                                   const struct i915_ggtt_view *view)
5033 {
5034         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5035         struct i915_vma *vma;
5036
5037         list_for_each_entry(vma, &o->vma_list, vma_link)
5038                 if (vma->vm == ggtt &&
5039                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5040                     drm_mm_node_allocated(&vma->node))
5041                         return true;
5042
5043         return false;
5044 }
5045
5046 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5047 {
5048         struct i915_vma *vma;
5049
5050         list_for_each_entry(vma, &o->vma_list, vma_link)
5051                 if (drm_mm_node_allocated(&vma->node))
5052                         return true;
5053
5054         return false;
5055 }
5056
5057 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5058                                 struct i915_address_space *vm)
5059 {
5060         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5061         struct i915_vma *vma;
5062
5063         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5064
5065         BUG_ON(list_empty(&o->vma_list));
5066
5067         list_for_each_entry(vma, &o->vma_list, vma_link) {
5068                 if (i915_is_ggtt(vma->vm) &&
5069                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5070                         continue;
5071                 if (vma->vm == vm)
5072                         return vma->node.size;
5073         }
5074         return 0;
5075 }
5076
5077 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5078 {
5079         struct i915_vma *vma;
5080         list_for_each_entry(vma, &obj->vma_list, vma_link)
5081                 if (vma->pin_count > 0)
5082                         return true;
5083
5084         return false;
5085 }
5086
5087 /* Allocate a new GEM object and fill it with the supplied data */
5088 struct drm_i915_gem_object *
5089 i915_gem_object_create_from_data(struct drm_device *dev,
5090                                  const void *data, size_t size)
5091 {
5092         struct drm_i915_gem_object *obj;
5093         struct sg_table *sg;
5094         size_t bytes;
5095         int ret;
5096
5097         obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5098         if (IS_ERR_OR_NULL(obj))
5099                 return obj;
5100
5101         ret = i915_gem_object_set_to_cpu_domain(obj, true);
5102         if (ret)
5103                 goto fail;
5104
5105         ret = i915_gem_object_get_pages(obj);
5106         if (ret)
5107                 goto fail;
5108
5109         i915_gem_object_pin_pages(obj);
5110         sg = obj->pages;
5111         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5112         i915_gem_object_unpin_pages(obj);
5113
5114         if (WARN_ON(bytes != size)) {
5115                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5116                 ret = -EFAULT;
5117                 goto fail;
5118         }
5119
5120         return obj;
5121
5122 fail:
5123         drm_gem_object_unreference(&obj->base);
5124         return ERR_PTR(ret);
5125 }