]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem_gtt.c
Merge tag 'drm-intel-next-2017-05-29' of git://anongit.freedesktop.org/git/drm-intel...
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33
34 #include <asm/set_memory.h>
35
36 #include <drm/drmP.h>
37 #include <drm/i915_drm.h>
38
39 #include "i915_drv.h"
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
44
45 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
46
47 /**
48  * DOC: Global GTT views
49  *
50  * Background and previous state
51  *
52  * Historically objects could exists (be bound) in global GTT space only as
53  * singular instances with a view representing all of the object's backing pages
54  * in a linear fashion. This view will be called a normal view.
55  *
56  * To support multiple views of the same object, where the number of mapped
57  * pages is not equal to the backing store, or where the layout of the pages
58  * is not linear, concept of a GGTT view was added.
59  *
60  * One example of an alternative view is a stereo display driven by a single
61  * image. In this case we would have a framebuffer looking like this
62  * (2x2 pages):
63  *
64  *    12
65  *    34
66  *
67  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68  * rendering. In contrast, fed to the display engine would be an alternative
69  * view which could look something like this:
70  *
71  *   1212
72  *   3434
73  *
74  * In this example both the size and layout of pages in the alternative view is
75  * different from the normal view.
76  *
77  * Implementation and usage
78  *
79  * GGTT views are implemented using VMAs and are distinguished via enum
80  * i915_ggtt_view_type and struct i915_ggtt_view.
81  *
82  * A new flavour of core GEM functions which work with GGTT bound objects were
83  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84  * renaming  in large amounts of code. They take the struct i915_ggtt_view
85  * parameter encapsulating all metadata required to implement a view.
86  *
87  * As a helper for callers which are only interested in the normal view,
88  * globally const i915_ggtt_view_normal singleton instance exists. All old core
89  * GEM API functions, the ones not taking the view parameter, are operating on,
90  * or with the normal GGTT view.
91  *
92  * Code wanting to add or use a new GGTT view needs to:
93  *
94  * 1. Add a new enum with a suitable name.
95  * 2. Extend the metadata in the i915_ggtt_view structure if required.
96  * 3. Add support to i915_get_vma_pages().
97  *
98  * New views are required to build a scatter-gather table from within the
99  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100  * exists for the lifetime of an VMA.
101  *
102  * Core API is designed to have copy semantics which means that passed in
103  * struct i915_ggtt_view does not need to be persistent (left around after
104  * calling the core API functions).
105  *
106  */
107
108 static int
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
110
111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
112 {
113         /* Note that as an uncached mmio write, this should flush the
114          * WCB of the writes into the GGTT before it triggers the invalidate.
115          */
116         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
117 }
118
119 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
120 {
121         gen6_ggtt_invalidate(dev_priv);
122         I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
123 }
124
125 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
126 {
127         intel_gtt_chipset_flush();
128 }
129
130 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
131 {
132         i915->ggtt.invalidate(i915);
133 }
134
135 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
136                                 int enable_ppgtt)
137 {
138         bool has_aliasing_ppgtt;
139         bool has_full_ppgtt;
140         bool has_full_48bit_ppgtt;
141
142         has_aliasing_ppgtt = dev_priv->info.has_aliasing_ppgtt;
143         has_full_ppgtt = dev_priv->info.has_full_ppgtt;
144         has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
145
146         if (intel_vgpu_active(dev_priv)) {
147                 /* emulation is too hard */
148                 has_full_ppgtt = false;
149                 has_full_48bit_ppgtt = false;
150         }
151
152         if (!has_aliasing_ppgtt)
153                 return 0;
154
155         /*
156          * We don't allow disabling PPGTT for gen9+ as it's a requirement for
157          * execlists, the sole mechanism available to submit work.
158          */
159         if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
160                 return 0;
161
162         if (enable_ppgtt == 1)
163                 return 1;
164
165         if (enable_ppgtt == 2 && has_full_ppgtt)
166                 return 2;
167
168         if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
169                 return 3;
170
171         /* Disable ppgtt on SNB if VT-d is on. */
172         if (IS_GEN6(dev_priv) && intel_vtd_active()) {
173                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
174                 return 0;
175         }
176
177         /* Early VLV doesn't have this */
178         if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
179                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
180                 return 0;
181         }
182
183         if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt)
184                 return has_full_48bit_ppgtt ? 3 : 2;
185         else
186                 return has_aliasing_ppgtt ? 1 : 0;
187 }
188
189 static int ppgtt_bind_vma(struct i915_vma *vma,
190                           enum i915_cache_level cache_level,
191                           u32 unused)
192 {
193         u32 pte_flags;
194         int ret;
195
196         if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
197                 ret = vma->vm->allocate_va_range(vma->vm, vma->node.start,
198                                                  vma->size);
199                 if (ret)
200                         return ret;
201         }
202
203         vma->pages = vma->obj->mm.pages;
204
205         /* Currently applicable only to VLV */
206         pte_flags = 0;
207         if (vma->obj->gt_ro)
208                 pte_flags |= PTE_READ_ONLY;
209
210         vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
211                                 cache_level, pte_flags);
212
213         return 0;
214 }
215
216 static void ppgtt_unbind_vma(struct i915_vma *vma)
217 {
218         vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
219 }
220
221 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
222                                   enum i915_cache_level level)
223 {
224         gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
225         pte |= addr;
226
227         switch (level) {
228         case I915_CACHE_NONE:
229                 pte |= PPAT_UNCACHED_INDEX;
230                 break;
231         case I915_CACHE_WT:
232                 pte |= PPAT_DISPLAY_ELLC_INDEX;
233                 break;
234         default:
235                 pte |= PPAT_CACHED_INDEX;
236                 break;
237         }
238
239         return pte;
240 }
241
242 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
243                                   const enum i915_cache_level level)
244 {
245         gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
246         pde |= addr;
247         if (level != I915_CACHE_NONE)
248                 pde |= PPAT_CACHED_PDE_INDEX;
249         else
250                 pde |= PPAT_UNCACHED_INDEX;
251         return pde;
252 }
253
254 #define gen8_pdpe_encode gen8_pde_encode
255 #define gen8_pml4e_encode gen8_pde_encode
256
257 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
258                                  enum i915_cache_level level,
259                                  u32 unused)
260 {
261         gen6_pte_t pte = GEN6_PTE_VALID;
262         pte |= GEN6_PTE_ADDR_ENCODE(addr);
263
264         switch (level) {
265         case I915_CACHE_L3_LLC:
266         case I915_CACHE_LLC:
267                 pte |= GEN6_PTE_CACHE_LLC;
268                 break;
269         case I915_CACHE_NONE:
270                 pte |= GEN6_PTE_UNCACHED;
271                 break;
272         default:
273                 MISSING_CASE(level);
274         }
275
276         return pte;
277 }
278
279 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
280                                  enum i915_cache_level level,
281                                  u32 unused)
282 {
283         gen6_pte_t pte = GEN6_PTE_VALID;
284         pte |= GEN6_PTE_ADDR_ENCODE(addr);
285
286         switch (level) {
287         case I915_CACHE_L3_LLC:
288                 pte |= GEN7_PTE_CACHE_L3_LLC;
289                 break;
290         case I915_CACHE_LLC:
291                 pte |= GEN6_PTE_CACHE_LLC;
292                 break;
293         case I915_CACHE_NONE:
294                 pte |= GEN6_PTE_UNCACHED;
295                 break;
296         default:
297                 MISSING_CASE(level);
298         }
299
300         return pte;
301 }
302
303 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
304                                  enum i915_cache_level level,
305                                  u32 flags)
306 {
307         gen6_pte_t pte = GEN6_PTE_VALID;
308         pte |= GEN6_PTE_ADDR_ENCODE(addr);
309
310         if (!(flags & PTE_READ_ONLY))
311                 pte |= BYT_PTE_WRITEABLE;
312
313         if (level != I915_CACHE_NONE)
314                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
315
316         return pte;
317 }
318
319 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
320                                  enum i915_cache_level level,
321                                  u32 unused)
322 {
323         gen6_pte_t pte = GEN6_PTE_VALID;
324         pte |= HSW_PTE_ADDR_ENCODE(addr);
325
326         if (level != I915_CACHE_NONE)
327                 pte |= HSW_WB_LLC_AGE3;
328
329         return pte;
330 }
331
332 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
333                                   enum i915_cache_level level,
334                                   u32 unused)
335 {
336         gen6_pte_t pte = GEN6_PTE_VALID;
337         pte |= HSW_PTE_ADDR_ENCODE(addr);
338
339         switch (level) {
340         case I915_CACHE_NONE:
341                 break;
342         case I915_CACHE_WT:
343                 pte |= HSW_WT_ELLC_LLC_AGE3;
344                 break;
345         default:
346                 pte |= HSW_WB_ELLC_LLC_AGE3;
347                 break;
348         }
349
350         return pte;
351 }
352
353 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
354 {
355         struct page *page;
356
357         if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
358                 i915_gem_shrink_all(vm->i915);
359
360         if (vm->free_pages.nr)
361                 return vm->free_pages.pages[--vm->free_pages.nr];
362
363         page = alloc_page(gfp);
364         if (!page)
365                 return NULL;
366
367         if (vm->pt_kmap_wc)
368                 set_pages_array_wc(&page, 1);
369
370         return page;
371 }
372
373 static void vm_free_pages_release(struct i915_address_space *vm)
374 {
375         GEM_BUG_ON(!pagevec_count(&vm->free_pages));
376
377         if (vm->pt_kmap_wc)
378                 set_pages_array_wb(vm->free_pages.pages,
379                                    pagevec_count(&vm->free_pages));
380
381         __pagevec_release(&vm->free_pages);
382 }
383
384 static void vm_free_page(struct i915_address_space *vm, struct page *page)
385 {
386         if (!pagevec_add(&vm->free_pages, page))
387                 vm_free_pages_release(vm);
388 }
389
390 static int __setup_page_dma(struct i915_address_space *vm,
391                             struct i915_page_dma *p,
392                             gfp_t gfp)
393 {
394         p->page = vm_alloc_page(vm, gfp | __GFP_NOWARN | __GFP_NORETRY);
395         if (unlikely(!p->page))
396                 return -ENOMEM;
397
398         p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE,
399                                 PCI_DMA_BIDIRECTIONAL);
400         if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
401                 vm_free_page(vm, p->page);
402                 return -ENOMEM;
403         }
404
405         return 0;
406 }
407
408 static int setup_page_dma(struct i915_address_space *vm,
409                           struct i915_page_dma *p)
410 {
411         return __setup_page_dma(vm, p, I915_GFP_DMA);
412 }
413
414 static void cleanup_page_dma(struct i915_address_space *vm,
415                              struct i915_page_dma *p)
416 {
417         dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
418         vm_free_page(vm, p->page);
419 }
420
421 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
422
423 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
424 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
425 #define fill_px(ppgtt, px, v) fill_page_dma((vm), px_base(px), (v))
426 #define fill32_px(ppgtt, px, v) fill_page_dma_32((vm), px_base(px), (v))
427
428 static void fill_page_dma(struct i915_address_space *vm,
429                           struct i915_page_dma *p,
430                           const u64 val)
431 {
432         u64 * const vaddr = kmap_atomic(p->page);
433         int i;
434
435         for (i = 0; i < 512; i++)
436                 vaddr[i] = val;
437
438         kunmap_atomic(vaddr);
439 }
440
441 static void fill_page_dma_32(struct i915_address_space *vm,
442                              struct i915_page_dma *p,
443                              const u32 v)
444 {
445         fill_page_dma(vm, p, (u64)v << 32 | v);
446 }
447
448 static int
449 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
450 {
451         return __setup_page_dma(vm, &vm->scratch_page, gfp | __GFP_ZERO);
452 }
453
454 static void cleanup_scratch_page(struct i915_address_space *vm)
455 {
456         cleanup_page_dma(vm, &vm->scratch_page);
457 }
458
459 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
460 {
461         struct i915_page_table *pt;
462
463         pt = kmalloc(sizeof(*pt), GFP_KERNEL | __GFP_NOWARN);
464         if (unlikely(!pt))
465                 return ERR_PTR(-ENOMEM);
466
467         if (unlikely(setup_px(vm, pt))) {
468                 kfree(pt);
469                 return ERR_PTR(-ENOMEM);
470         }
471
472         pt->used_ptes = 0;
473         return pt;
474 }
475
476 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
477 {
478         cleanup_px(vm, pt);
479         kfree(pt);
480 }
481
482 static void gen8_initialize_pt(struct i915_address_space *vm,
483                                struct i915_page_table *pt)
484 {
485         fill_px(vm, pt,
486                 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC));
487 }
488
489 static void gen6_initialize_pt(struct i915_address_space *vm,
490                                struct i915_page_table *pt)
491 {
492         fill32_px(vm, pt,
493                   vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
494 }
495
496 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
497 {
498         struct i915_page_directory *pd;
499
500         pd = kzalloc(sizeof(*pd), GFP_KERNEL | __GFP_NOWARN);
501         if (unlikely(!pd))
502                 return ERR_PTR(-ENOMEM);
503
504         if (unlikely(setup_px(vm, pd))) {
505                 kfree(pd);
506                 return ERR_PTR(-ENOMEM);
507         }
508
509         pd->used_pdes = 0;
510         return pd;
511 }
512
513 static void free_pd(struct i915_address_space *vm,
514                     struct i915_page_directory *pd)
515 {
516         cleanup_px(vm, pd);
517         kfree(pd);
518 }
519
520 static void gen8_initialize_pd(struct i915_address_space *vm,
521                                struct i915_page_directory *pd)
522 {
523         unsigned int i;
524
525         fill_px(vm, pd,
526                 gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
527         for (i = 0; i < I915_PDES; i++)
528                 pd->page_table[i] = vm->scratch_pt;
529 }
530
531 static int __pdp_init(struct i915_address_space *vm,
532                       struct i915_page_directory_pointer *pdp)
533 {
534         const unsigned int pdpes = i915_pdpes_per_pdp(vm);
535         unsigned int i;
536
537         pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
538                                             GFP_KERNEL | __GFP_NOWARN);
539         if (unlikely(!pdp->page_directory))
540                 return -ENOMEM;
541
542         for (i = 0; i < pdpes; i++)
543                 pdp->page_directory[i] = vm->scratch_pd;
544
545         return 0;
546 }
547
548 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
549 {
550         kfree(pdp->page_directory);
551         pdp->page_directory = NULL;
552 }
553
554 static inline bool use_4lvl(const struct i915_address_space *vm)
555 {
556         return i915_vm_is_48bit(vm);
557 }
558
559 static struct i915_page_directory_pointer *
560 alloc_pdp(struct i915_address_space *vm)
561 {
562         struct i915_page_directory_pointer *pdp;
563         int ret = -ENOMEM;
564
565         WARN_ON(!use_4lvl(vm));
566
567         pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
568         if (!pdp)
569                 return ERR_PTR(-ENOMEM);
570
571         ret = __pdp_init(vm, pdp);
572         if (ret)
573                 goto fail_bitmap;
574
575         ret = setup_px(vm, pdp);
576         if (ret)
577                 goto fail_page_m;
578
579         return pdp;
580
581 fail_page_m:
582         __pdp_fini(pdp);
583 fail_bitmap:
584         kfree(pdp);
585
586         return ERR_PTR(ret);
587 }
588
589 static void free_pdp(struct i915_address_space *vm,
590                      struct i915_page_directory_pointer *pdp)
591 {
592         __pdp_fini(pdp);
593
594         if (!use_4lvl(vm))
595                 return;
596
597         cleanup_px(vm, pdp);
598         kfree(pdp);
599 }
600
601 static void gen8_initialize_pdp(struct i915_address_space *vm,
602                                 struct i915_page_directory_pointer *pdp)
603 {
604         gen8_ppgtt_pdpe_t scratch_pdpe;
605
606         scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
607
608         fill_px(vm, pdp, scratch_pdpe);
609 }
610
611 static void gen8_initialize_pml4(struct i915_address_space *vm,
612                                  struct i915_pml4 *pml4)
613 {
614         unsigned int i;
615
616         fill_px(vm, pml4,
617                 gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
618         for (i = 0; i < GEN8_PML4ES_PER_PML4; i++)
619                 pml4->pdps[i] = vm->scratch_pdp;
620 }
621
622 /* Broadwell Page Directory Pointer Descriptors */
623 static int gen8_write_pdp(struct drm_i915_gem_request *req,
624                           unsigned entry,
625                           dma_addr_t addr)
626 {
627         struct intel_engine_cs *engine = req->engine;
628         u32 *cs;
629
630         BUG_ON(entry >= 4);
631
632         cs = intel_ring_begin(req, 6);
633         if (IS_ERR(cs))
634                 return PTR_ERR(cs);
635
636         *cs++ = MI_LOAD_REGISTER_IMM(1);
637         *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, entry));
638         *cs++ = upper_32_bits(addr);
639         *cs++ = MI_LOAD_REGISTER_IMM(1);
640         *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, entry));
641         *cs++ = lower_32_bits(addr);
642         intel_ring_advance(req, cs);
643
644         return 0;
645 }
646
647 static int gen8_mm_switch_3lvl(struct i915_hw_ppgtt *ppgtt,
648                                struct drm_i915_gem_request *req)
649 {
650         int i, ret;
651
652         for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
653                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
654
655                 ret = gen8_write_pdp(req, i, pd_daddr);
656                 if (ret)
657                         return ret;
658         }
659
660         return 0;
661 }
662
663 static int gen8_mm_switch_4lvl(struct i915_hw_ppgtt *ppgtt,
664                                struct drm_i915_gem_request *req)
665 {
666         return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
667 }
668
669 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
670  * the page table structures, we mark them dirty so that
671  * context switching/execlist queuing code takes extra steps
672  * to ensure that tlbs are flushed.
673  */
674 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
675 {
676         ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask;
677 }
678
679 /* Removes entries from a single page table, releasing it if it's empty.
680  * Caller can use the return value to update higher-level entries.
681  */
682 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
683                                 struct i915_page_table *pt,
684                                 u64 start, u64 length)
685 {
686         unsigned int num_entries = gen8_pte_count(start, length);
687         unsigned int pte = gen8_pte_index(start);
688         unsigned int pte_end = pte + num_entries;
689         const gen8_pte_t scratch_pte =
690                 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
691         gen8_pte_t *vaddr;
692
693         GEM_BUG_ON(num_entries > pt->used_ptes);
694
695         pt->used_ptes -= num_entries;
696         if (!pt->used_ptes)
697                 return true;
698
699         vaddr = kmap_atomic_px(pt);
700         while (pte < pte_end)
701                 vaddr[pte++] = scratch_pte;
702         kunmap_atomic(vaddr);
703
704         return false;
705 }
706
707 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
708                                struct i915_page_directory *pd,
709                                struct i915_page_table *pt,
710                                unsigned int pde)
711 {
712         gen8_pde_t *vaddr;
713
714         pd->page_table[pde] = pt;
715
716         vaddr = kmap_atomic_px(pd);
717         vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
718         kunmap_atomic(vaddr);
719 }
720
721 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
722                                 struct i915_page_directory *pd,
723                                 u64 start, u64 length)
724 {
725         struct i915_page_table *pt;
726         u32 pde;
727
728         gen8_for_each_pde(pt, pd, start, length, pde) {
729                 GEM_BUG_ON(pt == vm->scratch_pt);
730
731                 if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
732                         continue;
733
734                 gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
735                 GEM_BUG_ON(!pd->used_pdes);
736                 pd->used_pdes--;
737
738                 free_pt(vm, pt);
739         }
740
741         return !pd->used_pdes;
742 }
743
744 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
745                                 struct i915_page_directory_pointer *pdp,
746                                 struct i915_page_directory *pd,
747                                 unsigned int pdpe)
748 {
749         gen8_ppgtt_pdpe_t *vaddr;
750
751         pdp->page_directory[pdpe] = pd;
752         if (!use_4lvl(vm))
753                 return;
754
755         vaddr = kmap_atomic_px(pdp);
756         vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
757         kunmap_atomic(vaddr);
758 }
759
760 /* Removes entries from a single page dir pointer, releasing it if it's empty.
761  * Caller can use the return value to update higher-level entries
762  */
763 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
764                                  struct i915_page_directory_pointer *pdp,
765                                  u64 start, u64 length)
766 {
767         struct i915_page_directory *pd;
768         unsigned int pdpe;
769
770         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
771                 GEM_BUG_ON(pd == vm->scratch_pd);
772
773                 if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
774                         continue;
775
776                 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
777                 GEM_BUG_ON(!pdp->used_pdpes);
778                 pdp->used_pdpes--;
779
780                 free_pd(vm, pd);
781         }
782
783         return !pdp->used_pdpes;
784 }
785
786 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
787                                   u64 start, u64 length)
788 {
789         gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
790 }
791
792 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
793                                  struct i915_page_directory_pointer *pdp,
794                                  unsigned int pml4e)
795 {
796         gen8_ppgtt_pml4e_t *vaddr;
797
798         pml4->pdps[pml4e] = pdp;
799
800         vaddr = kmap_atomic_px(pml4);
801         vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
802         kunmap_atomic(vaddr);
803 }
804
805 /* Removes entries from a single pml4.
806  * This is the top-level structure in 4-level page tables used on gen8+.
807  * Empty entries are always scratch pml4e.
808  */
809 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
810                                   u64 start, u64 length)
811 {
812         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
813         struct i915_pml4 *pml4 = &ppgtt->pml4;
814         struct i915_page_directory_pointer *pdp;
815         unsigned int pml4e;
816
817         GEM_BUG_ON(!use_4lvl(vm));
818
819         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
820                 GEM_BUG_ON(pdp == vm->scratch_pdp);
821
822                 if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
823                         continue;
824
825                 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
826
827                 free_pdp(vm, pdp);
828         }
829 }
830
831 struct sgt_dma {
832         struct scatterlist *sg;
833         dma_addr_t dma, max;
834 };
835
836 struct gen8_insert_pte {
837         u16 pml4e;
838         u16 pdpe;
839         u16 pde;
840         u16 pte;
841 };
842
843 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
844 {
845         return (struct gen8_insert_pte) {
846                  gen8_pml4e_index(start),
847                  gen8_pdpe_index(start),
848                  gen8_pde_index(start),
849                  gen8_pte_index(start),
850         };
851 }
852
853 static __always_inline bool
854 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
855                               struct i915_page_directory_pointer *pdp,
856                               struct sgt_dma *iter,
857                               struct gen8_insert_pte *idx,
858                               enum i915_cache_level cache_level)
859 {
860         struct i915_page_directory *pd;
861         const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
862         gen8_pte_t *vaddr;
863         bool ret;
864
865         GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
866         pd = pdp->page_directory[idx->pdpe];
867         vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
868         do {
869                 vaddr[idx->pte] = pte_encode | iter->dma;
870
871                 iter->dma += PAGE_SIZE;
872                 if (iter->dma >= iter->max) {
873                         iter->sg = __sg_next(iter->sg);
874                         if (!iter->sg) {
875                                 ret = false;
876                                 break;
877                         }
878
879                         iter->dma = sg_dma_address(iter->sg);
880                         iter->max = iter->dma + iter->sg->length;
881                 }
882
883                 if (++idx->pte == GEN8_PTES) {
884                         idx->pte = 0;
885
886                         if (++idx->pde == I915_PDES) {
887                                 idx->pde = 0;
888
889                                 /* Limited by sg length for 3lvl */
890                                 if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
891                                         idx->pdpe = 0;
892                                         ret = true;
893                                         break;
894                                 }
895
896                                 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
897                                 pd = pdp->page_directory[idx->pdpe];
898                         }
899
900                         kunmap_atomic(vaddr);
901                         vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
902                 }
903         } while (1);
904         kunmap_atomic(vaddr);
905
906         return ret;
907 }
908
909 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
910                                    struct sg_table *pages,
911                                    u64 start,
912                                    enum i915_cache_level cache_level,
913                                    u32 unused)
914 {
915         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
916         struct sgt_dma iter = {
917                 .sg = pages->sgl,
918                 .dma = sg_dma_address(iter.sg),
919                 .max = iter.dma + iter.sg->length,
920         };
921         struct gen8_insert_pte idx = gen8_insert_pte(start);
922
923         gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
924                                       cache_level);
925 }
926
927 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
928                                    struct sg_table *pages,
929                                    u64 start,
930                                    enum i915_cache_level cache_level,
931                                    u32 unused)
932 {
933         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
934         struct sgt_dma iter = {
935                 .sg = pages->sgl,
936                 .dma = sg_dma_address(iter.sg),
937                 .max = iter.dma + iter.sg->length,
938         };
939         struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
940         struct gen8_insert_pte idx = gen8_insert_pte(start);
941
942         while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++], &iter,
943                                              &idx, cache_level))
944                 GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
945 }
946
947 static void gen8_free_page_tables(struct i915_address_space *vm,
948                                   struct i915_page_directory *pd)
949 {
950         int i;
951
952         if (!px_page(pd))
953                 return;
954
955         for (i = 0; i < I915_PDES; i++) {
956                 if (pd->page_table[i] != vm->scratch_pt)
957                         free_pt(vm, pd->page_table[i]);
958         }
959 }
960
961 static int gen8_init_scratch(struct i915_address_space *vm)
962 {
963         int ret;
964
965         ret = setup_scratch_page(vm, I915_GFP_DMA);
966         if (ret)
967                 return ret;
968
969         vm->scratch_pt = alloc_pt(vm);
970         if (IS_ERR(vm->scratch_pt)) {
971                 ret = PTR_ERR(vm->scratch_pt);
972                 goto free_scratch_page;
973         }
974
975         vm->scratch_pd = alloc_pd(vm);
976         if (IS_ERR(vm->scratch_pd)) {
977                 ret = PTR_ERR(vm->scratch_pd);
978                 goto free_pt;
979         }
980
981         if (use_4lvl(vm)) {
982                 vm->scratch_pdp = alloc_pdp(vm);
983                 if (IS_ERR(vm->scratch_pdp)) {
984                         ret = PTR_ERR(vm->scratch_pdp);
985                         goto free_pd;
986                 }
987         }
988
989         gen8_initialize_pt(vm, vm->scratch_pt);
990         gen8_initialize_pd(vm, vm->scratch_pd);
991         if (use_4lvl(vm))
992                 gen8_initialize_pdp(vm, vm->scratch_pdp);
993
994         return 0;
995
996 free_pd:
997         free_pd(vm, vm->scratch_pd);
998 free_pt:
999         free_pt(vm, vm->scratch_pt);
1000 free_scratch_page:
1001         cleanup_scratch_page(vm);
1002
1003         return ret;
1004 }
1005
1006 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1007 {
1008         struct i915_address_space *vm = &ppgtt->base;
1009         struct drm_i915_private *dev_priv = vm->i915;
1010         enum vgt_g2v_type msg;
1011         int i;
1012
1013         if (use_4lvl(vm)) {
1014                 const u64 daddr = px_dma(&ppgtt->pml4);
1015
1016                 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1017                 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1018
1019                 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1020                                 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1021         } else {
1022                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1023                         const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1024
1025                         I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1026                         I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1027                 }
1028
1029                 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1030                                 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1031         }
1032
1033         I915_WRITE(vgtif_reg(g2v_notify), msg);
1034
1035         return 0;
1036 }
1037
1038 static void gen8_free_scratch(struct i915_address_space *vm)
1039 {
1040         if (use_4lvl(vm))
1041                 free_pdp(vm, vm->scratch_pdp);
1042         free_pd(vm, vm->scratch_pd);
1043         free_pt(vm, vm->scratch_pt);
1044         cleanup_scratch_page(vm);
1045 }
1046
1047 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1048                                     struct i915_page_directory_pointer *pdp)
1049 {
1050         const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1051         int i;
1052
1053         for (i = 0; i < pdpes; i++) {
1054                 if (pdp->page_directory[i] == vm->scratch_pd)
1055                         continue;
1056
1057                 gen8_free_page_tables(vm, pdp->page_directory[i]);
1058                 free_pd(vm, pdp->page_directory[i]);
1059         }
1060
1061         free_pdp(vm, pdp);
1062 }
1063
1064 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1065 {
1066         int i;
1067
1068         for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1069                 if (ppgtt->pml4.pdps[i] == ppgtt->base.scratch_pdp)
1070                         continue;
1071
1072                 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, ppgtt->pml4.pdps[i]);
1073         }
1074
1075         cleanup_px(&ppgtt->base, &ppgtt->pml4);
1076 }
1077
1078 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1079 {
1080         struct drm_i915_private *dev_priv = vm->i915;
1081         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1082
1083         if (intel_vgpu_active(dev_priv))
1084                 gen8_ppgtt_notify_vgt(ppgtt, false);
1085
1086         if (use_4lvl(vm))
1087                 gen8_ppgtt_cleanup_4lvl(ppgtt);
1088         else
1089                 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, &ppgtt->pdp);
1090
1091         gen8_free_scratch(vm);
1092 }
1093
1094 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1095                                struct i915_page_directory *pd,
1096                                u64 start, u64 length)
1097 {
1098         struct i915_page_table *pt;
1099         u64 from = start;
1100         unsigned int pde;
1101
1102         gen8_for_each_pde(pt, pd, start, length, pde) {
1103                 if (pt == vm->scratch_pt) {
1104                         pt = alloc_pt(vm);
1105                         if (IS_ERR(pt))
1106                                 goto unwind;
1107
1108                         gen8_initialize_pt(vm, pt);
1109
1110                         gen8_ppgtt_set_pde(vm, pd, pt, pde);
1111                         pd->used_pdes++;
1112                         GEM_BUG_ON(pd->used_pdes > I915_PDES);
1113                 }
1114
1115                 pt->used_ptes += gen8_pte_count(start, length);
1116         }
1117         return 0;
1118
1119 unwind:
1120         gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1121         return -ENOMEM;
1122 }
1123
1124 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1125                                 struct i915_page_directory_pointer *pdp,
1126                                 u64 start, u64 length)
1127 {
1128         struct i915_page_directory *pd;
1129         u64 from = start;
1130         unsigned int pdpe;
1131         int ret;
1132
1133         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1134                 if (pd == vm->scratch_pd) {
1135                         pd = alloc_pd(vm);
1136                         if (IS_ERR(pd))
1137                                 goto unwind;
1138
1139                         gen8_initialize_pd(vm, pd);
1140                         gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1141                         pdp->used_pdpes++;
1142                         GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1143
1144                         mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1145                 }
1146
1147                 ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1148                 if (unlikely(ret))
1149                         goto unwind_pd;
1150         }
1151
1152         return 0;
1153
1154 unwind_pd:
1155         if (!pd->used_pdes) {
1156                 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1157                 GEM_BUG_ON(!pdp->used_pdpes);
1158                 pdp->used_pdpes--;
1159                 free_pd(vm, pd);
1160         }
1161 unwind:
1162         gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1163         return -ENOMEM;
1164 }
1165
1166 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1167                                  u64 start, u64 length)
1168 {
1169         return gen8_ppgtt_alloc_pdp(vm,
1170                                     &i915_vm_to_ppgtt(vm)->pdp, start, length);
1171 }
1172
1173 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1174                                  u64 start, u64 length)
1175 {
1176         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1177         struct i915_pml4 *pml4 = &ppgtt->pml4;
1178         struct i915_page_directory_pointer *pdp;
1179         u64 from = start;
1180         u32 pml4e;
1181         int ret;
1182
1183         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1184                 if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1185                         pdp = alloc_pdp(vm);
1186                         if (IS_ERR(pdp))
1187                                 goto unwind;
1188
1189                         gen8_initialize_pdp(vm, pdp);
1190                         gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1191                 }
1192
1193                 ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1194                 if (unlikely(ret))
1195                         goto unwind_pdp;
1196         }
1197
1198         return 0;
1199
1200 unwind_pdp:
1201         if (!pdp->used_pdpes) {
1202                 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1203                 free_pdp(vm, pdp);
1204         }
1205 unwind:
1206         gen8_ppgtt_clear_4lvl(vm, from, start - from);
1207         return -ENOMEM;
1208 }
1209
1210 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1211                           struct i915_page_directory_pointer *pdp,
1212                           u64 start, u64 length,
1213                           gen8_pte_t scratch_pte,
1214                           struct seq_file *m)
1215 {
1216         struct i915_address_space *vm = &ppgtt->base;
1217         struct i915_page_directory *pd;
1218         u32 pdpe;
1219
1220         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1221                 struct i915_page_table *pt;
1222                 u64 pd_len = length;
1223                 u64 pd_start = start;
1224                 u32 pde;
1225
1226                 if (pdp->page_directory[pdpe] == ppgtt->base.scratch_pd)
1227                         continue;
1228
1229                 seq_printf(m, "\tPDPE #%d\n", pdpe);
1230                 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1231                         u32 pte;
1232                         gen8_pte_t *pt_vaddr;
1233
1234                         if (pd->page_table[pde] == ppgtt->base.scratch_pt)
1235                                 continue;
1236
1237                         pt_vaddr = kmap_atomic_px(pt);
1238                         for (pte = 0; pte < GEN8_PTES; pte += 4) {
1239                                 u64 va = (pdpe << GEN8_PDPE_SHIFT |
1240                                           pde << GEN8_PDE_SHIFT |
1241                                           pte << GEN8_PTE_SHIFT);
1242                                 int i;
1243                                 bool found = false;
1244
1245                                 for (i = 0; i < 4; i++)
1246                                         if (pt_vaddr[pte + i] != scratch_pte)
1247                                                 found = true;
1248                                 if (!found)
1249                                         continue;
1250
1251                                 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1252                                 for (i = 0; i < 4; i++) {
1253                                         if (pt_vaddr[pte + i] != scratch_pte)
1254                                                 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1255                                         else
1256                                                 seq_puts(m, "  SCRATCH ");
1257                                 }
1258                                 seq_puts(m, "\n");
1259                         }
1260                         kunmap_atomic(pt_vaddr);
1261                 }
1262         }
1263 }
1264
1265 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1266 {
1267         struct i915_address_space *vm = &ppgtt->base;
1268         const gen8_pte_t scratch_pte =
1269                 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
1270         u64 start = 0, length = ppgtt->base.total;
1271
1272         if (use_4lvl(vm)) {
1273                 u64 pml4e;
1274                 struct i915_pml4 *pml4 = &ppgtt->pml4;
1275                 struct i915_page_directory_pointer *pdp;
1276
1277                 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1278                         if (pml4->pdps[pml4e] == ppgtt->base.scratch_pdp)
1279                                 continue;
1280
1281                         seq_printf(m, "    PML4E #%llu\n", pml4e);
1282                         gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1283                 }
1284         } else {
1285                 gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1286         }
1287 }
1288
1289 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1290 {
1291         struct i915_address_space *vm = &ppgtt->base;
1292         struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1293         struct i915_page_directory *pd;
1294         u64 start = 0, length = ppgtt->base.total;
1295         u64 from = start;
1296         unsigned int pdpe;
1297
1298         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1299                 pd = alloc_pd(vm);
1300                 if (IS_ERR(pd))
1301                         goto unwind;
1302
1303                 gen8_initialize_pd(vm, pd);
1304                 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1305                 pdp->used_pdpes++;
1306         }
1307
1308         pdp->used_pdpes++; /* never remove */
1309         return 0;
1310
1311 unwind:
1312         start -= from;
1313         gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1314                 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1315                 free_pd(vm, pd);
1316         }
1317         pdp->used_pdpes = 0;
1318         return -ENOMEM;
1319 }
1320
1321 /*
1322  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1323  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1324  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1325  * space.
1326  *
1327  */
1328 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1329 {
1330         struct i915_address_space *vm = &ppgtt->base;
1331         struct drm_i915_private *dev_priv = vm->i915;
1332         int ret;
1333
1334         ppgtt->base.total = USES_FULL_48BIT_PPGTT(dev_priv) ?
1335                 1ULL << 48 :
1336                 1ULL << 32;
1337
1338         ret = gen8_init_scratch(&ppgtt->base);
1339         if (ret) {
1340                 ppgtt->base.total = 0;
1341                 return ret;
1342         }
1343
1344         /* There are only few exceptions for gen >=6. chv and bxt.
1345          * And we are not sure about the latter so play safe for now.
1346          */
1347         if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
1348                 ppgtt->base.pt_kmap_wc = true;
1349
1350         if (use_4lvl(vm)) {
1351                 ret = setup_px(&ppgtt->base, &ppgtt->pml4);
1352                 if (ret)
1353                         goto free_scratch;
1354
1355                 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1356
1357                 ppgtt->switch_mm = gen8_mm_switch_4lvl;
1358                 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1359                 ppgtt->base.insert_entries = gen8_ppgtt_insert_4lvl;
1360                 ppgtt->base.clear_range = gen8_ppgtt_clear_4lvl;
1361         } else {
1362                 ret = __pdp_init(&ppgtt->base, &ppgtt->pdp);
1363                 if (ret)
1364                         goto free_scratch;
1365
1366                 if (intel_vgpu_active(dev_priv)) {
1367                         ret = gen8_preallocate_top_level_pdp(ppgtt);
1368                         if (ret) {
1369                                 __pdp_fini(&ppgtt->pdp);
1370                                 goto free_scratch;
1371                         }
1372                 }
1373
1374                 ppgtt->switch_mm = gen8_mm_switch_3lvl;
1375                 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1376                 ppgtt->base.insert_entries = gen8_ppgtt_insert_3lvl;
1377                 ppgtt->base.clear_range = gen8_ppgtt_clear_3lvl;
1378         }
1379
1380         if (intel_vgpu_active(dev_priv))
1381                 gen8_ppgtt_notify_vgt(ppgtt, true);
1382
1383         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1384         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1385         ppgtt->base.bind_vma = ppgtt_bind_vma;
1386         ppgtt->debug_dump = gen8_dump_ppgtt;
1387
1388         return 0;
1389
1390 free_scratch:
1391         gen8_free_scratch(&ppgtt->base);
1392         return ret;
1393 }
1394
1395 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1396 {
1397         struct i915_address_space *vm = &ppgtt->base;
1398         struct i915_page_table *unused;
1399         gen6_pte_t scratch_pte;
1400         u32 pd_entry, pte, pde;
1401         u32 start = 0, length = ppgtt->base.total;
1402
1403         scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1404                                      I915_CACHE_LLC, 0);
1405
1406         gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1407                 u32 expected;
1408                 gen6_pte_t *pt_vaddr;
1409                 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1410                 pd_entry = readl(ppgtt->pd_addr + pde);
1411                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1412
1413                 if (pd_entry != expected)
1414                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1415                                    pde,
1416                                    pd_entry,
1417                                    expected);
1418                 seq_printf(m, "\tPDE: %x\n", pd_entry);
1419
1420                 pt_vaddr = kmap_atomic_px(ppgtt->pd.page_table[pde]);
1421
1422                 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1423                         unsigned long va =
1424                                 (pde * PAGE_SIZE * GEN6_PTES) +
1425                                 (pte * PAGE_SIZE);
1426                         int i;
1427                         bool found = false;
1428                         for (i = 0; i < 4; i++)
1429                                 if (pt_vaddr[pte + i] != scratch_pte)
1430                                         found = true;
1431                         if (!found)
1432                                 continue;
1433
1434                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1435                         for (i = 0; i < 4; i++) {
1436                                 if (pt_vaddr[pte + i] != scratch_pte)
1437                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
1438                                 else
1439                                         seq_puts(m, "  SCRATCH ");
1440                         }
1441                         seq_puts(m, "\n");
1442                 }
1443                 kunmap_atomic(pt_vaddr);
1444         }
1445 }
1446
1447 /* Write pde (index) from the page directory @pd to the page table @pt */
1448 static inline void gen6_write_pde(const struct i915_hw_ppgtt *ppgtt,
1449                                   const unsigned int pde,
1450                                   const struct i915_page_table *pt)
1451 {
1452         /* Caller needs to make sure the write completes if necessary */
1453         writel_relaxed(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1454                        ppgtt->pd_addr + pde);
1455 }
1456
1457 /* Write all the page tables found in the ppgtt structure to incrementing page
1458  * directories. */
1459 static void gen6_write_page_range(struct i915_hw_ppgtt *ppgtt,
1460                                   u32 start, u32 length)
1461 {
1462         struct i915_page_table *pt;
1463         unsigned int pde;
1464
1465         gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde)
1466                 gen6_write_pde(ppgtt, pde, pt);
1467
1468         mark_tlbs_dirty(ppgtt);
1469         wmb();
1470 }
1471
1472 static inline u32 get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1473 {
1474         GEM_BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1475         return ppgtt->pd.base.ggtt_offset << 10;
1476 }
1477
1478 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1479                          struct drm_i915_gem_request *req)
1480 {
1481         struct intel_engine_cs *engine = req->engine;
1482         u32 *cs;
1483
1484         /* NB: TLBs must be flushed and invalidated before a switch */
1485         cs = intel_ring_begin(req, 6);
1486         if (IS_ERR(cs))
1487                 return PTR_ERR(cs);
1488
1489         *cs++ = MI_LOAD_REGISTER_IMM(2);
1490         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1491         *cs++ = PP_DIR_DCLV_2G;
1492         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1493         *cs++ = get_pd_offset(ppgtt);
1494         *cs++ = MI_NOOP;
1495         intel_ring_advance(req, cs);
1496
1497         return 0;
1498 }
1499
1500 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1501                           struct drm_i915_gem_request *req)
1502 {
1503         struct intel_engine_cs *engine = req->engine;
1504         u32 *cs;
1505
1506         /* NB: TLBs must be flushed and invalidated before a switch */
1507         cs = intel_ring_begin(req, 6);
1508         if (IS_ERR(cs))
1509                 return PTR_ERR(cs);
1510
1511         *cs++ = MI_LOAD_REGISTER_IMM(2);
1512         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1513         *cs++ = PP_DIR_DCLV_2G;
1514         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1515         *cs++ = get_pd_offset(ppgtt);
1516         *cs++ = MI_NOOP;
1517         intel_ring_advance(req, cs);
1518
1519         return 0;
1520 }
1521
1522 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1523                           struct drm_i915_gem_request *req)
1524 {
1525         struct intel_engine_cs *engine = req->engine;
1526         struct drm_i915_private *dev_priv = req->i915;
1527
1528         I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1529         I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1530         return 0;
1531 }
1532
1533 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1534 {
1535         struct intel_engine_cs *engine;
1536         enum intel_engine_id id;
1537
1538         for_each_engine(engine, dev_priv, id) {
1539                 u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1540                                  GEN8_GFX_PPGTT_48B : 0;
1541                 I915_WRITE(RING_MODE_GEN7(engine),
1542                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1543         }
1544 }
1545
1546 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1547 {
1548         struct intel_engine_cs *engine;
1549         u32 ecochk, ecobits;
1550         enum intel_engine_id id;
1551
1552         ecobits = I915_READ(GAC_ECO_BITS);
1553         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1554
1555         ecochk = I915_READ(GAM_ECOCHK);
1556         if (IS_HASWELL(dev_priv)) {
1557                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1558         } else {
1559                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1560                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1561         }
1562         I915_WRITE(GAM_ECOCHK, ecochk);
1563
1564         for_each_engine(engine, dev_priv, id) {
1565                 /* GFX_MODE is per-ring on gen7+ */
1566                 I915_WRITE(RING_MODE_GEN7(engine),
1567                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1568         }
1569 }
1570
1571 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1572 {
1573         u32 ecochk, gab_ctl, ecobits;
1574
1575         ecobits = I915_READ(GAC_ECO_BITS);
1576         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1577                    ECOBITS_PPGTT_CACHE64B);
1578
1579         gab_ctl = I915_READ(GAB_CTL);
1580         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1581
1582         ecochk = I915_READ(GAM_ECOCHK);
1583         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1584
1585         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1586 }
1587
1588 /* PPGTT support for Sandybdrige/Gen6 and later */
1589 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1590                                    u64 start, u64 length)
1591 {
1592         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1593         unsigned int first_entry = start >> PAGE_SHIFT;
1594         unsigned int pde = first_entry / GEN6_PTES;
1595         unsigned int pte = first_entry % GEN6_PTES;
1596         unsigned int num_entries = length >> PAGE_SHIFT;
1597         gen6_pte_t scratch_pte =
1598                 vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1599
1600         while (num_entries) {
1601                 struct i915_page_table *pt = ppgtt->pd.page_table[pde++];
1602                 unsigned int end = min(pte + num_entries, GEN6_PTES);
1603                 gen6_pte_t *vaddr;
1604
1605                 num_entries -= end - pte;
1606
1607                 /* Note that the hw doesn't support removing PDE on the fly
1608                  * (they are cached inside the context with no means to
1609                  * invalidate the cache), so we can only reset the PTE
1610                  * entries back to scratch.
1611                  */
1612
1613                 vaddr = kmap_atomic_px(pt);
1614                 do {
1615                         vaddr[pte++] = scratch_pte;
1616                 } while (pte < end);
1617                 kunmap_atomic(vaddr);
1618
1619                 pte = 0;
1620         }
1621 }
1622
1623 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1624                                       struct sg_table *pages,
1625                                       u64 start,
1626                                       enum i915_cache_level cache_level,
1627                                       u32 flags)
1628 {
1629         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1630         unsigned first_entry = start >> PAGE_SHIFT;
1631         unsigned act_pt = first_entry / GEN6_PTES;
1632         unsigned act_pte = first_entry % GEN6_PTES;
1633         const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1634         struct sgt_dma iter;
1635         gen6_pte_t *vaddr;
1636
1637         vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1638         iter.sg = pages->sgl;
1639         iter.dma = sg_dma_address(iter.sg);
1640         iter.max = iter.dma + iter.sg->length;
1641         do {
1642                 vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1643
1644                 iter.dma += PAGE_SIZE;
1645                 if (iter.dma == iter.max) {
1646                         iter.sg = __sg_next(iter.sg);
1647                         if (!iter.sg)
1648                                 break;
1649
1650                         iter.dma = sg_dma_address(iter.sg);
1651                         iter.max = iter.dma + iter.sg->length;
1652                 }
1653
1654                 if (++act_pte == GEN6_PTES) {
1655                         kunmap_atomic(vaddr);
1656                         vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1657                         act_pte = 0;
1658                 }
1659         } while (1);
1660         kunmap_atomic(vaddr);
1661 }
1662
1663 static int gen6_alloc_va_range(struct i915_address_space *vm,
1664                                u64 start, u64 length)
1665 {
1666         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1667         struct i915_page_table *pt;
1668         u64 from = start;
1669         unsigned int pde;
1670         bool flush = false;
1671
1672         gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1673                 if (pt == vm->scratch_pt) {
1674                         pt = alloc_pt(vm);
1675                         if (IS_ERR(pt))
1676                                 goto unwind_out;
1677
1678                         gen6_initialize_pt(vm, pt);
1679                         ppgtt->pd.page_table[pde] = pt;
1680                         gen6_write_pde(ppgtt, pde, pt);
1681                         flush = true;
1682                 }
1683         }
1684
1685         if (flush) {
1686                 mark_tlbs_dirty(ppgtt);
1687                 wmb();
1688         }
1689
1690         return 0;
1691
1692 unwind_out:
1693         gen6_ppgtt_clear_range(vm, from, start);
1694         return -ENOMEM;
1695 }
1696
1697 static int gen6_init_scratch(struct i915_address_space *vm)
1698 {
1699         int ret;
1700
1701         ret = setup_scratch_page(vm, I915_GFP_DMA);
1702         if (ret)
1703                 return ret;
1704
1705         vm->scratch_pt = alloc_pt(vm);
1706         if (IS_ERR(vm->scratch_pt)) {
1707                 cleanup_scratch_page(vm);
1708                 return PTR_ERR(vm->scratch_pt);
1709         }
1710
1711         gen6_initialize_pt(vm, vm->scratch_pt);
1712
1713         return 0;
1714 }
1715
1716 static void gen6_free_scratch(struct i915_address_space *vm)
1717 {
1718         free_pt(vm, vm->scratch_pt);
1719         cleanup_scratch_page(vm);
1720 }
1721
1722 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1723 {
1724         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1725         struct i915_page_directory *pd = &ppgtt->pd;
1726         struct i915_page_table *pt;
1727         u32 pde;
1728
1729         drm_mm_remove_node(&ppgtt->node);
1730
1731         gen6_for_all_pdes(pt, pd, pde)
1732                 if (pt != vm->scratch_pt)
1733                         free_pt(vm, pt);
1734
1735         gen6_free_scratch(vm);
1736 }
1737
1738 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1739 {
1740         struct i915_address_space *vm = &ppgtt->base;
1741         struct drm_i915_private *dev_priv = ppgtt->base.i915;
1742         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1743         int ret;
1744
1745         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1746          * allocator works in address space sizes, so it's multiplied by page
1747          * size. We allocate at the top of the GTT to avoid fragmentation.
1748          */
1749         BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
1750
1751         ret = gen6_init_scratch(vm);
1752         if (ret)
1753                 return ret;
1754
1755         ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node,
1756                                   GEN6_PD_SIZE, GEN6_PD_ALIGN,
1757                                   I915_COLOR_UNEVICTABLE,
1758                                   0, ggtt->base.total,
1759                                   PIN_HIGH);
1760         if (ret)
1761                 goto err_out;
1762
1763         if (ppgtt->node.start < ggtt->mappable_end)
1764                 DRM_DEBUG("Forced to use aperture for PDEs\n");
1765
1766         ppgtt->pd.base.ggtt_offset =
1767                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1768
1769         ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
1770                 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
1771
1772         return 0;
1773
1774 err_out:
1775         gen6_free_scratch(vm);
1776         return ret;
1777 }
1778
1779 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1780 {
1781         return gen6_ppgtt_allocate_page_directories(ppgtt);
1782 }
1783
1784 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1785                                   u64 start, u64 length)
1786 {
1787         struct i915_page_table *unused;
1788         u32 pde;
1789
1790         gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
1791                 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
1792 }
1793
1794 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1795 {
1796         struct drm_i915_private *dev_priv = ppgtt->base.i915;
1797         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1798         int ret;
1799
1800         ppgtt->base.pte_encode = ggtt->base.pte_encode;
1801         if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
1802                 ppgtt->switch_mm = gen6_mm_switch;
1803         else if (IS_HASWELL(dev_priv))
1804                 ppgtt->switch_mm = hsw_mm_switch;
1805         else if (IS_GEN7(dev_priv))
1806                 ppgtt->switch_mm = gen7_mm_switch;
1807         else
1808                 BUG();
1809
1810         ret = gen6_ppgtt_alloc(ppgtt);
1811         if (ret)
1812                 return ret;
1813
1814         ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
1815
1816         gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1817         gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
1818
1819         ret = gen6_alloc_va_range(&ppgtt->base, 0, ppgtt->base.total);
1820         if (ret) {
1821                 gen6_ppgtt_cleanup(&ppgtt->base);
1822                 return ret;
1823         }
1824
1825         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1826         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1827         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1828         ppgtt->base.bind_vma = ppgtt_bind_vma;
1829         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1830         ppgtt->debug_dump = gen6_dump_ppgtt;
1831
1832         DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1833                          ppgtt->node.size >> 20,
1834                          ppgtt->node.start / PAGE_SIZE);
1835
1836         DRM_DEBUG_DRIVER("Adding PPGTT at offset %x\n",
1837                          ppgtt->pd.base.ggtt_offset << 10);
1838
1839         return 0;
1840 }
1841
1842 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
1843                            struct drm_i915_private *dev_priv)
1844 {
1845         ppgtt->base.i915 = dev_priv;
1846         ppgtt->base.dma = &dev_priv->drm.pdev->dev;
1847
1848         if (INTEL_INFO(dev_priv)->gen < 8)
1849                 return gen6_ppgtt_init(ppgtt);
1850         else
1851                 return gen8_ppgtt_init(ppgtt);
1852 }
1853
1854 static void i915_address_space_init(struct i915_address_space *vm,
1855                                     struct drm_i915_private *dev_priv,
1856                                     const char *name)
1857 {
1858         i915_gem_timeline_init(dev_priv, &vm->timeline, name);
1859
1860         drm_mm_init(&vm->mm, 0, vm->total);
1861         vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
1862
1863         INIT_LIST_HEAD(&vm->active_list);
1864         INIT_LIST_HEAD(&vm->inactive_list);
1865         INIT_LIST_HEAD(&vm->unbound_list);
1866
1867         list_add_tail(&vm->global_link, &dev_priv->vm_list);
1868         pagevec_init(&vm->free_pages, false);
1869 }
1870
1871 static void i915_address_space_fini(struct i915_address_space *vm)
1872 {
1873         if (pagevec_count(&vm->free_pages))
1874                 vm_free_pages_release(vm);
1875
1876         i915_gem_timeline_fini(&vm->timeline);
1877         drm_mm_takedown(&vm->mm);
1878         list_del(&vm->global_link);
1879 }
1880
1881 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
1882 {
1883         /* This function is for gtt related workarounds. This function is
1884          * called on driver load and after a GPU reset, so you can place
1885          * workarounds here even if they get overwritten by GPU reset.
1886          */
1887         /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk */
1888         if (IS_BROADWELL(dev_priv))
1889                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
1890         else if (IS_CHERRYVIEW(dev_priv))
1891                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
1892         else if (IS_GEN9_BC(dev_priv))
1893                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
1894         else if (IS_GEN9_LP(dev_priv))
1895                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
1896 }
1897
1898 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
1899 {
1900         gtt_write_workarounds(dev_priv);
1901
1902         /* In the case of execlists, PPGTT is enabled by the context descriptor
1903          * and the PDPs are contained within the context itself.  We don't
1904          * need to do anything here. */
1905         if (i915.enable_execlists)
1906                 return 0;
1907
1908         if (!USES_PPGTT(dev_priv))
1909                 return 0;
1910
1911         if (IS_GEN6(dev_priv))
1912                 gen6_ppgtt_enable(dev_priv);
1913         else if (IS_GEN7(dev_priv))
1914                 gen7_ppgtt_enable(dev_priv);
1915         else if (INTEL_GEN(dev_priv) >= 8)
1916                 gen8_ppgtt_enable(dev_priv);
1917         else
1918                 MISSING_CASE(INTEL_GEN(dev_priv));
1919
1920         return 0;
1921 }
1922
1923 struct i915_hw_ppgtt *
1924 i915_ppgtt_create(struct drm_i915_private *dev_priv,
1925                   struct drm_i915_file_private *fpriv,
1926                   const char *name)
1927 {
1928         struct i915_hw_ppgtt *ppgtt;
1929         int ret;
1930
1931         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1932         if (!ppgtt)
1933                 return ERR_PTR(-ENOMEM);
1934
1935         ret = __hw_ppgtt_init(ppgtt, dev_priv);
1936         if (ret) {
1937                 kfree(ppgtt);
1938                 return ERR_PTR(ret);
1939         }
1940
1941         kref_init(&ppgtt->ref);
1942         i915_address_space_init(&ppgtt->base, dev_priv, name);
1943         ppgtt->base.file = fpriv;
1944
1945         trace_i915_ppgtt_create(&ppgtt->base);
1946
1947         return ppgtt;
1948 }
1949
1950 void i915_ppgtt_close(struct i915_address_space *vm)
1951 {
1952         struct list_head *phases[] = {
1953                 &vm->active_list,
1954                 &vm->inactive_list,
1955                 &vm->unbound_list,
1956                 NULL,
1957         }, **phase;
1958
1959         GEM_BUG_ON(vm->closed);
1960         vm->closed = true;
1961
1962         for (phase = phases; *phase; phase++) {
1963                 struct i915_vma *vma, *vn;
1964
1965                 list_for_each_entry_safe(vma, vn, *phase, vm_link)
1966                         if (!i915_vma_is_closed(vma))
1967                                 i915_vma_close(vma);
1968         }
1969 }
1970
1971 void i915_ppgtt_release(struct kref *kref)
1972 {
1973         struct i915_hw_ppgtt *ppgtt =
1974                 container_of(kref, struct i915_hw_ppgtt, ref);
1975
1976         trace_i915_ppgtt_release(&ppgtt->base);
1977
1978         /* vmas should already be unbound and destroyed */
1979         WARN_ON(!list_empty(&ppgtt->base.active_list));
1980         WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1981         WARN_ON(!list_empty(&ppgtt->base.unbound_list));
1982
1983         ppgtt->base.cleanup(&ppgtt->base);
1984         i915_address_space_fini(&ppgtt->base);
1985         kfree(ppgtt);
1986 }
1987
1988 /* Certain Gen5 chipsets require require idling the GPU before
1989  * unmapping anything from the GTT when VT-d is enabled.
1990  */
1991 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
1992 {
1993         /* Query intel_iommu to see if we need the workaround. Presumably that
1994          * was loaded first.
1995          */
1996         return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
1997 }
1998
1999 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2000 {
2001         struct intel_engine_cs *engine;
2002         enum intel_engine_id id;
2003
2004         if (INTEL_INFO(dev_priv)->gen < 6)
2005                 return;
2006
2007         for_each_engine(engine, dev_priv, id) {
2008                 u32 fault_reg;
2009                 fault_reg = I915_READ(RING_FAULT_REG(engine));
2010                 if (fault_reg & RING_FAULT_VALID) {
2011                         DRM_DEBUG_DRIVER("Unexpected fault\n"
2012                                          "\tAddr: 0x%08lx\n"
2013                                          "\tAddress space: %s\n"
2014                                          "\tSource ID: %d\n"
2015                                          "\tType: %d\n",
2016                                          fault_reg & PAGE_MASK,
2017                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2018                                          RING_FAULT_SRCID(fault_reg),
2019                                          RING_FAULT_FAULT_TYPE(fault_reg));
2020                         I915_WRITE(RING_FAULT_REG(engine),
2021                                    fault_reg & ~RING_FAULT_VALID);
2022                 }
2023         }
2024
2025         /* Engine specific init may not have been done till this point. */
2026         if (dev_priv->engine[RCS])
2027                 POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2028 }
2029
2030 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2031 {
2032         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2033
2034         /* Don't bother messing with faults pre GEN6 as we have little
2035          * documentation supporting that it's a good idea.
2036          */
2037         if (INTEL_GEN(dev_priv) < 6)
2038                 return;
2039
2040         i915_check_and_clear_faults(dev_priv);
2041
2042         ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
2043
2044         i915_ggtt_invalidate(dev_priv);
2045 }
2046
2047 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2048                                struct sg_table *pages)
2049 {
2050         do {
2051                 if (dma_map_sg(&obj->base.dev->pdev->dev,
2052                                pages->sgl, pages->nents,
2053                                PCI_DMA_BIDIRECTIONAL))
2054                         return 0;
2055
2056                 /* If the DMA remap fails, one cause can be that we have
2057                  * too many objects pinned in a small remapping table,
2058                  * such as swiotlb. Incrementally purge all other objects and
2059                  * try again - if there are no more pages to remove from
2060                  * the DMA remapper, i915_gem_shrink will return 0.
2061                  */
2062                 GEM_BUG_ON(obj->mm.pages == pages);
2063         } while (i915_gem_shrink(to_i915(obj->base.dev),
2064                                  obj->base.size >> PAGE_SHIFT,
2065                                  I915_SHRINK_BOUND |
2066                                  I915_SHRINK_UNBOUND |
2067                                  I915_SHRINK_ACTIVE));
2068
2069         return -ENOSPC;
2070 }
2071
2072 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2073 {
2074         writeq(pte, addr);
2075 }
2076
2077 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2078                                   dma_addr_t addr,
2079                                   u64 offset,
2080                                   enum i915_cache_level level,
2081                                   u32 unused)
2082 {
2083         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2084         gen8_pte_t __iomem *pte =
2085                 (gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2086
2087         gen8_set_pte(pte, gen8_pte_encode(addr, level));
2088
2089         ggtt->invalidate(vm->i915);
2090 }
2091
2092 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2093                                      struct sg_table *st,
2094                                      u64 start,
2095                                      enum i915_cache_level level,
2096                                      u32 unused)
2097 {
2098         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2099         struct sgt_iter sgt_iter;
2100         gen8_pte_t __iomem *gtt_entries;
2101         const gen8_pte_t pte_encode = gen8_pte_encode(0, level);
2102         dma_addr_t addr;
2103
2104         gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2105         gtt_entries += start >> PAGE_SHIFT;
2106         for_each_sgt_dma(addr, sgt_iter, st)
2107                 gen8_set_pte(gtt_entries++, pte_encode | addr);
2108
2109         wmb();
2110
2111         /* This next bit makes the above posting read even more important. We
2112          * want to flush the TLBs only after we're certain all the PTE updates
2113          * have finished.
2114          */
2115         ggtt->invalidate(vm->i915);
2116 }
2117
2118 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2119                                   dma_addr_t addr,
2120                                   u64 offset,
2121                                   enum i915_cache_level level,
2122                                   u32 flags)
2123 {
2124         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2125         gen6_pte_t __iomem *pte =
2126                 (gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2127
2128         iowrite32(vm->pte_encode(addr, level, flags), pte);
2129
2130         ggtt->invalidate(vm->i915);
2131 }
2132
2133 /*
2134  * Binds an object into the global gtt with the specified cache level. The object
2135  * will be accessible to the GPU via commands whose operands reference offsets
2136  * within the global GTT as well as accessible by the GPU through the GMADR
2137  * mapped BAR (dev_priv->mm.gtt->gtt).
2138  */
2139 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2140                                      struct sg_table *st,
2141                                      u64 start,
2142                                      enum i915_cache_level level,
2143                                      u32 flags)
2144 {
2145         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2146         gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2147         unsigned int i = start >> PAGE_SHIFT;
2148         struct sgt_iter iter;
2149         dma_addr_t addr;
2150         for_each_sgt_dma(addr, iter, st)
2151                 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2152         wmb();
2153
2154         /* This next bit makes the above posting read even more important. We
2155          * want to flush the TLBs only after we're certain all the PTE updates
2156          * have finished.
2157          */
2158         ggtt->invalidate(vm->i915);
2159 }
2160
2161 static void nop_clear_range(struct i915_address_space *vm,
2162                             u64 start, u64 length)
2163 {
2164 }
2165
2166 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2167                                   u64 start, u64 length)
2168 {
2169         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2170         unsigned first_entry = start >> PAGE_SHIFT;
2171         unsigned num_entries = length >> PAGE_SHIFT;
2172         const gen8_pte_t scratch_pte =
2173                 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
2174         gen8_pte_t __iomem *gtt_base =
2175                 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2176         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2177         int i;
2178
2179         if (WARN(num_entries > max_entries,
2180                  "First entry = %d; Num entries = %d (max=%d)\n",
2181                  first_entry, num_entries, max_entries))
2182                 num_entries = max_entries;
2183
2184         for (i = 0; i < num_entries; i++)
2185                 gen8_set_pte(&gtt_base[i], scratch_pte);
2186 }
2187
2188 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2189 {
2190         struct drm_i915_private *dev_priv = vm->i915;
2191
2192         /*
2193          * Make sure the internal GAM fifo has been cleared of all GTT
2194          * writes before exiting stop_machine(). This guarantees that
2195          * any aperture accesses waiting to start in another process
2196          * cannot back up behind the GTT writes causing a hang.
2197          * The register can be any arbitrary GAM register.
2198          */
2199         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2200 }
2201
2202 struct insert_page {
2203         struct i915_address_space *vm;
2204         dma_addr_t addr;
2205         u64 offset;
2206         enum i915_cache_level level;
2207 };
2208
2209 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2210 {
2211         struct insert_page *arg = _arg;
2212
2213         gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2214         bxt_vtd_ggtt_wa(arg->vm);
2215
2216         return 0;
2217 }
2218
2219 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2220                                           dma_addr_t addr,
2221                                           u64 offset,
2222                                           enum i915_cache_level level,
2223                                           u32 unused)
2224 {
2225         struct insert_page arg = { vm, addr, offset, level };
2226
2227         stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2228 }
2229
2230 struct insert_entries {
2231         struct i915_address_space *vm;
2232         struct sg_table *st;
2233         u64 start;
2234         enum i915_cache_level level;
2235 };
2236
2237 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2238 {
2239         struct insert_entries *arg = _arg;
2240
2241         gen8_ggtt_insert_entries(arg->vm, arg->st, arg->start, arg->level, 0);
2242         bxt_vtd_ggtt_wa(arg->vm);
2243
2244         return 0;
2245 }
2246
2247 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2248                                              struct sg_table *st,
2249                                              u64 start,
2250                                              enum i915_cache_level level,
2251                                              u32 unused)
2252 {
2253         struct insert_entries arg = { vm, st, start, level };
2254
2255         stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2256 }
2257
2258 struct clear_range {
2259         struct i915_address_space *vm;
2260         u64 start;
2261         u64 length;
2262 };
2263
2264 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2265 {
2266         struct clear_range *arg = _arg;
2267
2268         gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2269         bxt_vtd_ggtt_wa(arg->vm);
2270
2271         return 0;
2272 }
2273
2274 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2275                                           u64 start,
2276                                           u64 length)
2277 {
2278         struct clear_range arg = { vm, start, length };
2279
2280         stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2281 }
2282
2283 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2284                                   u64 start, u64 length)
2285 {
2286         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2287         unsigned first_entry = start >> PAGE_SHIFT;
2288         unsigned num_entries = length >> PAGE_SHIFT;
2289         gen6_pte_t scratch_pte, __iomem *gtt_base =
2290                 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2291         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2292         int i;
2293
2294         if (WARN(num_entries > max_entries,
2295                  "First entry = %d; Num entries = %d (max=%d)\n",
2296                  first_entry, num_entries, max_entries))
2297                 num_entries = max_entries;
2298
2299         scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2300                                      I915_CACHE_LLC, 0);
2301
2302         for (i = 0; i < num_entries; i++)
2303                 iowrite32(scratch_pte, &gtt_base[i]);
2304 }
2305
2306 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2307                                   dma_addr_t addr,
2308                                   u64 offset,
2309                                   enum i915_cache_level cache_level,
2310                                   u32 unused)
2311 {
2312         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2313                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2314
2315         intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2316 }
2317
2318 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2319                                      struct sg_table *pages,
2320                                      u64 start,
2321                                      enum i915_cache_level cache_level,
2322                                      u32 unused)
2323 {
2324         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2325                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2326
2327         intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2328 }
2329
2330 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2331                                   u64 start, u64 length)
2332 {
2333         intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2334 }
2335
2336 static int ggtt_bind_vma(struct i915_vma *vma,
2337                          enum i915_cache_level cache_level,
2338                          u32 flags)
2339 {
2340         struct drm_i915_private *i915 = vma->vm->i915;
2341         struct drm_i915_gem_object *obj = vma->obj;
2342         u32 pte_flags;
2343
2344         if (unlikely(!vma->pages)) {
2345                 int ret = i915_get_ggtt_vma_pages(vma);
2346                 if (ret)
2347                         return ret;
2348         }
2349
2350         /* Currently applicable only to VLV */
2351         pte_flags = 0;
2352         if (obj->gt_ro)
2353                 pte_flags |= PTE_READ_ONLY;
2354
2355         intel_runtime_pm_get(i915);
2356         vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
2357                                 cache_level, pte_flags);
2358         intel_runtime_pm_put(i915);
2359
2360         /*
2361          * Without aliasing PPGTT there's no difference between
2362          * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2363          * upgrade to both bound if we bind either to avoid double-binding.
2364          */
2365         vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2366
2367         return 0;
2368 }
2369
2370 static void ggtt_unbind_vma(struct i915_vma *vma)
2371 {
2372         struct drm_i915_private *i915 = vma->vm->i915;
2373
2374         intel_runtime_pm_get(i915);
2375         vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2376         intel_runtime_pm_put(i915);
2377 }
2378
2379 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2380                                  enum i915_cache_level cache_level,
2381                                  u32 flags)
2382 {
2383         struct drm_i915_private *i915 = vma->vm->i915;
2384         u32 pte_flags;
2385         int ret;
2386
2387         if (unlikely(!vma->pages)) {
2388                 ret = i915_get_ggtt_vma_pages(vma);
2389                 if (ret)
2390                         return ret;
2391         }
2392
2393         /* Currently applicable only to VLV */
2394         pte_flags = 0;
2395         if (vma->obj->gt_ro)
2396                 pte_flags |= PTE_READ_ONLY;
2397
2398         if (flags & I915_VMA_LOCAL_BIND) {
2399                 struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2400
2401                 if (!(vma->flags & I915_VMA_LOCAL_BIND) &&
2402                     appgtt->base.allocate_va_range) {
2403                         ret = appgtt->base.allocate_va_range(&appgtt->base,
2404                                                              vma->node.start,
2405                                                              vma->size);
2406                         if (ret)
2407                                 goto err_pages;
2408                 }
2409
2410                 appgtt->base.insert_entries(&appgtt->base,
2411                                             vma->pages, vma->node.start,
2412                                             cache_level, pte_flags);
2413         }
2414
2415         if (flags & I915_VMA_GLOBAL_BIND) {
2416                 intel_runtime_pm_get(i915);
2417                 vma->vm->insert_entries(vma->vm,
2418                                         vma->pages, vma->node.start,
2419                                         cache_level, pte_flags);
2420                 intel_runtime_pm_put(i915);
2421         }
2422
2423         return 0;
2424
2425 err_pages:
2426         if (!(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND))) {
2427                 if (vma->pages != vma->obj->mm.pages) {
2428                         GEM_BUG_ON(!vma->pages);
2429                         sg_free_table(vma->pages);
2430                         kfree(vma->pages);
2431                 }
2432                 vma->pages = NULL;
2433         }
2434         return ret;
2435 }
2436
2437 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2438 {
2439         struct drm_i915_private *i915 = vma->vm->i915;
2440
2441         if (vma->flags & I915_VMA_GLOBAL_BIND) {
2442                 intel_runtime_pm_get(i915);
2443                 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2444                 intel_runtime_pm_put(i915);
2445         }
2446
2447         if (vma->flags & I915_VMA_LOCAL_BIND) {
2448                 struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->base;
2449
2450                 vm->clear_range(vm, vma->node.start, vma->size);
2451         }
2452 }
2453
2454 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2455                                struct sg_table *pages)
2456 {
2457         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2458         struct device *kdev = &dev_priv->drm.pdev->dev;
2459         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2460
2461         if (unlikely(ggtt->do_idle_maps)) {
2462                 if (i915_gem_wait_for_idle(dev_priv, 0)) {
2463                         DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2464                         /* Wait a bit, in hopes it avoids the hang */
2465                         udelay(10);
2466                 }
2467         }
2468
2469         dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2470 }
2471
2472 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2473                                   unsigned long color,
2474                                   u64 *start,
2475                                   u64 *end)
2476 {
2477         if (node->allocated && node->color != color)
2478                 *start += I915_GTT_PAGE_SIZE;
2479
2480         /* Also leave a space between the unallocated reserved node after the
2481          * GTT and any objects within the GTT, i.e. we use the color adjustment
2482          * to insert a guard page to prevent prefetches crossing over the
2483          * GTT boundary.
2484          */
2485         node = list_next_entry(node, node_list);
2486         if (node->color != color)
2487                 *end -= I915_GTT_PAGE_SIZE;
2488 }
2489
2490 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2491 {
2492         struct i915_ggtt *ggtt = &i915->ggtt;
2493         struct i915_hw_ppgtt *ppgtt;
2494         int err;
2495
2496         ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]");
2497         if (IS_ERR(ppgtt))
2498                 return PTR_ERR(ppgtt);
2499
2500         if (WARN_ON(ppgtt->base.total < ggtt->base.total)) {
2501                 err = -ENODEV;
2502                 goto err_ppgtt;
2503         }
2504
2505         if (ppgtt->base.allocate_va_range) {
2506                 /* Note we only pre-allocate as far as the end of the global
2507                  * GTT. On 48b / 4-level page-tables, the difference is very,
2508                  * very significant! We have to preallocate as GVT/vgpu does
2509                  * not like the page directory disappearing.
2510                  */
2511                 err = ppgtt->base.allocate_va_range(&ppgtt->base,
2512                                                     0, ggtt->base.total);
2513                 if (err)
2514                         goto err_ppgtt;
2515         }
2516
2517         i915->mm.aliasing_ppgtt = ppgtt;
2518
2519         WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2520         ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2521
2522         WARN_ON(ggtt->base.unbind_vma != ggtt_unbind_vma);
2523         ggtt->base.unbind_vma = aliasing_gtt_unbind_vma;
2524
2525         return 0;
2526
2527 err_ppgtt:
2528         i915_ppgtt_put(ppgtt);
2529         return err;
2530 }
2531
2532 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2533 {
2534         struct i915_ggtt *ggtt = &i915->ggtt;
2535         struct i915_hw_ppgtt *ppgtt;
2536
2537         ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2538         if (!ppgtt)
2539                 return;
2540
2541         i915_ppgtt_put(ppgtt);
2542
2543         ggtt->base.bind_vma = ggtt_bind_vma;
2544         ggtt->base.unbind_vma = ggtt_unbind_vma;
2545 }
2546
2547 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2548 {
2549         /* Let GEM Manage all of the aperture.
2550          *
2551          * However, leave one page at the end still bound to the scratch page.
2552          * There are a number of places where the hardware apparently prefetches
2553          * past the end of the object, and we've seen multiple hangs with the
2554          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2555          * aperture.  One page should be enough to keep any prefetching inside
2556          * of the aperture.
2557          */
2558         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2559         unsigned long hole_start, hole_end;
2560         struct drm_mm_node *entry;
2561         int ret;
2562
2563         ret = intel_vgt_balloon(dev_priv);
2564         if (ret)
2565                 return ret;
2566
2567         /* Reserve a mappable slot for our lockless error capture */
2568         ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture,
2569                                           PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2570                                           0, ggtt->mappable_end,
2571                                           DRM_MM_INSERT_LOW);
2572         if (ret)
2573                 return ret;
2574
2575         /* Clear any non-preallocated blocks */
2576         drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2577                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2578                               hole_start, hole_end);
2579                 ggtt->base.clear_range(&ggtt->base, hole_start,
2580                                        hole_end - hole_start);
2581         }
2582
2583         /* And finally clear the reserved guard page */
2584         ggtt->base.clear_range(&ggtt->base,
2585                                ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2586
2587         if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2588                 ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2589                 if (ret)
2590                         goto err;
2591         }
2592
2593         return 0;
2594
2595 err:
2596         drm_mm_remove_node(&ggtt->error_capture);
2597         return ret;
2598 }
2599
2600 /**
2601  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2602  * @dev_priv: i915 device
2603  */
2604 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2605 {
2606         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2607         struct i915_vma *vma, *vn;
2608
2609         ggtt->base.closed = true;
2610
2611         mutex_lock(&dev_priv->drm.struct_mutex);
2612         WARN_ON(!list_empty(&ggtt->base.active_list));
2613         list_for_each_entry_safe(vma, vn, &ggtt->base.inactive_list, vm_link)
2614                 WARN_ON(i915_vma_unbind(vma));
2615         mutex_unlock(&dev_priv->drm.struct_mutex);
2616
2617         i915_gem_cleanup_stolen(&dev_priv->drm);
2618
2619         mutex_lock(&dev_priv->drm.struct_mutex);
2620         i915_gem_fini_aliasing_ppgtt(dev_priv);
2621
2622         if (drm_mm_node_allocated(&ggtt->error_capture))
2623                 drm_mm_remove_node(&ggtt->error_capture);
2624
2625         if (drm_mm_initialized(&ggtt->base.mm)) {
2626                 intel_vgt_deballoon(dev_priv);
2627                 i915_address_space_fini(&ggtt->base);
2628         }
2629
2630         ggtt->base.cleanup(&ggtt->base);
2631         mutex_unlock(&dev_priv->drm.struct_mutex);
2632
2633         arch_phys_wc_del(ggtt->mtrr);
2634         io_mapping_fini(&ggtt->mappable);
2635 }
2636
2637 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2638 {
2639         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2640         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2641         return snb_gmch_ctl << 20;
2642 }
2643
2644 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2645 {
2646         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2647         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2648         if (bdw_gmch_ctl)
2649                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2650
2651 #ifdef CONFIG_X86_32
2652         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2653         if (bdw_gmch_ctl > 4)
2654                 bdw_gmch_ctl = 4;
2655 #endif
2656
2657         return bdw_gmch_ctl << 20;
2658 }
2659
2660 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2661 {
2662         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2663         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2664
2665         if (gmch_ctrl)
2666                 return 1 << (20 + gmch_ctrl);
2667
2668         return 0;
2669 }
2670
2671 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2672 {
2673         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2674         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2675         return (size_t)snb_gmch_ctl << 25; /* 32 MB units */
2676 }
2677
2678 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2679 {
2680         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2681         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2682         return (size_t)bdw_gmch_ctl << 25; /* 32 MB units */
2683 }
2684
2685 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2686 {
2687         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2688         gmch_ctrl &= SNB_GMCH_GMS_MASK;
2689
2690         /*
2691          * 0x0  to 0x10: 32MB increments starting at 0MB
2692          * 0x11 to 0x16: 4MB increments starting at 8MB
2693          * 0x17 to 0x1d: 4MB increments start at 36MB
2694          */
2695         if (gmch_ctrl < 0x11)
2696                 return (size_t)gmch_ctrl << 25;
2697         else if (gmch_ctrl < 0x17)
2698                 return (size_t)(gmch_ctrl - 0x11 + 2) << 22;
2699         else
2700                 return (size_t)(gmch_ctrl - 0x17 + 9) << 22;
2701 }
2702
2703 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2704 {
2705         gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2706         gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2707
2708         if (gen9_gmch_ctl < 0xf0)
2709                 return (size_t)gen9_gmch_ctl << 25; /* 32 MB units */
2710         else
2711                 /* 4MB increments starting at 0xf0 for 4MB */
2712                 return (size_t)(gen9_gmch_ctl - 0xf0 + 1) << 22;
2713 }
2714
2715 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2716 {
2717         struct drm_i915_private *dev_priv = ggtt->base.i915;
2718         struct pci_dev *pdev = dev_priv->drm.pdev;
2719         phys_addr_t phys_addr;
2720         int ret;
2721
2722         /* For Modern GENs the PTEs and register space are split in the BAR */
2723         phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2724
2725         /*
2726          * On BXT writes larger than 64 bit to the GTT pagetable range will be
2727          * dropped. For WC mappings in general we have 64 byte burst writes
2728          * when the WC buffer is flushed, so we can't use it, but have to
2729          * resort to an uncached mapping. The WC issue is easily caught by the
2730          * readback check when writing GTT PTE entries.
2731          */
2732         if (IS_GEN9_LP(dev_priv))
2733                 ggtt->gsm = ioremap_nocache(phys_addr, size);
2734         else
2735                 ggtt->gsm = ioremap_wc(phys_addr, size);
2736         if (!ggtt->gsm) {
2737                 DRM_ERROR("Failed to map the ggtt page table\n");
2738                 return -ENOMEM;
2739         }
2740
2741         ret = setup_scratch_page(&ggtt->base, GFP_DMA32);
2742         if (ret) {
2743                 DRM_ERROR("Scratch setup failed\n");
2744                 /* iounmap will also get called at remove, but meh */
2745                 iounmap(ggtt->gsm);
2746                 return ret;
2747         }
2748
2749         return 0;
2750 }
2751
2752 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2753  * bits. When using advanced contexts each context stores its own PAT, but
2754  * writing this data shouldn't be harmful even in those cases. */
2755 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2756 {
2757         u64 pat;
2758
2759         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2760               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2761               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2762               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2763               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2764               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2765               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2766               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2767
2768         if (!USES_PPGTT(dev_priv))
2769                 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2770                  * so RTL will always use the value corresponding to
2771                  * pat_sel = 000".
2772                  * So let's disable cache for GGTT to avoid screen corruptions.
2773                  * MOCS still can be used though.
2774                  * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2775                  * before this patch, i.e. the same uncached + snooping access
2776                  * like on gen6/7 seems to be in effect.
2777                  * - So this just fixes blitter/render access. Again it looks
2778                  * like it's not just uncached access, but uncached + snooping.
2779                  * So we can still hold onto all our assumptions wrt cpu
2780                  * clflushing on LLC machines.
2781                  */
2782                 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2783
2784         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2785          * write would work. */
2786         I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2787         I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2788 }
2789
2790 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2791 {
2792         u64 pat;
2793
2794         /*
2795          * Map WB on BDW to snooped on CHV.
2796          *
2797          * Only the snoop bit has meaning for CHV, the rest is
2798          * ignored.
2799          *
2800          * The hardware will never snoop for certain types of accesses:
2801          * - CPU GTT (GMADR->GGTT->no snoop->memory)
2802          * - PPGTT page tables
2803          * - some other special cycles
2804          *
2805          * As with BDW, we also need to consider the following for GT accesses:
2806          * "For GGTT, there is NO pat_sel[2:0] from the entry,
2807          * so RTL will always use the value corresponding to
2808          * pat_sel = 000".
2809          * Which means we must set the snoop bit in PAT entry 0
2810          * in order to keep the global status page working.
2811          */
2812         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2813               GEN8_PPAT(1, 0) |
2814               GEN8_PPAT(2, 0) |
2815               GEN8_PPAT(3, 0) |
2816               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2817               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2818               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2819               GEN8_PPAT(7, CHV_PPAT_SNOOP);
2820
2821         I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2822         I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2823 }
2824
2825 static void gen6_gmch_remove(struct i915_address_space *vm)
2826 {
2827         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2828
2829         iounmap(ggtt->gsm);
2830         cleanup_scratch_page(vm);
2831 }
2832
2833 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
2834 {
2835         struct drm_i915_private *dev_priv = ggtt->base.i915;
2836         struct pci_dev *pdev = dev_priv->drm.pdev;
2837         unsigned int size;
2838         u16 snb_gmch_ctl;
2839         int err;
2840
2841         /* TODO: We're not aware of mappable constraints on gen8 yet */
2842         ggtt->mappable_base = pci_resource_start(pdev, 2);
2843         ggtt->mappable_end = pci_resource_len(pdev, 2);
2844
2845         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
2846         if (!err)
2847                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
2848         if (err)
2849                 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
2850
2851         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2852
2853         if (INTEL_GEN(dev_priv) >= 9) {
2854                 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
2855                 size = gen8_get_total_gtt_size(snb_gmch_ctl);
2856         } else if (IS_CHERRYVIEW(dev_priv)) {
2857                 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
2858                 size = chv_get_total_gtt_size(snb_gmch_ctl);
2859         } else {
2860                 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
2861                 size = gen8_get_total_gtt_size(snb_gmch_ctl);
2862         }
2863
2864         ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2865
2866         if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
2867                 chv_setup_private_ppat(dev_priv);
2868         else
2869                 bdw_setup_private_ppat(dev_priv);
2870
2871         ggtt->base.cleanup = gen6_gmch_remove;
2872         ggtt->base.bind_vma = ggtt_bind_vma;
2873         ggtt->base.unbind_vma = ggtt_unbind_vma;
2874         ggtt->base.insert_page = gen8_ggtt_insert_page;
2875         ggtt->base.clear_range = nop_clear_range;
2876         if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
2877                 ggtt->base.clear_range = gen8_ggtt_clear_range;
2878
2879         ggtt->base.insert_entries = gen8_ggtt_insert_entries;
2880
2881         /* Serialize GTT updates with aperture access on BXT if VT-d is on. */
2882         if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
2883                 ggtt->base.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
2884                 ggtt->base.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
2885                 if (ggtt->base.clear_range != nop_clear_range)
2886                         ggtt->base.clear_range = bxt_vtd_ggtt_clear_range__BKL;
2887         }
2888
2889         ggtt->invalidate = gen6_ggtt_invalidate;
2890
2891         return ggtt_probe_common(ggtt, size);
2892 }
2893
2894 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
2895 {
2896         struct drm_i915_private *dev_priv = ggtt->base.i915;
2897         struct pci_dev *pdev = dev_priv->drm.pdev;
2898         unsigned int size;
2899         u16 snb_gmch_ctl;
2900         int err;
2901
2902         ggtt->mappable_base = pci_resource_start(pdev, 2);
2903         ggtt->mappable_end = pci_resource_len(pdev, 2);
2904
2905         /* 64/512MB is the current min/max we actually know of, but this is just
2906          * a coarse sanity check.
2907          */
2908         if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
2909                 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
2910                 return -ENXIO;
2911         }
2912
2913         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
2914         if (!err)
2915                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
2916         if (err)
2917                 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
2918         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2919
2920         ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
2921
2922         size = gen6_get_total_gtt_size(snb_gmch_ctl);
2923         ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2924
2925         ggtt->base.clear_range = gen6_ggtt_clear_range;
2926         ggtt->base.insert_page = gen6_ggtt_insert_page;
2927         ggtt->base.insert_entries = gen6_ggtt_insert_entries;
2928         ggtt->base.bind_vma = ggtt_bind_vma;
2929         ggtt->base.unbind_vma = ggtt_unbind_vma;
2930         ggtt->base.cleanup = gen6_gmch_remove;
2931
2932         ggtt->invalidate = gen6_ggtt_invalidate;
2933
2934         if (HAS_EDRAM(dev_priv))
2935                 ggtt->base.pte_encode = iris_pte_encode;
2936         else if (IS_HASWELL(dev_priv))
2937                 ggtt->base.pte_encode = hsw_pte_encode;
2938         else if (IS_VALLEYVIEW(dev_priv))
2939                 ggtt->base.pte_encode = byt_pte_encode;
2940         else if (INTEL_GEN(dev_priv) >= 7)
2941                 ggtt->base.pte_encode = ivb_pte_encode;
2942         else
2943                 ggtt->base.pte_encode = snb_pte_encode;
2944
2945         return ggtt_probe_common(ggtt, size);
2946 }
2947
2948 static void i915_gmch_remove(struct i915_address_space *vm)
2949 {
2950         intel_gmch_remove();
2951 }
2952
2953 static int i915_gmch_probe(struct i915_ggtt *ggtt)
2954 {
2955         struct drm_i915_private *dev_priv = ggtt->base.i915;
2956         int ret;
2957
2958         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
2959         if (!ret) {
2960                 DRM_ERROR("failed to set up gmch\n");
2961                 return -EIO;
2962         }
2963
2964         intel_gtt_get(&ggtt->base.total,
2965                       &ggtt->stolen_size,
2966                       &ggtt->mappable_base,
2967                       &ggtt->mappable_end);
2968
2969         ggtt->do_idle_maps = needs_idle_maps(dev_priv);
2970         ggtt->base.insert_page = i915_ggtt_insert_page;
2971         ggtt->base.insert_entries = i915_ggtt_insert_entries;
2972         ggtt->base.clear_range = i915_ggtt_clear_range;
2973         ggtt->base.bind_vma = ggtt_bind_vma;
2974         ggtt->base.unbind_vma = ggtt_unbind_vma;
2975         ggtt->base.cleanup = i915_gmch_remove;
2976
2977         ggtt->invalidate = gmch_ggtt_invalidate;
2978
2979         if (unlikely(ggtt->do_idle_maps))
2980                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2981
2982         return 0;
2983 }
2984
2985 /**
2986  * i915_ggtt_probe_hw - Probe GGTT hardware location
2987  * @dev_priv: i915 device
2988  */
2989 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
2990 {
2991         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2992         int ret;
2993
2994         ggtt->base.i915 = dev_priv;
2995         ggtt->base.dma = &dev_priv->drm.pdev->dev;
2996
2997         if (INTEL_GEN(dev_priv) <= 5)
2998                 ret = i915_gmch_probe(ggtt);
2999         else if (INTEL_GEN(dev_priv) < 8)
3000                 ret = gen6_gmch_probe(ggtt);
3001         else
3002                 ret = gen8_gmch_probe(ggtt);
3003         if (ret)
3004                 return ret;
3005
3006         /* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3007          * This is easier than doing range restriction on the fly, as we
3008          * currently don't have any bits spare to pass in this upper
3009          * restriction!
3010          */
3011         if (HAS_GUC(dev_priv) && i915.enable_guc_loading) {
3012                 ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP);
3013                 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3014         }
3015
3016         if ((ggtt->base.total - 1) >> 32) {
3017                 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3018                           " of address space! Found %lldM!\n",
3019                           ggtt->base.total >> 20);
3020                 ggtt->base.total = 1ULL << 32;
3021                 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3022         }
3023
3024         if (ggtt->mappable_end > ggtt->base.total) {
3025                 DRM_ERROR("mappable aperture extends past end of GGTT,"
3026                           " aperture=%llx, total=%llx\n",
3027                           ggtt->mappable_end, ggtt->base.total);
3028                 ggtt->mappable_end = ggtt->base.total;
3029         }
3030
3031         /* GMADR is the PCI mmio aperture into the global GTT. */
3032         DRM_INFO("Memory usable by graphics device = %lluM\n",
3033                  ggtt->base.total >> 20);
3034         DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3035         DRM_DEBUG_DRIVER("GTT stolen size = %uM\n", ggtt->stolen_size >> 20);
3036         if (intel_vtd_active())
3037                 DRM_INFO("VT-d active for gfx access\n");
3038
3039         return 0;
3040 }
3041
3042 /**
3043  * i915_ggtt_init_hw - Initialize GGTT hardware
3044  * @dev_priv: i915 device
3045  */
3046 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3047 {
3048         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3049         int ret;
3050
3051         INIT_LIST_HEAD(&dev_priv->vm_list);
3052
3053         /* Note that we use page colouring to enforce a guard page at the
3054          * end of the address space. This is required as the CS may prefetch
3055          * beyond the end of the batch buffer, across the page boundary,
3056          * and beyond the end of the GTT if we do not provide a guard.
3057          */
3058         mutex_lock(&dev_priv->drm.struct_mutex);
3059         i915_address_space_init(&ggtt->base, dev_priv, "[global]");
3060         if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3061                 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3062         mutex_unlock(&dev_priv->drm.struct_mutex);
3063
3064         if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
3065                                 dev_priv->ggtt.mappable_base,
3066                                 dev_priv->ggtt.mappable_end)) {
3067                 ret = -EIO;
3068                 goto out_gtt_cleanup;
3069         }
3070
3071         ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
3072
3073         /*
3074          * Initialise stolen early so that we may reserve preallocated
3075          * objects for the BIOS to KMS transition.
3076          */
3077         ret = i915_gem_init_stolen(dev_priv);
3078         if (ret)
3079                 goto out_gtt_cleanup;
3080
3081         return 0;
3082
3083 out_gtt_cleanup:
3084         ggtt->base.cleanup(&ggtt->base);
3085         return ret;
3086 }
3087
3088 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3089 {
3090         if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3091                 return -EIO;
3092
3093         return 0;
3094 }
3095
3096 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3097 {
3098         i915->ggtt.invalidate = guc_ggtt_invalidate;
3099 }
3100
3101 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3102 {
3103         i915->ggtt.invalidate = gen6_ggtt_invalidate;
3104 }
3105
3106 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3107 {
3108         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3109         struct drm_i915_gem_object *obj, *on;
3110
3111         i915_check_and_clear_faults(dev_priv);
3112
3113         /* First fill our portion of the GTT with scratch pages */
3114         ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
3115
3116         ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3117
3118         /* clflush objects bound into the GGTT and rebind them. */
3119         list_for_each_entry_safe(obj, on,
3120                                  &dev_priv->mm.bound_list, global_link) {
3121                 bool ggtt_bound = false;
3122                 struct i915_vma *vma;
3123
3124                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3125                         if (vma->vm != &ggtt->base)
3126                                 continue;
3127
3128                         if (!i915_vma_unbind(vma))
3129                                 continue;
3130
3131                         WARN_ON(i915_vma_bind(vma, obj->cache_level,
3132                                               PIN_UPDATE));
3133                         ggtt_bound = true;
3134                 }
3135
3136                 if (ggtt_bound)
3137                         WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3138         }
3139
3140         ggtt->base.closed = false;
3141
3142         if (INTEL_GEN(dev_priv) >= 8) {
3143                 if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3144                         chv_setup_private_ppat(dev_priv);
3145                 else
3146                         bdw_setup_private_ppat(dev_priv);
3147
3148                 return;
3149         }
3150
3151         if (USES_PPGTT(dev_priv)) {
3152                 struct i915_address_space *vm;
3153
3154                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3155                         struct i915_hw_ppgtt *ppgtt;
3156
3157                         if (i915_is_ggtt(vm))
3158                                 ppgtt = dev_priv->mm.aliasing_ppgtt;
3159                         else
3160                                 ppgtt = i915_vm_to_ppgtt(vm);
3161
3162                         gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
3163                 }
3164         }
3165
3166         i915_ggtt_invalidate(dev_priv);
3167 }
3168
3169 static struct scatterlist *
3170 rotate_pages(const dma_addr_t *in, unsigned int offset,
3171              unsigned int width, unsigned int height,
3172              unsigned int stride,
3173              struct sg_table *st, struct scatterlist *sg)
3174 {
3175         unsigned int column, row;
3176         unsigned int src_idx;
3177
3178         for (column = 0; column < width; column++) {
3179                 src_idx = stride * (height - 1) + column;
3180                 for (row = 0; row < height; row++) {
3181                         st->nents++;
3182                         /* We don't need the pages, but need to initialize
3183                          * the entries so the sg list can be happily traversed.
3184                          * The only thing we need are DMA addresses.
3185                          */
3186                         sg_set_page(sg, NULL, PAGE_SIZE, 0);
3187                         sg_dma_address(sg) = in[offset + src_idx];
3188                         sg_dma_len(sg) = PAGE_SIZE;
3189                         sg = sg_next(sg);
3190                         src_idx -= stride;
3191                 }
3192         }
3193
3194         return sg;
3195 }
3196
3197 static noinline struct sg_table *
3198 intel_rotate_pages(struct intel_rotation_info *rot_info,
3199                    struct drm_i915_gem_object *obj)
3200 {
3201         const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3202         unsigned int size = intel_rotation_info_size(rot_info);
3203         struct sgt_iter sgt_iter;
3204         dma_addr_t dma_addr;
3205         unsigned long i;
3206         dma_addr_t *page_addr_list;
3207         struct sg_table *st;
3208         struct scatterlist *sg;
3209         int ret = -ENOMEM;
3210
3211         /* Allocate a temporary list of source pages for random access. */
3212         page_addr_list = kvmalloc_array(n_pages,
3213                                         sizeof(dma_addr_t),
3214                                         GFP_TEMPORARY);
3215         if (!page_addr_list)
3216                 return ERR_PTR(ret);
3217
3218         /* Allocate target SG list. */
3219         st = kmalloc(sizeof(*st), GFP_KERNEL);
3220         if (!st)
3221                 goto err_st_alloc;
3222
3223         ret = sg_alloc_table(st, size, GFP_KERNEL);
3224         if (ret)
3225                 goto err_sg_alloc;
3226
3227         /* Populate source page list from the object. */
3228         i = 0;
3229         for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3230                 page_addr_list[i++] = dma_addr;
3231
3232         GEM_BUG_ON(i != n_pages);
3233         st->nents = 0;
3234         sg = st->sgl;
3235
3236         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3237                 sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3238                                   rot_info->plane[i].width, rot_info->plane[i].height,
3239                                   rot_info->plane[i].stride, st, sg);
3240         }
3241
3242         DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
3243                       obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3244
3245         kvfree(page_addr_list);
3246
3247         return st;
3248
3249 err_sg_alloc:
3250         kfree(st);
3251 err_st_alloc:
3252         kvfree(page_addr_list);
3253
3254         DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3255                       obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3256
3257         return ERR_PTR(ret);
3258 }
3259
3260 static noinline struct sg_table *
3261 intel_partial_pages(const struct i915_ggtt_view *view,
3262                     struct drm_i915_gem_object *obj)
3263 {
3264         struct sg_table *st;
3265         struct scatterlist *sg, *iter;
3266         unsigned int count = view->partial.size;
3267         unsigned int offset;
3268         int ret = -ENOMEM;
3269
3270         st = kmalloc(sizeof(*st), GFP_KERNEL);
3271         if (!st)
3272                 goto err_st_alloc;
3273
3274         ret = sg_alloc_table(st, count, GFP_KERNEL);
3275         if (ret)
3276                 goto err_sg_alloc;
3277
3278         iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3279         GEM_BUG_ON(!iter);
3280
3281         sg = st->sgl;
3282         st->nents = 0;
3283         do {
3284                 unsigned int len;
3285
3286                 len = min(iter->length - (offset << PAGE_SHIFT),
3287                           count << PAGE_SHIFT);
3288                 sg_set_page(sg, NULL, len, 0);
3289                 sg_dma_address(sg) =
3290                         sg_dma_address(iter) + (offset << PAGE_SHIFT);
3291                 sg_dma_len(sg) = len;
3292
3293                 st->nents++;
3294                 count -= len >> PAGE_SHIFT;
3295                 if (count == 0) {
3296                         sg_mark_end(sg);
3297                         return st;
3298                 }
3299
3300                 sg = __sg_next(sg);
3301                 iter = __sg_next(iter);
3302                 offset = 0;
3303         } while (1);
3304
3305 err_sg_alloc:
3306         kfree(st);
3307 err_st_alloc:
3308         return ERR_PTR(ret);
3309 }
3310
3311 static int
3312 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3313 {
3314         int ret;
3315
3316         /* The vma->pages are only valid within the lifespan of the borrowed
3317          * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3318          * must be the vma->pages. A simple rule is that vma->pages must only
3319          * be accessed when the obj->mm.pages are pinned.
3320          */
3321         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3322
3323         switch (vma->ggtt_view.type) {
3324         case I915_GGTT_VIEW_NORMAL:
3325                 vma->pages = vma->obj->mm.pages;
3326                 return 0;
3327
3328         case I915_GGTT_VIEW_ROTATED:
3329                 vma->pages =
3330                         intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3331                 break;
3332
3333         case I915_GGTT_VIEW_PARTIAL:
3334                 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3335                 break;
3336
3337         default:
3338                 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3339                           vma->ggtt_view.type);
3340                 return -EINVAL;
3341         }
3342
3343         ret = 0;
3344         if (unlikely(IS_ERR(vma->pages))) {
3345                 ret = PTR_ERR(vma->pages);
3346                 vma->pages = NULL;
3347                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3348                           vma->ggtt_view.type, ret);
3349         }
3350         return ret;
3351 }
3352
3353 /**
3354  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3355  * @vm: the &struct i915_address_space
3356  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3357  * @size: how much space to allocate inside the GTT,
3358  *        must be #I915_GTT_PAGE_SIZE aligned
3359  * @offset: where to insert inside the GTT,
3360  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3361  *          (@offset + @size) must fit within the address space
3362  * @color: color to apply to node, if this node is not from a VMA,
3363  *         color must be #I915_COLOR_UNEVICTABLE
3364  * @flags: control search and eviction behaviour
3365  *
3366  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3367  * the address space (using @size and @color). If the @node does not fit, it
3368  * tries to evict any overlapping nodes from the GTT, including any
3369  * neighbouring nodes if the colors do not match (to ensure guard pages between
3370  * differing domains). See i915_gem_evict_for_node() for the gory details
3371  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3372  * evicting active overlapping objects, and any overlapping node that is pinned
3373  * or marked as unevictable will also result in failure.
3374  *
3375  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3376  * asked to wait for eviction and interrupted.
3377  */
3378 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3379                          struct drm_mm_node *node,
3380                          u64 size, u64 offset, unsigned long color,
3381                          unsigned int flags)
3382 {
3383         int err;
3384
3385         GEM_BUG_ON(!size);
3386         GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3387         GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3388         GEM_BUG_ON(range_overflows(offset, size, vm->total));
3389         GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3390         GEM_BUG_ON(drm_mm_node_allocated(node));
3391
3392         node->size = size;
3393         node->start = offset;
3394         node->color = color;
3395
3396         err = drm_mm_reserve_node(&vm->mm, node);
3397         if (err != -ENOSPC)
3398                 return err;
3399
3400         err = i915_gem_evict_for_node(vm, node, flags);
3401         if (err == 0)
3402                 err = drm_mm_reserve_node(&vm->mm, node);
3403
3404         return err;
3405 }
3406
3407 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3408 {
3409         u64 range, addr;
3410
3411         GEM_BUG_ON(range_overflows(start, len, end));
3412         GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3413
3414         range = round_down(end - len, align) - round_up(start, align);
3415         if (range) {
3416                 if (sizeof(unsigned long) == sizeof(u64)) {
3417                         addr = get_random_long();
3418                 } else {
3419                         addr = get_random_int();
3420                         if (range > U32_MAX) {
3421                                 addr <<= 32;
3422                                 addr |= get_random_int();
3423                         }
3424                 }
3425                 div64_u64_rem(addr, range, &addr);
3426                 start += addr;
3427         }
3428
3429         return round_up(start, align);
3430 }
3431
3432 /**
3433  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3434  * @vm: the &struct i915_address_space
3435  * @node: the &struct drm_mm_node (typically i915_vma.node)
3436  * @size: how much space to allocate inside the GTT,
3437  *        must be #I915_GTT_PAGE_SIZE aligned
3438  * @alignment: required alignment of starting offset, may be 0 but
3439  *             if specified, this must be a power-of-two and at least
3440  *             #I915_GTT_MIN_ALIGNMENT
3441  * @color: color to apply to node
3442  * @start: start of any range restriction inside GTT (0 for all),
3443  *         must be #I915_GTT_PAGE_SIZE aligned
3444  * @end: end of any range restriction inside GTT (U64_MAX for all),
3445  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3446  * @flags: control search and eviction behaviour
3447  *
3448  * i915_gem_gtt_insert() first searches for an available hole into which
3449  * is can insert the node. The hole address is aligned to @alignment and
3450  * its @size must then fit entirely within the [@start, @end] bounds. The
3451  * nodes on either side of the hole must match @color, or else a guard page
3452  * will be inserted between the two nodes (or the node evicted). If no
3453  * suitable hole is found, first a victim is randomly selected and tested
3454  * for eviction, otherwise then the LRU list of objects within the GTT
3455  * is scanned to find the first set of replacement nodes to create the hole.
3456  * Those old overlapping nodes are evicted from the GTT (and so must be
3457  * rebound before any future use). Any node that is currently pinned cannot
3458  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3459  * active and #PIN_NONBLOCK is specified, that node is also skipped when
3460  * searching for an eviction candidate. See i915_gem_evict_something() for
3461  * the gory details on the eviction algorithm.
3462  *
3463  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3464  * asked to wait for eviction and interrupted.
3465  */
3466 int i915_gem_gtt_insert(struct i915_address_space *vm,
3467                         struct drm_mm_node *node,
3468                         u64 size, u64 alignment, unsigned long color,
3469                         u64 start, u64 end, unsigned int flags)
3470 {
3471         enum drm_mm_insert_mode mode;
3472         u64 offset;
3473         int err;
3474
3475         lockdep_assert_held(&vm->i915->drm.struct_mutex);
3476         GEM_BUG_ON(!size);
3477         GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3478         GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3479         GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3480         GEM_BUG_ON(start >= end);
3481         GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3482         GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3483         GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3484         GEM_BUG_ON(drm_mm_node_allocated(node));
3485
3486         if (unlikely(range_overflows(start, size, end)))
3487                 return -ENOSPC;
3488
3489         if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3490                 return -ENOSPC;
3491
3492         mode = DRM_MM_INSERT_BEST;
3493         if (flags & PIN_HIGH)
3494                 mode = DRM_MM_INSERT_HIGH;
3495         if (flags & PIN_MAPPABLE)
3496                 mode = DRM_MM_INSERT_LOW;
3497
3498         /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3499          * so we know that we always have a minimum alignment of 4096.
3500          * The drm_mm range manager is optimised to return results
3501          * with zero alignment, so where possible use the optimal
3502          * path.
3503          */
3504         BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3505         if (alignment <= I915_GTT_MIN_ALIGNMENT)
3506                 alignment = 0;
3507
3508         err = drm_mm_insert_node_in_range(&vm->mm, node,
3509                                           size, alignment, color,
3510                                           start, end, mode);
3511         if (err != -ENOSPC)
3512                 return err;
3513
3514         /* No free space, pick a slot at random.
3515          *
3516          * There is a pathological case here using a GTT shared between
3517          * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
3518          *
3519          *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
3520          *         (64k objects)             (448k objects)
3521          *
3522          * Now imagine that the eviction LRU is ordered top-down (just because
3523          * pathology meets real life), and that we need to evict an object to
3524          * make room inside the aperture. The eviction scan then has to walk
3525          * the 448k list before it finds one within range. And now imagine that
3526          * it has to search for a new hole between every byte inside the memcpy,
3527          * for several simultaneous clients.
3528          *
3529          * On a full-ppgtt system, if we have run out of available space, there
3530          * will be lots and lots of objects in the eviction list! Again,
3531          * searching that LRU list may be slow if we are also applying any
3532          * range restrictions (e.g. restriction to low 4GiB) and so, for
3533          * simplicity and similarilty between different GTT, try the single
3534          * random replacement first.
3535          */
3536         offset = random_offset(start, end,
3537                                size, alignment ?: I915_GTT_MIN_ALIGNMENT);
3538         err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
3539         if (err != -ENOSPC)
3540                 return err;
3541
3542         /* Randomly selected placement is pinned, do a search */
3543         err = i915_gem_evict_something(vm, size, alignment, color,
3544                                        start, end, flags);
3545         if (err)
3546                 return err;
3547
3548         return drm_mm_insert_node_in_range(&vm->mm, node,
3549                                            size, alignment, color,
3550                                            start, end, DRM_MM_INSERT_EVICT);
3551 }
3552
3553 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3554 #include "selftests/mock_gtt.c"
3555 #include "selftests/i915_gem_gtt.c"
3556 #endif