]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem_gtt.c
ARM: imx6: add defconfig for Ka-Ro TX6 modules
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_trace.h"
31 #include "intel_drv.h"
32
33 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv);
34 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv);
35
36 bool intel_enable_ppgtt(struct drm_device *dev, bool full)
37 {
38         if (i915.enable_ppgtt == 0)
39                 return false;
40
41         if (i915.enable_ppgtt == 1 && full)
42                 return false;
43
44         return true;
45 }
46
47 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
48 {
49         if (enable_ppgtt == 0 || !HAS_ALIASING_PPGTT(dev))
50                 return 0;
51
52         if (enable_ppgtt == 1)
53                 return 1;
54
55         if (enable_ppgtt == 2 && HAS_PPGTT(dev))
56                 return 2;
57
58 #ifdef CONFIG_INTEL_IOMMU
59         /* Disable ppgtt on SNB if VT-d is on. */
60         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
61                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
62                 return 0;
63         }
64 #endif
65
66         return HAS_ALIASING_PPGTT(dev) ? 1 : 0;
67 }
68
69
70 static void ppgtt_bind_vma(struct i915_vma *vma,
71                            enum i915_cache_level cache_level,
72                            u32 flags);
73 static void ppgtt_unbind_vma(struct i915_vma *vma);
74 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt);
75
76 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
77                                              enum i915_cache_level level,
78                                              bool valid)
79 {
80         gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
81         pte |= addr;
82
83         switch (level) {
84         case I915_CACHE_NONE:
85                 pte |= PPAT_UNCACHED_INDEX;
86                 break;
87         case I915_CACHE_WT:
88                 pte |= PPAT_DISPLAY_ELLC_INDEX;
89                 break;
90         default:
91                 pte |= PPAT_CACHED_INDEX;
92                 break;
93         }
94
95         return pte;
96 }
97
98 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
99                                              dma_addr_t addr,
100                                              enum i915_cache_level level)
101 {
102         gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
103         pde |= addr;
104         if (level != I915_CACHE_NONE)
105                 pde |= PPAT_CACHED_PDE_INDEX;
106         else
107                 pde |= PPAT_UNCACHED_INDEX;
108         return pde;
109 }
110
111 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
112                                      enum i915_cache_level level,
113                                      bool valid)
114 {
115         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
116         pte |= GEN6_PTE_ADDR_ENCODE(addr);
117
118         switch (level) {
119         case I915_CACHE_L3_LLC:
120         case I915_CACHE_LLC:
121                 pte |= GEN6_PTE_CACHE_LLC;
122                 break;
123         case I915_CACHE_NONE:
124                 pte |= GEN6_PTE_UNCACHED;
125                 break;
126         default:
127                 WARN_ON(1);
128         }
129
130         return pte;
131 }
132
133 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
134                                      enum i915_cache_level level,
135                                      bool valid)
136 {
137         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
138         pte |= GEN6_PTE_ADDR_ENCODE(addr);
139
140         switch (level) {
141         case I915_CACHE_L3_LLC:
142                 pte |= GEN7_PTE_CACHE_L3_LLC;
143                 break;
144         case I915_CACHE_LLC:
145                 pte |= GEN6_PTE_CACHE_LLC;
146                 break;
147         case I915_CACHE_NONE:
148                 pte |= GEN6_PTE_UNCACHED;
149                 break;
150         default:
151                 WARN_ON(1);
152         }
153
154         return pte;
155 }
156
157 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
158                                      enum i915_cache_level level,
159                                      bool valid)
160 {
161         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
162         pte |= GEN6_PTE_ADDR_ENCODE(addr);
163
164         /* Mark the page as writeable.  Other platforms don't have a
165          * setting for read-only/writable, so this matches that behavior.
166          */
167         pte |= BYT_PTE_WRITEABLE;
168
169         if (level != I915_CACHE_NONE)
170                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
171
172         return pte;
173 }
174
175 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
176                                      enum i915_cache_level level,
177                                      bool valid)
178 {
179         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
180         pte |= HSW_PTE_ADDR_ENCODE(addr);
181
182         if (level != I915_CACHE_NONE)
183                 pte |= HSW_WB_LLC_AGE3;
184
185         return pte;
186 }
187
188 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
189                                       enum i915_cache_level level,
190                                       bool valid)
191 {
192         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
193         pte |= HSW_PTE_ADDR_ENCODE(addr);
194
195         switch (level) {
196         case I915_CACHE_NONE:
197                 break;
198         case I915_CACHE_WT:
199                 pte |= HSW_WT_ELLC_LLC_AGE3;
200                 break;
201         default:
202                 pte |= HSW_WB_ELLC_LLC_AGE3;
203                 break;
204         }
205
206         return pte;
207 }
208
209 /* Broadwell Page Directory Pointer Descriptors */
210 static int gen8_write_pdp(struct intel_engine_cs *ring, unsigned entry,
211                            uint64_t val, bool synchronous)
212 {
213         struct drm_i915_private *dev_priv = ring->dev->dev_private;
214         int ret;
215
216         BUG_ON(entry >= 4);
217
218         if (synchronous) {
219                 I915_WRITE(GEN8_RING_PDP_UDW(ring, entry), val >> 32);
220                 I915_WRITE(GEN8_RING_PDP_LDW(ring, entry), (u32)val);
221                 return 0;
222         }
223
224         ret = intel_ring_begin(ring, 6);
225         if (ret)
226                 return ret;
227
228         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
229         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
230         intel_ring_emit(ring, (u32)(val >> 32));
231         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
232         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
233         intel_ring_emit(ring, (u32)(val));
234         intel_ring_advance(ring);
235
236         return 0;
237 }
238
239 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
240                           struct intel_engine_cs *ring,
241                           bool synchronous)
242 {
243         int i, ret;
244
245         /* bit of a hack to find the actual last used pd */
246         int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
247
248         for (i = used_pd - 1; i >= 0; i--) {
249                 dma_addr_t addr = ppgtt->pd_dma_addr[i];
250                 ret = gen8_write_pdp(ring, i, addr, synchronous);
251                 if (ret)
252                         return ret;
253         }
254
255         return 0;
256 }
257
258 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
259                                    uint64_t start,
260                                    uint64_t length,
261                                    bool use_scratch)
262 {
263         struct i915_hw_ppgtt *ppgtt =
264                 container_of(vm, struct i915_hw_ppgtt, base);
265         gen8_gtt_pte_t *pt_vaddr, scratch_pte;
266         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
267         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
268         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
269         unsigned num_entries = length >> PAGE_SHIFT;
270         unsigned last_pte, i;
271
272         scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
273                                       I915_CACHE_LLC, use_scratch);
274
275         while (num_entries) {
276                 struct page *page_table = ppgtt->gen8_pt_pages[pdpe][pde];
277
278                 last_pte = pte + num_entries;
279                 if (last_pte > GEN8_PTES_PER_PAGE)
280                         last_pte = GEN8_PTES_PER_PAGE;
281
282                 pt_vaddr = kmap_atomic(page_table);
283
284                 for (i = pte; i < last_pte; i++) {
285                         pt_vaddr[i] = scratch_pte;
286                         num_entries--;
287                 }
288
289                 if (!HAS_LLC(ppgtt->base.dev))
290                         drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
291                 kunmap_atomic(pt_vaddr);
292
293                 pte = 0;
294                 if (++pde == GEN8_PDES_PER_PAGE) {
295                         pdpe++;
296                         pde = 0;
297                 }
298         }
299 }
300
301 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
302                                       struct sg_table *pages,
303                                       uint64_t start,
304                                       enum i915_cache_level cache_level)
305 {
306         struct i915_hw_ppgtt *ppgtt =
307                 container_of(vm, struct i915_hw_ppgtt, base);
308         gen8_gtt_pte_t *pt_vaddr;
309         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
310         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
311         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
312         struct sg_page_iter sg_iter;
313
314         pt_vaddr = NULL;
315
316         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
317                 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPS))
318                         break;
319
320                 if (pt_vaddr == NULL)
321                         pt_vaddr = kmap_atomic(ppgtt->gen8_pt_pages[pdpe][pde]);
322
323                 pt_vaddr[pte] =
324                         gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
325                                         cache_level, true);
326                 if (++pte == GEN8_PTES_PER_PAGE) {
327                         if (!HAS_LLC(ppgtt->base.dev))
328                                 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
329                         kunmap_atomic(pt_vaddr);
330                         pt_vaddr = NULL;
331                         if (++pde == GEN8_PDES_PER_PAGE) {
332                                 pdpe++;
333                                 pde = 0;
334                         }
335                         pte = 0;
336                 }
337         }
338         if (pt_vaddr) {
339                 if (!HAS_LLC(ppgtt->base.dev))
340                         drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
341                 kunmap_atomic(pt_vaddr);
342         }
343 }
344
345 static void gen8_free_page_tables(struct page **pt_pages)
346 {
347         int i;
348
349         if (pt_pages == NULL)
350                 return;
351
352         for (i = 0; i < GEN8_PDES_PER_PAGE; i++)
353                 if (pt_pages[i])
354                         __free_pages(pt_pages[i], 0);
355 }
356
357 static void gen8_ppgtt_free(const struct i915_hw_ppgtt *ppgtt)
358 {
359         int i;
360
361         for (i = 0; i < ppgtt->num_pd_pages; i++) {
362                 gen8_free_page_tables(ppgtt->gen8_pt_pages[i]);
363                 kfree(ppgtt->gen8_pt_pages[i]);
364                 kfree(ppgtt->gen8_pt_dma_addr[i]);
365         }
366
367         __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
368 }
369
370 static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
371 {
372         struct pci_dev *hwdev = ppgtt->base.dev->pdev;
373         int i, j;
374
375         for (i = 0; i < ppgtt->num_pd_pages; i++) {
376                 /* TODO: In the future we'll support sparse mappings, so this
377                  * will have to change. */
378                 if (!ppgtt->pd_dma_addr[i])
379                         continue;
380
381                 pci_unmap_page(hwdev, ppgtt->pd_dma_addr[i], PAGE_SIZE,
382                                PCI_DMA_BIDIRECTIONAL);
383
384                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
385                         dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
386                         if (addr)
387                                 pci_unmap_page(hwdev, addr, PAGE_SIZE,
388                                                PCI_DMA_BIDIRECTIONAL);
389                 }
390         }
391 }
392
393 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
394 {
395         struct i915_hw_ppgtt *ppgtt =
396                 container_of(vm, struct i915_hw_ppgtt, base);
397
398         list_del(&vm->global_link);
399         drm_mm_takedown(&vm->mm);
400
401         gen8_ppgtt_unmap_pages(ppgtt);
402         gen8_ppgtt_free(ppgtt);
403 }
404
405 static struct page **__gen8_alloc_page_tables(void)
406 {
407         struct page **pt_pages;
408         int i;
409
410         pt_pages = kcalloc(GEN8_PDES_PER_PAGE, sizeof(struct page *), GFP_KERNEL);
411         if (!pt_pages)
412                 return ERR_PTR(-ENOMEM);
413
414         for (i = 0; i < GEN8_PDES_PER_PAGE; i++) {
415                 pt_pages[i] = alloc_page(GFP_KERNEL);
416                 if (!pt_pages[i])
417                         goto bail;
418         }
419
420         return pt_pages;
421
422 bail:
423         gen8_free_page_tables(pt_pages);
424         kfree(pt_pages);
425         return ERR_PTR(-ENOMEM);
426 }
427
428 static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt,
429                                            const int max_pdp)
430 {
431         struct page **pt_pages[GEN8_LEGACY_PDPS];
432         int i, ret;
433
434         for (i = 0; i < max_pdp; i++) {
435                 pt_pages[i] = __gen8_alloc_page_tables();
436                 if (IS_ERR(pt_pages[i])) {
437                         ret = PTR_ERR(pt_pages[i]);
438                         goto unwind_out;
439                 }
440         }
441
442         /* NB: Avoid touching gen8_pt_pages until last to keep the allocation,
443          * "atomic" - for cleanup purposes.
444          */
445         for (i = 0; i < max_pdp; i++)
446                 ppgtt->gen8_pt_pages[i] = pt_pages[i];
447
448         return 0;
449
450 unwind_out:
451         while (i--) {
452                 gen8_free_page_tables(pt_pages[i]);
453                 kfree(pt_pages[i]);
454         }
455
456         return ret;
457 }
458
459 static int gen8_ppgtt_allocate_dma(struct i915_hw_ppgtt *ppgtt)
460 {
461         int i;
462
463         for (i = 0; i < ppgtt->num_pd_pages; i++) {
464                 ppgtt->gen8_pt_dma_addr[i] = kcalloc(GEN8_PDES_PER_PAGE,
465                                                      sizeof(dma_addr_t),
466                                                      GFP_KERNEL);
467                 if (!ppgtt->gen8_pt_dma_addr[i])
468                         return -ENOMEM;
469         }
470
471         return 0;
472 }
473
474 static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
475                                                 const int max_pdp)
476 {
477         ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
478         if (!ppgtt->pd_pages)
479                 return -ENOMEM;
480
481         ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
482         BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
483
484         return 0;
485 }
486
487 static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
488                             const int max_pdp)
489 {
490         int ret;
491
492         ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
493         if (ret)
494                 return ret;
495
496         ret = gen8_ppgtt_allocate_page_tables(ppgtt, max_pdp);
497         if (ret) {
498                 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
499                 return ret;
500         }
501
502         ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
503
504         ret = gen8_ppgtt_allocate_dma(ppgtt);
505         if (ret)
506                 gen8_ppgtt_free(ppgtt);
507
508         return ret;
509 }
510
511 static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
512                                              const int pd)
513 {
514         dma_addr_t pd_addr;
515         int ret;
516
517         pd_addr = pci_map_page(ppgtt->base.dev->pdev,
518                                &ppgtt->pd_pages[pd], 0,
519                                PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
520
521         ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
522         if (ret)
523                 return ret;
524
525         ppgtt->pd_dma_addr[pd] = pd_addr;
526
527         return 0;
528 }
529
530 static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
531                                         const int pd,
532                                         const int pt)
533 {
534         dma_addr_t pt_addr;
535         struct page *p;
536         int ret;
537
538         p = ppgtt->gen8_pt_pages[pd][pt];
539         pt_addr = pci_map_page(ppgtt->base.dev->pdev,
540                                p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
541         ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
542         if (ret)
543                 return ret;
544
545         ppgtt->gen8_pt_dma_addr[pd][pt] = pt_addr;
546
547         return 0;
548 }
549
550 /**
551  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
552  * with a net effect resembling a 2-level page table in normal x86 terms. Each
553  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
554  * space.
555  *
556  * FIXME: split allocation into smaller pieces. For now we only ever do this
557  * once, but with full PPGTT, the multiple contiguous allocations will be bad.
558  * TODO: Do something with the size parameter
559  */
560 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
561 {
562         const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
563         const int min_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
564         int i, j, ret;
565
566         if (size % (1<<30))
567                 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
568
569         /* 1. Do all our allocations for page directories and page tables. */
570         ret = gen8_ppgtt_alloc(ppgtt, max_pdp);
571         if (ret)
572                 return ret;
573
574         /*
575          * 2. Create DMA mappings for the page directories and page tables.
576          */
577         for (i = 0; i < max_pdp; i++) {
578                 ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
579                 if (ret)
580                         goto bail;
581
582                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
583                         ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
584                         if (ret)
585                                 goto bail;
586                 }
587         }
588
589         /*
590          * 3. Map all the page directory entires to point to the page tables
591          * we've allocated.
592          *
593          * For now, the PPGTT helper functions all require that the PDEs are
594          * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
595          * will never need to touch the PDEs again.
596          */
597         for (i = 0; i < max_pdp; i++) {
598                 gen8_ppgtt_pde_t *pd_vaddr;
599                 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
600                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
601                         dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
602                         pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
603                                                       I915_CACHE_LLC);
604                 }
605                 if (!HAS_LLC(ppgtt->base.dev))
606                         drm_clflush_virt_range(pd_vaddr, PAGE_SIZE);
607                 kunmap_atomic(pd_vaddr);
608         }
609
610         ppgtt->enable = gen8_ppgtt_enable;
611         ppgtt->switch_mm = gen8_mm_switch;
612         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
613         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
614         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
615         ppgtt->base.start = 0;
616         ppgtt->base.total = ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE * PAGE_SIZE;
617
618         ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
619
620         DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
621                          ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
622         DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
623                          ppgtt->num_pd_entries,
624                          (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30));
625         return 0;
626
627 bail:
628         gen8_ppgtt_unmap_pages(ppgtt);
629         gen8_ppgtt_free(ppgtt);
630         return ret;
631 }
632
633 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
634 {
635         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
636         struct i915_address_space *vm = &ppgtt->base;
637         gen6_gtt_pte_t __iomem *pd_addr;
638         gen6_gtt_pte_t scratch_pte;
639         uint32_t pd_entry;
640         int pte, pde;
641
642         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
643
644         pd_addr = (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm +
645                 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
646
647         seq_printf(m, "  VM %p (pd_offset %x-%x):\n", vm,
648                    ppgtt->pd_offset, ppgtt->pd_offset + ppgtt->num_pd_entries);
649         for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
650                 u32 expected;
651                 gen6_gtt_pte_t *pt_vaddr;
652                 dma_addr_t pt_addr = ppgtt->pt_dma_addr[pde];
653                 pd_entry = readl(pd_addr + pde);
654                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
655
656                 if (pd_entry != expected)
657                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
658                                    pde,
659                                    pd_entry,
660                                    expected);
661                 seq_printf(m, "\tPDE: %x\n", pd_entry);
662
663                 pt_vaddr = kmap_atomic(ppgtt->pt_pages[pde]);
664                 for (pte = 0; pte < I915_PPGTT_PT_ENTRIES; pte+=4) {
665                         unsigned long va =
666                                 (pde * PAGE_SIZE * I915_PPGTT_PT_ENTRIES) +
667                                 (pte * PAGE_SIZE);
668                         int i;
669                         bool found = false;
670                         for (i = 0; i < 4; i++)
671                                 if (pt_vaddr[pte + i] != scratch_pte)
672                                         found = true;
673                         if (!found)
674                                 continue;
675
676                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
677                         for (i = 0; i < 4; i++) {
678                                 if (pt_vaddr[pte + i] != scratch_pte)
679                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
680                                 else
681                                         seq_puts(m, "  SCRATCH ");
682                         }
683                         seq_puts(m, "\n");
684                 }
685                 kunmap_atomic(pt_vaddr);
686         }
687 }
688
689 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
690 {
691         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
692         gen6_gtt_pte_t __iomem *pd_addr;
693         uint32_t pd_entry;
694         int i;
695
696         WARN_ON(ppgtt->pd_offset & 0x3f);
697         pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
698                 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
699         for (i = 0; i < ppgtt->num_pd_entries; i++) {
700                 dma_addr_t pt_addr;
701
702                 pt_addr = ppgtt->pt_dma_addr[i];
703                 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
704                 pd_entry |= GEN6_PDE_VALID;
705
706                 writel(pd_entry, pd_addr + i);
707         }
708         readl(pd_addr);
709 }
710
711 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
712 {
713         BUG_ON(ppgtt->pd_offset & 0x3f);
714
715         return (ppgtt->pd_offset / 64) << 16;
716 }
717
718 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
719                          struct intel_engine_cs *ring,
720                          bool synchronous)
721 {
722         struct drm_device *dev = ppgtt->base.dev;
723         struct drm_i915_private *dev_priv = dev->dev_private;
724         int ret;
725
726         /* If we're in reset, we can assume the GPU is sufficiently idle to
727          * manually frob these bits. Ideally we could use the ring functions,
728          * except our error handling makes it quite difficult (can't use
729          * intel_ring_begin, ring->flush, or intel_ring_advance)
730          *
731          * FIXME: We should try not to special case reset
732          */
733         if (synchronous ||
734             i915_reset_in_progress(&dev_priv->gpu_error)) {
735                 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
736                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
737                 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
738                 POSTING_READ(RING_PP_DIR_BASE(ring));
739                 return 0;
740         }
741
742         /* NB: TLBs must be flushed and invalidated before a switch */
743         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
744         if (ret)
745                 return ret;
746
747         ret = intel_ring_begin(ring, 6);
748         if (ret)
749                 return ret;
750
751         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
752         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
753         intel_ring_emit(ring, PP_DIR_DCLV_2G);
754         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
755         intel_ring_emit(ring, get_pd_offset(ppgtt));
756         intel_ring_emit(ring, MI_NOOP);
757         intel_ring_advance(ring);
758
759         return 0;
760 }
761
762 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
763                           struct intel_engine_cs *ring,
764                           bool synchronous)
765 {
766         struct drm_device *dev = ppgtt->base.dev;
767         struct drm_i915_private *dev_priv = dev->dev_private;
768         int ret;
769
770         /* If we're in reset, we can assume the GPU is sufficiently idle to
771          * manually frob these bits. Ideally we could use the ring functions,
772          * except our error handling makes it quite difficult (can't use
773          * intel_ring_begin, ring->flush, or intel_ring_advance)
774          *
775          * FIXME: We should try not to special case reset
776          */
777         if (synchronous ||
778             i915_reset_in_progress(&dev_priv->gpu_error)) {
779                 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
780                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
781                 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
782                 POSTING_READ(RING_PP_DIR_BASE(ring));
783                 return 0;
784         }
785
786         /* NB: TLBs must be flushed and invalidated before a switch */
787         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
788         if (ret)
789                 return ret;
790
791         ret = intel_ring_begin(ring, 6);
792         if (ret)
793                 return ret;
794
795         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
796         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
797         intel_ring_emit(ring, PP_DIR_DCLV_2G);
798         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
799         intel_ring_emit(ring, get_pd_offset(ppgtt));
800         intel_ring_emit(ring, MI_NOOP);
801         intel_ring_advance(ring);
802
803         /* XXX: RCS is the only one to auto invalidate the TLBs? */
804         if (ring->id != RCS) {
805                 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
806                 if (ret)
807                         return ret;
808         }
809
810         return 0;
811 }
812
813 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
814                           struct intel_engine_cs *ring,
815                           bool synchronous)
816 {
817         struct drm_device *dev = ppgtt->base.dev;
818         struct drm_i915_private *dev_priv = dev->dev_private;
819
820         if (!synchronous)
821                 return 0;
822
823         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
824         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
825
826         POSTING_READ(RING_PP_DIR_DCLV(ring));
827
828         return 0;
829 }
830
831 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
832 {
833         struct drm_device *dev = ppgtt->base.dev;
834         struct drm_i915_private *dev_priv = dev->dev_private;
835         struct intel_engine_cs *ring;
836         int j, ret;
837
838         for_each_ring(ring, dev_priv, j) {
839                 I915_WRITE(RING_MODE_GEN7(ring),
840                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
841
842                 /* We promise to do a switch later with FULL PPGTT. If this is
843                  * aliasing, this is the one and only switch we'll do */
844                 if (USES_FULL_PPGTT(dev))
845                         continue;
846
847                 ret = ppgtt->switch_mm(ppgtt, ring, true);
848                 if (ret)
849                         goto err_out;
850         }
851
852         return 0;
853
854 err_out:
855         for_each_ring(ring, dev_priv, j)
856                 I915_WRITE(RING_MODE_GEN7(ring),
857                            _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
858         return ret;
859 }
860
861 static int gen7_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
862 {
863         struct drm_device *dev = ppgtt->base.dev;
864         struct drm_i915_private *dev_priv = dev->dev_private;
865         struct intel_engine_cs *ring;
866         uint32_t ecochk, ecobits;
867         int i;
868
869         ecobits = I915_READ(GAC_ECO_BITS);
870         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
871
872         ecochk = I915_READ(GAM_ECOCHK);
873         if (IS_HASWELL(dev)) {
874                 ecochk |= ECOCHK_PPGTT_WB_HSW;
875         } else {
876                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
877                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
878         }
879         I915_WRITE(GAM_ECOCHK, ecochk);
880
881         for_each_ring(ring, dev_priv, i) {
882                 int ret;
883                 /* GFX_MODE is per-ring on gen7+ */
884                 I915_WRITE(RING_MODE_GEN7(ring),
885                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
886
887                 /* We promise to do a switch later with FULL PPGTT. If this is
888                  * aliasing, this is the one and only switch we'll do */
889                 if (USES_FULL_PPGTT(dev))
890                         continue;
891
892                 ret = ppgtt->switch_mm(ppgtt, ring, true);
893                 if (ret)
894                         return ret;
895         }
896
897         return 0;
898 }
899
900 static int gen6_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
901 {
902         struct drm_device *dev = ppgtt->base.dev;
903         struct drm_i915_private *dev_priv = dev->dev_private;
904         struct intel_engine_cs *ring;
905         uint32_t ecochk, gab_ctl, ecobits;
906         int i;
907
908         ecobits = I915_READ(GAC_ECO_BITS);
909         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
910                    ECOBITS_PPGTT_CACHE64B);
911
912         gab_ctl = I915_READ(GAB_CTL);
913         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
914
915         ecochk = I915_READ(GAM_ECOCHK);
916         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
917
918         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
919
920         for_each_ring(ring, dev_priv, i) {
921                 int ret = ppgtt->switch_mm(ppgtt, ring, true);
922                 if (ret)
923                         return ret;
924         }
925
926         return 0;
927 }
928
929 /* PPGTT support for Sandybdrige/Gen6 and later */
930 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
931                                    uint64_t start,
932                                    uint64_t length,
933                                    bool use_scratch)
934 {
935         struct i915_hw_ppgtt *ppgtt =
936                 container_of(vm, struct i915_hw_ppgtt, base);
937         gen6_gtt_pte_t *pt_vaddr, scratch_pte;
938         unsigned first_entry = start >> PAGE_SHIFT;
939         unsigned num_entries = length >> PAGE_SHIFT;
940         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
941         unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
942         unsigned last_pte, i;
943
944         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
945
946         while (num_entries) {
947                 last_pte = first_pte + num_entries;
948                 if (last_pte > I915_PPGTT_PT_ENTRIES)
949                         last_pte = I915_PPGTT_PT_ENTRIES;
950
951                 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
952
953                 for (i = first_pte; i < last_pte; i++)
954                         pt_vaddr[i] = scratch_pte;
955
956                 kunmap_atomic(pt_vaddr);
957
958                 num_entries -= last_pte - first_pte;
959                 first_pte = 0;
960                 act_pt++;
961         }
962 }
963
964 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
965                                       struct sg_table *pages,
966                                       uint64_t start,
967                                       enum i915_cache_level cache_level)
968 {
969         struct i915_hw_ppgtt *ppgtt =
970                 container_of(vm, struct i915_hw_ppgtt, base);
971         gen6_gtt_pte_t *pt_vaddr;
972         unsigned first_entry = start >> PAGE_SHIFT;
973         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
974         unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
975         struct sg_page_iter sg_iter;
976
977         pt_vaddr = NULL;
978         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
979                 if (pt_vaddr == NULL)
980                         pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
981
982                 pt_vaddr[act_pte] =
983                         vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
984                                        cache_level, true);
985                 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
986                         kunmap_atomic(pt_vaddr);
987                         pt_vaddr = NULL;
988                         act_pt++;
989                         act_pte = 0;
990                 }
991         }
992         if (pt_vaddr)
993                 kunmap_atomic(pt_vaddr);
994 }
995
996 static void gen6_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
997 {
998         int i;
999
1000         if (ppgtt->pt_dma_addr) {
1001                 for (i = 0; i < ppgtt->num_pd_entries; i++)
1002                         pci_unmap_page(ppgtt->base.dev->pdev,
1003                                        ppgtt->pt_dma_addr[i],
1004                                        4096, PCI_DMA_BIDIRECTIONAL);
1005         }
1006 }
1007
1008 static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
1009 {
1010         int i;
1011
1012         kfree(ppgtt->pt_dma_addr);
1013         for (i = 0; i < ppgtt->num_pd_entries; i++)
1014                 __free_page(ppgtt->pt_pages[i]);
1015         kfree(ppgtt->pt_pages);
1016 }
1017
1018 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1019 {
1020         struct i915_hw_ppgtt *ppgtt =
1021                 container_of(vm, struct i915_hw_ppgtt, base);
1022
1023         list_del(&vm->global_link);
1024         drm_mm_takedown(&ppgtt->base.mm);
1025         drm_mm_remove_node(&ppgtt->node);
1026
1027         gen6_ppgtt_unmap_pages(ppgtt);
1028         gen6_ppgtt_free(ppgtt);
1029 }
1030
1031 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1032 {
1033         struct drm_device *dev = ppgtt->base.dev;
1034         struct drm_i915_private *dev_priv = dev->dev_private;
1035         bool retried = false;
1036         int ret;
1037
1038         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1039          * allocator works in address space sizes, so it's multiplied by page
1040          * size. We allocate at the top of the GTT to avoid fragmentation.
1041          */
1042         BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1043 alloc:
1044         ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1045                                                   &ppgtt->node, GEN6_PD_SIZE,
1046                                                   GEN6_PD_ALIGN, 0,
1047                                                   0, dev_priv->gtt.base.total,
1048                                                   DRM_MM_TOPDOWN);
1049         if (ret == -ENOSPC && !retried) {
1050                 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1051                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
1052                                                I915_CACHE_NONE,
1053                                                0, dev_priv->gtt.base.total,
1054                                                0);
1055                 if (ret)
1056                         return ret;
1057
1058                 retried = true;
1059                 goto alloc;
1060         }
1061
1062         if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1063                 DRM_DEBUG("Forced to use aperture for PDEs\n");
1064
1065         ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
1066         return ret;
1067 }
1068
1069 static int gen6_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt)
1070 {
1071         int i;
1072
1073         ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
1074                                   GFP_KERNEL);
1075
1076         if (!ppgtt->pt_pages)
1077                 return -ENOMEM;
1078
1079         for (i = 0; i < ppgtt->num_pd_entries; i++) {
1080                 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
1081                 if (!ppgtt->pt_pages[i]) {
1082                         gen6_ppgtt_free(ppgtt);
1083                         return -ENOMEM;
1084                 }
1085         }
1086
1087         return 0;
1088 }
1089
1090 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1091 {
1092         int ret;
1093
1094         ret = gen6_ppgtt_allocate_page_directories(ppgtt);
1095         if (ret)
1096                 return ret;
1097
1098         ret = gen6_ppgtt_allocate_page_tables(ppgtt);
1099         if (ret) {
1100                 drm_mm_remove_node(&ppgtt->node);
1101                 return ret;
1102         }
1103
1104         ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
1105                                      GFP_KERNEL);
1106         if (!ppgtt->pt_dma_addr) {
1107                 drm_mm_remove_node(&ppgtt->node);
1108                 gen6_ppgtt_free(ppgtt);
1109                 return -ENOMEM;
1110         }
1111
1112         return 0;
1113 }
1114
1115 static int gen6_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt)
1116 {
1117         struct drm_device *dev = ppgtt->base.dev;
1118         int i;
1119
1120         for (i = 0; i < ppgtt->num_pd_entries; i++) {
1121                 dma_addr_t pt_addr;
1122
1123                 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
1124                                        PCI_DMA_BIDIRECTIONAL);
1125
1126                 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
1127                         gen6_ppgtt_unmap_pages(ppgtt);
1128                         return -EIO;
1129                 }
1130
1131                 ppgtt->pt_dma_addr[i] = pt_addr;
1132         }
1133
1134         return 0;
1135 }
1136
1137 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1138 {
1139         struct drm_device *dev = ppgtt->base.dev;
1140         struct drm_i915_private *dev_priv = dev->dev_private;
1141         int ret;
1142
1143         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1144         if (IS_GEN6(dev)) {
1145                 ppgtt->enable = gen6_ppgtt_enable;
1146                 ppgtt->switch_mm = gen6_mm_switch;
1147         } else if (IS_HASWELL(dev)) {
1148                 ppgtt->enable = gen7_ppgtt_enable;
1149                 ppgtt->switch_mm = hsw_mm_switch;
1150         } else if (IS_GEN7(dev)) {
1151                 ppgtt->enable = gen7_ppgtt_enable;
1152                 ppgtt->switch_mm = gen7_mm_switch;
1153         } else
1154                 BUG();
1155
1156         ret = gen6_ppgtt_alloc(ppgtt);
1157         if (ret)
1158                 return ret;
1159
1160         ret = gen6_ppgtt_setup_page_tables(ppgtt);
1161         if (ret) {
1162                 gen6_ppgtt_free(ppgtt);
1163                 return ret;
1164         }
1165
1166         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1167         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1168         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1169         ppgtt->base.start = 0;
1170         ppgtt->base.total =  ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
1171         ppgtt->debug_dump = gen6_dump_ppgtt;
1172
1173         ppgtt->pd_offset =
1174                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
1175
1176         ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1177
1178         DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
1179                          ppgtt->node.size >> 20,
1180                          ppgtt->node.start / PAGE_SIZE);
1181
1182         return 0;
1183 }
1184
1185 int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1186 {
1187         struct drm_i915_private *dev_priv = dev->dev_private;
1188         int ret = 0;
1189
1190         ppgtt->base.dev = dev;
1191         ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1192
1193         if (INTEL_INFO(dev)->gen < 8)
1194                 ret = gen6_ppgtt_init(ppgtt);
1195         else if (IS_GEN8(dev))
1196                 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
1197         else
1198                 BUG();
1199
1200         if (!ret) {
1201                 struct drm_i915_private *dev_priv = dev->dev_private;
1202                 kref_init(&ppgtt->ref);
1203                 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1204                             ppgtt->base.total);
1205                 i915_init_vm(dev_priv, &ppgtt->base);
1206                 if (INTEL_INFO(dev)->gen < 8) {
1207                         gen6_write_pdes(ppgtt);
1208                         DRM_DEBUG("Adding PPGTT at offset %x\n",
1209                                   ppgtt->pd_offset << 10);
1210                 }
1211         }
1212
1213         return ret;
1214 }
1215
1216 static void
1217 ppgtt_bind_vma(struct i915_vma *vma,
1218                enum i915_cache_level cache_level,
1219                u32 flags)
1220 {
1221         vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
1222                                 cache_level);
1223 }
1224
1225 static void ppgtt_unbind_vma(struct i915_vma *vma)
1226 {
1227         vma->vm->clear_range(vma->vm,
1228                              vma->node.start,
1229                              vma->obj->base.size,
1230                              true);
1231 }
1232
1233 extern int intel_iommu_gfx_mapped;
1234 /* Certain Gen5 chipsets require require idling the GPU before
1235  * unmapping anything from the GTT when VT-d is enabled.
1236  */
1237 static inline bool needs_idle_maps(struct drm_device *dev)
1238 {
1239 #ifdef CONFIG_INTEL_IOMMU
1240         /* Query intel_iommu to see if we need the workaround. Presumably that
1241          * was loaded first.
1242          */
1243         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1244                 return true;
1245 #endif
1246         return false;
1247 }
1248
1249 static bool do_idling(struct drm_i915_private *dev_priv)
1250 {
1251         bool ret = dev_priv->mm.interruptible;
1252
1253         if (unlikely(dev_priv->gtt.do_idle_maps)) {
1254                 dev_priv->mm.interruptible = false;
1255                 if (i915_gpu_idle(dev_priv->dev)) {
1256                         DRM_ERROR("Couldn't idle GPU\n");
1257                         /* Wait a bit, in hopes it avoids the hang */
1258                         udelay(10);
1259                 }
1260         }
1261
1262         return ret;
1263 }
1264
1265 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1266 {
1267         if (unlikely(dev_priv->gtt.do_idle_maps))
1268                 dev_priv->mm.interruptible = interruptible;
1269 }
1270
1271 void i915_check_and_clear_faults(struct drm_device *dev)
1272 {
1273         struct drm_i915_private *dev_priv = dev->dev_private;
1274         struct intel_engine_cs *ring;
1275         int i;
1276
1277         if (INTEL_INFO(dev)->gen < 6)
1278                 return;
1279
1280         for_each_ring(ring, dev_priv, i) {
1281                 u32 fault_reg;
1282                 fault_reg = I915_READ(RING_FAULT_REG(ring));
1283                 if (fault_reg & RING_FAULT_VALID) {
1284                         DRM_DEBUG_DRIVER("Unexpected fault\n"
1285                                          "\tAddr: 0x%08lx\\n"
1286                                          "\tAddress space: %s\n"
1287                                          "\tSource ID: %d\n"
1288                                          "\tType: %d\n",
1289                                          fault_reg & PAGE_MASK,
1290                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1291                                          RING_FAULT_SRCID(fault_reg),
1292                                          RING_FAULT_FAULT_TYPE(fault_reg));
1293                         I915_WRITE(RING_FAULT_REG(ring),
1294                                    fault_reg & ~RING_FAULT_VALID);
1295                 }
1296         }
1297         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1298 }
1299
1300 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1301 {
1302         struct drm_i915_private *dev_priv = dev->dev_private;
1303
1304         /* Don't bother messing with faults pre GEN6 as we have little
1305          * documentation supporting that it's a good idea.
1306          */
1307         if (INTEL_INFO(dev)->gen < 6)
1308                 return;
1309
1310         i915_check_and_clear_faults(dev);
1311
1312         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1313                                        dev_priv->gtt.base.start,
1314                                        dev_priv->gtt.base.total,
1315                                        true);
1316 }
1317
1318 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1319 {
1320         struct drm_i915_private *dev_priv = dev->dev_private;
1321         struct drm_i915_gem_object *obj;
1322         struct i915_address_space *vm;
1323
1324         i915_check_and_clear_faults(dev);
1325
1326         /* First fill our portion of the GTT with scratch pages */
1327         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1328                                        dev_priv->gtt.base.start,
1329                                        dev_priv->gtt.base.total,
1330                                        true);
1331
1332         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1333                 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1334                                                            &dev_priv->gtt.base);
1335                 if (!vma)
1336                         continue;
1337
1338                 i915_gem_clflush_object(obj, obj->pin_display);
1339                 /* The bind_vma code tries to be smart about tracking mappings.
1340                  * Unfortunately above, we've just wiped out the mappings
1341                  * without telling our object about it. So we need to fake it.
1342                  */
1343                 obj->has_global_gtt_mapping = 0;
1344                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
1345         }
1346
1347
1348         if (INTEL_INFO(dev)->gen >= 8) {
1349                 if (IS_CHERRYVIEW(dev))
1350                         chv_setup_private_ppat(dev_priv);
1351                 else
1352                         bdw_setup_private_ppat(dev_priv);
1353
1354                 return;
1355         }
1356
1357         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1358                 /* TODO: Perhaps it shouldn't be gen6 specific */
1359                 if (i915_is_ggtt(vm)) {
1360                         if (dev_priv->mm.aliasing_ppgtt)
1361                                 gen6_write_pdes(dev_priv->mm.aliasing_ppgtt);
1362                         continue;
1363                 }
1364
1365                 gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base));
1366         }
1367
1368         i915_gem_chipset_flush(dev);
1369 }
1370
1371 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1372 {
1373         if (obj->has_dma_mapping)
1374                 return 0;
1375
1376         if (!dma_map_sg(&obj->base.dev->pdev->dev,
1377                         obj->pages->sgl, obj->pages->nents,
1378                         PCI_DMA_BIDIRECTIONAL))
1379                 return -ENOSPC;
1380
1381         return 0;
1382 }
1383
1384 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
1385 {
1386 #ifdef writeq
1387         writeq(pte, addr);
1388 #else
1389         iowrite32((u32)pte, addr);
1390         iowrite32(pte >> 32, addr + 4);
1391 #endif
1392 }
1393
1394 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1395                                      struct sg_table *st,
1396                                      uint64_t start,
1397                                      enum i915_cache_level level)
1398 {
1399         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1400         unsigned first_entry = start >> PAGE_SHIFT;
1401         gen8_gtt_pte_t __iomem *gtt_entries =
1402                 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1403         int i = 0;
1404         struct sg_page_iter sg_iter;
1405         dma_addr_t addr = 0;
1406
1407         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1408                 addr = sg_dma_address(sg_iter.sg) +
1409                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
1410                 gen8_set_pte(&gtt_entries[i],
1411                              gen8_pte_encode(addr, level, true));
1412                 i++;
1413         }
1414
1415         /*
1416          * XXX: This serves as a posting read to make sure that the PTE has
1417          * actually been updated. There is some concern that even though
1418          * registers and PTEs are within the same BAR that they are potentially
1419          * of NUMA access patterns. Therefore, even with the way we assume
1420          * hardware should work, we must keep this posting read for paranoia.
1421          */
1422         if (i != 0)
1423                 WARN_ON(readq(&gtt_entries[i-1])
1424                         != gen8_pte_encode(addr, level, true));
1425
1426         /* This next bit makes the above posting read even more important. We
1427          * want to flush the TLBs only after we're certain all the PTE updates
1428          * have finished.
1429          */
1430         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1431         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1432 }
1433
1434 /*
1435  * Binds an object into the global gtt with the specified cache level. The object
1436  * will be accessible to the GPU via commands whose operands reference offsets
1437  * within the global GTT as well as accessible by the GPU through the GMADR
1438  * mapped BAR (dev_priv->mm.gtt->gtt).
1439  */
1440 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1441                                      struct sg_table *st,
1442                                      uint64_t start,
1443                                      enum i915_cache_level level)
1444 {
1445         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1446         unsigned first_entry = start >> PAGE_SHIFT;
1447         gen6_gtt_pte_t __iomem *gtt_entries =
1448                 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1449         int i = 0;
1450         struct sg_page_iter sg_iter;
1451         dma_addr_t addr;
1452
1453         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1454                 addr = sg_page_iter_dma_address(&sg_iter);
1455                 iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
1456                 i++;
1457         }
1458
1459         /* XXX: This serves as a posting read to make sure that the PTE has
1460          * actually been updated. There is some concern that even though
1461          * registers and PTEs are within the same BAR that they are potentially
1462          * of NUMA access patterns. Therefore, even with the way we assume
1463          * hardware should work, we must keep this posting read for paranoia.
1464          */
1465         if (i != 0)
1466                 WARN_ON(readl(&gtt_entries[i-1]) !=
1467                         vm->pte_encode(addr, level, true));
1468
1469         /* This next bit makes the above posting read even more important. We
1470          * want to flush the TLBs only after we're certain all the PTE updates
1471          * have finished.
1472          */
1473         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1474         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1475 }
1476
1477 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1478                                   uint64_t start,
1479                                   uint64_t length,
1480                                   bool use_scratch)
1481 {
1482         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1483         unsigned first_entry = start >> PAGE_SHIFT;
1484         unsigned num_entries = length >> PAGE_SHIFT;
1485         gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
1486                 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1487         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1488         int i;
1489
1490         if (WARN(num_entries > max_entries,
1491                  "First entry = %d; Num entries = %d (max=%d)\n",
1492                  first_entry, num_entries, max_entries))
1493                 num_entries = max_entries;
1494
1495         scratch_pte = gen8_pte_encode(vm->scratch.addr,
1496                                       I915_CACHE_LLC,
1497                                       use_scratch);
1498         for (i = 0; i < num_entries; i++)
1499                 gen8_set_pte(&gtt_base[i], scratch_pte);
1500         readl(gtt_base);
1501 }
1502
1503 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1504                                   uint64_t start,
1505                                   uint64_t length,
1506                                   bool use_scratch)
1507 {
1508         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1509         unsigned first_entry = start >> PAGE_SHIFT;
1510         unsigned num_entries = length >> PAGE_SHIFT;
1511         gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1512                 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1513         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1514         int i;
1515
1516         if (WARN(num_entries > max_entries,
1517                  "First entry = %d; Num entries = %d (max=%d)\n",
1518                  first_entry, num_entries, max_entries))
1519                 num_entries = max_entries;
1520
1521         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
1522
1523         for (i = 0; i < num_entries; i++)
1524                 iowrite32(scratch_pte, &gtt_base[i]);
1525         readl(gtt_base);
1526 }
1527
1528
1529 static void i915_ggtt_bind_vma(struct i915_vma *vma,
1530                                enum i915_cache_level cache_level,
1531                                u32 unused)
1532 {
1533         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1534         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1535                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1536
1537         BUG_ON(!i915_is_ggtt(vma->vm));
1538         intel_gtt_insert_sg_entries(vma->obj->pages, entry, flags);
1539         vma->obj->has_global_gtt_mapping = 1;
1540 }
1541
1542 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1543                                   uint64_t start,
1544                                   uint64_t length,
1545                                   bool unused)
1546 {
1547         unsigned first_entry = start >> PAGE_SHIFT;
1548         unsigned num_entries = length >> PAGE_SHIFT;
1549         intel_gtt_clear_range(first_entry, num_entries);
1550 }
1551
1552 static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1553 {
1554         const unsigned int first = vma->node.start >> PAGE_SHIFT;
1555         const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
1556
1557         BUG_ON(!i915_is_ggtt(vma->vm));
1558         vma->obj->has_global_gtt_mapping = 0;
1559         intel_gtt_clear_range(first, size);
1560 }
1561
1562 static void ggtt_bind_vma(struct i915_vma *vma,
1563                           enum i915_cache_level cache_level,
1564                           u32 flags)
1565 {
1566         struct drm_device *dev = vma->vm->dev;
1567         struct drm_i915_private *dev_priv = dev->dev_private;
1568         struct drm_i915_gem_object *obj = vma->obj;
1569
1570         /* If there is no aliasing PPGTT, or the caller needs a global mapping,
1571          * or we have a global mapping already but the cacheability flags have
1572          * changed, set the global PTEs.
1573          *
1574          * If there is an aliasing PPGTT it is anecdotally faster, so use that
1575          * instead if none of the above hold true.
1576          *
1577          * NB: A global mapping should only be needed for special regions like
1578          * "gtt mappable", SNB errata, or if specified via special execbuf
1579          * flags. At all other times, the GPU will use the aliasing PPGTT.
1580          */
1581         if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1582                 if (!obj->has_global_gtt_mapping ||
1583                     (cache_level != obj->cache_level)) {
1584                         vma->vm->insert_entries(vma->vm, obj->pages,
1585                                                 vma->node.start,
1586                                                 cache_level);
1587                         obj->has_global_gtt_mapping = 1;
1588                 }
1589         }
1590
1591         if (dev_priv->mm.aliasing_ppgtt &&
1592             (!obj->has_aliasing_ppgtt_mapping ||
1593              (cache_level != obj->cache_level))) {
1594                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1595                 appgtt->base.insert_entries(&appgtt->base,
1596                                             vma->obj->pages,
1597                                             vma->node.start,
1598                                             cache_level);
1599                 vma->obj->has_aliasing_ppgtt_mapping = 1;
1600         }
1601 }
1602
1603 static void ggtt_unbind_vma(struct i915_vma *vma)
1604 {
1605         struct drm_device *dev = vma->vm->dev;
1606         struct drm_i915_private *dev_priv = dev->dev_private;
1607         struct drm_i915_gem_object *obj = vma->obj;
1608
1609         if (obj->has_global_gtt_mapping) {
1610                 vma->vm->clear_range(vma->vm,
1611                                      vma->node.start,
1612                                      obj->base.size,
1613                                      true);
1614                 obj->has_global_gtt_mapping = 0;
1615         }
1616
1617         if (obj->has_aliasing_ppgtt_mapping) {
1618                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1619                 appgtt->base.clear_range(&appgtt->base,
1620                                          vma->node.start,
1621                                          obj->base.size,
1622                                          true);
1623                 obj->has_aliasing_ppgtt_mapping = 0;
1624         }
1625 }
1626
1627 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1628 {
1629         struct drm_device *dev = obj->base.dev;
1630         struct drm_i915_private *dev_priv = dev->dev_private;
1631         bool interruptible;
1632
1633         interruptible = do_idling(dev_priv);
1634
1635         if (!obj->has_dma_mapping)
1636                 dma_unmap_sg(&dev->pdev->dev,
1637                              obj->pages->sgl, obj->pages->nents,
1638                              PCI_DMA_BIDIRECTIONAL);
1639
1640         undo_idling(dev_priv, interruptible);
1641 }
1642
1643 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1644                                   unsigned long color,
1645                                   unsigned long *start,
1646                                   unsigned long *end)
1647 {
1648         if (node->color != color)
1649                 *start += 4096;
1650
1651         if (!list_empty(&node->node_list)) {
1652                 node = list_entry(node->node_list.next,
1653                                   struct drm_mm_node,
1654                                   node_list);
1655                 if (node->allocated && node->color != color)
1656                         *end -= 4096;
1657         }
1658 }
1659
1660 void i915_gem_setup_global_gtt(struct drm_device *dev,
1661                                unsigned long start,
1662                                unsigned long mappable_end,
1663                                unsigned long end)
1664 {
1665         /* Let GEM Manage all of the aperture.
1666          *
1667          * However, leave one page at the end still bound to the scratch page.
1668          * There are a number of places where the hardware apparently prefetches
1669          * past the end of the object, and we've seen multiple hangs with the
1670          * GPU head pointer stuck in a batchbuffer bound at the last page of the
1671          * aperture.  One page should be enough to keep any prefetching inside
1672          * of the aperture.
1673          */
1674         struct drm_i915_private *dev_priv = dev->dev_private;
1675         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1676         struct drm_mm_node *entry;
1677         struct drm_i915_gem_object *obj;
1678         unsigned long hole_start, hole_end;
1679
1680         BUG_ON(mappable_end > end);
1681
1682         /* Subtract the guard page ... */
1683         drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1684         if (!HAS_LLC(dev))
1685                 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1686
1687         /* Mark any preallocated objects as occupied */
1688         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1689                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1690                 int ret;
1691                 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1692                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
1693
1694                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
1695                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1696                 if (ret)
1697                         DRM_DEBUG_KMS("Reservation failed\n");
1698                 obj->has_global_gtt_mapping = 1;
1699         }
1700
1701         dev_priv->gtt.base.start = start;
1702         dev_priv->gtt.base.total = end - start;
1703
1704         /* Clear any non-preallocated blocks */
1705         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1706                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1707                               hole_start, hole_end);
1708                 ggtt_vm->clear_range(ggtt_vm, hole_start,
1709                                      hole_end - hole_start, true);
1710         }
1711
1712         /* And finally clear the reserved guard page */
1713         ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
1714 }
1715
1716 void i915_gem_init_global_gtt(struct drm_device *dev)
1717 {
1718         struct drm_i915_private *dev_priv = dev->dev_private;
1719         unsigned long gtt_size, mappable_size;
1720
1721         gtt_size = dev_priv->gtt.base.total;
1722         mappable_size = dev_priv->gtt.mappable_end;
1723
1724         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1725 }
1726
1727 static int setup_scratch_page(struct drm_device *dev)
1728 {
1729         struct drm_i915_private *dev_priv = dev->dev_private;
1730         struct page *page;
1731         dma_addr_t dma_addr;
1732
1733         page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1734         if (page == NULL)
1735                 return -ENOMEM;
1736         get_page(page);
1737         set_pages_uc(page, 1);
1738
1739 #ifdef CONFIG_INTEL_IOMMU
1740         dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1741                                 PCI_DMA_BIDIRECTIONAL);
1742         if (pci_dma_mapping_error(dev->pdev, dma_addr))
1743                 return -EINVAL;
1744 #else
1745         dma_addr = page_to_phys(page);
1746 #endif
1747         dev_priv->gtt.base.scratch.page = page;
1748         dev_priv->gtt.base.scratch.addr = dma_addr;
1749
1750         return 0;
1751 }
1752
1753 static void teardown_scratch_page(struct drm_device *dev)
1754 {
1755         struct drm_i915_private *dev_priv = dev->dev_private;
1756         struct page *page = dev_priv->gtt.base.scratch.page;
1757
1758         set_pages_wb(page, 1);
1759         pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1760                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1761         put_page(page);
1762         __free_page(page);
1763 }
1764
1765 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1766 {
1767         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1768         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1769         return snb_gmch_ctl << 20;
1770 }
1771
1772 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1773 {
1774         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1775         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1776         if (bdw_gmch_ctl)
1777                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1778
1779 #ifdef CONFIG_X86_32
1780         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
1781         if (bdw_gmch_ctl > 4)
1782                 bdw_gmch_ctl = 4;
1783 #endif
1784
1785         return bdw_gmch_ctl << 20;
1786 }
1787
1788 static inline unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
1789 {
1790         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
1791         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
1792
1793         if (gmch_ctrl)
1794                 return 1 << (20 + gmch_ctrl);
1795
1796         return 0;
1797 }
1798
1799 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1800 {
1801         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1802         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1803         return snb_gmch_ctl << 25; /* 32 MB units */
1804 }
1805
1806 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1807 {
1808         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1809         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1810         return bdw_gmch_ctl << 25; /* 32 MB units */
1811 }
1812
1813 static size_t chv_get_stolen_size(u16 gmch_ctrl)
1814 {
1815         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
1816         gmch_ctrl &= SNB_GMCH_GMS_MASK;
1817
1818         /*
1819          * 0x0  to 0x10: 32MB increments starting at 0MB
1820          * 0x11 to 0x16: 4MB increments starting at 8MB
1821          * 0x17 to 0x1d: 4MB increments start at 36MB
1822          */
1823         if (gmch_ctrl < 0x11)
1824                 return gmch_ctrl << 25;
1825         else if (gmch_ctrl < 0x17)
1826                 return (gmch_ctrl - 0x11 + 2) << 22;
1827         else
1828                 return (gmch_ctrl - 0x17 + 9) << 22;
1829 }
1830
1831 static int ggtt_probe_common(struct drm_device *dev,
1832                              size_t gtt_size)
1833 {
1834         struct drm_i915_private *dev_priv = dev->dev_private;
1835         phys_addr_t gtt_phys_addr;
1836         int ret;
1837
1838         /* For Modern GENs the PTEs and register space are split in the BAR */
1839         gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
1840                 (pci_resource_len(dev->pdev, 0) / 2);
1841
1842         dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
1843         if (!dev_priv->gtt.gsm) {
1844                 DRM_ERROR("Failed to map the gtt page table\n");
1845                 return -ENOMEM;
1846         }
1847
1848         ret = setup_scratch_page(dev);
1849         if (ret) {
1850                 DRM_ERROR("Scratch setup failed\n");
1851                 /* iounmap will also get called at remove, but meh */
1852                 iounmap(dev_priv->gtt.gsm);
1853         }
1854
1855         return ret;
1856 }
1857
1858 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1859  * bits. When using advanced contexts each context stores its own PAT, but
1860  * writing this data shouldn't be harmful even in those cases. */
1861 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
1862 {
1863         uint64_t pat;
1864
1865         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
1866               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1867               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1868               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
1869               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1870               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1871               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1872               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1873
1874         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1875          * write would work. */
1876         I915_WRITE(GEN8_PRIVATE_PAT, pat);
1877         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1878 }
1879
1880 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
1881 {
1882         uint64_t pat;
1883
1884         /*
1885          * Map WB on BDW to snooped on CHV.
1886          *
1887          * Only the snoop bit has meaning for CHV, the rest is
1888          * ignored.
1889          *
1890          * Note that the harware enforces snooping for all page
1891          * table accesses. The snoop bit is actually ignored for
1892          * PDEs.
1893          */
1894         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
1895               GEN8_PPAT(1, 0) |
1896               GEN8_PPAT(2, 0) |
1897               GEN8_PPAT(3, 0) |
1898               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
1899               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
1900               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
1901               GEN8_PPAT(7, CHV_PPAT_SNOOP);
1902
1903         I915_WRITE(GEN8_PRIVATE_PAT, pat);
1904         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1905 }
1906
1907 static int gen8_gmch_probe(struct drm_device *dev,
1908                            size_t *gtt_total,
1909                            size_t *stolen,
1910                            phys_addr_t *mappable_base,
1911                            unsigned long *mappable_end)
1912 {
1913         struct drm_i915_private *dev_priv = dev->dev_private;
1914         unsigned int gtt_size;
1915         u16 snb_gmch_ctl;
1916         int ret;
1917
1918         /* TODO: We're not aware of mappable constraints on gen8 yet */
1919         *mappable_base = pci_resource_start(dev->pdev, 2);
1920         *mappable_end = pci_resource_len(dev->pdev, 2);
1921
1922         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1923                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1924
1925         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1926
1927         if (IS_CHERRYVIEW(dev)) {
1928                 *stolen = chv_get_stolen_size(snb_gmch_ctl);
1929                 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
1930         } else {
1931                 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
1932                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1933         }
1934
1935         *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1936
1937         if (IS_CHERRYVIEW(dev))
1938                 chv_setup_private_ppat(dev_priv);
1939         else
1940                 bdw_setup_private_ppat(dev_priv);
1941
1942         ret = ggtt_probe_common(dev, gtt_size);
1943
1944         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1945         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1946
1947         return ret;
1948 }
1949
1950 static int gen6_gmch_probe(struct drm_device *dev,
1951                            size_t *gtt_total,
1952                            size_t *stolen,
1953                            phys_addr_t *mappable_base,
1954                            unsigned long *mappable_end)
1955 {
1956         struct drm_i915_private *dev_priv = dev->dev_private;
1957         unsigned int gtt_size;
1958         u16 snb_gmch_ctl;
1959         int ret;
1960
1961         *mappable_base = pci_resource_start(dev->pdev, 2);
1962         *mappable_end = pci_resource_len(dev->pdev, 2);
1963
1964         /* 64/512MB is the current min/max we actually know of, but this is just
1965          * a coarse sanity check.
1966          */
1967         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1968                 DRM_ERROR("Unknown GMADR size (%lx)\n",
1969                           dev_priv->gtt.mappable_end);
1970                 return -ENXIO;
1971         }
1972
1973         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1974                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1975         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1976
1977         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
1978
1979         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1980         *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
1981
1982         ret = ggtt_probe_common(dev, gtt_size);
1983
1984         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
1985         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
1986
1987         return ret;
1988 }
1989
1990 static void gen6_gmch_remove(struct i915_address_space *vm)
1991 {
1992
1993         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
1994
1995         drm_mm_takedown(&vm->mm);
1996         iounmap(gtt->gsm);
1997         teardown_scratch_page(vm->dev);
1998 }
1999
2000 static int i915_gmch_probe(struct drm_device *dev,
2001                            size_t *gtt_total,
2002                            size_t *stolen,
2003                            phys_addr_t *mappable_base,
2004                            unsigned long *mappable_end)
2005 {
2006         struct drm_i915_private *dev_priv = dev->dev_private;
2007         int ret;
2008
2009         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2010         if (!ret) {
2011                 DRM_ERROR("failed to set up gmch\n");
2012                 return -EIO;
2013         }
2014
2015         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2016
2017         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2018         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2019
2020         if (unlikely(dev_priv->gtt.do_idle_maps))
2021                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2022
2023         return 0;
2024 }
2025
2026 static void i915_gmch_remove(struct i915_address_space *vm)
2027 {
2028         intel_gmch_remove();
2029 }
2030
2031 int i915_gem_gtt_init(struct drm_device *dev)
2032 {
2033         struct drm_i915_private *dev_priv = dev->dev_private;
2034         struct i915_gtt *gtt = &dev_priv->gtt;
2035         int ret;
2036
2037         if (INTEL_INFO(dev)->gen <= 5) {
2038                 gtt->gtt_probe = i915_gmch_probe;
2039                 gtt->base.cleanup = i915_gmch_remove;
2040         } else if (INTEL_INFO(dev)->gen < 8) {
2041                 gtt->gtt_probe = gen6_gmch_probe;
2042                 gtt->base.cleanup = gen6_gmch_remove;
2043                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2044                         gtt->base.pte_encode = iris_pte_encode;
2045                 else if (IS_HASWELL(dev))
2046                         gtt->base.pte_encode = hsw_pte_encode;
2047                 else if (IS_VALLEYVIEW(dev))
2048                         gtt->base.pte_encode = byt_pte_encode;
2049                 else if (INTEL_INFO(dev)->gen >= 7)
2050                         gtt->base.pte_encode = ivb_pte_encode;
2051                 else
2052                         gtt->base.pte_encode = snb_pte_encode;
2053         } else {
2054                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2055                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2056         }
2057
2058         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2059                              &gtt->mappable_base, &gtt->mappable_end);
2060         if (ret)
2061                 return ret;
2062
2063         gtt->base.dev = dev;
2064
2065         /* GMADR is the PCI mmio aperture into the global GTT. */
2066         DRM_INFO("Memory usable by graphics device = %zdM\n",
2067                  gtt->base.total >> 20);
2068         DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2069         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2070 #ifdef CONFIG_INTEL_IOMMU
2071         if (intel_iommu_gfx_mapped)
2072                 DRM_INFO("VT-d active for gfx access\n");
2073 #endif
2074         /*
2075          * i915.enable_ppgtt is read-only, so do an early pass to validate the
2076          * user's requested state against the hardware/driver capabilities.  We
2077          * do this now so that we can print out any log messages once rather
2078          * than every time we check intel_enable_ppgtt().
2079          */
2080         i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2081         DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2082
2083         return 0;
2084 }
2085
2086 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
2087                                               struct i915_address_space *vm)
2088 {
2089         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
2090         if (vma == NULL)
2091                 return ERR_PTR(-ENOMEM);
2092
2093         INIT_LIST_HEAD(&vma->vma_link);
2094         INIT_LIST_HEAD(&vma->mm_list);
2095         INIT_LIST_HEAD(&vma->exec_list);
2096         vma->vm = vm;
2097         vma->obj = obj;
2098
2099         switch (INTEL_INFO(vm->dev)->gen) {
2100         case 8:
2101         case 7:
2102         case 6:
2103                 if (i915_is_ggtt(vm)) {
2104                         vma->unbind_vma = ggtt_unbind_vma;
2105                         vma->bind_vma = ggtt_bind_vma;
2106                 } else {
2107                         vma->unbind_vma = ppgtt_unbind_vma;
2108                         vma->bind_vma = ppgtt_bind_vma;
2109                 }
2110                 break;
2111         case 5:
2112         case 4:
2113         case 3:
2114         case 2:
2115                 BUG_ON(!i915_is_ggtt(vm));
2116                 vma->unbind_vma = i915_ggtt_unbind_vma;
2117                 vma->bind_vma = i915_ggtt_bind_vma;
2118                 break;
2119         default:
2120                 BUG();
2121         }
2122
2123         /* Keep GGTT vmas first to make debug easier */
2124         if (i915_is_ggtt(vm))
2125                 list_add(&vma->vma_link, &obj->vma_list);
2126         else
2127                 list_add_tail(&vma->vma_link, &obj->vma_list);
2128
2129         return vma;
2130 }
2131
2132 struct i915_vma *
2133 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2134                                   struct i915_address_space *vm)
2135 {
2136         struct i915_vma *vma;
2137
2138         vma = i915_gem_obj_to_vma(obj, vm);
2139         if (!vma)
2140                 vma = __i915_gem_vma_create(obj, vm);
2141
2142         return vma;
2143 }