]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_ddi.c
regcache: flat: Introduce register strider order
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_ddi.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30
31 struct ddi_buf_trans {
32         u32 trans1;     /* balance leg enable, de-emph level */
33         u32 trans2;     /* vref sel, vswing */
34         u8 i_boost;     /* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
35 };
36
37 /* HDMI/DVI modes ignore everything but the last 2 items. So we share
38  * them for both DP and FDI transports, allowing those ports to
39  * automatically adapt to HDMI connections as well
40  */
41 static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
42         { 0x00FFFFFF, 0x0006000E, 0x0 },
43         { 0x00D75FFF, 0x0005000A, 0x0 },
44         { 0x00C30FFF, 0x00040006, 0x0 },
45         { 0x80AAAFFF, 0x000B0000, 0x0 },
46         { 0x00FFFFFF, 0x0005000A, 0x0 },
47         { 0x00D75FFF, 0x000C0004, 0x0 },
48         { 0x80C30FFF, 0x000B0000, 0x0 },
49         { 0x00FFFFFF, 0x00040006, 0x0 },
50         { 0x80D75FFF, 0x000B0000, 0x0 },
51 };
52
53 static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
54         { 0x00FFFFFF, 0x0007000E, 0x0 },
55         { 0x00D75FFF, 0x000F000A, 0x0 },
56         { 0x00C30FFF, 0x00060006, 0x0 },
57         { 0x00AAAFFF, 0x001E0000, 0x0 },
58         { 0x00FFFFFF, 0x000F000A, 0x0 },
59         { 0x00D75FFF, 0x00160004, 0x0 },
60         { 0x00C30FFF, 0x001E0000, 0x0 },
61         { 0x00FFFFFF, 0x00060006, 0x0 },
62         { 0x00D75FFF, 0x001E0000, 0x0 },
63 };
64
65 static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
66                                         /* Idx  NT mV d T mV d  db      */
67         { 0x00FFFFFF, 0x0006000E, 0x0 },/* 0:   400     400     0       */
68         { 0x00E79FFF, 0x000E000C, 0x0 },/* 1:   400     500     2       */
69         { 0x00D75FFF, 0x0005000A, 0x0 },/* 2:   400     600     3.5     */
70         { 0x00FFFFFF, 0x0005000A, 0x0 },/* 3:   600     600     0       */
71         { 0x00E79FFF, 0x001D0007, 0x0 },/* 4:   600     750     2       */
72         { 0x00D75FFF, 0x000C0004, 0x0 },/* 5:   600     900     3.5     */
73         { 0x00FFFFFF, 0x00040006, 0x0 },/* 6:   800     800     0       */
74         { 0x80E79FFF, 0x00030002, 0x0 },/* 7:   800     1000    2       */
75         { 0x00FFFFFF, 0x00140005, 0x0 },/* 8:   850     850     0       */
76         { 0x00FFFFFF, 0x000C0004, 0x0 },/* 9:   900     900     0       */
77         { 0x00FFFFFF, 0x001C0003, 0x0 },/* 10:  950     950     0       */
78         { 0x80FFFFFF, 0x00030002, 0x0 },/* 11:  1000    1000    0       */
79 };
80
81 static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
82         { 0x00FFFFFF, 0x00000012, 0x0 },
83         { 0x00EBAFFF, 0x00020011, 0x0 },
84         { 0x00C71FFF, 0x0006000F, 0x0 },
85         { 0x00AAAFFF, 0x000E000A, 0x0 },
86         { 0x00FFFFFF, 0x00020011, 0x0 },
87         { 0x00DB6FFF, 0x0005000F, 0x0 },
88         { 0x00BEEFFF, 0x000A000C, 0x0 },
89         { 0x00FFFFFF, 0x0005000F, 0x0 },
90         { 0x00DB6FFF, 0x000A000C, 0x0 },
91 };
92
93 static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
94         { 0x00FFFFFF, 0x0007000E, 0x0 },
95         { 0x00D75FFF, 0x000E000A, 0x0 },
96         { 0x00BEFFFF, 0x00140006, 0x0 },
97         { 0x80B2CFFF, 0x001B0002, 0x0 },
98         { 0x00FFFFFF, 0x000E000A, 0x0 },
99         { 0x00DB6FFF, 0x00160005, 0x0 },
100         { 0x80C71FFF, 0x001A0002, 0x0 },
101         { 0x00F7DFFF, 0x00180004, 0x0 },
102         { 0x80D75FFF, 0x001B0002, 0x0 },
103 };
104
105 static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
106         { 0x00FFFFFF, 0x0001000E, 0x0 },
107         { 0x00D75FFF, 0x0004000A, 0x0 },
108         { 0x00C30FFF, 0x00070006, 0x0 },
109         { 0x00AAAFFF, 0x000C0000, 0x0 },
110         { 0x00FFFFFF, 0x0004000A, 0x0 },
111         { 0x00D75FFF, 0x00090004, 0x0 },
112         { 0x00C30FFF, 0x000C0000, 0x0 },
113         { 0x00FFFFFF, 0x00070006, 0x0 },
114         { 0x00D75FFF, 0x000C0000, 0x0 },
115 };
116
117 static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
118                                         /* Idx  NT mV d T mV df db      */
119         { 0x00FFFFFF, 0x0007000E, 0x0 },/* 0:   400     400     0       */
120         { 0x00D75FFF, 0x000E000A, 0x0 },/* 1:   400     600     3.5     */
121         { 0x00BEFFFF, 0x00140006, 0x0 },/* 2:   400     800     6       */
122         { 0x00FFFFFF, 0x0009000D, 0x0 },/* 3:   450     450     0       */
123         { 0x00FFFFFF, 0x000E000A, 0x0 },/* 4:   600     600     0       */
124         { 0x00D7FFFF, 0x00140006, 0x0 },/* 5:   600     800     2.5     */
125         { 0x80CB2FFF, 0x001B0002, 0x0 },/* 6:   600     1000    4.5     */
126         { 0x00FFFFFF, 0x00140006, 0x0 },/* 7:   800     800     0       */
127         { 0x80E79FFF, 0x001B0002, 0x0 },/* 8:   800     1000    2       */
128         { 0x80FFFFFF, 0x001B0002, 0x0 },/* 9:   1000    1000    0       */
129 };
130
131 /* Skylake H and S */
132 static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
133         { 0x00002016, 0x000000A0, 0x0 },
134         { 0x00005012, 0x0000009B, 0x0 },
135         { 0x00007011, 0x00000088, 0x0 },
136         { 0x80009010, 0x000000C0, 0x1 },        /* Uses I_boost level 0x1 */
137         { 0x00002016, 0x0000009B, 0x0 },
138         { 0x00005012, 0x00000088, 0x0 },
139         { 0x80007011, 0x000000C0, 0x1 },        /* Uses I_boost level 0x1 */
140         { 0x00002016, 0x000000DF, 0x0 },
141         { 0x80005012, 0x000000C0, 0x1 },        /* Uses I_boost level 0x1 */
142 };
143
144 /* Skylake U */
145 static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
146         { 0x0000201B, 0x000000A2, 0x0 },
147         { 0x00005012, 0x00000088, 0x0 },
148         { 0x00007011, 0x00000087, 0x0 },
149         { 0x80009010, 0x000000C0, 0x1 },        /* Uses I_boost level 0x1 */
150         { 0x0000201B, 0x0000009D, 0x0 },
151         { 0x80005012, 0x000000C0, 0x1 },        /* Uses I_boost level 0x1 */
152         { 0x80007011, 0x000000C0, 0x1 },        /* Uses I_boost level 0x1 */
153         { 0x00002016, 0x00000088, 0x0 },
154         { 0x80005012, 0x000000C0, 0x1 },        /* Uses I_boost level 0x1 */
155 };
156
157 /* Skylake Y */
158 static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = {
159         { 0x00000018, 0x000000A2, 0x0 },
160         { 0x00005012, 0x00000088, 0x0 },
161         { 0x00007011, 0x00000087, 0x0 },
162         { 0x80009010, 0x000000C0, 0x3 },        /* Uses I_boost level 0x3 */
163         { 0x00000018, 0x0000009D, 0x0 },
164         { 0x80005012, 0x000000C0, 0x3 },        /* Uses I_boost level 0x3 */
165         { 0x80007011, 0x000000C0, 0x3 },        /* Uses I_boost level 0x3 */
166         { 0x00000018, 0x00000088, 0x0 },
167         { 0x80005012, 0x000000C0, 0x3 },        /* Uses I_boost level 0x3 */
168 };
169
170 /*
171  * Skylake H and S
172  * eDP 1.4 low vswing translation parameters
173  */
174 static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
175         { 0x00000018, 0x000000A8, 0x0 },
176         { 0x00004013, 0x000000A9, 0x0 },
177         { 0x00007011, 0x000000A2, 0x0 },
178         { 0x00009010, 0x0000009C, 0x0 },
179         { 0x00000018, 0x000000A9, 0x0 },
180         { 0x00006013, 0x000000A2, 0x0 },
181         { 0x00007011, 0x000000A6, 0x0 },
182         { 0x00000018, 0x000000AB, 0x0 },
183         { 0x00007013, 0x0000009F, 0x0 },
184         { 0x00000018, 0x000000DF, 0x0 },
185 };
186
187 /*
188  * Skylake U
189  * eDP 1.4 low vswing translation parameters
190  */
191 static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
192         { 0x00000018, 0x000000A8, 0x0 },
193         { 0x00004013, 0x000000A9, 0x0 },
194         { 0x00007011, 0x000000A2, 0x0 },
195         { 0x00009010, 0x0000009C, 0x0 },
196         { 0x00000018, 0x000000A9, 0x0 },
197         { 0x00006013, 0x000000A2, 0x0 },
198         { 0x00007011, 0x000000A6, 0x0 },
199         { 0x00002016, 0x000000AB, 0x0 },
200         { 0x00005013, 0x0000009F, 0x0 },
201         { 0x00000018, 0x000000DF, 0x0 },
202 };
203
204 /*
205  * Skylake Y
206  * eDP 1.4 low vswing translation parameters
207  */
208 static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = {
209         { 0x00000018, 0x000000A8, 0x0 },
210         { 0x00004013, 0x000000AB, 0x0 },
211         { 0x00007011, 0x000000A4, 0x0 },
212         { 0x00009010, 0x000000DF, 0x0 },
213         { 0x00000018, 0x000000AA, 0x0 },
214         { 0x00006013, 0x000000A4, 0x0 },
215         { 0x00007011, 0x0000009D, 0x0 },
216         { 0x00000018, 0x000000A0, 0x0 },
217         { 0x00006012, 0x000000DF, 0x0 },
218         { 0x00000018, 0x0000008A, 0x0 },
219 };
220
221 /* Skylake U, H and S */
222 static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
223         { 0x00000018, 0x000000AC, 0x0 },
224         { 0x00005012, 0x0000009D, 0x0 },
225         { 0x00007011, 0x00000088, 0x0 },
226         { 0x00000018, 0x000000A1, 0x0 },
227         { 0x00000018, 0x00000098, 0x0 },
228         { 0x00004013, 0x00000088, 0x0 },
229         { 0x00006012, 0x00000087, 0x0 },
230         { 0x00000018, 0x000000DF, 0x0 },
231         { 0x00003015, 0x00000087, 0x0 },        /* Default */
232         { 0x00003015, 0x000000C7, 0x0 },
233         { 0x00000018, 0x000000C7, 0x0 },
234 };
235
236 /* Skylake Y */
237 static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = {
238         { 0x00000018, 0x000000A1, 0x0 },
239         { 0x00005012, 0x000000DF, 0x0 },
240         { 0x00007011, 0x00000084, 0x0 },
241         { 0x00000018, 0x000000A4, 0x0 },
242         { 0x00000018, 0x0000009D, 0x0 },
243         { 0x00004013, 0x00000080, 0x0 },
244         { 0x00006013, 0x000000C7, 0x0 },
245         { 0x00000018, 0x0000008A, 0x0 },
246         { 0x00003015, 0x000000C7, 0x0 },        /* Default */
247         { 0x80003015, 0x000000C7, 0x7 },        /* Uses I_boost level 0x7 */
248         { 0x00000018, 0x000000C7, 0x0 },
249 };
250
251 struct bxt_ddi_buf_trans {
252         u32 margin;     /* swing value */
253         u32 scale;      /* scale value */
254         u32 enable;     /* scale enable */
255         u32 deemphasis;
256         bool default_index; /* true if the entry represents default value */
257 };
258
259 static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
260                                         /* Idx  NT mV diff      db  */
261         { 52,  0x9A, 0, 128, true  },   /* 0:   400             0   */
262         { 78,  0x9A, 0, 85,  false },   /* 1:   400             3.5 */
263         { 104, 0x9A, 0, 64,  false },   /* 2:   400             6   */
264         { 154, 0x9A, 0, 43,  false },   /* 3:   400             9.5 */
265         { 77,  0x9A, 0, 128, false },   /* 4:   600             0   */
266         { 116, 0x9A, 0, 85,  false },   /* 5:   600             3.5 */
267         { 154, 0x9A, 0, 64,  false },   /* 6:   600             6   */
268         { 102, 0x9A, 0, 128, false },   /* 7:   800             0   */
269         { 154, 0x9A, 0, 85,  false },   /* 8:   800             3.5 */
270         { 154, 0x9A, 1, 128, false },   /* 9:   1200            0   */
271 };
272
273 static const struct bxt_ddi_buf_trans bxt_ddi_translations_edp[] = {
274                                         /* Idx  NT mV diff      db  */
275         { 26, 0, 0, 128, false },       /* 0:   200             0   */
276         { 38, 0, 0, 112, false },       /* 1:   200             1.5 */
277         { 48, 0, 0, 96,  false },       /* 2:   200             4   */
278         { 54, 0, 0, 69,  false },       /* 3:   200             6   */
279         { 32, 0, 0, 128, false },       /* 4:   250             0   */
280         { 48, 0, 0, 104, false },       /* 5:   250             1.5 */
281         { 54, 0, 0, 85,  false },       /* 6:   250             4   */
282         { 43, 0, 0, 128, false },       /* 7:   300             0   */
283         { 54, 0, 0, 101, false },       /* 8:   300             1.5 */
284         { 48, 0, 0, 128, false },       /* 9:   300             0   */
285 };
286
287 /* BSpec has 2 recommended values - entries 0 and 8.
288  * Using the entry with higher vswing.
289  */
290 static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
291                                         /* Idx  NT mV diff      db  */
292         { 52,  0x9A, 0, 128, false },   /* 0:   400             0   */
293         { 52,  0x9A, 0, 85,  false },   /* 1:   400             3.5 */
294         { 52,  0x9A, 0, 64,  false },   /* 2:   400             6   */
295         { 42,  0x9A, 0, 43,  false },   /* 3:   400             9.5 */
296         { 77,  0x9A, 0, 128, false },   /* 4:   600             0   */
297         { 77,  0x9A, 0, 85,  false },   /* 5:   600             3.5 */
298         { 77,  0x9A, 0, 64,  false },   /* 6:   600             6   */
299         { 102, 0x9A, 0, 128, false },   /* 7:   800             0   */
300         { 102, 0x9A, 0, 85,  false },   /* 8:   800             3.5 */
301         { 154, 0x9A, 1, 128, true },    /* 9:   1200            0   */
302 };
303
304 static void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level,
305                                     enum port port, int type);
306
307 static void ddi_get_encoder_port(struct intel_encoder *intel_encoder,
308                                  struct intel_digital_port **dig_port,
309                                  enum port *port)
310 {
311         struct drm_encoder *encoder = &intel_encoder->base;
312
313         switch (intel_encoder->type) {
314         case INTEL_OUTPUT_DP_MST:
315                 *dig_port = enc_to_mst(encoder)->primary;
316                 *port = (*dig_port)->port;
317                 break;
318         case INTEL_OUTPUT_DISPLAYPORT:
319         case INTEL_OUTPUT_EDP:
320         case INTEL_OUTPUT_HDMI:
321         case INTEL_OUTPUT_UNKNOWN:
322                 *dig_port = enc_to_dig_port(encoder);
323                 *port = (*dig_port)->port;
324                 break;
325         case INTEL_OUTPUT_ANALOG:
326                 *dig_port = NULL;
327                 *port = PORT_E;
328                 break;
329         default:
330                 WARN(1, "Invalid DDI encoder type %d\n", intel_encoder->type);
331                 break;
332         }
333 }
334
335 enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
336 {
337         struct intel_digital_port *dig_port;
338         enum port port;
339
340         ddi_get_encoder_port(intel_encoder, &dig_port, &port);
341
342         return port;
343 }
344
345 static bool
346 intel_dig_port_supports_hdmi(const struct intel_digital_port *intel_dig_port)
347 {
348         return i915_mmio_reg_valid(intel_dig_port->hdmi.hdmi_reg);
349 }
350
351 static const struct ddi_buf_trans *skl_get_buf_trans_dp(struct drm_device *dev,
352                                                         int *n_entries)
353 {
354         const struct ddi_buf_trans *ddi_translations;
355
356         if (IS_SKL_ULX(dev) || IS_KBL_ULX(dev)) {
357                 ddi_translations = skl_y_ddi_translations_dp;
358                 *n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
359         } else if (IS_SKL_ULT(dev) || IS_KBL_ULT(dev)) {
360                 ddi_translations = skl_u_ddi_translations_dp;
361                 *n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
362         } else {
363                 ddi_translations = skl_ddi_translations_dp;
364                 *n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
365         }
366
367         return ddi_translations;
368 }
369
370 static const struct ddi_buf_trans *skl_get_buf_trans_edp(struct drm_device *dev,
371                                                          int *n_entries)
372 {
373         struct drm_i915_private *dev_priv = dev->dev_private;
374         const struct ddi_buf_trans *ddi_translations;
375
376         if (IS_SKL_ULX(dev) || IS_KBL_ULX(dev)) {
377                 if (dev_priv->edp_low_vswing) {
378                         ddi_translations = skl_y_ddi_translations_edp;
379                         *n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp);
380                 } else {
381                         ddi_translations = skl_y_ddi_translations_dp;
382                         *n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
383                 }
384         } else if (IS_SKL_ULT(dev) || IS_KBL_ULT(dev)) {
385                 if (dev_priv->edp_low_vswing) {
386                         ddi_translations = skl_u_ddi_translations_edp;
387                         *n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
388                 } else {
389                         ddi_translations = skl_u_ddi_translations_dp;
390                         *n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
391                 }
392         } else {
393                 if (dev_priv->edp_low_vswing) {
394                         ddi_translations = skl_ddi_translations_edp;
395                         *n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
396                 } else {
397                         ddi_translations = skl_ddi_translations_dp;
398                         *n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
399                 }
400         }
401
402         return ddi_translations;
403 }
404
405 static const struct ddi_buf_trans *
406 skl_get_buf_trans_hdmi(struct drm_device *dev,
407                        int *n_entries)
408 {
409         const struct ddi_buf_trans *ddi_translations;
410
411         if (IS_SKL_ULX(dev) || IS_KBL_ULX(dev)) {
412                 ddi_translations = skl_y_ddi_translations_hdmi;
413                 *n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi);
414         } else {
415                 ddi_translations = skl_ddi_translations_hdmi;
416                 *n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
417         }
418
419         return ddi_translations;
420 }
421
422 /*
423  * Starting with Haswell, DDI port buffers must be programmed with correct
424  * values in advance. The buffer values are different for FDI and DP modes,
425  * but the HDMI/DVI fields are shared among those. So we program the DDI
426  * in either FDI or DP modes only, as HDMI connections will work with both
427  * of those
428  */
429 static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port,
430                                       bool supports_hdmi)
431 {
432         struct drm_i915_private *dev_priv = dev->dev_private;
433         u32 iboost_bit = 0;
434         int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry,
435             size;
436         int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
437         const struct ddi_buf_trans *ddi_translations_fdi;
438         const struct ddi_buf_trans *ddi_translations_dp;
439         const struct ddi_buf_trans *ddi_translations_edp;
440         const struct ddi_buf_trans *ddi_translations_hdmi;
441         const struct ddi_buf_trans *ddi_translations;
442
443         if (IS_BROXTON(dev)) {
444                 if (!supports_hdmi)
445                         return;
446
447                 /* Vswing programming for HDMI */
448                 bxt_ddi_vswing_sequence(dev, hdmi_level, port,
449                                         INTEL_OUTPUT_HDMI);
450                 return;
451         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
452                 ddi_translations_fdi = NULL;
453                 ddi_translations_dp =
454                                 skl_get_buf_trans_dp(dev, &n_dp_entries);
455                 ddi_translations_edp =
456                                 skl_get_buf_trans_edp(dev, &n_edp_entries);
457                 ddi_translations_hdmi =
458                                 skl_get_buf_trans_hdmi(dev, &n_hdmi_entries);
459                 hdmi_default_entry = 8;
460                 /* If we're boosting the current, set bit 31 of trans1 */
461                 if (dev_priv->vbt.ddi_port_info[port].hdmi_boost_level ||
462                     dev_priv->vbt.ddi_port_info[port].dp_boost_level)
463                         iboost_bit = 1<<31;
464         } else if (IS_BROADWELL(dev)) {
465                 ddi_translations_fdi = bdw_ddi_translations_fdi;
466                 ddi_translations_dp = bdw_ddi_translations_dp;
467                 ddi_translations_edp = bdw_ddi_translations_edp;
468                 ddi_translations_hdmi = bdw_ddi_translations_hdmi;
469                 n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
470                 n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
471                 n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
472                 hdmi_default_entry = 7;
473         } else if (IS_HASWELL(dev)) {
474                 ddi_translations_fdi = hsw_ddi_translations_fdi;
475                 ddi_translations_dp = hsw_ddi_translations_dp;
476                 ddi_translations_edp = hsw_ddi_translations_dp;
477                 ddi_translations_hdmi = hsw_ddi_translations_hdmi;
478                 n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
479                 n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
480                 hdmi_default_entry = 6;
481         } else {
482                 WARN(1, "ddi translation table missing\n");
483                 ddi_translations_edp = bdw_ddi_translations_dp;
484                 ddi_translations_fdi = bdw_ddi_translations_fdi;
485                 ddi_translations_dp = bdw_ddi_translations_dp;
486                 ddi_translations_hdmi = bdw_ddi_translations_hdmi;
487                 n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
488                 n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
489                 n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
490                 hdmi_default_entry = 7;
491         }
492
493         switch (port) {
494         case PORT_A:
495                 ddi_translations = ddi_translations_edp;
496                 size = n_edp_entries;
497                 break;
498         case PORT_B:
499         case PORT_C:
500                 ddi_translations = ddi_translations_dp;
501                 size = n_dp_entries;
502                 break;
503         case PORT_D:
504                 if (intel_dp_is_edp(dev, PORT_D)) {
505                         ddi_translations = ddi_translations_edp;
506                         size = n_edp_entries;
507                 } else {
508                         ddi_translations = ddi_translations_dp;
509                         size = n_dp_entries;
510                 }
511                 break;
512         case PORT_E:
513                 if (ddi_translations_fdi)
514                         ddi_translations = ddi_translations_fdi;
515                 else
516                         ddi_translations = ddi_translations_dp;
517                 size = n_dp_entries;
518                 break;
519         default:
520                 BUG();
521         }
522
523         for (i = 0; i < size; i++) {
524                 I915_WRITE(DDI_BUF_TRANS_LO(port, i),
525                            ddi_translations[i].trans1 | iboost_bit);
526                 I915_WRITE(DDI_BUF_TRANS_HI(port, i),
527                            ddi_translations[i].trans2);
528         }
529
530         if (!supports_hdmi)
531                 return;
532
533         /* Choose a good default if VBT is badly populated */
534         if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
535             hdmi_level >= n_hdmi_entries)
536                 hdmi_level = hdmi_default_entry;
537
538         /* Entry 9 is for HDMI: */
539         I915_WRITE(DDI_BUF_TRANS_LO(port, i),
540                    ddi_translations_hdmi[hdmi_level].trans1 | iboost_bit);
541         I915_WRITE(DDI_BUF_TRANS_HI(port, i),
542                    ddi_translations_hdmi[hdmi_level].trans2);
543 }
544
545 /* Program DDI buffers translations for DP. By default, program ports A-D in DP
546  * mode and port E for FDI.
547  */
548 void intel_prepare_ddi(struct drm_device *dev)
549 {
550         struct intel_encoder *intel_encoder;
551         bool visited[I915_MAX_PORTS] = { 0, };
552
553         if (!HAS_DDI(dev))
554                 return;
555
556         for_each_intel_encoder(dev, intel_encoder) {
557                 struct intel_digital_port *intel_dig_port;
558                 enum port port;
559                 bool supports_hdmi;
560
561                 if (intel_encoder->type == INTEL_OUTPUT_DSI)
562                         continue;
563
564                 ddi_get_encoder_port(intel_encoder, &intel_dig_port, &port);
565                 if (visited[port])
566                         continue;
567
568                 supports_hdmi = intel_dig_port &&
569                                 intel_dig_port_supports_hdmi(intel_dig_port);
570
571                 intel_prepare_ddi_buffers(dev, port, supports_hdmi);
572                 visited[port] = true;
573         }
574 }
575
576 static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
577                                     enum port port)
578 {
579         i915_reg_t reg = DDI_BUF_CTL(port);
580         int i;
581
582         for (i = 0; i < 16; i++) {
583                 udelay(1);
584                 if (I915_READ(reg) & DDI_BUF_IS_IDLE)
585                         return;
586         }
587         DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
588 }
589
590 /* Starting with Haswell, different DDI ports can work in FDI mode for
591  * connection to the PCH-located connectors. For this, it is necessary to train
592  * both the DDI port and PCH receiver for the desired DDI buffer settings.
593  *
594  * The recommended port to work in FDI mode is DDI E, which we use here. Also,
595  * please note that when FDI mode is active on DDI E, it shares 2 lines with
596  * DDI A (which is used for eDP)
597  */
598
599 void hsw_fdi_link_train(struct drm_crtc *crtc)
600 {
601         struct drm_device *dev = crtc->dev;
602         struct drm_i915_private *dev_priv = dev->dev_private;
603         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
604         u32 temp, i, rx_ctl_val;
605
606         /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
607          * mode set "sequence for CRT port" document:
608          * - TP1 to TP2 time with the default value
609          * - FDI delay to 90h
610          *
611          * WaFDIAutoLinkSetTimingOverrride:hsw
612          */
613         I915_WRITE(FDI_RX_MISC(PIPE_A), FDI_RX_PWRDN_LANE1_VAL(2) |
614                                   FDI_RX_PWRDN_LANE0_VAL(2) |
615                                   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
616
617         /* Enable the PCH Receiver FDI PLL */
618         rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
619                      FDI_RX_PLL_ENABLE |
620                      FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
621         I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
622         POSTING_READ(FDI_RX_CTL(PIPE_A));
623         udelay(220);
624
625         /* Switch from Rawclk to PCDclk */
626         rx_ctl_val |= FDI_PCDCLK;
627         I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
628
629         /* Configure Port Clock Select */
630         I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
631         WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
632
633         /* Start the training iterating through available voltages and emphasis,
634          * testing each value twice. */
635         for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
636                 /* Configure DP_TP_CTL with auto-training */
637                 I915_WRITE(DP_TP_CTL(PORT_E),
638                                         DP_TP_CTL_FDI_AUTOTRAIN |
639                                         DP_TP_CTL_ENHANCED_FRAME_ENABLE |
640                                         DP_TP_CTL_LINK_TRAIN_PAT1 |
641                                         DP_TP_CTL_ENABLE);
642
643                 /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
644                  * DDI E does not support port reversal, the functionality is
645                  * achieved on the PCH side in FDI_RX_CTL, so no need to set the
646                  * port reversal bit */
647                 I915_WRITE(DDI_BUF_CTL(PORT_E),
648                            DDI_BUF_CTL_ENABLE |
649                            ((intel_crtc->config->fdi_lanes - 1) << 1) |
650                            DDI_BUF_TRANS_SELECT(i / 2));
651                 POSTING_READ(DDI_BUF_CTL(PORT_E));
652
653                 udelay(600);
654
655                 /* Program PCH FDI Receiver TU */
656                 I915_WRITE(FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64));
657
658                 /* Enable PCH FDI Receiver with auto-training */
659                 rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
660                 I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
661                 POSTING_READ(FDI_RX_CTL(PIPE_A));
662
663                 /* Wait for FDI receiver lane calibration */
664                 udelay(30);
665
666                 /* Unset FDI_RX_MISC pwrdn lanes */
667                 temp = I915_READ(FDI_RX_MISC(PIPE_A));
668                 temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
669                 I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
670                 POSTING_READ(FDI_RX_MISC(PIPE_A));
671
672                 /* Wait for FDI auto training time */
673                 udelay(5);
674
675                 temp = I915_READ(DP_TP_STATUS(PORT_E));
676                 if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
677                         DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
678                         break;
679                 }
680
681                 /*
682                  * Leave things enabled even if we failed to train FDI.
683                  * Results in less fireworks from the state checker.
684                  */
685                 if (i == ARRAY_SIZE(hsw_ddi_translations_fdi) * 2 - 1) {
686                         DRM_ERROR("FDI link training failed!\n");
687                         break;
688                 }
689
690                 temp = I915_READ(DDI_BUF_CTL(PORT_E));
691                 temp &= ~DDI_BUF_CTL_ENABLE;
692                 I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
693                 POSTING_READ(DDI_BUF_CTL(PORT_E));
694
695                 /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
696                 temp = I915_READ(DP_TP_CTL(PORT_E));
697                 temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
698                 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
699                 I915_WRITE(DP_TP_CTL(PORT_E), temp);
700                 POSTING_READ(DP_TP_CTL(PORT_E));
701
702                 intel_wait_ddi_buf_idle(dev_priv, PORT_E);
703
704                 rx_ctl_val &= ~FDI_RX_ENABLE;
705                 I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
706                 POSTING_READ(FDI_RX_CTL(PIPE_A));
707
708                 /* Reset FDI_RX_MISC pwrdn lanes */
709                 temp = I915_READ(FDI_RX_MISC(PIPE_A));
710                 temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
711                 temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
712                 I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
713                 POSTING_READ(FDI_RX_MISC(PIPE_A));
714         }
715
716         /* Enable normal pixel sending for FDI */
717         I915_WRITE(DP_TP_CTL(PORT_E),
718                    DP_TP_CTL_FDI_AUTOTRAIN |
719                    DP_TP_CTL_LINK_TRAIN_NORMAL |
720                    DP_TP_CTL_ENHANCED_FRAME_ENABLE |
721                    DP_TP_CTL_ENABLE);
722 }
723
724 void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
725 {
726         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
727         struct intel_digital_port *intel_dig_port =
728                 enc_to_dig_port(&encoder->base);
729
730         intel_dp->DP = intel_dig_port->saved_port_bits |
731                 DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
732         intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
733 }
734
735 static struct intel_encoder *
736 intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
737 {
738         struct drm_device *dev = crtc->dev;
739         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
740         struct intel_encoder *intel_encoder, *ret = NULL;
741         int num_encoders = 0;
742
743         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
744                 ret = intel_encoder;
745                 num_encoders++;
746         }
747
748         if (num_encoders != 1)
749                 WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
750                      pipe_name(intel_crtc->pipe));
751
752         BUG_ON(ret == NULL);
753         return ret;
754 }
755
756 struct intel_encoder *
757 intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
758 {
759         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
760         struct intel_encoder *ret = NULL;
761         struct drm_atomic_state *state;
762         struct drm_connector *connector;
763         struct drm_connector_state *connector_state;
764         int num_encoders = 0;
765         int i;
766
767         state = crtc_state->base.state;
768
769         for_each_connector_in_state(state, connector, connector_state, i) {
770                 if (connector_state->crtc != crtc_state->base.crtc)
771                         continue;
772
773                 ret = to_intel_encoder(connector_state->best_encoder);
774                 num_encoders++;
775         }
776
777         WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
778              pipe_name(crtc->pipe));
779
780         BUG_ON(ret == NULL);
781         return ret;
782 }
783
784 #define LC_FREQ 2700
785 #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
786
787 #define P_MIN 2
788 #define P_MAX 64
789 #define P_INC 2
790
791 /* Constraints for PLL good behavior */
792 #define REF_MIN 48
793 #define REF_MAX 400
794 #define VCO_MIN 2400
795 #define VCO_MAX 4800
796
797 #define abs_diff(a, b) ({                       \
798         typeof(a) __a = (a);                    \
799         typeof(b) __b = (b);                    \
800         (void) (&__a == &__b);                  \
801         __a > __b ? (__a - __b) : (__b - __a); })
802
803 struct hsw_wrpll_rnp {
804         unsigned p, n2, r2;
805 };
806
807 static unsigned hsw_wrpll_get_budget_for_freq(int clock)
808 {
809         unsigned budget;
810
811         switch (clock) {
812         case 25175000:
813         case 25200000:
814         case 27000000:
815         case 27027000:
816         case 37762500:
817         case 37800000:
818         case 40500000:
819         case 40541000:
820         case 54000000:
821         case 54054000:
822         case 59341000:
823         case 59400000:
824         case 72000000:
825         case 74176000:
826         case 74250000:
827         case 81000000:
828         case 81081000:
829         case 89012000:
830         case 89100000:
831         case 108000000:
832         case 108108000:
833         case 111264000:
834         case 111375000:
835         case 148352000:
836         case 148500000:
837         case 162000000:
838         case 162162000:
839         case 222525000:
840         case 222750000:
841         case 296703000:
842         case 297000000:
843                 budget = 0;
844                 break;
845         case 233500000:
846         case 245250000:
847         case 247750000:
848         case 253250000:
849         case 298000000:
850                 budget = 1500;
851                 break;
852         case 169128000:
853         case 169500000:
854         case 179500000:
855         case 202000000:
856                 budget = 2000;
857                 break;
858         case 256250000:
859         case 262500000:
860         case 270000000:
861         case 272500000:
862         case 273750000:
863         case 280750000:
864         case 281250000:
865         case 286000000:
866         case 291750000:
867                 budget = 4000;
868                 break;
869         case 267250000:
870         case 268500000:
871                 budget = 5000;
872                 break;
873         default:
874                 budget = 1000;
875                 break;
876         }
877
878         return budget;
879 }
880
881 static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
882                                  unsigned r2, unsigned n2, unsigned p,
883                                  struct hsw_wrpll_rnp *best)
884 {
885         uint64_t a, b, c, d, diff, diff_best;
886
887         /* No best (r,n,p) yet */
888         if (best->p == 0) {
889                 best->p = p;
890                 best->n2 = n2;
891                 best->r2 = r2;
892                 return;
893         }
894
895         /*
896          * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
897          * freq2k.
898          *
899          * delta = 1e6 *
900          *         abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
901          *         freq2k;
902          *
903          * and we would like delta <= budget.
904          *
905          * If the discrepancy is above the PPM-based budget, always prefer to
906          * improve upon the previous solution.  However, if you're within the
907          * budget, try to maximize Ref * VCO, that is N / (P * R^2).
908          */
909         a = freq2k * budget * p * r2;
910         b = freq2k * budget * best->p * best->r2;
911         diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
912         diff_best = abs_diff(freq2k * best->p * best->r2,
913                              LC_FREQ_2K * best->n2);
914         c = 1000000 * diff;
915         d = 1000000 * diff_best;
916
917         if (a < c && b < d) {
918                 /* If both are above the budget, pick the closer */
919                 if (best->p * best->r2 * diff < p * r2 * diff_best) {
920                         best->p = p;
921                         best->n2 = n2;
922                         best->r2 = r2;
923                 }
924         } else if (a >= c && b < d) {
925                 /* If A is below the threshold but B is above it?  Update. */
926                 best->p = p;
927                 best->n2 = n2;
928                 best->r2 = r2;
929         } else if (a >= c && b >= d) {
930                 /* Both are below the limit, so pick the higher n2/(r2*r2) */
931                 if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
932                         best->p = p;
933                         best->n2 = n2;
934                         best->r2 = r2;
935                 }
936         }
937         /* Otherwise a < c && b >= d, do nothing */
938 }
939
940 static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
941                                    i915_reg_t reg)
942 {
943         int refclk = LC_FREQ;
944         int n, p, r;
945         u32 wrpll;
946
947         wrpll = I915_READ(reg);
948         switch (wrpll & WRPLL_PLL_REF_MASK) {
949         case WRPLL_PLL_SSC:
950         case WRPLL_PLL_NON_SSC:
951                 /*
952                  * We could calculate spread here, but our checking
953                  * code only cares about 5% accuracy, and spread is a max of
954                  * 0.5% downspread.
955                  */
956                 refclk = 135;
957                 break;
958         case WRPLL_PLL_LCPLL:
959                 refclk = LC_FREQ;
960                 break;
961         default:
962                 WARN(1, "bad wrpll refclk\n");
963                 return 0;
964         }
965
966         r = wrpll & WRPLL_DIVIDER_REF_MASK;
967         p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
968         n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
969
970         /* Convert to KHz, p & r have a fixed point portion */
971         return (refclk * n * 100) / (p * r);
972 }
973
974 static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
975                                uint32_t dpll)
976 {
977         i915_reg_t cfgcr1_reg, cfgcr2_reg;
978         uint32_t cfgcr1_val, cfgcr2_val;
979         uint32_t p0, p1, p2, dco_freq;
980
981         cfgcr1_reg = DPLL_CFGCR1(dpll);
982         cfgcr2_reg = DPLL_CFGCR2(dpll);
983
984         cfgcr1_val = I915_READ(cfgcr1_reg);
985         cfgcr2_val = I915_READ(cfgcr2_reg);
986
987         p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
988         p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
989
990         if (cfgcr2_val &  DPLL_CFGCR2_QDIV_MODE(1))
991                 p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
992         else
993                 p1 = 1;
994
995
996         switch (p0) {
997         case DPLL_CFGCR2_PDIV_1:
998                 p0 = 1;
999                 break;
1000         case DPLL_CFGCR2_PDIV_2:
1001                 p0 = 2;
1002                 break;
1003         case DPLL_CFGCR2_PDIV_3:
1004                 p0 = 3;
1005                 break;
1006         case DPLL_CFGCR2_PDIV_7:
1007                 p0 = 7;
1008                 break;
1009         }
1010
1011         switch (p2) {
1012         case DPLL_CFGCR2_KDIV_5:
1013                 p2 = 5;
1014                 break;
1015         case DPLL_CFGCR2_KDIV_2:
1016                 p2 = 2;
1017                 break;
1018         case DPLL_CFGCR2_KDIV_3:
1019                 p2 = 3;
1020                 break;
1021         case DPLL_CFGCR2_KDIV_1:
1022                 p2 = 1;
1023                 break;
1024         }
1025
1026         dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
1027
1028         dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
1029                 1000) / 0x8000;
1030
1031         return dco_freq / (p0 * p1 * p2 * 5);
1032 }
1033
1034 static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
1035 {
1036         int dotclock;
1037
1038         if (pipe_config->has_pch_encoder)
1039                 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1040                                                     &pipe_config->fdi_m_n);
1041         else if (pipe_config->has_dp_encoder)
1042                 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1043                                                     &pipe_config->dp_m_n);
1044         else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
1045                 dotclock = pipe_config->port_clock * 2 / 3;
1046         else
1047                 dotclock = pipe_config->port_clock;
1048
1049         if (pipe_config->pixel_multiplier)
1050                 dotclock /= pipe_config->pixel_multiplier;
1051
1052         pipe_config->base.adjusted_mode.crtc_clock = dotclock;
1053 }
1054
1055 static void skl_ddi_clock_get(struct intel_encoder *encoder,
1056                                 struct intel_crtc_state *pipe_config)
1057 {
1058         struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1059         int link_clock = 0;
1060         uint32_t dpll_ctl1, dpll;
1061
1062         dpll = pipe_config->ddi_pll_sel;
1063
1064         dpll_ctl1 = I915_READ(DPLL_CTRL1);
1065
1066         if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
1067                 link_clock = skl_calc_wrpll_link(dev_priv, dpll);
1068         } else {
1069                 link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
1070                 link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
1071
1072                 switch (link_clock) {
1073                 case DPLL_CTRL1_LINK_RATE_810:
1074                         link_clock = 81000;
1075                         break;
1076                 case DPLL_CTRL1_LINK_RATE_1080:
1077                         link_clock = 108000;
1078                         break;
1079                 case DPLL_CTRL1_LINK_RATE_1350:
1080                         link_clock = 135000;
1081                         break;
1082                 case DPLL_CTRL1_LINK_RATE_1620:
1083                         link_clock = 162000;
1084                         break;
1085                 case DPLL_CTRL1_LINK_RATE_2160:
1086                         link_clock = 216000;
1087                         break;
1088                 case DPLL_CTRL1_LINK_RATE_2700:
1089                         link_clock = 270000;
1090                         break;
1091                 default:
1092                         WARN(1, "Unsupported link rate\n");
1093                         break;
1094                 }
1095                 link_clock *= 2;
1096         }
1097
1098         pipe_config->port_clock = link_clock;
1099
1100         ddi_dotclock_get(pipe_config);
1101 }
1102
1103 static void hsw_ddi_clock_get(struct intel_encoder *encoder,
1104                               struct intel_crtc_state *pipe_config)
1105 {
1106         struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1107         int link_clock = 0;
1108         u32 val, pll;
1109
1110         val = pipe_config->ddi_pll_sel;
1111         switch (val & PORT_CLK_SEL_MASK) {
1112         case PORT_CLK_SEL_LCPLL_810:
1113                 link_clock = 81000;
1114                 break;
1115         case PORT_CLK_SEL_LCPLL_1350:
1116                 link_clock = 135000;
1117                 break;
1118         case PORT_CLK_SEL_LCPLL_2700:
1119                 link_clock = 270000;
1120                 break;
1121         case PORT_CLK_SEL_WRPLL1:
1122                 link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(0));
1123                 break;
1124         case PORT_CLK_SEL_WRPLL2:
1125                 link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(1));
1126                 break;
1127         case PORT_CLK_SEL_SPLL:
1128                 pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
1129                 if (pll == SPLL_PLL_FREQ_810MHz)
1130                         link_clock = 81000;
1131                 else if (pll == SPLL_PLL_FREQ_1350MHz)
1132                         link_clock = 135000;
1133                 else if (pll == SPLL_PLL_FREQ_2700MHz)
1134                         link_clock = 270000;
1135                 else {
1136                         WARN(1, "bad spll freq\n");
1137                         return;
1138                 }
1139                 break;
1140         default:
1141                 WARN(1, "bad port clock sel\n");
1142                 return;
1143         }
1144
1145         pipe_config->port_clock = link_clock * 2;
1146
1147         ddi_dotclock_get(pipe_config);
1148 }
1149
1150 static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
1151                                 enum intel_dpll_id dpll)
1152 {
1153         struct intel_shared_dpll *pll;
1154         struct intel_dpll_hw_state *state;
1155         intel_clock_t clock;
1156
1157         /* For DDI ports we always use a shared PLL. */
1158         if (WARN_ON(dpll == DPLL_ID_PRIVATE))
1159                 return 0;
1160
1161         pll = &dev_priv->shared_dplls[dpll];
1162         state = &pll->config.hw_state;
1163
1164         clock.m1 = 2;
1165         clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22;
1166         if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
1167                 clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK;
1168         clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
1169         clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
1170         clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;
1171
1172         return chv_calc_dpll_params(100000, &clock);
1173 }
1174
1175 static void bxt_ddi_clock_get(struct intel_encoder *encoder,
1176                                 struct intel_crtc_state *pipe_config)
1177 {
1178         struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1179         enum port port = intel_ddi_get_encoder_port(encoder);
1180         uint32_t dpll = port;
1181
1182         pipe_config->port_clock = bxt_calc_pll_link(dev_priv, dpll);
1183
1184         ddi_dotclock_get(pipe_config);
1185 }
1186
1187 void intel_ddi_clock_get(struct intel_encoder *encoder,
1188                          struct intel_crtc_state *pipe_config)
1189 {
1190         struct drm_device *dev = encoder->base.dev;
1191
1192         if (INTEL_INFO(dev)->gen <= 8)
1193                 hsw_ddi_clock_get(encoder, pipe_config);
1194         else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1195                 skl_ddi_clock_get(encoder, pipe_config);
1196         else if (IS_BROXTON(dev))
1197                 bxt_ddi_clock_get(encoder, pipe_config);
1198 }
1199
1200 static void
1201 hsw_ddi_calculate_wrpll(int clock /* in Hz */,
1202                         unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
1203 {
1204         uint64_t freq2k;
1205         unsigned p, n2, r2;
1206         struct hsw_wrpll_rnp best = { 0, 0, 0 };
1207         unsigned budget;
1208
1209         freq2k = clock / 100;
1210
1211         budget = hsw_wrpll_get_budget_for_freq(clock);
1212
1213         /* Special case handling for 540 pixel clock: bypass WR PLL entirely
1214          * and directly pass the LC PLL to it. */
1215         if (freq2k == 5400000) {
1216                 *n2_out = 2;
1217                 *p_out = 1;
1218                 *r2_out = 2;
1219                 return;
1220         }
1221
1222         /*
1223          * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
1224          * the WR PLL.
1225          *
1226          * We want R so that REF_MIN <= Ref <= REF_MAX.
1227          * Injecting R2 = 2 * R gives:
1228          *   REF_MAX * r2 > LC_FREQ * 2 and
1229          *   REF_MIN * r2 < LC_FREQ * 2
1230          *
1231          * Which means the desired boundaries for r2 are:
1232          *  LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
1233          *
1234          */
1235         for (r2 = LC_FREQ * 2 / REF_MAX + 1;
1236              r2 <= LC_FREQ * 2 / REF_MIN;
1237              r2++) {
1238
1239                 /*
1240                  * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
1241                  *
1242                  * Once again we want VCO_MIN <= VCO <= VCO_MAX.
1243                  * Injecting R2 = 2 * R and N2 = 2 * N, we get:
1244                  *   VCO_MAX * r2 > n2 * LC_FREQ and
1245                  *   VCO_MIN * r2 < n2 * LC_FREQ)
1246                  *
1247                  * Which means the desired boundaries for n2 are:
1248                  * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
1249                  */
1250                 for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
1251                      n2 <= VCO_MAX * r2 / LC_FREQ;
1252                      n2++) {
1253
1254                         for (p = P_MIN; p <= P_MAX; p += P_INC)
1255                                 hsw_wrpll_update_rnp(freq2k, budget,
1256                                                      r2, n2, p, &best);
1257                 }
1258         }
1259
1260         *n2_out = best.n2;
1261         *p_out = best.p;
1262         *r2_out = best.r2;
1263 }
1264
1265 static bool
1266 hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
1267                    struct intel_crtc_state *crtc_state,
1268                    struct intel_encoder *intel_encoder)
1269 {
1270         int clock = crtc_state->port_clock;
1271
1272         if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1273                 struct intel_shared_dpll *pll;
1274                 uint32_t val;
1275                 unsigned p, n2, r2;
1276
1277                 hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
1278
1279                 val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
1280                       WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
1281                       WRPLL_DIVIDER_POST(p);
1282
1283                 memset(&crtc_state->dpll_hw_state, 0,
1284                        sizeof(crtc_state->dpll_hw_state));
1285
1286                 crtc_state->dpll_hw_state.wrpll = val;
1287
1288                 pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1289                 if (pll == NULL) {
1290                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1291                                          pipe_name(intel_crtc->pipe));
1292                         return false;
1293                 }
1294
1295                 crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
1296         } else if (crtc_state->ddi_pll_sel == PORT_CLK_SEL_SPLL) {
1297                 struct drm_atomic_state *state = crtc_state->base.state;
1298                 struct intel_shared_dpll_config *spll =
1299                         &intel_atomic_get_shared_dpll_state(state)[DPLL_ID_SPLL];
1300
1301                 if (spll->crtc_mask &&
1302                     WARN_ON(spll->hw_state.spll != crtc_state->dpll_hw_state.spll))
1303                         return false;
1304
1305                 crtc_state->shared_dpll = DPLL_ID_SPLL;
1306                 spll->hw_state.spll = crtc_state->dpll_hw_state.spll;
1307                 spll->crtc_mask |= 1 << intel_crtc->pipe;
1308         }
1309
1310         return true;
1311 }
1312
1313 struct skl_wrpll_context {
1314         uint64_t min_deviation;         /* current minimal deviation */
1315         uint64_t central_freq;          /* chosen central freq */
1316         uint64_t dco_freq;              /* chosen dco freq */
1317         unsigned int p;                 /* chosen divider */
1318 };
1319
1320 static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
1321 {
1322         memset(ctx, 0, sizeof(*ctx));
1323
1324         ctx->min_deviation = U64_MAX;
1325 }
1326
1327 /* DCO freq must be within +1%/-6%  of the DCO central freq */
1328 #define SKL_DCO_MAX_PDEVIATION  100
1329 #define SKL_DCO_MAX_NDEVIATION  600
1330
1331 static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
1332                                   uint64_t central_freq,
1333                                   uint64_t dco_freq,
1334                                   unsigned int divider)
1335 {
1336         uint64_t deviation;
1337
1338         deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
1339                               central_freq);
1340
1341         /* positive deviation */
1342         if (dco_freq >= central_freq) {
1343                 if (deviation < SKL_DCO_MAX_PDEVIATION &&
1344                     deviation < ctx->min_deviation) {
1345                         ctx->min_deviation = deviation;
1346                         ctx->central_freq = central_freq;
1347                         ctx->dco_freq = dco_freq;
1348                         ctx->p = divider;
1349                 }
1350         /* negative deviation */
1351         } else if (deviation < SKL_DCO_MAX_NDEVIATION &&
1352                    deviation < ctx->min_deviation) {
1353                 ctx->min_deviation = deviation;
1354                 ctx->central_freq = central_freq;
1355                 ctx->dco_freq = dco_freq;
1356                 ctx->p = divider;
1357         }
1358 }
1359
1360 static void skl_wrpll_get_multipliers(unsigned int p,
1361                                       unsigned int *p0 /* out */,
1362                                       unsigned int *p1 /* out */,
1363                                       unsigned int *p2 /* out */)
1364 {
1365         /* even dividers */
1366         if (p % 2 == 0) {
1367                 unsigned int half = p / 2;
1368
1369                 if (half == 1 || half == 2 || half == 3 || half == 5) {
1370                         *p0 = 2;
1371                         *p1 = 1;
1372                         *p2 = half;
1373                 } else if (half % 2 == 0) {
1374                         *p0 = 2;
1375                         *p1 = half / 2;
1376                         *p2 = 2;
1377                 } else if (half % 3 == 0) {
1378                         *p0 = 3;
1379                         *p1 = half / 3;
1380                         *p2 = 2;
1381                 } else if (half % 7 == 0) {
1382                         *p0 = 7;
1383                         *p1 = half / 7;
1384                         *p2 = 2;
1385                 }
1386         } else if (p == 3 || p == 9) {  /* 3, 5, 7, 9, 15, 21, 35 */
1387                 *p0 = 3;
1388                 *p1 = 1;
1389                 *p2 = p / 3;
1390         } else if (p == 5 || p == 7) {
1391                 *p0 = p;
1392                 *p1 = 1;
1393                 *p2 = 1;
1394         } else if (p == 15) {
1395                 *p0 = 3;
1396                 *p1 = 1;
1397                 *p2 = 5;
1398         } else if (p == 21) {
1399                 *p0 = 7;
1400                 *p1 = 1;
1401                 *p2 = 3;
1402         } else if (p == 35) {
1403                 *p0 = 7;
1404                 *p1 = 1;
1405                 *p2 = 5;
1406         }
1407 }
1408
1409 struct skl_wrpll_params {
1410         uint32_t        dco_fraction;
1411         uint32_t        dco_integer;
1412         uint32_t        qdiv_ratio;
1413         uint32_t        qdiv_mode;
1414         uint32_t        kdiv;
1415         uint32_t        pdiv;
1416         uint32_t        central_freq;
1417 };
1418
1419 static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
1420                                       uint64_t afe_clock,
1421                                       uint64_t central_freq,
1422                                       uint32_t p0, uint32_t p1, uint32_t p2)
1423 {
1424         uint64_t dco_freq;
1425
1426         switch (central_freq) {
1427         case 9600000000ULL:
1428                 params->central_freq = 0;
1429                 break;
1430         case 9000000000ULL:
1431                 params->central_freq = 1;
1432                 break;
1433         case 8400000000ULL:
1434                 params->central_freq = 3;
1435         }
1436
1437         switch (p0) {
1438         case 1:
1439                 params->pdiv = 0;
1440                 break;
1441         case 2:
1442                 params->pdiv = 1;
1443                 break;
1444         case 3:
1445                 params->pdiv = 2;
1446                 break;
1447         case 7:
1448                 params->pdiv = 4;
1449                 break;
1450         default:
1451                 WARN(1, "Incorrect PDiv\n");
1452         }
1453
1454         switch (p2) {
1455         case 5:
1456                 params->kdiv = 0;
1457                 break;
1458         case 2:
1459                 params->kdiv = 1;
1460                 break;
1461         case 3:
1462                 params->kdiv = 2;
1463                 break;
1464         case 1:
1465                 params->kdiv = 3;
1466                 break;
1467         default:
1468                 WARN(1, "Incorrect KDiv\n");
1469         }
1470
1471         params->qdiv_ratio = p1;
1472         params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;
1473
1474         dco_freq = p0 * p1 * p2 * afe_clock;
1475
1476         /*
1477          * Intermediate values are in Hz.
1478          * Divide by MHz to match bsepc
1479          */
1480         params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
1481         params->dco_fraction =
1482                 div_u64((div_u64(dco_freq, 24) -
1483                          params->dco_integer * MHz(1)) * 0x8000, MHz(1));
1484 }
1485
1486 static bool
1487 skl_ddi_calculate_wrpll(int clock /* in Hz */,
1488                         struct skl_wrpll_params *wrpll_params)
1489 {
1490         uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
1491         uint64_t dco_central_freq[3] = {8400000000ULL,
1492                                         9000000000ULL,
1493                                         9600000000ULL};
1494         static const int even_dividers[] = {  4,  6,  8, 10, 12, 14, 16, 18, 20,
1495                                              24, 28, 30, 32, 36, 40, 42, 44,
1496                                              48, 52, 54, 56, 60, 64, 66, 68,
1497                                              70, 72, 76, 78, 80, 84, 88, 90,
1498                                              92, 96, 98 };
1499         static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
1500         static const struct {
1501                 const int *list;
1502                 int n_dividers;
1503         } dividers[] = {
1504                 { even_dividers, ARRAY_SIZE(even_dividers) },
1505                 { odd_dividers, ARRAY_SIZE(odd_dividers) },
1506         };
1507         struct skl_wrpll_context ctx;
1508         unsigned int dco, d, i;
1509         unsigned int p0, p1, p2;
1510
1511         skl_wrpll_context_init(&ctx);
1512
1513         for (d = 0; d < ARRAY_SIZE(dividers); d++) {
1514                 for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
1515                         for (i = 0; i < dividers[d].n_dividers; i++) {
1516                                 unsigned int p = dividers[d].list[i];
1517                                 uint64_t dco_freq = p * afe_clock;
1518
1519                                 skl_wrpll_try_divider(&ctx,
1520                                                       dco_central_freq[dco],
1521                                                       dco_freq,
1522                                                       p);
1523                                 /*
1524                                  * Skip the remaining dividers if we're sure to
1525                                  * have found the definitive divider, we can't
1526                                  * improve a 0 deviation.
1527                                  */
1528                                 if (ctx.min_deviation == 0)
1529                                         goto skip_remaining_dividers;
1530                         }
1531                 }
1532
1533 skip_remaining_dividers:
1534                 /*
1535                  * If a solution is found with an even divider, prefer
1536                  * this one.
1537                  */
1538                 if (d == 0 && ctx.p)
1539                         break;
1540         }
1541
1542         if (!ctx.p) {
1543                 DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
1544                 return false;
1545         }
1546
1547         /*
1548          * gcc incorrectly analyses that these can be used without being
1549          * initialized. To be fair, it's hard to guess.
1550          */
1551         p0 = p1 = p2 = 0;
1552         skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
1553         skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
1554                                   p0, p1, p2);
1555
1556         return true;
1557 }
1558
1559 static bool
1560 skl_ddi_pll_select(struct intel_crtc *intel_crtc,
1561                    struct intel_crtc_state *crtc_state,
1562                    struct intel_encoder *intel_encoder)
1563 {
1564         struct intel_shared_dpll *pll;
1565         uint32_t ctrl1, cfgcr1, cfgcr2;
1566         int clock = crtc_state->port_clock;
1567
1568         /*
1569          * See comment in intel_dpll_hw_state to understand why we always use 0
1570          * as the DPLL id in this function.
1571          */
1572
1573         ctrl1 = DPLL_CTRL1_OVERRIDE(0);
1574
1575         if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1576                 struct skl_wrpll_params wrpll_params = { 0, };
1577
1578                 ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
1579
1580                 if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
1581                         return false;
1582
1583                 cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
1584                          DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
1585                          wrpll_params.dco_integer;
1586
1587                 cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
1588                          DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
1589                          DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
1590                          DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
1591                          wrpll_params.central_freq;
1592         } else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1593                 switch (crtc_state->port_clock / 2) {
1594                 case 81000:
1595                         ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
1596                         break;
1597                 case 135000:
1598                         ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
1599                         break;
1600                 case 270000:
1601                         ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
1602                         break;
1603                 }
1604
1605                 cfgcr1 = cfgcr2 = 0;
1606         } else /* eDP */
1607                 return true;
1608
1609         memset(&crtc_state->dpll_hw_state, 0,
1610                sizeof(crtc_state->dpll_hw_state));
1611
1612         crtc_state->dpll_hw_state.ctrl1 = ctrl1;
1613         crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
1614         crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
1615
1616         pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1617         if (pll == NULL) {
1618                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1619                                  pipe_name(intel_crtc->pipe));
1620                 return false;
1621         }
1622
1623         /* shared DPLL id 0 is DPLL 1 */
1624         crtc_state->ddi_pll_sel = pll->id + 1;
1625
1626         return true;
1627 }
1628
1629 /* bxt clock parameters */
1630 struct bxt_clk_div {
1631         int clock;
1632         uint32_t p1;
1633         uint32_t p2;
1634         uint32_t m2_int;
1635         uint32_t m2_frac;
1636         bool m2_frac_en;
1637         uint32_t n;
1638 };
1639
1640 /* pre-calculated values for DP linkrates */
1641 static const struct bxt_clk_div bxt_dp_clk_val[] = {
1642         {162000, 4, 2, 32, 1677722, 1, 1},
1643         {270000, 4, 1, 27,       0, 0, 1},
1644         {540000, 2, 1, 27,       0, 0, 1},
1645         {216000, 3, 2, 32, 1677722, 1, 1},
1646         {243000, 4, 1, 24, 1258291, 1, 1},
1647         {324000, 4, 1, 32, 1677722, 1, 1},
1648         {432000, 3, 1, 32, 1677722, 1, 1}
1649 };
1650
1651 static bool
1652 bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
1653                    struct intel_crtc_state *crtc_state,
1654                    struct intel_encoder *intel_encoder)
1655 {
1656         struct intel_shared_dpll *pll;
1657         struct bxt_clk_div clk_div = {0};
1658         int vco = 0;
1659         uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
1660         uint32_t lanestagger;
1661         int clock = crtc_state->port_clock;
1662
1663         if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1664                 intel_clock_t best_clock;
1665
1666                 /* Calculate HDMI div */
1667                 /*
1668                  * FIXME: tie the following calculation into
1669                  * i9xx_crtc_compute_clock
1670                  */
1671                 if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
1672                         DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
1673                                          clock, pipe_name(intel_crtc->pipe));
1674                         return false;
1675                 }
1676
1677                 clk_div.p1 = best_clock.p1;
1678                 clk_div.p2 = best_clock.p2;
1679                 WARN_ON(best_clock.m1 != 2);
1680                 clk_div.n = best_clock.n;
1681                 clk_div.m2_int = best_clock.m2 >> 22;
1682                 clk_div.m2_frac = best_clock.m2 & ((1 << 22) - 1);
1683                 clk_div.m2_frac_en = clk_div.m2_frac != 0;
1684
1685                 vco = best_clock.vco;
1686         } else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
1687                         intel_encoder->type == INTEL_OUTPUT_EDP) {
1688                 int i;
1689
1690                 clk_div = bxt_dp_clk_val[0];
1691                 for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
1692                         if (bxt_dp_clk_val[i].clock == clock) {
1693                                 clk_div = bxt_dp_clk_val[i];
1694                                 break;
1695                         }
1696                 }
1697                 vco = clock * 10 / 2 * clk_div.p1 * clk_div.p2;
1698         }
1699
1700         if (vco >= 6200000 && vco <= 6700000) {
1701                 prop_coef = 4;
1702                 int_coef = 9;
1703                 gain_ctl = 3;
1704                 targ_cnt = 8;
1705         } else if ((vco > 5400000 && vco < 6200000) ||
1706                         (vco >= 4800000 && vco < 5400000)) {
1707                 prop_coef = 5;
1708                 int_coef = 11;
1709                 gain_ctl = 3;
1710                 targ_cnt = 9;
1711         } else if (vco == 5400000) {
1712                 prop_coef = 3;
1713                 int_coef = 8;
1714                 gain_ctl = 1;
1715                 targ_cnt = 9;
1716         } else {
1717                 DRM_ERROR("Invalid VCO\n");
1718                 return false;
1719         }
1720
1721         memset(&crtc_state->dpll_hw_state, 0,
1722                sizeof(crtc_state->dpll_hw_state));
1723
1724         if (clock > 270000)
1725                 lanestagger = 0x18;
1726         else if (clock > 135000)
1727                 lanestagger = 0x0d;
1728         else if (clock > 67000)
1729                 lanestagger = 0x07;
1730         else if (clock > 33000)
1731                 lanestagger = 0x04;
1732         else
1733                 lanestagger = 0x02;
1734
1735         crtc_state->dpll_hw_state.ebb0 =
1736                 PORT_PLL_P1(clk_div.p1) | PORT_PLL_P2(clk_div.p2);
1737         crtc_state->dpll_hw_state.pll0 = clk_div.m2_int;
1738         crtc_state->dpll_hw_state.pll1 = PORT_PLL_N(clk_div.n);
1739         crtc_state->dpll_hw_state.pll2 = clk_div.m2_frac;
1740
1741         if (clk_div.m2_frac_en)
1742                 crtc_state->dpll_hw_state.pll3 =
1743                         PORT_PLL_M2_FRAC_ENABLE;
1744
1745         crtc_state->dpll_hw_state.pll6 =
1746                 prop_coef | PORT_PLL_INT_COEFF(int_coef);
1747         crtc_state->dpll_hw_state.pll6 |=
1748                 PORT_PLL_GAIN_CTL(gain_ctl);
1749
1750         crtc_state->dpll_hw_state.pll8 = targ_cnt;
1751
1752         crtc_state->dpll_hw_state.pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;
1753
1754         crtc_state->dpll_hw_state.pll10 =
1755                 PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
1756                 | PORT_PLL_DCO_AMP_OVR_EN_H;
1757
1758         crtc_state->dpll_hw_state.ebb4 = PORT_PLL_10BIT_CLK_ENABLE;
1759
1760         crtc_state->dpll_hw_state.pcsdw12 =
1761                 LANESTAGGER_STRAP_OVRD | lanestagger;
1762
1763         pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1764         if (pll == NULL) {
1765                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1766                         pipe_name(intel_crtc->pipe));
1767                 return false;
1768         }
1769
1770         /* shared DPLL id 0 is DPLL A */
1771         crtc_state->ddi_pll_sel = pll->id;
1772
1773         return true;
1774 }
1775
1776 /*
1777  * Tries to find a *shared* PLL for the CRTC and store it in
1778  * intel_crtc->ddi_pll_sel.
1779  *
1780  * For private DPLLs, compute_config() should do the selection for us. This
1781  * function should be folded into compute_config() eventually.
1782  */
1783 bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
1784                           struct intel_crtc_state *crtc_state)
1785 {
1786         struct drm_device *dev = intel_crtc->base.dev;
1787         struct intel_encoder *intel_encoder =
1788                 intel_ddi_get_crtc_new_encoder(crtc_state);
1789
1790         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1791                 return skl_ddi_pll_select(intel_crtc, crtc_state,
1792                                           intel_encoder);
1793         else if (IS_BROXTON(dev))
1794                 return bxt_ddi_pll_select(intel_crtc, crtc_state,
1795                                           intel_encoder);
1796         else
1797                 return hsw_ddi_pll_select(intel_crtc, crtc_state,
1798                                           intel_encoder);
1799 }
1800
1801 void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
1802 {
1803         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1804         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1805         struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1806         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1807         int type = intel_encoder->type;
1808         uint32_t temp;
1809
1810         if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
1811                 temp = TRANS_MSA_SYNC_CLK;
1812                 switch (intel_crtc->config->pipe_bpp) {
1813                 case 18:
1814                         temp |= TRANS_MSA_6_BPC;
1815                         break;
1816                 case 24:
1817                         temp |= TRANS_MSA_8_BPC;
1818                         break;
1819                 case 30:
1820                         temp |= TRANS_MSA_10_BPC;
1821                         break;
1822                 case 36:
1823                         temp |= TRANS_MSA_12_BPC;
1824                         break;
1825                 default:
1826                         BUG();
1827                 }
1828                 I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
1829         }
1830 }
1831
1832 void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
1833 {
1834         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1835         struct drm_device *dev = crtc->dev;
1836         struct drm_i915_private *dev_priv = dev->dev_private;
1837         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1838         uint32_t temp;
1839         temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1840         if (state == true)
1841                 temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1842         else
1843                 temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1844         I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1845 }
1846
1847 void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
1848 {
1849         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1850         struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1851         struct drm_encoder *encoder = &intel_encoder->base;
1852         struct drm_device *dev = crtc->dev;
1853         struct drm_i915_private *dev_priv = dev->dev_private;
1854         enum pipe pipe = intel_crtc->pipe;
1855         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1856         enum port port = intel_ddi_get_encoder_port(intel_encoder);
1857         int type = intel_encoder->type;
1858         uint32_t temp;
1859
1860         /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
1861         temp = TRANS_DDI_FUNC_ENABLE;
1862         temp |= TRANS_DDI_SELECT_PORT(port);
1863
1864         switch (intel_crtc->config->pipe_bpp) {
1865         case 18:
1866                 temp |= TRANS_DDI_BPC_6;
1867                 break;
1868         case 24:
1869                 temp |= TRANS_DDI_BPC_8;
1870                 break;
1871         case 30:
1872                 temp |= TRANS_DDI_BPC_10;
1873                 break;
1874         case 36:
1875                 temp |= TRANS_DDI_BPC_12;
1876                 break;
1877         default:
1878                 BUG();
1879         }
1880
1881         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
1882                 temp |= TRANS_DDI_PVSYNC;
1883         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
1884                 temp |= TRANS_DDI_PHSYNC;
1885
1886         if (cpu_transcoder == TRANSCODER_EDP) {
1887                 switch (pipe) {
1888                 case PIPE_A:
1889                         /* On Haswell, can only use the always-on power well for
1890                          * eDP when not using the panel fitter, and when not
1891                          * using motion blur mitigation (which we don't
1892                          * support). */
1893                         if (IS_HASWELL(dev) &&
1894                             (intel_crtc->config->pch_pfit.enabled ||
1895                              intel_crtc->config->pch_pfit.force_thru))
1896                                 temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
1897                         else
1898                                 temp |= TRANS_DDI_EDP_INPUT_A_ON;
1899                         break;
1900                 case PIPE_B:
1901                         temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
1902                         break;
1903                 case PIPE_C:
1904                         temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
1905                         break;
1906                 default:
1907                         BUG();
1908                         break;
1909                 }
1910         }
1911
1912         if (type == INTEL_OUTPUT_HDMI) {
1913                 if (intel_crtc->config->has_hdmi_sink)
1914                         temp |= TRANS_DDI_MODE_SELECT_HDMI;
1915                 else
1916                         temp |= TRANS_DDI_MODE_SELECT_DVI;
1917
1918         } else if (type == INTEL_OUTPUT_ANALOG) {
1919                 temp |= TRANS_DDI_MODE_SELECT_FDI;
1920                 temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
1921
1922         } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
1923                    type == INTEL_OUTPUT_EDP) {
1924                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1925
1926                 if (intel_dp->is_mst) {
1927                         temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1928                 } else
1929                         temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1930
1931                 temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
1932         } else if (type == INTEL_OUTPUT_DP_MST) {
1933                 struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
1934
1935                 if (intel_dp->is_mst) {
1936                         temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1937                 } else
1938                         temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1939
1940                 temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
1941         } else {
1942                 WARN(1, "Invalid encoder type %d for pipe %c\n",
1943                      intel_encoder->type, pipe_name(pipe));
1944         }
1945
1946         I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1947 }
1948
1949 void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
1950                                        enum transcoder cpu_transcoder)
1951 {
1952         i915_reg_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1953         uint32_t val = I915_READ(reg);
1954
1955         val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
1956         val |= TRANS_DDI_PORT_NONE;
1957         I915_WRITE(reg, val);
1958 }
1959
1960 bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
1961 {
1962         struct drm_device *dev = intel_connector->base.dev;
1963         struct drm_i915_private *dev_priv = dev->dev_private;
1964         struct intel_encoder *intel_encoder = intel_connector->encoder;
1965         int type = intel_connector->base.connector_type;
1966         enum port port = intel_ddi_get_encoder_port(intel_encoder);
1967         enum pipe pipe = 0;
1968         enum transcoder cpu_transcoder;
1969         enum intel_display_power_domain power_domain;
1970         uint32_t tmp;
1971
1972         power_domain = intel_display_port_power_domain(intel_encoder);
1973         if (!intel_display_power_is_enabled(dev_priv, power_domain))
1974                 return false;
1975
1976         if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
1977                 return false;
1978
1979         if (port == PORT_A)
1980                 cpu_transcoder = TRANSCODER_EDP;
1981         else
1982                 cpu_transcoder = (enum transcoder) pipe;
1983
1984         tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1985
1986         switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
1987         case TRANS_DDI_MODE_SELECT_HDMI:
1988         case TRANS_DDI_MODE_SELECT_DVI:
1989                 return (type == DRM_MODE_CONNECTOR_HDMIA);
1990
1991         case TRANS_DDI_MODE_SELECT_DP_SST:
1992                 if (type == DRM_MODE_CONNECTOR_eDP)
1993                         return true;
1994                 return (type == DRM_MODE_CONNECTOR_DisplayPort);
1995         case TRANS_DDI_MODE_SELECT_DP_MST:
1996                 /* if the transcoder is in MST state then
1997                  * connector isn't connected */
1998                 return false;
1999
2000         case TRANS_DDI_MODE_SELECT_FDI:
2001                 return (type == DRM_MODE_CONNECTOR_VGA);
2002
2003         default:
2004                 return false;
2005         }
2006 }
2007
2008 bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
2009                             enum pipe *pipe)
2010 {
2011         struct drm_device *dev = encoder->base.dev;
2012         struct drm_i915_private *dev_priv = dev->dev_private;
2013         enum port port = intel_ddi_get_encoder_port(encoder);
2014         enum intel_display_power_domain power_domain;
2015         u32 tmp;
2016         int i;
2017
2018         power_domain = intel_display_port_power_domain(encoder);
2019         if (!intel_display_power_is_enabled(dev_priv, power_domain))
2020                 return false;
2021
2022         tmp = I915_READ(DDI_BUF_CTL(port));
2023
2024         if (!(tmp & DDI_BUF_CTL_ENABLE))
2025                 return false;
2026
2027         if (port == PORT_A) {
2028                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
2029
2030                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
2031                 case TRANS_DDI_EDP_INPUT_A_ON:
2032                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
2033                         *pipe = PIPE_A;
2034                         break;
2035                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
2036                         *pipe = PIPE_B;
2037                         break;
2038                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
2039                         *pipe = PIPE_C;
2040                         break;
2041                 }
2042
2043                 return true;
2044         } else {
2045                 for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
2046                         tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
2047
2048                         if ((tmp & TRANS_DDI_PORT_MASK)
2049                             == TRANS_DDI_SELECT_PORT(port)) {
2050                                 if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
2051                                         return false;
2052
2053                                 *pipe = i;
2054                                 return true;
2055                         }
2056                 }
2057         }
2058
2059         DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
2060
2061         return false;
2062 }
2063
2064 void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
2065 {
2066         struct drm_crtc *crtc = &intel_crtc->base;
2067         struct drm_device *dev = crtc->dev;
2068         struct drm_i915_private *dev_priv = dev->dev_private;
2069         struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
2070         enum port port = intel_ddi_get_encoder_port(intel_encoder);
2071         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
2072
2073         if (cpu_transcoder != TRANSCODER_EDP)
2074                 I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
2075                            TRANS_CLK_SEL_PORT(port));
2076 }
2077
2078 void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
2079 {
2080         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
2081         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
2082
2083         if (cpu_transcoder != TRANSCODER_EDP)
2084                 I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
2085                            TRANS_CLK_SEL_DISABLED);
2086 }
2087
2088 static void skl_ddi_set_iboost(struct drm_device *dev, u32 level,
2089                                enum port port, int type)
2090 {
2091         struct drm_i915_private *dev_priv = dev->dev_private;
2092         const struct ddi_buf_trans *ddi_translations;
2093         uint8_t iboost;
2094         uint8_t dp_iboost, hdmi_iboost;
2095         int n_entries;
2096         u32 reg;
2097
2098         /* VBT may override standard boost values */
2099         dp_iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level;
2100         hdmi_iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level;
2101
2102         if (type == INTEL_OUTPUT_DISPLAYPORT) {
2103                 if (dp_iboost) {
2104                         iboost = dp_iboost;
2105                 } else {
2106                         ddi_translations = skl_get_buf_trans_dp(dev, &n_entries);
2107                         iboost = ddi_translations[level].i_boost;
2108                 }
2109         } else if (type == INTEL_OUTPUT_EDP) {
2110                 if (dp_iboost) {
2111                         iboost = dp_iboost;
2112                 } else {
2113                         ddi_translations = skl_get_buf_trans_edp(dev, &n_entries);
2114                         iboost = ddi_translations[level].i_boost;
2115                 }
2116         } else if (type == INTEL_OUTPUT_HDMI) {
2117                 if (hdmi_iboost) {
2118                         iboost = hdmi_iboost;
2119                 } else {
2120                         ddi_translations = skl_get_buf_trans_hdmi(dev, &n_entries);
2121                         iboost = ddi_translations[level].i_boost;
2122                 }
2123         } else {
2124                 return;
2125         }
2126
2127         /* Make sure that the requested I_boost is valid */
2128         if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
2129                 DRM_ERROR("Invalid I_boost value %u\n", iboost);
2130                 return;
2131         }
2132
2133         reg = I915_READ(DISPIO_CR_TX_BMU_CR0);
2134         reg &= ~BALANCE_LEG_MASK(port);
2135         reg &= ~(1 << (BALANCE_LEG_DISABLE_SHIFT + port));
2136
2137         if (iboost)
2138                 reg |= iboost << BALANCE_LEG_SHIFT(port);
2139         else
2140                 reg |= 1 << (BALANCE_LEG_DISABLE_SHIFT + port);
2141
2142         I915_WRITE(DISPIO_CR_TX_BMU_CR0, reg);
2143 }
2144
2145 static void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level,
2146                                     enum port port, int type)
2147 {
2148         struct drm_i915_private *dev_priv = dev->dev_private;
2149         const struct bxt_ddi_buf_trans *ddi_translations;
2150         u32 n_entries, i;
2151         uint32_t val;
2152
2153         if (type == INTEL_OUTPUT_EDP && dev_priv->edp_low_vswing) {
2154                 n_entries = ARRAY_SIZE(bxt_ddi_translations_edp);
2155                 ddi_translations = bxt_ddi_translations_edp;
2156         } else if (type == INTEL_OUTPUT_DISPLAYPORT
2157                         || type == INTEL_OUTPUT_EDP) {
2158                 n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
2159                 ddi_translations = bxt_ddi_translations_dp;
2160         } else if (type == INTEL_OUTPUT_HDMI) {
2161                 n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
2162                 ddi_translations = bxt_ddi_translations_hdmi;
2163         } else {
2164                 DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
2165                                 type);
2166                 return;
2167         }
2168
2169         /* Check if default value has to be used */
2170         if (level >= n_entries ||
2171             (type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
2172                 for (i = 0; i < n_entries; i++) {
2173                         if (ddi_translations[i].default_index) {
2174                                 level = i;
2175                                 break;
2176                         }
2177                 }
2178         }
2179
2180         /*
2181          * While we write to the group register to program all lanes at once we
2182          * can read only lane registers and we pick lanes 0/1 for that.
2183          */
2184         val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
2185         val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
2186         I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
2187
2188         val = I915_READ(BXT_PORT_TX_DW2_LN0(port));
2189         val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
2190         val |= ddi_translations[level].margin << MARGIN_000_SHIFT |
2191                ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT;
2192         I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val);
2193
2194         val = I915_READ(BXT_PORT_TX_DW3_LN0(port));
2195         val &= ~SCALE_DCOMP_METHOD;
2196         if (ddi_translations[level].enable)
2197                 val |= SCALE_DCOMP_METHOD;
2198
2199         if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
2200                 DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");
2201
2202         I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val);
2203
2204         val = I915_READ(BXT_PORT_TX_DW4_LN0(port));
2205         val &= ~DE_EMPHASIS;
2206         val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT;
2207         I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val);
2208
2209         val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
2210         val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
2211         I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
2212 }
2213
2214 static uint32_t translate_signal_level(int signal_levels)
2215 {
2216         uint32_t level;
2217
2218         switch (signal_levels) {
2219         default:
2220                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level: 0x%x\n",
2221                               signal_levels);
2222         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2223                 level = 0;
2224                 break;
2225         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2226                 level = 1;
2227                 break;
2228         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
2229                 level = 2;
2230                 break;
2231         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
2232                 level = 3;
2233                 break;
2234
2235         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2236                 level = 4;
2237                 break;
2238         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2239                 level = 5;
2240                 break;
2241         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
2242                 level = 6;
2243                 break;
2244
2245         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2246                 level = 7;
2247                 break;
2248         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2249                 level = 8;
2250                 break;
2251
2252         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2253                 level = 9;
2254                 break;
2255         }
2256
2257         return level;
2258 }
2259
2260 uint32_t ddi_signal_levels(struct intel_dp *intel_dp)
2261 {
2262         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2263         struct drm_device *dev = dport->base.base.dev;
2264         struct intel_encoder *encoder = &dport->base;
2265         uint8_t train_set = intel_dp->train_set[0];
2266         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2267                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2268         enum port port = dport->port;
2269         uint32_t level;
2270
2271         level = translate_signal_level(signal_levels);
2272
2273         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2274                 skl_ddi_set_iboost(dev, level, port, encoder->type);
2275         else if (IS_BROXTON(dev))
2276                 bxt_ddi_vswing_sequence(dev, level, port, encoder->type);
2277
2278         return DDI_BUF_TRANS_SELECT(level);
2279 }
2280
2281 void intel_ddi_clk_select(struct intel_encoder *encoder,
2282                           const struct intel_crtc_state *pipe_config)
2283 {
2284         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2285         enum port port = intel_ddi_get_encoder_port(encoder);
2286
2287         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2288                 uint32_t dpll = pipe_config->ddi_pll_sel;
2289                 uint32_t val;
2290
2291                 /*
2292                  * DPLL0 is used for eDP and is the only "private" DPLL (as
2293                  * opposed to shared) on SKL
2294                  */
2295                 if (encoder->type == INTEL_OUTPUT_EDP) {
2296                         WARN_ON(dpll != SKL_DPLL0);
2297
2298                         val = I915_READ(DPLL_CTRL1);
2299
2300                         val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
2301                                  DPLL_CTRL1_SSC(dpll) |
2302                                  DPLL_CTRL1_LINK_RATE_MASK(dpll));
2303                         val |= pipe_config->dpll_hw_state.ctrl1 << (dpll * 6);
2304
2305                         I915_WRITE(DPLL_CTRL1, val);
2306                         POSTING_READ(DPLL_CTRL1);
2307                 }
2308
2309                 /* DDI -> PLL mapping  */
2310                 val = I915_READ(DPLL_CTRL2);
2311
2312                 val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
2313                         DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
2314                 val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
2315                         DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
2316
2317                 I915_WRITE(DPLL_CTRL2, val);
2318
2319         } else if (INTEL_INFO(dev_priv)->gen < 9) {
2320                 WARN_ON(pipe_config->ddi_pll_sel == PORT_CLK_SEL_NONE);
2321                 I915_WRITE(PORT_CLK_SEL(port), pipe_config->ddi_pll_sel);
2322         }
2323 }
2324
2325 static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
2326 {
2327         struct drm_encoder *encoder = &intel_encoder->base;
2328         struct drm_device *dev = encoder->dev;
2329         struct drm_i915_private *dev_priv = dev->dev_private;
2330         struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
2331         enum port port = intel_ddi_get_encoder_port(intel_encoder);
2332         int type = intel_encoder->type;
2333         int hdmi_level;
2334
2335         if (type == INTEL_OUTPUT_EDP) {
2336                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2337                 intel_edp_panel_on(intel_dp);
2338         }
2339
2340         intel_ddi_clk_select(intel_encoder, crtc->config);
2341
2342         if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
2343                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2344
2345                 intel_dp_set_link_params(intel_dp, crtc->config);
2346
2347                 intel_ddi_init_dp_buf_reg(intel_encoder);
2348
2349                 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2350                 intel_dp_start_link_train(intel_dp);
2351                 if (port != PORT_A || INTEL_INFO(dev)->gen >= 9)
2352                         intel_dp_stop_link_train(intel_dp);
2353         } else if (type == INTEL_OUTPUT_HDMI) {
2354                 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2355
2356                 if (IS_BROXTON(dev)) {
2357                         hdmi_level = dev_priv->vbt.
2358                                 ddi_port_info[port].hdmi_level_shift;
2359                         bxt_ddi_vswing_sequence(dev, hdmi_level, port,
2360                                         INTEL_OUTPUT_HDMI);
2361                 }
2362                 intel_hdmi->set_infoframes(encoder,
2363                                            crtc->config->has_hdmi_sink,
2364                                            &crtc->config->base.adjusted_mode);
2365         }
2366 }
2367
2368 static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
2369 {
2370         struct drm_encoder *encoder = &intel_encoder->base;
2371         struct drm_device *dev = encoder->dev;
2372         struct drm_i915_private *dev_priv = dev->dev_private;
2373         enum port port = intel_ddi_get_encoder_port(intel_encoder);
2374         int type = intel_encoder->type;
2375         uint32_t val;
2376         bool wait = false;
2377
2378         val = I915_READ(DDI_BUF_CTL(port));
2379         if (val & DDI_BUF_CTL_ENABLE) {
2380                 val &= ~DDI_BUF_CTL_ENABLE;
2381                 I915_WRITE(DDI_BUF_CTL(port), val);
2382                 wait = true;
2383         }
2384
2385         val = I915_READ(DP_TP_CTL(port));
2386         val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
2387         val |= DP_TP_CTL_LINK_TRAIN_PAT1;
2388         I915_WRITE(DP_TP_CTL(port), val);
2389
2390         if (wait)
2391                 intel_wait_ddi_buf_idle(dev_priv, port);
2392
2393         if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
2394                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2395                 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2396                 intel_edp_panel_vdd_on(intel_dp);
2397                 intel_edp_panel_off(intel_dp);
2398         }
2399
2400         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2401                 I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
2402                                         DPLL_CTRL2_DDI_CLK_OFF(port)));
2403         else if (INTEL_INFO(dev)->gen < 9)
2404                 I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
2405 }
2406
2407 static void intel_enable_ddi(struct intel_encoder *intel_encoder)
2408 {
2409         struct drm_encoder *encoder = &intel_encoder->base;
2410         struct drm_crtc *crtc = encoder->crtc;
2411         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2412         struct drm_device *dev = encoder->dev;
2413         struct drm_i915_private *dev_priv = dev->dev_private;
2414         enum port port = intel_ddi_get_encoder_port(intel_encoder);
2415         int type = intel_encoder->type;
2416
2417         if (type == INTEL_OUTPUT_HDMI) {
2418                 struct intel_digital_port *intel_dig_port =
2419                         enc_to_dig_port(encoder);
2420
2421                 /* In HDMI/DVI mode, the port width, and swing/emphasis values
2422                  * are ignored so nothing special needs to be done besides
2423                  * enabling the port.
2424                  */
2425                 I915_WRITE(DDI_BUF_CTL(port),
2426                            intel_dig_port->saved_port_bits |
2427                            DDI_BUF_CTL_ENABLE);
2428         } else if (type == INTEL_OUTPUT_EDP) {
2429                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2430
2431                 if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
2432                         intel_dp_stop_link_train(intel_dp);
2433
2434                 intel_edp_backlight_on(intel_dp);
2435                 intel_psr_enable(intel_dp);
2436                 intel_edp_drrs_enable(intel_dp);
2437         }
2438
2439         if (intel_crtc->config->has_audio) {
2440                 intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
2441                 intel_audio_codec_enable(intel_encoder);
2442         }
2443 }
2444
2445 static void intel_disable_ddi(struct intel_encoder *intel_encoder)
2446 {
2447         struct drm_encoder *encoder = &intel_encoder->base;
2448         struct drm_crtc *crtc = encoder->crtc;
2449         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2450         int type = intel_encoder->type;
2451         struct drm_device *dev = encoder->dev;
2452         struct drm_i915_private *dev_priv = dev->dev_private;
2453
2454         if (intel_crtc->config->has_audio) {
2455                 intel_audio_codec_disable(intel_encoder);
2456                 intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
2457         }
2458
2459         if (type == INTEL_OUTPUT_EDP) {
2460                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2461
2462                 intel_edp_drrs_disable(intel_dp);
2463                 intel_psr_disable(intel_dp);
2464                 intel_edp_backlight_off(intel_dp);
2465         }
2466 }
2467
2468 static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
2469                                struct intel_shared_dpll *pll)
2470 {
2471         I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
2472         POSTING_READ(WRPLL_CTL(pll->id));
2473         udelay(20);
2474 }
2475
2476 static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
2477                                 struct intel_shared_dpll *pll)
2478 {
2479         I915_WRITE(SPLL_CTL, pll->config.hw_state.spll);
2480         POSTING_READ(SPLL_CTL);
2481         udelay(20);
2482 }
2483
2484 static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
2485                                   struct intel_shared_dpll *pll)
2486 {
2487         uint32_t val;
2488
2489         val = I915_READ(WRPLL_CTL(pll->id));
2490         I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
2491         POSTING_READ(WRPLL_CTL(pll->id));
2492 }
2493
2494 static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
2495                                  struct intel_shared_dpll *pll)
2496 {
2497         uint32_t val;
2498
2499         val = I915_READ(SPLL_CTL);
2500         I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
2501         POSTING_READ(SPLL_CTL);
2502 }
2503
2504 static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
2505                                        struct intel_shared_dpll *pll,
2506                                        struct intel_dpll_hw_state *hw_state)
2507 {
2508         uint32_t val;
2509
2510         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
2511                 return false;
2512
2513         val = I915_READ(WRPLL_CTL(pll->id));
2514         hw_state->wrpll = val;
2515
2516         return val & WRPLL_PLL_ENABLE;
2517 }
2518
2519 static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
2520                                       struct intel_shared_dpll *pll,
2521                                       struct intel_dpll_hw_state *hw_state)
2522 {
2523         uint32_t val;
2524
2525         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
2526                 return false;
2527
2528         val = I915_READ(SPLL_CTL);
2529         hw_state->spll = val;
2530
2531         return val & SPLL_PLL_ENABLE;
2532 }
2533
2534
2535 static const char * const hsw_ddi_pll_names[] = {
2536         "WRPLL 1",
2537         "WRPLL 2",
2538         "SPLL"
2539 };
2540
2541 static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
2542 {
2543         int i;
2544
2545         dev_priv->num_shared_dpll = 3;
2546
2547         for (i = 0; i < 2; i++) {
2548                 dev_priv->shared_dplls[i].id = i;
2549                 dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
2550                 dev_priv->shared_dplls[i].disable = hsw_ddi_wrpll_disable;
2551                 dev_priv->shared_dplls[i].enable = hsw_ddi_wrpll_enable;
2552                 dev_priv->shared_dplls[i].get_hw_state =
2553                         hsw_ddi_wrpll_get_hw_state;
2554         }
2555
2556         /* SPLL is special, but needs to be initialized anyway.. */
2557         dev_priv->shared_dplls[i].id = i;
2558         dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
2559         dev_priv->shared_dplls[i].disable = hsw_ddi_spll_disable;
2560         dev_priv->shared_dplls[i].enable = hsw_ddi_spll_enable;
2561         dev_priv->shared_dplls[i].get_hw_state = hsw_ddi_spll_get_hw_state;
2562
2563 }
2564
2565 static const char * const skl_ddi_pll_names[] = {
2566         "DPLL 1",
2567         "DPLL 2",
2568         "DPLL 3",
2569 };
2570
2571 struct skl_dpll_regs {
2572         i915_reg_t ctl, cfgcr1, cfgcr2;
2573 };
2574
2575 /* this array is indexed by the *shared* pll id */
2576 static const struct skl_dpll_regs skl_dpll_regs[3] = {
2577         {
2578                 /* DPLL 1 */
2579                 .ctl = LCPLL2_CTL,
2580                 .cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
2581                 .cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
2582         },
2583         {
2584                 /* DPLL 2 */
2585                 .ctl = WRPLL_CTL(0),
2586                 .cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
2587                 .cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
2588         },
2589         {
2590                 /* DPLL 3 */
2591                 .ctl = WRPLL_CTL(1),
2592                 .cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
2593                 .cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
2594         },
2595 };
2596
2597 static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
2598                                struct intel_shared_dpll *pll)
2599 {
2600         uint32_t val;
2601         unsigned int dpll;
2602         const struct skl_dpll_regs *regs = skl_dpll_regs;
2603
2604         /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
2605         dpll = pll->id + 1;
2606
2607         val = I915_READ(DPLL_CTRL1);
2608
2609         val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
2610                  DPLL_CTRL1_LINK_RATE_MASK(dpll));
2611         val |= pll->config.hw_state.ctrl1 << (dpll * 6);
2612
2613         I915_WRITE(DPLL_CTRL1, val);
2614         POSTING_READ(DPLL_CTRL1);
2615
2616         I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
2617         I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
2618         POSTING_READ(regs[pll->id].cfgcr1);
2619         POSTING_READ(regs[pll->id].cfgcr2);
2620
2621         /* the enable bit is always bit 31 */
2622         I915_WRITE(regs[pll->id].ctl,
2623                    I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
2624
2625         if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
2626                 DRM_ERROR("DPLL %d not locked\n", dpll);
2627 }
2628
2629 static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
2630                                 struct intel_shared_dpll *pll)
2631 {
2632         const struct skl_dpll_regs *regs = skl_dpll_regs;
2633
2634         /* the enable bit is always bit 31 */
2635         I915_WRITE(regs[pll->id].ctl,
2636                    I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
2637         POSTING_READ(regs[pll->id].ctl);
2638 }
2639
2640 static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
2641                                      struct intel_shared_dpll *pll,
2642                                      struct intel_dpll_hw_state *hw_state)
2643 {
2644         uint32_t val;
2645         unsigned int dpll;
2646         const struct skl_dpll_regs *regs = skl_dpll_regs;
2647
2648         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
2649                 return false;
2650
2651         /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
2652         dpll = pll->id + 1;
2653
2654         val = I915_READ(regs[pll->id].ctl);
2655         if (!(val & LCPLL_PLL_ENABLE))
2656                 return false;
2657
2658         val = I915_READ(DPLL_CTRL1);
2659         hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;
2660
2661         /* avoid reading back stale values if HDMI mode is not enabled */
2662         if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
2663                 hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
2664                 hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
2665         }
2666
2667         return true;
2668 }
2669
2670 static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
2671 {
2672         int i;
2673
2674         dev_priv->num_shared_dpll = 3;
2675
2676         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2677                 dev_priv->shared_dplls[i].id = i;
2678                 dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
2679                 dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
2680                 dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
2681                 dev_priv->shared_dplls[i].get_hw_state =
2682                         skl_ddi_pll_get_hw_state;
2683         }
2684 }
2685
2686 static void broxton_phy_init(struct drm_i915_private *dev_priv,
2687                              enum dpio_phy phy)
2688 {
2689         enum port port;
2690         uint32_t val;
2691
2692         val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
2693         val |= GT_DISPLAY_POWER_ON(phy);
2694         I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
2695
2696         /* Considering 10ms timeout until BSpec is updated */
2697         if (wait_for(I915_READ(BXT_PORT_CL1CM_DW0(phy)) & PHY_POWER_GOOD, 10))
2698                 DRM_ERROR("timeout during PHY%d power on\n", phy);
2699
2700         for (port =  (phy == DPIO_PHY0 ? PORT_B : PORT_A);
2701              port <= (phy == DPIO_PHY0 ? PORT_C : PORT_A); port++) {
2702                 int lane;
2703
2704                 for (lane = 0; lane < 4; lane++) {
2705                         val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
2706                         /*
2707                          * Note that on CHV this flag is called UPAR, but has
2708                          * the same function.
2709                          */
2710                         val &= ~LATENCY_OPTIM;
2711                         if (lane != 1)
2712                                 val |= LATENCY_OPTIM;
2713
2714                         I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
2715                 }
2716         }
2717
2718         /* Program PLL Rcomp code offset */
2719         val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
2720         val &= ~IREF0RC_OFFSET_MASK;
2721         val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
2722         I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
2723
2724         val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
2725         val &= ~IREF1RC_OFFSET_MASK;
2726         val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
2727         I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
2728
2729         /* Program power gating */
2730         val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
2731         val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
2732                 SUS_CLK_CONFIG;
2733         I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
2734
2735         if (phy == DPIO_PHY0) {
2736                 val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
2737                 val |= DW6_OLDO_DYN_PWR_DOWN_EN;
2738                 I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
2739         }
2740
2741         val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
2742         val &= ~OCL2_LDOFUSE_PWR_DIS;
2743         /*
2744          * On PHY1 disable power on the second channel, since no port is
2745          * connected there. On PHY0 both channels have a port, so leave it
2746          * enabled.
2747          * TODO: port C is only connected on BXT-P, so on BXT0/1 we should
2748          * power down the second channel on PHY0 as well.
2749          */
2750         if (phy == DPIO_PHY1)
2751                 val |= OCL2_LDOFUSE_PWR_DIS;
2752         I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);
2753
2754         if (phy == DPIO_PHY0) {
2755                 uint32_t grc_code;
2756                 /*
2757                  * PHY0 isn't connected to an RCOMP resistor so copy over
2758                  * the corresponding calibrated value from PHY1, and disable
2759                  * the automatic calibration on PHY0.
2760                  */
2761                 if (wait_for(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE,
2762                              10))
2763                         DRM_ERROR("timeout waiting for PHY1 GRC\n");
2764
2765                 val = I915_READ(BXT_PORT_REF_DW6(DPIO_PHY1));
2766                 val = (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
2767                 grc_code = val << GRC_CODE_FAST_SHIFT |
2768                            val << GRC_CODE_SLOW_SHIFT |
2769                            val;
2770                 I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);
2771
2772                 val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
2773                 val |= GRC_DIS | GRC_RDY_OVRD;
2774                 I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
2775         }
2776
2777         val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
2778         val |= COMMON_RESET_DIS;
2779         I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
2780 }
2781
2782 void broxton_ddi_phy_init(struct drm_device *dev)
2783 {
2784         /* Enable PHY1 first since it provides Rcomp for PHY0 */
2785         broxton_phy_init(dev->dev_private, DPIO_PHY1);
2786         broxton_phy_init(dev->dev_private, DPIO_PHY0);
2787 }
2788
2789 static void broxton_phy_uninit(struct drm_i915_private *dev_priv,
2790                                enum dpio_phy phy)
2791 {
2792         uint32_t val;
2793
2794         val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
2795         val &= ~COMMON_RESET_DIS;
2796         I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
2797 }
2798
2799 void broxton_ddi_phy_uninit(struct drm_device *dev)
2800 {
2801         struct drm_i915_private *dev_priv = dev->dev_private;
2802
2803         broxton_phy_uninit(dev_priv, DPIO_PHY1);
2804         broxton_phy_uninit(dev_priv, DPIO_PHY0);
2805
2806         /* FIXME: do this in broxton_phy_uninit per phy */
2807         I915_WRITE(BXT_P_CR_GT_DISP_PWRON, 0);
2808 }
2809
2810 static const char * const bxt_ddi_pll_names[] = {
2811         "PORT PLL A",
2812         "PORT PLL B",
2813         "PORT PLL C",
2814 };
2815
2816 static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
2817                                 struct intel_shared_dpll *pll)
2818 {
2819         uint32_t temp;
2820         enum port port = (enum port)pll->id;    /* 1:1 port->PLL mapping */
2821
2822         temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
2823         temp &= ~PORT_PLL_REF_SEL;
2824         /* Non-SSC reference */
2825         I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
2826
2827         /* Disable 10 bit clock */
2828         temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
2829         temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
2830         I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
2831
2832         /* Write P1 & P2 */
2833         temp = I915_READ(BXT_PORT_PLL_EBB_0(port));
2834         temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
2835         temp |= pll->config.hw_state.ebb0;
2836         I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp);
2837
2838         /* Write M2 integer */
2839         temp = I915_READ(BXT_PORT_PLL(port, 0));
2840         temp &= ~PORT_PLL_M2_MASK;
2841         temp |= pll->config.hw_state.pll0;
2842         I915_WRITE(BXT_PORT_PLL(port, 0), temp);
2843
2844         /* Write N */
2845         temp = I915_READ(BXT_PORT_PLL(port, 1));
2846         temp &= ~PORT_PLL_N_MASK;
2847         temp |= pll->config.hw_state.pll1;
2848         I915_WRITE(BXT_PORT_PLL(port, 1), temp);
2849
2850         /* Write M2 fraction */
2851         temp = I915_READ(BXT_PORT_PLL(port, 2));
2852         temp &= ~PORT_PLL_M2_FRAC_MASK;
2853         temp |= pll->config.hw_state.pll2;
2854         I915_WRITE(BXT_PORT_PLL(port, 2), temp);
2855
2856         /* Write M2 fraction enable */
2857         temp = I915_READ(BXT_PORT_PLL(port, 3));
2858         temp &= ~PORT_PLL_M2_FRAC_ENABLE;
2859         temp |= pll->config.hw_state.pll3;
2860         I915_WRITE(BXT_PORT_PLL(port, 3), temp);
2861
2862         /* Write coeff */
2863         temp = I915_READ(BXT_PORT_PLL(port, 6));
2864         temp &= ~PORT_PLL_PROP_COEFF_MASK;
2865         temp &= ~PORT_PLL_INT_COEFF_MASK;
2866         temp &= ~PORT_PLL_GAIN_CTL_MASK;
2867         temp |= pll->config.hw_state.pll6;
2868         I915_WRITE(BXT_PORT_PLL(port, 6), temp);
2869
2870         /* Write calibration val */
2871         temp = I915_READ(BXT_PORT_PLL(port, 8));
2872         temp &= ~PORT_PLL_TARGET_CNT_MASK;
2873         temp |= pll->config.hw_state.pll8;
2874         I915_WRITE(BXT_PORT_PLL(port, 8), temp);
2875
2876         temp = I915_READ(BXT_PORT_PLL(port, 9));
2877         temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
2878         temp |= pll->config.hw_state.pll9;
2879         I915_WRITE(BXT_PORT_PLL(port, 9), temp);
2880
2881         temp = I915_READ(BXT_PORT_PLL(port, 10));
2882         temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
2883         temp &= ~PORT_PLL_DCO_AMP_MASK;
2884         temp |= pll->config.hw_state.pll10;
2885         I915_WRITE(BXT_PORT_PLL(port, 10), temp);
2886
2887         /* Recalibrate with new settings */
2888         temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
2889         temp |= PORT_PLL_RECALIBRATE;
2890         I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
2891         temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
2892         temp |= pll->config.hw_state.ebb4;
2893         I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
2894
2895         /* Enable PLL */
2896         temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
2897         temp |= PORT_PLL_ENABLE;
2898         I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
2899         POSTING_READ(BXT_PORT_PLL_ENABLE(port));
2900
2901         if (wait_for_atomic_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
2902                         PORT_PLL_LOCK), 200))
2903                 DRM_ERROR("PLL %d not locked\n", port);
2904
2905         /*
2906          * While we write to the group register to program all lanes at once we
2907          * can read only lane registers and we pick lanes 0/1 for that.
2908          */
2909         temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
2910         temp &= ~LANE_STAGGER_MASK;
2911         temp &= ~LANESTAGGER_STRAP_OVRD;
2912         temp |= pll->config.hw_state.pcsdw12;
2913         I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp);
2914 }
2915
2916 static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
2917                                         struct intel_shared_dpll *pll)
2918 {
2919         enum port port = (enum port)pll->id;    /* 1:1 port->PLL mapping */
2920         uint32_t temp;
2921
2922         temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
2923         temp &= ~PORT_PLL_ENABLE;
2924         I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
2925         POSTING_READ(BXT_PORT_PLL_ENABLE(port));
2926 }
2927
2928 static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
2929                                         struct intel_shared_dpll *pll,
2930                                         struct intel_dpll_hw_state *hw_state)
2931 {
2932         enum port port = (enum port)pll->id;    /* 1:1 port->PLL mapping */
2933         uint32_t val;
2934
2935         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
2936                 return false;
2937
2938         val = I915_READ(BXT_PORT_PLL_ENABLE(port));
2939         if (!(val & PORT_PLL_ENABLE))
2940                 return false;
2941
2942         hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port));
2943         hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;
2944
2945         hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(port));
2946         hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;
2947
2948         hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0));
2949         hw_state->pll0 &= PORT_PLL_M2_MASK;
2950
2951         hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1));
2952         hw_state->pll1 &= PORT_PLL_N_MASK;
2953
2954         hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2));
2955         hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;
2956
2957         hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3));
2958         hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;
2959
2960         hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6));
2961         hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
2962                           PORT_PLL_INT_COEFF_MASK |
2963                           PORT_PLL_GAIN_CTL_MASK;
2964
2965         hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8));
2966         hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;
2967
2968         hw_state->pll9 = I915_READ(BXT_PORT_PLL(port, 9));
2969         hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;
2970
2971         hw_state->pll10 = I915_READ(BXT_PORT_PLL(port, 10));
2972         hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
2973                            PORT_PLL_DCO_AMP_MASK;
2974
2975         /*
2976          * While we write to the group register to program all lanes at once we
2977          * can read only lane registers. We configure all lanes the same way, so
2978          * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
2979          */
2980         hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
2981         if (I915_READ(BXT_PORT_PCS_DW12_LN23(port)) != hw_state->pcsdw12)
2982                 DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
2983                                  hw_state->pcsdw12,
2984                                  I915_READ(BXT_PORT_PCS_DW12_LN23(port)));
2985         hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
2986
2987         return true;
2988 }
2989
2990 static void bxt_shared_dplls_init(struct drm_i915_private *dev_priv)
2991 {
2992         int i;
2993
2994         dev_priv->num_shared_dpll = 3;
2995
2996         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2997                 dev_priv->shared_dplls[i].id = i;
2998                 dev_priv->shared_dplls[i].name = bxt_ddi_pll_names[i];
2999                 dev_priv->shared_dplls[i].disable = bxt_ddi_pll_disable;
3000                 dev_priv->shared_dplls[i].enable = bxt_ddi_pll_enable;
3001                 dev_priv->shared_dplls[i].get_hw_state =
3002                         bxt_ddi_pll_get_hw_state;
3003         }
3004 }
3005
3006 void intel_ddi_pll_init(struct drm_device *dev)
3007 {
3008         struct drm_i915_private *dev_priv = dev->dev_private;
3009         uint32_t val = I915_READ(LCPLL_CTL);
3010
3011         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
3012                 skl_shared_dplls_init(dev_priv);
3013         else if (IS_BROXTON(dev))
3014                 bxt_shared_dplls_init(dev_priv);
3015         else
3016                 hsw_shared_dplls_init(dev_priv);
3017
3018         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
3019                 int cdclk_freq;
3020
3021                 cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
3022                 dev_priv->skl_boot_cdclk = cdclk_freq;
3023                 if (skl_sanitize_cdclk(dev_priv))
3024                         DRM_DEBUG_KMS("Sanitized cdclk programmed by pre-os\n");
3025                 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
3026                         DRM_ERROR("LCPLL1 is disabled\n");
3027         } else if (IS_BROXTON(dev)) {
3028                 broxton_init_cdclk(dev);
3029                 broxton_ddi_phy_init(dev);
3030         } else {
3031                 /*
3032                  * The LCPLL register should be turned on by the BIOS. For now
3033                  * let's just check its state and print errors in case
3034                  * something is wrong.  Don't even try to turn it on.
3035                  */
3036
3037                 if (val & LCPLL_CD_SOURCE_FCLK)
3038                         DRM_ERROR("CDCLK source is not LCPLL\n");
3039
3040                 if (val & LCPLL_PLL_DISABLE)
3041                         DRM_ERROR("LCPLL is disabled\n");
3042         }
3043 }
3044
3045 void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp)
3046 {
3047         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3048         struct drm_i915_private *dev_priv =
3049                 to_i915(intel_dig_port->base.base.dev);
3050         enum port port = intel_dig_port->port;
3051         uint32_t val;
3052         bool wait = false;
3053
3054         if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
3055                 val = I915_READ(DDI_BUF_CTL(port));
3056                 if (val & DDI_BUF_CTL_ENABLE) {
3057                         val &= ~DDI_BUF_CTL_ENABLE;
3058                         I915_WRITE(DDI_BUF_CTL(port), val);
3059                         wait = true;
3060                 }
3061
3062                 val = I915_READ(DP_TP_CTL(port));
3063                 val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
3064                 val |= DP_TP_CTL_LINK_TRAIN_PAT1;
3065                 I915_WRITE(DP_TP_CTL(port), val);
3066                 POSTING_READ(DP_TP_CTL(port));
3067
3068                 if (wait)
3069                         intel_wait_ddi_buf_idle(dev_priv, port);
3070         }
3071
3072         val = DP_TP_CTL_ENABLE |
3073               DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
3074         if (intel_dp->is_mst)
3075                 val |= DP_TP_CTL_MODE_MST;
3076         else {
3077                 val |= DP_TP_CTL_MODE_SST;
3078                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3079                         val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
3080         }
3081         I915_WRITE(DP_TP_CTL(port), val);
3082         POSTING_READ(DP_TP_CTL(port));
3083
3084         intel_dp->DP |= DDI_BUF_CTL_ENABLE;
3085         I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
3086         POSTING_READ(DDI_BUF_CTL(port));
3087
3088         udelay(600);
3089 }
3090
3091 void intel_ddi_fdi_disable(struct drm_crtc *crtc)
3092 {
3093         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3094         struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
3095         uint32_t val;
3096
3097         intel_ddi_post_disable(intel_encoder);
3098
3099         val = I915_READ(FDI_RX_CTL(PIPE_A));
3100         val &= ~FDI_RX_ENABLE;
3101         I915_WRITE(FDI_RX_CTL(PIPE_A), val);
3102
3103         val = I915_READ(FDI_RX_MISC(PIPE_A));
3104         val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
3105         val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
3106         I915_WRITE(FDI_RX_MISC(PIPE_A), val);
3107
3108         val = I915_READ(FDI_RX_CTL(PIPE_A));
3109         val &= ~FDI_PCDCLK;
3110         I915_WRITE(FDI_RX_CTL(PIPE_A), val);
3111
3112         val = I915_READ(FDI_RX_CTL(PIPE_A));
3113         val &= ~FDI_RX_PLL_ENABLE;
3114         I915_WRITE(FDI_RX_CTL(PIPE_A), val);
3115 }
3116
3117 bool intel_ddi_is_audio_enabled(struct drm_i915_private *dev_priv,
3118                                  struct intel_crtc *intel_crtc)
3119 {
3120         u32 temp;
3121
3122         if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
3123                 temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
3124                 if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
3125                         return true;
3126         }
3127         return false;
3128 }
3129
3130 void intel_ddi_get_config(struct intel_encoder *encoder,
3131                           struct intel_crtc_state *pipe_config)
3132 {
3133         struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
3134         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
3135         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
3136         struct intel_hdmi *intel_hdmi;
3137         u32 temp, flags = 0;
3138
3139         temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
3140         if (temp & TRANS_DDI_PHSYNC)
3141                 flags |= DRM_MODE_FLAG_PHSYNC;
3142         else
3143                 flags |= DRM_MODE_FLAG_NHSYNC;
3144         if (temp & TRANS_DDI_PVSYNC)
3145                 flags |= DRM_MODE_FLAG_PVSYNC;
3146         else
3147                 flags |= DRM_MODE_FLAG_NVSYNC;
3148
3149         pipe_config->base.adjusted_mode.flags |= flags;
3150
3151         switch (temp & TRANS_DDI_BPC_MASK) {
3152         case TRANS_DDI_BPC_6:
3153                 pipe_config->pipe_bpp = 18;
3154                 break;
3155         case TRANS_DDI_BPC_8:
3156                 pipe_config->pipe_bpp = 24;
3157                 break;
3158         case TRANS_DDI_BPC_10:
3159                 pipe_config->pipe_bpp = 30;
3160                 break;
3161         case TRANS_DDI_BPC_12:
3162                 pipe_config->pipe_bpp = 36;
3163                 break;
3164         default:
3165                 break;
3166         }
3167
3168         switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
3169         case TRANS_DDI_MODE_SELECT_HDMI:
3170                 pipe_config->has_hdmi_sink = true;
3171                 intel_hdmi = enc_to_intel_hdmi(&encoder->base);
3172
3173                 if (intel_hdmi->infoframe_enabled(&encoder->base, pipe_config))
3174                         pipe_config->has_infoframe = true;
3175                 break;
3176         case TRANS_DDI_MODE_SELECT_DVI:
3177         case TRANS_DDI_MODE_SELECT_FDI:
3178                 break;
3179         case TRANS_DDI_MODE_SELECT_DP_SST:
3180         case TRANS_DDI_MODE_SELECT_DP_MST:
3181                 pipe_config->has_dp_encoder = true;
3182                 pipe_config->lane_count =
3183                         ((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
3184                 intel_dp_get_m_n(intel_crtc, pipe_config);
3185                 break;
3186         default:
3187                 break;
3188         }
3189
3190         pipe_config->has_audio =
3191                 intel_ddi_is_audio_enabled(dev_priv, intel_crtc);
3192
3193         if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
3194             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
3195                 /*
3196                  * This is a big fat ugly hack.
3197                  *
3198                  * Some machines in UEFI boot mode provide us a VBT that has 18
3199                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3200                  * unknown we fail to light up. Yet the same BIOS boots up with
3201                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3202                  * max, not what it tells us to use.
3203                  *
3204                  * Note: This will still be broken if the eDP panel is not lit
3205                  * up by the BIOS, and thus we can't get the mode at module
3206                  * load.
3207                  */
3208                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3209                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
3210                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
3211         }
3212
3213         intel_ddi_clock_get(encoder, pipe_config);
3214 }
3215
3216 static void intel_ddi_destroy(struct drm_encoder *encoder)
3217 {
3218         /* HDMI has nothing special to destroy, so we can go with this. */
3219         intel_dp_encoder_destroy(encoder);
3220 }
3221
3222 static bool intel_ddi_compute_config(struct intel_encoder *encoder,
3223                                      struct intel_crtc_state *pipe_config)
3224 {
3225         int type = encoder->type;
3226         int port = intel_ddi_get_encoder_port(encoder);
3227
3228         WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
3229
3230         if (port == PORT_A)
3231                 pipe_config->cpu_transcoder = TRANSCODER_EDP;
3232
3233         if (type == INTEL_OUTPUT_HDMI)
3234                 return intel_hdmi_compute_config(encoder, pipe_config);
3235         else
3236                 return intel_dp_compute_config(encoder, pipe_config);
3237 }
3238
3239 static const struct drm_encoder_funcs intel_ddi_funcs = {
3240         .destroy = intel_ddi_destroy,
3241 };
3242
3243 static struct intel_connector *
3244 intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
3245 {
3246         struct intel_connector *connector;
3247         enum port port = intel_dig_port->port;
3248
3249         connector = intel_connector_alloc();
3250         if (!connector)
3251                 return NULL;
3252
3253         intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
3254         if (!intel_dp_init_connector(intel_dig_port, connector)) {
3255                 kfree(connector);
3256                 return NULL;
3257         }
3258
3259         return connector;
3260 }
3261
3262 static struct intel_connector *
3263 intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
3264 {
3265         struct intel_connector *connector;
3266         enum port port = intel_dig_port->port;
3267
3268         connector = intel_connector_alloc();
3269         if (!connector)
3270                 return NULL;
3271
3272         intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
3273         intel_hdmi_init_connector(intel_dig_port, connector);
3274
3275         return connector;
3276 }
3277
3278 void intel_ddi_init(struct drm_device *dev, enum port port)
3279 {
3280         struct drm_i915_private *dev_priv = dev->dev_private;
3281         struct intel_digital_port *intel_dig_port;
3282         struct intel_encoder *intel_encoder;
3283         struct drm_encoder *encoder;
3284         bool init_hdmi, init_dp;
3285
3286         init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
3287                      dev_priv->vbt.ddi_port_info[port].supports_hdmi);
3288         init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
3289         if (!init_dp && !init_hdmi) {
3290                 DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
3291                               port_name(port));
3292                 return;
3293         }
3294
3295         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3296         if (!intel_dig_port)
3297                 return;
3298
3299         intel_encoder = &intel_dig_port->base;
3300         encoder = &intel_encoder->base;
3301
3302         drm_encoder_init(dev, encoder, &intel_ddi_funcs,
3303                          DRM_MODE_ENCODER_TMDS, NULL);
3304
3305         intel_encoder->compute_config = intel_ddi_compute_config;
3306         intel_encoder->enable = intel_enable_ddi;
3307         intel_encoder->pre_enable = intel_ddi_pre_enable;
3308         intel_encoder->disable = intel_disable_ddi;
3309         intel_encoder->post_disable = intel_ddi_post_disable;
3310         intel_encoder->get_hw_state = intel_ddi_get_hw_state;
3311         intel_encoder->get_config = intel_ddi_get_config;
3312
3313         intel_dig_port->port = port;
3314         dev_priv->dig_port_map[port] = intel_encoder;
3315         intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
3316                                           (DDI_BUF_PORT_REVERSAL |
3317                                            DDI_A_4_LANES);
3318
3319         /*
3320          * Bspec says that DDI_A_4_LANES is the only supported configuration
3321          * for Broxton.  Yet some BIOS fail to set this bit on port A if eDP
3322          * wasn't lit up at boot.  Force this bit on in our internal
3323          * configuration so that we use the proper lane count for our
3324          * calculations.
3325          */
3326         if (IS_BROXTON(dev) && port == PORT_A) {
3327                 if (!(intel_dig_port->saved_port_bits & DDI_A_4_LANES)) {
3328                         DRM_DEBUG_KMS("BXT BIOS forgot to set DDI_A_4_LANES for port A; fixing\n");
3329                         intel_dig_port->saved_port_bits |= DDI_A_4_LANES;
3330                 }
3331         }
3332
3333         intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
3334         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3335         intel_encoder->cloneable = 0;
3336
3337         if (init_dp) {
3338                 if (!intel_ddi_init_dp_connector(intel_dig_port))
3339                         goto err;
3340
3341                 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
3342                 /*
3343                  * On BXT A0/A1, sw needs to activate DDIA HPD logic and
3344                  * interrupts to check the external panel connection.
3345                  */
3346                 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1) && port == PORT_B)
3347                         dev_priv->hotplug.irq_port[PORT_A] = intel_dig_port;
3348                 else
3349                         dev_priv->hotplug.irq_port[port] = intel_dig_port;
3350         }
3351
3352         /* In theory we don't need the encoder->type check, but leave it just in
3353          * case we have some really bad VBTs... */
3354         if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
3355                 if (!intel_ddi_init_hdmi_connector(intel_dig_port))
3356                         goto err;
3357         }
3358
3359         return;
3360
3361 err:
3362         drm_encoder_cleanup(encoder);
3363         kfree(intel_dig_port);
3364 }