]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_display.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "intel_dsi.h"
40 #include "i915_trace.h"
41 #include <drm/drm_atomic.h>
42 #include <drm/drm_atomic_helper.h>
43 #include <drm/drm_dp_helper.h>
44 #include <drm/drm_crtc_helper.h>
45 #include <drm/drm_plane_helper.h>
46 #include <drm/drm_rect.h>
47 #include <linux/dma_remapping.h>
48 #include <linux/reservation.h>
49 #include <linux/dma-buf.h>
50
51 /* Primary plane formats for gen <= 3 */
52 static const uint32_t i8xx_primary_formats[] = {
53         DRM_FORMAT_C8,
54         DRM_FORMAT_RGB565,
55         DRM_FORMAT_XRGB1555,
56         DRM_FORMAT_XRGB8888,
57 };
58
59 /* Primary plane formats for gen >= 4 */
60 static const uint32_t i965_primary_formats[] = {
61         DRM_FORMAT_C8,
62         DRM_FORMAT_RGB565,
63         DRM_FORMAT_XRGB8888,
64         DRM_FORMAT_XBGR8888,
65         DRM_FORMAT_XRGB2101010,
66         DRM_FORMAT_XBGR2101010,
67 };
68
69 static const uint32_t skl_primary_formats[] = {
70         DRM_FORMAT_C8,
71         DRM_FORMAT_RGB565,
72         DRM_FORMAT_XRGB8888,
73         DRM_FORMAT_XBGR8888,
74         DRM_FORMAT_ARGB8888,
75         DRM_FORMAT_ABGR8888,
76         DRM_FORMAT_XRGB2101010,
77         DRM_FORMAT_XBGR2101010,
78         DRM_FORMAT_YUYV,
79         DRM_FORMAT_YVYU,
80         DRM_FORMAT_UYVY,
81         DRM_FORMAT_VYUY,
82 };
83
84 /* Cursor formats */
85 static const uint32_t intel_cursor_formats[] = {
86         DRM_FORMAT_ARGB8888,
87 };
88
89 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
90                                 struct intel_crtc_state *pipe_config);
91 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
92                                    struct intel_crtc_state *pipe_config);
93
94 static int intel_framebuffer_init(struct drm_device *dev,
95                                   struct intel_framebuffer *ifb,
96                                   struct drm_mode_fb_cmd2 *mode_cmd,
97                                   struct drm_i915_gem_object *obj);
98 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
99 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
100 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
101 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
102                                          struct intel_link_m_n *m_n,
103                                          struct intel_link_m_n *m2_n2);
104 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
105 static void haswell_set_pipeconf(struct drm_crtc *crtc);
106 static void haswell_set_pipemisc(struct drm_crtc *crtc);
107 static void vlv_prepare_pll(struct intel_crtc *crtc,
108                             const struct intel_crtc_state *pipe_config);
109 static void chv_prepare_pll(struct intel_crtc *crtc,
110                             const struct intel_crtc_state *pipe_config);
111 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
112 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
113 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
114         struct intel_crtc_state *crtc_state);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
120
121 typedef struct {
122         int     min, max;
123 } intel_range_t;
124
125 typedef struct {
126         int     dot_limit;
127         int     p2_slow, p2_fast;
128 } intel_p2_t;
129
130 typedef struct intel_limit intel_limit_t;
131 struct intel_limit {
132         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
133         intel_p2_t          p2;
134 };
135
136 /* returns HPLL frequency in kHz */
137 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
138 {
139         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
140
141         /* Obtain SKU information */
142         mutex_lock(&dev_priv->sb_lock);
143         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
144                 CCK_FUSE_HPLL_FREQ_MASK;
145         mutex_unlock(&dev_priv->sb_lock);
146
147         return vco_freq[hpll_freq] * 1000;
148 }
149
150 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
151                       const char *name, u32 reg, int ref_freq)
152 {
153         u32 val;
154         int divider;
155
156         mutex_lock(&dev_priv->sb_lock);
157         val = vlv_cck_read(dev_priv, reg);
158         mutex_unlock(&dev_priv->sb_lock);
159
160         divider = val & CCK_FREQUENCY_VALUES;
161
162         WARN((val & CCK_FREQUENCY_STATUS) !=
163              (divider << CCK_FREQUENCY_STATUS_SHIFT),
164              "%s change in progress\n", name);
165
166         return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
167 }
168
169 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
170                                   const char *name, u32 reg)
171 {
172         if (dev_priv->hpll_freq == 0)
173                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
174
175         return vlv_get_cck_clock(dev_priv, name, reg,
176                                  dev_priv->hpll_freq);
177 }
178
179 static int
180 intel_pch_rawclk(struct drm_i915_private *dev_priv)
181 {
182         return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
183 }
184
185 static int
186 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
187 {
188         return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
189                                       CCK_DISPLAY_REF_CLOCK_CONTROL);
190 }
191
192 static int
193 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
194 {
195         uint32_t clkcfg;
196
197         /* hrawclock is 1/4 the FSB frequency */
198         clkcfg = I915_READ(CLKCFG);
199         switch (clkcfg & CLKCFG_FSB_MASK) {
200         case CLKCFG_FSB_400:
201                 return 100000;
202         case CLKCFG_FSB_533:
203                 return 133333;
204         case CLKCFG_FSB_667:
205                 return 166667;
206         case CLKCFG_FSB_800:
207                 return 200000;
208         case CLKCFG_FSB_1067:
209                 return 266667;
210         case CLKCFG_FSB_1333:
211                 return 333333;
212         /* these two are just a guess; one of them might be right */
213         case CLKCFG_FSB_1600:
214         case CLKCFG_FSB_1600_ALT:
215                 return 400000;
216         default:
217                 return 133333;
218         }
219 }
220
221 static void intel_update_rawclk(struct drm_i915_private *dev_priv)
222 {
223         if (HAS_PCH_SPLIT(dev_priv))
224                 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
225         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
226                 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
227         else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
228                 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
229         else
230                 return; /* no rawclk on other platforms, or no need to know it */
231
232         DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
233 }
234
235 static void intel_update_czclk(struct drm_i915_private *dev_priv)
236 {
237         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
238                 return;
239
240         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
241                                                       CCK_CZ_CLOCK_CONTROL);
242
243         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
244 }
245
246 static inline u32 /* units of 100MHz */
247 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
248                     const struct intel_crtc_state *pipe_config)
249 {
250         if (HAS_DDI(dev_priv))
251                 return pipe_config->port_clock; /* SPLL */
252         else if (IS_GEN5(dev_priv))
253                 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
254         else
255                 return 270000;
256 }
257
258 static const intel_limit_t intel_limits_i8xx_dac = {
259         .dot = { .min = 25000, .max = 350000 },
260         .vco = { .min = 908000, .max = 1512000 },
261         .n = { .min = 2, .max = 16 },
262         .m = { .min = 96, .max = 140 },
263         .m1 = { .min = 18, .max = 26 },
264         .m2 = { .min = 6, .max = 16 },
265         .p = { .min = 4, .max = 128 },
266         .p1 = { .min = 2, .max = 33 },
267         .p2 = { .dot_limit = 165000,
268                 .p2_slow = 4, .p2_fast = 2 },
269 };
270
271 static const intel_limit_t intel_limits_i8xx_dvo = {
272         .dot = { .min = 25000, .max = 350000 },
273         .vco = { .min = 908000, .max = 1512000 },
274         .n = { .min = 2, .max = 16 },
275         .m = { .min = 96, .max = 140 },
276         .m1 = { .min = 18, .max = 26 },
277         .m2 = { .min = 6, .max = 16 },
278         .p = { .min = 4, .max = 128 },
279         .p1 = { .min = 2, .max = 33 },
280         .p2 = { .dot_limit = 165000,
281                 .p2_slow = 4, .p2_fast = 4 },
282 };
283
284 static const intel_limit_t intel_limits_i8xx_lvds = {
285         .dot = { .min = 25000, .max = 350000 },
286         .vco = { .min = 908000, .max = 1512000 },
287         .n = { .min = 2, .max = 16 },
288         .m = { .min = 96, .max = 140 },
289         .m1 = { .min = 18, .max = 26 },
290         .m2 = { .min = 6, .max = 16 },
291         .p = { .min = 4, .max = 128 },
292         .p1 = { .min = 1, .max = 6 },
293         .p2 = { .dot_limit = 165000,
294                 .p2_slow = 14, .p2_fast = 7 },
295 };
296
297 static const intel_limit_t intel_limits_i9xx_sdvo = {
298         .dot = { .min = 20000, .max = 400000 },
299         .vco = { .min = 1400000, .max = 2800000 },
300         .n = { .min = 1, .max = 6 },
301         .m = { .min = 70, .max = 120 },
302         .m1 = { .min = 8, .max = 18 },
303         .m2 = { .min = 3, .max = 7 },
304         .p = { .min = 5, .max = 80 },
305         .p1 = { .min = 1, .max = 8 },
306         .p2 = { .dot_limit = 200000,
307                 .p2_slow = 10, .p2_fast = 5 },
308 };
309
310 static const intel_limit_t intel_limits_i9xx_lvds = {
311         .dot = { .min = 20000, .max = 400000 },
312         .vco = { .min = 1400000, .max = 2800000 },
313         .n = { .min = 1, .max = 6 },
314         .m = { .min = 70, .max = 120 },
315         .m1 = { .min = 8, .max = 18 },
316         .m2 = { .min = 3, .max = 7 },
317         .p = { .min = 7, .max = 98 },
318         .p1 = { .min = 1, .max = 8 },
319         .p2 = { .dot_limit = 112000,
320                 .p2_slow = 14, .p2_fast = 7 },
321 };
322
323
324 static const intel_limit_t intel_limits_g4x_sdvo = {
325         .dot = { .min = 25000, .max = 270000 },
326         .vco = { .min = 1750000, .max = 3500000},
327         .n = { .min = 1, .max = 4 },
328         .m = { .min = 104, .max = 138 },
329         .m1 = { .min = 17, .max = 23 },
330         .m2 = { .min = 5, .max = 11 },
331         .p = { .min = 10, .max = 30 },
332         .p1 = { .min = 1, .max = 3},
333         .p2 = { .dot_limit = 270000,
334                 .p2_slow = 10,
335                 .p2_fast = 10
336         },
337 };
338
339 static const intel_limit_t intel_limits_g4x_hdmi = {
340         .dot = { .min = 22000, .max = 400000 },
341         .vco = { .min = 1750000, .max = 3500000},
342         .n = { .min = 1, .max = 4 },
343         .m = { .min = 104, .max = 138 },
344         .m1 = { .min = 16, .max = 23 },
345         .m2 = { .min = 5, .max = 11 },
346         .p = { .min = 5, .max = 80 },
347         .p1 = { .min = 1, .max = 8},
348         .p2 = { .dot_limit = 165000,
349                 .p2_slow = 10, .p2_fast = 5 },
350 };
351
352 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
353         .dot = { .min = 20000, .max = 115000 },
354         .vco = { .min = 1750000, .max = 3500000 },
355         .n = { .min = 1, .max = 3 },
356         .m = { .min = 104, .max = 138 },
357         .m1 = { .min = 17, .max = 23 },
358         .m2 = { .min = 5, .max = 11 },
359         .p = { .min = 28, .max = 112 },
360         .p1 = { .min = 2, .max = 8 },
361         .p2 = { .dot_limit = 0,
362                 .p2_slow = 14, .p2_fast = 14
363         },
364 };
365
366 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
367         .dot = { .min = 80000, .max = 224000 },
368         .vco = { .min = 1750000, .max = 3500000 },
369         .n = { .min = 1, .max = 3 },
370         .m = { .min = 104, .max = 138 },
371         .m1 = { .min = 17, .max = 23 },
372         .m2 = { .min = 5, .max = 11 },
373         .p = { .min = 14, .max = 42 },
374         .p1 = { .min = 2, .max = 6 },
375         .p2 = { .dot_limit = 0,
376                 .p2_slow = 7, .p2_fast = 7
377         },
378 };
379
380 static const intel_limit_t intel_limits_pineview_sdvo = {
381         .dot = { .min = 20000, .max = 400000},
382         .vco = { .min = 1700000, .max = 3500000 },
383         /* Pineview's Ncounter is a ring counter */
384         .n = { .min = 3, .max = 6 },
385         .m = { .min = 2, .max = 256 },
386         /* Pineview only has one combined m divider, which we treat as m2. */
387         .m1 = { .min = 0, .max = 0 },
388         .m2 = { .min = 0, .max = 254 },
389         .p = { .min = 5, .max = 80 },
390         .p1 = { .min = 1, .max = 8 },
391         .p2 = { .dot_limit = 200000,
392                 .p2_slow = 10, .p2_fast = 5 },
393 };
394
395 static const intel_limit_t intel_limits_pineview_lvds = {
396         .dot = { .min = 20000, .max = 400000 },
397         .vco = { .min = 1700000, .max = 3500000 },
398         .n = { .min = 3, .max = 6 },
399         .m = { .min = 2, .max = 256 },
400         .m1 = { .min = 0, .max = 0 },
401         .m2 = { .min = 0, .max = 254 },
402         .p = { .min = 7, .max = 112 },
403         .p1 = { .min = 1, .max = 8 },
404         .p2 = { .dot_limit = 112000,
405                 .p2_slow = 14, .p2_fast = 14 },
406 };
407
408 /* Ironlake / Sandybridge
409  *
410  * We calculate clock using (register_value + 2) for N/M1/M2, so here
411  * the range value for them is (actual_value - 2).
412  */
413 static const intel_limit_t intel_limits_ironlake_dac = {
414         .dot = { .min = 25000, .max = 350000 },
415         .vco = { .min = 1760000, .max = 3510000 },
416         .n = { .min = 1, .max = 5 },
417         .m = { .min = 79, .max = 127 },
418         .m1 = { .min = 12, .max = 22 },
419         .m2 = { .min = 5, .max = 9 },
420         .p = { .min = 5, .max = 80 },
421         .p1 = { .min = 1, .max = 8 },
422         .p2 = { .dot_limit = 225000,
423                 .p2_slow = 10, .p2_fast = 5 },
424 };
425
426 static const intel_limit_t intel_limits_ironlake_single_lvds = {
427         .dot = { .min = 25000, .max = 350000 },
428         .vco = { .min = 1760000, .max = 3510000 },
429         .n = { .min = 1, .max = 3 },
430         .m = { .min = 79, .max = 118 },
431         .m1 = { .min = 12, .max = 22 },
432         .m2 = { .min = 5, .max = 9 },
433         .p = { .min = 28, .max = 112 },
434         .p1 = { .min = 2, .max = 8 },
435         .p2 = { .dot_limit = 225000,
436                 .p2_slow = 14, .p2_fast = 14 },
437 };
438
439 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
440         .dot = { .min = 25000, .max = 350000 },
441         .vco = { .min = 1760000, .max = 3510000 },
442         .n = { .min = 1, .max = 3 },
443         .m = { .min = 79, .max = 127 },
444         .m1 = { .min = 12, .max = 22 },
445         .m2 = { .min = 5, .max = 9 },
446         .p = { .min = 14, .max = 56 },
447         .p1 = { .min = 2, .max = 8 },
448         .p2 = { .dot_limit = 225000,
449                 .p2_slow = 7, .p2_fast = 7 },
450 };
451
452 /* LVDS 100mhz refclk limits. */
453 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
454         .dot = { .min = 25000, .max = 350000 },
455         .vco = { .min = 1760000, .max = 3510000 },
456         .n = { .min = 1, .max = 2 },
457         .m = { .min = 79, .max = 126 },
458         .m1 = { .min = 12, .max = 22 },
459         .m2 = { .min = 5, .max = 9 },
460         .p = { .min = 28, .max = 112 },
461         .p1 = { .min = 2, .max = 8 },
462         .p2 = { .dot_limit = 225000,
463                 .p2_slow = 14, .p2_fast = 14 },
464 };
465
466 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
467         .dot = { .min = 25000, .max = 350000 },
468         .vco = { .min = 1760000, .max = 3510000 },
469         .n = { .min = 1, .max = 3 },
470         .m = { .min = 79, .max = 126 },
471         .m1 = { .min = 12, .max = 22 },
472         .m2 = { .min = 5, .max = 9 },
473         .p = { .min = 14, .max = 42 },
474         .p1 = { .min = 2, .max = 6 },
475         .p2 = { .dot_limit = 225000,
476                 .p2_slow = 7, .p2_fast = 7 },
477 };
478
479 static const intel_limit_t intel_limits_vlv = {
480          /*
481           * These are the data rate limits (measured in fast clocks)
482           * since those are the strictest limits we have. The fast
483           * clock and actual rate limits are more relaxed, so checking
484           * them would make no difference.
485           */
486         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
487         .vco = { .min = 4000000, .max = 6000000 },
488         .n = { .min = 1, .max = 7 },
489         .m1 = { .min = 2, .max = 3 },
490         .m2 = { .min = 11, .max = 156 },
491         .p1 = { .min = 2, .max = 3 },
492         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
493 };
494
495 static const intel_limit_t intel_limits_chv = {
496         /*
497          * These are the data rate limits (measured in fast clocks)
498          * since those are the strictest limits we have.  The fast
499          * clock and actual rate limits are more relaxed, so checking
500          * them would make no difference.
501          */
502         .dot = { .min = 25000 * 5, .max = 540000 * 5},
503         .vco = { .min = 4800000, .max = 6480000 },
504         .n = { .min = 1, .max = 1 },
505         .m1 = { .min = 2, .max = 2 },
506         .m2 = { .min = 24 << 22, .max = 175 << 22 },
507         .p1 = { .min = 2, .max = 4 },
508         .p2 = { .p2_slow = 1, .p2_fast = 14 },
509 };
510
511 static const intel_limit_t intel_limits_bxt = {
512         /* FIXME: find real dot limits */
513         .dot = { .min = 0, .max = INT_MAX },
514         .vco = { .min = 4800000, .max = 6700000 },
515         .n = { .min = 1, .max = 1 },
516         .m1 = { .min = 2, .max = 2 },
517         /* FIXME: find real m2 limits */
518         .m2 = { .min = 2 << 22, .max = 255 << 22 },
519         .p1 = { .min = 2, .max = 4 },
520         .p2 = { .p2_slow = 1, .p2_fast = 20 },
521 };
522
523 static bool
524 needs_modeset(struct drm_crtc_state *state)
525 {
526         return drm_atomic_crtc_needs_modeset(state);
527 }
528
529 /**
530  * Returns whether any output on the specified pipe is of the specified type
531  */
532 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
533 {
534         struct drm_device *dev = crtc->base.dev;
535         struct intel_encoder *encoder;
536
537         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
538                 if (encoder->type == type)
539                         return true;
540
541         return false;
542 }
543
544 /**
545  * Returns whether any output on the specified pipe will have the specified
546  * type after a staged modeset is complete, i.e., the same as
547  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
548  * encoder->crtc.
549  */
550 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
551                                       int type)
552 {
553         struct drm_atomic_state *state = crtc_state->base.state;
554         struct drm_connector *connector;
555         struct drm_connector_state *connector_state;
556         struct intel_encoder *encoder;
557         int i, num_connectors = 0;
558
559         for_each_connector_in_state(state, connector, connector_state, i) {
560                 if (connector_state->crtc != crtc_state->base.crtc)
561                         continue;
562
563                 num_connectors++;
564
565                 encoder = to_intel_encoder(connector_state->best_encoder);
566                 if (encoder->type == type)
567                         return true;
568         }
569
570         WARN_ON(num_connectors == 0);
571
572         return false;
573 }
574
575 /*
576  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
577  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
578  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
579  * The helpers' return value is the rate of the clock that is fed to the
580  * display engine's pipe which can be the above fast dot clock rate or a
581  * divided-down version of it.
582  */
583 /* m1 is reserved as 0 in Pineview, n is a ring counter */
584 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
585 {
586         clock->m = clock->m2 + 2;
587         clock->p = clock->p1 * clock->p2;
588         if (WARN_ON(clock->n == 0 || clock->p == 0))
589                 return 0;
590         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
591         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
592
593         return clock->dot;
594 }
595
596 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
597 {
598         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
599 }
600
601 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
602 {
603         clock->m = i9xx_dpll_compute_m(clock);
604         clock->p = clock->p1 * clock->p2;
605         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
606                 return 0;
607         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
608         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
609
610         return clock->dot;
611 }
612
613 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
614 {
615         clock->m = clock->m1 * clock->m2;
616         clock->p = clock->p1 * clock->p2;
617         if (WARN_ON(clock->n == 0 || clock->p == 0))
618                 return 0;
619         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
620         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
621
622         return clock->dot / 5;
623 }
624
625 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
626 {
627         clock->m = clock->m1 * clock->m2;
628         clock->p = clock->p1 * clock->p2;
629         if (WARN_ON(clock->n == 0 || clock->p == 0))
630                 return 0;
631         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
632                         clock->n << 22);
633         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
634
635         return clock->dot / 5;
636 }
637
638 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
639 /**
640  * Returns whether the given set of divisors are valid for a given refclk with
641  * the given connectors.
642  */
643
644 static bool intel_PLL_is_valid(struct drm_device *dev,
645                                const intel_limit_t *limit,
646                                const intel_clock_t *clock)
647 {
648         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
649                 INTELPllInvalid("n out of range\n");
650         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
651                 INTELPllInvalid("p1 out of range\n");
652         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
653                 INTELPllInvalid("m2 out of range\n");
654         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
655                 INTELPllInvalid("m1 out of range\n");
656
657         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
658             !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
659                 if (clock->m1 <= clock->m2)
660                         INTELPllInvalid("m1 <= m2\n");
661
662         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
663                 if (clock->p < limit->p.min || limit->p.max < clock->p)
664                         INTELPllInvalid("p out of range\n");
665                 if (clock->m < limit->m.min || limit->m.max < clock->m)
666                         INTELPllInvalid("m out of range\n");
667         }
668
669         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
670                 INTELPllInvalid("vco out of range\n");
671         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
672          * connector, etc., rather than just a single range.
673          */
674         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
675                 INTELPllInvalid("dot out of range\n");
676
677         return true;
678 }
679
680 static int
681 i9xx_select_p2_div(const intel_limit_t *limit,
682                    const struct intel_crtc_state *crtc_state,
683                    int target)
684 {
685         struct drm_device *dev = crtc_state->base.crtc->dev;
686
687         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
688                 /*
689                  * For LVDS just rely on its current settings for dual-channel.
690                  * We haven't figured out how to reliably set up different
691                  * single/dual channel state, if we even can.
692                  */
693                 if (intel_is_dual_link_lvds(dev))
694                         return limit->p2.p2_fast;
695                 else
696                         return limit->p2.p2_slow;
697         } else {
698                 if (target < limit->p2.dot_limit)
699                         return limit->p2.p2_slow;
700                 else
701                         return limit->p2.p2_fast;
702         }
703 }
704
705 /*
706  * Returns a set of divisors for the desired target clock with the given
707  * refclk, or FALSE.  The returned values represent the clock equation:
708  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
709  *
710  * Target and reference clocks are specified in kHz.
711  *
712  * If match_clock is provided, then best_clock P divider must match the P
713  * divider from @match_clock used for LVDS downclocking.
714  */
715 static bool
716 i9xx_find_best_dpll(const intel_limit_t *limit,
717                     struct intel_crtc_state *crtc_state,
718                     int target, int refclk, intel_clock_t *match_clock,
719                     intel_clock_t *best_clock)
720 {
721         struct drm_device *dev = crtc_state->base.crtc->dev;
722         intel_clock_t clock;
723         int err = target;
724
725         memset(best_clock, 0, sizeof(*best_clock));
726
727         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
728
729         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
730              clock.m1++) {
731                 for (clock.m2 = limit->m2.min;
732                      clock.m2 <= limit->m2.max; clock.m2++) {
733                         if (clock.m2 >= clock.m1)
734                                 break;
735                         for (clock.n = limit->n.min;
736                              clock.n <= limit->n.max; clock.n++) {
737                                 for (clock.p1 = limit->p1.min;
738                                         clock.p1 <= limit->p1.max; clock.p1++) {
739                                         int this_err;
740
741                                         i9xx_calc_dpll_params(refclk, &clock);
742                                         if (!intel_PLL_is_valid(dev, limit,
743                                                                 &clock))
744                                                 continue;
745                                         if (match_clock &&
746                                             clock.p != match_clock->p)
747                                                 continue;
748
749                                         this_err = abs(clock.dot - target);
750                                         if (this_err < err) {
751                                                 *best_clock = clock;
752                                                 err = this_err;
753                                         }
754                                 }
755                         }
756                 }
757         }
758
759         return (err != target);
760 }
761
762 /*
763  * Returns a set of divisors for the desired target clock with the given
764  * refclk, or FALSE.  The returned values represent the clock equation:
765  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
766  *
767  * Target and reference clocks are specified in kHz.
768  *
769  * If match_clock is provided, then best_clock P divider must match the P
770  * divider from @match_clock used for LVDS downclocking.
771  */
772 static bool
773 pnv_find_best_dpll(const intel_limit_t *limit,
774                    struct intel_crtc_state *crtc_state,
775                    int target, int refclk, intel_clock_t *match_clock,
776                    intel_clock_t *best_clock)
777 {
778         struct drm_device *dev = crtc_state->base.crtc->dev;
779         intel_clock_t clock;
780         int err = target;
781
782         memset(best_clock, 0, sizeof(*best_clock));
783
784         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
785
786         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
787              clock.m1++) {
788                 for (clock.m2 = limit->m2.min;
789                      clock.m2 <= limit->m2.max; clock.m2++) {
790                         for (clock.n = limit->n.min;
791                              clock.n <= limit->n.max; clock.n++) {
792                                 for (clock.p1 = limit->p1.min;
793                                         clock.p1 <= limit->p1.max; clock.p1++) {
794                                         int this_err;
795
796                                         pnv_calc_dpll_params(refclk, &clock);
797                                         if (!intel_PLL_is_valid(dev, limit,
798                                                                 &clock))
799                                                 continue;
800                                         if (match_clock &&
801                                             clock.p != match_clock->p)
802                                                 continue;
803
804                                         this_err = abs(clock.dot - target);
805                                         if (this_err < err) {
806                                                 *best_clock = clock;
807                                                 err = this_err;
808                                         }
809                                 }
810                         }
811                 }
812         }
813
814         return (err != target);
815 }
816
817 /*
818  * Returns a set of divisors for the desired target clock with the given
819  * refclk, or FALSE.  The returned values represent the clock equation:
820  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
821  *
822  * Target and reference clocks are specified in kHz.
823  *
824  * If match_clock is provided, then best_clock P divider must match the P
825  * divider from @match_clock used for LVDS downclocking.
826  */
827 static bool
828 g4x_find_best_dpll(const intel_limit_t *limit,
829                    struct intel_crtc_state *crtc_state,
830                    int target, int refclk, intel_clock_t *match_clock,
831                    intel_clock_t *best_clock)
832 {
833         struct drm_device *dev = crtc_state->base.crtc->dev;
834         intel_clock_t clock;
835         int max_n;
836         bool found = false;
837         /* approximately equals target * 0.00585 */
838         int err_most = (target >> 8) + (target >> 9);
839
840         memset(best_clock, 0, sizeof(*best_clock));
841
842         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
843
844         max_n = limit->n.max;
845         /* based on hardware requirement, prefer smaller n to precision */
846         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
847                 /* based on hardware requirement, prefere larger m1,m2 */
848                 for (clock.m1 = limit->m1.max;
849                      clock.m1 >= limit->m1.min; clock.m1--) {
850                         for (clock.m2 = limit->m2.max;
851                              clock.m2 >= limit->m2.min; clock.m2--) {
852                                 for (clock.p1 = limit->p1.max;
853                                      clock.p1 >= limit->p1.min; clock.p1--) {
854                                         int this_err;
855
856                                         i9xx_calc_dpll_params(refclk, &clock);
857                                         if (!intel_PLL_is_valid(dev, limit,
858                                                                 &clock))
859                                                 continue;
860
861                                         this_err = abs(clock.dot - target);
862                                         if (this_err < err_most) {
863                                                 *best_clock = clock;
864                                                 err_most = this_err;
865                                                 max_n = clock.n;
866                                                 found = true;
867                                         }
868                                 }
869                         }
870                 }
871         }
872         return found;
873 }
874
875 /*
876  * Check if the calculated PLL configuration is more optimal compared to the
877  * best configuration and error found so far. Return the calculated error.
878  */
879 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
880                                const intel_clock_t *calculated_clock,
881                                const intel_clock_t *best_clock,
882                                unsigned int best_error_ppm,
883                                unsigned int *error_ppm)
884 {
885         /*
886          * For CHV ignore the error and consider only the P value.
887          * Prefer a bigger P value based on HW requirements.
888          */
889         if (IS_CHERRYVIEW(dev)) {
890                 *error_ppm = 0;
891
892                 return calculated_clock->p > best_clock->p;
893         }
894
895         if (WARN_ON_ONCE(!target_freq))
896                 return false;
897
898         *error_ppm = div_u64(1000000ULL *
899                                 abs(target_freq - calculated_clock->dot),
900                              target_freq);
901         /*
902          * Prefer a better P value over a better (smaller) error if the error
903          * is small. Ensure this preference for future configurations too by
904          * setting the error to 0.
905          */
906         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
907                 *error_ppm = 0;
908
909                 return true;
910         }
911
912         return *error_ppm + 10 < best_error_ppm;
913 }
914
915 /*
916  * Returns a set of divisors for the desired target clock with the given
917  * refclk, or FALSE.  The returned values represent the clock equation:
918  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
919  */
920 static bool
921 vlv_find_best_dpll(const intel_limit_t *limit,
922                    struct intel_crtc_state *crtc_state,
923                    int target, int refclk, intel_clock_t *match_clock,
924                    intel_clock_t *best_clock)
925 {
926         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
927         struct drm_device *dev = crtc->base.dev;
928         intel_clock_t clock;
929         unsigned int bestppm = 1000000;
930         /* min update 19.2 MHz */
931         int max_n = min(limit->n.max, refclk / 19200);
932         bool found = false;
933
934         target *= 5; /* fast clock */
935
936         memset(best_clock, 0, sizeof(*best_clock));
937
938         /* based on hardware requirement, prefer smaller n to precision */
939         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
940                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
941                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
942                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
943                                 clock.p = clock.p1 * clock.p2;
944                                 /* based on hardware requirement, prefer bigger m1,m2 values */
945                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
946                                         unsigned int ppm;
947
948                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
949                                                                      refclk * clock.m1);
950
951                                         vlv_calc_dpll_params(refclk, &clock);
952
953                                         if (!intel_PLL_is_valid(dev, limit,
954                                                                 &clock))
955                                                 continue;
956
957                                         if (!vlv_PLL_is_optimal(dev, target,
958                                                                 &clock,
959                                                                 best_clock,
960                                                                 bestppm, &ppm))
961                                                 continue;
962
963                                         *best_clock = clock;
964                                         bestppm = ppm;
965                                         found = true;
966                                 }
967                         }
968                 }
969         }
970
971         return found;
972 }
973
974 /*
975  * Returns a set of divisors for the desired target clock with the given
976  * refclk, or FALSE.  The returned values represent the clock equation:
977  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
978  */
979 static bool
980 chv_find_best_dpll(const intel_limit_t *limit,
981                    struct intel_crtc_state *crtc_state,
982                    int target, int refclk, intel_clock_t *match_clock,
983                    intel_clock_t *best_clock)
984 {
985         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
986         struct drm_device *dev = crtc->base.dev;
987         unsigned int best_error_ppm;
988         intel_clock_t clock;
989         uint64_t m2;
990         int found = false;
991
992         memset(best_clock, 0, sizeof(*best_clock));
993         best_error_ppm = 1000000;
994
995         /*
996          * Based on hardware doc, the n always set to 1, and m1 always
997          * set to 2.  If requires to support 200Mhz refclk, we need to
998          * revisit this because n may not 1 anymore.
999          */
1000         clock.n = 1, clock.m1 = 2;
1001         target *= 5;    /* fast clock */
1002
1003         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1004                 for (clock.p2 = limit->p2.p2_fast;
1005                                 clock.p2 >= limit->p2.p2_slow;
1006                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1007                         unsigned int error_ppm;
1008
1009                         clock.p = clock.p1 * clock.p2;
1010
1011                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1012                                         clock.n) << 22, refclk * clock.m1);
1013
1014                         if (m2 > INT_MAX/clock.m1)
1015                                 continue;
1016
1017                         clock.m2 = m2;
1018
1019                         chv_calc_dpll_params(refclk, &clock);
1020
1021                         if (!intel_PLL_is_valid(dev, limit, &clock))
1022                                 continue;
1023
1024                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1025                                                 best_error_ppm, &error_ppm))
1026                                 continue;
1027
1028                         *best_clock = clock;
1029                         best_error_ppm = error_ppm;
1030                         found = true;
1031                 }
1032         }
1033
1034         return found;
1035 }
1036
1037 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1038                         intel_clock_t *best_clock)
1039 {
1040         int refclk = 100000;
1041         const intel_limit_t *limit = &intel_limits_bxt;
1042
1043         return chv_find_best_dpll(limit, crtc_state,
1044                                   target_clock, refclk, NULL, best_clock);
1045 }
1046
1047 bool intel_crtc_active(struct drm_crtc *crtc)
1048 {
1049         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1050
1051         /* Be paranoid as we can arrive here with only partial
1052          * state retrieved from the hardware during setup.
1053          *
1054          * We can ditch the adjusted_mode.crtc_clock check as soon
1055          * as Haswell has gained clock readout/fastboot support.
1056          *
1057          * We can ditch the crtc->primary->fb check as soon as we can
1058          * properly reconstruct framebuffers.
1059          *
1060          * FIXME: The intel_crtc->active here should be switched to
1061          * crtc->state->active once we have proper CRTC states wired up
1062          * for atomic.
1063          */
1064         return intel_crtc->active && crtc->primary->state->fb &&
1065                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1066 }
1067
1068 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1069                                              enum pipe pipe)
1070 {
1071         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1072         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1073
1074         return intel_crtc->config->cpu_transcoder;
1075 }
1076
1077 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1078 {
1079         struct drm_i915_private *dev_priv = dev->dev_private;
1080         i915_reg_t reg = PIPEDSL(pipe);
1081         u32 line1, line2;
1082         u32 line_mask;
1083
1084         if (IS_GEN2(dev))
1085                 line_mask = DSL_LINEMASK_GEN2;
1086         else
1087                 line_mask = DSL_LINEMASK_GEN3;
1088
1089         line1 = I915_READ(reg) & line_mask;
1090         msleep(5);
1091         line2 = I915_READ(reg) & line_mask;
1092
1093         return line1 == line2;
1094 }
1095
1096 /*
1097  * intel_wait_for_pipe_off - wait for pipe to turn off
1098  * @crtc: crtc whose pipe to wait for
1099  *
1100  * After disabling a pipe, we can't wait for vblank in the usual way,
1101  * spinning on the vblank interrupt status bit, since we won't actually
1102  * see an interrupt when the pipe is disabled.
1103  *
1104  * On Gen4 and above:
1105  *   wait for the pipe register state bit to turn off
1106  *
1107  * Otherwise:
1108  *   wait for the display line value to settle (it usually
1109  *   ends up stopping at the start of the next frame).
1110  *
1111  */
1112 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1113 {
1114         struct drm_device *dev = crtc->base.dev;
1115         struct drm_i915_private *dev_priv = dev->dev_private;
1116         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1117         enum pipe pipe = crtc->pipe;
1118
1119         if (INTEL_INFO(dev)->gen >= 4) {
1120                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1121
1122                 /* Wait for the Pipe State to go off */
1123                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1124                              100))
1125                         WARN(1, "pipe_off wait timed out\n");
1126         } else {
1127                 /* Wait for the display line to settle */
1128                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1129                         WARN(1, "pipe_off wait timed out\n");
1130         }
1131 }
1132
1133 /* Only for pre-ILK configs */
1134 void assert_pll(struct drm_i915_private *dev_priv,
1135                 enum pipe pipe, bool state)
1136 {
1137         u32 val;
1138         bool cur_state;
1139
1140         val = I915_READ(DPLL(pipe));
1141         cur_state = !!(val & DPLL_VCO_ENABLE);
1142         I915_STATE_WARN(cur_state != state,
1143              "PLL state assertion failure (expected %s, current %s)\n",
1144                         onoff(state), onoff(cur_state));
1145 }
1146
1147 /* XXX: the dsi pll is shared between MIPI DSI ports */
1148 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1149 {
1150         u32 val;
1151         bool cur_state;
1152
1153         mutex_lock(&dev_priv->sb_lock);
1154         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1155         mutex_unlock(&dev_priv->sb_lock);
1156
1157         cur_state = val & DSI_PLL_VCO_EN;
1158         I915_STATE_WARN(cur_state != state,
1159              "DSI PLL state assertion failure (expected %s, current %s)\n",
1160                         onoff(state), onoff(cur_state));
1161 }
1162
1163 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1164                           enum pipe pipe, bool state)
1165 {
1166         bool cur_state;
1167         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1168                                                                       pipe);
1169
1170         if (HAS_DDI(dev_priv)) {
1171                 /* DDI does not have a specific FDI_TX register */
1172                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1173                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1174         } else {
1175                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1176                 cur_state = !!(val & FDI_TX_ENABLE);
1177         }
1178         I915_STATE_WARN(cur_state != state,
1179              "FDI TX state assertion failure (expected %s, current %s)\n",
1180                         onoff(state), onoff(cur_state));
1181 }
1182 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1183 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1184
1185 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1186                           enum pipe pipe, bool state)
1187 {
1188         u32 val;
1189         bool cur_state;
1190
1191         val = I915_READ(FDI_RX_CTL(pipe));
1192         cur_state = !!(val & FDI_RX_ENABLE);
1193         I915_STATE_WARN(cur_state != state,
1194              "FDI RX state assertion failure (expected %s, current %s)\n",
1195                         onoff(state), onoff(cur_state));
1196 }
1197 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1198 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1199
1200 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1201                                       enum pipe pipe)
1202 {
1203         u32 val;
1204
1205         /* ILK FDI PLL is always enabled */
1206         if (INTEL_INFO(dev_priv)->gen == 5)
1207                 return;
1208
1209         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1210         if (HAS_DDI(dev_priv))
1211                 return;
1212
1213         val = I915_READ(FDI_TX_CTL(pipe));
1214         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1215 }
1216
1217 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1218                        enum pipe pipe, bool state)
1219 {
1220         u32 val;
1221         bool cur_state;
1222
1223         val = I915_READ(FDI_RX_CTL(pipe));
1224         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1225         I915_STATE_WARN(cur_state != state,
1226              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1227                         onoff(state), onoff(cur_state));
1228 }
1229
1230 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1231                            enum pipe pipe)
1232 {
1233         struct drm_device *dev = dev_priv->dev;
1234         i915_reg_t pp_reg;
1235         u32 val;
1236         enum pipe panel_pipe = PIPE_A;
1237         bool locked = true;
1238
1239         if (WARN_ON(HAS_DDI(dev)))
1240                 return;
1241
1242         if (HAS_PCH_SPLIT(dev)) {
1243                 u32 port_sel;
1244
1245                 pp_reg = PCH_PP_CONTROL;
1246                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1247
1248                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1249                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1250                         panel_pipe = PIPE_B;
1251                 /* XXX: else fix for eDP */
1252         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1253                 /* presumably write lock depends on pipe, not port select */
1254                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1255                 panel_pipe = pipe;
1256         } else {
1257                 pp_reg = PP_CONTROL;
1258                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1259                         panel_pipe = PIPE_B;
1260         }
1261
1262         val = I915_READ(pp_reg);
1263         if (!(val & PANEL_POWER_ON) ||
1264             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1265                 locked = false;
1266
1267         I915_STATE_WARN(panel_pipe == pipe && locked,
1268              "panel assertion failure, pipe %c regs locked\n",
1269              pipe_name(pipe));
1270 }
1271
1272 static void assert_cursor(struct drm_i915_private *dev_priv,
1273                           enum pipe pipe, bool state)
1274 {
1275         struct drm_device *dev = dev_priv->dev;
1276         bool cur_state;
1277
1278         if (IS_845G(dev) || IS_I865G(dev))
1279                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1280         else
1281                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1282
1283         I915_STATE_WARN(cur_state != state,
1284              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1285                         pipe_name(pipe), onoff(state), onoff(cur_state));
1286 }
1287 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1288 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1289
1290 void assert_pipe(struct drm_i915_private *dev_priv,
1291                  enum pipe pipe, bool state)
1292 {
1293         bool cur_state;
1294         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1295                                                                       pipe);
1296         enum intel_display_power_domain power_domain;
1297
1298         /* if we need the pipe quirk it must be always on */
1299         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1300             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1301                 state = true;
1302
1303         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1304         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1305                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1306                 cur_state = !!(val & PIPECONF_ENABLE);
1307
1308                 intel_display_power_put(dev_priv, power_domain);
1309         } else {
1310                 cur_state = false;
1311         }
1312
1313         I915_STATE_WARN(cur_state != state,
1314              "pipe %c assertion failure (expected %s, current %s)\n",
1315                         pipe_name(pipe), onoff(state), onoff(cur_state));
1316 }
1317
1318 static void assert_plane(struct drm_i915_private *dev_priv,
1319                          enum plane plane, bool state)
1320 {
1321         u32 val;
1322         bool cur_state;
1323
1324         val = I915_READ(DSPCNTR(plane));
1325         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1326         I915_STATE_WARN(cur_state != state,
1327              "plane %c assertion failure (expected %s, current %s)\n",
1328                         plane_name(plane), onoff(state), onoff(cur_state));
1329 }
1330
1331 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1332 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1333
1334 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1335                                    enum pipe pipe)
1336 {
1337         struct drm_device *dev = dev_priv->dev;
1338         int i;
1339
1340         /* Primary planes are fixed to pipes on gen4+ */
1341         if (INTEL_INFO(dev)->gen >= 4) {
1342                 u32 val = I915_READ(DSPCNTR(pipe));
1343                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1344                      "plane %c assertion failure, should be disabled but not\n",
1345                      plane_name(pipe));
1346                 return;
1347         }
1348
1349         /* Need to check both planes against the pipe */
1350         for_each_pipe(dev_priv, i) {
1351                 u32 val = I915_READ(DSPCNTR(i));
1352                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1353                         DISPPLANE_SEL_PIPE_SHIFT;
1354                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1355                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1356                      plane_name(i), pipe_name(pipe));
1357         }
1358 }
1359
1360 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1361                                     enum pipe pipe)
1362 {
1363         struct drm_device *dev = dev_priv->dev;
1364         int sprite;
1365
1366         if (INTEL_INFO(dev)->gen >= 9) {
1367                 for_each_sprite(dev_priv, pipe, sprite) {
1368                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1369                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1370                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1371                              sprite, pipe_name(pipe));
1372                 }
1373         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1374                 for_each_sprite(dev_priv, pipe, sprite) {
1375                         u32 val = I915_READ(SPCNTR(pipe, sprite));
1376                         I915_STATE_WARN(val & SP_ENABLE,
1377                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1378                              sprite_name(pipe, sprite), pipe_name(pipe));
1379                 }
1380         } else if (INTEL_INFO(dev)->gen >= 7) {
1381                 u32 val = I915_READ(SPRCTL(pipe));
1382                 I915_STATE_WARN(val & SPRITE_ENABLE,
1383                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1384                      plane_name(pipe), pipe_name(pipe));
1385         } else if (INTEL_INFO(dev)->gen >= 5) {
1386                 u32 val = I915_READ(DVSCNTR(pipe));
1387                 I915_STATE_WARN(val & DVS_ENABLE,
1388                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1389                      plane_name(pipe), pipe_name(pipe));
1390         }
1391 }
1392
1393 static void assert_vblank_disabled(struct drm_crtc *crtc)
1394 {
1395         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1396                 drm_crtc_vblank_put(crtc);
1397 }
1398
1399 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1400                                     enum pipe pipe)
1401 {
1402         u32 val;
1403         bool enabled;
1404
1405         val = I915_READ(PCH_TRANSCONF(pipe));
1406         enabled = !!(val & TRANS_ENABLE);
1407         I915_STATE_WARN(enabled,
1408              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1409              pipe_name(pipe));
1410 }
1411
1412 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1413                             enum pipe pipe, u32 port_sel, u32 val)
1414 {
1415         if ((val & DP_PORT_EN) == 0)
1416                 return false;
1417
1418         if (HAS_PCH_CPT(dev_priv)) {
1419                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1420                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1421                         return false;
1422         } else if (IS_CHERRYVIEW(dev_priv)) {
1423                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1424                         return false;
1425         } else {
1426                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1427                         return false;
1428         }
1429         return true;
1430 }
1431
1432 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1433                               enum pipe pipe, u32 val)
1434 {
1435         if ((val & SDVO_ENABLE) == 0)
1436                 return false;
1437
1438         if (HAS_PCH_CPT(dev_priv)) {
1439                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1440                         return false;
1441         } else if (IS_CHERRYVIEW(dev_priv)) {
1442                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1443                         return false;
1444         } else {
1445                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1446                         return false;
1447         }
1448         return true;
1449 }
1450
1451 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1452                               enum pipe pipe, u32 val)
1453 {
1454         if ((val & LVDS_PORT_EN) == 0)
1455                 return false;
1456
1457         if (HAS_PCH_CPT(dev_priv)) {
1458                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1459                         return false;
1460         } else {
1461                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1462                         return false;
1463         }
1464         return true;
1465 }
1466
1467 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1468                               enum pipe pipe, u32 val)
1469 {
1470         if ((val & ADPA_DAC_ENABLE) == 0)
1471                 return false;
1472         if (HAS_PCH_CPT(dev_priv)) {
1473                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1474                         return false;
1475         } else {
1476                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1477                         return false;
1478         }
1479         return true;
1480 }
1481
1482 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1483                                    enum pipe pipe, i915_reg_t reg,
1484                                    u32 port_sel)
1485 {
1486         u32 val = I915_READ(reg);
1487         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1488              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1489              i915_mmio_reg_offset(reg), pipe_name(pipe));
1490
1491         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1492              && (val & DP_PIPEB_SELECT),
1493              "IBX PCH dp port still using transcoder B\n");
1494 }
1495
1496 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1497                                      enum pipe pipe, i915_reg_t reg)
1498 {
1499         u32 val = I915_READ(reg);
1500         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1501              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1502              i915_mmio_reg_offset(reg), pipe_name(pipe));
1503
1504         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1505              && (val & SDVO_PIPE_B_SELECT),
1506              "IBX PCH hdmi port still using transcoder B\n");
1507 }
1508
1509 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1510                                       enum pipe pipe)
1511 {
1512         u32 val;
1513
1514         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1515         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1516         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1517
1518         val = I915_READ(PCH_ADPA);
1519         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1520              "PCH VGA enabled on transcoder %c, should be disabled\n",
1521              pipe_name(pipe));
1522
1523         val = I915_READ(PCH_LVDS);
1524         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1525              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1526              pipe_name(pipe));
1527
1528         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1529         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1530         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1531 }
1532
1533 static void _vlv_enable_pll(struct intel_crtc *crtc,
1534                             const struct intel_crtc_state *pipe_config)
1535 {
1536         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1537         enum pipe pipe = crtc->pipe;
1538
1539         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1540         POSTING_READ(DPLL(pipe));
1541         udelay(150);
1542
1543         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1544                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1545 }
1546
1547 static void vlv_enable_pll(struct intel_crtc *crtc,
1548                            const struct intel_crtc_state *pipe_config)
1549 {
1550         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1551         enum pipe pipe = crtc->pipe;
1552
1553         assert_pipe_disabled(dev_priv, pipe);
1554
1555         /* PLL is protected by panel, make sure we can write it */
1556         assert_panel_unlocked(dev_priv, pipe);
1557
1558         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1559                 _vlv_enable_pll(crtc, pipe_config);
1560
1561         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1562         POSTING_READ(DPLL_MD(pipe));
1563 }
1564
1565
1566 static void _chv_enable_pll(struct intel_crtc *crtc,
1567                             const struct intel_crtc_state *pipe_config)
1568 {
1569         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1570         enum pipe pipe = crtc->pipe;
1571         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1572         u32 tmp;
1573
1574         mutex_lock(&dev_priv->sb_lock);
1575
1576         /* Enable back the 10bit clock to display controller */
1577         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1578         tmp |= DPIO_DCLKP_EN;
1579         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1580
1581         mutex_unlock(&dev_priv->sb_lock);
1582
1583         /*
1584          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1585          */
1586         udelay(1);
1587
1588         /* Enable PLL */
1589         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1590
1591         /* Check PLL is locked */
1592         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1593                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1594 }
1595
1596 static void chv_enable_pll(struct intel_crtc *crtc,
1597                            const struct intel_crtc_state *pipe_config)
1598 {
1599         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1600         enum pipe pipe = crtc->pipe;
1601
1602         assert_pipe_disabled(dev_priv, pipe);
1603
1604         /* PLL is protected by panel, make sure we can write it */
1605         assert_panel_unlocked(dev_priv, pipe);
1606
1607         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1608                 _chv_enable_pll(crtc, pipe_config);
1609
1610         if (pipe != PIPE_A) {
1611                 /*
1612                  * WaPixelRepeatModeFixForC0:chv
1613                  *
1614                  * DPLLCMD is AWOL. Use chicken bits to propagate
1615                  * the value from DPLLBMD to either pipe B or C.
1616                  */
1617                 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1618                 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1619                 I915_WRITE(CBR4_VLV, 0);
1620                 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1621
1622                 /*
1623                  * DPLLB VGA mode also seems to cause problems.
1624                  * We should always have it disabled.
1625                  */
1626                 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1627         } else {
1628                 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1629                 POSTING_READ(DPLL_MD(pipe));
1630         }
1631 }
1632
1633 static int intel_num_dvo_pipes(struct drm_device *dev)
1634 {
1635         struct intel_crtc *crtc;
1636         int count = 0;
1637
1638         for_each_intel_crtc(dev, crtc)
1639                 count += crtc->base.state->active &&
1640                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1641
1642         return count;
1643 }
1644
1645 static void i9xx_enable_pll(struct intel_crtc *crtc)
1646 {
1647         struct drm_device *dev = crtc->base.dev;
1648         struct drm_i915_private *dev_priv = dev->dev_private;
1649         i915_reg_t reg = DPLL(crtc->pipe);
1650         u32 dpll = crtc->config->dpll_hw_state.dpll;
1651
1652         assert_pipe_disabled(dev_priv, crtc->pipe);
1653
1654         /* PLL is protected by panel, make sure we can write it */
1655         if (IS_MOBILE(dev) && !IS_I830(dev))
1656                 assert_panel_unlocked(dev_priv, crtc->pipe);
1657
1658         /* Enable DVO 2x clock on both PLLs if necessary */
1659         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1660                 /*
1661                  * It appears to be important that we don't enable this
1662                  * for the current pipe before otherwise configuring the
1663                  * PLL. No idea how this should be handled if multiple
1664                  * DVO outputs are enabled simultaneosly.
1665                  */
1666                 dpll |= DPLL_DVO_2X_MODE;
1667                 I915_WRITE(DPLL(!crtc->pipe),
1668                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1669         }
1670
1671         /*
1672          * Apparently we need to have VGA mode enabled prior to changing
1673          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1674          * dividers, even though the register value does change.
1675          */
1676         I915_WRITE(reg, 0);
1677
1678         I915_WRITE(reg, dpll);
1679
1680         /* Wait for the clocks to stabilize. */
1681         POSTING_READ(reg);
1682         udelay(150);
1683
1684         if (INTEL_INFO(dev)->gen >= 4) {
1685                 I915_WRITE(DPLL_MD(crtc->pipe),
1686                            crtc->config->dpll_hw_state.dpll_md);
1687         } else {
1688                 /* The pixel multiplier can only be updated once the
1689                  * DPLL is enabled and the clocks are stable.
1690                  *
1691                  * So write it again.
1692                  */
1693                 I915_WRITE(reg, dpll);
1694         }
1695
1696         /* We do this three times for luck */
1697         I915_WRITE(reg, dpll);
1698         POSTING_READ(reg);
1699         udelay(150); /* wait for warmup */
1700         I915_WRITE(reg, dpll);
1701         POSTING_READ(reg);
1702         udelay(150); /* wait for warmup */
1703         I915_WRITE(reg, dpll);
1704         POSTING_READ(reg);
1705         udelay(150); /* wait for warmup */
1706 }
1707
1708 /**
1709  * i9xx_disable_pll - disable a PLL
1710  * @dev_priv: i915 private structure
1711  * @pipe: pipe PLL to disable
1712  *
1713  * Disable the PLL for @pipe, making sure the pipe is off first.
1714  *
1715  * Note!  This is for pre-ILK only.
1716  */
1717 static void i9xx_disable_pll(struct intel_crtc *crtc)
1718 {
1719         struct drm_device *dev = crtc->base.dev;
1720         struct drm_i915_private *dev_priv = dev->dev_private;
1721         enum pipe pipe = crtc->pipe;
1722
1723         /* Disable DVO 2x clock on both PLLs if necessary */
1724         if (IS_I830(dev) &&
1725             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1726             !intel_num_dvo_pipes(dev)) {
1727                 I915_WRITE(DPLL(PIPE_B),
1728                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1729                 I915_WRITE(DPLL(PIPE_A),
1730                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1731         }
1732
1733         /* Don't disable pipe or pipe PLLs if needed */
1734         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1735             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1736                 return;
1737
1738         /* Make sure the pipe isn't still relying on us */
1739         assert_pipe_disabled(dev_priv, pipe);
1740
1741         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1742         POSTING_READ(DPLL(pipe));
1743 }
1744
1745 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1746 {
1747         u32 val;
1748
1749         /* Make sure the pipe isn't still relying on us */
1750         assert_pipe_disabled(dev_priv, pipe);
1751
1752         val = DPLL_INTEGRATED_REF_CLK_VLV |
1753                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1754         if (pipe != PIPE_A)
1755                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1756
1757         I915_WRITE(DPLL(pipe), val);
1758         POSTING_READ(DPLL(pipe));
1759 }
1760
1761 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1762 {
1763         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1764         u32 val;
1765
1766         /* Make sure the pipe isn't still relying on us */
1767         assert_pipe_disabled(dev_priv, pipe);
1768
1769         val = DPLL_SSC_REF_CLK_CHV |
1770                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1771         if (pipe != PIPE_A)
1772                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1773
1774         I915_WRITE(DPLL(pipe), val);
1775         POSTING_READ(DPLL(pipe));
1776
1777         mutex_lock(&dev_priv->sb_lock);
1778
1779         /* Disable 10bit clock to display controller */
1780         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1781         val &= ~DPIO_DCLKP_EN;
1782         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1783
1784         mutex_unlock(&dev_priv->sb_lock);
1785 }
1786
1787 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1788                          struct intel_digital_port *dport,
1789                          unsigned int expected_mask)
1790 {
1791         u32 port_mask;
1792         i915_reg_t dpll_reg;
1793
1794         switch (dport->port) {
1795         case PORT_B:
1796                 port_mask = DPLL_PORTB_READY_MASK;
1797                 dpll_reg = DPLL(0);
1798                 break;
1799         case PORT_C:
1800                 port_mask = DPLL_PORTC_READY_MASK;
1801                 dpll_reg = DPLL(0);
1802                 expected_mask <<= 4;
1803                 break;
1804         case PORT_D:
1805                 port_mask = DPLL_PORTD_READY_MASK;
1806                 dpll_reg = DPIO_PHY_STATUS;
1807                 break;
1808         default:
1809                 BUG();
1810         }
1811
1812         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1813                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1814                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1815 }
1816
1817 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1818                                            enum pipe pipe)
1819 {
1820         struct drm_device *dev = dev_priv->dev;
1821         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1822         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1823         i915_reg_t reg;
1824         uint32_t val, pipeconf_val;
1825
1826         /* Make sure PCH DPLL is enabled */
1827         assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1828
1829         /* FDI must be feeding us bits for PCH ports */
1830         assert_fdi_tx_enabled(dev_priv, pipe);
1831         assert_fdi_rx_enabled(dev_priv, pipe);
1832
1833         if (HAS_PCH_CPT(dev)) {
1834                 /* Workaround: Set the timing override bit before enabling the
1835                  * pch transcoder. */
1836                 reg = TRANS_CHICKEN2(pipe);
1837                 val = I915_READ(reg);
1838                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1839                 I915_WRITE(reg, val);
1840         }
1841
1842         reg = PCH_TRANSCONF(pipe);
1843         val = I915_READ(reg);
1844         pipeconf_val = I915_READ(PIPECONF(pipe));
1845
1846         if (HAS_PCH_IBX(dev_priv)) {
1847                 /*
1848                  * Make the BPC in transcoder be consistent with
1849                  * that in pipeconf reg. For HDMI we must use 8bpc
1850                  * here for both 8bpc and 12bpc.
1851                  */
1852                 val &= ~PIPECONF_BPC_MASK;
1853                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1854                         val |= PIPECONF_8BPC;
1855                 else
1856                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1857         }
1858
1859         val &= ~TRANS_INTERLACE_MASK;
1860         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1861                 if (HAS_PCH_IBX(dev_priv) &&
1862                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1863                         val |= TRANS_LEGACY_INTERLACED_ILK;
1864                 else
1865                         val |= TRANS_INTERLACED;
1866         else
1867                 val |= TRANS_PROGRESSIVE;
1868
1869         I915_WRITE(reg, val | TRANS_ENABLE);
1870         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1871                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1872 }
1873
1874 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1875                                       enum transcoder cpu_transcoder)
1876 {
1877         u32 val, pipeconf_val;
1878
1879         /* FDI must be feeding us bits for PCH ports */
1880         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1881         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1882
1883         /* Workaround: set timing override bit. */
1884         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1885         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1886         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1887
1888         val = TRANS_ENABLE;
1889         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1890
1891         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1892             PIPECONF_INTERLACED_ILK)
1893                 val |= TRANS_INTERLACED;
1894         else
1895                 val |= TRANS_PROGRESSIVE;
1896
1897         I915_WRITE(LPT_TRANSCONF, val);
1898         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1899                 DRM_ERROR("Failed to enable PCH transcoder\n");
1900 }
1901
1902 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1903                                             enum pipe pipe)
1904 {
1905         struct drm_device *dev = dev_priv->dev;
1906         i915_reg_t reg;
1907         uint32_t val;
1908
1909         /* FDI relies on the transcoder */
1910         assert_fdi_tx_disabled(dev_priv, pipe);
1911         assert_fdi_rx_disabled(dev_priv, pipe);
1912
1913         /* Ports must be off as well */
1914         assert_pch_ports_disabled(dev_priv, pipe);
1915
1916         reg = PCH_TRANSCONF(pipe);
1917         val = I915_READ(reg);
1918         val &= ~TRANS_ENABLE;
1919         I915_WRITE(reg, val);
1920         /* wait for PCH transcoder off, transcoder state */
1921         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1922                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1923
1924         if (HAS_PCH_CPT(dev)) {
1925                 /* Workaround: Clear the timing override chicken bit again. */
1926                 reg = TRANS_CHICKEN2(pipe);
1927                 val = I915_READ(reg);
1928                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1929                 I915_WRITE(reg, val);
1930         }
1931 }
1932
1933 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1934 {
1935         u32 val;
1936
1937         val = I915_READ(LPT_TRANSCONF);
1938         val &= ~TRANS_ENABLE;
1939         I915_WRITE(LPT_TRANSCONF, val);
1940         /* wait for PCH transcoder off, transcoder state */
1941         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1942                 DRM_ERROR("Failed to disable PCH transcoder\n");
1943
1944         /* Workaround: clear timing override bit. */
1945         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1946         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1947         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1948 }
1949
1950 /**
1951  * intel_enable_pipe - enable a pipe, asserting requirements
1952  * @crtc: crtc responsible for the pipe
1953  *
1954  * Enable @crtc's pipe, making sure that various hardware specific requirements
1955  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1956  */
1957 static void intel_enable_pipe(struct intel_crtc *crtc)
1958 {
1959         struct drm_device *dev = crtc->base.dev;
1960         struct drm_i915_private *dev_priv = dev->dev_private;
1961         enum pipe pipe = crtc->pipe;
1962         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1963         enum pipe pch_transcoder;
1964         i915_reg_t reg;
1965         u32 val;
1966
1967         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1968
1969         assert_planes_disabled(dev_priv, pipe);
1970         assert_cursor_disabled(dev_priv, pipe);
1971         assert_sprites_disabled(dev_priv, pipe);
1972
1973         if (HAS_PCH_LPT(dev_priv))
1974                 pch_transcoder = TRANSCODER_A;
1975         else
1976                 pch_transcoder = pipe;
1977
1978         /*
1979          * A pipe without a PLL won't actually be able to drive bits from
1980          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1981          * need the check.
1982          */
1983         if (HAS_GMCH_DISPLAY(dev_priv))
1984                 if (crtc->config->has_dsi_encoder)
1985                         assert_dsi_pll_enabled(dev_priv);
1986                 else
1987                         assert_pll_enabled(dev_priv, pipe);
1988         else {
1989                 if (crtc->config->has_pch_encoder) {
1990                         /* if driving the PCH, we need FDI enabled */
1991                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1992                         assert_fdi_tx_pll_enabled(dev_priv,
1993                                                   (enum pipe) cpu_transcoder);
1994                 }
1995                 /* FIXME: assert CPU port conditions for SNB+ */
1996         }
1997
1998         reg = PIPECONF(cpu_transcoder);
1999         val = I915_READ(reg);
2000         if (val & PIPECONF_ENABLE) {
2001                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2002                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2003                 return;
2004         }
2005
2006         I915_WRITE(reg, val | PIPECONF_ENABLE);
2007         POSTING_READ(reg);
2008
2009         /*
2010          * Until the pipe starts DSL will read as 0, which would cause
2011          * an apparent vblank timestamp jump, which messes up also the
2012          * frame count when it's derived from the timestamps. So let's
2013          * wait for the pipe to start properly before we call
2014          * drm_crtc_vblank_on()
2015          */
2016         if (dev->max_vblank_count == 0 &&
2017             wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2018                 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
2019 }
2020
2021 /**
2022  * intel_disable_pipe - disable a pipe, asserting requirements
2023  * @crtc: crtc whose pipes is to be disabled
2024  *
2025  * Disable the pipe of @crtc, making sure that various hardware
2026  * specific requirements are met, if applicable, e.g. plane
2027  * disabled, panel fitter off, etc.
2028  *
2029  * Will wait until the pipe has shut down before returning.
2030  */
2031 static void intel_disable_pipe(struct intel_crtc *crtc)
2032 {
2033         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2034         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2035         enum pipe pipe = crtc->pipe;
2036         i915_reg_t reg;
2037         u32 val;
2038
2039         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2040
2041         /*
2042          * Make sure planes won't keep trying to pump pixels to us,
2043          * or we might hang the display.
2044          */
2045         assert_planes_disabled(dev_priv, pipe);
2046         assert_cursor_disabled(dev_priv, pipe);
2047         assert_sprites_disabled(dev_priv, pipe);
2048
2049         reg = PIPECONF(cpu_transcoder);
2050         val = I915_READ(reg);
2051         if ((val & PIPECONF_ENABLE) == 0)
2052                 return;
2053
2054         /*
2055          * Double wide has implications for planes
2056          * so best keep it disabled when not needed.
2057          */
2058         if (crtc->config->double_wide)
2059                 val &= ~PIPECONF_DOUBLE_WIDE;
2060
2061         /* Don't disable pipe or pipe PLLs if needed */
2062         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2063             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2064                 val &= ~PIPECONF_ENABLE;
2065
2066         I915_WRITE(reg, val);
2067         if ((val & PIPECONF_ENABLE) == 0)
2068                 intel_wait_for_pipe_off(crtc);
2069 }
2070
2071 static bool need_vtd_wa(struct drm_device *dev)
2072 {
2073 #ifdef CONFIG_INTEL_IOMMU
2074         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2075                 return true;
2076 #endif
2077         return false;
2078 }
2079
2080 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2081 {
2082         return IS_GEN2(dev_priv) ? 2048 : 4096;
2083 }
2084
2085 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2086                                            uint64_t fb_modifier, unsigned int cpp)
2087 {
2088         switch (fb_modifier) {
2089         case DRM_FORMAT_MOD_NONE:
2090                 return cpp;
2091         case I915_FORMAT_MOD_X_TILED:
2092                 if (IS_GEN2(dev_priv))
2093                         return 128;
2094                 else
2095                         return 512;
2096         case I915_FORMAT_MOD_Y_TILED:
2097                 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2098                         return 128;
2099                 else
2100                         return 512;
2101         case I915_FORMAT_MOD_Yf_TILED:
2102                 switch (cpp) {
2103                 case 1:
2104                         return 64;
2105                 case 2:
2106                 case 4:
2107                         return 128;
2108                 case 8:
2109                 case 16:
2110                         return 256;
2111                 default:
2112                         MISSING_CASE(cpp);
2113                         return cpp;
2114                 }
2115                 break;
2116         default:
2117                 MISSING_CASE(fb_modifier);
2118                 return cpp;
2119         }
2120 }
2121
2122 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2123                                uint64_t fb_modifier, unsigned int cpp)
2124 {
2125         if (fb_modifier == DRM_FORMAT_MOD_NONE)
2126                 return 1;
2127         else
2128                 return intel_tile_size(dev_priv) /
2129                         intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2130 }
2131
2132 /* Return the tile dimensions in pixel units */
2133 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2134                             unsigned int *tile_width,
2135                             unsigned int *tile_height,
2136                             uint64_t fb_modifier,
2137                             unsigned int cpp)
2138 {
2139         unsigned int tile_width_bytes =
2140                 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2141
2142         *tile_width = tile_width_bytes / cpp;
2143         *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2144 }
2145
2146 unsigned int
2147 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2148                       uint32_t pixel_format, uint64_t fb_modifier)
2149 {
2150         unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2151         unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2152
2153         return ALIGN(height, tile_height);
2154 }
2155
2156 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2157 {
2158         unsigned int size = 0;
2159         int i;
2160
2161         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2162                 size += rot_info->plane[i].width * rot_info->plane[i].height;
2163
2164         return size;
2165 }
2166
2167 static void
2168 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2169                         const struct drm_framebuffer *fb,
2170                         unsigned int rotation)
2171 {
2172         if (intel_rotation_90_or_270(rotation)) {
2173                 *view = i915_ggtt_view_rotated;
2174                 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2175         } else {
2176                 *view = i915_ggtt_view_normal;
2177         }
2178 }
2179
2180 static void
2181 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2182                    struct drm_framebuffer *fb)
2183 {
2184         struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
2185         unsigned int tile_size, tile_width, tile_height, cpp;
2186
2187         tile_size = intel_tile_size(dev_priv);
2188
2189         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2190         intel_tile_dims(dev_priv, &tile_width, &tile_height,
2191                         fb->modifier[0], cpp);
2192
2193         info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
2194         info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
2195
2196         if (info->pixel_format == DRM_FORMAT_NV12) {
2197                 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
2198                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2199                                 fb->modifier[1], cpp);
2200
2201                 info->uv_offset = fb->offsets[1];
2202                 info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
2203                 info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
2204         }
2205 }
2206
2207 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2208 {
2209         if (INTEL_INFO(dev_priv)->gen >= 9)
2210                 return 256 * 1024;
2211         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2212                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2213                 return 128 * 1024;
2214         else if (INTEL_INFO(dev_priv)->gen >= 4)
2215                 return 4 * 1024;
2216         else
2217                 return 0;
2218 }
2219
2220 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2221                                          uint64_t fb_modifier)
2222 {
2223         switch (fb_modifier) {
2224         case DRM_FORMAT_MOD_NONE:
2225                 return intel_linear_alignment(dev_priv);
2226         case I915_FORMAT_MOD_X_TILED:
2227                 if (INTEL_INFO(dev_priv)->gen >= 9)
2228                         return 256 * 1024;
2229                 return 0;
2230         case I915_FORMAT_MOD_Y_TILED:
2231         case I915_FORMAT_MOD_Yf_TILED:
2232                 return 1 * 1024 * 1024;
2233         default:
2234                 MISSING_CASE(fb_modifier);
2235                 return 0;
2236         }
2237 }
2238
2239 int
2240 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2241                            unsigned int rotation)
2242 {
2243         struct drm_device *dev = fb->dev;
2244         struct drm_i915_private *dev_priv = dev->dev_private;
2245         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2246         struct i915_ggtt_view view;
2247         u32 alignment;
2248         int ret;
2249
2250         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2251
2252         alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2253
2254         intel_fill_fb_ggtt_view(&view, fb, rotation);
2255
2256         /* Note that the w/a also requires 64 PTE of padding following the
2257          * bo. We currently fill all unused PTE with the shadow page and so
2258          * we should always have valid PTE following the scanout preventing
2259          * the VT-d warning.
2260          */
2261         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2262                 alignment = 256 * 1024;
2263
2264         /*
2265          * Global gtt pte registers are special registers which actually forward
2266          * writes to a chunk of system memory. Which means that there is no risk
2267          * that the register values disappear as soon as we call
2268          * intel_runtime_pm_put(), so it is correct to wrap only the
2269          * pin/unpin/fence and not more.
2270          */
2271         intel_runtime_pm_get(dev_priv);
2272
2273         ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2274                                                    &view);
2275         if (ret)
2276                 goto err_pm;
2277
2278         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2279          * fence, whereas 965+ only requires a fence if using
2280          * framebuffer compression.  For simplicity, we always install
2281          * a fence as the cost is not that onerous.
2282          */
2283         if (view.type == I915_GGTT_VIEW_NORMAL) {
2284                 ret = i915_gem_object_get_fence(obj);
2285                 if (ret == -EDEADLK) {
2286                         /*
2287                          * -EDEADLK means there are no free fences
2288                          * no pending flips.
2289                          *
2290                          * This is propagated to atomic, but it uses
2291                          * -EDEADLK to force a locking recovery, so
2292                          * change the returned error to -EBUSY.
2293                          */
2294                         ret = -EBUSY;
2295                         goto err_unpin;
2296                 } else if (ret)
2297                         goto err_unpin;
2298
2299                 i915_gem_object_pin_fence(obj);
2300         }
2301
2302         intel_runtime_pm_put(dev_priv);
2303         return 0;
2304
2305 err_unpin:
2306         i915_gem_object_unpin_from_display_plane(obj, &view);
2307 err_pm:
2308         intel_runtime_pm_put(dev_priv);
2309         return ret;
2310 }
2311
2312 static void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2313 {
2314         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2315         struct i915_ggtt_view view;
2316
2317         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2318
2319         intel_fill_fb_ggtt_view(&view, fb, rotation);
2320
2321         if (view.type == I915_GGTT_VIEW_NORMAL)
2322                 i915_gem_object_unpin_fence(obj);
2323
2324         i915_gem_object_unpin_from_display_plane(obj, &view);
2325 }
2326
2327 /*
2328  * Adjust the tile offset by moving the difference into
2329  * the x/y offsets.
2330  *
2331  * Input tile dimensions and pitch must already be
2332  * rotated to match x and y, and in pixel units.
2333  */
2334 static u32 intel_adjust_tile_offset(int *x, int *y,
2335                                     unsigned int tile_width,
2336                                     unsigned int tile_height,
2337                                     unsigned int tile_size,
2338                                     unsigned int pitch_tiles,
2339                                     u32 old_offset,
2340                                     u32 new_offset)
2341 {
2342         unsigned int tiles;
2343
2344         WARN_ON(old_offset & (tile_size - 1));
2345         WARN_ON(new_offset & (tile_size - 1));
2346         WARN_ON(new_offset > old_offset);
2347
2348         tiles = (old_offset - new_offset) / tile_size;
2349
2350         *y += tiles / pitch_tiles * tile_height;
2351         *x += tiles % pitch_tiles * tile_width;
2352
2353         return new_offset;
2354 }
2355
2356 /*
2357  * Computes the linear offset to the base tile and adjusts
2358  * x, y. bytes per pixel is assumed to be a power-of-two.
2359  *
2360  * In the 90/270 rotated case, x and y are assumed
2361  * to be already rotated to match the rotated GTT view, and
2362  * pitch is the tile_height aligned framebuffer height.
2363  */
2364 u32 intel_compute_tile_offset(int *x, int *y,
2365                               const struct drm_framebuffer *fb, int plane,
2366                               unsigned int pitch,
2367                               unsigned int rotation)
2368 {
2369         const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2370         uint64_t fb_modifier = fb->modifier[plane];
2371         unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2372         u32 offset, offset_aligned, alignment;
2373
2374         alignment = intel_surf_alignment(dev_priv, fb_modifier);
2375         if (alignment)
2376                 alignment--;
2377
2378         if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2379                 unsigned int tile_size, tile_width, tile_height;
2380                 unsigned int tile_rows, tiles, pitch_tiles;
2381
2382                 tile_size = intel_tile_size(dev_priv);
2383                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2384                                 fb_modifier, cpp);
2385
2386                 if (intel_rotation_90_or_270(rotation)) {
2387                         pitch_tiles = pitch / tile_height;
2388                         swap(tile_width, tile_height);
2389                 } else {
2390                         pitch_tiles = pitch / (tile_width * cpp);
2391                 }
2392
2393                 tile_rows = *y / tile_height;
2394                 *y %= tile_height;
2395
2396                 tiles = *x / tile_width;
2397                 *x %= tile_width;
2398
2399                 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2400                 offset_aligned = offset & ~alignment;
2401
2402                 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2403                                          tile_size, pitch_tiles,
2404                                          offset, offset_aligned);
2405         } else {
2406                 offset = *y * pitch + *x * cpp;
2407                 offset_aligned = offset & ~alignment;
2408
2409                 *y = (offset & alignment) / pitch;
2410                 *x = ((offset & alignment) - *y * pitch) / cpp;
2411         }
2412
2413         return offset_aligned;
2414 }
2415
2416 static int i9xx_format_to_fourcc(int format)
2417 {
2418         switch (format) {
2419         case DISPPLANE_8BPP:
2420                 return DRM_FORMAT_C8;
2421         case DISPPLANE_BGRX555:
2422                 return DRM_FORMAT_XRGB1555;
2423         case DISPPLANE_BGRX565:
2424                 return DRM_FORMAT_RGB565;
2425         default:
2426         case DISPPLANE_BGRX888:
2427                 return DRM_FORMAT_XRGB8888;
2428         case DISPPLANE_RGBX888:
2429                 return DRM_FORMAT_XBGR8888;
2430         case DISPPLANE_BGRX101010:
2431                 return DRM_FORMAT_XRGB2101010;
2432         case DISPPLANE_RGBX101010:
2433                 return DRM_FORMAT_XBGR2101010;
2434         }
2435 }
2436
2437 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2438 {
2439         switch (format) {
2440         case PLANE_CTL_FORMAT_RGB_565:
2441                 return DRM_FORMAT_RGB565;
2442         default:
2443         case PLANE_CTL_FORMAT_XRGB_8888:
2444                 if (rgb_order) {
2445                         if (alpha)
2446                                 return DRM_FORMAT_ABGR8888;
2447                         else
2448                                 return DRM_FORMAT_XBGR8888;
2449                 } else {
2450                         if (alpha)
2451                                 return DRM_FORMAT_ARGB8888;
2452                         else
2453                                 return DRM_FORMAT_XRGB8888;
2454                 }
2455         case PLANE_CTL_FORMAT_XRGB_2101010:
2456                 if (rgb_order)
2457                         return DRM_FORMAT_XBGR2101010;
2458                 else
2459                         return DRM_FORMAT_XRGB2101010;
2460         }
2461 }
2462
2463 static bool
2464 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2465                               struct intel_initial_plane_config *plane_config)
2466 {
2467         struct drm_device *dev = crtc->base.dev;
2468         struct drm_i915_private *dev_priv = to_i915(dev);
2469         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2470         struct drm_i915_gem_object *obj = NULL;
2471         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2472         struct drm_framebuffer *fb = &plane_config->fb->base;
2473         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2474         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2475                                     PAGE_SIZE);
2476
2477         size_aligned -= base_aligned;
2478
2479         if (plane_config->size == 0)
2480                 return false;
2481
2482         /* If the FB is too big, just don't use it since fbdev is not very
2483          * important and we should probably use that space with FBC or other
2484          * features. */
2485         if (size_aligned * 2 > ggtt->stolen_usable_size)
2486                 return false;
2487
2488         mutex_lock(&dev->struct_mutex);
2489
2490         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2491                                                              base_aligned,
2492                                                              base_aligned,
2493                                                              size_aligned);
2494         if (!obj) {
2495                 mutex_unlock(&dev->struct_mutex);
2496                 return false;
2497         }
2498
2499         obj->tiling_mode = plane_config->tiling;
2500         if (obj->tiling_mode == I915_TILING_X)
2501                 obj->stride = fb->pitches[0];
2502
2503         mode_cmd.pixel_format = fb->pixel_format;
2504         mode_cmd.width = fb->width;
2505         mode_cmd.height = fb->height;
2506         mode_cmd.pitches[0] = fb->pitches[0];
2507         mode_cmd.modifier[0] = fb->modifier[0];
2508         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2509
2510         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2511                                    &mode_cmd, obj)) {
2512                 DRM_DEBUG_KMS("intel fb init failed\n");
2513                 goto out_unref_obj;
2514         }
2515
2516         mutex_unlock(&dev->struct_mutex);
2517
2518         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2519         return true;
2520
2521 out_unref_obj:
2522         drm_gem_object_unreference(&obj->base);
2523         mutex_unlock(&dev->struct_mutex);
2524         return false;
2525 }
2526
2527 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2528 static void
2529 update_state_fb(struct drm_plane *plane)
2530 {
2531         if (plane->fb == plane->state->fb)
2532                 return;
2533
2534         if (plane->state->fb)
2535                 drm_framebuffer_unreference(plane->state->fb);
2536         plane->state->fb = plane->fb;
2537         if (plane->state->fb)
2538                 drm_framebuffer_reference(plane->state->fb);
2539 }
2540
2541 static void
2542 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2543                              struct intel_initial_plane_config *plane_config)
2544 {
2545         struct drm_device *dev = intel_crtc->base.dev;
2546         struct drm_i915_private *dev_priv = dev->dev_private;
2547         struct drm_crtc *c;
2548         struct intel_crtc *i;
2549         struct drm_i915_gem_object *obj;
2550         struct drm_plane *primary = intel_crtc->base.primary;
2551         struct drm_plane_state *plane_state = primary->state;
2552         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2553         struct intel_plane *intel_plane = to_intel_plane(primary);
2554         struct intel_plane_state *intel_state =
2555                 to_intel_plane_state(plane_state);
2556         struct drm_framebuffer *fb;
2557
2558         if (!plane_config->fb)
2559                 return;
2560
2561         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2562                 fb = &plane_config->fb->base;
2563                 goto valid_fb;
2564         }
2565
2566         kfree(plane_config->fb);
2567
2568         /*
2569          * Failed to alloc the obj, check to see if we should share
2570          * an fb with another CRTC instead
2571          */
2572         for_each_crtc(dev, c) {
2573                 i = to_intel_crtc(c);
2574
2575                 if (c == &intel_crtc->base)
2576                         continue;
2577
2578                 if (!i->active)
2579                         continue;
2580
2581                 fb = c->primary->fb;
2582                 if (!fb)
2583                         continue;
2584
2585                 obj = intel_fb_obj(fb);
2586                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2587                         drm_framebuffer_reference(fb);
2588                         goto valid_fb;
2589                 }
2590         }
2591
2592         /*
2593          * We've failed to reconstruct the BIOS FB.  Current display state
2594          * indicates that the primary plane is visible, but has a NULL FB,
2595          * which will lead to problems later if we don't fix it up.  The
2596          * simplest solution is to just disable the primary plane now and
2597          * pretend the BIOS never had it enabled.
2598          */
2599         to_intel_plane_state(plane_state)->visible = false;
2600         crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2601         intel_pre_disable_primary_noatomic(&intel_crtc->base);
2602         intel_plane->disable_plane(primary, &intel_crtc->base);
2603
2604         return;
2605
2606 valid_fb:
2607         plane_state->src_x = 0;
2608         plane_state->src_y = 0;
2609         plane_state->src_w = fb->width << 16;
2610         plane_state->src_h = fb->height << 16;
2611
2612         plane_state->crtc_x = 0;
2613         plane_state->crtc_y = 0;
2614         plane_state->crtc_w = fb->width;
2615         plane_state->crtc_h = fb->height;
2616
2617         intel_state->src.x1 = plane_state->src_x;
2618         intel_state->src.y1 = plane_state->src_y;
2619         intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2620         intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2621         intel_state->dst.x1 = plane_state->crtc_x;
2622         intel_state->dst.y1 = plane_state->crtc_y;
2623         intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2624         intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2625
2626         obj = intel_fb_obj(fb);
2627         if (obj->tiling_mode != I915_TILING_NONE)
2628                 dev_priv->preserve_bios_swizzle = true;
2629
2630         drm_framebuffer_reference(fb);
2631         primary->fb = primary->state->fb = fb;
2632         primary->crtc = primary->state->crtc = &intel_crtc->base;
2633         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2634         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2635 }
2636
2637 static void i9xx_update_primary_plane(struct drm_plane *primary,
2638                                       const struct intel_crtc_state *crtc_state,
2639                                       const struct intel_plane_state *plane_state)
2640 {
2641         struct drm_device *dev = primary->dev;
2642         struct drm_i915_private *dev_priv = dev->dev_private;
2643         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2644         struct drm_framebuffer *fb = plane_state->base.fb;
2645         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2646         int plane = intel_crtc->plane;
2647         u32 linear_offset;
2648         u32 dspcntr;
2649         i915_reg_t reg = DSPCNTR(plane);
2650         unsigned int rotation = plane_state->base.rotation;
2651         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2652         int x = plane_state->src.x1 >> 16;
2653         int y = plane_state->src.y1 >> 16;
2654
2655         dspcntr = DISPPLANE_GAMMA_ENABLE;
2656
2657         dspcntr |= DISPLAY_PLANE_ENABLE;
2658
2659         if (INTEL_INFO(dev)->gen < 4) {
2660                 if (intel_crtc->pipe == PIPE_B)
2661                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2662
2663                 /* pipesrc and dspsize control the size that is scaled from,
2664                  * which should always be the user's requested size.
2665                  */
2666                 I915_WRITE(DSPSIZE(plane),
2667                            ((crtc_state->pipe_src_h - 1) << 16) |
2668                            (crtc_state->pipe_src_w - 1));
2669                 I915_WRITE(DSPPOS(plane), 0);
2670         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2671                 I915_WRITE(PRIMSIZE(plane),
2672                            ((crtc_state->pipe_src_h - 1) << 16) |
2673                            (crtc_state->pipe_src_w - 1));
2674                 I915_WRITE(PRIMPOS(plane), 0);
2675                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2676         }
2677
2678         switch (fb->pixel_format) {
2679         case DRM_FORMAT_C8:
2680                 dspcntr |= DISPPLANE_8BPP;
2681                 break;
2682         case DRM_FORMAT_XRGB1555:
2683                 dspcntr |= DISPPLANE_BGRX555;
2684                 break;
2685         case DRM_FORMAT_RGB565:
2686                 dspcntr |= DISPPLANE_BGRX565;
2687                 break;
2688         case DRM_FORMAT_XRGB8888:
2689                 dspcntr |= DISPPLANE_BGRX888;
2690                 break;
2691         case DRM_FORMAT_XBGR8888:
2692                 dspcntr |= DISPPLANE_RGBX888;
2693                 break;
2694         case DRM_FORMAT_XRGB2101010:
2695                 dspcntr |= DISPPLANE_BGRX101010;
2696                 break;
2697         case DRM_FORMAT_XBGR2101010:
2698                 dspcntr |= DISPPLANE_RGBX101010;
2699                 break;
2700         default:
2701                 BUG();
2702         }
2703
2704         if (INTEL_INFO(dev)->gen >= 4 &&
2705             obj->tiling_mode != I915_TILING_NONE)
2706                 dspcntr |= DISPPLANE_TILED;
2707
2708         if (IS_G4X(dev))
2709                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2710
2711         linear_offset = y * fb->pitches[0] + x * cpp;
2712
2713         if (INTEL_INFO(dev)->gen >= 4) {
2714                 intel_crtc->dspaddr_offset =
2715                         intel_compute_tile_offset(&x, &y, fb, 0,
2716                                                   fb->pitches[0], rotation);
2717                 linear_offset -= intel_crtc->dspaddr_offset;
2718         } else {
2719                 intel_crtc->dspaddr_offset = linear_offset;
2720         }
2721
2722         if (rotation == BIT(DRM_ROTATE_180)) {
2723                 dspcntr |= DISPPLANE_ROTATE_180;
2724
2725                 x += (crtc_state->pipe_src_w - 1);
2726                 y += (crtc_state->pipe_src_h - 1);
2727
2728                 /* Finding the last pixel of the last line of the display
2729                 data and adding to linear_offset*/
2730                 linear_offset +=
2731                         (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2732                         (crtc_state->pipe_src_w - 1) * cpp;
2733         }
2734
2735         intel_crtc->adjusted_x = x;
2736         intel_crtc->adjusted_y = y;
2737
2738         I915_WRITE(reg, dspcntr);
2739
2740         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2741         if (INTEL_INFO(dev)->gen >= 4) {
2742                 I915_WRITE(DSPSURF(plane),
2743                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2744                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2745                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2746         } else
2747                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2748         POSTING_READ(reg);
2749 }
2750
2751 static void i9xx_disable_primary_plane(struct drm_plane *primary,
2752                                        struct drm_crtc *crtc)
2753 {
2754         struct drm_device *dev = crtc->dev;
2755         struct drm_i915_private *dev_priv = dev->dev_private;
2756         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2757         int plane = intel_crtc->plane;
2758
2759         I915_WRITE(DSPCNTR(plane), 0);
2760         if (INTEL_INFO(dev_priv)->gen >= 4)
2761                 I915_WRITE(DSPSURF(plane), 0);
2762         else
2763                 I915_WRITE(DSPADDR(plane), 0);
2764         POSTING_READ(DSPCNTR(plane));
2765 }
2766
2767 static void ironlake_update_primary_plane(struct drm_plane *primary,
2768                                           const struct intel_crtc_state *crtc_state,
2769                                           const struct intel_plane_state *plane_state)
2770 {
2771         struct drm_device *dev = primary->dev;
2772         struct drm_i915_private *dev_priv = dev->dev_private;
2773         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2774         struct drm_framebuffer *fb = plane_state->base.fb;
2775         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2776         int plane = intel_crtc->plane;
2777         u32 linear_offset;
2778         u32 dspcntr;
2779         i915_reg_t reg = DSPCNTR(plane);
2780         unsigned int rotation = plane_state->base.rotation;
2781         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2782         int x = plane_state->src.x1 >> 16;
2783         int y = plane_state->src.y1 >> 16;
2784
2785         dspcntr = DISPPLANE_GAMMA_ENABLE;
2786         dspcntr |= DISPLAY_PLANE_ENABLE;
2787
2788         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2789                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2790
2791         switch (fb->pixel_format) {
2792         case DRM_FORMAT_C8:
2793                 dspcntr |= DISPPLANE_8BPP;
2794                 break;
2795         case DRM_FORMAT_RGB565:
2796                 dspcntr |= DISPPLANE_BGRX565;
2797                 break;
2798         case DRM_FORMAT_XRGB8888:
2799                 dspcntr |= DISPPLANE_BGRX888;
2800                 break;
2801         case DRM_FORMAT_XBGR8888:
2802                 dspcntr |= DISPPLANE_RGBX888;
2803                 break;
2804         case DRM_FORMAT_XRGB2101010:
2805                 dspcntr |= DISPPLANE_BGRX101010;
2806                 break;
2807         case DRM_FORMAT_XBGR2101010:
2808                 dspcntr |= DISPPLANE_RGBX101010;
2809                 break;
2810         default:
2811                 BUG();
2812         }
2813
2814         if (obj->tiling_mode != I915_TILING_NONE)
2815                 dspcntr |= DISPPLANE_TILED;
2816
2817         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2818                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2819
2820         linear_offset = y * fb->pitches[0] + x * cpp;
2821         intel_crtc->dspaddr_offset =
2822                 intel_compute_tile_offset(&x, &y, fb, 0,
2823                                           fb->pitches[0], rotation);
2824         linear_offset -= intel_crtc->dspaddr_offset;
2825         if (rotation == BIT(DRM_ROTATE_180)) {
2826                 dspcntr |= DISPPLANE_ROTATE_180;
2827
2828                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2829                         x += (crtc_state->pipe_src_w - 1);
2830                         y += (crtc_state->pipe_src_h - 1);
2831
2832                         /* Finding the last pixel of the last line of the display
2833                         data and adding to linear_offset*/
2834                         linear_offset +=
2835                                 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2836                                 (crtc_state->pipe_src_w - 1) * cpp;
2837                 }
2838         }
2839
2840         intel_crtc->adjusted_x = x;
2841         intel_crtc->adjusted_y = y;
2842
2843         I915_WRITE(reg, dspcntr);
2844
2845         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2846         I915_WRITE(DSPSURF(plane),
2847                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2848         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2849                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2850         } else {
2851                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2852                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2853         }
2854         POSTING_READ(reg);
2855 }
2856
2857 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2858                               uint64_t fb_modifier, uint32_t pixel_format)
2859 {
2860         if (fb_modifier == DRM_FORMAT_MOD_NONE) {
2861                 return 64;
2862         } else {
2863                 int cpp = drm_format_plane_cpp(pixel_format, 0);
2864
2865                 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2866         }
2867 }
2868
2869 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2870                            struct drm_i915_gem_object *obj,
2871                            unsigned int plane)
2872 {
2873         struct i915_ggtt_view view;
2874         struct i915_vma *vma;
2875         u64 offset;
2876
2877         intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2878                                 intel_plane->base.state->rotation);
2879
2880         vma = i915_gem_obj_to_ggtt_view(obj, &view);
2881         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2882                 view.type))
2883                 return -1;
2884
2885         offset = vma->node.start;
2886
2887         if (plane == 1) {
2888                 offset += vma->ggtt_view.params.rotated.uv_start_page *
2889                           PAGE_SIZE;
2890         }
2891
2892         WARN_ON(upper_32_bits(offset));
2893
2894         return lower_32_bits(offset);
2895 }
2896
2897 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2898 {
2899         struct drm_device *dev = intel_crtc->base.dev;
2900         struct drm_i915_private *dev_priv = dev->dev_private;
2901
2902         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2903         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2904         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2905 }
2906
2907 /*
2908  * This function detaches (aka. unbinds) unused scalers in hardware
2909  */
2910 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2911 {
2912         struct intel_crtc_scaler_state *scaler_state;
2913         int i;
2914
2915         scaler_state = &intel_crtc->config->scaler_state;
2916
2917         /* loop through and disable scalers that aren't in use */
2918         for (i = 0; i < intel_crtc->num_scalers; i++) {
2919                 if (!scaler_state->scalers[i].in_use)
2920                         skl_detach_scaler(intel_crtc, i);
2921         }
2922 }
2923
2924 u32 skl_plane_ctl_format(uint32_t pixel_format)
2925 {
2926         switch (pixel_format) {
2927         case DRM_FORMAT_C8:
2928                 return PLANE_CTL_FORMAT_INDEXED;
2929         case DRM_FORMAT_RGB565:
2930                 return PLANE_CTL_FORMAT_RGB_565;
2931         case DRM_FORMAT_XBGR8888:
2932                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2933         case DRM_FORMAT_XRGB8888:
2934                 return PLANE_CTL_FORMAT_XRGB_8888;
2935         /*
2936          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2937          * to be already pre-multiplied. We need to add a knob (or a different
2938          * DRM_FORMAT) for user-space to configure that.
2939          */
2940         case DRM_FORMAT_ABGR8888:
2941                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2942                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2943         case DRM_FORMAT_ARGB8888:
2944                 return PLANE_CTL_FORMAT_XRGB_8888 |
2945                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2946         case DRM_FORMAT_XRGB2101010:
2947                 return PLANE_CTL_FORMAT_XRGB_2101010;
2948         case DRM_FORMAT_XBGR2101010:
2949                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2950         case DRM_FORMAT_YUYV:
2951                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2952         case DRM_FORMAT_YVYU:
2953                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2954         case DRM_FORMAT_UYVY:
2955                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2956         case DRM_FORMAT_VYUY:
2957                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2958         default:
2959                 MISSING_CASE(pixel_format);
2960         }
2961
2962         return 0;
2963 }
2964
2965 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2966 {
2967         switch (fb_modifier) {
2968         case DRM_FORMAT_MOD_NONE:
2969                 break;
2970         case I915_FORMAT_MOD_X_TILED:
2971                 return PLANE_CTL_TILED_X;
2972         case I915_FORMAT_MOD_Y_TILED:
2973                 return PLANE_CTL_TILED_Y;
2974         case I915_FORMAT_MOD_Yf_TILED:
2975                 return PLANE_CTL_TILED_YF;
2976         default:
2977                 MISSING_CASE(fb_modifier);
2978         }
2979
2980         return 0;
2981 }
2982
2983 u32 skl_plane_ctl_rotation(unsigned int rotation)
2984 {
2985         switch (rotation) {
2986         case BIT(DRM_ROTATE_0):
2987                 break;
2988         /*
2989          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
2990          * while i915 HW rotation is clockwise, thats why this swapping.
2991          */
2992         case BIT(DRM_ROTATE_90):
2993                 return PLANE_CTL_ROTATE_270;
2994         case BIT(DRM_ROTATE_180):
2995                 return PLANE_CTL_ROTATE_180;
2996         case BIT(DRM_ROTATE_270):
2997                 return PLANE_CTL_ROTATE_90;
2998         default:
2999                 MISSING_CASE(rotation);
3000         }
3001
3002         return 0;
3003 }
3004
3005 static void skylake_update_primary_plane(struct drm_plane *plane,
3006                                          const struct intel_crtc_state *crtc_state,
3007                                          const struct intel_plane_state *plane_state)
3008 {
3009         struct drm_device *dev = plane->dev;
3010         struct drm_i915_private *dev_priv = dev->dev_private;
3011         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3012         struct drm_framebuffer *fb = plane_state->base.fb;
3013         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3014         int pipe = intel_crtc->pipe;
3015         u32 plane_ctl, stride_div, stride;
3016         u32 tile_height, plane_offset, plane_size;
3017         unsigned int rotation = plane_state->base.rotation;
3018         int x_offset, y_offset;
3019         u32 surf_addr;
3020         int scaler_id = plane_state->scaler_id;
3021         int src_x = plane_state->src.x1 >> 16;
3022         int src_y = plane_state->src.y1 >> 16;
3023         int src_w = drm_rect_width(&plane_state->src) >> 16;
3024         int src_h = drm_rect_height(&plane_state->src) >> 16;
3025         int dst_x = plane_state->dst.x1;
3026         int dst_y = plane_state->dst.y1;
3027         int dst_w = drm_rect_width(&plane_state->dst);
3028         int dst_h = drm_rect_height(&plane_state->dst);
3029
3030         plane_ctl = PLANE_CTL_ENABLE |
3031                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3032                     PLANE_CTL_PIPE_CSC_ENABLE;
3033
3034         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3035         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3036         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3037         plane_ctl |= skl_plane_ctl_rotation(rotation);
3038
3039         stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3040                                                fb->pixel_format);
3041         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3042
3043         WARN_ON(drm_rect_width(&plane_state->src) == 0);
3044
3045         if (intel_rotation_90_or_270(rotation)) {
3046                 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3047
3048                 /* stride = Surface height in tiles */
3049                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3050                 stride = DIV_ROUND_UP(fb->height, tile_height);
3051                 x_offset = stride * tile_height - src_y - src_h;
3052                 y_offset = src_x;
3053                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3054         } else {
3055                 stride = fb->pitches[0] / stride_div;
3056                 x_offset = src_x;
3057                 y_offset = src_y;
3058                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3059         }
3060         plane_offset = y_offset << 16 | x_offset;
3061
3062         intel_crtc->adjusted_x = x_offset;
3063         intel_crtc->adjusted_y = y_offset;
3064
3065         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3066         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3067         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3068         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3069
3070         if (scaler_id >= 0) {
3071                 uint32_t ps_ctrl = 0;
3072
3073                 WARN_ON(!dst_w || !dst_h);
3074                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3075                         crtc_state->scaler_state.scalers[scaler_id].mode;
3076                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3077                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3078                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3079                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3080                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3081         } else {
3082                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3083         }
3084
3085         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3086
3087         POSTING_READ(PLANE_SURF(pipe, 0));
3088 }
3089
3090 static void skylake_disable_primary_plane(struct drm_plane *primary,
3091                                           struct drm_crtc *crtc)
3092 {
3093         struct drm_device *dev = crtc->dev;
3094         struct drm_i915_private *dev_priv = dev->dev_private;
3095         int pipe = to_intel_crtc(crtc)->pipe;
3096
3097         I915_WRITE(PLANE_CTL(pipe, 0), 0);
3098         I915_WRITE(PLANE_SURF(pipe, 0), 0);
3099         POSTING_READ(PLANE_SURF(pipe, 0));
3100 }
3101
3102 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3103 static int
3104 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3105                            int x, int y, enum mode_set_atomic state)
3106 {
3107         /* Support for kgdboc is disabled, this needs a major rework. */
3108         DRM_ERROR("legacy panic handler not supported any more.\n");
3109
3110         return -ENODEV;
3111 }
3112
3113 static void intel_complete_page_flips(struct drm_device *dev)
3114 {
3115         struct drm_crtc *crtc;
3116
3117         for_each_crtc(dev, crtc) {
3118                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3119                 enum plane plane = intel_crtc->plane;
3120
3121                 intel_prepare_page_flip(dev, plane);
3122                 intel_finish_page_flip_plane(dev, plane);
3123         }
3124 }
3125
3126 static void intel_update_primary_planes(struct drm_device *dev)
3127 {
3128         struct drm_crtc *crtc;
3129
3130         for_each_crtc(dev, crtc) {
3131                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3132                 struct intel_plane_state *plane_state;
3133
3134                 drm_modeset_lock_crtc(crtc, &plane->base);
3135                 plane_state = to_intel_plane_state(plane->base.state);
3136
3137                 if (plane_state->visible)
3138                         plane->update_plane(&plane->base,
3139                                             to_intel_crtc_state(crtc->state),
3140                                             plane_state);
3141
3142                 drm_modeset_unlock_crtc(crtc);
3143         }
3144 }
3145
3146 void intel_prepare_reset(struct drm_device *dev)
3147 {
3148         /* no reset support for gen2 */
3149         if (IS_GEN2(dev))
3150                 return;
3151
3152         /* reset doesn't touch the display */
3153         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3154                 return;
3155
3156         drm_modeset_lock_all(dev);
3157         /*
3158          * Disabling the crtcs gracefully seems nicer. Also the
3159          * g33 docs say we should at least disable all the planes.
3160          */
3161         intel_display_suspend(dev);
3162 }
3163
3164 void intel_finish_reset(struct drm_device *dev)
3165 {
3166         struct drm_i915_private *dev_priv = to_i915(dev);
3167
3168         /*
3169          * Flips in the rings will be nuked by the reset,
3170          * so complete all pending flips so that user space
3171          * will get its events and not get stuck.
3172          */
3173         intel_complete_page_flips(dev);
3174
3175         /* no reset support for gen2 */
3176         if (IS_GEN2(dev))
3177                 return;
3178
3179         /* reset doesn't touch the display */
3180         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3181                 /*
3182                  * Flips in the rings have been nuked by the reset,
3183                  * so update the base address of all primary
3184                  * planes to the the last fb to make sure we're
3185                  * showing the correct fb after a reset.
3186                  *
3187                  * FIXME: Atomic will make this obsolete since we won't schedule
3188                  * CS-based flips (which might get lost in gpu resets) any more.
3189                  */
3190                 intel_update_primary_planes(dev);
3191                 return;
3192         }
3193
3194         /*
3195          * The display has been reset as well,
3196          * so need a full re-initialization.
3197          */
3198         intel_runtime_pm_disable_interrupts(dev_priv);
3199         intel_runtime_pm_enable_interrupts(dev_priv);
3200
3201         intel_modeset_init_hw(dev);
3202
3203         spin_lock_irq(&dev_priv->irq_lock);
3204         if (dev_priv->display.hpd_irq_setup)
3205                 dev_priv->display.hpd_irq_setup(dev);
3206         spin_unlock_irq(&dev_priv->irq_lock);
3207
3208         intel_display_resume(dev);
3209
3210         intel_hpd_init(dev_priv);
3211
3212         drm_modeset_unlock_all(dev);
3213 }
3214
3215 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3216 {
3217         struct drm_device *dev = crtc->dev;
3218         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3219         unsigned reset_counter;
3220         bool pending;
3221
3222         reset_counter = i915_reset_counter(&to_i915(dev)->gpu_error);
3223         if (intel_crtc->reset_counter != reset_counter)
3224                 return false;
3225
3226         spin_lock_irq(&dev->event_lock);
3227         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3228         spin_unlock_irq(&dev->event_lock);
3229
3230         return pending;
3231 }
3232
3233 static void intel_update_pipe_config(struct intel_crtc *crtc,
3234                                      struct intel_crtc_state *old_crtc_state)
3235 {
3236         struct drm_device *dev = crtc->base.dev;
3237         struct drm_i915_private *dev_priv = dev->dev_private;
3238         struct intel_crtc_state *pipe_config =
3239                 to_intel_crtc_state(crtc->base.state);
3240
3241         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3242         crtc->base.mode = crtc->base.state->mode;
3243
3244         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3245                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3246                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3247
3248         /*
3249          * Update pipe size and adjust fitter if needed: the reason for this is
3250          * that in compute_mode_changes we check the native mode (not the pfit
3251          * mode) to see if we can flip rather than do a full mode set. In the
3252          * fastboot case, we'll flip, but if we don't update the pipesrc and
3253          * pfit state, we'll end up with a big fb scanned out into the wrong
3254          * sized surface.
3255          */
3256
3257         I915_WRITE(PIPESRC(crtc->pipe),
3258                    ((pipe_config->pipe_src_w - 1) << 16) |
3259                    (pipe_config->pipe_src_h - 1));
3260
3261         /* on skylake this is done by detaching scalers */
3262         if (INTEL_INFO(dev)->gen >= 9) {
3263                 skl_detach_scalers(crtc);
3264
3265                 if (pipe_config->pch_pfit.enabled)
3266                         skylake_pfit_enable(crtc);
3267         } else if (HAS_PCH_SPLIT(dev)) {
3268                 if (pipe_config->pch_pfit.enabled)
3269                         ironlake_pfit_enable(crtc);
3270                 else if (old_crtc_state->pch_pfit.enabled)
3271                         ironlake_pfit_disable(crtc, true);
3272         }
3273 }
3274
3275 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3276 {
3277         struct drm_device *dev = crtc->dev;
3278         struct drm_i915_private *dev_priv = dev->dev_private;
3279         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3280         int pipe = intel_crtc->pipe;
3281         i915_reg_t reg;
3282         u32 temp;
3283
3284         /* enable normal train */
3285         reg = FDI_TX_CTL(pipe);
3286         temp = I915_READ(reg);
3287         if (IS_IVYBRIDGE(dev)) {
3288                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3289                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3290         } else {
3291                 temp &= ~FDI_LINK_TRAIN_NONE;
3292                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3293         }
3294         I915_WRITE(reg, temp);
3295
3296         reg = FDI_RX_CTL(pipe);
3297         temp = I915_READ(reg);
3298         if (HAS_PCH_CPT(dev)) {
3299                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3300                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3301         } else {
3302                 temp &= ~FDI_LINK_TRAIN_NONE;
3303                 temp |= FDI_LINK_TRAIN_NONE;
3304         }
3305         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3306
3307         /* wait one idle pattern time */
3308         POSTING_READ(reg);
3309         udelay(1000);
3310
3311         /* IVB wants error correction enabled */
3312         if (IS_IVYBRIDGE(dev))
3313                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3314                            FDI_FE_ERRC_ENABLE);
3315 }
3316
3317 /* The FDI link training functions for ILK/Ibexpeak. */
3318 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3319 {
3320         struct drm_device *dev = crtc->dev;
3321         struct drm_i915_private *dev_priv = dev->dev_private;
3322         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3323         int pipe = intel_crtc->pipe;
3324         i915_reg_t reg;
3325         u32 temp, tries;
3326
3327         /* FDI needs bits from pipe first */
3328         assert_pipe_enabled(dev_priv, pipe);
3329
3330         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3331            for train result */
3332         reg = FDI_RX_IMR(pipe);
3333         temp = I915_READ(reg);
3334         temp &= ~FDI_RX_SYMBOL_LOCK;
3335         temp &= ~FDI_RX_BIT_LOCK;
3336         I915_WRITE(reg, temp);
3337         I915_READ(reg);
3338         udelay(150);
3339
3340         /* enable CPU FDI TX and PCH FDI RX */
3341         reg = FDI_TX_CTL(pipe);
3342         temp = I915_READ(reg);
3343         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3344         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3345         temp &= ~FDI_LINK_TRAIN_NONE;
3346         temp |= FDI_LINK_TRAIN_PATTERN_1;
3347         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3348
3349         reg = FDI_RX_CTL(pipe);
3350         temp = I915_READ(reg);
3351         temp &= ~FDI_LINK_TRAIN_NONE;
3352         temp |= FDI_LINK_TRAIN_PATTERN_1;
3353         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3354
3355         POSTING_READ(reg);
3356         udelay(150);
3357
3358         /* Ironlake workaround, enable clock pointer after FDI enable*/
3359         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3360         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3361                    FDI_RX_PHASE_SYNC_POINTER_EN);
3362
3363         reg = FDI_RX_IIR(pipe);
3364         for (tries = 0; tries < 5; tries++) {
3365                 temp = I915_READ(reg);
3366                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3367
3368                 if ((temp & FDI_RX_BIT_LOCK)) {
3369                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3370                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3371                         break;
3372                 }
3373         }
3374         if (tries == 5)
3375                 DRM_ERROR("FDI train 1 fail!\n");
3376
3377         /* Train 2 */
3378         reg = FDI_TX_CTL(pipe);
3379         temp = I915_READ(reg);
3380         temp &= ~FDI_LINK_TRAIN_NONE;
3381         temp |= FDI_LINK_TRAIN_PATTERN_2;
3382         I915_WRITE(reg, temp);
3383
3384         reg = FDI_RX_CTL(pipe);
3385         temp = I915_READ(reg);
3386         temp &= ~FDI_LINK_TRAIN_NONE;
3387         temp |= FDI_LINK_TRAIN_PATTERN_2;
3388         I915_WRITE(reg, temp);
3389
3390         POSTING_READ(reg);
3391         udelay(150);
3392
3393         reg = FDI_RX_IIR(pipe);
3394         for (tries = 0; tries < 5; tries++) {
3395                 temp = I915_READ(reg);
3396                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3397
3398                 if (temp & FDI_RX_SYMBOL_LOCK) {
3399                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3400                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3401                         break;
3402                 }
3403         }
3404         if (tries == 5)
3405                 DRM_ERROR("FDI train 2 fail!\n");
3406
3407         DRM_DEBUG_KMS("FDI train done\n");
3408
3409 }
3410
3411 static const int snb_b_fdi_train_param[] = {
3412         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3413         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3414         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3415         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3416 };
3417
3418 /* The FDI link training functions for SNB/Cougarpoint. */
3419 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3420 {
3421         struct drm_device *dev = crtc->dev;
3422         struct drm_i915_private *dev_priv = dev->dev_private;
3423         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3424         int pipe = intel_crtc->pipe;
3425         i915_reg_t reg;
3426         u32 temp, i, retry;
3427
3428         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3429            for train result */
3430         reg = FDI_RX_IMR(pipe);
3431         temp = I915_READ(reg);
3432         temp &= ~FDI_RX_SYMBOL_LOCK;
3433         temp &= ~FDI_RX_BIT_LOCK;
3434         I915_WRITE(reg, temp);
3435
3436         POSTING_READ(reg);
3437         udelay(150);
3438
3439         /* enable CPU FDI TX and PCH FDI RX */
3440         reg = FDI_TX_CTL(pipe);
3441         temp = I915_READ(reg);
3442         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3443         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3444         temp &= ~FDI_LINK_TRAIN_NONE;
3445         temp |= FDI_LINK_TRAIN_PATTERN_1;
3446         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3447         /* SNB-B */
3448         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3449         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3450
3451         I915_WRITE(FDI_RX_MISC(pipe),
3452                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3453
3454         reg = FDI_RX_CTL(pipe);
3455         temp = I915_READ(reg);
3456         if (HAS_PCH_CPT(dev)) {
3457                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3458                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3459         } else {
3460                 temp &= ~FDI_LINK_TRAIN_NONE;
3461                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3462         }
3463         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3464
3465         POSTING_READ(reg);
3466         udelay(150);
3467
3468         for (i = 0; i < 4; i++) {
3469                 reg = FDI_TX_CTL(pipe);
3470                 temp = I915_READ(reg);
3471                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3472                 temp |= snb_b_fdi_train_param[i];
3473                 I915_WRITE(reg, temp);
3474
3475                 POSTING_READ(reg);
3476                 udelay(500);
3477
3478                 for (retry = 0; retry < 5; retry++) {
3479                         reg = FDI_RX_IIR(pipe);
3480                         temp = I915_READ(reg);
3481                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3482                         if (temp & FDI_RX_BIT_LOCK) {
3483                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3484                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3485                                 break;
3486                         }
3487                         udelay(50);
3488                 }
3489                 if (retry < 5)
3490                         break;
3491         }
3492         if (i == 4)
3493                 DRM_ERROR("FDI train 1 fail!\n");
3494
3495         /* Train 2 */
3496         reg = FDI_TX_CTL(pipe);
3497         temp = I915_READ(reg);
3498         temp &= ~FDI_LINK_TRAIN_NONE;
3499         temp |= FDI_LINK_TRAIN_PATTERN_2;
3500         if (IS_GEN6(dev)) {
3501                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3502                 /* SNB-B */
3503                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3504         }
3505         I915_WRITE(reg, temp);
3506
3507         reg = FDI_RX_CTL(pipe);
3508         temp = I915_READ(reg);
3509         if (HAS_PCH_CPT(dev)) {
3510                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3511                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3512         } else {
3513                 temp &= ~FDI_LINK_TRAIN_NONE;
3514                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3515         }
3516         I915_WRITE(reg, temp);
3517
3518         POSTING_READ(reg);
3519         udelay(150);
3520
3521         for (i = 0; i < 4; i++) {
3522                 reg = FDI_TX_CTL(pipe);
3523                 temp = I915_READ(reg);
3524                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3525                 temp |= snb_b_fdi_train_param[i];
3526                 I915_WRITE(reg, temp);
3527
3528                 POSTING_READ(reg);
3529                 udelay(500);
3530
3531                 for (retry = 0; retry < 5; retry++) {
3532                         reg = FDI_RX_IIR(pipe);
3533                         temp = I915_READ(reg);
3534                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3535                         if (temp & FDI_RX_SYMBOL_LOCK) {
3536                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3537                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3538                                 break;
3539                         }
3540                         udelay(50);
3541                 }
3542                 if (retry < 5)
3543                         break;
3544         }
3545         if (i == 4)
3546                 DRM_ERROR("FDI train 2 fail!\n");
3547
3548         DRM_DEBUG_KMS("FDI train done.\n");
3549 }
3550
3551 /* Manual link training for Ivy Bridge A0 parts */
3552 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3553 {
3554         struct drm_device *dev = crtc->dev;
3555         struct drm_i915_private *dev_priv = dev->dev_private;
3556         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3557         int pipe = intel_crtc->pipe;
3558         i915_reg_t reg;
3559         u32 temp, i, j;
3560
3561         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3562            for train result */
3563         reg = FDI_RX_IMR(pipe);
3564         temp = I915_READ(reg);
3565         temp &= ~FDI_RX_SYMBOL_LOCK;
3566         temp &= ~FDI_RX_BIT_LOCK;
3567         I915_WRITE(reg, temp);
3568
3569         POSTING_READ(reg);
3570         udelay(150);
3571
3572         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3573                       I915_READ(FDI_RX_IIR(pipe)));
3574
3575         /* Try each vswing and preemphasis setting twice before moving on */
3576         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3577                 /* disable first in case we need to retry */
3578                 reg = FDI_TX_CTL(pipe);
3579                 temp = I915_READ(reg);
3580                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3581                 temp &= ~FDI_TX_ENABLE;
3582                 I915_WRITE(reg, temp);
3583
3584                 reg = FDI_RX_CTL(pipe);
3585                 temp = I915_READ(reg);
3586                 temp &= ~FDI_LINK_TRAIN_AUTO;
3587                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3588                 temp &= ~FDI_RX_ENABLE;
3589                 I915_WRITE(reg, temp);
3590
3591                 /* enable CPU FDI TX and PCH FDI RX */
3592                 reg = FDI_TX_CTL(pipe);
3593                 temp = I915_READ(reg);
3594                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3595                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3596                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3597                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3598                 temp |= snb_b_fdi_train_param[j/2];
3599                 temp |= FDI_COMPOSITE_SYNC;
3600                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3601
3602                 I915_WRITE(FDI_RX_MISC(pipe),
3603                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3604
3605                 reg = FDI_RX_CTL(pipe);
3606                 temp = I915_READ(reg);
3607                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3608                 temp |= FDI_COMPOSITE_SYNC;
3609                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3610
3611                 POSTING_READ(reg);
3612                 udelay(1); /* should be 0.5us */
3613
3614                 for (i = 0; i < 4; i++) {
3615                         reg = FDI_RX_IIR(pipe);
3616                         temp = I915_READ(reg);
3617                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3618
3619                         if (temp & FDI_RX_BIT_LOCK ||
3620                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3621                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3622                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3623                                               i);
3624                                 break;
3625                         }
3626                         udelay(1); /* should be 0.5us */
3627                 }
3628                 if (i == 4) {
3629                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3630                         continue;
3631                 }
3632
3633                 /* Train 2 */
3634                 reg = FDI_TX_CTL(pipe);
3635                 temp = I915_READ(reg);
3636                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3637                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3638                 I915_WRITE(reg, temp);
3639
3640                 reg = FDI_RX_CTL(pipe);
3641                 temp = I915_READ(reg);
3642                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3643                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3644                 I915_WRITE(reg, temp);
3645
3646                 POSTING_READ(reg);
3647                 udelay(2); /* should be 1.5us */
3648
3649                 for (i = 0; i < 4; i++) {
3650                         reg = FDI_RX_IIR(pipe);
3651                         temp = I915_READ(reg);
3652                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3653
3654                         if (temp & FDI_RX_SYMBOL_LOCK ||
3655                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3656                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3657                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3658                                               i);
3659                                 goto train_done;
3660                         }
3661                         udelay(2); /* should be 1.5us */
3662                 }
3663                 if (i == 4)
3664                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3665         }
3666
3667 train_done:
3668         DRM_DEBUG_KMS("FDI train done.\n");
3669 }
3670
3671 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3672 {
3673         struct drm_device *dev = intel_crtc->base.dev;
3674         struct drm_i915_private *dev_priv = dev->dev_private;
3675         int pipe = intel_crtc->pipe;
3676         i915_reg_t reg;
3677         u32 temp;
3678
3679         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3680         reg = FDI_RX_CTL(pipe);
3681         temp = I915_READ(reg);
3682         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3683         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3684         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3685         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3686
3687         POSTING_READ(reg);
3688         udelay(200);
3689
3690         /* Switch from Rawclk to PCDclk */
3691         temp = I915_READ(reg);
3692         I915_WRITE(reg, temp | FDI_PCDCLK);
3693
3694         POSTING_READ(reg);
3695         udelay(200);
3696
3697         /* Enable CPU FDI TX PLL, always on for Ironlake */
3698         reg = FDI_TX_CTL(pipe);
3699         temp = I915_READ(reg);
3700         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3701                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3702
3703                 POSTING_READ(reg);
3704                 udelay(100);
3705         }
3706 }
3707
3708 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3709 {
3710         struct drm_device *dev = intel_crtc->base.dev;
3711         struct drm_i915_private *dev_priv = dev->dev_private;
3712         int pipe = intel_crtc->pipe;
3713         i915_reg_t reg;
3714         u32 temp;
3715
3716         /* Switch from PCDclk to Rawclk */
3717         reg = FDI_RX_CTL(pipe);
3718         temp = I915_READ(reg);
3719         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3720
3721         /* Disable CPU FDI TX PLL */
3722         reg = FDI_TX_CTL(pipe);
3723         temp = I915_READ(reg);
3724         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3725
3726         POSTING_READ(reg);
3727         udelay(100);
3728
3729         reg = FDI_RX_CTL(pipe);
3730         temp = I915_READ(reg);
3731         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3732
3733         /* Wait for the clocks to turn off. */
3734         POSTING_READ(reg);
3735         udelay(100);
3736 }
3737
3738 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3739 {
3740         struct drm_device *dev = crtc->dev;
3741         struct drm_i915_private *dev_priv = dev->dev_private;
3742         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3743         int pipe = intel_crtc->pipe;
3744         i915_reg_t reg;
3745         u32 temp;
3746
3747         /* disable CPU FDI tx and PCH FDI rx */
3748         reg = FDI_TX_CTL(pipe);
3749         temp = I915_READ(reg);
3750         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3751         POSTING_READ(reg);
3752
3753         reg = FDI_RX_CTL(pipe);
3754         temp = I915_READ(reg);
3755         temp &= ~(0x7 << 16);
3756         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3757         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3758
3759         POSTING_READ(reg);
3760         udelay(100);
3761
3762         /* Ironlake workaround, disable clock pointer after downing FDI */
3763         if (HAS_PCH_IBX(dev))
3764                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3765
3766         /* still set train pattern 1 */
3767         reg = FDI_TX_CTL(pipe);
3768         temp = I915_READ(reg);
3769         temp &= ~FDI_LINK_TRAIN_NONE;
3770         temp |= FDI_LINK_TRAIN_PATTERN_1;
3771         I915_WRITE(reg, temp);
3772
3773         reg = FDI_RX_CTL(pipe);
3774         temp = I915_READ(reg);
3775         if (HAS_PCH_CPT(dev)) {
3776                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3777                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3778         } else {
3779                 temp &= ~FDI_LINK_TRAIN_NONE;
3780                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3781         }
3782         /* BPC in FDI rx is consistent with that in PIPECONF */
3783         temp &= ~(0x07 << 16);
3784         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3785         I915_WRITE(reg, temp);
3786
3787         POSTING_READ(reg);
3788         udelay(100);
3789 }
3790
3791 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3792 {
3793         struct intel_crtc *crtc;
3794
3795         /* Note that we don't need to be called with mode_config.lock here
3796          * as our list of CRTC objects is static for the lifetime of the
3797          * device and so cannot disappear as we iterate. Similarly, we can
3798          * happily treat the predicates as racy, atomic checks as userspace
3799          * cannot claim and pin a new fb without at least acquring the
3800          * struct_mutex and so serialising with us.
3801          */
3802         for_each_intel_crtc(dev, crtc) {
3803                 if (atomic_read(&crtc->unpin_work_count) == 0)
3804                         continue;
3805
3806                 if (crtc->unpin_work)
3807                         intel_wait_for_vblank(dev, crtc->pipe);
3808
3809                 return true;
3810         }
3811
3812         return false;
3813 }
3814
3815 static void page_flip_completed(struct intel_crtc *intel_crtc)
3816 {
3817         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3818         struct intel_unpin_work *work = intel_crtc->unpin_work;
3819
3820         /* ensure that the unpin work is consistent wrt ->pending. */
3821         smp_rmb();
3822         intel_crtc->unpin_work = NULL;
3823
3824         if (work->event)
3825                 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
3826
3827         drm_crtc_vblank_put(&intel_crtc->base);
3828
3829         wake_up_all(&dev_priv->pending_flip_queue);
3830         queue_work(dev_priv->wq, &work->work);
3831
3832         trace_i915_flip_complete(intel_crtc->plane,
3833                                  work->pending_flip_obj);
3834 }
3835
3836 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3837 {
3838         struct drm_device *dev = crtc->dev;
3839         struct drm_i915_private *dev_priv = dev->dev_private;
3840         long ret;
3841
3842         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3843
3844         ret = wait_event_interruptible_timeout(
3845                                         dev_priv->pending_flip_queue,
3846                                         !intel_crtc_has_pending_flip(crtc),
3847                                         60*HZ);
3848
3849         if (ret < 0)
3850                 return ret;
3851
3852         if (ret == 0) {
3853                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3854
3855                 spin_lock_irq(&dev->event_lock);
3856                 if (intel_crtc->unpin_work) {
3857                         WARN_ONCE(1, "Removing stuck page flip\n");
3858                         page_flip_completed(intel_crtc);
3859                 }
3860                 spin_unlock_irq(&dev->event_lock);
3861         }
3862
3863         return 0;
3864 }
3865
3866 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3867 {
3868         u32 temp;
3869
3870         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3871
3872         mutex_lock(&dev_priv->sb_lock);
3873
3874         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3875         temp |= SBI_SSCCTL_DISABLE;
3876         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3877
3878         mutex_unlock(&dev_priv->sb_lock);
3879 }
3880
3881 /* Program iCLKIP clock to the desired frequency */
3882 static void lpt_program_iclkip(struct drm_crtc *crtc)
3883 {
3884         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3885         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3886         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3887         u32 temp;
3888
3889         lpt_disable_iclkip(dev_priv);
3890
3891         /* The iCLK virtual clock root frequency is in MHz,
3892          * but the adjusted_mode->crtc_clock in in KHz. To get the
3893          * divisors, it is necessary to divide one by another, so we
3894          * convert the virtual clock precision to KHz here for higher
3895          * precision.
3896          */
3897         for (auxdiv = 0; auxdiv < 2; auxdiv++) {
3898                 u32 iclk_virtual_root_freq = 172800 * 1000;
3899                 u32 iclk_pi_range = 64;
3900                 u32 desired_divisor;
3901
3902                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3903                                                     clock << auxdiv);
3904                 divsel = (desired_divisor / iclk_pi_range) - 2;
3905                 phaseinc = desired_divisor % iclk_pi_range;
3906
3907                 /*
3908                  * Near 20MHz is a corner case which is
3909                  * out of range for the 7-bit divisor
3910                  */
3911                 if (divsel <= 0x7f)
3912                         break;
3913         }
3914
3915         /* This should not happen with any sane values */
3916         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3917                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3918         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3919                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3920
3921         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3922                         clock,
3923                         auxdiv,
3924                         divsel,
3925                         phasedir,
3926                         phaseinc);
3927
3928         mutex_lock(&dev_priv->sb_lock);
3929
3930         /* Program SSCDIVINTPHASE6 */
3931         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3932         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3933         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3934         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3935         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3936         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3937         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3938         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3939
3940         /* Program SSCAUXDIV */
3941         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3942         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3943         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3944         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3945
3946         /* Enable modulator and associated divider */
3947         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3948         temp &= ~SBI_SSCCTL_DISABLE;
3949         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3950
3951         mutex_unlock(&dev_priv->sb_lock);
3952
3953         /* Wait for initialization time */
3954         udelay(24);
3955
3956         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3957 }
3958
3959 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
3960 {
3961         u32 divsel, phaseinc, auxdiv;
3962         u32 iclk_virtual_root_freq = 172800 * 1000;
3963         u32 iclk_pi_range = 64;
3964         u32 desired_divisor;
3965         u32 temp;
3966
3967         if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
3968                 return 0;
3969
3970         mutex_lock(&dev_priv->sb_lock);
3971
3972         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3973         if (temp & SBI_SSCCTL_DISABLE) {
3974                 mutex_unlock(&dev_priv->sb_lock);
3975                 return 0;
3976         }
3977
3978         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3979         divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
3980                 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
3981         phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
3982                 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
3983
3984         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3985         auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
3986                 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
3987
3988         mutex_unlock(&dev_priv->sb_lock);
3989
3990         desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
3991
3992         return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3993                                  desired_divisor << auxdiv);
3994 }
3995
3996 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3997                                                 enum pipe pch_transcoder)
3998 {
3999         struct drm_device *dev = crtc->base.dev;
4000         struct drm_i915_private *dev_priv = dev->dev_private;
4001         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4002
4003         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4004                    I915_READ(HTOTAL(cpu_transcoder)));
4005         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4006                    I915_READ(HBLANK(cpu_transcoder)));
4007         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4008                    I915_READ(HSYNC(cpu_transcoder)));
4009
4010         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4011                    I915_READ(VTOTAL(cpu_transcoder)));
4012         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4013                    I915_READ(VBLANK(cpu_transcoder)));
4014         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4015                    I915_READ(VSYNC(cpu_transcoder)));
4016         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4017                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4018 }
4019
4020 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4021 {
4022         struct drm_i915_private *dev_priv = dev->dev_private;
4023         uint32_t temp;
4024
4025         temp = I915_READ(SOUTH_CHICKEN1);
4026         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4027                 return;
4028
4029         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4030         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4031
4032         temp &= ~FDI_BC_BIFURCATION_SELECT;
4033         if (enable)
4034                 temp |= FDI_BC_BIFURCATION_SELECT;
4035
4036         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4037         I915_WRITE(SOUTH_CHICKEN1, temp);
4038         POSTING_READ(SOUTH_CHICKEN1);
4039 }
4040
4041 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4042 {
4043         struct drm_device *dev = intel_crtc->base.dev;
4044
4045         switch (intel_crtc->pipe) {
4046         case PIPE_A:
4047                 break;
4048         case PIPE_B:
4049                 if (intel_crtc->config->fdi_lanes > 2)
4050                         cpt_set_fdi_bc_bifurcation(dev, false);
4051                 else
4052                         cpt_set_fdi_bc_bifurcation(dev, true);
4053
4054                 break;
4055         case PIPE_C:
4056                 cpt_set_fdi_bc_bifurcation(dev, true);
4057
4058                 break;
4059         default:
4060                 BUG();
4061         }
4062 }
4063
4064 /* Return which DP Port should be selected for Transcoder DP control */
4065 static enum port
4066 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4067 {
4068         struct drm_device *dev = crtc->dev;
4069         struct intel_encoder *encoder;
4070
4071         for_each_encoder_on_crtc(dev, crtc, encoder) {
4072                 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4073                     encoder->type == INTEL_OUTPUT_EDP)
4074                         return enc_to_dig_port(&encoder->base)->port;
4075         }
4076
4077         return -1;
4078 }
4079
4080 /*
4081  * Enable PCH resources required for PCH ports:
4082  *   - PCH PLLs
4083  *   - FDI training & RX/TX
4084  *   - update transcoder timings
4085  *   - DP transcoding bits
4086  *   - transcoder
4087  */
4088 static void ironlake_pch_enable(struct drm_crtc *crtc)
4089 {
4090         struct drm_device *dev = crtc->dev;
4091         struct drm_i915_private *dev_priv = dev->dev_private;
4092         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4093         int pipe = intel_crtc->pipe;
4094         u32 temp;
4095
4096         assert_pch_transcoder_disabled(dev_priv, pipe);
4097
4098         if (IS_IVYBRIDGE(dev))
4099                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4100
4101         /* Write the TU size bits before fdi link training, so that error
4102          * detection works. */
4103         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4104                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4105
4106         /* For PCH output, training FDI link */
4107         dev_priv->display.fdi_link_train(crtc);
4108
4109         /* We need to program the right clock selection before writing the pixel
4110          * mutliplier into the DPLL. */
4111         if (HAS_PCH_CPT(dev)) {
4112                 u32 sel;
4113
4114                 temp = I915_READ(PCH_DPLL_SEL);
4115                 temp |= TRANS_DPLL_ENABLE(pipe);
4116                 sel = TRANS_DPLLB_SEL(pipe);
4117                 if (intel_crtc->config->shared_dpll ==
4118                     intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4119                         temp |= sel;
4120                 else
4121                         temp &= ~sel;
4122                 I915_WRITE(PCH_DPLL_SEL, temp);
4123         }
4124
4125         /* XXX: pch pll's can be enabled any time before we enable the PCH
4126          * transcoder, and we actually should do this to not upset any PCH
4127          * transcoder that already use the clock when we share it.
4128          *
4129          * Note that enable_shared_dpll tries to do the right thing, but
4130          * get_shared_dpll unconditionally resets the pll - we need that to have
4131          * the right LVDS enable sequence. */
4132         intel_enable_shared_dpll(intel_crtc);
4133
4134         /* set transcoder timing, panel must allow it */
4135         assert_panel_unlocked(dev_priv, pipe);
4136         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4137
4138         intel_fdi_normal_train(crtc);
4139
4140         /* For PCH DP, enable TRANS_DP_CTL */
4141         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4142                 const struct drm_display_mode *adjusted_mode =
4143                         &intel_crtc->config->base.adjusted_mode;
4144                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4145                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4146                 temp = I915_READ(reg);
4147                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4148                           TRANS_DP_SYNC_MASK |
4149                           TRANS_DP_BPC_MASK);
4150                 temp |= TRANS_DP_OUTPUT_ENABLE;
4151                 temp |= bpc << 9; /* same format but at 11:9 */
4152
4153                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4154                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4155                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4156                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4157
4158                 switch (intel_trans_dp_port_sel(crtc)) {
4159                 case PORT_B:
4160                         temp |= TRANS_DP_PORT_SEL_B;
4161                         break;
4162                 case PORT_C:
4163                         temp |= TRANS_DP_PORT_SEL_C;
4164                         break;
4165                 case PORT_D:
4166                         temp |= TRANS_DP_PORT_SEL_D;
4167                         break;
4168                 default:
4169                         BUG();
4170                 }
4171
4172                 I915_WRITE(reg, temp);
4173         }
4174
4175         ironlake_enable_pch_transcoder(dev_priv, pipe);
4176 }
4177
4178 static void lpt_pch_enable(struct drm_crtc *crtc)
4179 {
4180         struct drm_device *dev = crtc->dev;
4181         struct drm_i915_private *dev_priv = dev->dev_private;
4182         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4183         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4184
4185         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4186
4187         lpt_program_iclkip(crtc);
4188
4189         /* Set transcoder timing. */
4190         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4191
4192         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4193 }
4194
4195 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4196 {
4197         struct drm_i915_private *dev_priv = dev->dev_private;
4198         i915_reg_t dslreg = PIPEDSL(pipe);
4199         u32 temp;
4200
4201         temp = I915_READ(dslreg);
4202         udelay(500);
4203         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4204                 if (wait_for(I915_READ(dslreg) != temp, 5))
4205                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4206         }
4207 }
4208
4209 static int
4210 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4211                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4212                   int src_w, int src_h, int dst_w, int dst_h)
4213 {
4214         struct intel_crtc_scaler_state *scaler_state =
4215                 &crtc_state->scaler_state;
4216         struct intel_crtc *intel_crtc =
4217                 to_intel_crtc(crtc_state->base.crtc);
4218         int need_scaling;
4219
4220         need_scaling = intel_rotation_90_or_270(rotation) ?
4221                 (src_h != dst_w || src_w != dst_h):
4222                 (src_w != dst_w || src_h != dst_h);
4223
4224         /*
4225          * if plane is being disabled or scaler is no more required or force detach
4226          *  - free scaler binded to this plane/crtc
4227          *  - in order to do this, update crtc->scaler_usage
4228          *
4229          * Here scaler state in crtc_state is set free so that
4230          * scaler can be assigned to other user. Actual register
4231          * update to free the scaler is done in plane/panel-fit programming.
4232          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4233          */
4234         if (force_detach || !need_scaling) {
4235                 if (*scaler_id >= 0) {
4236                         scaler_state->scaler_users &= ~(1 << scaler_user);
4237                         scaler_state->scalers[*scaler_id].in_use = 0;
4238
4239                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4240                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4241                                 intel_crtc->pipe, scaler_user, *scaler_id,
4242                                 scaler_state->scaler_users);
4243                         *scaler_id = -1;
4244                 }
4245                 return 0;
4246         }
4247
4248         /* range checks */
4249         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4250                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4251
4252                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4253                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4254                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4255                         "size is out of scaler range\n",
4256                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4257                 return -EINVAL;
4258         }
4259
4260         /* mark this plane as a scaler user in crtc_state */
4261         scaler_state->scaler_users |= (1 << scaler_user);
4262         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4263                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4264                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4265                 scaler_state->scaler_users);
4266
4267         return 0;
4268 }
4269
4270 /**
4271  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4272  *
4273  * @state: crtc's scaler state
4274  *
4275  * Return
4276  *     0 - scaler_usage updated successfully
4277  *    error - requested scaling cannot be supported or other error condition
4278  */
4279 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4280 {
4281         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4282         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4283
4284         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4285                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4286
4287         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4288                 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4289                 state->pipe_src_w, state->pipe_src_h,
4290                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4291 }
4292
4293 /**
4294  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4295  *
4296  * @state: crtc's scaler state
4297  * @plane_state: atomic plane state to update
4298  *
4299  * Return
4300  *     0 - scaler_usage updated successfully
4301  *    error - requested scaling cannot be supported or other error condition
4302  */
4303 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4304                                    struct intel_plane_state *plane_state)
4305 {
4306
4307         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4308         struct intel_plane *intel_plane =
4309                 to_intel_plane(plane_state->base.plane);
4310         struct drm_framebuffer *fb = plane_state->base.fb;
4311         int ret;
4312
4313         bool force_detach = !fb || !plane_state->visible;
4314
4315         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4316                       intel_plane->base.base.id, intel_crtc->pipe,
4317                       drm_plane_index(&intel_plane->base));
4318
4319         ret = skl_update_scaler(crtc_state, force_detach,
4320                                 drm_plane_index(&intel_plane->base),
4321                                 &plane_state->scaler_id,
4322                                 plane_state->base.rotation,
4323                                 drm_rect_width(&plane_state->src) >> 16,
4324                                 drm_rect_height(&plane_state->src) >> 16,
4325                                 drm_rect_width(&plane_state->dst),
4326                                 drm_rect_height(&plane_state->dst));
4327
4328         if (ret || plane_state->scaler_id < 0)
4329                 return ret;
4330
4331         /* check colorkey */
4332         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4333                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4334                               intel_plane->base.base.id);
4335                 return -EINVAL;
4336         }
4337
4338         /* Check src format */
4339         switch (fb->pixel_format) {
4340         case DRM_FORMAT_RGB565:
4341         case DRM_FORMAT_XBGR8888:
4342         case DRM_FORMAT_XRGB8888:
4343         case DRM_FORMAT_ABGR8888:
4344         case DRM_FORMAT_ARGB8888:
4345         case DRM_FORMAT_XRGB2101010:
4346         case DRM_FORMAT_XBGR2101010:
4347         case DRM_FORMAT_YUYV:
4348         case DRM_FORMAT_YVYU:
4349         case DRM_FORMAT_UYVY:
4350         case DRM_FORMAT_VYUY:
4351                 break;
4352         default:
4353                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4354                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4355                 return -EINVAL;
4356         }
4357
4358         return 0;
4359 }
4360
4361 static void skylake_scaler_disable(struct intel_crtc *crtc)
4362 {
4363         int i;
4364
4365         for (i = 0; i < crtc->num_scalers; i++)
4366                 skl_detach_scaler(crtc, i);
4367 }
4368
4369 static void skylake_pfit_enable(struct intel_crtc *crtc)
4370 {
4371         struct drm_device *dev = crtc->base.dev;
4372         struct drm_i915_private *dev_priv = dev->dev_private;
4373         int pipe = crtc->pipe;
4374         struct intel_crtc_scaler_state *scaler_state =
4375                 &crtc->config->scaler_state;
4376
4377         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4378
4379         if (crtc->config->pch_pfit.enabled) {
4380                 int id;
4381
4382                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4383                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4384                         return;
4385                 }
4386
4387                 id = scaler_state->scaler_id;
4388                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4389                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4390                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4391                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4392
4393                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4394         }
4395 }
4396
4397 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4398 {
4399         struct drm_device *dev = crtc->base.dev;
4400         struct drm_i915_private *dev_priv = dev->dev_private;
4401         int pipe = crtc->pipe;
4402
4403         if (crtc->config->pch_pfit.enabled) {
4404                 /* Force use of hard-coded filter coefficients
4405                  * as some pre-programmed values are broken,
4406                  * e.g. x201.
4407                  */
4408                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4409                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4410                                                  PF_PIPE_SEL_IVB(pipe));
4411                 else
4412                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4413                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4414                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4415         }
4416 }
4417
4418 void hsw_enable_ips(struct intel_crtc *crtc)
4419 {
4420         struct drm_device *dev = crtc->base.dev;
4421         struct drm_i915_private *dev_priv = dev->dev_private;
4422
4423         if (!crtc->config->ips_enabled)
4424                 return;
4425
4426         /*
4427          * We can only enable IPS after we enable a plane and wait for a vblank
4428          * This function is called from post_plane_update, which is run after
4429          * a vblank wait.
4430          */
4431
4432         assert_plane_enabled(dev_priv, crtc->plane);
4433         if (IS_BROADWELL(dev)) {
4434                 mutex_lock(&dev_priv->rps.hw_lock);
4435                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4436                 mutex_unlock(&dev_priv->rps.hw_lock);
4437                 /* Quoting Art Runyan: "its not safe to expect any particular
4438                  * value in IPS_CTL bit 31 after enabling IPS through the
4439                  * mailbox." Moreover, the mailbox may return a bogus state,
4440                  * so we need to just enable it and continue on.
4441                  */
4442         } else {
4443                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4444                 /* The bit only becomes 1 in the next vblank, so this wait here
4445                  * is essentially intel_wait_for_vblank. If we don't have this
4446                  * and don't wait for vblanks until the end of crtc_enable, then
4447                  * the HW state readout code will complain that the expected
4448                  * IPS_CTL value is not the one we read. */
4449                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4450                         DRM_ERROR("Timed out waiting for IPS enable\n");
4451         }
4452 }
4453
4454 void hsw_disable_ips(struct intel_crtc *crtc)
4455 {
4456         struct drm_device *dev = crtc->base.dev;
4457         struct drm_i915_private *dev_priv = dev->dev_private;
4458
4459         if (!crtc->config->ips_enabled)
4460                 return;
4461
4462         assert_plane_enabled(dev_priv, crtc->plane);
4463         if (IS_BROADWELL(dev)) {
4464                 mutex_lock(&dev_priv->rps.hw_lock);
4465                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4466                 mutex_unlock(&dev_priv->rps.hw_lock);
4467                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4468                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4469                         DRM_ERROR("Timed out waiting for IPS disable\n");
4470         } else {
4471                 I915_WRITE(IPS_CTL, 0);
4472                 POSTING_READ(IPS_CTL);
4473         }
4474
4475         /* We need to wait for a vblank before we can disable the plane. */
4476         intel_wait_for_vblank(dev, crtc->pipe);
4477 }
4478
4479 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4480 {
4481         if (intel_crtc->overlay) {
4482                 struct drm_device *dev = intel_crtc->base.dev;
4483                 struct drm_i915_private *dev_priv = dev->dev_private;
4484
4485                 mutex_lock(&dev->struct_mutex);
4486                 dev_priv->mm.interruptible = false;
4487                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4488                 dev_priv->mm.interruptible = true;
4489                 mutex_unlock(&dev->struct_mutex);
4490         }
4491
4492         /* Let userspace switch the overlay on again. In most cases userspace
4493          * has to recompute where to put it anyway.
4494          */
4495 }
4496
4497 /**
4498  * intel_post_enable_primary - Perform operations after enabling primary plane
4499  * @crtc: the CRTC whose primary plane was just enabled
4500  *
4501  * Performs potentially sleeping operations that must be done after the primary
4502  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4503  * called due to an explicit primary plane update, or due to an implicit
4504  * re-enable that is caused when a sprite plane is updated to no longer
4505  * completely hide the primary plane.
4506  */
4507 static void
4508 intel_post_enable_primary(struct drm_crtc *crtc)
4509 {
4510         struct drm_device *dev = crtc->dev;
4511         struct drm_i915_private *dev_priv = dev->dev_private;
4512         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4513         int pipe = intel_crtc->pipe;
4514
4515         /*
4516          * FIXME IPS should be fine as long as one plane is
4517          * enabled, but in practice it seems to have problems
4518          * when going from primary only to sprite only and vice
4519          * versa.
4520          */
4521         hsw_enable_ips(intel_crtc);
4522
4523         /*
4524          * Gen2 reports pipe underruns whenever all planes are disabled.
4525          * So don't enable underrun reporting before at least some planes
4526          * are enabled.
4527          * FIXME: Need to fix the logic to work when we turn off all planes
4528          * but leave the pipe running.
4529          */
4530         if (IS_GEN2(dev))
4531                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4532
4533         /* Underruns don't always raise interrupts, so check manually. */
4534         intel_check_cpu_fifo_underruns(dev_priv);
4535         intel_check_pch_fifo_underruns(dev_priv);
4536 }
4537
4538 /* FIXME move all this to pre_plane_update() with proper state tracking */
4539 static void
4540 intel_pre_disable_primary(struct drm_crtc *crtc)
4541 {
4542         struct drm_device *dev = crtc->dev;
4543         struct drm_i915_private *dev_priv = dev->dev_private;
4544         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4545         int pipe = intel_crtc->pipe;
4546
4547         /*
4548          * Gen2 reports pipe underruns whenever all planes are disabled.
4549          * So diasble underrun reporting before all the planes get disabled.
4550          * FIXME: Need to fix the logic to work when we turn off all planes
4551          * but leave the pipe running.
4552          */
4553         if (IS_GEN2(dev))
4554                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4555
4556         /*
4557          * FIXME IPS should be fine as long as one plane is
4558          * enabled, but in practice it seems to have problems
4559          * when going from primary only to sprite only and vice
4560          * versa.
4561          */
4562         hsw_disable_ips(intel_crtc);
4563 }
4564
4565 /* FIXME get rid of this and use pre_plane_update */
4566 static void
4567 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4568 {
4569         struct drm_device *dev = crtc->dev;
4570         struct drm_i915_private *dev_priv = dev->dev_private;
4571         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4572         int pipe = intel_crtc->pipe;
4573
4574         intel_pre_disable_primary(crtc);
4575
4576         /*
4577          * Vblank time updates from the shadow to live plane control register
4578          * are blocked if the memory self-refresh mode is active at that
4579          * moment. So to make sure the plane gets truly disabled, disable
4580          * first the self-refresh mode. The self-refresh enable bit in turn
4581          * will be checked/applied by the HW only at the next frame start
4582          * event which is after the vblank start event, so we need to have a
4583          * wait-for-vblank between disabling the plane and the pipe.
4584          */
4585         if (HAS_GMCH_DISPLAY(dev)) {
4586                 intel_set_memory_cxsr(dev_priv, false);
4587                 dev_priv->wm.vlv.cxsr = false;
4588                 intel_wait_for_vblank(dev, pipe);
4589         }
4590 }
4591
4592 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4593 {
4594         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4595         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4596         struct intel_crtc_state *pipe_config =
4597                 to_intel_crtc_state(crtc->base.state);
4598         struct drm_device *dev = crtc->base.dev;
4599         struct drm_plane *primary = crtc->base.primary;
4600         struct drm_plane_state *old_pri_state =
4601                 drm_atomic_get_existing_plane_state(old_state, primary);
4602
4603         intel_frontbuffer_flip(dev, pipe_config->fb_bits);
4604
4605         crtc->wm.cxsr_allowed = true;
4606
4607         if (pipe_config->update_wm_post && pipe_config->base.active)
4608                 intel_update_watermarks(&crtc->base);
4609
4610         if (old_pri_state) {
4611                 struct intel_plane_state *primary_state =
4612                         to_intel_plane_state(primary->state);
4613                 struct intel_plane_state *old_primary_state =
4614                         to_intel_plane_state(old_pri_state);
4615
4616                 intel_fbc_post_update(crtc);
4617
4618                 if (primary_state->visible &&
4619                     (needs_modeset(&pipe_config->base) ||
4620                      !old_primary_state->visible))
4621                         intel_post_enable_primary(&crtc->base);
4622         }
4623 }
4624
4625 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
4626 {
4627         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4628         struct drm_device *dev = crtc->base.dev;
4629         struct drm_i915_private *dev_priv = dev->dev_private;
4630         struct intel_crtc_state *pipe_config =
4631                 to_intel_crtc_state(crtc->base.state);
4632         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4633         struct drm_plane *primary = crtc->base.primary;
4634         struct drm_plane_state *old_pri_state =
4635                 drm_atomic_get_existing_plane_state(old_state, primary);
4636         bool modeset = needs_modeset(&pipe_config->base);
4637
4638         if (old_pri_state) {
4639                 struct intel_plane_state *primary_state =
4640                         to_intel_plane_state(primary->state);
4641                 struct intel_plane_state *old_primary_state =
4642                         to_intel_plane_state(old_pri_state);
4643
4644                 intel_fbc_pre_update(crtc);
4645
4646                 if (old_primary_state->visible &&
4647                     (modeset || !primary_state->visible))
4648                         intel_pre_disable_primary(&crtc->base);
4649         }
4650
4651         if (pipe_config->disable_cxsr) {
4652                 crtc->wm.cxsr_allowed = false;
4653
4654                 /*
4655                  * Vblank time updates from the shadow to live plane control register
4656                  * are blocked if the memory self-refresh mode is active at that
4657                  * moment. So to make sure the plane gets truly disabled, disable
4658                  * first the self-refresh mode. The self-refresh enable bit in turn
4659                  * will be checked/applied by the HW only at the next frame start
4660                  * event which is after the vblank start event, so we need to have a
4661                  * wait-for-vblank between disabling the plane and the pipe.
4662                  */
4663                 if (old_crtc_state->base.active) {
4664                         intel_set_memory_cxsr(dev_priv, false);
4665                         dev_priv->wm.vlv.cxsr = false;
4666                         intel_wait_for_vblank(dev, crtc->pipe);
4667                 }
4668         }
4669
4670         /*
4671          * IVB workaround: must disable low power watermarks for at least
4672          * one frame before enabling scaling.  LP watermarks can be re-enabled
4673          * when scaling is disabled.
4674          *
4675          * WaCxSRDisabledForSpriteScaling:ivb
4676          */
4677         if (pipe_config->disable_lp_wm) {
4678                 ilk_disable_lp_wm(dev);
4679                 intel_wait_for_vblank(dev, crtc->pipe);
4680         }
4681
4682         /*
4683          * If we're doing a modeset, we're done.  No need to do any pre-vblank
4684          * watermark programming here.
4685          */
4686         if (needs_modeset(&pipe_config->base))
4687                 return;
4688
4689         /*
4690          * For platforms that support atomic watermarks, program the
4691          * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
4692          * will be the intermediate values that are safe for both pre- and
4693          * post- vblank; when vblank happens, the 'active' values will be set
4694          * to the final 'target' values and we'll do this again to get the
4695          * optimal watermarks.  For gen9+ platforms, the values we program here
4696          * will be the final target values which will get automatically latched
4697          * at vblank time; no further programming will be necessary.
4698          *
4699          * If a platform hasn't been transitioned to atomic watermarks yet,
4700          * we'll continue to update watermarks the old way, if flags tell
4701          * us to.
4702          */
4703         if (dev_priv->display.initial_watermarks != NULL)
4704                 dev_priv->display.initial_watermarks(pipe_config);
4705         else if (pipe_config->update_wm_pre)
4706                 intel_update_watermarks(&crtc->base);
4707 }
4708
4709 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4710 {
4711         struct drm_device *dev = crtc->dev;
4712         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4713         struct drm_plane *p;
4714         int pipe = intel_crtc->pipe;
4715
4716         intel_crtc_dpms_overlay_disable(intel_crtc);
4717
4718         drm_for_each_plane_mask(p, dev, plane_mask)
4719                 to_intel_plane(p)->disable_plane(p, crtc);
4720
4721         /*
4722          * FIXME: Once we grow proper nuclear flip support out of this we need
4723          * to compute the mask of flip planes precisely. For the time being
4724          * consider this a flip to a NULL plane.
4725          */
4726         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4727 }
4728
4729 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4730 {
4731         struct drm_device *dev = crtc->dev;
4732         struct drm_i915_private *dev_priv = dev->dev_private;
4733         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4734         struct intel_encoder *encoder;
4735         int pipe = intel_crtc->pipe;
4736         struct intel_crtc_state *pipe_config =
4737                 to_intel_crtc_state(crtc->state);
4738
4739         if (WARN_ON(intel_crtc->active))
4740                 return;
4741
4742         /*
4743          * Sometimes spurious CPU pipe underruns happen during FDI
4744          * training, at least with VGA+HDMI cloning. Suppress them.
4745          *
4746          * On ILK we get an occasional spurious CPU pipe underruns
4747          * between eDP port A enable and vdd enable. Also PCH port
4748          * enable seems to result in the occasional CPU pipe underrun.
4749          *
4750          * Spurious PCH underruns also occur during PCH enabling.
4751          */
4752         if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
4753                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4754         if (intel_crtc->config->has_pch_encoder)
4755                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4756
4757         if (intel_crtc->config->has_pch_encoder)
4758                 intel_prepare_shared_dpll(intel_crtc);
4759
4760         if (intel_crtc->config->has_dp_encoder)
4761                 intel_dp_set_m_n(intel_crtc, M1_N1);
4762
4763         intel_set_pipe_timings(intel_crtc);
4764         intel_set_pipe_src_size(intel_crtc);
4765
4766         if (intel_crtc->config->has_pch_encoder) {
4767                 intel_cpu_transcoder_set_m_n(intel_crtc,
4768                                      &intel_crtc->config->fdi_m_n, NULL);
4769         }
4770
4771         ironlake_set_pipeconf(crtc);
4772
4773         intel_crtc->active = true;
4774
4775         for_each_encoder_on_crtc(dev, crtc, encoder)
4776                 if (encoder->pre_enable)
4777                         encoder->pre_enable(encoder);
4778
4779         if (intel_crtc->config->has_pch_encoder) {
4780                 /* Note: FDI PLL enabling _must_ be done before we enable the
4781                  * cpu pipes, hence this is separate from all the other fdi/pch
4782                  * enabling. */
4783                 ironlake_fdi_pll_enable(intel_crtc);
4784         } else {
4785                 assert_fdi_tx_disabled(dev_priv, pipe);
4786                 assert_fdi_rx_disabled(dev_priv, pipe);
4787         }
4788
4789         ironlake_pfit_enable(intel_crtc);
4790
4791         /*
4792          * On ILK+ LUT must be loaded before the pipe is running but with
4793          * clocks enabled
4794          */
4795         intel_color_load_luts(&pipe_config->base);
4796
4797         if (dev_priv->display.initial_watermarks != NULL)
4798                 dev_priv->display.initial_watermarks(intel_crtc->config);
4799         intel_enable_pipe(intel_crtc);
4800
4801         if (intel_crtc->config->has_pch_encoder)
4802                 ironlake_pch_enable(crtc);
4803
4804         assert_vblank_disabled(crtc);
4805         drm_crtc_vblank_on(crtc);
4806
4807         for_each_encoder_on_crtc(dev, crtc, encoder)
4808                 encoder->enable(encoder);
4809
4810         if (HAS_PCH_CPT(dev))
4811                 cpt_verify_modeset(dev, intel_crtc->pipe);
4812
4813         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4814         if (intel_crtc->config->has_pch_encoder)
4815                 intel_wait_for_vblank(dev, pipe);
4816         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4817         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4818 }
4819
4820 /* IPS only exists on ULT machines and is tied to pipe A. */
4821 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4822 {
4823         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4824 }
4825
4826 static void haswell_crtc_enable(struct drm_crtc *crtc)
4827 {
4828         struct drm_device *dev = crtc->dev;
4829         struct drm_i915_private *dev_priv = dev->dev_private;
4830         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4831         struct intel_encoder *encoder;
4832         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4833         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4834         struct intel_crtc_state *pipe_config =
4835                 to_intel_crtc_state(crtc->state);
4836
4837         if (WARN_ON(intel_crtc->active))
4838                 return;
4839
4840         if (intel_crtc->config->has_pch_encoder)
4841                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4842                                                       false);
4843
4844         if (intel_crtc->config->shared_dpll)
4845                 intel_enable_shared_dpll(intel_crtc);
4846
4847         if (intel_crtc->config->has_dp_encoder)
4848                 intel_dp_set_m_n(intel_crtc, M1_N1);
4849
4850         if (!intel_crtc->config->has_dsi_encoder)
4851                 intel_set_pipe_timings(intel_crtc);
4852
4853         intel_set_pipe_src_size(intel_crtc);
4854
4855         if (cpu_transcoder != TRANSCODER_EDP &&
4856             !transcoder_is_dsi(cpu_transcoder)) {
4857                 I915_WRITE(PIPE_MULT(cpu_transcoder),
4858                            intel_crtc->config->pixel_multiplier - 1);
4859         }
4860
4861         if (intel_crtc->config->has_pch_encoder) {
4862                 intel_cpu_transcoder_set_m_n(intel_crtc,
4863                                      &intel_crtc->config->fdi_m_n, NULL);
4864         }
4865
4866         if (!intel_crtc->config->has_dsi_encoder)
4867                 haswell_set_pipeconf(crtc);
4868
4869         haswell_set_pipemisc(crtc);
4870
4871         intel_color_set_csc(&pipe_config->base);
4872
4873         intel_crtc->active = true;
4874
4875         if (intel_crtc->config->has_pch_encoder)
4876                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4877         else
4878                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4879
4880         for_each_encoder_on_crtc(dev, crtc, encoder) {
4881                 if (encoder->pre_enable)
4882                         encoder->pre_enable(encoder);
4883         }
4884
4885         if (intel_crtc->config->has_pch_encoder)
4886                 dev_priv->display.fdi_link_train(crtc);
4887
4888         if (!intel_crtc->config->has_dsi_encoder)
4889                 intel_ddi_enable_pipe_clock(intel_crtc);
4890
4891         if (INTEL_INFO(dev)->gen >= 9)
4892                 skylake_pfit_enable(intel_crtc);
4893         else
4894                 ironlake_pfit_enable(intel_crtc);
4895
4896         /*
4897          * On ILK+ LUT must be loaded before the pipe is running but with
4898          * clocks enabled
4899          */
4900         intel_color_load_luts(&pipe_config->base);
4901
4902         intel_ddi_set_pipe_settings(crtc);
4903         if (!intel_crtc->config->has_dsi_encoder)
4904                 intel_ddi_enable_transcoder_func(crtc);
4905
4906         if (dev_priv->display.initial_watermarks != NULL)
4907                 dev_priv->display.initial_watermarks(pipe_config);
4908         else
4909                 intel_update_watermarks(crtc);
4910
4911         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
4912         if (!intel_crtc->config->has_dsi_encoder)
4913                 intel_enable_pipe(intel_crtc);
4914
4915         if (intel_crtc->config->has_pch_encoder)
4916                 lpt_pch_enable(crtc);
4917
4918         if (intel_crtc->config->dp_encoder_is_mst)
4919                 intel_ddi_set_vc_payload_alloc(crtc, true);
4920
4921         assert_vblank_disabled(crtc);
4922         drm_crtc_vblank_on(crtc);
4923
4924         for_each_encoder_on_crtc(dev, crtc, encoder) {
4925                 encoder->enable(encoder);
4926                 intel_opregion_notify_encoder(encoder, true);
4927         }
4928
4929         if (intel_crtc->config->has_pch_encoder) {
4930                 intel_wait_for_vblank(dev, pipe);
4931                 intel_wait_for_vblank(dev, pipe);
4932                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4933                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4934                                                       true);
4935         }
4936
4937         /* If we change the relative order between pipe/planes enabling, we need
4938          * to change the workaround. */
4939         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4940         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4941                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4942                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4943         }
4944 }
4945
4946 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
4947 {
4948         struct drm_device *dev = crtc->base.dev;
4949         struct drm_i915_private *dev_priv = dev->dev_private;
4950         int pipe = crtc->pipe;
4951
4952         /* To avoid upsetting the power well on haswell only disable the pfit if
4953          * it's in use. The hw state code will make sure we get this right. */
4954         if (force || crtc->config->pch_pfit.enabled) {
4955                 I915_WRITE(PF_CTL(pipe), 0);
4956                 I915_WRITE(PF_WIN_POS(pipe), 0);
4957                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4958         }
4959 }
4960
4961 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4962 {
4963         struct drm_device *dev = crtc->dev;
4964         struct drm_i915_private *dev_priv = dev->dev_private;
4965         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4966         struct intel_encoder *encoder;
4967         int pipe = intel_crtc->pipe;
4968
4969         /*
4970          * Sometimes spurious CPU pipe underruns happen when the
4971          * pipe is already disabled, but FDI RX/TX is still enabled.
4972          * Happens at least with VGA+HDMI cloning. Suppress them.
4973          */
4974         if (intel_crtc->config->has_pch_encoder) {
4975                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4976                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4977         }
4978
4979         for_each_encoder_on_crtc(dev, crtc, encoder)
4980                 encoder->disable(encoder);
4981
4982         drm_crtc_vblank_off(crtc);
4983         assert_vblank_disabled(crtc);
4984
4985         intel_disable_pipe(intel_crtc);
4986
4987         ironlake_pfit_disable(intel_crtc, false);
4988
4989         if (intel_crtc->config->has_pch_encoder)
4990                 ironlake_fdi_disable(crtc);
4991
4992         for_each_encoder_on_crtc(dev, crtc, encoder)
4993                 if (encoder->post_disable)
4994                         encoder->post_disable(encoder);
4995
4996         if (intel_crtc->config->has_pch_encoder) {
4997                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4998
4999                 if (HAS_PCH_CPT(dev)) {
5000                         i915_reg_t reg;
5001                         u32 temp;
5002
5003                         /* disable TRANS_DP_CTL */
5004                         reg = TRANS_DP_CTL(pipe);
5005                         temp = I915_READ(reg);
5006                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5007                                   TRANS_DP_PORT_SEL_MASK);
5008                         temp |= TRANS_DP_PORT_SEL_NONE;
5009                         I915_WRITE(reg, temp);
5010
5011                         /* disable DPLL_SEL */
5012                         temp = I915_READ(PCH_DPLL_SEL);
5013                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5014                         I915_WRITE(PCH_DPLL_SEL, temp);
5015                 }
5016
5017                 ironlake_fdi_pll_disable(intel_crtc);
5018         }
5019
5020         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5021         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5022 }
5023
5024 static void haswell_crtc_disable(struct drm_crtc *crtc)
5025 {
5026         struct drm_device *dev = crtc->dev;
5027         struct drm_i915_private *dev_priv = dev->dev_private;
5028         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5029         struct intel_encoder *encoder;
5030         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5031
5032         if (intel_crtc->config->has_pch_encoder)
5033                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5034                                                       false);
5035
5036         for_each_encoder_on_crtc(dev, crtc, encoder) {
5037                 intel_opregion_notify_encoder(encoder, false);
5038                 encoder->disable(encoder);
5039         }
5040
5041         drm_crtc_vblank_off(crtc);
5042         assert_vblank_disabled(crtc);
5043
5044         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5045         if (!intel_crtc->config->has_dsi_encoder)
5046                 intel_disable_pipe(intel_crtc);
5047
5048         if (intel_crtc->config->dp_encoder_is_mst)
5049                 intel_ddi_set_vc_payload_alloc(crtc, false);
5050
5051         if (!intel_crtc->config->has_dsi_encoder)
5052                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5053
5054         if (INTEL_INFO(dev)->gen >= 9)
5055                 skylake_scaler_disable(intel_crtc);
5056         else
5057                 ironlake_pfit_disable(intel_crtc, false);
5058
5059         if (!intel_crtc->config->has_dsi_encoder)
5060                 intel_ddi_disable_pipe_clock(intel_crtc);
5061
5062         for_each_encoder_on_crtc(dev, crtc, encoder)
5063                 if (encoder->post_disable)
5064                         encoder->post_disable(encoder);
5065
5066         if (intel_crtc->config->has_pch_encoder) {
5067                 lpt_disable_pch_transcoder(dev_priv);
5068                 lpt_disable_iclkip(dev_priv);
5069                 intel_ddi_fdi_disable(crtc);
5070
5071                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5072                                                       true);
5073         }
5074 }
5075
5076 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5077 {
5078         struct drm_device *dev = crtc->base.dev;
5079         struct drm_i915_private *dev_priv = dev->dev_private;
5080         struct intel_crtc_state *pipe_config = crtc->config;
5081
5082         if (!pipe_config->gmch_pfit.control)
5083                 return;
5084
5085         /*
5086          * The panel fitter should only be adjusted whilst the pipe is disabled,
5087          * according to register description and PRM.
5088          */
5089         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5090         assert_pipe_disabled(dev_priv, crtc->pipe);
5091
5092         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5093         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5094
5095         /* Border color in case we don't scale up to the full screen. Black by
5096          * default, change to something else for debugging. */
5097         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5098 }
5099
5100 static enum intel_display_power_domain port_to_power_domain(enum port port)
5101 {
5102         switch (port) {
5103         case PORT_A:
5104                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5105         case PORT_B:
5106                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5107         case PORT_C:
5108                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5109         case PORT_D:
5110                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5111         case PORT_E:
5112                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5113         default:
5114                 MISSING_CASE(port);
5115                 return POWER_DOMAIN_PORT_OTHER;
5116         }
5117 }
5118
5119 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5120 {
5121         switch (port) {
5122         case PORT_A:
5123                 return POWER_DOMAIN_AUX_A;
5124         case PORT_B:
5125                 return POWER_DOMAIN_AUX_B;
5126         case PORT_C:
5127                 return POWER_DOMAIN_AUX_C;
5128         case PORT_D:
5129                 return POWER_DOMAIN_AUX_D;
5130         case PORT_E:
5131                 /* FIXME: Check VBT for actual wiring of PORT E */
5132                 return POWER_DOMAIN_AUX_D;
5133         default:
5134                 MISSING_CASE(port);
5135                 return POWER_DOMAIN_AUX_A;
5136         }
5137 }
5138
5139 enum intel_display_power_domain
5140 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5141 {
5142         struct drm_device *dev = intel_encoder->base.dev;
5143         struct intel_digital_port *intel_dig_port;
5144
5145         switch (intel_encoder->type) {
5146         case INTEL_OUTPUT_UNKNOWN:
5147                 /* Only DDI platforms should ever use this output type */
5148                 WARN_ON_ONCE(!HAS_DDI(dev));
5149         case INTEL_OUTPUT_DISPLAYPORT:
5150         case INTEL_OUTPUT_HDMI:
5151         case INTEL_OUTPUT_EDP:
5152                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5153                 return port_to_power_domain(intel_dig_port->port);
5154         case INTEL_OUTPUT_DP_MST:
5155                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5156                 return port_to_power_domain(intel_dig_port->port);
5157         case INTEL_OUTPUT_ANALOG:
5158                 return POWER_DOMAIN_PORT_CRT;
5159         case INTEL_OUTPUT_DSI:
5160                 return POWER_DOMAIN_PORT_DSI;
5161         default:
5162                 return POWER_DOMAIN_PORT_OTHER;
5163         }
5164 }
5165
5166 enum intel_display_power_domain
5167 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5168 {
5169         struct drm_device *dev = intel_encoder->base.dev;
5170         struct intel_digital_port *intel_dig_port;
5171
5172         switch (intel_encoder->type) {
5173         case INTEL_OUTPUT_UNKNOWN:
5174         case INTEL_OUTPUT_HDMI:
5175                 /*
5176                  * Only DDI platforms should ever use these output types.
5177                  * We can get here after the HDMI detect code has already set
5178                  * the type of the shared encoder. Since we can't be sure
5179                  * what's the status of the given connectors, play safe and
5180                  * run the DP detection too.
5181                  */
5182                 WARN_ON_ONCE(!HAS_DDI(dev));
5183         case INTEL_OUTPUT_DISPLAYPORT:
5184         case INTEL_OUTPUT_EDP:
5185                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5186                 return port_to_aux_power_domain(intel_dig_port->port);
5187         case INTEL_OUTPUT_DP_MST:
5188                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5189                 return port_to_aux_power_domain(intel_dig_port->port);
5190         default:
5191                 MISSING_CASE(intel_encoder->type);
5192                 return POWER_DOMAIN_AUX_A;
5193         }
5194 }
5195
5196 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5197                                             struct intel_crtc_state *crtc_state)
5198 {
5199         struct drm_device *dev = crtc->dev;
5200         struct drm_encoder *encoder;
5201         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5202         enum pipe pipe = intel_crtc->pipe;
5203         unsigned long mask;
5204         enum transcoder transcoder = crtc_state->cpu_transcoder;
5205
5206         if (!crtc_state->base.active)
5207                 return 0;
5208
5209         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5210         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5211         if (crtc_state->pch_pfit.enabled ||
5212             crtc_state->pch_pfit.force_thru)
5213                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5214
5215         drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5216                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5217
5218                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5219         }
5220
5221         if (crtc_state->shared_dpll)
5222                 mask |= BIT(POWER_DOMAIN_PLLS);
5223
5224         return mask;
5225 }
5226
5227 static unsigned long
5228 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5229                                struct intel_crtc_state *crtc_state)
5230 {
5231         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5232         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5233         enum intel_display_power_domain domain;
5234         unsigned long domains, new_domains, old_domains;
5235
5236         old_domains = intel_crtc->enabled_power_domains;
5237         intel_crtc->enabled_power_domains = new_domains =
5238                 get_crtc_power_domains(crtc, crtc_state);
5239
5240         domains = new_domains & ~old_domains;
5241
5242         for_each_power_domain(domain, domains)
5243                 intel_display_power_get(dev_priv, domain);
5244
5245         return old_domains & ~new_domains;
5246 }
5247
5248 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5249                                       unsigned long domains)
5250 {
5251         enum intel_display_power_domain domain;
5252
5253         for_each_power_domain(domain, domains)
5254                 intel_display_power_put(dev_priv, domain);
5255 }
5256
5257 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5258 {
5259         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5260
5261         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5262             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5263                 return max_cdclk_freq;
5264         else if (IS_CHERRYVIEW(dev_priv))
5265                 return max_cdclk_freq*95/100;
5266         else if (INTEL_INFO(dev_priv)->gen < 4)
5267                 return 2*max_cdclk_freq*90/100;
5268         else
5269                 return max_cdclk_freq*90/100;
5270 }
5271
5272 static void intel_update_max_cdclk(struct drm_device *dev)
5273 {
5274         struct drm_i915_private *dev_priv = dev->dev_private;
5275
5276         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5277                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5278
5279                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5280                         dev_priv->max_cdclk_freq = 675000;
5281                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5282                         dev_priv->max_cdclk_freq = 540000;
5283                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5284                         dev_priv->max_cdclk_freq = 450000;
5285                 else
5286                         dev_priv->max_cdclk_freq = 337500;
5287         } else if (IS_BROXTON(dev)) {
5288                 dev_priv->max_cdclk_freq = 624000;
5289         } else if (IS_BROADWELL(dev))  {
5290                 /*
5291                  * FIXME with extra cooling we can allow
5292                  * 540 MHz for ULX and 675 Mhz for ULT.
5293                  * How can we know if extra cooling is
5294                  * available? PCI ID, VTB, something else?
5295                  */
5296                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5297                         dev_priv->max_cdclk_freq = 450000;
5298                 else if (IS_BDW_ULX(dev))
5299                         dev_priv->max_cdclk_freq = 450000;
5300                 else if (IS_BDW_ULT(dev))
5301                         dev_priv->max_cdclk_freq = 540000;
5302                 else
5303                         dev_priv->max_cdclk_freq = 675000;
5304         } else if (IS_CHERRYVIEW(dev)) {
5305                 dev_priv->max_cdclk_freq = 320000;
5306         } else if (IS_VALLEYVIEW(dev)) {
5307                 dev_priv->max_cdclk_freq = 400000;
5308         } else {
5309                 /* otherwise assume cdclk is fixed */
5310                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5311         }
5312
5313         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5314
5315         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5316                          dev_priv->max_cdclk_freq);
5317
5318         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5319                          dev_priv->max_dotclk_freq);
5320 }
5321
5322 static void intel_update_cdclk(struct drm_device *dev)
5323 {
5324         struct drm_i915_private *dev_priv = dev->dev_private;
5325
5326         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5327         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5328                          dev_priv->cdclk_freq);
5329
5330         /*
5331          * Program the gmbus_freq based on the cdclk frequency.
5332          * BSpec erroneously claims we should aim for 4MHz, but
5333          * in fact 1MHz is the correct frequency.
5334          */
5335         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5336                 /*
5337                  * Program the gmbus_freq based on the cdclk frequency.
5338                  * BSpec erroneously claims we should aim for 4MHz, but
5339                  * in fact 1MHz is the correct frequency.
5340                  */
5341                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5342         }
5343
5344         if (dev_priv->max_cdclk_freq == 0)
5345                 intel_update_max_cdclk(dev);
5346 }
5347
5348 static void broxton_set_cdclk(struct drm_i915_private *dev_priv, int frequency)
5349 {
5350         uint32_t divider;
5351         uint32_t ratio;
5352         uint32_t current_freq;
5353         int ret;
5354
5355         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5356         switch (frequency) {
5357         case 144000:
5358                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5359                 ratio = BXT_DE_PLL_RATIO(60);
5360                 break;
5361         case 288000:
5362                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5363                 ratio = BXT_DE_PLL_RATIO(60);
5364                 break;
5365         case 384000:
5366                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5367                 ratio = BXT_DE_PLL_RATIO(60);
5368                 break;
5369         case 576000:
5370                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5371                 ratio = BXT_DE_PLL_RATIO(60);
5372                 break;
5373         case 624000:
5374                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5375                 ratio = BXT_DE_PLL_RATIO(65);
5376                 break;
5377         case 19200:
5378                 /*
5379                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5380                  * to suppress GCC warning.
5381                  */
5382                 ratio = 0;
5383                 divider = 0;
5384                 break;
5385         default:
5386                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5387
5388                 return;
5389         }
5390
5391         mutex_lock(&dev_priv->rps.hw_lock);
5392         /* Inform power controller of upcoming frequency change */
5393         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5394                                       0x80000000);
5395         mutex_unlock(&dev_priv->rps.hw_lock);
5396
5397         if (ret) {
5398                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5399                           ret, frequency);
5400                 return;
5401         }
5402
5403         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5404         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5405         current_freq = current_freq * 500 + 1000;
5406
5407         /*
5408          * DE PLL has to be disabled when
5409          * - setting to 19.2MHz (bypass, PLL isn't used)
5410          * - before setting to 624MHz (PLL needs toggling)
5411          * - before setting to any frequency from 624MHz (PLL needs toggling)
5412          */
5413         if (frequency == 19200 || frequency == 624000 ||
5414             current_freq == 624000) {
5415                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5416                 /* Timeout 200us */
5417                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5418                              1))
5419                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5420         }
5421
5422         if (frequency != 19200) {
5423                 uint32_t val;
5424
5425                 val = I915_READ(BXT_DE_PLL_CTL);
5426                 val &= ~BXT_DE_PLL_RATIO_MASK;
5427                 val |= ratio;
5428                 I915_WRITE(BXT_DE_PLL_CTL, val);
5429
5430                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5431                 /* Timeout 200us */
5432                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5433                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5434
5435                 val = I915_READ(CDCLK_CTL);
5436                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5437                 val |= divider;
5438                 /*
5439                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5440                  * enable otherwise.
5441                  */
5442                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5443                 if (frequency >= 500000)
5444                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5445
5446                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5447                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5448                 val |= (frequency - 1000) / 500;
5449                 I915_WRITE(CDCLK_CTL, val);
5450         }
5451
5452         mutex_lock(&dev_priv->rps.hw_lock);
5453         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5454                                       DIV_ROUND_UP(frequency, 25000));
5455         mutex_unlock(&dev_priv->rps.hw_lock);
5456
5457         if (ret) {
5458                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5459                           ret, frequency);
5460                 return;
5461         }
5462
5463         intel_update_cdclk(dev_priv->dev);
5464 }
5465
5466 static bool broxton_cdclk_is_enabled(struct drm_i915_private *dev_priv)
5467 {
5468         if (!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE))
5469                 return false;
5470
5471         /* TODO: Check for a valid CDCLK rate */
5472
5473         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_REQUEST)) {
5474                 DRM_DEBUG_DRIVER("CDCLK enabled, but DBUF power not requested\n");
5475
5476                 return false;
5477         }
5478
5479         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE)) {
5480                 DRM_DEBUG_DRIVER("CDCLK enabled, but DBUF power hasn't settled\n");
5481
5482                 return false;
5483         }
5484
5485         return true;
5486 }
5487
5488 bool broxton_cdclk_verify_state(struct drm_i915_private *dev_priv)
5489 {
5490         return broxton_cdclk_is_enabled(dev_priv);
5491 }
5492
5493 void broxton_init_cdclk(struct drm_i915_private *dev_priv)
5494 {
5495         /* check if cd clock is enabled */
5496         if (broxton_cdclk_is_enabled(dev_priv)) {
5497                 DRM_DEBUG_KMS("CDCLK already enabled, won't reprogram it\n");
5498                 return;
5499         }
5500
5501         DRM_DEBUG_KMS("CDCLK not enabled, enabling it\n");
5502
5503         /*
5504          * FIXME:
5505          * - The initial CDCLK needs to be read from VBT.
5506          *   Need to make this change after VBT has changes for BXT.
5507          * - check if setting the max (or any) cdclk freq is really necessary
5508          *   here, it belongs to modeset time
5509          */
5510         broxton_set_cdclk(dev_priv, 624000);
5511
5512         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5513         POSTING_READ(DBUF_CTL);
5514
5515         udelay(10);
5516
5517         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5518                 DRM_ERROR("DBuf power enable timeout!\n");
5519 }
5520
5521 void broxton_uninit_cdclk(struct drm_i915_private *dev_priv)
5522 {
5523         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5524         POSTING_READ(DBUF_CTL);
5525
5526         udelay(10);
5527
5528         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5529                 DRM_ERROR("DBuf power disable timeout!\n");
5530
5531         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5532         broxton_set_cdclk(dev_priv, 19200);
5533 }
5534
5535 static const struct skl_cdclk_entry {
5536         unsigned int freq;
5537         unsigned int vco;
5538 } skl_cdclk_frequencies[] = {
5539         { .freq = 308570, .vco = 8640 },
5540         { .freq = 337500, .vco = 8100 },
5541         { .freq = 432000, .vco = 8640 },
5542         { .freq = 450000, .vco = 8100 },
5543         { .freq = 540000, .vco = 8100 },
5544         { .freq = 617140, .vco = 8640 },
5545         { .freq = 675000, .vco = 8100 },
5546 };
5547
5548 static unsigned int skl_cdclk_decimal(unsigned int freq)
5549 {
5550         return (freq - 1000) / 500;
5551 }
5552
5553 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5554 {
5555         unsigned int i;
5556
5557         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5558                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5559
5560                 if (e->freq == freq)
5561                         return e->vco;
5562         }
5563
5564         return 8100;
5565 }
5566
5567 static void
5568 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5569 {
5570         unsigned int min_freq;
5571         u32 val;
5572
5573         /* select the minimum CDCLK before enabling DPLL 0 */
5574         val = I915_READ(CDCLK_CTL);
5575         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5576         val |= CDCLK_FREQ_337_308;
5577
5578         if (required_vco == 8640)
5579                 min_freq = 308570;
5580         else
5581                 min_freq = 337500;
5582
5583         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5584
5585         I915_WRITE(CDCLK_CTL, val);
5586         POSTING_READ(CDCLK_CTL);
5587
5588         /*
5589          * We always enable DPLL0 with the lowest link rate possible, but still
5590          * taking into account the VCO required to operate the eDP panel at the
5591          * desired frequency. The usual DP link rates operate with a VCO of
5592          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5593          * The modeset code is responsible for the selection of the exact link
5594          * rate later on, with the constraint of choosing a frequency that
5595          * works with required_vco.
5596          */
5597         val = I915_READ(DPLL_CTRL1);
5598
5599         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5600                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5601         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5602         if (required_vco == 8640)
5603                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5604                                             SKL_DPLL0);
5605         else
5606                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5607                                             SKL_DPLL0);
5608
5609         I915_WRITE(DPLL_CTRL1, val);
5610         POSTING_READ(DPLL_CTRL1);
5611
5612         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5613
5614         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5615                 DRM_ERROR("DPLL0 not locked\n");
5616 }
5617
5618 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5619 {
5620         int ret;
5621         u32 val;
5622
5623         /* inform PCU we want to change CDCLK */
5624         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5625         mutex_lock(&dev_priv->rps.hw_lock);
5626         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5627         mutex_unlock(&dev_priv->rps.hw_lock);
5628
5629         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5630 }
5631
5632 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5633 {
5634         unsigned int i;
5635
5636         for (i = 0; i < 15; i++) {
5637                 if (skl_cdclk_pcu_ready(dev_priv))
5638                         return true;
5639                 udelay(10);
5640         }
5641
5642         return false;
5643 }
5644
5645 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5646 {
5647         struct drm_device *dev = dev_priv->dev;
5648         u32 freq_select, pcu_ack;
5649
5650         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5651
5652         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5653                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5654                 return;
5655         }
5656
5657         /* set CDCLK_CTL */
5658         switch(freq) {
5659         case 450000:
5660         case 432000:
5661                 freq_select = CDCLK_FREQ_450_432;
5662                 pcu_ack = 1;
5663                 break;
5664         case 540000:
5665                 freq_select = CDCLK_FREQ_540;
5666                 pcu_ack = 2;
5667                 break;
5668         case 308570:
5669         case 337500:
5670         default:
5671                 freq_select = CDCLK_FREQ_337_308;
5672                 pcu_ack = 0;
5673                 break;
5674         case 617140:
5675         case 675000:
5676                 freq_select = CDCLK_FREQ_675_617;
5677                 pcu_ack = 3;
5678                 break;
5679         }
5680
5681         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5682         POSTING_READ(CDCLK_CTL);
5683
5684         /* inform PCU of the change */
5685         mutex_lock(&dev_priv->rps.hw_lock);
5686         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5687         mutex_unlock(&dev_priv->rps.hw_lock);
5688
5689         intel_update_cdclk(dev);
5690 }
5691
5692 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5693 {
5694         /* disable DBUF power */
5695         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5696         POSTING_READ(DBUF_CTL);
5697
5698         udelay(10);
5699
5700         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5701                 DRM_ERROR("DBuf power disable timeout\n");
5702
5703         /* disable DPLL0 */
5704         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5705         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5706                 DRM_ERROR("Couldn't disable DPLL0\n");
5707 }
5708
5709 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5710 {
5711         unsigned int required_vco;
5712
5713         /* DPLL0 not enabled (happens on early BIOS versions) */
5714         if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5715                 /* enable DPLL0 */
5716                 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5717                 skl_dpll0_enable(dev_priv, required_vco);
5718         }
5719
5720         /* set CDCLK to the frequency the BIOS chose */
5721         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5722
5723         /* enable DBUF power */
5724         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5725         POSTING_READ(DBUF_CTL);
5726
5727         udelay(10);
5728
5729         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5730                 DRM_ERROR("DBuf power enable timeout\n");
5731 }
5732
5733 int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5734 {
5735         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5736         uint32_t cdctl = I915_READ(CDCLK_CTL);
5737         int freq = dev_priv->skl_boot_cdclk;
5738
5739         /*
5740          * check if the pre-os intialized the display
5741          * There is SWF18 scratchpad register defined which is set by the
5742          * pre-os which can be used by the OS drivers to check the status
5743          */
5744         if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5745                 goto sanitize;
5746
5747         /* Is PLL enabled and locked ? */
5748         if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5749                 goto sanitize;
5750
5751         /* DPLL okay; verify the cdclock
5752          *
5753          * Noticed in some instances that the freq selection is correct but
5754          * decimal part is programmed wrong from BIOS where pre-os does not
5755          * enable display. Verify the same as well.
5756          */
5757         if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5758                 /* All well; nothing to sanitize */
5759                 return false;
5760 sanitize:
5761         /*
5762          * As of now initialize with max cdclk till
5763          * we get dynamic cdclk support
5764          * */
5765         dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5766         skl_init_cdclk(dev_priv);
5767
5768         /* we did have to sanitize */
5769         return true;
5770 }
5771
5772 /* Adjust CDclk dividers to allow high res or save power if possible */
5773 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5774 {
5775         struct drm_i915_private *dev_priv = dev->dev_private;
5776         u32 val, cmd;
5777
5778         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5779                                         != dev_priv->cdclk_freq);
5780
5781         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5782                 cmd = 2;
5783         else if (cdclk == 266667)
5784                 cmd = 1;
5785         else
5786                 cmd = 0;
5787
5788         mutex_lock(&dev_priv->rps.hw_lock);
5789         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5790         val &= ~DSPFREQGUAR_MASK;
5791         val |= (cmd << DSPFREQGUAR_SHIFT);
5792         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5793         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5794                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5795                      50)) {
5796                 DRM_ERROR("timed out waiting for CDclk change\n");
5797         }
5798         mutex_unlock(&dev_priv->rps.hw_lock);
5799
5800         mutex_lock(&dev_priv->sb_lock);
5801
5802         if (cdclk == 400000) {
5803                 u32 divider;
5804
5805                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5806
5807                 /* adjust cdclk divider */
5808                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5809                 val &= ~CCK_FREQUENCY_VALUES;
5810                 val |= divider;
5811                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5812
5813                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5814                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5815                              50))
5816                         DRM_ERROR("timed out waiting for CDclk change\n");
5817         }
5818
5819         /* adjust self-refresh exit latency value */
5820         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5821         val &= ~0x7f;
5822
5823         /*
5824          * For high bandwidth configs, we set a higher latency in the bunit
5825          * so that the core display fetch happens in time to avoid underruns.
5826          */
5827         if (cdclk == 400000)
5828                 val |= 4500 / 250; /* 4.5 usec */
5829         else
5830                 val |= 3000 / 250; /* 3.0 usec */
5831         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5832
5833         mutex_unlock(&dev_priv->sb_lock);
5834
5835         intel_update_cdclk(dev);
5836 }
5837
5838 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5839 {
5840         struct drm_i915_private *dev_priv = dev->dev_private;
5841         u32 val, cmd;
5842
5843         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5844                                                 != dev_priv->cdclk_freq);
5845
5846         switch (cdclk) {
5847         case 333333:
5848         case 320000:
5849         case 266667:
5850         case 200000:
5851                 break;
5852         default:
5853                 MISSING_CASE(cdclk);
5854                 return;
5855         }
5856
5857         /*
5858          * Specs are full of misinformation, but testing on actual
5859          * hardware has shown that we just need to write the desired
5860          * CCK divider into the Punit register.
5861          */
5862         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5863
5864         mutex_lock(&dev_priv->rps.hw_lock);
5865         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5866         val &= ~DSPFREQGUAR_MASK_CHV;
5867         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5868         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5869         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5870                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5871                      50)) {
5872                 DRM_ERROR("timed out waiting for CDclk change\n");
5873         }
5874         mutex_unlock(&dev_priv->rps.hw_lock);
5875
5876         intel_update_cdclk(dev);
5877 }
5878
5879 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5880                                  int max_pixclk)
5881 {
5882         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5883         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5884
5885         /*
5886          * Really only a few cases to deal with, as only 4 CDclks are supported:
5887          *   200MHz
5888          *   267MHz
5889          *   320/333MHz (depends on HPLL freq)
5890          *   400MHz (VLV only)
5891          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5892          * of the lower bin and adjust if needed.
5893          *
5894          * We seem to get an unstable or solid color picture at 200MHz.
5895          * Not sure what's wrong. For now use 200MHz only when all pipes
5896          * are off.
5897          */
5898         if (!IS_CHERRYVIEW(dev_priv) &&
5899             max_pixclk > freq_320*limit/100)
5900                 return 400000;
5901         else if (max_pixclk > 266667*limit/100)
5902                 return freq_320;
5903         else if (max_pixclk > 0)
5904                 return 266667;
5905         else
5906                 return 200000;
5907 }
5908
5909 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5910                               int max_pixclk)
5911 {
5912         /*
5913          * FIXME:
5914          * - remove the guardband, it's not needed on BXT
5915          * - set 19.2MHz bypass frequency if there are no active pipes
5916          */
5917         if (max_pixclk > 576000*9/10)
5918                 return 624000;
5919         else if (max_pixclk > 384000*9/10)
5920                 return 576000;
5921         else if (max_pixclk > 288000*9/10)
5922                 return 384000;
5923         else if (max_pixclk > 144000*9/10)
5924                 return 288000;
5925         else
5926                 return 144000;
5927 }
5928
5929 /* Compute the max pixel clock for new configuration. */
5930 static int intel_mode_max_pixclk(struct drm_device *dev,
5931                                  struct drm_atomic_state *state)
5932 {
5933         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5934         struct drm_i915_private *dev_priv = dev->dev_private;
5935         struct drm_crtc *crtc;
5936         struct drm_crtc_state *crtc_state;
5937         unsigned max_pixclk = 0, i;
5938         enum pipe pipe;
5939
5940         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
5941                sizeof(intel_state->min_pixclk));
5942
5943         for_each_crtc_in_state(state, crtc, crtc_state, i) {
5944                 int pixclk = 0;
5945
5946                 if (crtc_state->enable)
5947                         pixclk = crtc_state->adjusted_mode.crtc_clock;
5948
5949                 intel_state->min_pixclk[i] = pixclk;
5950         }
5951
5952         for_each_pipe(dev_priv, pipe)
5953                 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
5954
5955         return max_pixclk;
5956 }
5957
5958 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5959 {
5960         struct drm_device *dev = state->dev;
5961         struct drm_i915_private *dev_priv = dev->dev_private;
5962         int max_pixclk = intel_mode_max_pixclk(dev, state);
5963         struct intel_atomic_state *intel_state =
5964                 to_intel_atomic_state(state);
5965
5966         if (max_pixclk < 0)
5967                 return max_pixclk;
5968
5969         intel_state->cdclk = intel_state->dev_cdclk =
5970                 valleyview_calc_cdclk(dev_priv, max_pixclk);
5971
5972         if (!intel_state->active_crtcs)
5973                 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
5974
5975         return 0;
5976 }
5977
5978 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5979 {
5980         struct drm_device *dev = state->dev;
5981         struct drm_i915_private *dev_priv = dev->dev_private;
5982         int max_pixclk = intel_mode_max_pixclk(dev, state);
5983         struct intel_atomic_state *intel_state =
5984                 to_intel_atomic_state(state);
5985
5986         if (max_pixclk < 0)
5987                 return max_pixclk;
5988
5989         intel_state->cdclk = intel_state->dev_cdclk =
5990                 broxton_calc_cdclk(dev_priv, max_pixclk);
5991
5992         if (!intel_state->active_crtcs)
5993                 intel_state->dev_cdclk = broxton_calc_cdclk(dev_priv, 0);
5994
5995         return 0;
5996 }
5997
5998 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5999 {
6000         unsigned int credits, default_credits;
6001
6002         if (IS_CHERRYVIEW(dev_priv))
6003                 default_credits = PFI_CREDIT(12);
6004         else
6005                 default_credits = PFI_CREDIT(8);
6006
6007         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6008                 /* CHV suggested value is 31 or 63 */
6009                 if (IS_CHERRYVIEW(dev_priv))
6010                         credits = PFI_CREDIT_63;
6011                 else
6012                         credits = PFI_CREDIT(15);
6013         } else {
6014                 credits = default_credits;
6015         }
6016
6017         /*
6018          * WA - write default credits before re-programming
6019          * FIXME: should we also set the resend bit here?
6020          */
6021         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6022                    default_credits);
6023
6024         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6025                    credits | PFI_CREDIT_RESEND);
6026
6027         /*
6028          * FIXME is this guaranteed to clear
6029          * immediately or should we poll for it?
6030          */
6031         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6032 }
6033
6034 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6035 {
6036         struct drm_device *dev = old_state->dev;
6037         struct drm_i915_private *dev_priv = dev->dev_private;
6038         struct intel_atomic_state *old_intel_state =
6039                 to_intel_atomic_state(old_state);
6040         unsigned req_cdclk = old_intel_state->dev_cdclk;
6041
6042         /*
6043          * FIXME: We can end up here with all power domains off, yet
6044          * with a CDCLK frequency other than the minimum. To account
6045          * for this take the PIPE-A power domain, which covers the HW
6046          * blocks needed for the following programming. This can be
6047          * removed once it's guaranteed that we get here either with
6048          * the minimum CDCLK set, or the required power domains
6049          * enabled.
6050          */
6051         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6052
6053         if (IS_CHERRYVIEW(dev))
6054                 cherryview_set_cdclk(dev, req_cdclk);
6055         else
6056                 valleyview_set_cdclk(dev, req_cdclk);
6057
6058         vlv_program_pfi_credits(dev_priv);
6059
6060         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6061 }
6062
6063 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6064 {
6065         struct drm_device *dev = crtc->dev;
6066         struct drm_i915_private *dev_priv = to_i915(dev);
6067         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6068         struct intel_encoder *encoder;
6069         struct intel_crtc_state *pipe_config =
6070                 to_intel_crtc_state(crtc->state);
6071         int pipe = intel_crtc->pipe;
6072
6073         if (WARN_ON(intel_crtc->active))
6074                 return;
6075
6076         if (intel_crtc->config->has_dp_encoder)
6077                 intel_dp_set_m_n(intel_crtc, M1_N1);
6078
6079         intel_set_pipe_timings(intel_crtc);
6080         intel_set_pipe_src_size(intel_crtc);
6081
6082         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6083                 struct drm_i915_private *dev_priv = dev->dev_private;
6084
6085                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6086                 I915_WRITE(CHV_CANVAS(pipe), 0);
6087         }
6088
6089         i9xx_set_pipeconf(intel_crtc);
6090
6091         intel_crtc->active = true;
6092
6093         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6094
6095         for_each_encoder_on_crtc(dev, crtc, encoder)
6096                 if (encoder->pre_pll_enable)
6097                         encoder->pre_pll_enable(encoder);
6098
6099         if (IS_CHERRYVIEW(dev)) {
6100                 chv_prepare_pll(intel_crtc, intel_crtc->config);
6101                 chv_enable_pll(intel_crtc, intel_crtc->config);
6102         } else {
6103                 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6104                 vlv_enable_pll(intel_crtc, intel_crtc->config);
6105         }
6106
6107         for_each_encoder_on_crtc(dev, crtc, encoder)
6108                 if (encoder->pre_enable)
6109                         encoder->pre_enable(encoder);
6110
6111         i9xx_pfit_enable(intel_crtc);
6112
6113         intel_color_load_luts(&pipe_config->base);
6114
6115         intel_update_watermarks(crtc);
6116         intel_enable_pipe(intel_crtc);
6117
6118         assert_vblank_disabled(crtc);
6119         drm_crtc_vblank_on(crtc);
6120
6121         for_each_encoder_on_crtc(dev, crtc, encoder)
6122                 encoder->enable(encoder);
6123 }
6124
6125 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6126 {
6127         struct drm_device *dev = crtc->base.dev;
6128         struct drm_i915_private *dev_priv = dev->dev_private;
6129
6130         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6131         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6132 }
6133
6134 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6135 {
6136         struct drm_device *dev = crtc->dev;
6137         struct drm_i915_private *dev_priv = to_i915(dev);
6138         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6139         struct intel_encoder *encoder;
6140         struct intel_crtc_state *pipe_config =
6141                 to_intel_crtc_state(crtc->state);
6142         enum pipe pipe = intel_crtc->pipe;
6143
6144         if (WARN_ON(intel_crtc->active))
6145                 return;
6146
6147         i9xx_set_pll_dividers(intel_crtc);
6148
6149         if (intel_crtc->config->has_dp_encoder)
6150                 intel_dp_set_m_n(intel_crtc, M1_N1);
6151
6152         intel_set_pipe_timings(intel_crtc);
6153         intel_set_pipe_src_size(intel_crtc);
6154
6155         i9xx_set_pipeconf(intel_crtc);
6156
6157         intel_crtc->active = true;
6158
6159         if (!IS_GEN2(dev))
6160                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6161
6162         for_each_encoder_on_crtc(dev, crtc, encoder)
6163                 if (encoder->pre_enable)
6164                         encoder->pre_enable(encoder);
6165
6166         i9xx_enable_pll(intel_crtc);
6167
6168         i9xx_pfit_enable(intel_crtc);
6169
6170         intel_color_load_luts(&pipe_config->base);
6171
6172         intel_update_watermarks(crtc);
6173         intel_enable_pipe(intel_crtc);
6174
6175         assert_vblank_disabled(crtc);
6176         drm_crtc_vblank_on(crtc);
6177
6178         for_each_encoder_on_crtc(dev, crtc, encoder)
6179                 encoder->enable(encoder);
6180 }
6181
6182 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6183 {
6184         struct drm_device *dev = crtc->base.dev;
6185         struct drm_i915_private *dev_priv = dev->dev_private;
6186
6187         if (!crtc->config->gmch_pfit.control)
6188                 return;
6189
6190         assert_pipe_disabled(dev_priv, crtc->pipe);
6191
6192         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6193                          I915_READ(PFIT_CONTROL));
6194         I915_WRITE(PFIT_CONTROL, 0);
6195 }
6196
6197 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6198 {
6199         struct drm_device *dev = crtc->dev;
6200         struct drm_i915_private *dev_priv = dev->dev_private;
6201         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6202         struct intel_encoder *encoder;
6203         int pipe = intel_crtc->pipe;
6204
6205         /*
6206          * On gen2 planes are double buffered but the pipe isn't, so we must
6207          * wait for planes to fully turn off before disabling the pipe.
6208          */
6209         if (IS_GEN2(dev))
6210                 intel_wait_for_vblank(dev, pipe);
6211
6212         for_each_encoder_on_crtc(dev, crtc, encoder)
6213                 encoder->disable(encoder);
6214
6215         drm_crtc_vblank_off(crtc);
6216         assert_vblank_disabled(crtc);
6217
6218         intel_disable_pipe(intel_crtc);
6219
6220         i9xx_pfit_disable(intel_crtc);
6221
6222         for_each_encoder_on_crtc(dev, crtc, encoder)
6223                 if (encoder->post_disable)
6224                         encoder->post_disable(encoder);
6225
6226         if (!intel_crtc->config->has_dsi_encoder) {
6227                 if (IS_CHERRYVIEW(dev))
6228                         chv_disable_pll(dev_priv, pipe);
6229                 else if (IS_VALLEYVIEW(dev))
6230                         vlv_disable_pll(dev_priv, pipe);
6231                 else
6232                         i9xx_disable_pll(intel_crtc);
6233         }
6234
6235         for_each_encoder_on_crtc(dev, crtc, encoder)
6236                 if (encoder->post_pll_disable)
6237                         encoder->post_pll_disable(encoder);
6238
6239         if (!IS_GEN2(dev))
6240                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6241 }
6242
6243 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6244 {
6245         struct intel_encoder *encoder;
6246         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6247         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6248         enum intel_display_power_domain domain;
6249         unsigned long domains;
6250
6251         if (!intel_crtc->active)
6252                 return;
6253
6254         if (to_intel_plane_state(crtc->primary->state)->visible) {
6255                 WARN_ON(intel_crtc->unpin_work);
6256
6257                 intel_pre_disable_primary_noatomic(crtc);
6258
6259                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6260                 to_intel_plane_state(crtc->primary->state)->visible = false;
6261         }
6262
6263         dev_priv->display.crtc_disable(crtc);
6264
6265         DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was enabled, now disabled\n",
6266                       crtc->base.id);
6267
6268         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6269         crtc->state->active = false;
6270         intel_crtc->active = false;
6271         crtc->enabled = false;
6272         crtc->state->connector_mask = 0;
6273         crtc->state->encoder_mask = 0;
6274
6275         for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6276                 encoder->base.crtc = NULL;
6277
6278         intel_fbc_disable(intel_crtc);
6279         intel_update_watermarks(crtc);
6280         intel_disable_shared_dpll(intel_crtc);
6281
6282         domains = intel_crtc->enabled_power_domains;
6283         for_each_power_domain(domain, domains)
6284                 intel_display_power_put(dev_priv, domain);
6285         intel_crtc->enabled_power_domains = 0;
6286
6287         dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6288         dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6289 }
6290
6291 /*
6292  * turn all crtc's off, but do not adjust state
6293  * This has to be paired with a call to intel_modeset_setup_hw_state.
6294  */
6295 int intel_display_suspend(struct drm_device *dev)
6296 {
6297         struct drm_i915_private *dev_priv = to_i915(dev);
6298         struct drm_atomic_state *state;
6299         int ret;
6300
6301         state = drm_atomic_helper_suspend(dev);
6302         ret = PTR_ERR_OR_ZERO(state);
6303         if (ret)
6304                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6305         else
6306                 dev_priv->modeset_restore_state = state;
6307         return ret;
6308 }
6309
6310 void intel_encoder_destroy(struct drm_encoder *encoder)
6311 {
6312         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6313
6314         drm_encoder_cleanup(encoder);
6315         kfree(intel_encoder);
6316 }
6317
6318 /* Cross check the actual hw state with our own modeset state tracking (and it's
6319  * internal consistency). */
6320 static void intel_connector_verify_state(struct intel_connector *connector)
6321 {
6322         struct drm_crtc *crtc = connector->base.state->crtc;
6323
6324         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6325                       connector->base.base.id,
6326                       connector->base.name);
6327
6328         if (connector->get_hw_state(connector)) {
6329                 struct intel_encoder *encoder = connector->encoder;
6330                 struct drm_connector_state *conn_state = connector->base.state;
6331
6332                 I915_STATE_WARN(!crtc,
6333                          "connector enabled without attached crtc\n");
6334
6335                 if (!crtc)
6336                         return;
6337
6338                 I915_STATE_WARN(!crtc->state->active,
6339                       "connector is active, but attached crtc isn't\n");
6340
6341                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6342                         return;
6343
6344                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6345                         "atomic encoder doesn't match attached encoder\n");
6346
6347                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6348                         "attached encoder crtc differs from connector crtc\n");
6349         } else {
6350                 I915_STATE_WARN(crtc && crtc->state->active,
6351                         "attached crtc is active, but connector isn't\n");
6352                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6353                         "best encoder set without crtc!\n");
6354         }
6355 }
6356
6357 int intel_connector_init(struct intel_connector *connector)
6358 {
6359         drm_atomic_helper_connector_reset(&connector->base);
6360
6361         if (!connector->base.state)
6362                 return -ENOMEM;
6363
6364         return 0;
6365 }
6366
6367 struct intel_connector *intel_connector_alloc(void)
6368 {
6369         struct intel_connector *connector;
6370
6371         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6372         if (!connector)
6373                 return NULL;
6374
6375         if (intel_connector_init(connector) < 0) {
6376                 kfree(connector);
6377                 return NULL;
6378         }
6379
6380         return connector;
6381 }
6382
6383 /* Simple connector->get_hw_state implementation for encoders that support only
6384  * one connector and no cloning and hence the encoder state determines the state
6385  * of the connector. */
6386 bool intel_connector_get_hw_state(struct intel_connector *connector)
6387 {
6388         enum pipe pipe = 0;
6389         struct intel_encoder *encoder = connector->encoder;
6390
6391         return encoder->get_hw_state(encoder, &pipe);
6392 }
6393
6394 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6395 {
6396         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6397                 return crtc_state->fdi_lanes;
6398
6399         return 0;
6400 }
6401
6402 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6403                                      struct intel_crtc_state *pipe_config)
6404 {
6405         struct drm_atomic_state *state = pipe_config->base.state;
6406         struct intel_crtc *other_crtc;
6407         struct intel_crtc_state *other_crtc_state;
6408
6409         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6410                       pipe_name(pipe), pipe_config->fdi_lanes);
6411         if (pipe_config->fdi_lanes > 4) {
6412                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6413                               pipe_name(pipe), pipe_config->fdi_lanes);
6414                 return -EINVAL;
6415         }
6416
6417         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6418                 if (pipe_config->fdi_lanes > 2) {
6419                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6420                                       pipe_config->fdi_lanes);
6421                         return -EINVAL;
6422                 } else {
6423                         return 0;
6424                 }
6425         }
6426
6427         if (INTEL_INFO(dev)->num_pipes == 2)
6428                 return 0;
6429
6430         /* Ivybridge 3 pipe is really complicated */
6431         switch (pipe) {
6432         case PIPE_A:
6433                 return 0;
6434         case PIPE_B:
6435                 if (pipe_config->fdi_lanes <= 2)
6436                         return 0;
6437
6438                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6439                 other_crtc_state =
6440                         intel_atomic_get_crtc_state(state, other_crtc);
6441                 if (IS_ERR(other_crtc_state))
6442                         return PTR_ERR(other_crtc_state);
6443
6444                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6445                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6446                                       pipe_name(pipe), pipe_config->fdi_lanes);
6447                         return -EINVAL;
6448                 }
6449                 return 0;
6450         case PIPE_C:
6451                 if (pipe_config->fdi_lanes > 2) {
6452                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6453                                       pipe_name(pipe), pipe_config->fdi_lanes);
6454                         return -EINVAL;
6455                 }
6456
6457                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6458                 other_crtc_state =
6459                         intel_atomic_get_crtc_state(state, other_crtc);
6460                 if (IS_ERR(other_crtc_state))
6461                         return PTR_ERR(other_crtc_state);
6462
6463                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6464                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6465                         return -EINVAL;
6466                 }
6467                 return 0;
6468         default:
6469                 BUG();
6470         }
6471 }
6472
6473 #define RETRY 1
6474 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6475                                        struct intel_crtc_state *pipe_config)
6476 {
6477         struct drm_device *dev = intel_crtc->base.dev;
6478         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6479         int lane, link_bw, fdi_dotclock, ret;
6480         bool needs_recompute = false;
6481
6482 retry:
6483         /* FDI is a binary signal running at ~2.7GHz, encoding
6484          * each output octet as 10 bits. The actual frequency
6485          * is stored as a divider into a 100MHz clock, and the
6486          * mode pixel clock is stored in units of 1KHz.
6487          * Hence the bw of each lane in terms of the mode signal
6488          * is:
6489          */
6490         link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6491
6492         fdi_dotclock = adjusted_mode->crtc_clock;
6493
6494         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6495                                            pipe_config->pipe_bpp);
6496
6497         pipe_config->fdi_lanes = lane;
6498
6499         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6500                                link_bw, &pipe_config->fdi_m_n);
6501
6502         ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6503         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6504                 pipe_config->pipe_bpp -= 2*3;
6505                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6506                               pipe_config->pipe_bpp);
6507                 needs_recompute = true;
6508                 pipe_config->bw_constrained = true;
6509
6510                 goto retry;
6511         }
6512
6513         if (needs_recompute)
6514                 return RETRY;
6515
6516         return ret;
6517 }
6518
6519 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6520                                      struct intel_crtc_state *pipe_config)
6521 {
6522         if (pipe_config->pipe_bpp > 24)
6523                 return false;
6524
6525         /* HSW can handle pixel rate up to cdclk? */
6526         if (IS_HASWELL(dev_priv))
6527                 return true;
6528
6529         /*
6530          * We compare against max which means we must take
6531          * the increased cdclk requirement into account when
6532          * calculating the new cdclk.
6533          *
6534          * Should measure whether using a lower cdclk w/o IPS
6535          */
6536         return ilk_pipe_pixel_rate(pipe_config) <=
6537                 dev_priv->max_cdclk_freq * 95 / 100;
6538 }
6539
6540 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6541                                    struct intel_crtc_state *pipe_config)
6542 {
6543         struct drm_device *dev = crtc->base.dev;
6544         struct drm_i915_private *dev_priv = dev->dev_private;
6545
6546         pipe_config->ips_enabled = i915.enable_ips &&
6547                 hsw_crtc_supports_ips(crtc) &&
6548                 pipe_config_supports_ips(dev_priv, pipe_config);
6549 }
6550
6551 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6552 {
6553         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6554
6555         /* GDG double wide on either pipe, otherwise pipe A only */
6556         return INTEL_INFO(dev_priv)->gen < 4 &&
6557                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6558 }
6559
6560 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6561                                      struct intel_crtc_state *pipe_config)
6562 {
6563         struct drm_device *dev = crtc->base.dev;
6564         struct drm_i915_private *dev_priv = dev->dev_private;
6565         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6566
6567         /* FIXME should check pixel clock limits on all platforms */
6568         if (INTEL_INFO(dev)->gen < 4) {
6569                 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6570
6571                 /*
6572                  * Enable double wide mode when the dot clock
6573                  * is > 90% of the (display) core speed.
6574                  */
6575                 if (intel_crtc_supports_double_wide(crtc) &&
6576                     adjusted_mode->crtc_clock > clock_limit) {
6577                         clock_limit *= 2;
6578                         pipe_config->double_wide = true;
6579                 }
6580
6581                 if (adjusted_mode->crtc_clock > clock_limit) {
6582                         DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6583                                       adjusted_mode->crtc_clock, clock_limit,
6584                                       yesno(pipe_config->double_wide));
6585                         return -EINVAL;
6586                 }
6587         }
6588
6589         /*
6590          * Pipe horizontal size must be even in:
6591          * - DVO ganged mode
6592          * - LVDS dual channel mode
6593          * - Double wide pipe
6594          */
6595         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6596              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6597                 pipe_config->pipe_src_w &= ~1;
6598
6599         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6600          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6601          */
6602         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6603                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6604                 return -EINVAL;
6605
6606         if (HAS_IPS(dev))
6607                 hsw_compute_ips_config(crtc, pipe_config);
6608
6609         if (pipe_config->has_pch_encoder)
6610                 return ironlake_fdi_compute_config(crtc, pipe_config);
6611
6612         return 0;
6613 }
6614
6615 static int skylake_get_display_clock_speed(struct drm_device *dev)
6616 {
6617         struct drm_i915_private *dev_priv = to_i915(dev);
6618         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6619         uint32_t cdctl = I915_READ(CDCLK_CTL);
6620         uint32_t linkrate;
6621
6622         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6623                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6624
6625         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6626                 return 540000;
6627
6628         linkrate = (I915_READ(DPLL_CTRL1) &
6629                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6630
6631         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6632             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6633                 /* vco 8640 */
6634                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6635                 case CDCLK_FREQ_450_432:
6636                         return 432000;
6637                 case CDCLK_FREQ_337_308:
6638                         return 308570;
6639                 case CDCLK_FREQ_675_617:
6640                         return 617140;
6641                 default:
6642                         WARN(1, "Unknown cd freq selection\n");
6643                 }
6644         } else {
6645                 /* vco 8100 */
6646                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6647                 case CDCLK_FREQ_450_432:
6648                         return 450000;
6649                 case CDCLK_FREQ_337_308:
6650                         return 337500;
6651                 case CDCLK_FREQ_675_617:
6652                         return 675000;
6653                 default:
6654                         WARN(1, "Unknown cd freq selection\n");
6655                 }
6656         }
6657
6658         /* error case, do as if DPLL0 isn't enabled */
6659         return 24000;
6660 }
6661
6662 static int broxton_get_display_clock_speed(struct drm_device *dev)
6663 {
6664         struct drm_i915_private *dev_priv = to_i915(dev);
6665         uint32_t cdctl = I915_READ(CDCLK_CTL);
6666         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6667         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6668         int cdclk;
6669
6670         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6671                 return 19200;
6672
6673         cdclk = 19200 * pll_ratio / 2;
6674
6675         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6676         case BXT_CDCLK_CD2X_DIV_SEL_1:
6677                 return cdclk;  /* 576MHz or 624MHz */
6678         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6679                 return cdclk * 2 / 3; /* 384MHz */
6680         case BXT_CDCLK_CD2X_DIV_SEL_2:
6681                 return cdclk / 2; /* 288MHz */
6682         case BXT_CDCLK_CD2X_DIV_SEL_4:
6683                 return cdclk / 4; /* 144MHz */
6684         }
6685
6686         /* error case, do as if DE PLL isn't enabled */
6687         return 19200;
6688 }
6689
6690 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6691 {
6692         struct drm_i915_private *dev_priv = dev->dev_private;
6693         uint32_t lcpll = I915_READ(LCPLL_CTL);
6694         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6695
6696         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6697                 return 800000;
6698         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6699                 return 450000;
6700         else if (freq == LCPLL_CLK_FREQ_450)
6701                 return 450000;
6702         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6703                 return 540000;
6704         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6705                 return 337500;
6706         else
6707                 return 675000;
6708 }
6709
6710 static int haswell_get_display_clock_speed(struct drm_device *dev)
6711 {
6712         struct drm_i915_private *dev_priv = dev->dev_private;
6713         uint32_t lcpll = I915_READ(LCPLL_CTL);
6714         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6715
6716         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6717                 return 800000;
6718         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6719                 return 450000;
6720         else if (freq == LCPLL_CLK_FREQ_450)
6721                 return 450000;
6722         else if (IS_HSW_ULT(dev))
6723                 return 337500;
6724         else
6725                 return 540000;
6726 }
6727
6728 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6729 {
6730         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6731                                       CCK_DISPLAY_CLOCK_CONTROL);
6732 }
6733
6734 static int ilk_get_display_clock_speed(struct drm_device *dev)
6735 {
6736         return 450000;
6737 }
6738
6739 static int i945_get_display_clock_speed(struct drm_device *dev)
6740 {
6741         return 400000;
6742 }
6743
6744 static int i915_get_display_clock_speed(struct drm_device *dev)
6745 {
6746         return 333333;
6747 }
6748
6749 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6750 {
6751         return 200000;
6752 }
6753
6754 static int pnv_get_display_clock_speed(struct drm_device *dev)
6755 {
6756         u16 gcfgc = 0;
6757
6758         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6759
6760         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6761         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6762                 return 266667;
6763         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6764                 return 333333;
6765         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6766                 return 444444;
6767         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6768                 return 200000;
6769         default:
6770                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6771         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6772                 return 133333;
6773         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6774                 return 166667;
6775         }
6776 }
6777
6778 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6779 {
6780         u16 gcfgc = 0;
6781
6782         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6783
6784         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6785                 return 133333;
6786         else {
6787                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6788                 case GC_DISPLAY_CLOCK_333_MHZ:
6789                         return 333333;
6790                 default:
6791                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6792                         return 190000;
6793                 }
6794         }
6795 }
6796
6797 static int i865_get_display_clock_speed(struct drm_device *dev)
6798 {
6799         return 266667;
6800 }
6801
6802 static int i85x_get_display_clock_speed(struct drm_device *dev)
6803 {
6804         u16 hpllcc = 0;
6805
6806         /*
6807          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6808          * encoding is different :(
6809          * FIXME is this the right way to detect 852GM/852GMV?
6810          */
6811         if (dev->pdev->revision == 0x1)
6812                 return 133333;
6813
6814         pci_bus_read_config_word(dev->pdev->bus,
6815                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6816
6817         /* Assume that the hardware is in the high speed state.  This
6818          * should be the default.
6819          */
6820         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6821         case GC_CLOCK_133_200:
6822         case GC_CLOCK_133_200_2:
6823         case GC_CLOCK_100_200:
6824                 return 200000;
6825         case GC_CLOCK_166_250:
6826                 return 250000;
6827         case GC_CLOCK_100_133:
6828                 return 133333;
6829         case GC_CLOCK_133_266:
6830         case GC_CLOCK_133_266_2:
6831         case GC_CLOCK_166_266:
6832                 return 266667;
6833         }
6834
6835         /* Shouldn't happen */
6836         return 0;
6837 }
6838
6839 static int i830_get_display_clock_speed(struct drm_device *dev)
6840 {
6841         return 133333;
6842 }
6843
6844 static unsigned int intel_hpll_vco(struct drm_device *dev)
6845 {
6846         struct drm_i915_private *dev_priv = dev->dev_private;
6847         static const unsigned int blb_vco[8] = {
6848                 [0] = 3200000,
6849                 [1] = 4000000,
6850                 [2] = 5333333,
6851                 [3] = 4800000,
6852                 [4] = 6400000,
6853         };
6854         static const unsigned int pnv_vco[8] = {
6855                 [0] = 3200000,
6856                 [1] = 4000000,
6857                 [2] = 5333333,
6858                 [3] = 4800000,
6859                 [4] = 2666667,
6860         };
6861         static const unsigned int cl_vco[8] = {
6862                 [0] = 3200000,
6863                 [1] = 4000000,
6864                 [2] = 5333333,
6865                 [3] = 6400000,
6866                 [4] = 3333333,
6867                 [5] = 3566667,
6868                 [6] = 4266667,
6869         };
6870         static const unsigned int elk_vco[8] = {
6871                 [0] = 3200000,
6872                 [1] = 4000000,
6873                 [2] = 5333333,
6874                 [3] = 4800000,
6875         };
6876         static const unsigned int ctg_vco[8] = {
6877                 [0] = 3200000,
6878                 [1] = 4000000,
6879                 [2] = 5333333,
6880                 [3] = 6400000,
6881                 [4] = 2666667,
6882                 [5] = 4266667,
6883         };
6884         const unsigned int *vco_table;
6885         unsigned int vco;
6886         uint8_t tmp = 0;
6887
6888         /* FIXME other chipsets? */
6889         if (IS_GM45(dev))
6890                 vco_table = ctg_vco;
6891         else if (IS_G4X(dev))
6892                 vco_table = elk_vco;
6893         else if (IS_CRESTLINE(dev))
6894                 vco_table = cl_vco;
6895         else if (IS_PINEVIEW(dev))
6896                 vco_table = pnv_vco;
6897         else if (IS_G33(dev))
6898                 vco_table = blb_vco;
6899         else
6900                 return 0;
6901
6902         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6903
6904         vco = vco_table[tmp & 0x7];
6905         if (vco == 0)
6906                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6907         else
6908                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6909
6910         return vco;
6911 }
6912
6913 static int gm45_get_display_clock_speed(struct drm_device *dev)
6914 {
6915         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6916         uint16_t tmp = 0;
6917
6918         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6919
6920         cdclk_sel = (tmp >> 12) & 0x1;
6921
6922         switch (vco) {
6923         case 2666667:
6924         case 4000000:
6925         case 5333333:
6926                 return cdclk_sel ? 333333 : 222222;
6927         case 3200000:
6928                 return cdclk_sel ? 320000 : 228571;
6929         default:
6930                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6931                 return 222222;
6932         }
6933 }
6934
6935 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6936 {
6937         static const uint8_t div_3200[] = { 16, 10,  8 };
6938         static const uint8_t div_4000[] = { 20, 12, 10 };
6939         static const uint8_t div_5333[] = { 24, 16, 14 };
6940         const uint8_t *div_table;
6941         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6942         uint16_t tmp = 0;
6943
6944         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6945
6946         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6947
6948         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6949                 goto fail;
6950
6951         switch (vco) {
6952         case 3200000:
6953                 div_table = div_3200;
6954                 break;
6955         case 4000000:
6956                 div_table = div_4000;
6957                 break;
6958         case 5333333:
6959                 div_table = div_5333;
6960                 break;
6961         default:
6962                 goto fail;
6963         }
6964
6965         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6966
6967 fail:
6968         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6969         return 200000;
6970 }
6971
6972 static int g33_get_display_clock_speed(struct drm_device *dev)
6973 {
6974         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
6975         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
6976         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6977         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6978         const uint8_t *div_table;
6979         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6980         uint16_t tmp = 0;
6981
6982         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6983
6984         cdclk_sel = (tmp >> 4) & 0x7;
6985
6986         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6987                 goto fail;
6988
6989         switch (vco) {
6990         case 3200000:
6991                 div_table = div_3200;
6992                 break;
6993         case 4000000:
6994                 div_table = div_4000;
6995                 break;
6996         case 4800000:
6997                 div_table = div_4800;
6998                 break;
6999         case 5333333:
7000                 div_table = div_5333;
7001                 break;
7002         default:
7003                 goto fail;
7004         }
7005
7006         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7007
7008 fail:
7009         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7010         return 190476;
7011 }
7012
7013 static void
7014 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7015 {
7016         while (*num > DATA_LINK_M_N_MASK ||
7017                *den > DATA_LINK_M_N_MASK) {
7018                 *num >>= 1;
7019                 *den >>= 1;
7020         }
7021 }
7022
7023 static void compute_m_n(unsigned int m, unsigned int n,
7024                         uint32_t *ret_m, uint32_t *ret_n)
7025 {
7026         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7027         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7028         intel_reduce_m_n_ratio(ret_m, ret_n);
7029 }
7030
7031 void
7032 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7033                        int pixel_clock, int link_clock,
7034                        struct intel_link_m_n *m_n)
7035 {
7036         m_n->tu = 64;
7037
7038         compute_m_n(bits_per_pixel * pixel_clock,
7039                     link_clock * nlanes * 8,
7040                     &m_n->gmch_m, &m_n->gmch_n);
7041
7042         compute_m_n(pixel_clock, link_clock,
7043                     &m_n->link_m, &m_n->link_n);
7044 }
7045
7046 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7047 {
7048         if (i915.panel_use_ssc >= 0)
7049                 return i915.panel_use_ssc != 0;
7050         return dev_priv->vbt.lvds_use_ssc
7051                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7052 }
7053
7054 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7055 {
7056         return (1 << dpll->n) << 16 | dpll->m2;
7057 }
7058
7059 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7060 {
7061         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7062 }
7063
7064 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7065                                      struct intel_crtc_state *crtc_state,
7066                                      intel_clock_t *reduced_clock)
7067 {
7068         struct drm_device *dev = crtc->base.dev;
7069         u32 fp, fp2 = 0;
7070
7071         if (IS_PINEVIEW(dev)) {
7072                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7073                 if (reduced_clock)
7074                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7075         } else {
7076                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7077                 if (reduced_clock)
7078                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7079         }
7080
7081         crtc_state->dpll_hw_state.fp0 = fp;
7082
7083         crtc->lowfreq_avail = false;
7084         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7085             reduced_clock) {
7086                 crtc_state->dpll_hw_state.fp1 = fp2;
7087                 crtc->lowfreq_avail = true;
7088         } else {
7089                 crtc_state->dpll_hw_state.fp1 = fp;
7090         }
7091 }
7092
7093 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7094                 pipe)
7095 {
7096         u32 reg_val;
7097
7098         /*
7099          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7100          * and set it to a reasonable value instead.
7101          */
7102         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7103         reg_val &= 0xffffff00;
7104         reg_val |= 0x00000030;
7105         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7106
7107         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7108         reg_val &= 0x8cffffff;
7109         reg_val = 0x8c000000;
7110         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7111
7112         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7113         reg_val &= 0xffffff00;
7114         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7115
7116         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7117         reg_val &= 0x00ffffff;
7118         reg_val |= 0xb0000000;
7119         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7120 }
7121
7122 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7123                                          struct intel_link_m_n *m_n)
7124 {
7125         struct drm_device *dev = crtc->base.dev;
7126         struct drm_i915_private *dev_priv = dev->dev_private;
7127         int pipe = crtc->pipe;
7128
7129         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7130         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7131         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7132         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7133 }
7134
7135 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7136                                          struct intel_link_m_n *m_n,
7137                                          struct intel_link_m_n *m2_n2)
7138 {
7139         struct drm_device *dev = crtc->base.dev;
7140         struct drm_i915_private *dev_priv = dev->dev_private;
7141         int pipe = crtc->pipe;
7142         enum transcoder transcoder = crtc->config->cpu_transcoder;
7143
7144         if (INTEL_INFO(dev)->gen >= 5) {
7145                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7146                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7147                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7148                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7149                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7150                  * for gen < 8) and if DRRS is supported (to make sure the
7151                  * registers are not unnecessarily accessed).
7152                  */
7153                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7154                         crtc->config->has_drrs) {
7155                         I915_WRITE(PIPE_DATA_M2(transcoder),
7156                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7157                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7158                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7159                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7160                 }
7161         } else {
7162                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7163                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7164                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7165                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7166         }
7167 }
7168
7169 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7170 {
7171         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7172
7173         if (m_n == M1_N1) {
7174                 dp_m_n = &crtc->config->dp_m_n;
7175                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7176         } else if (m_n == M2_N2) {
7177
7178                 /*
7179                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7180                  * needs to be programmed into M1_N1.
7181                  */
7182                 dp_m_n = &crtc->config->dp_m2_n2;
7183         } else {
7184                 DRM_ERROR("Unsupported divider value\n");
7185                 return;
7186         }
7187
7188         if (crtc->config->has_pch_encoder)
7189                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7190         else
7191                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7192 }
7193
7194 static void vlv_compute_dpll(struct intel_crtc *crtc,
7195                              struct intel_crtc_state *pipe_config)
7196 {
7197         pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7198                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7199         if (crtc->pipe != PIPE_A)
7200                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7201
7202         /* DPLL not used with DSI, but still need the rest set up */
7203         if (!pipe_config->has_dsi_encoder)
7204                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7205                         DPLL_EXT_BUFFER_ENABLE_VLV;
7206
7207         pipe_config->dpll_hw_state.dpll_md =
7208                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7209 }
7210
7211 static void chv_compute_dpll(struct intel_crtc *crtc,
7212                              struct intel_crtc_state *pipe_config)
7213 {
7214         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7215                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7216         if (crtc->pipe != PIPE_A)
7217                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7218
7219         /* DPLL not used with DSI, but still need the rest set up */
7220         if (!pipe_config->has_dsi_encoder)
7221                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7222
7223         pipe_config->dpll_hw_state.dpll_md =
7224                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7225 }
7226
7227 static void vlv_prepare_pll(struct intel_crtc *crtc,
7228                             const struct intel_crtc_state *pipe_config)
7229 {
7230         struct drm_device *dev = crtc->base.dev;
7231         struct drm_i915_private *dev_priv = dev->dev_private;
7232         enum pipe pipe = crtc->pipe;
7233         u32 mdiv;
7234         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7235         u32 coreclk, reg_val;
7236
7237         /* Enable Refclk */
7238         I915_WRITE(DPLL(pipe),
7239                    pipe_config->dpll_hw_state.dpll &
7240                    ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7241
7242         /* No need to actually set up the DPLL with DSI */
7243         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7244                 return;
7245
7246         mutex_lock(&dev_priv->sb_lock);
7247
7248         bestn = pipe_config->dpll.n;
7249         bestm1 = pipe_config->dpll.m1;
7250         bestm2 = pipe_config->dpll.m2;
7251         bestp1 = pipe_config->dpll.p1;
7252         bestp2 = pipe_config->dpll.p2;
7253
7254         /* See eDP HDMI DPIO driver vbios notes doc */
7255
7256         /* PLL B needs special handling */
7257         if (pipe == PIPE_B)
7258                 vlv_pllb_recal_opamp(dev_priv, pipe);
7259
7260         /* Set up Tx target for periodic Rcomp update */
7261         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7262
7263         /* Disable target IRef on PLL */
7264         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7265         reg_val &= 0x00ffffff;
7266         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7267
7268         /* Disable fast lock */
7269         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7270
7271         /* Set idtafcrecal before PLL is enabled */
7272         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7273         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7274         mdiv |= ((bestn << DPIO_N_SHIFT));
7275         mdiv |= (1 << DPIO_K_SHIFT);
7276
7277         /*
7278          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7279          * but we don't support that).
7280          * Note: don't use the DAC post divider as it seems unstable.
7281          */
7282         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7283         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7284
7285         mdiv |= DPIO_ENABLE_CALIBRATION;
7286         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7287
7288         /* Set HBR and RBR LPF coefficients */
7289         if (pipe_config->port_clock == 162000 ||
7290             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7291             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7292                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7293                                  0x009f0003);
7294         else
7295                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7296                                  0x00d0000f);
7297
7298         if (pipe_config->has_dp_encoder) {
7299                 /* Use SSC source */
7300                 if (pipe == PIPE_A)
7301                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7302                                          0x0df40000);
7303                 else
7304                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7305                                          0x0df70000);
7306         } else { /* HDMI or VGA */
7307                 /* Use bend source */
7308                 if (pipe == PIPE_A)
7309                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7310                                          0x0df70000);
7311                 else
7312                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7313                                          0x0df40000);
7314         }
7315
7316         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7317         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7318         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7319             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7320                 coreclk |= 0x01000000;
7321         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7322
7323         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7324         mutex_unlock(&dev_priv->sb_lock);
7325 }
7326
7327 static void chv_prepare_pll(struct intel_crtc *crtc,
7328                             const struct intel_crtc_state *pipe_config)
7329 {
7330         struct drm_device *dev = crtc->base.dev;
7331         struct drm_i915_private *dev_priv = dev->dev_private;
7332         enum pipe pipe = crtc->pipe;
7333         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7334         u32 loopfilter, tribuf_calcntr;
7335         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7336         u32 dpio_val;
7337         int vco;
7338
7339         /* Enable Refclk and SSC */
7340         I915_WRITE(DPLL(pipe),
7341                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7342
7343         /* No need to actually set up the DPLL with DSI */
7344         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7345                 return;
7346
7347         bestn = pipe_config->dpll.n;
7348         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7349         bestm1 = pipe_config->dpll.m1;
7350         bestm2 = pipe_config->dpll.m2 >> 22;
7351         bestp1 = pipe_config->dpll.p1;
7352         bestp2 = pipe_config->dpll.p2;
7353         vco = pipe_config->dpll.vco;
7354         dpio_val = 0;
7355         loopfilter = 0;
7356
7357         mutex_lock(&dev_priv->sb_lock);
7358
7359         /* p1 and p2 divider */
7360         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7361                         5 << DPIO_CHV_S1_DIV_SHIFT |
7362                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7363                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7364                         1 << DPIO_CHV_K_DIV_SHIFT);
7365
7366         /* Feedback post-divider - m2 */
7367         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7368
7369         /* Feedback refclk divider - n and m1 */
7370         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7371                         DPIO_CHV_M1_DIV_BY_2 |
7372                         1 << DPIO_CHV_N_DIV_SHIFT);
7373
7374         /* M2 fraction division */
7375         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7376
7377         /* M2 fraction division enable */
7378         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7379         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7380         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7381         if (bestm2_frac)
7382                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7383         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7384
7385         /* Program digital lock detect threshold */
7386         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7387         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7388                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7389         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7390         if (!bestm2_frac)
7391                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7392         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7393
7394         /* Loop filter */
7395         if (vco == 5400000) {
7396                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7397                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7398                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7399                 tribuf_calcntr = 0x9;
7400         } else if (vco <= 6200000) {
7401                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7402                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7403                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7404                 tribuf_calcntr = 0x9;
7405         } else if (vco <= 6480000) {
7406                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7407                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7408                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7409                 tribuf_calcntr = 0x8;
7410         } else {
7411                 /* Not supported. Apply the same limits as in the max case */
7412                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7413                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7414                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7415                 tribuf_calcntr = 0;
7416         }
7417         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7418
7419         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7420         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7421         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7422         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7423
7424         /* AFC Recal */
7425         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7426                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7427                         DPIO_AFC_RECAL);
7428
7429         mutex_unlock(&dev_priv->sb_lock);
7430 }
7431
7432 /**
7433  * vlv_force_pll_on - forcibly enable just the PLL
7434  * @dev_priv: i915 private structure
7435  * @pipe: pipe PLL to enable
7436  * @dpll: PLL configuration
7437  *
7438  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7439  * in cases where we need the PLL enabled even when @pipe is not going to
7440  * be enabled.
7441  */
7442 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7443                      const struct dpll *dpll)
7444 {
7445         struct intel_crtc *crtc =
7446                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7447         struct intel_crtc_state *pipe_config;
7448
7449         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7450         if (!pipe_config)
7451                 return -ENOMEM;
7452
7453         pipe_config->base.crtc = &crtc->base;
7454         pipe_config->pixel_multiplier = 1;
7455         pipe_config->dpll = *dpll;
7456
7457         if (IS_CHERRYVIEW(dev)) {
7458                 chv_compute_dpll(crtc, pipe_config);
7459                 chv_prepare_pll(crtc, pipe_config);
7460                 chv_enable_pll(crtc, pipe_config);
7461         } else {
7462                 vlv_compute_dpll(crtc, pipe_config);
7463                 vlv_prepare_pll(crtc, pipe_config);
7464                 vlv_enable_pll(crtc, pipe_config);
7465         }
7466
7467         kfree(pipe_config);
7468
7469         return 0;
7470 }
7471
7472 /**
7473  * vlv_force_pll_off - forcibly disable just the PLL
7474  * @dev_priv: i915 private structure
7475  * @pipe: pipe PLL to disable
7476  *
7477  * Disable the PLL for @pipe. To be used in cases where we need
7478  * the PLL enabled even when @pipe is not going to be enabled.
7479  */
7480 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7481 {
7482         if (IS_CHERRYVIEW(dev))
7483                 chv_disable_pll(to_i915(dev), pipe);
7484         else
7485                 vlv_disable_pll(to_i915(dev), pipe);
7486 }
7487
7488 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7489                               struct intel_crtc_state *crtc_state,
7490                               intel_clock_t *reduced_clock)
7491 {
7492         struct drm_device *dev = crtc->base.dev;
7493         struct drm_i915_private *dev_priv = dev->dev_private;
7494         u32 dpll;
7495         bool is_sdvo;
7496         struct dpll *clock = &crtc_state->dpll;
7497
7498         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7499
7500         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7501                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7502
7503         dpll = DPLL_VGA_MODE_DIS;
7504
7505         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7506                 dpll |= DPLLB_MODE_LVDS;
7507         else
7508                 dpll |= DPLLB_MODE_DAC_SERIAL;
7509
7510         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7511                 dpll |= (crtc_state->pixel_multiplier - 1)
7512                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7513         }
7514
7515         if (is_sdvo)
7516                 dpll |= DPLL_SDVO_HIGH_SPEED;
7517
7518         if (crtc_state->has_dp_encoder)
7519                 dpll |= DPLL_SDVO_HIGH_SPEED;
7520
7521         /* compute bitmask from p1 value */
7522         if (IS_PINEVIEW(dev))
7523                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7524         else {
7525                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7526                 if (IS_G4X(dev) && reduced_clock)
7527                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7528         }
7529         switch (clock->p2) {
7530         case 5:
7531                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7532                 break;
7533         case 7:
7534                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7535                 break;
7536         case 10:
7537                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7538                 break;
7539         case 14:
7540                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7541                 break;
7542         }
7543         if (INTEL_INFO(dev)->gen >= 4)
7544                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7545
7546         if (crtc_state->sdvo_tv_clock)
7547                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7548         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7549                  intel_panel_use_ssc(dev_priv))
7550                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7551         else
7552                 dpll |= PLL_REF_INPUT_DREFCLK;
7553
7554         dpll |= DPLL_VCO_ENABLE;
7555         crtc_state->dpll_hw_state.dpll = dpll;
7556
7557         if (INTEL_INFO(dev)->gen >= 4) {
7558                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7559                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7560                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7561         }
7562 }
7563
7564 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7565                               struct intel_crtc_state *crtc_state,
7566                               intel_clock_t *reduced_clock)
7567 {
7568         struct drm_device *dev = crtc->base.dev;
7569         struct drm_i915_private *dev_priv = dev->dev_private;
7570         u32 dpll;
7571         struct dpll *clock = &crtc_state->dpll;
7572
7573         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7574
7575         dpll = DPLL_VGA_MODE_DIS;
7576
7577         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7578                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7579         } else {
7580                 if (clock->p1 == 2)
7581                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7582                 else
7583                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7584                 if (clock->p2 == 4)
7585                         dpll |= PLL_P2_DIVIDE_BY_4;
7586         }
7587
7588         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7589                 dpll |= DPLL_DVO_2X_MODE;
7590
7591         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7592             intel_panel_use_ssc(dev_priv))
7593                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7594         else
7595                 dpll |= PLL_REF_INPUT_DREFCLK;
7596
7597         dpll |= DPLL_VCO_ENABLE;
7598         crtc_state->dpll_hw_state.dpll = dpll;
7599 }
7600
7601 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7602 {
7603         struct drm_device *dev = intel_crtc->base.dev;
7604         struct drm_i915_private *dev_priv = dev->dev_private;
7605         enum pipe pipe = intel_crtc->pipe;
7606         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7607         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7608         uint32_t crtc_vtotal, crtc_vblank_end;
7609         int vsyncshift = 0;
7610
7611         /* We need to be careful not to changed the adjusted mode, for otherwise
7612          * the hw state checker will get angry at the mismatch. */
7613         crtc_vtotal = adjusted_mode->crtc_vtotal;
7614         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7615
7616         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7617                 /* the chip adds 2 halflines automatically */
7618                 crtc_vtotal -= 1;
7619                 crtc_vblank_end -= 1;
7620
7621                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7622                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7623                 else
7624                         vsyncshift = adjusted_mode->crtc_hsync_start -
7625                                 adjusted_mode->crtc_htotal / 2;
7626                 if (vsyncshift < 0)
7627                         vsyncshift += adjusted_mode->crtc_htotal;
7628         }
7629
7630         if (INTEL_INFO(dev)->gen > 3)
7631                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7632
7633         I915_WRITE(HTOTAL(cpu_transcoder),
7634                    (adjusted_mode->crtc_hdisplay - 1) |
7635                    ((adjusted_mode->crtc_htotal - 1) << 16));
7636         I915_WRITE(HBLANK(cpu_transcoder),
7637                    (adjusted_mode->crtc_hblank_start - 1) |
7638                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7639         I915_WRITE(HSYNC(cpu_transcoder),
7640                    (adjusted_mode->crtc_hsync_start - 1) |
7641                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7642
7643         I915_WRITE(VTOTAL(cpu_transcoder),
7644                    (adjusted_mode->crtc_vdisplay - 1) |
7645                    ((crtc_vtotal - 1) << 16));
7646         I915_WRITE(VBLANK(cpu_transcoder),
7647                    (adjusted_mode->crtc_vblank_start - 1) |
7648                    ((crtc_vblank_end - 1) << 16));
7649         I915_WRITE(VSYNC(cpu_transcoder),
7650                    (adjusted_mode->crtc_vsync_start - 1) |
7651                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7652
7653         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7654          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7655          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7656          * bits. */
7657         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7658             (pipe == PIPE_B || pipe == PIPE_C))
7659                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7660
7661 }
7662
7663 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7664 {
7665         struct drm_device *dev = intel_crtc->base.dev;
7666         struct drm_i915_private *dev_priv = dev->dev_private;
7667         enum pipe pipe = intel_crtc->pipe;
7668
7669         /* pipesrc controls the size that is scaled from, which should
7670          * always be the user's requested size.
7671          */
7672         I915_WRITE(PIPESRC(pipe),
7673                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7674                    (intel_crtc->config->pipe_src_h - 1));
7675 }
7676
7677 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7678                                    struct intel_crtc_state *pipe_config)
7679 {
7680         struct drm_device *dev = crtc->base.dev;
7681         struct drm_i915_private *dev_priv = dev->dev_private;
7682         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7683         uint32_t tmp;
7684
7685         tmp = I915_READ(HTOTAL(cpu_transcoder));
7686         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7687         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7688         tmp = I915_READ(HBLANK(cpu_transcoder));
7689         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7690         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7691         tmp = I915_READ(HSYNC(cpu_transcoder));
7692         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7693         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7694
7695         tmp = I915_READ(VTOTAL(cpu_transcoder));
7696         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7697         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7698         tmp = I915_READ(VBLANK(cpu_transcoder));
7699         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7700         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7701         tmp = I915_READ(VSYNC(cpu_transcoder));
7702         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7703         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7704
7705         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7706                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7707                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7708                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7709         }
7710 }
7711
7712 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7713                                     struct intel_crtc_state *pipe_config)
7714 {
7715         struct drm_device *dev = crtc->base.dev;
7716         struct drm_i915_private *dev_priv = dev->dev_private;
7717         u32 tmp;
7718
7719         tmp = I915_READ(PIPESRC(crtc->pipe));
7720         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7721         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7722
7723         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7724         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7725 }
7726
7727 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7728                                  struct intel_crtc_state *pipe_config)
7729 {
7730         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7731         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7732         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7733         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7734
7735         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7736         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7737         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7738         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7739
7740         mode->flags = pipe_config->base.adjusted_mode.flags;
7741         mode->type = DRM_MODE_TYPE_DRIVER;
7742
7743         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7744         mode->flags |= pipe_config->base.adjusted_mode.flags;
7745
7746         mode->hsync = drm_mode_hsync(mode);
7747         mode->vrefresh = drm_mode_vrefresh(mode);
7748         drm_mode_set_name(mode);
7749 }
7750
7751 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7752 {
7753         struct drm_device *dev = intel_crtc->base.dev;
7754         struct drm_i915_private *dev_priv = dev->dev_private;
7755         uint32_t pipeconf;
7756
7757         pipeconf = 0;
7758
7759         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7760             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7761                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7762
7763         if (intel_crtc->config->double_wide)
7764                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7765
7766         /* only g4x and later have fancy bpc/dither controls */
7767         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7768                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7769                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7770                         pipeconf |= PIPECONF_DITHER_EN |
7771                                     PIPECONF_DITHER_TYPE_SP;
7772
7773                 switch (intel_crtc->config->pipe_bpp) {
7774                 case 18:
7775                         pipeconf |= PIPECONF_6BPC;
7776                         break;
7777                 case 24:
7778                         pipeconf |= PIPECONF_8BPC;
7779                         break;
7780                 case 30:
7781                         pipeconf |= PIPECONF_10BPC;
7782                         break;
7783                 default:
7784                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7785                         BUG();
7786                 }
7787         }
7788
7789         if (HAS_PIPE_CXSR(dev)) {
7790                 if (intel_crtc->lowfreq_avail) {
7791                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7792                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7793                 } else {
7794                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7795                 }
7796         }
7797
7798         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7799                 if (INTEL_INFO(dev)->gen < 4 ||
7800                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7801                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7802                 else
7803                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7804         } else
7805                 pipeconf |= PIPECONF_PROGRESSIVE;
7806
7807         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7808              intel_crtc->config->limited_color_range)
7809                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7810
7811         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7812         POSTING_READ(PIPECONF(intel_crtc->pipe));
7813 }
7814
7815 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7816                                    struct intel_crtc_state *crtc_state)
7817 {
7818         struct drm_device *dev = crtc->base.dev;
7819         struct drm_i915_private *dev_priv = dev->dev_private;
7820         const intel_limit_t *limit;
7821         int refclk = 48000;
7822
7823         memset(&crtc_state->dpll_hw_state, 0,
7824                sizeof(crtc_state->dpll_hw_state));
7825
7826         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7827                 if (intel_panel_use_ssc(dev_priv)) {
7828                         refclk = dev_priv->vbt.lvds_ssc_freq;
7829                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7830                 }
7831
7832                 limit = &intel_limits_i8xx_lvds;
7833         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO)) {
7834                 limit = &intel_limits_i8xx_dvo;
7835         } else {
7836                 limit = &intel_limits_i8xx_dac;
7837         }
7838
7839         if (!crtc_state->clock_set &&
7840             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7841                                  refclk, NULL, &crtc_state->dpll)) {
7842                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7843                 return -EINVAL;
7844         }
7845
7846         i8xx_compute_dpll(crtc, crtc_state, NULL);
7847
7848         return 0;
7849 }
7850
7851 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7852                                   struct intel_crtc_state *crtc_state)
7853 {
7854         struct drm_device *dev = crtc->base.dev;
7855         struct drm_i915_private *dev_priv = dev->dev_private;
7856         const intel_limit_t *limit;
7857         int refclk = 96000;
7858
7859         memset(&crtc_state->dpll_hw_state, 0,
7860                sizeof(crtc_state->dpll_hw_state));
7861
7862         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7863                 if (intel_panel_use_ssc(dev_priv)) {
7864                         refclk = dev_priv->vbt.lvds_ssc_freq;
7865                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7866                 }
7867
7868                 if (intel_is_dual_link_lvds(dev))
7869                         limit = &intel_limits_g4x_dual_channel_lvds;
7870                 else
7871                         limit = &intel_limits_g4x_single_channel_lvds;
7872         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7873                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7874                 limit = &intel_limits_g4x_hdmi;
7875         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7876                 limit = &intel_limits_g4x_sdvo;
7877         } else {
7878                 /* The option is for other outputs */
7879                 limit = &intel_limits_i9xx_sdvo;
7880         }
7881
7882         if (!crtc_state->clock_set &&
7883             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7884                                 refclk, NULL, &crtc_state->dpll)) {
7885                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7886                 return -EINVAL;
7887         }
7888
7889         i9xx_compute_dpll(crtc, crtc_state, NULL);
7890
7891         return 0;
7892 }
7893
7894 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7895                                   struct intel_crtc_state *crtc_state)
7896 {
7897         struct drm_device *dev = crtc->base.dev;
7898         struct drm_i915_private *dev_priv = dev->dev_private;
7899         const intel_limit_t *limit;
7900         int refclk = 96000;
7901
7902         memset(&crtc_state->dpll_hw_state, 0,
7903                sizeof(crtc_state->dpll_hw_state));
7904
7905         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7906                 if (intel_panel_use_ssc(dev_priv)) {
7907                         refclk = dev_priv->vbt.lvds_ssc_freq;
7908                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7909                 }
7910
7911                 limit = &intel_limits_pineview_lvds;
7912         } else {
7913                 limit = &intel_limits_pineview_sdvo;
7914         }
7915
7916         if (!crtc_state->clock_set &&
7917             !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7918                                 refclk, NULL, &crtc_state->dpll)) {
7919                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7920                 return -EINVAL;
7921         }
7922
7923         i9xx_compute_dpll(crtc, crtc_state, NULL);
7924
7925         return 0;
7926 }
7927
7928 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7929                                    struct intel_crtc_state *crtc_state)
7930 {
7931         struct drm_device *dev = crtc->base.dev;
7932         struct drm_i915_private *dev_priv = dev->dev_private;
7933         const intel_limit_t *limit;
7934         int refclk = 96000;
7935
7936         memset(&crtc_state->dpll_hw_state, 0,
7937                sizeof(crtc_state->dpll_hw_state));
7938
7939         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7940                 if (intel_panel_use_ssc(dev_priv)) {
7941                         refclk = dev_priv->vbt.lvds_ssc_freq;
7942                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7943                 }
7944
7945                 limit = &intel_limits_i9xx_lvds;
7946         } else {
7947                 limit = &intel_limits_i9xx_sdvo;
7948         }
7949
7950         if (!crtc_state->clock_set &&
7951             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7952                                  refclk, NULL, &crtc_state->dpll)) {
7953                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7954                 return -EINVAL;
7955         }
7956
7957         i9xx_compute_dpll(crtc, crtc_state, NULL);
7958
7959         return 0;
7960 }
7961
7962 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
7963                                   struct intel_crtc_state *crtc_state)
7964 {
7965         int refclk = 100000;
7966         const intel_limit_t *limit = &intel_limits_chv;
7967
7968         memset(&crtc_state->dpll_hw_state, 0,
7969                sizeof(crtc_state->dpll_hw_state));
7970
7971         if (!crtc_state->clock_set &&
7972             !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7973                                 refclk, NULL, &crtc_state->dpll)) {
7974                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7975                 return -EINVAL;
7976         }
7977
7978         chv_compute_dpll(crtc, crtc_state);
7979
7980         return 0;
7981 }
7982
7983 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
7984                                   struct intel_crtc_state *crtc_state)
7985 {
7986         int refclk = 100000;
7987         const intel_limit_t *limit = &intel_limits_vlv;
7988
7989         memset(&crtc_state->dpll_hw_state, 0,
7990                sizeof(crtc_state->dpll_hw_state));
7991
7992         if (!crtc_state->clock_set &&
7993             !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7994                                 refclk, NULL, &crtc_state->dpll)) {
7995                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7996                 return -EINVAL;
7997         }
7998
7999         vlv_compute_dpll(crtc, crtc_state);
8000
8001         return 0;
8002 }
8003
8004 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8005                                  struct intel_crtc_state *pipe_config)
8006 {
8007         struct drm_device *dev = crtc->base.dev;
8008         struct drm_i915_private *dev_priv = dev->dev_private;
8009         uint32_t tmp;
8010
8011         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8012                 return;
8013
8014         tmp = I915_READ(PFIT_CONTROL);
8015         if (!(tmp & PFIT_ENABLE))
8016                 return;
8017
8018         /* Check whether the pfit is attached to our pipe. */
8019         if (INTEL_INFO(dev)->gen < 4) {
8020                 if (crtc->pipe != PIPE_B)
8021                         return;
8022         } else {
8023                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8024                         return;
8025         }
8026
8027         pipe_config->gmch_pfit.control = tmp;
8028         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8029 }
8030
8031 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8032                                struct intel_crtc_state *pipe_config)
8033 {
8034         struct drm_device *dev = crtc->base.dev;
8035         struct drm_i915_private *dev_priv = dev->dev_private;
8036         int pipe = pipe_config->cpu_transcoder;
8037         intel_clock_t clock;
8038         u32 mdiv;
8039         int refclk = 100000;
8040
8041         /* In case of DSI, DPLL will not be used */
8042         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8043                 return;
8044
8045         mutex_lock(&dev_priv->sb_lock);
8046         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8047         mutex_unlock(&dev_priv->sb_lock);
8048
8049         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8050         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8051         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8052         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8053         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8054
8055         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8056 }
8057
8058 static void
8059 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8060                               struct intel_initial_plane_config *plane_config)
8061 {
8062         struct drm_device *dev = crtc->base.dev;
8063         struct drm_i915_private *dev_priv = dev->dev_private;
8064         u32 val, base, offset;
8065         int pipe = crtc->pipe, plane = crtc->plane;
8066         int fourcc, pixel_format;
8067         unsigned int aligned_height;
8068         struct drm_framebuffer *fb;
8069         struct intel_framebuffer *intel_fb;
8070
8071         val = I915_READ(DSPCNTR(plane));
8072         if (!(val & DISPLAY_PLANE_ENABLE))
8073                 return;
8074
8075         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8076         if (!intel_fb) {
8077                 DRM_DEBUG_KMS("failed to alloc fb\n");
8078                 return;
8079         }
8080
8081         fb = &intel_fb->base;
8082
8083         if (INTEL_INFO(dev)->gen >= 4) {
8084                 if (val & DISPPLANE_TILED) {
8085                         plane_config->tiling = I915_TILING_X;
8086                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8087                 }
8088         }
8089
8090         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8091         fourcc = i9xx_format_to_fourcc(pixel_format);
8092         fb->pixel_format = fourcc;
8093         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8094
8095         if (INTEL_INFO(dev)->gen >= 4) {
8096                 if (plane_config->tiling)
8097                         offset = I915_READ(DSPTILEOFF(plane));
8098                 else
8099                         offset = I915_READ(DSPLINOFF(plane));
8100                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8101         } else {
8102                 base = I915_READ(DSPADDR(plane));
8103         }
8104         plane_config->base = base;
8105
8106         val = I915_READ(PIPESRC(pipe));
8107         fb->width = ((val >> 16) & 0xfff) + 1;
8108         fb->height = ((val >> 0) & 0xfff) + 1;
8109
8110         val = I915_READ(DSPSTRIDE(pipe));
8111         fb->pitches[0] = val & 0xffffffc0;
8112
8113         aligned_height = intel_fb_align_height(dev, fb->height,
8114                                                fb->pixel_format,
8115                                                fb->modifier[0]);
8116
8117         plane_config->size = fb->pitches[0] * aligned_height;
8118
8119         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8120                       pipe_name(pipe), plane, fb->width, fb->height,
8121                       fb->bits_per_pixel, base, fb->pitches[0],
8122                       plane_config->size);
8123
8124         plane_config->fb = intel_fb;
8125 }
8126
8127 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8128                                struct intel_crtc_state *pipe_config)
8129 {
8130         struct drm_device *dev = crtc->base.dev;
8131         struct drm_i915_private *dev_priv = dev->dev_private;
8132         int pipe = pipe_config->cpu_transcoder;
8133         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8134         intel_clock_t clock;
8135         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8136         int refclk = 100000;
8137
8138         /* In case of DSI, DPLL will not be used */
8139         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8140                 return;
8141
8142         mutex_lock(&dev_priv->sb_lock);
8143         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8144         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8145         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8146         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8147         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8148         mutex_unlock(&dev_priv->sb_lock);
8149
8150         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8151         clock.m2 = (pll_dw0 & 0xff) << 22;
8152         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8153                 clock.m2 |= pll_dw2 & 0x3fffff;
8154         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8155         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8156         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8157
8158         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8159 }
8160
8161 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8162                                  struct intel_crtc_state *pipe_config)
8163 {
8164         struct drm_device *dev = crtc->base.dev;
8165         struct drm_i915_private *dev_priv = dev->dev_private;
8166         enum intel_display_power_domain power_domain;
8167         uint32_t tmp;
8168         bool ret;
8169
8170         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8171         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8172                 return false;
8173
8174         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8175         pipe_config->shared_dpll = NULL;
8176
8177         ret = false;
8178
8179         tmp = I915_READ(PIPECONF(crtc->pipe));
8180         if (!(tmp & PIPECONF_ENABLE))
8181                 goto out;
8182
8183         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8184                 switch (tmp & PIPECONF_BPC_MASK) {
8185                 case PIPECONF_6BPC:
8186                         pipe_config->pipe_bpp = 18;
8187                         break;
8188                 case PIPECONF_8BPC:
8189                         pipe_config->pipe_bpp = 24;
8190                         break;
8191                 case PIPECONF_10BPC:
8192                         pipe_config->pipe_bpp = 30;
8193                         break;
8194                 default:
8195                         break;
8196                 }
8197         }
8198
8199         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8200             (tmp & PIPECONF_COLOR_RANGE_SELECT))
8201                 pipe_config->limited_color_range = true;
8202
8203         if (INTEL_INFO(dev)->gen < 4)
8204                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8205
8206         intel_get_pipe_timings(crtc, pipe_config);
8207         intel_get_pipe_src_size(crtc, pipe_config);
8208
8209         i9xx_get_pfit_config(crtc, pipe_config);
8210
8211         if (INTEL_INFO(dev)->gen >= 4) {
8212                 /* No way to read it out on pipes B and C */
8213                 if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8214                         tmp = dev_priv->chv_dpll_md[crtc->pipe];
8215                 else
8216                         tmp = I915_READ(DPLL_MD(crtc->pipe));
8217                 pipe_config->pixel_multiplier =
8218                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8219                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8220                 pipe_config->dpll_hw_state.dpll_md = tmp;
8221         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8222                 tmp = I915_READ(DPLL(crtc->pipe));
8223                 pipe_config->pixel_multiplier =
8224                         ((tmp & SDVO_MULTIPLIER_MASK)
8225                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8226         } else {
8227                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8228                  * port and will be fixed up in the encoder->get_config
8229                  * function. */
8230                 pipe_config->pixel_multiplier = 1;
8231         }
8232         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8233         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8234                 /*
8235                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8236                  * on 830. Filter it out here so that we don't
8237                  * report errors due to that.
8238                  */
8239                 if (IS_I830(dev))
8240                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8241
8242                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8243                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8244         } else {
8245                 /* Mask out read-only status bits. */
8246                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8247                                                      DPLL_PORTC_READY_MASK |
8248                                                      DPLL_PORTB_READY_MASK);
8249         }
8250
8251         if (IS_CHERRYVIEW(dev))
8252                 chv_crtc_clock_get(crtc, pipe_config);
8253         else if (IS_VALLEYVIEW(dev))
8254                 vlv_crtc_clock_get(crtc, pipe_config);
8255         else
8256                 i9xx_crtc_clock_get(crtc, pipe_config);
8257
8258         /*
8259          * Normally the dotclock is filled in by the encoder .get_config()
8260          * but in case the pipe is enabled w/o any ports we need a sane
8261          * default.
8262          */
8263         pipe_config->base.adjusted_mode.crtc_clock =
8264                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8265
8266         ret = true;
8267
8268 out:
8269         intel_display_power_put(dev_priv, power_domain);
8270
8271         return ret;
8272 }
8273
8274 static void ironlake_init_pch_refclk(struct drm_device *dev)
8275 {
8276         struct drm_i915_private *dev_priv = dev->dev_private;
8277         struct intel_encoder *encoder;
8278         int i;
8279         u32 val, final;
8280         bool has_lvds = false;
8281         bool has_cpu_edp = false;
8282         bool has_panel = false;
8283         bool has_ck505 = false;
8284         bool can_ssc = false;
8285         bool using_ssc_source = false;
8286
8287         /* We need to take the global config into account */
8288         for_each_intel_encoder(dev, encoder) {
8289                 switch (encoder->type) {
8290                 case INTEL_OUTPUT_LVDS:
8291                         has_panel = true;
8292                         has_lvds = true;
8293                         break;
8294                 case INTEL_OUTPUT_EDP:
8295                         has_panel = true;
8296                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8297                                 has_cpu_edp = true;
8298                         break;
8299                 default:
8300                         break;
8301                 }
8302         }
8303
8304         if (HAS_PCH_IBX(dev)) {
8305                 has_ck505 = dev_priv->vbt.display_clock_mode;
8306                 can_ssc = has_ck505;
8307         } else {
8308                 has_ck505 = false;
8309                 can_ssc = true;
8310         }
8311
8312         /* Check if any DPLLs are using the SSC source */
8313         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8314                 u32 temp = I915_READ(PCH_DPLL(i));
8315
8316                 if (!(temp & DPLL_VCO_ENABLE))
8317                         continue;
8318
8319                 if ((temp & PLL_REF_INPUT_MASK) ==
8320                     PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8321                         using_ssc_source = true;
8322                         break;
8323                 }
8324         }
8325
8326         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8327                       has_panel, has_lvds, has_ck505, using_ssc_source);
8328
8329         /* Ironlake: try to setup display ref clock before DPLL
8330          * enabling. This is only under driver's control after
8331          * PCH B stepping, previous chipset stepping should be
8332          * ignoring this setting.
8333          */
8334         val = I915_READ(PCH_DREF_CONTROL);
8335
8336         /* As we must carefully and slowly disable/enable each source in turn,
8337          * compute the final state we want first and check if we need to
8338          * make any changes at all.
8339          */
8340         final = val;
8341         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8342         if (has_ck505)
8343                 final |= DREF_NONSPREAD_CK505_ENABLE;
8344         else
8345                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8346
8347         final &= ~DREF_SSC_SOURCE_MASK;
8348         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8349         final &= ~DREF_SSC1_ENABLE;
8350
8351         if (has_panel) {
8352                 final |= DREF_SSC_SOURCE_ENABLE;
8353
8354                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8355                         final |= DREF_SSC1_ENABLE;
8356
8357                 if (has_cpu_edp) {
8358                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8359                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8360                         else
8361                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8362                 } else
8363                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8364         } else if (using_ssc_source) {
8365                 final |= DREF_SSC_SOURCE_ENABLE;
8366                 final |= DREF_SSC1_ENABLE;
8367         }
8368
8369         if (final == val)
8370                 return;
8371
8372         /* Always enable nonspread source */
8373         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8374
8375         if (has_ck505)
8376                 val |= DREF_NONSPREAD_CK505_ENABLE;
8377         else
8378                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8379
8380         if (has_panel) {
8381                 val &= ~DREF_SSC_SOURCE_MASK;
8382                 val |= DREF_SSC_SOURCE_ENABLE;
8383
8384                 /* SSC must be turned on before enabling the CPU output  */
8385                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8386                         DRM_DEBUG_KMS("Using SSC on panel\n");
8387                         val |= DREF_SSC1_ENABLE;
8388                 } else
8389                         val &= ~DREF_SSC1_ENABLE;
8390
8391                 /* Get SSC going before enabling the outputs */
8392                 I915_WRITE(PCH_DREF_CONTROL, val);
8393                 POSTING_READ(PCH_DREF_CONTROL);
8394                 udelay(200);
8395
8396                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8397
8398                 /* Enable CPU source on CPU attached eDP */
8399                 if (has_cpu_edp) {
8400                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8401                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8402                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8403                         } else
8404                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8405                 } else
8406                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8407
8408                 I915_WRITE(PCH_DREF_CONTROL, val);
8409                 POSTING_READ(PCH_DREF_CONTROL);
8410                 udelay(200);
8411         } else {
8412                 DRM_DEBUG_KMS("Disabling CPU source output\n");
8413
8414                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8415
8416                 /* Turn off CPU output */
8417                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8418
8419                 I915_WRITE(PCH_DREF_CONTROL, val);
8420                 POSTING_READ(PCH_DREF_CONTROL);
8421                 udelay(200);
8422
8423                 if (!using_ssc_source) {
8424                         DRM_DEBUG_KMS("Disabling SSC source\n");
8425
8426                         /* Turn off the SSC source */
8427                         val &= ~DREF_SSC_SOURCE_MASK;
8428                         val |= DREF_SSC_SOURCE_DISABLE;
8429
8430                         /* Turn off SSC1 */
8431                         val &= ~DREF_SSC1_ENABLE;
8432
8433                         I915_WRITE(PCH_DREF_CONTROL, val);
8434                         POSTING_READ(PCH_DREF_CONTROL);
8435                         udelay(200);
8436                 }
8437         }
8438
8439         BUG_ON(val != final);
8440 }
8441
8442 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8443 {
8444         uint32_t tmp;
8445
8446         tmp = I915_READ(SOUTH_CHICKEN2);
8447         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8448         I915_WRITE(SOUTH_CHICKEN2, tmp);
8449
8450         if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
8451                         FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8452                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8453
8454         tmp = I915_READ(SOUTH_CHICKEN2);
8455         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8456         I915_WRITE(SOUTH_CHICKEN2, tmp);
8457
8458         if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
8459                          FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8460                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8461 }
8462
8463 /* WaMPhyProgramming:hsw */
8464 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8465 {
8466         uint32_t tmp;
8467
8468         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8469         tmp &= ~(0xFF << 24);
8470         tmp |= (0x12 << 24);
8471         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8472
8473         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8474         tmp |= (1 << 11);
8475         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8476
8477         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8478         tmp |= (1 << 11);
8479         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8480
8481         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8482         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8483         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8484
8485         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8486         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8487         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8488
8489         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8490         tmp &= ~(7 << 13);
8491         tmp |= (5 << 13);
8492         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8493
8494         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8495         tmp &= ~(7 << 13);
8496         tmp |= (5 << 13);
8497         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8498
8499         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8500         tmp &= ~0xFF;
8501         tmp |= 0x1C;
8502         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8503
8504         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8505         tmp &= ~0xFF;
8506         tmp |= 0x1C;
8507         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8508
8509         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8510         tmp &= ~(0xFF << 16);
8511         tmp |= (0x1C << 16);
8512         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8513
8514         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8515         tmp &= ~(0xFF << 16);
8516         tmp |= (0x1C << 16);
8517         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8518
8519         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8520         tmp |= (1 << 27);
8521         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8522
8523         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8524         tmp |= (1 << 27);
8525         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8526
8527         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8528         tmp &= ~(0xF << 28);
8529         tmp |= (4 << 28);
8530         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8531
8532         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8533         tmp &= ~(0xF << 28);
8534         tmp |= (4 << 28);
8535         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8536 }
8537
8538 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8539  * Programming" based on the parameters passed:
8540  * - Sequence to enable CLKOUT_DP
8541  * - Sequence to enable CLKOUT_DP without spread
8542  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8543  */
8544 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8545                                  bool with_fdi)
8546 {
8547         struct drm_i915_private *dev_priv = dev->dev_private;
8548         uint32_t reg, tmp;
8549
8550         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8551                 with_spread = true;
8552         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8553                 with_fdi = false;
8554
8555         mutex_lock(&dev_priv->sb_lock);
8556
8557         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8558         tmp &= ~SBI_SSCCTL_DISABLE;
8559         tmp |= SBI_SSCCTL_PATHALT;
8560         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8561
8562         udelay(24);
8563
8564         if (with_spread) {
8565                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8566                 tmp &= ~SBI_SSCCTL_PATHALT;
8567                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8568
8569                 if (with_fdi) {
8570                         lpt_reset_fdi_mphy(dev_priv);
8571                         lpt_program_fdi_mphy(dev_priv);
8572                 }
8573         }
8574
8575         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8576         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8577         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8578         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8579
8580         mutex_unlock(&dev_priv->sb_lock);
8581 }
8582
8583 /* Sequence to disable CLKOUT_DP */
8584 static void lpt_disable_clkout_dp(struct drm_device *dev)
8585 {
8586         struct drm_i915_private *dev_priv = dev->dev_private;
8587         uint32_t reg, tmp;
8588
8589         mutex_lock(&dev_priv->sb_lock);
8590
8591         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8592         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8593         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8594         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8595
8596         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8597         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8598                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8599                         tmp |= SBI_SSCCTL_PATHALT;
8600                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8601                         udelay(32);
8602                 }
8603                 tmp |= SBI_SSCCTL_DISABLE;
8604                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8605         }
8606
8607         mutex_unlock(&dev_priv->sb_lock);
8608 }
8609
8610 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8611
8612 static const uint16_t sscdivintphase[] = {
8613         [BEND_IDX( 50)] = 0x3B23,
8614         [BEND_IDX( 45)] = 0x3B23,
8615         [BEND_IDX( 40)] = 0x3C23,
8616         [BEND_IDX( 35)] = 0x3C23,
8617         [BEND_IDX( 30)] = 0x3D23,
8618         [BEND_IDX( 25)] = 0x3D23,
8619         [BEND_IDX( 20)] = 0x3E23,
8620         [BEND_IDX( 15)] = 0x3E23,
8621         [BEND_IDX( 10)] = 0x3F23,
8622         [BEND_IDX(  5)] = 0x3F23,
8623         [BEND_IDX(  0)] = 0x0025,
8624         [BEND_IDX( -5)] = 0x0025,
8625         [BEND_IDX(-10)] = 0x0125,
8626         [BEND_IDX(-15)] = 0x0125,
8627         [BEND_IDX(-20)] = 0x0225,
8628         [BEND_IDX(-25)] = 0x0225,
8629         [BEND_IDX(-30)] = 0x0325,
8630         [BEND_IDX(-35)] = 0x0325,
8631         [BEND_IDX(-40)] = 0x0425,
8632         [BEND_IDX(-45)] = 0x0425,
8633         [BEND_IDX(-50)] = 0x0525,
8634 };
8635
8636 /*
8637  * Bend CLKOUT_DP
8638  * steps -50 to 50 inclusive, in steps of 5
8639  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8640  * change in clock period = -(steps / 10) * 5.787 ps
8641  */
8642 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8643 {
8644         uint32_t tmp;
8645         int idx = BEND_IDX(steps);
8646
8647         if (WARN_ON(steps % 5 != 0))
8648                 return;
8649
8650         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8651                 return;
8652
8653         mutex_lock(&dev_priv->sb_lock);
8654
8655         if (steps % 10 != 0)
8656                 tmp = 0xAAAAAAAB;
8657         else
8658                 tmp = 0x00000000;
8659         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8660
8661         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8662         tmp &= 0xffff0000;
8663         tmp |= sscdivintphase[idx];
8664         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8665
8666         mutex_unlock(&dev_priv->sb_lock);
8667 }
8668
8669 #undef BEND_IDX
8670
8671 static void lpt_init_pch_refclk(struct drm_device *dev)
8672 {
8673         struct intel_encoder *encoder;
8674         bool has_vga = false;
8675
8676         for_each_intel_encoder(dev, encoder) {
8677                 switch (encoder->type) {
8678                 case INTEL_OUTPUT_ANALOG:
8679                         has_vga = true;
8680                         break;
8681                 default:
8682                         break;
8683                 }
8684         }
8685
8686         if (has_vga) {
8687                 lpt_bend_clkout_dp(to_i915(dev), 0);
8688                 lpt_enable_clkout_dp(dev, true, true);
8689         } else {
8690                 lpt_disable_clkout_dp(dev);
8691         }
8692 }
8693
8694 /*
8695  * Initialize reference clocks when the driver loads
8696  */
8697 void intel_init_pch_refclk(struct drm_device *dev)
8698 {
8699         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8700                 ironlake_init_pch_refclk(dev);
8701         else if (HAS_PCH_LPT(dev))
8702                 lpt_init_pch_refclk(dev);
8703 }
8704
8705 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8706 {
8707         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8708         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8709         int pipe = intel_crtc->pipe;
8710         uint32_t val;
8711
8712         val = 0;
8713
8714         switch (intel_crtc->config->pipe_bpp) {
8715         case 18:
8716                 val |= PIPECONF_6BPC;
8717                 break;
8718         case 24:
8719                 val |= PIPECONF_8BPC;
8720                 break;
8721         case 30:
8722                 val |= PIPECONF_10BPC;
8723                 break;
8724         case 36:
8725                 val |= PIPECONF_12BPC;
8726                 break;
8727         default:
8728                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8729                 BUG();
8730         }
8731
8732         if (intel_crtc->config->dither)
8733                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8734
8735         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8736                 val |= PIPECONF_INTERLACED_ILK;
8737         else
8738                 val |= PIPECONF_PROGRESSIVE;
8739
8740         if (intel_crtc->config->limited_color_range)
8741                 val |= PIPECONF_COLOR_RANGE_SELECT;
8742
8743         I915_WRITE(PIPECONF(pipe), val);
8744         POSTING_READ(PIPECONF(pipe));
8745 }
8746
8747 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8748 {
8749         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8750         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8751         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8752         u32 val = 0;
8753
8754         if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8755                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8756
8757         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8758                 val |= PIPECONF_INTERLACED_ILK;
8759         else
8760                 val |= PIPECONF_PROGRESSIVE;
8761
8762         I915_WRITE(PIPECONF(cpu_transcoder), val);
8763         POSTING_READ(PIPECONF(cpu_transcoder));
8764 }
8765
8766 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8767 {
8768         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8769         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8770
8771         if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8772                 u32 val = 0;
8773
8774                 switch (intel_crtc->config->pipe_bpp) {
8775                 case 18:
8776                         val |= PIPEMISC_DITHER_6_BPC;
8777                         break;
8778                 case 24:
8779                         val |= PIPEMISC_DITHER_8_BPC;
8780                         break;
8781                 case 30:
8782                         val |= PIPEMISC_DITHER_10_BPC;
8783                         break;
8784                 case 36:
8785                         val |= PIPEMISC_DITHER_12_BPC;
8786                         break;
8787                 default:
8788                         /* Case prevented by pipe_config_set_bpp. */
8789                         BUG();
8790                 }
8791
8792                 if (intel_crtc->config->dither)
8793                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8794
8795                 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8796         }
8797 }
8798
8799 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8800 {
8801         /*
8802          * Account for spread spectrum to avoid
8803          * oversubscribing the link. Max center spread
8804          * is 2.5%; use 5% for safety's sake.
8805          */
8806         u32 bps = target_clock * bpp * 21 / 20;
8807         return DIV_ROUND_UP(bps, link_bw * 8);
8808 }
8809
8810 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8811 {
8812         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8813 }
8814
8815 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8816                                   struct intel_crtc_state *crtc_state,
8817                                   intel_clock_t *reduced_clock)
8818 {
8819         struct drm_crtc *crtc = &intel_crtc->base;
8820         struct drm_device *dev = crtc->dev;
8821         struct drm_i915_private *dev_priv = dev->dev_private;
8822         struct drm_atomic_state *state = crtc_state->base.state;
8823         struct drm_connector *connector;
8824         struct drm_connector_state *connector_state;
8825         struct intel_encoder *encoder;
8826         u32 dpll, fp, fp2;
8827         int factor, i;
8828         bool is_lvds = false, is_sdvo = false;
8829
8830         for_each_connector_in_state(state, connector, connector_state, i) {
8831                 if (connector_state->crtc != crtc_state->base.crtc)
8832                         continue;
8833
8834                 encoder = to_intel_encoder(connector_state->best_encoder);
8835
8836                 switch (encoder->type) {
8837                 case INTEL_OUTPUT_LVDS:
8838                         is_lvds = true;
8839                         break;
8840                 case INTEL_OUTPUT_SDVO:
8841                 case INTEL_OUTPUT_HDMI:
8842                         is_sdvo = true;
8843                         break;
8844                 default:
8845                         break;
8846                 }
8847         }
8848
8849         /* Enable autotuning of the PLL clock (if permissible) */
8850         factor = 21;
8851         if (is_lvds) {
8852                 if ((intel_panel_use_ssc(dev_priv) &&
8853                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8854                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8855                         factor = 25;
8856         } else if (crtc_state->sdvo_tv_clock)
8857                 factor = 20;
8858
8859         fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8860
8861         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8862                 fp |= FP_CB_TUNE;
8863
8864         if (reduced_clock) {
8865                 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8866
8867                 if (reduced_clock->m < factor * reduced_clock->n)
8868                         fp2 |= FP_CB_TUNE;
8869         } else {
8870                 fp2 = fp;
8871         }
8872
8873         dpll = 0;
8874
8875         if (is_lvds)
8876                 dpll |= DPLLB_MODE_LVDS;
8877         else
8878                 dpll |= DPLLB_MODE_DAC_SERIAL;
8879
8880         dpll |= (crtc_state->pixel_multiplier - 1)
8881                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8882
8883         if (is_sdvo)
8884                 dpll |= DPLL_SDVO_HIGH_SPEED;
8885         if (crtc_state->has_dp_encoder)
8886                 dpll |= DPLL_SDVO_HIGH_SPEED;
8887
8888         /* compute bitmask from p1 value */
8889         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8890         /* also FPA1 */
8891         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8892
8893         switch (crtc_state->dpll.p2) {
8894         case 5:
8895                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8896                 break;
8897         case 7:
8898                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8899                 break;
8900         case 10:
8901                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8902                 break;
8903         case 14:
8904                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8905                 break;
8906         }
8907
8908         if (is_lvds && intel_panel_use_ssc(dev_priv))
8909                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8910         else
8911                 dpll |= PLL_REF_INPUT_DREFCLK;
8912
8913         dpll |= DPLL_VCO_ENABLE;
8914
8915         crtc_state->dpll_hw_state.dpll = dpll;
8916         crtc_state->dpll_hw_state.fp0 = fp;
8917         crtc_state->dpll_hw_state.fp1 = fp2;
8918 }
8919
8920 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8921                                        struct intel_crtc_state *crtc_state)
8922 {
8923         struct drm_device *dev = crtc->base.dev;
8924         struct drm_i915_private *dev_priv = dev->dev_private;
8925         intel_clock_t reduced_clock;
8926         bool has_reduced_clock = false;
8927         struct intel_shared_dpll *pll;
8928         const intel_limit_t *limit;
8929         int refclk = 120000;
8930
8931         memset(&crtc_state->dpll_hw_state, 0,
8932                sizeof(crtc_state->dpll_hw_state));
8933
8934         crtc->lowfreq_avail = false;
8935
8936         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8937         if (!crtc_state->has_pch_encoder)
8938                 return 0;
8939
8940         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8941                 if (intel_panel_use_ssc(dev_priv)) {
8942                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8943                                       dev_priv->vbt.lvds_ssc_freq);
8944                         refclk = dev_priv->vbt.lvds_ssc_freq;
8945                 }
8946
8947                 if (intel_is_dual_link_lvds(dev)) {
8948                         if (refclk == 100000)
8949                                 limit = &intel_limits_ironlake_dual_lvds_100m;
8950                         else
8951                                 limit = &intel_limits_ironlake_dual_lvds;
8952                 } else {
8953                         if (refclk == 100000)
8954                                 limit = &intel_limits_ironlake_single_lvds_100m;
8955                         else
8956                                 limit = &intel_limits_ironlake_single_lvds;
8957                 }
8958         } else {
8959                 limit = &intel_limits_ironlake_dac;
8960         }
8961
8962         if (!crtc_state->clock_set &&
8963             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8964                                 refclk, NULL, &crtc_state->dpll)) {
8965                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8966                 return -EINVAL;
8967         }
8968
8969         ironlake_compute_dpll(crtc, crtc_state,
8970                               has_reduced_clock ? &reduced_clock : NULL);
8971
8972         pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
8973         if (pll == NULL) {
8974                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8975                                  pipe_name(crtc->pipe));
8976                 return -EINVAL;
8977         }
8978
8979         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8980             has_reduced_clock)
8981                 crtc->lowfreq_avail = true;
8982
8983         return 0;
8984 }
8985
8986 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8987                                          struct intel_link_m_n *m_n)
8988 {
8989         struct drm_device *dev = crtc->base.dev;
8990         struct drm_i915_private *dev_priv = dev->dev_private;
8991         enum pipe pipe = crtc->pipe;
8992
8993         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8994         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8995         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8996                 & ~TU_SIZE_MASK;
8997         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8998         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8999                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9000 }
9001
9002 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9003                                          enum transcoder transcoder,
9004                                          struct intel_link_m_n *m_n,
9005                                          struct intel_link_m_n *m2_n2)
9006 {
9007         struct drm_device *dev = crtc->base.dev;
9008         struct drm_i915_private *dev_priv = dev->dev_private;
9009         enum pipe pipe = crtc->pipe;
9010
9011         if (INTEL_INFO(dev)->gen >= 5) {
9012                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9013                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9014                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9015                         & ~TU_SIZE_MASK;
9016                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9017                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9018                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9019                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9020                  * gen < 8) and if DRRS is supported (to make sure the
9021                  * registers are not unnecessarily read).
9022                  */
9023                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9024                         crtc->config->has_drrs) {
9025                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9026                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9027                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9028                                         & ~TU_SIZE_MASK;
9029                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9030                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9031                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9032                 }
9033         } else {
9034                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9035                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9036                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9037                         & ~TU_SIZE_MASK;
9038                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9039                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9040                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9041         }
9042 }
9043
9044 void intel_dp_get_m_n(struct intel_crtc *crtc,
9045                       struct intel_crtc_state *pipe_config)
9046 {
9047         if (pipe_config->has_pch_encoder)
9048                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9049         else
9050                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9051                                              &pipe_config->dp_m_n,
9052                                              &pipe_config->dp_m2_n2);
9053 }
9054
9055 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9056                                         struct intel_crtc_state *pipe_config)
9057 {
9058         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9059                                      &pipe_config->fdi_m_n, NULL);
9060 }
9061
9062 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9063                                     struct intel_crtc_state *pipe_config)
9064 {
9065         struct drm_device *dev = crtc->base.dev;
9066         struct drm_i915_private *dev_priv = dev->dev_private;
9067         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9068         uint32_t ps_ctrl = 0;
9069         int id = -1;
9070         int i;
9071
9072         /* find scaler attached to this pipe */
9073         for (i = 0; i < crtc->num_scalers; i++) {
9074                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9075                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9076                         id = i;
9077                         pipe_config->pch_pfit.enabled = true;
9078                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9079                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9080                         break;
9081                 }
9082         }
9083
9084         scaler_state->scaler_id = id;
9085         if (id >= 0) {
9086                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9087         } else {
9088                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9089         }
9090 }
9091
9092 static void
9093 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9094                                  struct intel_initial_plane_config *plane_config)
9095 {
9096         struct drm_device *dev = crtc->base.dev;
9097         struct drm_i915_private *dev_priv = dev->dev_private;
9098         u32 val, base, offset, stride_mult, tiling;
9099         int pipe = crtc->pipe;
9100         int fourcc, pixel_format;
9101         unsigned int aligned_height;
9102         struct drm_framebuffer *fb;
9103         struct intel_framebuffer *intel_fb;
9104
9105         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9106         if (!intel_fb) {
9107                 DRM_DEBUG_KMS("failed to alloc fb\n");
9108                 return;
9109         }
9110
9111         fb = &intel_fb->base;
9112
9113         val = I915_READ(PLANE_CTL(pipe, 0));
9114         if (!(val & PLANE_CTL_ENABLE))
9115                 goto error;
9116
9117         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9118         fourcc = skl_format_to_fourcc(pixel_format,
9119                                       val & PLANE_CTL_ORDER_RGBX,
9120                                       val & PLANE_CTL_ALPHA_MASK);
9121         fb->pixel_format = fourcc;
9122         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9123
9124         tiling = val & PLANE_CTL_TILED_MASK;
9125         switch (tiling) {
9126         case PLANE_CTL_TILED_LINEAR:
9127                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9128                 break;
9129         case PLANE_CTL_TILED_X:
9130                 plane_config->tiling = I915_TILING_X;
9131                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9132                 break;
9133         case PLANE_CTL_TILED_Y:
9134                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9135                 break;
9136         case PLANE_CTL_TILED_YF:
9137                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9138                 break;
9139         default:
9140                 MISSING_CASE(tiling);
9141                 goto error;
9142         }
9143
9144         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9145         plane_config->base = base;
9146
9147         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9148
9149         val = I915_READ(PLANE_SIZE(pipe, 0));
9150         fb->height = ((val >> 16) & 0xfff) + 1;
9151         fb->width = ((val >> 0) & 0x1fff) + 1;
9152
9153         val = I915_READ(PLANE_STRIDE(pipe, 0));
9154         stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9155                                                 fb->pixel_format);
9156         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9157
9158         aligned_height = intel_fb_align_height(dev, fb->height,
9159                                                fb->pixel_format,
9160                                                fb->modifier[0]);
9161
9162         plane_config->size = fb->pitches[0] * aligned_height;
9163
9164         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9165                       pipe_name(pipe), fb->width, fb->height,
9166                       fb->bits_per_pixel, base, fb->pitches[0],
9167                       plane_config->size);
9168
9169         plane_config->fb = intel_fb;
9170         return;
9171
9172 error:
9173         kfree(fb);
9174 }
9175
9176 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9177                                      struct intel_crtc_state *pipe_config)
9178 {
9179         struct drm_device *dev = crtc->base.dev;
9180         struct drm_i915_private *dev_priv = dev->dev_private;
9181         uint32_t tmp;
9182
9183         tmp = I915_READ(PF_CTL(crtc->pipe));
9184
9185         if (tmp & PF_ENABLE) {
9186                 pipe_config->pch_pfit.enabled = true;
9187                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9188                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9189
9190                 /* We currently do not free assignements of panel fitters on
9191                  * ivb/hsw (since we don't use the higher upscaling modes which
9192                  * differentiates them) so just WARN about this case for now. */
9193                 if (IS_GEN7(dev)) {
9194                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9195                                 PF_PIPE_SEL_IVB(crtc->pipe));
9196                 }
9197         }
9198 }
9199
9200 static void
9201 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9202                                   struct intel_initial_plane_config *plane_config)
9203 {
9204         struct drm_device *dev = crtc->base.dev;
9205         struct drm_i915_private *dev_priv = dev->dev_private;
9206         u32 val, base, offset;
9207         int pipe = crtc->pipe;
9208         int fourcc, pixel_format;
9209         unsigned int aligned_height;
9210         struct drm_framebuffer *fb;
9211         struct intel_framebuffer *intel_fb;
9212
9213         val = I915_READ(DSPCNTR(pipe));
9214         if (!(val & DISPLAY_PLANE_ENABLE))
9215                 return;
9216
9217         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9218         if (!intel_fb) {
9219                 DRM_DEBUG_KMS("failed to alloc fb\n");
9220                 return;
9221         }
9222
9223         fb = &intel_fb->base;
9224
9225         if (INTEL_INFO(dev)->gen >= 4) {
9226                 if (val & DISPPLANE_TILED) {
9227                         plane_config->tiling = I915_TILING_X;
9228                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9229                 }
9230         }
9231
9232         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9233         fourcc = i9xx_format_to_fourcc(pixel_format);
9234         fb->pixel_format = fourcc;
9235         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9236
9237         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9238         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9239                 offset = I915_READ(DSPOFFSET(pipe));
9240         } else {
9241                 if (plane_config->tiling)
9242                         offset = I915_READ(DSPTILEOFF(pipe));
9243                 else
9244                         offset = I915_READ(DSPLINOFF(pipe));
9245         }
9246         plane_config->base = base;
9247
9248         val = I915_READ(PIPESRC(pipe));
9249         fb->width = ((val >> 16) & 0xfff) + 1;
9250         fb->height = ((val >> 0) & 0xfff) + 1;
9251
9252         val = I915_READ(DSPSTRIDE(pipe));
9253         fb->pitches[0] = val & 0xffffffc0;
9254
9255         aligned_height = intel_fb_align_height(dev, fb->height,
9256                                                fb->pixel_format,
9257                                                fb->modifier[0]);
9258
9259         plane_config->size = fb->pitches[0] * aligned_height;
9260
9261         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9262                       pipe_name(pipe), fb->width, fb->height,
9263                       fb->bits_per_pixel, base, fb->pitches[0],
9264                       plane_config->size);
9265
9266         plane_config->fb = intel_fb;
9267 }
9268
9269 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9270                                      struct intel_crtc_state *pipe_config)
9271 {
9272         struct drm_device *dev = crtc->base.dev;
9273         struct drm_i915_private *dev_priv = dev->dev_private;
9274         enum intel_display_power_domain power_domain;
9275         uint32_t tmp;
9276         bool ret;
9277
9278         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9279         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9280                 return false;
9281
9282         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9283         pipe_config->shared_dpll = NULL;
9284
9285         ret = false;
9286         tmp = I915_READ(PIPECONF(crtc->pipe));
9287         if (!(tmp & PIPECONF_ENABLE))
9288                 goto out;
9289
9290         switch (tmp & PIPECONF_BPC_MASK) {
9291         case PIPECONF_6BPC:
9292                 pipe_config->pipe_bpp = 18;
9293                 break;
9294         case PIPECONF_8BPC:
9295                 pipe_config->pipe_bpp = 24;
9296                 break;
9297         case PIPECONF_10BPC:
9298                 pipe_config->pipe_bpp = 30;
9299                 break;
9300         case PIPECONF_12BPC:
9301                 pipe_config->pipe_bpp = 36;
9302                 break;
9303         default:
9304                 break;
9305         }
9306
9307         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9308                 pipe_config->limited_color_range = true;
9309
9310         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9311                 struct intel_shared_dpll *pll;
9312                 enum intel_dpll_id pll_id;
9313
9314                 pipe_config->has_pch_encoder = true;
9315
9316                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9317                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9318                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9319
9320                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9321
9322                 if (HAS_PCH_IBX(dev_priv)) {
9323                         pll_id = (enum intel_dpll_id) crtc->pipe;
9324                 } else {
9325                         tmp = I915_READ(PCH_DPLL_SEL);
9326                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9327                                 pll_id = DPLL_ID_PCH_PLL_B;
9328                         else
9329                                 pll_id= DPLL_ID_PCH_PLL_A;
9330                 }
9331
9332                 pipe_config->shared_dpll =
9333                         intel_get_shared_dpll_by_id(dev_priv, pll_id);
9334                 pll = pipe_config->shared_dpll;
9335
9336                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9337                                                  &pipe_config->dpll_hw_state));
9338
9339                 tmp = pipe_config->dpll_hw_state.dpll;
9340                 pipe_config->pixel_multiplier =
9341                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9342                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9343
9344                 ironlake_pch_clock_get(crtc, pipe_config);
9345         } else {
9346                 pipe_config->pixel_multiplier = 1;
9347         }
9348
9349         intel_get_pipe_timings(crtc, pipe_config);
9350         intel_get_pipe_src_size(crtc, pipe_config);
9351
9352         ironlake_get_pfit_config(crtc, pipe_config);
9353
9354         ret = true;
9355
9356 out:
9357         intel_display_power_put(dev_priv, power_domain);
9358
9359         return ret;
9360 }
9361
9362 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9363 {
9364         struct drm_device *dev = dev_priv->dev;
9365         struct intel_crtc *crtc;
9366
9367         for_each_intel_crtc(dev, crtc)
9368                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9369                      pipe_name(crtc->pipe));
9370
9371         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9372         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9373         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9374         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9375         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9376         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9377              "CPU PWM1 enabled\n");
9378         if (IS_HASWELL(dev))
9379                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9380                      "CPU PWM2 enabled\n");
9381         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9382              "PCH PWM1 enabled\n");
9383         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9384              "Utility pin enabled\n");
9385         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9386
9387         /*
9388          * In theory we can still leave IRQs enabled, as long as only the HPD
9389          * interrupts remain enabled. We used to check for that, but since it's
9390          * gen-specific and since we only disable LCPLL after we fully disable
9391          * the interrupts, the check below should be enough.
9392          */
9393         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9394 }
9395
9396 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9397 {
9398         struct drm_device *dev = dev_priv->dev;
9399
9400         if (IS_HASWELL(dev))
9401                 return I915_READ(D_COMP_HSW);
9402         else
9403                 return I915_READ(D_COMP_BDW);
9404 }
9405
9406 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9407 {
9408         struct drm_device *dev = dev_priv->dev;
9409
9410         if (IS_HASWELL(dev)) {
9411                 mutex_lock(&dev_priv->rps.hw_lock);
9412                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9413                                             val))
9414                         DRM_ERROR("Failed to write to D_COMP\n");
9415                 mutex_unlock(&dev_priv->rps.hw_lock);
9416         } else {
9417                 I915_WRITE(D_COMP_BDW, val);
9418                 POSTING_READ(D_COMP_BDW);
9419         }
9420 }
9421
9422 /*
9423  * This function implements pieces of two sequences from BSpec:
9424  * - Sequence for display software to disable LCPLL
9425  * - Sequence for display software to allow package C8+
9426  * The steps implemented here are just the steps that actually touch the LCPLL
9427  * register. Callers should take care of disabling all the display engine
9428  * functions, doing the mode unset, fixing interrupts, etc.
9429  */
9430 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9431                               bool switch_to_fclk, bool allow_power_down)
9432 {
9433         uint32_t val;
9434
9435         assert_can_disable_lcpll(dev_priv);
9436
9437         val = I915_READ(LCPLL_CTL);
9438
9439         if (switch_to_fclk) {
9440                 val |= LCPLL_CD_SOURCE_FCLK;
9441                 I915_WRITE(LCPLL_CTL, val);
9442
9443                 if (wait_for_us(I915_READ(LCPLL_CTL) &
9444                                 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9445                         DRM_ERROR("Switching to FCLK failed\n");
9446
9447                 val = I915_READ(LCPLL_CTL);
9448         }
9449
9450         val |= LCPLL_PLL_DISABLE;
9451         I915_WRITE(LCPLL_CTL, val);
9452         POSTING_READ(LCPLL_CTL);
9453
9454         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9455                 DRM_ERROR("LCPLL still locked\n");
9456
9457         val = hsw_read_dcomp(dev_priv);
9458         val |= D_COMP_COMP_DISABLE;
9459         hsw_write_dcomp(dev_priv, val);
9460         ndelay(100);
9461
9462         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9463                      1))
9464                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9465
9466         if (allow_power_down) {
9467                 val = I915_READ(LCPLL_CTL);
9468                 val |= LCPLL_POWER_DOWN_ALLOW;
9469                 I915_WRITE(LCPLL_CTL, val);
9470                 POSTING_READ(LCPLL_CTL);
9471         }
9472 }
9473
9474 /*
9475  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9476  * source.
9477  */
9478 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9479 {
9480         uint32_t val;
9481
9482         val = I915_READ(LCPLL_CTL);
9483
9484         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9485                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9486                 return;
9487
9488         /*
9489          * Make sure we're not on PC8 state before disabling PC8, otherwise
9490          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9491          */
9492         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9493
9494         if (val & LCPLL_POWER_DOWN_ALLOW) {
9495                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9496                 I915_WRITE(LCPLL_CTL, val);
9497                 POSTING_READ(LCPLL_CTL);
9498         }
9499
9500         val = hsw_read_dcomp(dev_priv);
9501         val |= D_COMP_COMP_FORCE;
9502         val &= ~D_COMP_COMP_DISABLE;
9503         hsw_write_dcomp(dev_priv, val);
9504
9505         val = I915_READ(LCPLL_CTL);
9506         val &= ~LCPLL_PLL_DISABLE;
9507         I915_WRITE(LCPLL_CTL, val);
9508
9509         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9510                 DRM_ERROR("LCPLL not locked yet\n");
9511
9512         if (val & LCPLL_CD_SOURCE_FCLK) {
9513                 val = I915_READ(LCPLL_CTL);
9514                 val &= ~LCPLL_CD_SOURCE_FCLK;
9515                 I915_WRITE(LCPLL_CTL, val);
9516
9517                 if (wait_for_us((I915_READ(LCPLL_CTL) &
9518                                  LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9519                         DRM_ERROR("Switching back to LCPLL failed\n");
9520         }
9521
9522         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9523         intel_update_cdclk(dev_priv->dev);
9524 }
9525
9526 /*
9527  * Package states C8 and deeper are really deep PC states that can only be
9528  * reached when all the devices on the system allow it, so even if the graphics
9529  * device allows PC8+, it doesn't mean the system will actually get to these
9530  * states. Our driver only allows PC8+ when going into runtime PM.
9531  *
9532  * The requirements for PC8+ are that all the outputs are disabled, the power
9533  * well is disabled and most interrupts are disabled, and these are also
9534  * requirements for runtime PM. When these conditions are met, we manually do
9535  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9536  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9537  * hang the machine.
9538  *
9539  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9540  * the state of some registers, so when we come back from PC8+ we need to
9541  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9542  * need to take care of the registers kept by RC6. Notice that this happens even
9543  * if we don't put the device in PCI D3 state (which is what currently happens
9544  * because of the runtime PM support).
9545  *
9546  * For more, read "Display Sequences for Package C8" on the hardware
9547  * documentation.
9548  */
9549 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9550 {
9551         struct drm_device *dev = dev_priv->dev;
9552         uint32_t val;
9553
9554         DRM_DEBUG_KMS("Enabling package C8+\n");
9555
9556         if (HAS_PCH_LPT_LP(dev)) {
9557                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9558                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9559                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9560         }
9561
9562         lpt_disable_clkout_dp(dev);
9563         hsw_disable_lcpll(dev_priv, true, true);
9564 }
9565
9566 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9567 {
9568         struct drm_device *dev = dev_priv->dev;
9569         uint32_t val;
9570
9571         DRM_DEBUG_KMS("Disabling package C8+\n");
9572
9573         hsw_restore_lcpll(dev_priv);
9574         lpt_init_pch_refclk(dev);
9575
9576         if (HAS_PCH_LPT_LP(dev)) {
9577                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9578                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9579                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9580         }
9581 }
9582
9583 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9584 {
9585         struct drm_device *dev = old_state->dev;
9586         struct intel_atomic_state *old_intel_state =
9587                 to_intel_atomic_state(old_state);
9588         unsigned int req_cdclk = old_intel_state->dev_cdclk;
9589
9590         broxton_set_cdclk(to_i915(dev), req_cdclk);
9591 }
9592
9593 /* compute the max rate for new configuration */
9594 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9595 {
9596         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9597         struct drm_i915_private *dev_priv = state->dev->dev_private;
9598         struct drm_crtc *crtc;
9599         struct drm_crtc_state *cstate;
9600         struct intel_crtc_state *crtc_state;
9601         unsigned max_pixel_rate = 0, i;
9602         enum pipe pipe;
9603
9604         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9605                sizeof(intel_state->min_pixclk));
9606
9607         for_each_crtc_in_state(state, crtc, cstate, i) {
9608                 int pixel_rate;
9609
9610                 crtc_state = to_intel_crtc_state(cstate);
9611                 if (!crtc_state->base.enable) {
9612                         intel_state->min_pixclk[i] = 0;
9613                         continue;
9614                 }
9615
9616                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9617
9618                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9619                 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
9620                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9621
9622                 intel_state->min_pixclk[i] = pixel_rate;
9623         }
9624
9625         for_each_pipe(dev_priv, pipe)
9626                 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9627
9628         return max_pixel_rate;
9629 }
9630
9631 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9632 {
9633         struct drm_i915_private *dev_priv = dev->dev_private;
9634         uint32_t val, data;
9635         int ret;
9636
9637         if (WARN((I915_READ(LCPLL_CTL) &
9638                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9639                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9640                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9641                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9642                  "trying to change cdclk frequency with cdclk not enabled\n"))
9643                 return;
9644
9645         mutex_lock(&dev_priv->rps.hw_lock);
9646         ret = sandybridge_pcode_write(dev_priv,
9647                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9648         mutex_unlock(&dev_priv->rps.hw_lock);
9649         if (ret) {
9650                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9651                 return;
9652         }
9653
9654         val = I915_READ(LCPLL_CTL);
9655         val |= LCPLL_CD_SOURCE_FCLK;
9656         I915_WRITE(LCPLL_CTL, val);
9657
9658         if (wait_for_us(I915_READ(LCPLL_CTL) &
9659                         LCPLL_CD_SOURCE_FCLK_DONE, 1))
9660                 DRM_ERROR("Switching to FCLK failed\n");
9661
9662         val = I915_READ(LCPLL_CTL);
9663         val &= ~LCPLL_CLK_FREQ_MASK;
9664
9665         switch (cdclk) {
9666         case 450000:
9667                 val |= LCPLL_CLK_FREQ_450;
9668                 data = 0;
9669                 break;
9670         case 540000:
9671                 val |= LCPLL_CLK_FREQ_54O_BDW;
9672                 data = 1;
9673                 break;
9674         case 337500:
9675                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9676                 data = 2;
9677                 break;
9678         case 675000:
9679                 val |= LCPLL_CLK_FREQ_675_BDW;
9680                 data = 3;
9681                 break;
9682         default:
9683                 WARN(1, "invalid cdclk frequency\n");
9684                 return;
9685         }
9686
9687         I915_WRITE(LCPLL_CTL, val);
9688
9689         val = I915_READ(LCPLL_CTL);
9690         val &= ~LCPLL_CD_SOURCE_FCLK;
9691         I915_WRITE(LCPLL_CTL, val);
9692
9693         if (wait_for_us((I915_READ(LCPLL_CTL) &
9694                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9695                 DRM_ERROR("Switching back to LCPLL failed\n");
9696
9697         mutex_lock(&dev_priv->rps.hw_lock);
9698         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9699         mutex_unlock(&dev_priv->rps.hw_lock);
9700
9701         I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
9702
9703         intel_update_cdclk(dev);
9704
9705         WARN(cdclk != dev_priv->cdclk_freq,
9706              "cdclk requested %d kHz but got %d kHz\n",
9707              cdclk, dev_priv->cdclk_freq);
9708 }
9709
9710 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9711 {
9712         struct drm_i915_private *dev_priv = to_i915(state->dev);
9713         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9714         int max_pixclk = ilk_max_pixel_rate(state);
9715         int cdclk;
9716
9717         /*
9718          * FIXME should also account for plane ratio
9719          * once 64bpp pixel formats are supported.
9720          */
9721         if (max_pixclk > 540000)
9722                 cdclk = 675000;
9723         else if (max_pixclk > 450000)
9724                 cdclk = 540000;
9725         else if (max_pixclk > 337500)
9726                 cdclk = 450000;
9727         else
9728                 cdclk = 337500;
9729
9730         if (cdclk > dev_priv->max_cdclk_freq) {
9731                 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9732                               cdclk, dev_priv->max_cdclk_freq);
9733                 return -EINVAL;
9734         }
9735
9736         intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9737         if (!intel_state->active_crtcs)
9738                 intel_state->dev_cdclk = 337500;
9739
9740         return 0;
9741 }
9742
9743 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9744 {
9745         struct drm_device *dev = old_state->dev;
9746         struct intel_atomic_state *old_intel_state =
9747                 to_intel_atomic_state(old_state);
9748         unsigned req_cdclk = old_intel_state->dev_cdclk;
9749
9750         broadwell_set_cdclk(dev, req_cdclk);
9751 }
9752
9753 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9754                                       struct intel_crtc_state *crtc_state)
9755 {
9756         struct intel_encoder *intel_encoder =
9757                 intel_ddi_get_crtc_new_encoder(crtc_state);
9758
9759         if (intel_encoder->type != INTEL_OUTPUT_DSI) {
9760                 if (!intel_ddi_pll_select(crtc, crtc_state))
9761                         return -EINVAL;
9762         }
9763
9764         crtc->lowfreq_avail = false;
9765
9766         return 0;
9767 }
9768
9769 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9770                                 enum port port,
9771                                 struct intel_crtc_state *pipe_config)
9772 {
9773         enum intel_dpll_id id;
9774
9775         switch (port) {
9776         case PORT_A:
9777                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9778                 id = DPLL_ID_SKL_DPLL0;
9779                 break;
9780         case PORT_B:
9781                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9782                 id = DPLL_ID_SKL_DPLL1;
9783                 break;
9784         case PORT_C:
9785                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9786                 id = DPLL_ID_SKL_DPLL2;
9787                 break;
9788         default:
9789                 DRM_ERROR("Incorrect port type\n");
9790                 return;
9791         }
9792
9793         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9794 }
9795
9796 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9797                                 enum port port,
9798                                 struct intel_crtc_state *pipe_config)
9799 {
9800         enum intel_dpll_id id;
9801         u32 temp;
9802
9803         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9804         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9805
9806         switch (pipe_config->ddi_pll_sel) {
9807         case SKL_DPLL0:
9808                 id = DPLL_ID_SKL_DPLL0;
9809                 break;
9810         case SKL_DPLL1:
9811                 id = DPLL_ID_SKL_DPLL1;
9812                 break;
9813         case SKL_DPLL2:
9814                 id = DPLL_ID_SKL_DPLL2;
9815                 break;
9816         case SKL_DPLL3:
9817                 id = DPLL_ID_SKL_DPLL3;
9818                 break;
9819         default:
9820                 MISSING_CASE(pipe_config->ddi_pll_sel);
9821                 return;
9822         }
9823
9824         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9825 }
9826
9827 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9828                                 enum port port,
9829                                 struct intel_crtc_state *pipe_config)
9830 {
9831         enum intel_dpll_id id;
9832
9833         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9834
9835         switch (pipe_config->ddi_pll_sel) {
9836         case PORT_CLK_SEL_WRPLL1:
9837                 id = DPLL_ID_WRPLL1;
9838                 break;
9839         case PORT_CLK_SEL_WRPLL2:
9840                 id = DPLL_ID_WRPLL2;
9841                 break;
9842         case PORT_CLK_SEL_SPLL:
9843                 id = DPLL_ID_SPLL;
9844                 break;
9845         case PORT_CLK_SEL_LCPLL_810:
9846                 id = DPLL_ID_LCPLL_810;
9847                 break;
9848         case PORT_CLK_SEL_LCPLL_1350:
9849                 id = DPLL_ID_LCPLL_1350;
9850                 break;
9851         case PORT_CLK_SEL_LCPLL_2700:
9852                 id = DPLL_ID_LCPLL_2700;
9853                 break;
9854         default:
9855                 MISSING_CASE(pipe_config->ddi_pll_sel);
9856                 /* fall through */
9857         case PORT_CLK_SEL_NONE:
9858                 return;
9859         }
9860
9861         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9862 }
9863
9864 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
9865                                      struct intel_crtc_state *pipe_config,
9866                                      unsigned long *power_domain_mask)
9867 {
9868         struct drm_device *dev = crtc->base.dev;
9869         struct drm_i915_private *dev_priv = dev->dev_private;
9870         enum intel_display_power_domain power_domain;
9871         u32 tmp;
9872
9873         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9874
9875         /*
9876          * XXX: Do intel_display_power_get_if_enabled before reading this (for
9877          * consistency and less surprising code; it's in always on power).
9878          */
9879         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9880         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9881                 enum pipe trans_edp_pipe;
9882                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9883                 default:
9884                         WARN(1, "unknown pipe linked to edp transcoder\n");
9885                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9886                 case TRANS_DDI_EDP_INPUT_A_ON:
9887                         trans_edp_pipe = PIPE_A;
9888                         break;
9889                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9890                         trans_edp_pipe = PIPE_B;
9891                         break;
9892                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9893                         trans_edp_pipe = PIPE_C;
9894                         break;
9895                 }
9896
9897                 if (trans_edp_pipe == crtc->pipe)
9898                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9899         }
9900
9901         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9902         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9903                 return false;
9904         *power_domain_mask |= BIT(power_domain);
9905
9906         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9907
9908         return tmp & PIPECONF_ENABLE;
9909 }
9910
9911 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
9912                                          struct intel_crtc_state *pipe_config,
9913                                          unsigned long *power_domain_mask)
9914 {
9915         struct drm_device *dev = crtc->base.dev;
9916         struct drm_i915_private *dev_priv = dev->dev_private;
9917         enum intel_display_power_domain power_domain;
9918         enum port port;
9919         enum transcoder cpu_transcoder;
9920         u32 tmp;
9921
9922         pipe_config->has_dsi_encoder = false;
9923
9924         for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
9925                 if (port == PORT_A)
9926                         cpu_transcoder = TRANSCODER_DSI_A;
9927                 else
9928                         cpu_transcoder = TRANSCODER_DSI_C;
9929
9930                 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
9931                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9932                         continue;
9933                 *power_domain_mask |= BIT(power_domain);
9934
9935                 /*
9936                  * The PLL needs to be enabled with a valid divider
9937                  * configuration, otherwise accessing DSI registers will hang
9938                  * the machine. See BSpec North Display Engine
9939                  * registers/MIPI[BXT]. We can break out here early, since we
9940                  * need the same DSI PLL to be enabled for both DSI ports.
9941                  */
9942                 if (!intel_dsi_pll_is_enabled(dev_priv))
9943                         break;
9944
9945                 /* XXX: this works for video mode only */
9946                 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9947                 if (!(tmp & DPI_ENABLE))
9948                         continue;
9949
9950                 tmp = I915_READ(MIPI_CTRL(port));
9951                 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9952                         continue;
9953
9954                 pipe_config->cpu_transcoder = cpu_transcoder;
9955                 pipe_config->has_dsi_encoder = true;
9956                 break;
9957         }
9958
9959         return pipe_config->has_dsi_encoder;
9960 }
9961
9962 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9963                                        struct intel_crtc_state *pipe_config)
9964 {
9965         struct drm_device *dev = crtc->base.dev;
9966         struct drm_i915_private *dev_priv = dev->dev_private;
9967         struct intel_shared_dpll *pll;
9968         enum port port;
9969         uint32_t tmp;
9970
9971         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9972
9973         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9974
9975         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
9976                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9977         else if (IS_BROXTON(dev))
9978                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9979         else
9980                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9981
9982         pll = pipe_config->shared_dpll;
9983         if (pll) {
9984                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9985                                                  &pipe_config->dpll_hw_state));
9986         }
9987
9988         /*
9989          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9990          * DDI E. So just check whether this pipe is wired to DDI E and whether
9991          * the PCH transcoder is on.
9992          */
9993         if (INTEL_INFO(dev)->gen < 9 &&
9994             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9995                 pipe_config->has_pch_encoder = true;
9996
9997                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9998                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9999                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
10000
10001                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10002         }
10003 }
10004
10005 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10006                                     struct intel_crtc_state *pipe_config)
10007 {
10008         struct drm_device *dev = crtc->base.dev;
10009         struct drm_i915_private *dev_priv = dev->dev_private;
10010         enum intel_display_power_domain power_domain;
10011         unsigned long power_domain_mask;
10012         bool active;
10013
10014         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10015         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10016                 return false;
10017         power_domain_mask = BIT(power_domain);
10018
10019         pipe_config->shared_dpll = NULL;
10020
10021         active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10022
10023         if (IS_BROXTON(dev_priv)) {
10024                 bxt_get_dsi_transcoder_state(crtc, pipe_config,
10025                                              &power_domain_mask);
10026                 WARN_ON(active && pipe_config->has_dsi_encoder);
10027                 if (pipe_config->has_dsi_encoder)
10028                         active = true;
10029         }
10030
10031         if (!active)
10032                 goto out;
10033
10034         if (!pipe_config->has_dsi_encoder) {
10035                 haswell_get_ddi_port_state(crtc, pipe_config);
10036                 intel_get_pipe_timings(crtc, pipe_config);
10037         }
10038
10039         intel_get_pipe_src_size(crtc, pipe_config);
10040
10041         pipe_config->gamma_mode =
10042                 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10043
10044         if (INTEL_INFO(dev)->gen >= 9) {
10045                 skl_init_scalers(dev, crtc, pipe_config);
10046         }
10047
10048         if (INTEL_INFO(dev)->gen >= 9) {
10049                 pipe_config->scaler_state.scaler_id = -1;
10050                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10051         }
10052
10053         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10054         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10055                 power_domain_mask |= BIT(power_domain);
10056                 if (INTEL_INFO(dev)->gen >= 9)
10057                         skylake_get_pfit_config(crtc, pipe_config);
10058                 else
10059                         ironlake_get_pfit_config(crtc, pipe_config);
10060         }
10061
10062         if (IS_HASWELL(dev))
10063                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10064                         (I915_READ(IPS_CTL) & IPS_ENABLE);
10065
10066         if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10067             !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10068                 pipe_config->pixel_multiplier =
10069                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10070         } else {
10071                 pipe_config->pixel_multiplier = 1;
10072         }
10073
10074 out:
10075         for_each_power_domain(power_domain, power_domain_mask)
10076                 intel_display_power_put(dev_priv, power_domain);
10077
10078         return active;
10079 }
10080
10081 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10082                                const struct intel_plane_state *plane_state)
10083 {
10084         struct drm_device *dev = crtc->dev;
10085         struct drm_i915_private *dev_priv = dev->dev_private;
10086         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10087         uint32_t cntl = 0, size = 0;
10088
10089         if (plane_state && plane_state->visible) {
10090                 unsigned int width = plane_state->base.crtc_w;
10091                 unsigned int height = plane_state->base.crtc_h;
10092                 unsigned int stride = roundup_pow_of_two(width) * 4;
10093
10094                 switch (stride) {
10095                 default:
10096                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10097                                   width, stride);
10098                         stride = 256;
10099                         /* fallthrough */
10100                 case 256:
10101                 case 512:
10102                 case 1024:
10103                 case 2048:
10104                         break;
10105                 }
10106
10107                 cntl |= CURSOR_ENABLE |
10108                         CURSOR_GAMMA_ENABLE |
10109                         CURSOR_FORMAT_ARGB |
10110                         CURSOR_STRIDE(stride);
10111
10112                 size = (height << 12) | width;
10113         }
10114
10115         if (intel_crtc->cursor_cntl != 0 &&
10116             (intel_crtc->cursor_base != base ||
10117              intel_crtc->cursor_size != size ||
10118              intel_crtc->cursor_cntl != cntl)) {
10119                 /* On these chipsets we can only modify the base/size/stride
10120                  * whilst the cursor is disabled.
10121                  */
10122                 I915_WRITE(CURCNTR(PIPE_A), 0);
10123                 POSTING_READ(CURCNTR(PIPE_A));
10124                 intel_crtc->cursor_cntl = 0;
10125         }
10126
10127         if (intel_crtc->cursor_base != base) {
10128                 I915_WRITE(CURBASE(PIPE_A), base);
10129                 intel_crtc->cursor_base = base;
10130         }
10131
10132         if (intel_crtc->cursor_size != size) {
10133                 I915_WRITE(CURSIZE, size);
10134                 intel_crtc->cursor_size = size;
10135         }
10136
10137         if (intel_crtc->cursor_cntl != cntl) {
10138                 I915_WRITE(CURCNTR(PIPE_A), cntl);
10139                 POSTING_READ(CURCNTR(PIPE_A));
10140                 intel_crtc->cursor_cntl = cntl;
10141         }
10142 }
10143
10144 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10145                                const struct intel_plane_state *plane_state)
10146 {
10147         struct drm_device *dev = crtc->dev;
10148         struct drm_i915_private *dev_priv = dev->dev_private;
10149         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10150         int pipe = intel_crtc->pipe;
10151         uint32_t cntl = 0;
10152
10153         if (plane_state && plane_state->visible) {
10154                 cntl = MCURSOR_GAMMA_ENABLE;
10155                 switch (plane_state->base.crtc_w) {
10156                         case 64:
10157                                 cntl |= CURSOR_MODE_64_ARGB_AX;
10158                                 break;
10159                         case 128:
10160                                 cntl |= CURSOR_MODE_128_ARGB_AX;
10161                                 break;
10162                         case 256:
10163                                 cntl |= CURSOR_MODE_256_ARGB_AX;
10164                                 break;
10165                         default:
10166                                 MISSING_CASE(plane_state->base.crtc_w);
10167                                 return;
10168                 }
10169                 cntl |= pipe << 28; /* Connect to correct pipe */
10170
10171                 if (HAS_DDI(dev))
10172                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10173
10174                 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10175                         cntl |= CURSOR_ROTATE_180;
10176         }
10177
10178         if (intel_crtc->cursor_cntl != cntl) {
10179                 I915_WRITE(CURCNTR(pipe), cntl);
10180                 POSTING_READ(CURCNTR(pipe));
10181                 intel_crtc->cursor_cntl = cntl;
10182         }
10183
10184         /* and commit changes on next vblank */
10185         I915_WRITE(CURBASE(pipe), base);
10186         POSTING_READ(CURBASE(pipe));
10187
10188         intel_crtc->cursor_base = base;
10189 }
10190
10191 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10192 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10193                                      const struct intel_plane_state *plane_state)
10194 {
10195         struct drm_device *dev = crtc->dev;
10196         struct drm_i915_private *dev_priv = dev->dev_private;
10197         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10198         int pipe = intel_crtc->pipe;
10199         u32 base = intel_crtc->cursor_addr;
10200         u32 pos = 0;
10201
10202         if (plane_state) {
10203                 int x = plane_state->base.crtc_x;
10204                 int y = plane_state->base.crtc_y;
10205
10206                 if (x < 0) {
10207                         pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10208                         x = -x;
10209                 }
10210                 pos |= x << CURSOR_X_SHIFT;
10211
10212                 if (y < 0) {
10213                         pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10214                         y = -y;
10215                 }
10216                 pos |= y << CURSOR_Y_SHIFT;
10217
10218                 /* ILK+ do this automagically */
10219                 if (HAS_GMCH_DISPLAY(dev) &&
10220                     plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10221                         base += (plane_state->base.crtc_h *
10222                                  plane_state->base.crtc_w - 1) * 4;
10223                 }
10224         }
10225
10226         I915_WRITE(CURPOS(pipe), pos);
10227
10228         if (IS_845G(dev) || IS_I865G(dev))
10229                 i845_update_cursor(crtc, base, plane_state);
10230         else
10231                 i9xx_update_cursor(crtc, base, plane_state);
10232 }
10233
10234 static bool cursor_size_ok(struct drm_device *dev,
10235                            uint32_t width, uint32_t height)
10236 {
10237         if (width == 0 || height == 0)
10238                 return false;
10239
10240         /*
10241          * 845g/865g are special in that they are only limited by
10242          * the width of their cursors, the height is arbitrary up to
10243          * the precision of the register. Everything else requires
10244          * square cursors, limited to a few power-of-two sizes.
10245          */
10246         if (IS_845G(dev) || IS_I865G(dev)) {
10247                 if ((width & 63) != 0)
10248                         return false;
10249
10250                 if (width > (IS_845G(dev) ? 64 : 512))
10251                         return false;
10252
10253                 if (height > 1023)
10254                         return false;
10255         } else {
10256                 switch (width | height) {
10257                 case 256:
10258                 case 128:
10259                         if (IS_GEN2(dev))
10260                                 return false;
10261                 case 64:
10262                         break;
10263                 default:
10264                         return false;
10265                 }
10266         }
10267
10268         return true;
10269 }
10270
10271 /* VESA 640x480x72Hz mode to set on the pipe */
10272 static struct drm_display_mode load_detect_mode = {
10273         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10274                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10275 };
10276
10277 struct drm_framebuffer *
10278 __intel_framebuffer_create(struct drm_device *dev,
10279                            struct drm_mode_fb_cmd2 *mode_cmd,
10280                            struct drm_i915_gem_object *obj)
10281 {
10282         struct intel_framebuffer *intel_fb;
10283         int ret;
10284
10285         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10286         if (!intel_fb)
10287                 return ERR_PTR(-ENOMEM);
10288
10289         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10290         if (ret)
10291                 goto err;
10292
10293         return &intel_fb->base;
10294
10295 err:
10296         kfree(intel_fb);
10297         return ERR_PTR(ret);
10298 }
10299
10300 static struct drm_framebuffer *
10301 intel_framebuffer_create(struct drm_device *dev,
10302                          struct drm_mode_fb_cmd2 *mode_cmd,
10303                          struct drm_i915_gem_object *obj)
10304 {
10305         struct drm_framebuffer *fb;
10306         int ret;
10307
10308         ret = i915_mutex_lock_interruptible(dev);
10309         if (ret)
10310                 return ERR_PTR(ret);
10311         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10312         mutex_unlock(&dev->struct_mutex);
10313
10314         return fb;
10315 }
10316
10317 static u32
10318 intel_framebuffer_pitch_for_width(int width, int bpp)
10319 {
10320         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10321         return ALIGN(pitch, 64);
10322 }
10323
10324 static u32
10325 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10326 {
10327         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10328         return PAGE_ALIGN(pitch * mode->vdisplay);
10329 }
10330
10331 static struct drm_framebuffer *
10332 intel_framebuffer_create_for_mode(struct drm_device *dev,
10333                                   struct drm_display_mode *mode,
10334                                   int depth, int bpp)
10335 {
10336         struct drm_framebuffer *fb;
10337         struct drm_i915_gem_object *obj;
10338         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10339
10340         obj = i915_gem_alloc_object(dev,
10341                                     intel_framebuffer_size_for_mode(mode, bpp));
10342         if (obj == NULL)
10343                 return ERR_PTR(-ENOMEM);
10344
10345         mode_cmd.width = mode->hdisplay;
10346         mode_cmd.height = mode->vdisplay;
10347         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10348                                                                 bpp);
10349         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10350
10351         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10352         if (IS_ERR(fb))
10353                 drm_gem_object_unreference_unlocked(&obj->base);
10354
10355         return fb;
10356 }
10357
10358 static struct drm_framebuffer *
10359 mode_fits_in_fbdev(struct drm_device *dev,
10360                    struct drm_display_mode *mode)
10361 {
10362 #ifdef CONFIG_DRM_FBDEV_EMULATION
10363         struct drm_i915_private *dev_priv = dev->dev_private;
10364         struct drm_i915_gem_object *obj;
10365         struct drm_framebuffer *fb;
10366
10367         if (!dev_priv->fbdev)
10368                 return NULL;
10369
10370         if (!dev_priv->fbdev->fb)
10371                 return NULL;
10372
10373         obj = dev_priv->fbdev->fb->obj;
10374         BUG_ON(!obj);
10375
10376         fb = &dev_priv->fbdev->fb->base;
10377         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10378                                                                fb->bits_per_pixel))
10379                 return NULL;
10380
10381         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10382                 return NULL;
10383
10384         drm_framebuffer_reference(fb);
10385         return fb;
10386 #else
10387         return NULL;
10388 #endif
10389 }
10390
10391 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10392                                            struct drm_crtc *crtc,
10393                                            struct drm_display_mode *mode,
10394                                            struct drm_framebuffer *fb,
10395                                            int x, int y)
10396 {
10397         struct drm_plane_state *plane_state;
10398         int hdisplay, vdisplay;
10399         int ret;
10400
10401         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10402         if (IS_ERR(plane_state))
10403                 return PTR_ERR(plane_state);
10404
10405         if (mode)
10406                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10407         else
10408                 hdisplay = vdisplay = 0;
10409
10410         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10411         if (ret)
10412                 return ret;
10413         drm_atomic_set_fb_for_plane(plane_state, fb);
10414         plane_state->crtc_x = 0;
10415         plane_state->crtc_y = 0;
10416         plane_state->crtc_w = hdisplay;
10417         plane_state->crtc_h = vdisplay;
10418         plane_state->src_x = x << 16;
10419         plane_state->src_y = y << 16;
10420         plane_state->src_w = hdisplay << 16;
10421         plane_state->src_h = vdisplay << 16;
10422
10423         return 0;
10424 }
10425
10426 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10427                                 struct drm_display_mode *mode,
10428                                 struct intel_load_detect_pipe *old,
10429                                 struct drm_modeset_acquire_ctx *ctx)
10430 {
10431         struct intel_crtc *intel_crtc;
10432         struct intel_encoder *intel_encoder =
10433                 intel_attached_encoder(connector);
10434         struct drm_crtc *possible_crtc;
10435         struct drm_encoder *encoder = &intel_encoder->base;
10436         struct drm_crtc *crtc = NULL;
10437         struct drm_device *dev = encoder->dev;
10438         struct drm_framebuffer *fb;
10439         struct drm_mode_config *config = &dev->mode_config;
10440         struct drm_atomic_state *state = NULL, *restore_state = NULL;
10441         struct drm_connector_state *connector_state;
10442         struct intel_crtc_state *crtc_state;
10443         int ret, i = -1;
10444
10445         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10446                       connector->base.id, connector->name,
10447                       encoder->base.id, encoder->name);
10448
10449         old->restore_state = NULL;
10450
10451 retry:
10452         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10453         if (ret)
10454                 goto fail;
10455
10456         /*
10457          * Algorithm gets a little messy:
10458          *
10459          *   - if the connector already has an assigned crtc, use it (but make
10460          *     sure it's on first)
10461          *
10462          *   - try to find the first unused crtc that can drive this connector,
10463          *     and use that if we find one
10464          */
10465
10466         /* See if we already have a CRTC for this connector */
10467         if (connector->state->crtc) {
10468                 crtc = connector->state->crtc;
10469
10470                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10471                 if (ret)
10472                         goto fail;
10473
10474                 /* Make sure the crtc and connector are running */
10475                 goto found;
10476         }
10477
10478         /* Find an unused one (if possible) */
10479         for_each_crtc(dev, possible_crtc) {
10480                 i++;
10481                 if (!(encoder->possible_crtcs & (1 << i)))
10482                         continue;
10483
10484                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10485                 if (ret)
10486                         goto fail;
10487
10488                 if (possible_crtc->state->enable) {
10489                         drm_modeset_unlock(&possible_crtc->mutex);
10490                         continue;
10491                 }
10492
10493                 crtc = possible_crtc;
10494                 break;
10495         }
10496
10497         /*
10498          * If we didn't find an unused CRTC, don't use any.
10499          */
10500         if (!crtc) {
10501                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10502                 goto fail;
10503         }
10504
10505 found:
10506         intel_crtc = to_intel_crtc(crtc);
10507
10508         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10509         if (ret)
10510                 goto fail;
10511
10512         state = drm_atomic_state_alloc(dev);
10513         restore_state = drm_atomic_state_alloc(dev);
10514         if (!state || !restore_state) {
10515                 ret = -ENOMEM;
10516                 goto fail;
10517         }
10518
10519         state->acquire_ctx = ctx;
10520         restore_state->acquire_ctx = ctx;
10521
10522         connector_state = drm_atomic_get_connector_state(state, connector);
10523         if (IS_ERR(connector_state)) {
10524                 ret = PTR_ERR(connector_state);
10525                 goto fail;
10526         }
10527
10528         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10529         if (ret)
10530                 goto fail;
10531
10532         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10533         if (IS_ERR(crtc_state)) {
10534                 ret = PTR_ERR(crtc_state);
10535                 goto fail;
10536         }
10537
10538         crtc_state->base.active = crtc_state->base.enable = true;
10539
10540         if (!mode)
10541                 mode = &load_detect_mode;
10542
10543         /* We need a framebuffer large enough to accommodate all accesses
10544          * that the plane may generate whilst we perform load detection.
10545          * We can not rely on the fbcon either being present (we get called
10546          * during its initialisation to detect all boot displays, or it may
10547          * not even exist) or that it is large enough to satisfy the
10548          * requested mode.
10549          */
10550         fb = mode_fits_in_fbdev(dev, mode);
10551         if (fb == NULL) {
10552                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10553                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10554         } else
10555                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10556         if (IS_ERR(fb)) {
10557                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10558                 goto fail;
10559         }
10560
10561         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10562         if (ret)
10563                 goto fail;
10564
10565         drm_framebuffer_unreference(fb);
10566
10567         ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10568         if (ret)
10569                 goto fail;
10570
10571         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10572         if (!ret)
10573                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10574         if (!ret)
10575                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10576         if (ret) {
10577                 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10578                 goto fail;
10579         }
10580
10581         ret = drm_atomic_commit(state);
10582         if (ret) {
10583                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10584                 goto fail;
10585         }
10586
10587         old->restore_state = restore_state;
10588
10589         /* let the connector get through one full cycle before testing */
10590         intel_wait_for_vblank(dev, intel_crtc->pipe);
10591         return true;
10592
10593 fail:
10594         drm_atomic_state_free(state);
10595         drm_atomic_state_free(restore_state);
10596         restore_state = state = NULL;
10597
10598         if (ret == -EDEADLK) {
10599                 drm_modeset_backoff(ctx);
10600                 goto retry;
10601         }
10602
10603         return false;
10604 }
10605
10606 void intel_release_load_detect_pipe(struct drm_connector *connector,
10607                                     struct intel_load_detect_pipe *old,
10608                                     struct drm_modeset_acquire_ctx *ctx)
10609 {
10610         struct intel_encoder *intel_encoder =
10611                 intel_attached_encoder(connector);
10612         struct drm_encoder *encoder = &intel_encoder->base;
10613         struct drm_atomic_state *state = old->restore_state;
10614         int ret;
10615
10616         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10617                       connector->base.id, connector->name,
10618                       encoder->base.id, encoder->name);
10619
10620         if (!state)
10621                 return;
10622
10623         ret = drm_atomic_commit(state);
10624         if (ret) {
10625                 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10626                 drm_atomic_state_free(state);
10627         }
10628 }
10629
10630 static int i9xx_pll_refclk(struct drm_device *dev,
10631                            const struct intel_crtc_state *pipe_config)
10632 {
10633         struct drm_i915_private *dev_priv = dev->dev_private;
10634         u32 dpll = pipe_config->dpll_hw_state.dpll;
10635
10636         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10637                 return dev_priv->vbt.lvds_ssc_freq;
10638         else if (HAS_PCH_SPLIT(dev))
10639                 return 120000;
10640         else if (!IS_GEN2(dev))
10641                 return 96000;
10642         else
10643                 return 48000;
10644 }
10645
10646 /* Returns the clock of the currently programmed mode of the given pipe. */
10647 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10648                                 struct intel_crtc_state *pipe_config)
10649 {
10650         struct drm_device *dev = crtc->base.dev;
10651         struct drm_i915_private *dev_priv = dev->dev_private;
10652         int pipe = pipe_config->cpu_transcoder;
10653         u32 dpll = pipe_config->dpll_hw_state.dpll;
10654         u32 fp;
10655         intel_clock_t clock;
10656         int port_clock;
10657         int refclk = i9xx_pll_refclk(dev, pipe_config);
10658
10659         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10660                 fp = pipe_config->dpll_hw_state.fp0;
10661         else
10662                 fp = pipe_config->dpll_hw_state.fp1;
10663
10664         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10665         if (IS_PINEVIEW(dev)) {
10666                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10667                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10668         } else {
10669                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10670                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10671         }
10672
10673         if (!IS_GEN2(dev)) {
10674                 if (IS_PINEVIEW(dev))
10675                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10676                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10677                 else
10678                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10679                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10680
10681                 switch (dpll & DPLL_MODE_MASK) {
10682                 case DPLLB_MODE_DAC_SERIAL:
10683                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10684                                 5 : 10;
10685                         break;
10686                 case DPLLB_MODE_LVDS:
10687                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10688                                 7 : 14;
10689                         break;
10690                 default:
10691                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10692                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10693                         return;
10694                 }
10695
10696                 if (IS_PINEVIEW(dev))
10697                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10698                 else
10699                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10700         } else {
10701                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10702                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10703
10704                 if (is_lvds) {
10705                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10706                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10707
10708                         if (lvds & LVDS_CLKB_POWER_UP)
10709                                 clock.p2 = 7;
10710                         else
10711                                 clock.p2 = 14;
10712                 } else {
10713                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10714                                 clock.p1 = 2;
10715                         else {
10716                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10717                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10718                         }
10719                         if (dpll & PLL_P2_DIVIDE_BY_4)
10720                                 clock.p2 = 4;
10721                         else
10722                                 clock.p2 = 2;
10723                 }
10724
10725                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10726         }
10727
10728         /*
10729          * This value includes pixel_multiplier. We will use
10730          * port_clock to compute adjusted_mode.crtc_clock in the
10731          * encoder's get_config() function.
10732          */
10733         pipe_config->port_clock = port_clock;
10734 }
10735
10736 int intel_dotclock_calculate(int link_freq,
10737                              const struct intel_link_m_n *m_n)
10738 {
10739         /*
10740          * The calculation for the data clock is:
10741          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10742          * But we want to avoid losing precison if possible, so:
10743          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10744          *
10745          * and the link clock is simpler:
10746          * link_clock = (m * link_clock) / n
10747          */
10748
10749         if (!m_n->link_n)
10750                 return 0;
10751
10752         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10753 }
10754
10755 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10756                                    struct intel_crtc_state *pipe_config)
10757 {
10758         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10759
10760         /* read out port_clock from the DPLL */
10761         i9xx_crtc_clock_get(crtc, pipe_config);
10762
10763         /*
10764          * In case there is an active pipe without active ports,
10765          * we may need some idea for the dotclock anyway.
10766          * Calculate one based on the FDI configuration.
10767          */
10768         pipe_config->base.adjusted_mode.crtc_clock =
10769                 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10770                                          &pipe_config->fdi_m_n);
10771 }
10772
10773 /** Returns the currently programmed mode of the given pipe. */
10774 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10775                                              struct drm_crtc *crtc)
10776 {
10777         struct drm_i915_private *dev_priv = dev->dev_private;
10778         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10779         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10780         struct drm_display_mode *mode;
10781         struct intel_crtc_state *pipe_config;
10782         int htot = I915_READ(HTOTAL(cpu_transcoder));
10783         int hsync = I915_READ(HSYNC(cpu_transcoder));
10784         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10785         int vsync = I915_READ(VSYNC(cpu_transcoder));
10786         enum pipe pipe = intel_crtc->pipe;
10787
10788         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10789         if (!mode)
10790                 return NULL;
10791
10792         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10793         if (!pipe_config) {
10794                 kfree(mode);
10795                 return NULL;
10796         }
10797
10798         /*
10799          * Construct a pipe_config sufficient for getting the clock info
10800          * back out of crtc_clock_get.
10801          *
10802          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10803          * to use a real value here instead.
10804          */
10805         pipe_config->cpu_transcoder = (enum transcoder) pipe;
10806         pipe_config->pixel_multiplier = 1;
10807         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10808         pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10809         pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10810         i9xx_crtc_clock_get(intel_crtc, pipe_config);
10811
10812         mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10813         mode->hdisplay = (htot & 0xffff) + 1;
10814         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10815         mode->hsync_start = (hsync & 0xffff) + 1;
10816         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10817         mode->vdisplay = (vtot & 0xffff) + 1;
10818         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10819         mode->vsync_start = (vsync & 0xffff) + 1;
10820         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10821
10822         drm_mode_set_name(mode);
10823
10824         kfree(pipe_config);
10825
10826         return mode;
10827 }
10828
10829 void intel_mark_busy(struct drm_device *dev)
10830 {
10831         struct drm_i915_private *dev_priv = dev->dev_private;
10832
10833         if (dev_priv->mm.busy)
10834                 return;
10835
10836         intel_runtime_pm_get(dev_priv);
10837         i915_update_gfx_val(dev_priv);
10838         if (INTEL_INFO(dev)->gen >= 6)
10839                 gen6_rps_busy(dev_priv);
10840         dev_priv->mm.busy = true;
10841 }
10842
10843 void intel_mark_idle(struct drm_device *dev)
10844 {
10845         struct drm_i915_private *dev_priv = dev->dev_private;
10846
10847         if (!dev_priv->mm.busy)
10848                 return;
10849
10850         dev_priv->mm.busy = false;
10851
10852         if (INTEL_INFO(dev)->gen >= 6)
10853                 gen6_rps_idle(dev->dev_private);
10854
10855         intel_runtime_pm_put(dev_priv);
10856 }
10857
10858 static void intel_crtc_destroy(struct drm_crtc *crtc)
10859 {
10860         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10861         struct drm_device *dev = crtc->dev;
10862         struct intel_unpin_work *work;
10863
10864         spin_lock_irq(&dev->event_lock);
10865         work = intel_crtc->unpin_work;
10866         intel_crtc->unpin_work = NULL;
10867         spin_unlock_irq(&dev->event_lock);
10868
10869         if (work) {
10870                 cancel_work_sync(&work->work);
10871                 kfree(work);
10872         }
10873
10874         drm_crtc_cleanup(crtc);
10875
10876         kfree(intel_crtc);
10877 }
10878
10879 static void intel_unpin_work_fn(struct work_struct *__work)
10880 {
10881         struct intel_unpin_work *work =
10882                 container_of(__work, struct intel_unpin_work, work);
10883         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10884         struct drm_device *dev = crtc->base.dev;
10885         struct drm_plane *primary = crtc->base.primary;
10886
10887         mutex_lock(&dev->struct_mutex);
10888         intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
10889         drm_gem_object_unreference(&work->pending_flip_obj->base);
10890
10891         if (work->flip_queued_req)
10892                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10893         mutex_unlock(&dev->struct_mutex);
10894
10895         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10896         intel_fbc_post_update(crtc);
10897         drm_framebuffer_unreference(work->old_fb);
10898
10899         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10900         atomic_dec(&crtc->unpin_work_count);
10901
10902         kfree(work);
10903 }
10904
10905 static void do_intel_finish_page_flip(struct drm_device *dev,
10906                                       struct drm_crtc *crtc)
10907 {
10908         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10909         struct intel_unpin_work *work;
10910         unsigned long flags;
10911
10912         /* Ignore early vblank irqs */
10913         if (intel_crtc == NULL)
10914                 return;
10915
10916         /*
10917          * This is called both by irq handlers and the reset code (to complete
10918          * lost pageflips) so needs the full irqsave spinlocks.
10919          */
10920         spin_lock_irqsave(&dev->event_lock, flags);
10921         work = intel_crtc->unpin_work;
10922
10923         /* Ensure we don't miss a work->pending update ... */
10924         smp_rmb();
10925
10926         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10927                 spin_unlock_irqrestore(&dev->event_lock, flags);
10928                 return;
10929         }
10930
10931         page_flip_completed(intel_crtc);
10932
10933         spin_unlock_irqrestore(&dev->event_lock, flags);
10934 }
10935
10936 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10937 {
10938         struct drm_i915_private *dev_priv = dev->dev_private;
10939         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10940
10941         do_intel_finish_page_flip(dev, crtc);
10942 }
10943
10944 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10945 {
10946         struct drm_i915_private *dev_priv = dev->dev_private;
10947         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10948
10949         do_intel_finish_page_flip(dev, crtc);
10950 }
10951
10952 /* Is 'a' after or equal to 'b'? */
10953 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10954 {
10955         return !((a - b) & 0x80000000);
10956 }
10957
10958 static bool page_flip_finished(struct intel_crtc *crtc)
10959 {
10960         struct drm_device *dev = crtc->base.dev;
10961         struct drm_i915_private *dev_priv = dev->dev_private;
10962         unsigned reset_counter;
10963
10964         reset_counter = i915_reset_counter(&dev_priv->gpu_error);
10965         if (crtc->reset_counter != reset_counter)
10966                 return true;
10967
10968         /*
10969          * The relevant registers doen't exist on pre-ctg.
10970          * As the flip done interrupt doesn't trigger for mmio
10971          * flips on gmch platforms, a flip count check isn't
10972          * really needed there. But since ctg has the registers,
10973          * include it in the check anyway.
10974          */
10975         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10976                 return true;
10977
10978         /*
10979          * BDW signals flip done immediately if the plane
10980          * is disabled, even if the plane enable is already
10981          * armed to occur at the next vblank :(
10982          */
10983
10984         /*
10985          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10986          * used the same base address. In that case the mmio flip might
10987          * have completed, but the CS hasn't even executed the flip yet.
10988          *
10989          * A flip count check isn't enough as the CS might have updated
10990          * the base address just after start of vblank, but before we
10991          * managed to process the interrupt. This means we'd complete the
10992          * CS flip too soon.
10993          *
10994          * Combining both checks should get us a good enough result. It may
10995          * still happen that the CS flip has been executed, but has not
10996          * yet actually completed. But in case the base address is the same
10997          * anyway, we don't really care.
10998          */
10999         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11000                 crtc->unpin_work->gtt_offset &&
11001                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11002                                     crtc->unpin_work->flip_count);
11003 }
11004
11005 void intel_prepare_page_flip(struct drm_device *dev, int plane)
11006 {
11007         struct drm_i915_private *dev_priv = dev->dev_private;
11008         struct intel_crtc *intel_crtc =
11009                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
11010         unsigned long flags;
11011
11012
11013         /*
11014          * This is called both by irq handlers and the reset code (to complete
11015          * lost pageflips) so needs the full irqsave spinlocks.
11016          *
11017          * NB: An MMIO update of the plane base pointer will also
11018          * generate a page-flip completion irq, i.e. every modeset
11019          * is also accompanied by a spurious intel_prepare_page_flip().
11020          */
11021         spin_lock_irqsave(&dev->event_lock, flags);
11022         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
11023                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
11024         spin_unlock_irqrestore(&dev->event_lock, flags);
11025 }
11026
11027 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
11028 {
11029         /* Ensure that the work item is consistent when activating it ... */
11030         smp_wmb();
11031         atomic_set(&work->pending, INTEL_FLIP_PENDING);
11032         /* and that it is marked active as soon as the irq could fire. */
11033         smp_wmb();
11034 }
11035
11036 static int intel_gen2_queue_flip(struct drm_device *dev,
11037                                  struct drm_crtc *crtc,
11038                                  struct drm_framebuffer *fb,
11039                                  struct drm_i915_gem_object *obj,
11040                                  struct drm_i915_gem_request *req,
11041                                  uint32_t flags)
11042 {
11043         struct intel_engine_cs *engine = req->engine;
11044         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11045         u32 flip_mask;
11046         int ret;
11047
11048         ret = intel_ring_begin(req, 6);
11049         if (ret)
11050                 return ret;
11051
11052         /* Can't queue multiple flips, so wait for the previous
11053          * one to finish before executing the next.
11054          */
11055         if (intel_crtc->plane)
11056                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11057         else
11058                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11059         intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11060         intel_ring_emit(engine, MI_NOOP);
11061         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11062                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11063         intel_ring_emit(engine, fb->pitches[0]);
11064         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11065         intel_ring_emit(engine, 0); /* aux display base address, unused */
11066
11067         intel_mark_page_flip_active(intel_crtc->unpin_work);
11068         return 0;
11069 }
11070
11071 static int intel_gen3_queue_flip(struct drm_device *dev,
11072                                  struct drm_crtc *crtc,
11073                                  struct drm_framebuffer *fb,
11074                                  struct drm_i915_gem_object *obj,
11075                                  struct drm_i915_gem_request *req,
11076                                  uint32_t flags)
11077 {
11078         struct intel_engine_cs *engine = req->engine;
11079         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11080         u32 flip_mask;
11081         int ret;
11082
11083         ret = intel_ring_begin(req, 6);
11084         if (ret)
11085                 return ret;
11086
11087         if (intel_crtc->plane)
11088                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11089         else
11090                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11091         intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11092         intel_ring_emit(engine, MI_NOOP);
11093         intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 |
11094                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11095         intel_ring_emit(engine, fb->pitches[0]);
11096         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11097         intel_ring_emit(engine, MI_NOOP);
11098
11099         intel_mark_page_flip_active(intel_crtc->unpin_work);
11100         return 0;
11101 }
11102
11103 static int intel_gen4_queue_flip(struct drm_device *dev,
11104                                  struct drm_crtc *crtc,
11105                                  struct drm_framebuffer *fb,
11106                                  struct drm_i915_gem_object *obj,
11107                                  struct drm_i915_gem_request *req,
11108                                  uint32_t flags)
11109 {
11110         struct intel_engine_cs *engine = req->engine;
11111         struct drm_i915_private *dev_priv = dev->dev_private;
11112         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11113         uint32_t pf, pipesrc;
11114         int ret;
11115
11116         ret = intel_ring_begin(req, 4);
11117         if (ret)
11118                 return ret;
11119
11120         /* i965+ uses the linear or tiled offsets from the
11121          * Display Registers (which do not change across a page-flip)
11122          * so we need only reprogram the base address.
11123          */
11124         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11125                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11126         intel_ring_emit(engine, fb->pitches[0]);
11127         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset |
11128                         obj->tiling_mode);
11129
11130         /* XXX Enabling the panel-fitter across page-flip is so far
11131          * untested on non-native modes, so ignore it for now.
11132          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11133          */
11134         pf = 0;
11135         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11136         intel_ring_emit(engine, pf | pipesrc);
11137
11138         intel_mark_page_flip_active(intel_crtc->unpin_work);
11139         return 0;
11140 }
11141
11142 static int intel_gen6_queue_flip(struct drm_device *dev,
11143                                  struct drm_crtc *crtc,
11144                                  struct drm_framebuffer *fb,
11145                                  struct drm_i915_gem_object *obj,
11146                                  struct drm_i915_gem_request *req,
11147                                  uint32_t flags)
11148 {
11149         struct intel_engine_cs *engine = req->engine;
11150         struct drm_i915_private *dev_priv = dev->dev_private;
11151         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11152         uint32_t pf, pipesrc;
11153         int ret;
11154
11155         ret = intel_ring_begin(req, 4);
11156         if (ret)
11157                 return ret;
11158
11159         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11160                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11161         intel_ring_emit(engine, fb->pitches[0] | obj->tiling_mode);
11162         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11163
11164         /* Contrary to the suggestions in the documentation,
11165          * "Enable Panel Fitter" does not seem to be required when page
11166          * flipping with a non-native mode, and worse causes a normal
11167          * modeset to fail.
11168          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11169          */
11170         pf = 0;
11171         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11172         intel_ring_emit(engine, pf | pipesrc);
11173
11174         intel_mark_page_flip_active(intel_crtc->unpin_work);
11175         return 0;
11176 }
11177
11178 static int intel_gen7_queue_flip(struct drm_device *dev,
11179                                  struct drm_crtc *crtc,
11180                                  struct drm_framebuffer *fb,
11181                                  struct drm_i915_gem_object *obj,
11182                                  struct drm_i915_gem_request *req,
11183                                  uint32_t flags)
11184 {
11185         struct intel_engine_cs *engine = req->engine;
11186         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11187         uint32_t plane_bit = 0;
11188         int len, ret;
11189
11190         switch (intel_crtc->plane) {
11191         case PLANE_A:
11192                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11193                 break;
11194         case PLANE_B:
11195                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11196                 break;
11197         case PLANE_C:
11198                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11199                 break;
11200         default:
11201                 WARN_ONCE(1, "unknown plane in flip command\n");
11202                 return -ENODEV;
11203         }
11204
11205         len = 4;
11206         if (engine->id == RCS) {
11207                 len += 6;
11208                 /*
11209                  * On Gen 8, SRM is now taking an extra dword to accommodate
11210                  * 48bits addresses, and we need a NOOP for the batch size to
11211                  * stay even.
11212                  */
11213                 if (IS_GEN8(dev))
11214                         len += 2;
11215         }
11216
11217         /*
11218          * BSpec MI_DISPLAY_FLIP for IVB:
11219          * "The full packet must be contained within the same cache line."
11220          *
11221          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11222          * cacheline, if we ever start emitting more commands before
11223          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11224          * then do the cacheline alignment, and finally emit the
11225          * MI_DISPLAY_FLIP.
11226          */
11227         ret = intel_ring_cacheline_align(req);
11228         if (ret)
11229                 return ret;
11230
11231         ret = intel_ring_begin(req, len);
11232         if (ret)
11233                 return ret;
11234
11235         /* Unmask the flip-done completion message. Note that the bspec says that
11236          * we should do this for both the BCS and RCS, and that we must not unmask
11237          * more than one flip event at any time (or ensure that one flip message
11238          * can be sent by waiting for flip-done prior to queueing new flips).
11239          * Experimentation says that BCS works despite DERRMR masking all
11240          * flip-done completion events and that unmasking all planes at once
11241          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11242          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11243          */
11244         if (engine->id == RCS) {
11245                 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
11246                 intel_ring_emit_reg(engine, DERRMR);
11247                 intel_ring_emit(engine, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11248                                           DERRMR_PIPEB_PRI_FLIP_DONE |
11249                                           DERRMR_PIPEC_PRI_FLIP_DONE));
11250                 if (IS_GEN8(dev))
11251                         intel_ring_emit(engine, MI_STORE_REGISTER_MEM_GEN8 |
11252                                               MI_SRM_LRM_GLOBAL_GTT);
11253                 else
11254                         intel_ring_emit(engine, MI_STORE_REGISTER_MEM |
11255                                               MI_SRM_LRM_GLOBAL_GTT);
11256                 intel_ring_emit_reg(engine, DERRMR);
11257                 intel_ring_emit(engine, engine->scratch.gtt_offset + 256);
11258                 if (IS_GEN8(dev)) {
11259                         intel_ring_emit(engine, 0);
11260                         intel_ring_emit(engine, MI_NOOP);
11261                 }
11262         }
11263
11264         intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 | plane_bit);
11265         intel_ring_emit(engine, (fb->pitches[0] | obj->tiling_mode));
11266         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11267         intel_ring_emit(engine, (MI_NOOP));
11268
11269         intel_mark_page_flip_active(intel_crtc->unpin_work);
11270         return 0;
11271 }
11272
11273 static bool use_mmio_flip(struct intel_engine_cs *engine,
11274                           struct drm_i915_gem_object *obj)
11275 {
11276         /*
11277          * This is not being used for older platforms, because
11278          * non-availability of flip done interrupt forces us to use
11279          * CS flips. Older platforms derive flip done using some clever
11280          * tricks involving the flip_pending status bits and vblank irqs.
11281          * So using MMIO flips there would disrupt this mechanism.
11282          */
11283
11284         if (engine == NULL)
11285                 return true;
11286
11287         if (INTEL_INFO(engine->dev)->gen < 5)
11288                 return false;
11289
11290         if (i915.use_mmio_flip < 0)
11291                 return false;
11292         else if (i915.use_mmio_flip > 0)
11293                 return true;
11294         else if (i915.enable_execlists)
11295                 return true;
11296         else if (obj->base.dma_buf &&
11297                  !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv,
11298                                                        false))
11299                 return true;
11300         else
11301                 return engine != i915_gem_request_get_engine(obj->last_write_req);
11302 }
11303
11304 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11305                              unsigned int rotation,
11306                              struct intel_unpin_work *work)
11307 {
11308         struct drm_device *dev = intel_crtc->base.dev;
11309         struct drm_i915_private *dev_priv = dev->dev_private;
11310         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11311         const enum pipe pipe = intel_crtc->pipe;
11312         u32 ctl, stride, tile_height;
11313
11314         ctl = I915_READ(PLANE_CTL(pipe, 0));
11315         ctl &= ~PLANE_CTL_TILED_MASK;
11316         switch (fb->modifier[0]) {
11317         case DRM_FORMAT_MOD_NONE:
11318                 break;
11319         case I915_FORMAT_MOD_X_TILED:
11320                 ctl |= PLANE_CTL_TILED_X;
11321                 break;
11322         case I915_FORMAT_MOD_Y_TILED:
11323                 ctl |= PLANE_CTL_TILED_Y;
11324                 break;
11325         case I915_FORMAT_MOD_Yf_TILED:
11326                 ctl |= PLANE_CTL_TILED_YF;
11327                 break;
11328         default:
11329                 MISSING_CASE(fb->modifier[0]);
11330         }
11331
11332         /*
11333          * The stride is either expressed as a multiple of 64 bytes chunks for
11334          * linear buffers or in number of tiles for tiled buffers.
11335          */
11336         if (intel_rotation_90_or_270(rotation)) {
11337                 /* stride = Surface height in tiles */
11338                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11339                 stride = DIV_ROUND_UP(fb->height, tile_height);
11340         } else {
11341                 stride = fb->pitches[0] /
11342                         intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11343                                                   fb->pixel_format);
11344         }
11345
11346         /*
11347          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11348          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11349          */
11350         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11351         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11352
11353         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11354         POSTING_READ(PLANE_SURF(pipe, 0));
11355 }
11356
11357 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11358                              struct intel_unpin_work *work)
11359 {
11360         struct drm_device *dev = intel_crtc->base.dev;
11361         struct drm_i915_private *dev_priv = dev->dev_private;
11362         struct intel_framebuffer *intel_fb =
11363                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11364         struct drm_i915_gem_object *obj = intel_fb->obj;
11365         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11366         u32 dspcntr;
11367
11368         dspcntr = I915_READ(reg);
11369
11370         if (obj->tiling_mode != I915_TILING_NONE)
11371                 dspcntr |= DISPPLANE_TILED;
11372         else
11373                 dspcntr &= ~DISPPLANE_TILED;
11374
11375         I915_WRITE(reg, dspcntr);
11376
11377         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11378         POSTING_READ(DSPSURF(intel_crtc->plane));
11379 }
11380
11381 /*
11382  * XXX: This is the temporary way to update the plane registers until we get
11383  * around to using the usual plane update functions for MMIO flips
11384  */
11385 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11386 {
11387         struct intel_crtc *crtc = mmio_flip->crtc;
11388         struct intel_unpin_work *work;
11389
11390         spin_lock_irq(&crtc->base.dev->event_lock);
11391         work = crtc->unpin_work;
11392         spin_unlock_irq(&crtc->base.dev->event_lock);
11393         if (work == NULL)
11394                 return;
11395
11396         intel_mark_page_flip_active(work);
11397
11398         intel_pipe_update_start(crtc);
11399
11400         if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11401                 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
11402         else
11403                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11404                 ilk_do_mmio_flip(crtc, work);
11405
11406         intel_pipe_update_end(crtc);
11407 }
11408
11409 static void intel_mmio_flip_work_func(struct work_struct *work)
11410 {
11411         struct intel_mmio_flip *mmio_flip =
11412                 container_of(work, struct intel_mmio_flip, work);
11413         struct intel_framebuffer *intel_fb =
11414                 to_intel_framebuffer(mmio_flip->crtc->base.primary->fb);
11415         struct drm_i915_gem_object *obj = intel_fb->obj;
11416
11417         if (mmio_flip->req) {
11418                 WARN_ON(__i915_wait_request(mmio_flip->req,
11419                                             false, NULL,
11420                                             &mmio_flip->i915->rps.mmioflips));
11421                 i915_gem_request_unreference__unlocked(mmio_flip->req);
11422         }
11423
11424         /* For framebuffer backed by dmabuf, wait for fence */
11425         if (obj->base.dma_buf)
11426                 WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
11427                                                             false, false,
11428                                                             MAX_SCHEDULE_TIMEOUT) < 0);
11429
11430         intel_do_mmio_flip(mmio_flip);
11431         kfree(mmio_flip);
11432 }
11433
11434 static int intel_queue_mmio_flip(struct drm_device *dev,
11435                                  struct drm_crtc *crtc,
11436                                  struct drm_i915_gem_object *obj)
11437 {
11438         struct intel_mmio_flip *mmio_flip;
11439
11440         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11441         if (mmio_flip == NULL)
11442                 return -ENOMEM;
11443
11444         mmio_flip->i915 = to_i915(dev);
11445         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11446         mmio_flip->crtc = to_intel_crtc(crtc);
11447         mmio_flip->rotation = crtc->primary->state->rotation;
11448
11449         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11450         schedule_work(&mmio_flip->work);
11451
11452         return 0;
11453 }
11454
11455 static int intel_default_queue_flip(struct drm_device *dev,
11456                                     struct drm_crtc *crtc,
11457                                     struct drm_framebuffer *fb,
11458                                     struct drm_i915_gem_object *obj,
11459                                     struct drm_i915_gem_request *req,
11460                                     uint32_t flags)
11461 {
11462         return -ENODEV;
11463 }
11464
11465 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11466                                          struct drm_crtc *crtc)
11467 {
11468         struct drm_i915_private *dev_priv = dev->dev_private;
11469         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11470         struct intel_unpin_work *work = intel_crtc->unpin_work;
11471         u32 addr;
11472
11473         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11474                 return true;
11475
11476         if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11477                 return false;
11478
11479         if (!work->enable_stall_check)
11480                 return false;
11481
11482         if (work->flip_ready_vblank == 0) {
11483                 if (work->flip_queued_req &&
11484                     !i915_gem_request_completed(work->flip_queued_req, true))
11485                         return false;
11486
11487                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11488         }
11489
11490         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11491                 return false;
11492
11493         /* Potential stall - if we see that the flip has happened,
11494          * assume a missed interrupt. */
11495         if (INTEL_INFO(dev)->gen >= 4)
11496                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11497         else
11498                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11499
11500         /* There is a potential issue here with a false positive after a flip
11501          * to the same address. We could address this by checking for a
11502          * non-incrementing frame counter.
11503          */
11504         return addr == work->gtt_offset;
11505 }
11506
11507 void intel_check_page_flip(struct drm_device *dev, int pipe)
11508 {
11509         struct drm_i915_private *dev_priv = dev->dev_private;
11510         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11511         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11512         struct intel_unpin_work *work;
11513
11514         WARN_ON(!in_interrupt());
11515
11516         if (crtc == NULL)
11517                 return;
11518
11519         spin_lock(&dev->event_lock);
11520         work = intel_crtc->unpin_work;
11521         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11522                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11523                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11524                 page_flip_completed(intel_crtc);
11525                 work = NULL;
11526         }
11527         if (work != NULL &&
11528             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11529                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11530         spin_unlock(&dev->event_lock);
11531 }
11532
11533 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11534                                 struct drm_framebuffer *fb,
11535                                 struct drm_pending_vblank_event *event,
11536                                 uint32_t page_flip_flags)
11537 {
11538         struct drm_device *dev = crtc->dev;
11539         struct drm_i915_private *dev_priv = dev->dev_private;
11540         struct drm_framebuffer *old_fb = crtc->primary->fb;
11541         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11542         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11543         struct drm_plane *primary = crtc->primary;
11544         enum pipe pipe = intel_crtc->pipe;
11545         struct intel_unpin_work *work;
11546         struct intel_engine_cs *engine;
11547         bool mmio_flip;
11548         struct drm_i915_gem_request *request = NULL;
11549         int ret;
11550
11551         /*
11552          * drm_mode_page_flip_ioctl() should already catch this, but double
11553          * check to be safe.  In the future we may enable pageflipping from
11554          * a disabled primary plane.
11555          */
11556         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11557                 return -EBUSY;
11558
11559         /* Can't change pixel format via MI display flips. */
11560         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11561                 return -EINVAL;
11562
11563         /*
11564          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11565          * Note that pitch changes could also affect these register.
11566          */
11567         if (INTEL_INFO(dev)->gen > 3 &&
11568             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11569              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11570                 return -EINVAL;
11571
11572         if (i915_terminally_wedged(&dev_priv->gpu_error))
11573                 goto out_hang;
11574
11575         work = kzalloc(sizeof(*work), GFP_KERNEL);
11576         if (work == NULL)
11577                 return -ENOMEM;
11578
11579         work->event = event;
11580         work->crtc = crtc;
11581         work->old_fb = old_fb;
11582         INIT_WORK(&work->work, intel_unpin_work_fn);
11583
11584         ret = drm_crtc_vblank_get(crtc);
11585         if (ret)
11586                 goto free_work;
11587
11588         /* We borrow the event spin lock for protecting unpin_work */
11589         spin_lock_irq(&dev->event_lock);
11590         if (intel_crtc->unpin_work) {
11591                 /* Before declaring the flip queue wedged, check if
11592                  * the hardware completed the operation behind our backs.
11593                  */
11594                 if (__intel_pageflip_stall_check(dev, crtc)) {
11595                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11596                         page_flip_completed(intel_crtc);
11597                 } else {
11598                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11599                         spin_unlock_irq(&dev->event_lock);
11600
11601                         drm_crtc_vblank_put(crtc);
11602                         kfree(work);
11603                         return -EBUSY;
11604                 }
11605         }
11606         intel_crtc->unpin_work = work;
11607         spin_unlock_irq(&dev->event_lock);
11608
11609         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11610                 flush_workqueue(dev_priv->wq);
11611
11612         /* Reference the objects for the scheduled work. */
11613         drm_framebuffer_reference(work->old_fb);
11614         drm_gem_object_reference(&obj->base);
11615
11616         crtc->primary->fb = fb;
11617         update_state_fb(crtc->primary);
11618         intel_fbc_pre_update(intel_crtc);
11619
11620         work->pending_flip_obj = obj;
11621
11622         ret = i915_mutex_lock_interruptible(dev);
11623         if (ret)
11624                 goto cleanup;
11625
11626         intel_crtc->reset_counter = i915_reset_counter(&dev_priv->gpu_error);
11627         if (__i915_reset_in_progress_or_wedged(intel_crtc->reset_counter)) {
11628                 ret = -EIO;
11629                 goto cleanup;
11630         }
11631
11632         atomic_inc(&intel_crtc->unpin_work_count);
11633
11634         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11635                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11636
11637         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11638                 engine = &dev_priv->engine[BCS];
11639                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11640                         /* vlv: DISPLAY_FLIP fails to change tiling */
11641                         engine = NULL;
11642         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11643                 engine = &dev_priv->engine[BCS];
11644         } else if (INTEL_INFO(dev)->gen >= 7) {
11645                 engine = i915_gem_request_get_engine(obj->last_write_req);
11646                 if (engine == NULL || engine->id != RCS)
11647                         engine = &dev_priv->engine[BCS];
11648         } else {
11649                 engine = &dev_priv->engine[RCS];
11650         }
11651
11652         mmio_flip = use_mmio_flip(engine, obj);
11653
11654         /* When using CS flips, we want to emit semaphores between rings.
11655          * However, when using mmio flips we will create a task to do the
11656          * synchronisation, so all we want here is to pin the framebuffer
11657          * into the display plane and skip any waits.
11658          */
11659         if (!mmio_flip) {
11660                 ret = i915_gem_object_sync(obj, engine, &request);
11661                 if (ret)
11662                         goto cleanup_pending;
11663         }
11664
11665         ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
11666         if (ret)
11667                 goto cleanup_pending;
11668
11669         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11670                                                   obj, 0);
11671         work->gtt_offset += intel_crtc->dspaddr_offset;
11672
11673         if (mmio_flip) {
11674                 ret = intel_queue_mmio_flip(dev, crtc, obj);
11675                 if (ret)
11676                         goto cleanup_unpin;
11677
11678                 i915_gem_request_assign(&work->flip_queued_req,
11679                                         obj->last_write_req);
11680         } else {
11681                 if (!request) {
11682                         request = i915_gem_request_alloc(engine, NULL);
11683                         if (IS_ERR(request)) {
11684                                 ret = PTR_ERR(request);
11685                                 goto cleanup_unpin;
11686                         }
11687                 }
11688
11689                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11690                                                    page_flip_flags);
11691                 if (ret)
11692                         goto cleanup_unpin;
11693
11694                 i915_gem_request_assign(&work->flip_queued_req, request);
11695         }
11696
11697         if (request)
11698                 i915_add_request_no_flush(request);
11699
11700         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11701         work->enable_stall_check = true;
11702
11703         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11704                           to_intel_plane(primary)->frontbuffer_bit);
11705         mutex_unlock(&dev->struct_mutex);
11706
11707         intel_frontbuffer_flip_prepare(dev,
11708                                        to_intel_plane(primary)->frontbuffer_bit);
11709
11710         trace_i915_flip_request(intel_crtc->plane, obj);
11711
11712         return 0;
11713
11714 cleanup_unpin:
11715         intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
11716 cleanup_pending:
11717         if (!IS_ERR_OR_NULL(request))
11718                 i915_add_request_no_flush(request);
11719         atomic_dec(&intel_crtc->unpin_work_count);
11720         mutex_unlock(&dev->struct_mutex);
11721 cleanup:
11722         crtc->primary->fb = old_fb;
11723         update_state_fb(crtc->primary);
11724
11725         drm_gem_object_unreference_unlocked(&obj->base);
11726         drm_framebuffer_unreference(work->old_fb);
11727
11728         spin_lock_irq(&dev->event_lock);
11729         intel_crtc->unpin_work = NULL;
11730         spin_unlock_irq(&dev->event_lock);
11731
11732         drm_crtc_vblank_put(crtc);
11733 free_work:
11734         kfree(work);
11735
11736         if (ret == -EIO) {
11737                 struct drm_atomic_state *state;
11738                 struct drm_plane_state *plane_state;
11739
11740 out_hang:
11741                 state = drm_atomic_state_alloc(dev);
11742                 if (!state)
11743                         return -ENOMEM;
11744                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11745
11746 retry:
11747                 plane_state = drm_atomic_get_plane_state(state, primary);
11748                 ret = PTR_ERR_OR_ZERO(plane_state);
11749                 if (!ret) {
11750                         drm_atomic_set_fb_for_plane(plane_state, fb);
11751
11752                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11753                         if (!ret)
11754                                 ret = drm_atomic_commit(state);
11755                 }
11756
11757                 if (ret == -EDEADLK) {
11758                         drm_modeset_backoff(state->acquire_ctx);
11759                         drm_atomic_state_clear(state);
11760                         goto retry;
11761                 }
11762
11763                 if (ret)
11764                         drm_atomic_state_free(state);
11765
11766                 if (ret == 0 && event) {
11767                         spin_lock_irq(&dev->event_lock);
11768                         drm_crtc_send_vblank_event(crtc, event);
11769                         spin_unlock_irq(&dev->event_lock);
11770                 }
11771         }
11772         return ret;
11773 }
11774
11775
11776 /**
11777  * intel_wm_need_update - Check whether watermarks need updating
11778  * @plane: drm plane
11779  * @state: new plane state
11780  *
11781  * Check current plane state versus the new one to determine whether
11782  * watermarks need to be recalculated.
11783  *
11784  * Returns true or false.
11785  */
11786 static bool intel_wm_need_update(struct drm_plane *plane,
11787                                  struct drm_plane_state *state)
11788 {
11789         struct intel_plane_state *new = to_intel_plane_state(state);
11790         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11791
11792         /* Update watermarks on tiling or size changes. */
11793         if (new->visible != cur->visible)
11794                 return true;
11795
11796         if (!cur->base.fb || !new->base.fb)
11797                 return false;
11798
11799         if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11800             cur->base.rotation != new->base.rotation ||
11801             drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11802             drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11803             drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11804             drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11805                 return true;
11806
11807         return false;
11808 }
11809
11810 static bool needs_scaling(struct intel_plane_state *state)
11811 {
11812         int src_w = drm_rect_width(&state->src) >> 16;
11813         int src_h = drm_rect_height(&state->src) >> 16;
11814         int dst_w = drm_rect_width(&state->dst);
11815         int dst_h = drm_rect_height(&state->dst);
11816
11817         return (src_w != dst_w || src_h != dst_h);
11818 }
11819
11820 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11821                                     struct drm_plane_state *plane_state)
11822 {
11823         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11824         struct drm_crtc *crtc = crtc_state->crtc;
11825         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11826         struct drm_plane *plane = plane_state->plane;
11827         struct drm_device *dev = crtc->dev;
11828         struct drm_i915_private *dev_priv = to_i915(dev);
11829         struct intel_plane_state *old_plane_state =
11830                 to_intel_plane_state(plane->state);
11831         int idx = intel_crtc->base.base.id, ret;
11832         bool mode_changed = needs_modeset(crtc_state);
11833         bool was_crtc_enabled = crtc->state->active;
11834         bool is_crtc_enabled = crtc_state->active;
11835         bool turn_off, turn_on, visible, was_visible;
11836         struct drm_framebuffer *fb = plane_state->fb;
11837
11838         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11839             plane->type != DRM_PLANE_TYPE_CURSOR) {
11840                 ret = skl_update_scaler_plane(
11841                         to_intel_crtc_state(crtc_state),
11842                         to_intel_plane_state(plane_state));
11843                 if (ret)
11844                         return ret;
11845         }
11846
11847         was_visible = old_plane_state->visible;
11848         visible = to_intel_plane_state(plane_state)->visible;
11849
11850         if (!was_crtc_enabled && WARN_ON(was_visible))
11851                 was_visible = false;
11852
11853         /*
11854          * Visibility is calculated as if the crtc was on, but
11855          * after scaler setup everything depends on it being off
11856          * when the crtc isn't active.
11857          */
11858         if (!is_crtc_enabled)
11859                 to_intel_plane_state(plane_state)->visible = visible = false;
11860
11861         if (!was_visible && !visible)
11862                 return 0;
11863
11864         if (fb != old_plane_state->base.fb)
11865                 pipe_config->fb_changed = true;
11866
11867         turn_off = was_visible && (!visible || mode_changed);
11868         turn_on = visible && (!was_visible || mode_changed);
11869
11870         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11871                          plane->base.id, fb ? fb->base.id : -1);
11872
11873         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11874                          plane->base.id, was_visible, visible,
11875                          turn_off, turn_on, mode_changed);
11876
11877         if (turn_on) {
11878                 pipe_config->update_wm_pre = true;
11879
11880                 /* must disable cxsr around plane enable/disable */
11881                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11882                         pipe_config->disable_cxsr = true;
11883         } else if (turn_off) {
11884                 pipe_config->update_wm_post = true;
11885
11886                 /* must disable cxsr around plane enable/disable */
11887                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11888                         pipe_config->disable_cxsr = true;
11889         } else if (intel_wm_need_update(plane, plane_state)) {
11890                 /* FIXME bollocks */
11891                 pipe_config->update_wm_pre = true;
11892                 pipe_config->update_wm_post = true;
11893         }
11894
11895         /* Pre-gen9 platforms need two-step watermark updates */
11896         if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
11897             INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
11898                 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
11899
11900         if (visible || was_visible)
11901                 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
11902
11903         /*
11904          * WaCxSRDisabledForSpriteScaling:ivb
11905          *
11906          * cstate->update_wm was already set above, so this flag will
11907          * take effect when we commit and program watermarks.
11908          */
11909         if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
11910             needs_scaling(to_intel_plane_state(plane_state)) &&
11911             !needs_scaling(old_plane_state))
11912                 pipe_config->disable_lp_wm = true;
11913
11914         return 0;
11915 }
11916
11917 static bool encoders_cloneable(const struct intel_encoder *a,
11918                                const struct intel_encoder *b)
11919 {
11920         /* masks could be asymmetric, so check both ways */
11921         return a == b || (a->cloneable & (1 << b->type) &&
11922                           b->cloneable & (1 << a->type));
11923 }
11924
11925 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11926                                          struct intel_crtc *crtc,
11927                                          struct intel_encoder *encoder)
11928 {
11929         struct intel_encoder *source_encoder;
11930         struct drm_connector *connector;
11931         struct drm_connector_state *connector_state;
11932         int i;
11933
11934         for_each_connector_in_state(state, connector, connector_state, i) {
11935                 if (connector_state->crtc != &crtc->base)
11936                         continue;
11937
11938                 source_encoder =
11939                         to_intel_encoder(connector_state->best_encoder);
11940                 if (!encoders_cloneable(encoder, source_encoder))
11941                         return false;
11942         }
11943
11944         return true;
11945 }
11946
11947 static bool check_encoder_cloning(struct drm_atomic_state *state,
11948                                   struct intel_crtc *crtc)
11949 {
11950         struct intel_encoder *encoder;
11951         struct drm_connector *connector;
11952         struct drm_connector_state *connector_state;
11953         int i;
11954
11955         for_each_connector_in_state(state, connector, connector_state, i) {
11956                 if (connector_state->crtc != &crtc->base)
11957                         continue;
11958
11959                 encoder = to_intel_encoder(connector_state->best_encoder);
11960                 if (!check_single_encoder_cloning(state, crtc, encoder))
11961                         return false;
11962         }
11963
11964         return true;
11965 }
11966
11967 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11968                                    struct drm_crtc_state *crtc_state)
11969 {
11970         struct drm_device *dev = crtc->dev;
11971         struct drm_i915_private *dev_priv = dev->dev_private;
11972         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11973         struct intel_crtc_state *pipe_config =
11974                 to_intel_crtc_state(crtc_state);
11975         struct drm_atomic_state *state = crtc_state->state;
11976         int ret;
11977         bool mode_changed = needs_modeset(crtc_state);
11978
11979         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11980                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11981                 return -EINVAL;
11982         }
11983
11984         if (mode_changed && !crtc_state->active)
11985                 pipe_config->update_wm_post = true;
11986
11987         if (mode_changed && crtc_state->enable &&
11988             dev_priv->display.crtc_compute_clock &&
11989             !WARN_ON(pipe_config->shared_dpll)) {
11990                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11991                                                            pipe_config);
11992                 if (ret)
11993                         return ret;
11994         }
11995
11996         if (crtc_state->color_mgmt_changed) {
11997                 ret = intel_color_check(crtc, crtc_state);
11998                 if (ret)
11999                         return ret;
12000
12001                 /*
12002                  * Changing color management on Intel hardware is
12003                  * handled as part of planes update.
12004                  */
12005                 crtc_state->planes_changed = true;
12006         }
12007
12008         ret = 0;
12009         if (dev_priv->display.compute_pipe_wm) {
12010                 ret = dev_priv->display.compute_pipe_wm(pipe_config);
12011                 if (ret) {
12012                         DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12013                         return ret;
12014                 }
12015         }
12016
12017         if (dev_priv->display.compute_intermediate_wm &&
12018             !to_intel_atomic_state(state)->skip_intermediate_wm) {
12019                 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12020                         return 0;
12021
12022                 /*
12023                  * Calculate 'intermediate' watermarks that satisfy both the
12024                  * old state and the new state.  We can program these
12025                  * immediately.
12026                  */
12027                 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
12028                                                                 intel_crtc,
12029                                                                 pipe_config);
12030                 if (ret) {
12031                         DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12032                         return ret;
12033                 }
12034         } else if (dev_priv->display.compute_intermediate_wm) {
12035                 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12036                         pipe_config->wm.intermediate = pipe_config->wm.optimal.ilk;
12037         }
12038
12039         if (INTEL_INFO(dev)->gen >= 9) {
12040                 if (mode_changed)
12041                         ret = skl_update_scaler_crtc(pipe_config);
12042
12043                 if (!ret)
12044                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
12045                                                          pipe_config);
12046         }
12047
12048         return ret;
12049 }
12050
12051 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12052         .mode_set_base_atomic = intel_pipe_set_base_atomic,
12053         .atomic_begin = intel_begin_crtc_commit,
12054         .atomic_flush = intel_finish_crtc_commit,
12055         .atomic_check = intel_crtc_atomic_check,
12056 };
12057
12058 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12059 {
12060         struct intel_connector *connector;
12061
12062         for_each_intel_connector(dev, connector) {
12063                 if (connector->base.state->crtc)
12064                         drm_connector_unreference(&connector->base);
12065
12066                 if (connector->base.encoder) {
12067                         connector->base.state->best_encoder =
12068                                 connector->base.encoder;
12069                         connector->base.state->crtc =
12070                                 connector->base.encoder->crtc;
12071
12072                         drm_connector_reference(&connector->base);
12073                 } else {
12074                         connector->base.state->best_encoder = NULL;
12075                         connector->base.state->crtc = NULL;
12076                 }
12077         }
12078 }
12079
12080 static void
12081 connected_sink_compute_bpp(struct intel_connector *connector,
12082                            struct intel_crtc_state *pipe_config)
12083 {
12084         int bpp = pipe_config->pipe_bpp;
12085
12086         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12087                 connector->base.base.id,
12088                 connector->base.name);
12089
12090         /* Don't use an invalid EDID bpc value */
12091         if (connector->base.display_info.bpc &&
12092             connector->base.display_info.bpc * 3 < bpp) {
12093                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12094                               bpp, connector->base.display_info.bpc*3);
12095                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12096         }
12097
12098         /* Clamp bpp to default limit on screens without EDID 1.4 */
12099         if (connector->base.display_info.bpc == 0) {
12100                 int type = connector->base.connector_type;
12101                 int clamp_bpp = 24;
12102
12103                 /* Fall back to 18 bpp when DP sink capability is unknown. */
12104                 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12105                     type == DRM_MODE_CONNECTOR_eDP)
12106                         clamp_bpp = 18;
12107
12108                 if (bpp > clamp_bpp) {
12109                         DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12110                                       bpp, clamp_bpp);
12111                         pipe_config->pipe_bpp = clamp_bpp;
12112                 }
12113         }
12114 }
12115
12116 static int
12117 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12118                           struct intel_crtc_state *pipe_config)
12119 {
12120         struct drm_device *dev = crtc->base.dev;
12121         struct drm_atomic_state *state;
12122         struct drm_connector *connector;
12123         struct drm_connector_state *connector_state;
12124         int bpp, i;
12125
12126         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12127                 bpp = 10*3;
12128         else if (INTEL_INFO(dev)->gen >= 5)
12129                 bpp = 12*3;
12130         else
12131                 bpp = 8*3;
12132
12133
12134         pipe_config->pipe_bpp = bpp;
12135
12136         state = pipe_config->base.state;
12137
12138         /* Clamp display bpp to EDID value */
12139         for_each_connector_in_state(state, connector, connector_state, i) {
12140                 if (connector_state->crtc != &crtc->base)
12141                         continue;
12142
12143                 connected_sink_compute_bpp(to_intel_connector(connector),
12144                                            pipe_config);
12145         }
12146
12147         return bpp;
12148 }
12149
12150 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12151 {
12152         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12153                         "type: 0x%x flags: 0x%x\n",
12154                 mode->crtc_clock,
12155                 mode->crtc_hdisplay, mode->crtc_hsync_start,
12156                 mode->crtc_hsync_end, mode->crtc_htotal,
12157                 mode->crtc_vdisplay, mode->crtc_vsync_start,
12158                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12159 }
12160
12161 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12162                                    struct intel_crtc_state *pipe_config,
12163                                    const char *context)
12164 {
12165         struct drm_device *dev = crtc->base.dev;
12166         struct drm_plane *plane;
12167         struct intel_plane *intel_plane;
12168         struct intel_plane_state *state;
12169         struct drm_framebuffer *fb;
12170
12171         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12172                       context, pipe_config, pipe_name(crtc->pipe));
12173
12174         DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
12175         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12176                       pipe_config->pipe_bpp, pipe_config->dither);
12177         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12178                       pipe_config->has_pch_encoder,
12179                       pipe_config->fdi_lanes,
12180                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12181                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12182                       pipe_config->fdi_m_n.tu);
12183         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12184                       pipe_config->has_dp_encoder,
12185                       pipe_config->lane_count,
12186                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12187                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12188                       pipe_config->dp_m_n.tu);
12189
12190         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12191                       pipe_config->has_dp_encoder,
12192                       pipe_config->lane_count,
12193                       pipe_config->dp_m2_n2.gmch_m,
12194                       pipe_config->dp_m2_n2.gmch_n,
12195                       pipe_config->dp_m2_n2.link_m,
12196                       pipe_config->dp_m2_n2.link_n,
12197                       pipe_config->dp_m2_n2.tu);
12198
12199         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12200                       pipe_config->has_audio,
12201                       pipe_config->has_infoframe);
12202
12203         DRM_DEBUG_KMS("requested mode:\n");
12204         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12205         DRM_DEBUG_KMS("adjusted mode:\n");
12206         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12207         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12208         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12209         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12210                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12211         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12212                       crtc->num_scalers,
12213                       pipe_config->scaler_state.scaler_users,
12214                       pipe_config->scaler_state.scaler_id);
12215         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12216                       pipe_config->gmch_pfit.control,
12217                       pipe_config->gmch_pfit.pgm_ratios,
12218                       pipe_config->gmch_pfit.lvds_border_bits);
12219         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12220                       pipe_config->pch_pfit.pos,
12221                       pipe_config->pch_pfit.size,
12222                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12223         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12224         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12225
12226         if (IS_BROXTON(dev)) {
12227                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12228                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12229                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12230                               pipe_config->ddi_pll_sel,
12231                               pipe_config->dpll_hw_state.ebb0,
12232                               pipe_config->dpll_hw_state.ebb4,
12233                               pipe_config->dpll_hw_state.pll0,
12234                               pipe_config->dpll_hw_state.pll1,
12235                               pipe_config->dpll_hw_state.pll2,
12236                               pipe_config->dpll_hw_state.pll3,
12237                               pipe_config->dpll_hw_state.pll6,
12238                               pipe_config->dpll_hw_state.pll8,
12239                               pipe_config->dpll_hw_state.pll9,
12240                               pipe_config->dpll_hw_state.pll10,
12241                               pipe_config->dpll_hw_state.pcsdw12);
12242         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12243                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12244                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12245                               pipe_config->ddi_pll_sel,
12246                               pipe_config->dpll_hw_state.ctrl1,
12247                               pipe_config->dpll_hw_state.cfgcr1,
12248                               pipe_config->dpll_hw_state.cfgcr2);
12249         } else if (HAS_DDI(dev)) {
12250                 DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12251                               pipe_config->ddi_pll_sel,
12252                               pipe_config->dpll_hw_state.wrpll,
12253                               pipe_config->dpll_hw_state.spll);
12254         } else {
12255                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12256                               "fp0: 0x%x, fp1: 0x%x\n",
12257                               pipe_config->dpll_hw_state.dpll,
12258                               pipe_config->dpll_hw_state.dpll_md,
12259                               pipe_config->dpll_hw_state.fp0,
12260                               pipe_config->dpll_hw_state.fp1);
12261         }
12262
12263         DRM_DEBUG_KMS("planes on this crtc\n");
12264         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12265                 intel_plane = to_intel_plane(plane);
12266                 if (intel_plane->pipe != crtc->pipe)
12267                         continue;
12268
12269                 state = to_intel_plane_state(plane->state);
12270                 fb = state->base.fb;
12271                 if (!fb) {
12272                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12273                                 "disabled, scaler_id = %d\n",
12274                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12275                                 plane->base.id, intel_plane->pipe,
12276                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12277                                 drm_plane_index(plane), state->scaler_id);
12278                         continue;
12279                 }
12280
12281                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12282                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12283                         plane->base.id, intel_plane->pipe,
12284                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12285                         drm_plane_index(plane));
12286                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12287                         fb->base.id, fb->width, fb->height, fb->pixel_format);
12288                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12289                         state->scaler_id,
12290                         state->src.x1 >> 16, state->src.y1 >> 16,
12291                         drm_rect_width(&state->src) >> 16,
12292                         drm_rect_height(&state->src) >> 16,
12293                         state->dst.x1, state->dst.y1,
12294                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12295         }
12296 }
12297
12298 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12299 {
12300         struct drm_device *dev = state->dev;
12301         struct drm_connector *connector;
12302         unsigned int used_ports = 0;
12303
12304         /*
12305          * Walk the connector list instead of the encoder
12306          * list to detect the problem on ddi platforms
12307          * where there's just one encoder per digital port.
12308          */
12309         drm_for_each_connector(connector, dev) {
12310                 struct drm_connector_state *connector_state;
12311                 struct intel_encoder *encoder;
12312
12313                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12314                 if (!connector_state)
12315                         connector_state = connector->state;
12316
12317                 if (!connector_state->best_encoder)
12318                         continue;
12319
12320                 encoder = to_intel_encoder(connector_state->best_encoder);
12321
12322                 WARN_ON(!connector_state->crtc);
12323
12324                 switch (encoder->type) {
12325                         unsigned int port_mask;
12326                 case INTEL_OUTPUT_UNKNOWN:
12327                         if (WARN_ON(!HAS_DDI(dev)))
12328                                 break;
12329                 case INTEL_OUTPUT_DISPLAYPORT:
12330                 case INTEL_OUTPUT_HDMI:
12331                 case INTEL_OUTPUT_EDP:
12332                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12333
12334                         /* the same port mustn't appear more than once */
12335                         if (used_ports & port_mask)
12336                                 return false;
12337
12338                         used_ports |= port_mask;
12339                 default:
12340                         break;
12341                 }
12342         }
12343
12344         return true;
12345 }
12346
12347 static void
12348 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12349 {
12350         struct drm_crtc_state tmp_state;
12351         struct intel_crtc_scaler_state scaler_state;
12352         struct intel_dpll_hw_state dpll_hw_state;
12353         struct intel_shared_dpll *shared_dpll;
12354         uint32_t ddi_pll_sel;
12355         bool force_thru;
12356
12357         /* FIXME: before the switch to atomic started, a new pipe_config was
12358          * kzalloc'd. Code that depends on any field being zero should be
12359          * fixed, so that the crtc_state can be safely duplicated. For now,
12360          * only fields that are know to not cause problems are preserved. */
12361
12362         tmp_state = crtc_state->base;
12363         scaler_state = crtc_state->scaler_state;
12364         shared_dpll = crtc_state->shared_dpll;
12365         dpll_hw_state = crtc_state->dpll_hw_state;
12366         ddi_pll_sel = crtc_state->ddi_pll_sel;
12367         force_thru = crtc_state->pch_pfit.force_thru;
12368
12369         memset(crtc_state, 0, sizeof *crtc_state);
12370
12371         crtc_state->base = tmp_state;
12372         crtc_state->scaler_state = scaler_state;
12373         crtc_state->shared_dpll = shared_dpll;
12374         crtc_state->dpll_hw_state = dpll_hw_state;
12375         crtc_state->ddi_pll_sel = ddi_pll_sel;
12376         crtc_state->pch_pfit.force_thru = force_thru;
12377 }
12378
12379 static int
12380 intel_modeset_pipe_config(struct drm_crtc *crtc,
12381                           struct intel_crtc_state *pipe_config)
12382 {
12383         struct drm_atomic_state *state = pipe_config->base.state;
12384         struct intel_encoder *encoder;
12385         struct drm_connector *connector;
12386         struct drm_connector_state *connector_state;
12387         int base_bpp, ret = -EINVAL;
12388         int i;
12389         bool retry = true;
12390
12391         clear_intel_crtc_state(pipe_config);
12392
12393         pipe_config->cpu_transcoder =
12394                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12395
12396         /*
12397          * Sanitize sync polarity flags based on requested ones. If neither
12398          * positive or negative polarity is requested, treat this as meaning
12399          * negative polarity.
12400          */
12401         if (!(pipe_config->base.adjusted_mode.flags &
12402               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12403                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12404
12405         if (!(pipe_config->base.adjusted_mode.flags &
12406               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12407                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12408
12409         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12410                                              pipe_config);
12411         if (base_bpp < 0)
12412                 goto fail;
12413
12414         /*
12415          * Determine the real pipe dimensions. Note that stereo modes can
12416          * increase the actual pipe size due to the frame doubling and
12417          * insertion of additional space for blanks between the frame. This
12418          * is stored in the crtc timings. We use the requested mode to do this
12419          * computation to clearly distinguish it from the adjusted mode, which
12420          * can be changed by the connectors in the below retry loop.
12421          */
12422         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12423                                &pipe_config->pipe_src_w,
12424                                &pipe_config->pipe_src_h);
12425
12426 encoder_retry:
12427         /* Ensure the port clock defaults are reset when retrying. */
12428         pipe_config->port_clock = 0;
12429         pipe_config->pixel_multiplier = 1;
12430
12431         /* Fill in default crtc timings, allow encoders to overwrite them. */
12432         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12433                               CRTC_STEREO_DOUBLE);
12434
12435         /* Pass our mode to the connectors and the CRTC to give them a chance to
12436          * adjust it according to limitations or connector properties, and also
12437          * a chance to reject the mode entirely.
12438          */
12439         for_each_connector_in_state(state, connector, connector_state, i) {
12440                 if (connector_state->crtc != crtc)
12441                         continue;
12442
12443                 encoder = to_intel_encoder(connector_state->best_encoder);
12444
12445                 if (!(encoder->compute_config(encoder, pipe_config))) {
12446                         DRM_DEBUG_KMS("Encoder config failure\n");
12447                         goto fail;
12448                 }
12449         }
12450
12451         /* Set default port clock if not overwritten by the encoder. Needs to be
12452          * done afterwards in case the encoder adjusts the mode. */
12453         if (!pipe_config->port_clock)
12454                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12455                         * pipe_config->pixel_multiplier;
12456
12457         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12458         if (ret < 0) {
12459                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12460                 goto fail;
12461         }
12462
12463         if (ret == RETRY) {
12464                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12465                         ret = -EINVAL;
12466                         goto fail;
12467                 }
12468
12469                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12470                 retry = false;
12471                 goto encoder_retry;
12472         }
12473
12474         /* Dithering seems to not pass-through bits correctly when it should, so
12475          * only enable it on 6bpc panels. */
12476         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12477         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12478                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12479
12480 fail:
12481         return ret;
12482 }
12483
12484 static void
12485 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12486 {
12487         struct drm_crtc *crtc;
12488         struct drm_crtc_state *crtc_state;
12489         int i;
12490
12491         /* Double check state. */
12492         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12493                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12494
12495                 /* Update hwmode for vblank functions */
12496                 if (crtc->state->active)
12497                         crtc->hwmode = crtc->state->adjusted_mode;
12498                 else
12499                         crtc->hwmode.crtc_clock = 0;
12500
12501                 /*
12502                  * Update legacy state to satisfy fbc code. This can
12503                  * be removed when fbc uses the atomic state.
12504                  */
12505                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12506                         struct drm_plane_state *plane_state = crtc->primary->state;
12507
12508                         crtc->primary->fb = plane_state->fb;
12509                         crtc->x = plane_state->src_x >> 16;
12510                         crtc->y = plane_state->src_y >> 16;
12511                 }
12512         }
12513 }
12514
12515 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12516 {
12517         int diff;
12518
12519         if (clock1 == clock2)
12520                 return true;
12521
12522         if (!clock1 || !clock2)
12523                 return false;
12524
12525         diff = abs(clock1 - clock2);
12526
12527         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12528                 return true;
12529
12530         return false;
12531 }
12532
12533 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12534         list_for_each_entry((intel_crtc), \
12535                             &(dev)->mode_config.crtc_list, \
12536                             base.head) \
12537                 for_each_if (mask & (1 <<(intel_crtc)->pipe))
12538
12539 static bool
12540 intel_compare_m_n(unsigned int m, unsigned int n,
12541                   unsigned int m2, unsigned int n2,
12542                   bool exact)
12543 {
12544         if (m == m2 && n == n2)
12545                 return true;
12546
12547         if (exact || !m || !n || !m2 || !n2)
12548                 return false;
12549
12550         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12551
12552         if (n > n2) {
12553                 while (n > n2) {
12554                         m2 <<= 1;
12555                         n2 <<= 1;
12556                 }
12557         } else if (n < n2) {
12558                 while (n < n2) {
12559                         m <<= 1;
12560                         n <<= 1;
12561                 }
12562         }
12563
12564         if (n != n2)
12565                 return false;
12566
12567         return intel_fuzzy_clock_check(m, m2);
12568 }
12569
12570 static bool
12571 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12572                        struct intel_link_m_n *m2_n2,
12573                        bool adjust)
12574 {
12575         if (m_n->tu == m2_n2->tu &&
12576             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12577                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12578             intel_compare_m_n(m_n->link_m, m_n->link_n,
12579                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12580                 if (adjust)
12581                         *m2_n2 = *m_n;
12582
12583                 return true;
12584         }
12585
12586         return false;
12587 }
12588
12589 static bool
12590 intel_pipe_config_compare(struct drm_device *dev,
12591                           struct intel_crtc_state *current_config,
12592                           struct intel_crtc_state *pipe_config,
12593                           bool adjust)
12594 {
12595         bool ret = true;
12596
12597 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12598         do { \
12599                 if (!adjust) \
12600                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12601                 else \
12602                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12603         } while (0)
12604
12605 #define PIPE_CONF_CHECK_X(name) \
12606         if (current_config->name != pipe_config->name) { \
12607                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12608                           "(expected 0x%08x, found 0x%08x)\n", \
12609                           current_config->name, \
12610                           pipe_config->name); \
12611                 ret = false; \
12612         }
12613
12614 #define PIPE_CONF_CHECK_I(name) \
12615         if (current_config->name != pipe_config->name) { \
12616                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12617                           "(expected %i, found %i)\n", \
12618                           current_config->name, \
12619                           pipe_config->name); \
12620                 ret = false; \
12621         }
12622
12623 #define PIPE_CONF_CHECK_P(name) \
12624         if (current_config->name != pipe_config->name) { \
12625                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12626                           "(expected %p, found %p)\n", \
12627                           current_config->name, \
12628                           pipe_config->name); \
12629                 ret = false; \
12630         }
12631
12632 #define PIPE_CONF_CHECK_M_N(name) \
12633         if (!intel_compare_link_m_n(&current_config->name, \
12634                                     &pipe_config->name,\
12635                                     adjust)) { \
12636                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12637                           "(expected tu %i gmch %i/%i link %i/%i, " \
12638                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12639                           current_config->name.tu, \
12640                           current_config->name.gmch_m, \
12641                           current_config->name.gmch_n, \
12642                           current_config->name.link_m, \
12643                           current_config->name.link_n, \
12644                           pipe_config->name.tu, \
12645                           pipe_config->name.gmch_m, \
12646                           pipe_config->name.gmch_n, \
12647                           pipe_config->name.link_m, \
12648                           pipe_config->name.link_n); \
12649                 ret = false; \
12650         }
12651
12652 /* This is required for BDW+ where there is only one set of registers for
12653  * switching between high and low RR.
12654  * This macro can be used whenever a comparison has to be made between one
12655  * hw state and multiple sw state variables.
12656  */
12657 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12658         if (!intel_compare_link_m_n(&current_config->name, \
12659                                     &pipe_config->name, adjust) && \
12660             !intel_compare_link_m_n(&current_config->alt_name, \
12661                                     &pipe_config->name, adjust)) { \
12662                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12663                           "(expected tu %i gmch %i/%i link %i/%i, " \
12664                           "or tu %i gmch %i/%i link %i/%i, " \
12665                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12666                           current_config->name.tu, \
12667                           current_config->name.gmch_m, \
12668                           current_config->name.gmch_n, \
12669                           current_config->name.link_m, \
12670                           current_config->name.link_n, \
12671                           current_config->alt_name.tu, \
12672                           current_config->alt_name.gmch_m, \
12673                           current_config->alt_name.gmch_n, \
12674                           current_config->alt_name.link_m, \
12675                           current_config->alt_name.link_n, \
12676                           pipe_config->name.tu, \
12677                           pipe_config->name.gmch_m, \
12678                           pipe_config->name.gmch_n, \
12679                           pipe_config->name.link_m, \
12680                           pipe_config->name.link_n); \
12681                 ret = false; \
12682         }
12683
12684 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12685         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12686                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12687                           "(expected %i, found %i)\n", \
12688                           current_config->name & (mask), \
12689                           pipe_config->name & (mask)); \
12690                 ret = false; \
12691         }
12692
12693 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12694         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12695                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12696                           "(expected %i, found %i)\n", \
12697                           current_config->name, \
12698                           pipe_config->name); \
12699                 ret = false; \
12700         }
12701
12702 #define PIPE_CONF_QUIRK(quirk)  \
12703         ((current_config->quirks | pipe_config->quirks) & (quirk))
12704
12705         PIPE_CONF_CHECK_I(cpu_transcoder);
12706
12707         PIPE_CONF_CHECK_I(has_pch_encoder);
12708         PIPE_CONF_CHECK_I(fdi_lanes);
12709         PIPE_CONF_CHECK_M_N(fdi_m_n);
12710
12711         PIPE_CONF_CHECK_I(has_dp_encoder);
12712         PIPE_CONF_CHECK_I(lane_count);
12713
12714         if (INTEL_INFO(dev)->gen < 8) {
12715                 PIPE_CONF_CHECK_M_N(dp_m_n);
12716
12717                 if (current_config->has_drrs)
12718                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12719         } else
12720                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12721
12722         PIPE_CONF_CHECK_I(has_dsi_encoder);
12723
12724         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12725         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12726         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12727         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12728         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12729         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12730
12731         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12732         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12733         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12734         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12735         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12736         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12737
12738         PIPE_CONF_CHECK_I(pixel_multiplier);
12739         PIPE_CONF_CHECK_I(has_hdmi_sink);
12740         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12741             IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12742                 PIPE_CONF_CHECK_I(limited_color_range);
12743         PIPE_CONF_CHECK_I(has_infoframe);
12744
12745         PIPE_CONF_CHECK_I(has_audio);
12746
12747         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12748                               DRM_MODE_FLAG_INTERLACE);
12749
12750         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12751                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12752                                       DRM_MODE_FLAG_PHSYNC);
12753                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12754                                       DRM_MODE_FLAG_NHSYNC);
12755                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12756                                       DRM_MODE_FLAG_PVSYNC);
12757                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12758                                       DRM_MODE_FLAG_NVSYNC);
12759         }
12760
12761         PIPE_CONF_CHECK_X(gmch_pfit.control);
12762         /* pfit ratios are autocomputed by the hw on gen4+ */
12763         if (INTEL_INFO(dev)->gen < 4)
12764                 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
12765         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12766
12767         if (!adjust) {
12768                 PIPE_CONF_CHECK_I(pipe_src_w);
12769                 PIPE_CONF_CHECK_I(pipe_src_h);
12770
12771                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12772                 if (current_config->pch_pfit.enabled) {
12773                         PIPE_CONF_CHECK_X(pch_pfit.pos);
12774                         PIPE_CONF_CHECK_X(pch_pfit.size);
12775                 }
12776
12777                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12778         }
12779
12780         /* BDW+ don't expose a synchronous way to read the state */
12781         if (IS_HASWELL(dev))
12782                 PIPE_CONF_CHECK_I(ips_enabled);
12783
12784         PIPE_CONF_CHECK_I(double_wide);
12785
12786         PIPE_CONF_CHECK_X(ddi_pll_sel);
12787
12788         PIPE_CONF_CHECK_P(shared_dpll);
12789         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12790         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12791         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12792         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12793         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12794         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12795         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12796         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12797         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12798
12799         PIPE_CONF_CHECK_X(dsi_pll.ctrl);
12800         PIPE_CONF_CHECK_X(dsi_pll.div);
12801
12802         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12803                 PIPE_CONF_CHECK_I(pipe_bpp);
12804
12805         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12806         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12807
12808 #undef PIPE_CONF_CHECK_X
12809 #undef PIPE_CONF_CHECK_I
12810 #undef PIPE_CONF_CHECK_P
12811 #undef PIPE_CONF_CHECK_FLAGS
12812 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12813 #undef PIPE_CONF_QUIRK
12814 #undef INTEL_ERR_OR_DBG_KMS
12815
12816         return ret;
12817 }
12818
12819 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12820                                            const struct intel_crtc_state *pipe_config)
12821 {
12822         if (pipe_config->has_pch_encoder) {
12823                 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12824                                                             &pipe_config->fdi_m_n);
12825                 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12826
12827                 /*
12828                  * FDI already provided one idea for the dotclock.
12829                  * Yell if the encoder disagrees.
12830                  */
12831                 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12832                      "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12833                      fdi_dotclock, dotclock);
12834         }
12835 }
12836
12837 static void verify_wm_state(struct drm_crtc *crtc,
12838                             struct drm_crtc_state *new_state)
12839 {
12840         struct drm_device *dev = crtc->dev;
12841         struct drm_i915_private *dev_priv = dev->dev_private;
12842         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12843         struct skl_ddb_entry *hw_entry, *sw_entry;
12844         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12845         const enum pipe pipe = intel_crtc->pipe;
12846         int plane;
12847
12848         if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
12849                 return;
12850
12851         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12852         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12853
12854         /* planes */
12855         for_each_plane(dev_priv, pipe, plane) {
12856                 hw_entry = &hw_ddb.plane[pipe][plane];
12857                 sw_entry = &sw_ddb->plane[pipe][plane];
12858
12859                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12860                         continue;
12861
12862                 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12863                           "(expected (%u,%u), found (%u,%u))\n",
12864                           pipe_name(pipe), plane + 1,
12865                           sw_entry->start, sw_entry->end,
12866                           hw_entry->start, hw_entry->end);
12867         }
12868
12869         /* cursor */
12870         hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12871         sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12872
12873         if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
12874                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12875                           "(expected (%u,%u), found (%u,%u))\n",
12876                           pipe_name(pipe),
12877                           sw_entry->start, sw_entry->end,
12878                           hw_entry->start, hw_entry->end);
12879         }
12880 }
12881
12882 static void
12883 verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
12884 {
12885         struct drm_connector *connector;
12886
12887         drm_for_each_connector(connector, dev) {
12888                 struct drm_encoder *encoder = connector->encoder;
12889                 struct drm_connector_state *state = connector->state;
12890
12891                 if (state->crtc != crtc)
12892                         continue;
12893
12894                 intel_connector_verify_state(to_intel_connector(connector));
12895
12896                 I915_STATE_WARN(state->best_encoder != encoder,
12897                      "connector's atomic encoder doesn't match legacy encoder\n");
12898         }
12899 }
12900
12901 static void
12902 verify_encoder_state(struct drm_device *dev)
12903 {
12904         struct intel_encoder *encoder;
12905         struct intel_connector *connector;
12906
12907         for_each_intel_encoder(dev, encoder) {
12908                 bool enabled = false;
12909                 enum pipe pipe;
12910
12911                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12912                               encoder->base.base.id,
12913                               encoder->base.name);
12914
12915                 for_each_intel_connector(dev, connector) {
12916                         if (connector->base.state->best_encoder != &encoder->base)
12917                                 continue;
12918                         enabled = true;
12919
12920                         I915_STATE_WARN(connector->base.state->crtc !=
12921                                         encoder->base.crtc,
12922                              "connector's crtc doesn't match encoder crtc\n");
12923                 }
12924
12925                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12926                      "encoder's enabled state mismatch "
12927                      "(expected %i, found %i)\n",
12928                      !!encoder->base.crtc, enabled);
12929
12930                 if (!encoder->base.crtc) {
12931                         bool active;
12932
12933                         active = encoder->get_hw_state(encoder, &pipe);
12934                         I915_STATE_WARN(active,
12935                              "encoder detached but still enabled on pipe %c.\n",
12936                              pipe_name(pipe));
12937                 }
12938         }
12939 }
12940
12941 static void
12942 verify_crtc_state(struct drm_crtc *crtc,
12943                   struct drm_crtc_state *old_crtc_state,
12944                   struct drm_crtc_state *new_crtc_state)
12945 {
12946         struct drm_device *dev = crtc->dev;
12947         struct drm_i915_private *dev_priv = dev->dev_private;
12948         struct intel_encoder *encoder;
12949         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12950         struct intel_crtc_state *pipe_config, *sw_config;
12951         struct drm_atomic_state *old_state;
12952         bool active;
12953
12954         old_state = old_crtc_state->state;
12955         __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
12956         pipe_config = to_intel_crtc_state(old_crtc_state);
12957         memset(pipe_config, 0, sizeof(*pipe_config));
12958         pipe_config->base.crtc = crtc;
12959         pipe_config->base.state = old_state;
12960
12961         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
12962
12963         active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
12964
12965         /* hw state is inconsistent with the pipe quirk */
12966         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12967             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12968                 active = new_crtc_state->active;
12969
12970         I915_STATE_WARN(new_crtc_state->active != active,
12971              "crtc active state doesn't match with hw state "
12972              "(expected %i, found %i)\n", new_crtc_state->active, active);
12973
12974         I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
12975              "transitional active state does not match atomic hw state "
12976              "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
12977
12978         for_each_encoder_on_crtc(dev, crtc, encoder) {
12979                 enum pipe pipe;
12980
12981                 active = encoder->get_hw_state(encoder, &pipe);
12982                 I915_STATE_WARN(active != new_crtc_state->active,
12983                         "[ENCODER:%i] active %i with crtc active %i\n",
12984                         encoder->base.base.id, active, new_crtc_state->active);
12985
12986                 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12987                                 "Encoder connected to wrong pipe %c\n",
12988                                 pipe_name(pipe));
12989
12990                 if (active)
12991                         encoder->get_config(encoder, pipe_config);
12992         }
12993
12994         if (!new_crtc_state->active)
12995                 return;
12996
12997         intel_pipe_config_sanity_check(dev_priv, pipe_config);
12998
12999         sw_config = to_intel_crtc_state(crtc->state);
13000         if (!intel_pipe_config_compare(dev, sw_config,
13001                                        pipe_config, false)) {
13002                 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13003                 intel_dump_pipe_config(intel_crtc, pipe_config,
13004                                        "[hw state]");
13005                 intel_dump_pipe_config(intel_crtc, sw_config,
13006                                        "[sw state]");
13007         }
13008 }
13009
13010 static void
13011 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13012                          struct intel_shared_dpll *pll,
13013                          struct drm_crtc *crtc,
13014                          struct drm_crtc_state *new_state)
13015 {
13016         struct intel_dpll_hw_state dpll_hw_state;
13017         unsigned crtc_mask;
13018         bool active;
13019
13020         memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13021
13022         DRM_DEBUG_KMS("%s\n", pll->name);
13023
13024         active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13025
13026         if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13027                 I915_STATE_WARN(!pll->on && pll->active_mask,
13028                      "pll in active use but not on in sw tracking\n");
13029                 I915_STATE_WARN(pll->on && !pll->active_mask,
13030                      "pll is on but not used by any active crtc\n");
13031                 I915_STATE_WARN(pll->on != active,
13032                      "pll on state mismatch (expected %i, found %i)\n",
13033                      pll->on, active);
13034         }
13035
13036         if (!crtc) {
13037                 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13038                                 "more active pll users than references: %x vs %x\n",
13039                                 pll->active_mask, pll->config.crtc_mask);
13040
13041                 return;
13042         }
13043
13044         crtc_mask = 1 << drm_crtc_index(crtc);
13045
13046         if (new_state->active)
13047                 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13048                                 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13049                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13050         else
13051                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13052                                 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13053                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13054
13055         I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13056                         "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13057                         crtc_mask, pll->config.crtc_mask);
13058
13059         I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13060                                           &dpll_hw_state,
13061                                           sizeof(dpll_hw_state)),
13062                         "pll hw state mismatch\n");
13063 }
13064
13065 static void
13066 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13067                          struct drm_crtc_state *old_crtc_state,
13068                          struct drm_crtc_state *new_crtc_state)
13069 {
13070         struct drm_i915_private *dev_priv = dev->dev_private;
13071         struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13072         struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13073
13074         if (new_state->shared_dpll)
13075                 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13076
13077         if (old_state->shared_dpll &&
13078             old_state->shared_dpll != new_state->shared_dpll) {
13079                 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13080                 struct intel_shared_dpll *pll = old_state->shared_dpll;
13081
13082                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13083                                 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13084                                 pipe_name(drm_crtc_index(crtc)));
13085                 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13086                                 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13087                                 pipe_name(drm_crtc_index(crtc)));
13088         }
13089 }
13090
13091 static void
13092 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13093                          struct drm_crtc_state *old_state,
13094                          struct drm_crtc_state *new_state)
13095 {
13096         if (!needs_modeset(new_state) &&
13097             !to_intel_crtc_state(new_state)->update_pipe)
13098                 return;
13099
13100         verify_wm_state(crtc, new_state);
13101         verify_connector_state(crtc->dev, crtc);
13102         verify_crtc_state(crtc, old_state, new_state);
13103         verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13104 }
13105
13106 static void
13107 verify_disabled_dpll_state(struct drm_device *dev)
13108 {
13109         struct drm_i915_private *dev_priv = dev->dev_private;
13110         int i;
13111
13112         for (i = 0; i < dev_priv->num_shared_dpll; i++)
13113                 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13114 }
13115
13116 static void
13117 intel_modeset_verify_disabled(struct drm_device *dev)
13118 {
13119         verify_encoder_state(dev);
13120         verify_connector_state(dev, NULL);
13121         verify_disabled_dpll_state(dev);
13122 }
13123
13124 static void update_scanline_offset(struct intel_crtc *crtc)
13125 {
13126         struct drm_device *dev = crtc->base.dev;
13127
13128         /*
13129          * The scanline counter increments at the leading edge of hsync.
13130          *
13131          * On most platforms it starts counting from vtotal-1 on the
13132          * first active line. That means the scanline counter value is
13133          * always one less than what we would expect. Ie. just after
13134          * start of vblank, which also occurs at start of hsync (on the
13135          * last active line), the scanline counter will read vblank_start-1.
13136          *
13137          * On gen2 the scanline counter starts counting from 1 instead
13138          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13139          * to keep the value positive), instead of adding one.
13140          *
13141          * On HSW+ the behaviour of the scanline counter depends on the output
13142          * type. For DP ports it behaves like most other platforms, but on HDMI
13143          * there's an extra 1 line difference. So we need to add two instead of
13144          * one to the value.
13145          */
13146         if (IS_GEN2(dev)) {
13147                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13148                 int vtotal;
13149
13150                 vtotal = adjusted_mode->crtc_vtotal;
13151                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13152                         vtotal /= 2;
13153
13154                 crtc->scanline_offset = vtotal - 1;
13155         } else if (HAS_DDI(dev) &&
13156                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
13157                 crtc->scanline_offset = 2;
13158         } else
13159                 crtc->scanline_offset = 1;
13160 }
13161
13162 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13163 {
13164         struct drm_device *dev = state->dev;
13165         struct drm_i915_private *dev_priv = to_i915(dev);
13166         struct intel_shared_dpll_config *shared_dpll = NULL;
13167         struct drm_crtc *crtc;
13168         struct drm_crtc_state *crtc_state;
13169         int i;
13170
13171         if (!dev_priv->display.crtc_compute_clock)
13172                 return;
13173
13174         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13175                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13176                 struct intel_shared_dpll *old_dpll =
13177                         to_intel_crtc_state(crtc->state)->shared_dpll;
13178
13179                 if (!needs_modeset(crtc_state))
13180                         continue;
13181
13182                 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13183
13184                 if (!old_dpll)
13185                         continue;
13186
13187                 if (!shared_dpll)
13188                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
13189
13190                 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13191         }
13192 }
13193
13194 /*
13195  * This implements the workaround described in the "notes" section of the mode
13196  * set sequence documentation. When going from no pipes or single pipe to
13197  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13198  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13199  */
13200 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13201 {
13202         struct drm_crtc_state *crtc_state;
13203         struct intel_crtc *intel_crtc;
13204         struct drm_crtc *crtc;
13205         struct intel_crtc_state *first_crtc_state = NULL;
13206         struct intel_crtc_state *other_crtc_state = NULL;
13207         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13208         int i;
13209
13210         /* look at all crtc's that are going to be enabled in during modeset */
13211         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13212                 intel_crtc = to_intel_crtc(crtc);
13213
13214                 if (!crtc_state->active || !needs_modeset(crtc_state))
13215                         continue;
13216
13217                 if (first_crtc_state) {
13218                         other_crtc_state = to_intel_crtc_state(crtc_state);
13219                         break;
13220                 } else {
13221                         first_crtc_state = to_intel_crtc_state(crtc_state);
13222                         first_pipe = intel_crtc->pipe;
13223                 }
13224         }
13225
13226         /* No workaround needed? */
13227         if (!first_crtc_state)
13228                 return 0;
13229
13230         /* w/a possibly needed, check how many crtc's are already enabled. */
13231         for_each_intel_crtc(state->dev, intel_crtc) {
13232                 struct intel_crtc_state *pipe_config;
13233
13234                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13235                 if (IS_ERR(pipe_config))
13236                         return PTR_ERR(pipe_config);
13237
13238                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13239
13240                 if (!pipe_config->base.active ||
13241                     needs_modeset(&pipe_config->base))
13242                         continue;
13243
13244                 /* 2 or more enabled crtcs means no need for w/a */
13245                 if (enabled_pipe != INVALID_PIPE)
13246                         return 0;
13247
13248                 enabled_pipe = intel_crtc->pipe;
13249         }
13250
13251         if (enabled_pipe != INVALID_PIPE)
13252                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13253         else if (other_crtc_state)
13254                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13255
13256         return 0;
13257 }
13258
13259 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13260 {
13261         struct drm_crtc *crtc;
13262         struct drm_crtc_state *crtc_state;
13263         int ret = 0;
13264
13265         /* add all active pipes to the state */
13266         for_each_crtc(state->dev, crtc) {
13267                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13268                 if (IS_ERR(crtc_state))
13269                         return PTR_ERR(crtc_state);
13270
13271                 if (!crtc_state->active || needs_modeset(crtc_state))
13272                         continue;
13273
13274                 crtc_state->mode_changed = true;
13275
13276                 ret = drm_atomic_add_affected_connectors(state, crtc);
13277                 if (ret)
13278                         break;
13279
13280                 ret = drm_atomic_add_affected_planes(state, crtc);
13281                 if (ret)
13282                         break;
13283         }
13284
13285         return ret;
13286 }
13287
13288 static int intel_modeset_checks(struct drm_atomic_state *state)
13289 {
13290         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13291         struct drm_i915_private *dev_priv = state->dev->dev_private;
13292         struct drm_crtc *crtc;
13293         struct drm_crtc_state *crtc_state;
13294         int ret = 0, i;
13295
13296         if (!check_digital_port_conflicts(state)) {
13297                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13298                 return -EINVAL;
13299         }
13300
13301         intel_state->modeset = true;
13302         intel_state->active_crtcs = dev_priv->active_crtcs;
13303
13304         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13305                 if (crtc_state->active)
13306                         intel_state->active_crtcs |= 1 << i;
13307                 else
13308                         intel_state->active_crtcs &= ~(1 << i);
13309         }
13310
13311         /*
13312          * See if the config requires any additional preparation, e.g.
13313          * to adjust global state with pipes off.  We need to do this
13314          * here so we can get the modeset_pipe updated config for the new
13315          * mode set on this crtc.  For other crtcs we need to use the
13316          * adjusted_mode bits in the crtc directly.
13317          */
13318         if (dev_priv->display.modeset_calc_cdclk) {
13319                 ret = dev_priv->display.modeset_calc_cdclk(state);
13320
13321                 if (!ret && intel_state->dev_cdclk != dev_priv->cdclk_freq)
13322                         ret = intel_modeset_all_pipes(state);
13323
13324                 if (ret < 0)
13325                         return ret;
13326
13327                 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13328                               intel_state->cdclk, intel_state->dev_cdclk);
13329         } else
13330                 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13331
13332         intel_modeset_clear_plls(state);
13333
13334         if (IS_HASWELL(dev_priv))
13335                 return haswell_mode_set_planes_workaround(state);
13336
13337         return 0;
13338 }
13339
13340 /*
13341  * Handle calculation of various watermark data at the end of the atomic check
13342  * phase.  The code here should be run after the per-crtc and per-plane 'check'
13343  * handlers to ensure that all derived state has been updated.
13344  */
13345 static void calc_watermark_data(struct drm_atomic_state *state)
13346 {
13347         struct drm_device *dev = state->dev;
13348         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13349         struct drm_crtc *crtc;
13350         struct drm_crtc_state *cstate;
13351         struct drm_plane *plane;
13352         struct drm_plane_state *pstate;
13353
13354         /*
13355          * Calculate watermark configuration details now that derived
13356          * plane/crtc state is all properly updated.
13357          */
13358         drm_for_each_crtc(crtc, dev) {
13359                 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
13360                         crtc->state;
13361
13362                 if (cstate->active)
13363                         intel_state->wm_config.num_pipes_active++;
13364         }
13365         drm_for_each_legacy_plane(plane, dev) {
13366                 pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
13367                         plane->state;
13368
13369                 if (!to_intel_plane_state(pstate)->visible)
13370                         continue;
13371
13372                 intel_state->wm_config.sprites_enabled = true;
13373                 if (pstate->crtc_w != pstate->src_w >> 16 ||
13374                     pstate->crtc_h != pstate->src_h >> 16)
13375                         intel_state->wm_config.sprites_scaled = true;
13376         }
13377 }
13378
13379 /**
13380  * intel_atomic_check - validate state object
13381  * @dev: drm device
13382  * @state: state to validate
13383  */
13384 static int intel_atomic_check(struct drm_device *dev,
13385                               struct drm_atomic_state *state)
13386 {
13387         struct drm_i915_private *dev_priv = to_i915(dev);
13388         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13389         struct drm_crtc *crtc;
13390         struct drm_crtc_state *crtc_state;
13391         int ret, i;
13392         bool any_ms = false;
13393
13394         ret = drm_atomic_helper_check_modeset(dev, state);
13395         if (ret)
13396                 return ret;
13397
13398         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13399                 struct intel_crtc_state *pipe_config =
13400                         to_intel_crtc_state(crtc_state);
13401
13402                 /* Catch I915_MODE_FLAG_INHERITED */
13403                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13404                         crtc_state->mode_changed = true;
13405
13406                 if (!crtc_state->enable) {
13407                         if (needs_modeset(crtc_state))
13408                                 any_ms = true;
13409                         continue;
13410                 }
13411
13412                 if (!needs_modeset(crtc_state))
13413                         continue;
13414
13415                 /* FIXME: For only active_changed we shouldn't need to do any
13416                  * state recomputation at all. */
13417
13418                 ret = drm_atomic_add_affected_connectors(state, crtc);
13419                 if (ret)
13420                         return ret;
13421
13422                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13423                 if (ret)
13424                         return ret;
13425
13426                 if (i915.fastboot &&
13427                     intel_pipe_config_compare(dev,
13428                                         to_intel_crtc_state(crtc->state),
13429                                         pipe_config, true)) {
13430                         crtc_state->mode_changed = false;
13431                         to_intel_crtc_state(crtc_state)->update_pipe = true;
13432                 }
13433
13434                 if (needs_modeset(crtc_state)) {
13435                         any_ms = true;
13436
13437                         ret = drm_atomic_add_affected_planes(state, crtc);
13438                         if (ret)
13439                                 return ret;
13440                 }
13441
13442                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13443                                        needs_modeset(crtc_state) ?
13444                                        "[modeset]" : "[fastset]");
13445         }
13446
13447         if (any_ms) {
13448                 ret = intel_modeset_checks(state);
13449
13450                 if (ret)
13451                         return ret;
13452         } else
13453                 intel_state->cdclk = dev_priv->cdclk_freq;
13454
13455         ret = drm_atomic_helper_check_planes(dev, state);
13456         if (ret)
13457                 return ret;
13458
13459         intel_fbc_choose_crtc(dev_priv, state);
13460         calc_watermark_data(state);
13461
13462         return 0;
13463 }
13464
13465 static int intel_atomic_prepare_commit(struct drm_device *dev,
13466                                        struct drm_atomic_state *state,
13467                                        bool nonblock)
13468 {
13469         struct drm_i915_private *dev_priv = dev->dev_private;
13470         struct drm_plane_state *plane_state;
13471         struct drm_crtc_state *crtc_state;
13472         struct drm_plane *plane;
13473         struct drm_crtc *crtc;
13474         int i, ret;
13475
13476         if (nonblock) {
13477                 DRM_DEBUG_KMS("i915 does not yet support nonblocking commit\n");
13478                 return -EINVAL;
13479         }
13480
13481         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13482                 if (state->legacy_cursor_update)
13483                         continue;
13484
13485                 ret = intel_crtc_wait_for_pending_flips(crtc);
13486                 if (ret)
13487                         return ret;
13488
13489                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13490                         flush_workqueue(dev_priv->wq);
13491         }
13492
13493         ret = mutex_lock_interruptible(&dev->struct_mutex);
13494         if (ret)
13495                 return ret;
13496
13497         ret = drm_atomic_helper_prepare_planes(dev, state);
13498         mutex_unlock(&dev->struct_mutex);
13499
13500         if (!ret && !nonblock) {
13501                 for_each_plane_in_state(state, plane, plane_state, i) {
13502                         struct intel_plane_state *intel_plane_state =
13503                                 to_intel_plane_state(plane_state);
13504
13505                         if (!intel_plane_state->wait_req)
13506                                 continue;
13507
13508                         ret = __i915_wait_request(intel_plane_state->wait_req,
13509                                                   true, NULL, NULL);
13510                         if (ret) {
13511                                 /* Any hang should be swallowed by the wait */
13512                                 WARN_ON(ret == -EIO);
13513                                 mutex_lock(&dev->struct_mutex);
13514                                 drm_atomic_helper_cleanup_planes(dev, state);
13515                                 mutex_unlock(&dev->struct_mutex);
13516                                 break;
13517                         }
13518                 }
13519         }
13520
13521         return ret;
13522 }
13523
13524 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13525                                           struct drm_i915_private *dev_priv,
13526                                           unsigned crtc_mask)
13527 {
13528         unsigned last_vblank_count[I915_MAX_PIPES];
13529         enum pipe pipe;
13530         int ret;
13531
13532         if (!crtc_mask)
13533                 return;
13534
13535         for_each_pipe(dev_priv, pipe) {
13536                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13537
13538                 if (!((1 << pipe) & crtc_mask))
13539                         continue;
13540
13541                 ret = drm_crtc_vblank_get(crtc);
13542                 if (WARN_ON(ret != 0)) {
13543                         crtc_mask &= ~(1 << pipe);
13544                         continue;
13545                 }
13546
13547                 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13548         }
13549
13550         for_each_pipe(dev_priv, pipe) {
13551                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13552                 long lret;
13553
13554                 if (!((1 << pipe) & crtc_mask))
13555                         continue;
13556
13557                 lret = wait_event_timeout(dev->vblank[pipe].queue,
13558                                 last_vblank_count[pipe] !=
13559                                         drm_crtc_vblank_count(crtc),
13560                                 msecs_to_jiffies(50));
13561
13562                 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
13563
13564                 drm_crtc_vblank_put(crtc);
13565         }
13566 }
13567
13568 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13569 {
13570         /* fb updated, need to unpin old fb */
13571         if (crtc_state->fb_changed)
13572                 return true;
13573
13574         /* wm changes, need vblank before final wm's */
13575         if (crtc_state->update_wm_post)
13576                 return true;
13577
13578         /*
13579          * cxsr is re-enabled after vblank.
13580          * This is already handled by crtc_state->update_wm_post,
13581          * but added for clarity.
13582          */
13583         if (crtc_state->disable_cxsr)
13584                 return true;
13585
13586         return false;
13587 }
13588
13589 /**
13590  * intel_atomic_commit - commit validated state object
13591  * @dev: DRM device
13592  * @state: the top-level driver state object
13593  * @nonblock: nonblocking commit
13594  *
13595  * This function commits a top-level state object that has been validated
13596  * with drm_atomic_helper_check().
13597  *
13598  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13599  * we can only handle plane-related operations and do not yet support
13600  * nonblocking commit.
13601  *
13602  * RETURNS
13603  * Zero for success or -errno.
13604  */
13605 static int intel_atomic_commit(struct drm_device *dev,
13606                                struct drm_atomic_state *state,
13607                                bool nonblock)
13608 {
13609         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13610         struct drm_i915_private *dev_priv = dev->dev_private;
13611         struct drm_crtc_state *old_crtc_state;
13612         struct drm_crtc *crtc;
13613         struct intel_crtc_state *intel_cstate;
13614         int ret = 0, i;
13615         bool hw_check = intel_state->modeset;
13616         unsigned long put_domains[I915_MAX_PIPES] = {};
13617         unsigned crtc_vblank_mask = 0;
13618
13619         ret = intel_atomic_prepare_commit(dev, state, nonblock);
13620         if (ret) {
13621                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13622                 return ret;
13623         }
13624
13625         drm_atomic_helper_swap_state(dev, state);
13626         dev_priv->wm.config = intel_state->wm_config;
13627         intel_shared_dpll_commit(state);
13628
13629         if (intel_state->modeset) {
13630                 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13631                        sizeof(intel_state->min_pixclk));
13632                 dev_priv->active_crtcs = intel_state->active_crtcs;
13633                 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
13634
13635                 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13636         }
13637
13638         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13639                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13640
13641                 if (needs_modeset(crtc->state) ||
13642                     to_intel_crtc_state(crtc->state)->update_pipe) {
13643                         hw_check = true;
13644
13645                         put_domains[to_intel_crtc(crtc)->pipe] =
13646                                 modeset_get_crtc_power_domains(crtc,
13647                                         to_intel_crtc_state(crtc->state));
13648                 }
13649
13650                 if (!needs_modeset(crtc->state))
13651                         continue;
13652
13653                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13654
13655                 if (old_crtc_state->active) {
13656                         intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
13657                         dev_priv->display.crtc_disable(crtc);
13658                         intel_crtc->active = false;
13659                         intel_fbc_disable(intel_crtc);
13660                         intel_disable_shared_dpll(intel_crtc);
13661
13662                         /*
13663                          * Underruns don't always raise
13664                          * interrupts, so check manually.
13665                          */
13666                         intel_check_cpu_fifo_underruns(dev_priv);
13667                         intel_check_pch_fifo_underruns(dev_priv);
13668
13669                         if (!crtc->state->active)
13670                                 intel_update_watermarks(crtc);
13671                 }
13672         }
13673
13674         /* Only after disabling all output pipelines that will be changed can we
13675          * update the the output configuration. */
13676         intel_modeset_update_crtc_state(state);
13677
13678         if (intel_state->modeset) {
13679                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13680
13681                 if (dev_priv->display.modeset_commit_cdclk &&
13682                     intel_state->dev_cdclk != dev_priv->cdclk_freq)
13683                         dev_priv->display.modeset_commit_cdclk(state);
13684
13685                 intel_modeset_verify_disabled(dev);
13686         }
13687
13688         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13689         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13690                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13691                 bool modeset = needs_modeset(crtc->state);
13692                 struct intel_crtc_state *pipe_config =
13693                         to_intel_crtc_state(crtc->state);
13694                 bool update_pipe = !modeset && pipe_config->update_pipe;
13695
13696                 if (modeset && crtc->state->active) {
13697                         update_scanline_offset(to_intel_crtc(crtc));
13698                         dev_priv->display.crtc_enable(crtc);
13699                 }
13700
13701                 if (!modeset)
13702                         intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13703
13704                 if (crtc->state->active &&
13705                     drm_atomic_get_existing_plane_state(state, crtc->primary))
13706                         intel_fbc_enable(intel_crtc);
13707
13708                 if (crtc->state->active &&
13709                     (crtc->state->planes_changed || update_pipe))
13710                         drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
13711
13712                 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13713                         crtc_vblank_mask |= 1 << i;
13714         }
13715
13716         /* FIXME: add subpixel order */
13717
13718         if (!state->legacy_cursor_update)
13719                 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13720
13721         /*
13722          * Now that the vblank has passed, we can go ahead and program the
13723          * optimal watermarks on platforms that need two-step watermark
13724          * programming.
13725          *
13726          * TODO: Move this (and other cleanup) to an async worker eventually.
13727          */
13728         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13729                 intel_cstate = to_intel_crtc_state(crtc->state);
13730
13731                 if (dev_priv->display.optimize_watermarks)
13732                         dev_priv->display.optimize_watermarks(intel_cstate);
13733         }
13734
13735         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13736                 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13737
13738                 if (put_domains[i])
13739                         modeset_put_power_domains(dev_priv, put_domains[i]);
13740
13741                 intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
13742         }
13743
13744         if (intel_state->modeset)
13745                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13746
13747         mutex_lock(&dev->struct_mutex);
13748         drm_atomic_helper_cleanup_planes(dev, state);
13749         mutex_unlock(&dev->struct_mutex);
13750
13751         drm_atomic_state_free(state);
13752
13753         /* As one of the primary mmio accessors, KMS has a high likelihood
13754          * of triggering bugs in unclaimed access. After we finish
13755          * modesetting, see if an error has been flagged, and if so
13756          * enable debugging for the next modeset - and hope we catch
13757          * the culprit.
13758          *
13759          * XXX note that we assume display power is on at this point.
13760          * This might hold true now but we need to add pm helper to check
13761          * unclaimed only when the hardware is on, as atomic commits
13762          * can happen also when the device is completely off.
13763          */
13764         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13765
13766         return 0;
13767 }
13768
13769 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13770 {
13771         struct drm_device *dev = crtc->dev;
13772         struct drm_atomic_state *state;
13773         struct drm_crtc_state *crtc_state;
13774         int ret;
13775
13776         state = drm_atomic_state_alloc(dev);
13777         if (!state) {
13778                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13779                               crtc->base.id);
13780                 return;
13781         }
13782
13783         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13784
13785 retry:
13786         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13787         ret = PTR_ERR_OR_ZERO(crtc_state);
13788         if (!ret) {
13789                 if (!crtc_state->active)
13790                         goto out;
13791
13792                 crtc_state->mode_changed = true;
13793                 ret = drm_atomic_commit(state);
13794         }
13795
13796         if (ret == -EDEADLK) {
13797                 drm_atomic_state_clear(state);
13798                 drm_modeset_backoff(state->acquire_ctx);
13799                 goto retry;
13800         }
13801
13802         if (ret)
13803 out:
13804                 drm_atomic_state_free(state);
13805 }
13806
13807 #undef for_each_intel_crtc_masked
13808
13809 static const struct drm_crtc_funcs intel_crtc_funcs = {
13810         .gamma_set = drm_atomic_helper_legacy_gamma_set,
13811         .set_config = drm_atomic_helper_set_config,
13812         .set_property = drm_atomic_helper_crtc_set_property,
13813         .destroy = intel_crtc_destroy,
13814         .page_flip = intel_crtc_page_flip,
13815         .atomic_duplicate_state = intel_crtc_duplicate_state,
13816         .atomic_destroy_state = intel_crtc_destroy_state,
13817 };
13818
13819 /**
13820  * intel_prepare_plane_fb - Prepare fb for usage on plane
13821  * @plane: drm plane to prepare for
13822  * @fb: framebuffer to prepare for presentation
13823  *
13824  * Prepares a framebuffer for usage on a display plane.  Generally this
13825  * involves pinning the underlying object and updating the frontbuffer tracking
13826  * bits.  Some older platforms need special physical address handling for
13827  * cursor planes.
13828  *
13829  * Must be called with struct_mutex held.
13830  *
13831  * Returns 0 on success, negative error code on failure.
13832  */
13833 int
13834 intel_prepare_plane_fb(struct drm_plane *plane,
13835                        const struct drm_plane_state *new_state)
13836 {
13837         struct drm_device *dev = plane->dev;
13838         struct drm_framebuffer *fb = new_state->fb;
13839         struct intel_plane *intel_plane = to_intel_plane(plane);
13840         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13841         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13842         int ret = 0;
13843
13844         if (!obj && !old_obj)
13845                 return 0;
13846
13847         if (old_obj) {
13848                 struct drm_crtc_state *crtc_state =
13849                         drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13850
13851                 /* Big Hammer, we also need to ensure that any pending
13852                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13853                  * current scanout is retired before unpinning the old
13854                  * framebuffer. Note that we rely on userspace rendering
13855                  * into the buffer attached to the pipe they are waiting
13856                  * on. If not, userspace generates a GPU hang with IPEHR
13857                  * point to the MI_WAIT_FOR_EVENT.
13858                  *
13859                  * This should only fail upon a hung GPU, in which case we
13860                  * can safely continue.
13861                  */
13862                 if (needs_modeset(crtc_state))
13863                         ret = i915_gem_object_wait_rendering(old_obj, true);
13864                 if (ret) {
13865                         /* GPU hangs should have been swallowed by the wait */
13866                         WARN_ON(ret == -EIO);
13867                         return ret;
13868                 }
13869         }
13870
13871         /* For framebuffer backed by dmabuf, wait for fence */
13872         if (obj && obj->base.dma_buf) {
13873                 long lret;
13874
13875                 lret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
13876                                                            false, true,
13877                                                            MAX_SCHEDULE_TIMEOUT);
13878                 if (lret == -ERESTARTSYS)
13879                         return lret;
13880
13881                 WARN(lret < 0, "waiting returns %li\n", lret);
13882         }
13883
13884         if (!obj) {
13885                 ret = 0;
13886         } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13887             INTEL_INFO(dev)->cursor_needs_physical) {
13888                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13889                 ret = i915_gem_object_attach_phys(obj, align);
13890                 if (ret)
13891                         DRM_DEBUG_KMS("failed to attach phys object\n");
13892         } else {
13893                 ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
13894         }
13895
13896         if (ret == 0) {
13897                 if (obj) {
13898                         struct intel_plane_state *plane_state =
13899                                 to_intel_plane_state(new_state);
13900
13901                         i915_gem_request_assign(&plane_state->wait_req,
13902                                                 obj->last_write_req);
13903                 }
13904
13905                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13906         }
13907
13908         return ret;
13909 }
13910
13911 /**
13912  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13913  * @plane: drm plane to clean up for
13914  * @fb: old framebuffer that was on plane
13915  *
13916  * Cleans up a framebuffer that has just been removed from a plane.
13917  *
13918  * Must be called with struct_mutex held.
13919  */
13920 void
13921 intel_cleanup_plane_fb(struct drm_plane *plane,
13922                        const struct drm_plane_state *old_state)
13923 {
13924         struct drm_device *dev = plane->dev;
13925         struct intel_plane *intel_plane = to_intel_plane(plane);
13926         struct intel_plane_state *old_intel_state;
13927         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13928         struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
13929
13930         old_intel_state = to_intel_plane_state(old_state);
13931
13932         if (!obj && !old_obj)
13933                 return;
13934
13935         if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13936             !INTEL_INFO(dev)->cursor_needs_physical))
13937                 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
13938
13939         /* prepare_fb aborted? */
13940         if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13941             (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13942                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13943
13944         i915_gem_request_assign(&old_intel_state->wait_req, NULL);
13945 }
13946
13947 int
13948 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13949 {
13950         int max_scale;
13951         struct drm_device *dev;
13952         struct drm_i915_private *dev_priv;
13953         int crtc_clock, cdclk;
13954
13955         if (!intel_crtc || !crtc_state->base.enable)
13956                 return DRM_PLANE_HELPER_NO_SCALING;
13957
13958         dev = intel_crtc->base.dev;
13959         dev_priv = dev->dev_private;
13960         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13961         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13962
13963         if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
13964                 return DRM_PLANE_HELPER_NO_SCALING;
13965
13966         /*
13967          * skl max scale is lower of:
13968          *    close to 3 but not 3, -1 is for that purpose
13969          *            or
13970          *    cdclk/crtc_clock
13971          */
13972         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13973
13974         return max_scale;
13975 }
13976
13977 static int
13978 intel_check_primary_plane(struct drm_plane *plane,
13979                           struct intel_crtc_state *crtc_state,
13980                           struct intel_plane_state *state)
13981 {
13982         struct drm_crtc *crtc = state->base.crtc;
13983         struct drm_framebuffer *fb = state->base.fb;
13984         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13985         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13986         bool can_position = false;
13987
13988         if (INTEL_INFO(plane->dev)->gen >= 9) {
13989                 /* use scaler when colorkey is not required */
13990                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13991                         min_scale = 1;
13992                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13993                 }
13994                 can_position = true;
13995         }
13996
13997         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13998                                              &state->dst, &state->clip,
13999                                              min_scale, max_scale,
14000                                              can_position, true,
14001                                              &state->visible);
14002 }
14003
14004 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14005                                     struct drm_crtc_state *old_crtc_state)
14006 {
14007         struct drm_device *dev = crtc->dev;
14008         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14009         struct intel_crtc_state *old_intel_state =
14010                 to_intel_crtc_state(old_crtc_state);
14011         bool modeset = needs_modeset(crtc->state);
14012
14013         /* Perform vblank evasion around commit operation */
14014         intel_pipe_update_start(intel_crtc);
14015
14016         if (modeset)
14017                 return;
14018
14019         if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14020                 intel_color_set_csc(crtc->state);
14021                 intel_color_load_luts(crtc->state);
14022         }
14023
14024         if (to_intel_crtc_state(crtc->state)->update_pipe)
14025                 intel_update_pipe_config(intel_crtc, old_intel_state);
14026         else if (INTEL_INFO(dev)->gen >= 9)
14027                 skl_detach_scalers(intel_crtc);
14028 }
14029
14030 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14031                                      struct drm_crtc_state *old_crtc_state)
14032 {
14033         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14034
14035         intel_pipe_update_end(intel_crtc);
14036 }
14037
14038 /**
14039  * intel_plane_destroy - destroy a plane
14040  * @plane: plane to destroy
14041  *
14042  * Common destruction function for all types of planes (primary, cursor,
14043  * sprite).
14044  */
14045 void intel_plane_destroy(struct drm_plane *plane)
14046 {
14047         struct intel_plane *intel_plane = to_intel_plane(plane);
14048         drm_plane_cleanup(plane);
14049         kfree(intel_plane);
14050 }
14051
14052 const struct drm_plane_funcs intel_plane_funcs = {
14053         .update_plane = drm_atomic_helper_update_plane,
14054         .disable_plane = drm_atomic_helper_disable_plane,
14055         .destroy = intel_plane_destroy,
14056         .set_property = drm_atomic_helper_plane_set_property,
14057         .atomic_get_property = intel_plane_atomic_get_property,
14058         .atomic_set_property = intel_plane_atomic_set_property,
14059         .atomic_duplicate_state = intel_plane_duplicate_state,
14060         .atomic_destroy_state = intel_plane_destroy_state,
14061
14062 };
14063
14064 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14065                                                     int pipe)
14066 {
14067         struct intel_plane *primary = NULL;
14068         struct intel_plane_state *state = NULL;
14069         const uint32_t *intel_primary_formats;
14070         unsigned int num_formats;
14071         int ret;
14072
14073         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14074         if (!primary)
14075                 goto fail;
14076
14077         state = intel_create_plane_state(&primary->base);
14078         if (!state)
14079                 goto fail;
14080         primary->base.state = &state->base;
14081
14082         primary->can_scale = false;
14083         primary->max_downscale = 1;
14084         if (INTEL_INFO(dev)->gen >= 9) {
14085                 primary->can_scale = true;
14086                 state->scaler_id = -1;
14087         }
14088         primary->pipe = pipe;
14089         primary->plane = pipe;
14090         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14091         primary->check_plane = intel_check_primary_plane;
14092         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14093                 primary->plane = !pipe;
14094
14095         if (INTEL_INFO(dev)->gen >= 9) {
14096                 intel_primary_formats = skl_primary_formats;
14097                 num_formats = ARRAY_SIZE(skl_primary_formats);
14098
14099                 primary->update_plane = skylake_update_primary_plane;
14100                 primary->disable_plane = skylake_disable_primary_plane;
14101         } else if (HAS_PCH_SPLIT(dev)) {
14102                 intel_primary_formats = i965_primary_formats;
14103                 num_formats = ARRAY_SIZE(i965_primary_formats);
14104
14105                 primary->update_plane = ironlake_update_primary_plane;
14106                 primary->disable_plane = i9xx_disable_primary_plane;
14107         } else if (INTEL_INFO(dev)->gen >= 4) {
14108                 intel_primary_formats = i965_primary_formats;
14109                 num_formats = ARRAY_SIZE(i965_primary_formats);
14110
14111                 primary->update_plane = i9xx_update_primary_plane;
14112                 primary->disable_plane = i9xx_disable_primary_plane;
14113         } else {
14114                 intel_primary_formats = i8xx_primary_formats;
14115                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14116
14117                 primary->update_plane = i9xx_update_primary_plane;
14118                 primary->disable_plane = i9xx_disable_primary_plane;
14119         }
14120
14121         ret = drm_universal_plane_init(dev, &primary->base, 0,
14122                                        &intel_plane_funcs,
14123                                        intel_primary_formats, num_formats,
14124                                        DRM_PLANE_TYPE_PRIMARY, NULL);
14125         if (ret)
14126                 goto fail;
14127
14128         if (INTEL_INFO(dev)->gen >= 4)
14129                 intel_create_rotation_property(dev, primary);
14130
14131         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14132
14133         return &primary->base;
14134
14135 fail:
14136         kfree(state);
14137         kfree(primary);
14138
14139         return NULL;
14140 }
14141
14142 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14143 {
14144         if (!dev->mode_config.rotation_property) {
14145                 unsigned long flags = BIT(DRM_ROTATE_0) |
14146                         BIT(DRM_ROTATE_180);
14147
14148                 if (INTEL_INFO(dev)->gen >= 9)
14149                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14150
14151                 dev->mode_config.rotation_property =
14152                         drm_mode_create_rotation_property(dev, flags);
14153         }
14154         if (dev->mode_config.rotation_property)
14155                 drm_object_attach_property(&plane->base.base,
14156                                 dev->mode_config.rotation_property,
14157                                 plane->base.state->rotation);
14158 }
14159
14160 static int
14161 intel_check_cursor_plane(struct drm_plane *plane,
14162                          struct intel_crtc_state *crtc_state,
14163                          struct intel_plane_state *state)
14164 {
14165         struct drm_crtc *crtc = crtc_state->base.crtc;
14166         struct drm_framebuffer *fb = state->base.fb;
14167         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14168         enum pipe pipe = to_intel_plane(plane)->pipe;
14169         unsigned stride;
14170         int ret;
14171
14172         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14173                                             &state->dst, &state->clip,
14174                                             DRM_PLANE_HELPER_NO_SCALING,
14175                                             DRM_PLANE_HELPER_NO_SCALING,
14176                                             true, true, &state->visible);
14177         if (ret)
14178                 return ret;
14179
14180         /* if we want to turn off the cursor ignore width and height */
14181         if (!obj)
14182                 return 0;
14183
14184         /* Check for which cursor types we support */
14185         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14186                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14187                           state->base.crtc_w, state->base.crtc_h);
14188                 return -EINVAL;
14189         }
14190
14191         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14192         if (obj->base.size < stride * state->base.crtc_h) {
14193                 DRM_DEBUG_KMS("buffer is too small\n");
14194                 return -ENOMEM;
14195         }
14196
14197         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14198                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14199                 return -EINVAL;
14200         }
14201
14202         /*
14203          * There's something wrong with the cursor on CHV pipe C.
14204          * If it straddles the left edge of the screen then
14205          * moving it away from the edge or disabling it often
14206          * results in a pipe underrun, and often that can lead to
14207          * dead pipe (constant underrun reported, and it scans
14208          * out just a solid color). To recover from that, the
14209          * display power well must be turned off and on again.
14210          * Refuse the put the cursor into that compromised position.
14211          */
14212         if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14213             state->visible && state->base.crtc_x < 0) {
14214                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14215                 return -EINVAL;
14216         }
14217
14218         return 0;
14219 }
14220
14221 static void
14222 intel_disable_cursor_plane(struct drm_plane *plane,
14223                            struct drm_crtc *crtc)
14224 {
14225         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14226
14227         intel_crtc->cursor_addr = 0;
14228         intel_crtc_update_cursor(crtc, NULL);
14229 }
14230
14231 static void
14232 intel_update_cursor_plane(struct drm_plane *plane,
14233                           const struct intel_crtc_state *crtc_state,
14234                           const struct intel_plane_state *state)
14235 {
14236         struct drm_crtc *crtc = crtc_state->base.crtc;
14237         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14238         struct drm_device *dev = plane->dev;
14239         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14240         uint32_t addr;
14241
14242         if (!obj)
14243                 addr = 0;
14244         else if (!INTEL_INFO(dev)->cursor_needs_physical)
14245                 addr = i915_gem_obj_ggtt_offset(obj);
14246         else
14247                 addr = obj->phys_handle->busaddr;
14248
14249         intel_crtc->cursor_addr = addr;
14250         intel_crtc_update_cursor(crtc, state);
14251 }
14252
14253 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14254                                                    int pipe)
14255 {
14256         struct intel_plane *cursor = NULL;
14257         struct intel_plane_state *state = NULL;
14258         int ret;
14259
14260         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14261         if (!cursor)
14262                 goto fail;
14263
14264         state = intel_create_plane_state(&cursor->base);
14265         if (!state)
14266                 goto fail;
14267         cursor->base.state = &state->base;
14268
14269         cursor->can_scale = false;
14270         cursor->max_downscale = 1;
14271         cursor->pipe = pipe;
14272         cursor->plane = pipe;
14273         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14274         cursor->check_plane = intel_check_cursor_plane;
14275         cursor->update_plane = intel_update_cursor_plane;
14276         cursor->disable_plane = intel_disable_cursor_plane;
14277
14278         ret = drm_universal_plane_init(dev, &cursor->base, 0,
14279                                        &intel_plane_funcs,
14280                                        intel_cursor_formats,
14281                                        ARRAY_SIZE(intel_cursor_formats),
14282                                        DRM_PLANE_TYPE_CURSOR, NULL);
14283         if (ret)
14284                 goto fail;
14285
14286         if (INTEL_INFO(dev)->gen >= 4) {
14287                 if (!dev->mode_config.rotation_property)
14288                         dev->mode_config.rotation_property =
14289                                 drm_mode_create_rotation_property(dev,
14290                                                         BIT(DRM_ROTATE_0) |
14291                                                         BIT(DRM_ROTATE_180));
14292                 if (dev->mode_config.rotation_property)
14293                         drm_object_attach_property(&cursor->base.base,
14294                                 dev->mode_config.rotation_property,
14295                                 state->base.rotation);
14296         }
14297
14298         if (INTEL_INFO(dev)->gen >=9)
14299                 state->scaler_id = -1;
14300
14301         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14302
14303         return &cursor->base;
14304
14305 fail:
14306         kfree(state);
14307         kfree(cursor);
14308
14309         return NULL;
14310 }
14311
14312 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14313         struct intel_crtc_state *crtc_state)
14314 {
14315         int i;
14316         struct intel_scaler *intel_scaler;
14317         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14318
14319         for (i = 0; i < intel_crtc->num_scalers; i++) {
14320                 intel_scaler = &scaler_state->scalers[i];
14321                 intel_scaler->in_use = 0;
14322                 intel_scaler->mode = PS_SCALER_MODE_DYN;
14323         }
14324
14325         scaler_state->scaler_id = -1;
14326 }
14327
14328 static void intel_crtc_init(struct drm_device *dev, int pipe)
14329 {
14330         struct drm_i915_private *dev_priv = dev->dev_private;
14331         struct intel_crtc *intel_crtc;
14332         struct intel_crtc_state *crtc_state = NULL;
14333         struct drm_plane *primary = NULL;
14334         struct drm_plane *cursor = NULL;
14335         int ret;
14336
14337         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14338         if (intel_crtc == NULL)
14339                 return;
14340
14341         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14342         if (!crtc_state)
14343                 goto fail;
14344         intel_crtc->config = crtc_state;
14345         intel_crtc->base.state = &crtc_state->base;
14346         crtc_state->base.crtc = &intel_crtc->base;
14347
14348         /* initialize shared scalers */
14349         if (INTEL_INFO(dev)->gen >= 9) {
14350                 if (pipe == PIPE_C)
14351                         intel_crtc->num_scalers = 1;
14352                 else
14353                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
14354
14355                 skl_init_scalers(dev, intel_crtc, crtc_state);
14356         }
14357
14358         primary = intel_primary_plane_create(dev, pipe);
14359         if (!primary)
14360                 goto fail;
14361
14362         cursor = intel_cursor_plane_create(dev, pipe);
14363         if (!cursor)
14364                 goto fail;
14365
14366         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14367                                         cursor, &intel_crtc_funcs, NULL);
14368         if (ret)
14369                 goto fail;
14370
14371         /*
14372          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14373          * is hooked to pipe B. Hence we want plane A feeding pipe B.
14374          */
14375         intel_crtc->pipe = pipe;
14376         intel_crtc->plane = pipe;
14377         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14378                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14379                 intel_crtc->plane = !pipe;
14380         }
14381
14382         intel_crtc->cursor_base = ~0;
14383         intel_crtc->cursor_cntl = ~0;
14384         intel_crtc->cursor_size = ~0;
14385
14386         intel_crtc->wm.cxsr_allowed = true;
14387
14388         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14389                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14390         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14391         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14392
14393         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14394
14395         intel_color_init(&intel_crtc->base);
14396
14397         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14398         return;
14399
14400 fail:
14401         if (primary)
14402                 drm_plane_cleanup(primary);
14403         if (cursor)
14404                 drm_plane_cleanup(cursor);
14405         kfree(crtc_state);
14406         kfree(intel_crtc);
14407 }
14408
14409 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14410 {
14411         struct drm_encoder *encoder = connector->base.encoder;
14412         struct drm_device *dev = connector->base.dev;
14413
14414         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14415
14416         if (!encoder || WARN_ON(!encoder->crtc))
14417                 return INVALID_PIPE;
14418
14419         return to_intel_crtc(encoder->crtc)->pipe;
14420 }
14421
14422 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14423                                 struct drm_file *file)
14424 {
14425         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14426         struct drm_crtc *drmmode_crtc;
14427         struct intel_crtc *crtc;
14428
14429         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14430
14431         if (!drmmode_crtc) {
14432                 DRM_ERROR("no such CRTC id\n");
14433                 return -ENOENT;
14434         }
14435
14436         crtc = to_intel_crtc(drmmode_crtc);
14437         pipe_from_crtc_id->pipe = crtc->pipe;
14438
14439         return 0;
14440 }
14441
14442 static int intel_encoder_clones(struct intel_encoder *encoder)
14443 {
14444         struct drm_device *dev = encoder->base.dev;
14445         struct intel_encoder *source_encoder;
14446         int index_mask = 0;
14447         int entry = 0;
14448
14449         for_each_intel_encoder(dev, source_encoder) {
14450                 if (encoders_cloneable(encoder, source_encoder))
14451                         index_mask |= (1 << entry);
14452
14453                 entry++;
14454         }
14455
14456         return index_mask;
14457 }
14458
14459 static bool has_edp_a(struct drm_device *dev)
14460 {
14461         struct drm_i915_private *dev_priv = dev->dev_private;
14462
14463         if (!IS_MOBILE(dev))
14464                 return false;
14465
14466         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14467                 return false;
14468
14469         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14470                 return false;
14471
14472         return true;
14473 }
14474
14475 static bool intel_crt_present(struct drm_device *dev)
14476 {
14477         struct drm_i915_private *dev_priv = dev->dev_private;
14478
14479         if (INTEL_INFO(dev)->gen >= 9)
14480                 return false;
14481
14482         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14483                 return false;
14484
14485         if (IS_CHERRYVIEW(dev))
14486                 return false;
14487
14488         if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14489                 return false;
14490
14491         /* DDI E can't be used if DDI A requires 4 lanes */
14492         if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14493                 return false;
14494
14495         if (!dev_priv->vbt.int_crt_support)
14496                 return false;
14497
14498         return true;
14499 }
14500
14501 static void intel_setup_outputs(struct drm_device *dev)
14502 {
14503         struct drm_i915_private *dev_priv = dev->dev_private;
14504         struct intel_encoder *encoder;
14505         bool dpd_is_edp = false;
14506
14507         intel_lvds_init(dev);
14508
14509         if (intel_crt_present(dev))
14510                 intel_crt_init(dev);
14511
14512         if (IS_BROXTON(dev)) {
14513                 /*
14514                  * FIXME: Broxton doesn't support port detection via the
14515                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14516                  * detect the ports.
14517                  */
14518                 intel_ddi_init(dev, PORT_A);
14519                 intel_ddi_init(dev, PORT_B);
14520                 intel_ddi_init(dev, PORT_C);
14521
14522                 intel_dsi_init(dev);
14523         } else if (HAS_DDI(dev)) {
14524                 int found;
14525
14526                 /*
14527                  * Haswell uses DDI functions to detect digital outputs.
14528                  * On SKL pre-D0 the strap isn't connected, so we assume
14529                  * it's there.
14530                  */
14531                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14532                 /* WaIgnoreDDIAStrap: skl */
14533                 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14534                         intel_ddi_init(dev, PORT_A);
14535
14536                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14537                  * register */
14538                 found = I915_READ(SFUSE_STRAP);
14539
14540                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14541                         intel_ddi_init(dev, PORT_B);
14542                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14543                         intel_ddi_init(dev, PORT_C);
14544                 if (found & SFUSE_STRAP_DDID_DETECTED)
14545                         intel_ddi_init(dev, PORT_D);
14546                 /*
14547                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14548                  */
14549                 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14550                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14551                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14552                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14553                         intel_ddi_init(dev, PORT_E);
14554
14555         } else if (HAS_PCH_SPLIT(dev)) {
14556                 int found;
14557                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14558
14559                 if (has_edp_a(dev))
14560                         intel_dp_init(dev, DP_A, PORT_A);
14561
14562                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14563                         /* PCH SDVOB multiplex with HDMIB */
14564                         found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14565                         if (!found)
14566                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14567                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14568                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14569                 }
14570
14571                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14572                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14573
14574                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14575                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14576
14577                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14578                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14579
14580                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14581                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14582         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14583                 bool has_edp, has_port;
14584
14585                 /*
14586                  * The DP_DETECTED bit is the latched state of the DDC
14587                  * SDA pin at boot. However since eDP doesn't require DDC
14588                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14589                  * eDP ports may have been muxed to an alternate function.
14590                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14591                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14592                  * detect eDP ports.
14593                  *
14594                  * Sadly the straps seem to be missing sometimes even for HDMI
14595                  * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
14596                  * and VBT for the presence of the port. Additionally we can't
14597                  * trust the port type the VBT declares as we've seen at least
14598                  * HDMI ports that the VBT claim are DP or eDP.
14599                  */
14600                 has_edp = intel_dp_is_edp(dev, PORT_B);
14601                 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
14602                 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
14603                         has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
14604                 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
14605                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14606
14607                 has_edp = intel_dp_is_edp(dev, PORT_C);
14608                 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
14609                 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
14610                         has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
14611                 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
14612                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14613
14614                 if (IS_CHERRYVIEW(dev)) {
14615                         /*
14616                          * eDP not supported on port D,
14617                          * so no need to worry about it
14618                          */
14619                         has_port = intel_bios_is_port_present(dev_priv, PORT_D);
14620                         if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
14621                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
14622                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
14623                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14624                 }
14625
14626                 intel_dsi_init(dev);
14627         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14628                 bool found = false;
14629
14630                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14631                         DRM_DEBUG_KMS("probing SDVOB\n");
14632                         found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14633                         if (!found && IS_G4X(dev)) {
14634                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14635                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14636                         }
14637
14638                         if (!found && IS_G4X(dev))
14639                                 intel_dp_init(dev, DP_B, PORT_B);
14640                 }
14641
14642                 /* Before G4X SDVOC doesn't have its own detect register */
14643
14644                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14645                         DRM_DEBUG_KMS("probing SDVOC\n");
14646                         found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14647                 }
14648
14649                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14650
14651                         if (IS_G4X(dev)) {
14652                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14653                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14654                         }
14655                         if (IS_G4X(dev))
14656                                 intel_dp_init(dev, DP_C, PORT_C);
14657                 }
14658
14659                 if (IS_G4X(dev) &&
14660                     (I915_READ(DP_D) & DP_DETECTED))
14661                         intel_dp_init(dev, DP_D, PORT_D);
14662         } else if (IS_GEN2(dev))
14663                 intel_dvo_init(dev);
14664
14665         if (SUPPORTS_TV(dev))
14666                 intel_tv_init(dev);
14667
14668         intel_psr_init(dev);
14669
14670         for_each_intel_encoder(dev, encoder) {
14671                 encoder->base.possible_crtcs = encoder->crtc_mask;
14672                 encoder->base.possible_clones =
14673                         intel_encoder_clones(encoder);
14674         }
14675
14676         intel_init_pch_refclk(dev);
14677
14678         drm_helper_move_panel_connectors_to_head(dev);
14679 }
14680
14681 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14682 {
14683         struct drm_device *dev = fb->dev;
14684         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14685
14686         drm_framebuffer_cleanup(fb);
14687         mutex_lock(&dev->struct_mutex);
14688         WARN_ON(!intel_fb->obj->framebuffer_references--);
14689         drm_gem_object_unreference(&intel_fb->obj->base);
14690         mutex_unlock(&dev->struct_mutex);
14691         kfree(intel_fb);
14692 }
14693
14694 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14695                                                 struct drm_file *file,
14696                                                 unsigned int *handle)
14697 {
14698         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14699         struct drm_i915_gem_object *obj = intel_fb->obj;
14700
14701         if (obj->userptr.mm) {
14702                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14703                 return -EINVAL;
14704         }
14705
14706         return drm_gem_handle_create(file, &obj->base, handle);
14707 }
14708
14709 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14710                                         struct drm_file *file,
14711                                         unsigned flags, unsigned color,
14712                                         struct drm_clip_rect *clips,
14713                                         unsigned num_clips)
14714 {
14715         struct drm_device *dev = fb->dev;
14716         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14717         struct drm_i915_gem_object *obj = intel_fb->obj;
14718
14719         mutex_lock(&dev->struct_mutex);
14720         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14721         mutex_unlock(&dev->struct_mutex);
14722
14723         return 0;
14724 }
14725
14726 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14727         .destroy = intel_user_framebuffer_destroy,
14728         .create_handle = intel_user_framebuffer_create_handle,
14729         .dirty = intel_user_framebuffer_dirty,
14730 };
14731
14732 static
14733 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14734                          uint32_t pixel_format)
14735 {
14736         u32 gen = INTEL_INFO(dev)->gen;
14737
14738         if (gen >= 9) {
14739                 int cpp = drm_format_plane_cpp(pixel_format, 0);
14740
14741                 /* "The stride in bytes must not exceed the of the size of 8K
14742                  *  pixels and 32K bytes."
14743                  */
14744                 return min(8192 * cpp, 32768);
14745         } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14746                 return 32*1024;
14747         } else if (gen >= 4) {
14748                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14749                         return 16*1024;
14750                 else
14751                         return 32*1024;
14752         } else if (gen >= 3) {
14753                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14754                         return 8*1024;
14755                 else
14756                         return 16*1024;
14757         } else {
14758                 /* XXX DSPC is limited to 4k tiled */
14759                 return 8*1024;
14760         }
14761 }
14762
14763 static int intel_framebuffer_init(struct drm_device *dev,
14764                                   struct intel_framebuffer *intel_fb,
14765                                   struct drm_mode_fb_cmd2 *mode_cmd,
14766                                   struct drm_i915_gem_object *obj)
14767 {
14768         struct drm_i915_private *dev_priv = to_i915(dev);
14769         unsigned int aligned_height;
14770         int ret;
14771         u32 pitch_limit, stride_alignment;
14772
14773         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14774
14775         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14776                 /* Enforce that fb modifier and tiling mode match, but only for
14777                  * X-tiled. This is needed for FBC. */
14778                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14779                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14780                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14781                         return -EINVAL;
14782                 }
14783         } else {
14784                 if (obj->tiling_mode == I915_TILING_X)
14785                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14786                 else if (obj->tiling_mode == I915_TILING_Y) {
14787                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14788                         return -EINVAL;
14789                 }
14790         }
14791
14792         /* Passed in modifier sanity checking. */
14793         switch (mode_cmd->modifier[0]) {
14794         case I915_FORMAT_MOD_Y_TILED:
14795         case I915_FORMAT_MOD_Yf_TILED:
14796                 if (INTEL_INFO(dev)->gen < 9) {
14797                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14798                                   mode_cmd->modifier[0]);
14799                         return -EINVAL;
14800                 }
14801         case DRM_FORMAT_MOD_NONE:
14802         case I915_FORMAT_MOD_X_TILED:
14803                 break;
14804         default:
14805                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14806                           mode_cmd->modifier[0]);
14807                 return -EINVAL;
14808         }
14809
14810         stride_alignment = intel_fb_stride_alignment(dev_priv,
14811                                                      mode_cmd->modifier[0],
14812                                                      mode_cmd->pixel_format);
14813         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14814                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14815                           mode_cmd->pitches[0], stride_alignment);
14816                 return -EINVAL;
14817         }
14818
14819         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14820                                            mode_cmd->pixel_format);
14821         if (mode_cmd->pitches[0] > pitch_limit) {
14822                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14823                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14824                           "tiled" : "linear",
14825                           mode_cmd->pitches[0], pitch_limit);
14826                 return -EINVAL;
14827         }
14828
14829         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14830             mode_cmd->pitches[0] != obj->stride) {
14831                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14832                           mode_cmd->pitches[0], obj->stride);
14833                 return -EINVAL;
14834         }
14835
14836         /* Reject formats not supported by any plane early. */
14837         switch (mode_cmd->pixel_format) {
14838         case DRM_FORMAT_C8:
14839         case DRM_FORMAT_RGB565:
14840         case DRM_FORMAT_XRGB8888:
14841         case DRM_FORMAT_ARGB8888:
14842                 break;
14843         case DRM_FORMAT_XRGB1555:
14844                 if (INTEL_INFO(dev)->gen > 3) {
14845                         DRM_DEBUG("unsupported pixel format: %s\n",
14846                                   drm_get_format_name(mode_cmd->pixel_format));
14847                         return -EINVAL;
14848                 }
14849                 break;
14850         case DRM_FORMAT_ABGR8888:
14851                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
14852                     INTEL_INFO(dev)->gen < 9) {
14853                         DRM_DEBUG("unsupported pixel format: %s\n",
14854                                   drm_get_format_name(mode_cmd->pixel_format));
14855                         return -EINVAL;
14856                 }
14857                 break;
14858         case DRM_FORMAT_XBGR8888:
14859         case DRM_FORMAT_XRGB2101010:
14860         case DRM_FORMAT_XBGR2101010:
14861                 if (INTEL_INFO(dev)->gen < 4) {
14862                         DRM_DEBUG("unsupported pixel format: %s\n",
14863                                   drm_get_format_name(mode_cmd->pixel_format));
14864                         return -EINVAL;
14865                 }
14866                 break;
14867         case DRM_FORMAT_ABGR2101010:
14868                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14869                         DRM_DEBUG("unsupported pixel format: %s\n",
14870                                   drm_get_format_name(mode_cmd->pixel_format));
14871                         return -EINVAL;
14872                 }
14873                 break;
14874         case DRM_FORMAT_YUYV:
14875         case DRM_FORMAT_UYVY:
14876         case DRM_FORMAT_YVYU:
14877         case DRM_FORMAT_VYUY:
14878                 if (INTEL_INFO(dev)->gen < 5) {
14879                         DRM_DEBUG("unsupported pixel format: %s\n",
14880                                   drm_get_format_name(mode_cmd->pixel_format));
14881                         return -EINVAL;
14882                 }
14883                 break;
14884         default:
14885                 DRM_DEBUG("unsupported pixel format: %s\n",
14886                           drm_get_format_name(mode_cmd->pixel_format));
14887                 return -EINVAL;
14888         }
14889
14890         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14891         if (mode_cmd->offsets[0] != 0)
14892                 return -EINVAL;
14893
14894         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14895                                                mode_cmd->pixel_format,
14896                                                mode_cmd->modifier[0]);
14897         /* FIXME drm helper for size checks (especially planar formats)? */
14898         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14899                 return -EINVAL;
14900
14901         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14902         intel_fb->obj = obj;
14903
14904         intel_fill_fb_info(dev_priv, &intel_fb->base);
14905
14906         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14907         if (ret) {
14908                 DRM_ERROR("framebuffer init failed %d\n", ret);
14909                 return ret;
14910         }
14911
14912         intel_fb->obj->framebuffer_references++;
14913
14914         return 0;
14915 }
14916
14917 static struct drm_framebuffer *
14918 intel_user_framebuffer_create(struct drm_device *dev,
14919                               struct drm_file *filp,
14920                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
14921 {
14922         struct drm_framebuffer *fb;
14923         struct drm_i915_gem_object *obj;
14924         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14925
14926         obj = to_intel_bo(drm_gem_object_lookup(filp, mode_cmd.handles[0]));
14927         if (&obj->base == NULL)
14928                 return ERR_PTR(-ENOENT);
14929
14930         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
14931         if (IS_ERR(fb))
14932                 drm_gem_object_unreference_unlocked(&obj->base);
14933
14934         return fb;
14935 }
14936
14937 #ifndef CONFIG_DRM_FBDEV_EMULATION
14938 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14939 {
14940 }
14941 #endif
14942
14943 static const struct drm_mode_config_funcs intel_mode_funcs = {
14944         .fb_create = intel_user_framebuffer_create,
14945         .output_poll_changed = intel_fbdev_output_poll_changed,
14946         .atomic_check = intel_atomic_check,
14947         .atomic_commit = intel_atomic_commit,
14948         .atomic_state_alloc = intel_atomic_state_alloc,
14949         .atomic_state_clear = intel_atomic_state_clear,
14950 };
14951
14952 /**
14953  * intel_init_display_hooks - initialize the display modesetting hooks
14954  * @dev_priv: device private
14955  */
14956 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
14957 {
14958         if (INTEL_INFO(dev_priv)->gen >= 9) {
14959                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14960                 dev_priv->display.get_initial_plane_config =
14961                         skylake_get_initial_plane_config;
14962                 dev_priv->display.crtc_compute_clock =
14963                         haswell_crtc_compute_clock;
14964                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14965                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14966         } else if (HAS_DDI(dev_priv)) {
14967                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14968                 dev_priv->display.get_initial_plane_config =
14969                         ironlake_get_initial_plane_config;
14970                 dev_priv->display.crtc_compute_clock =
14971                         haswell_crtc_compute_clock;
14972                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14973                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14974         } else if (HAS_PCH_SPLIT(dev_priv)) {
14975                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14976                 dev_priv->display.get_initial_plane_config =
14977                         ironlake_get_initial_plane_config;
14978                 dev_priv->display.crtc_compute_clock =
14979                         ironlake_crtc_compute_clock;
14980                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14981                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14982         } else if (IS_CHERRYVIEW(dev_priv)) {
14983                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14984                 dev_priv->display.get_initial_plane_config =
14985                         i9xx_get_initial_plane_config;
14986                 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
14987                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14988                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14989         } else if (IS_VALLEYVIEW(dev_priv)) {
14990                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14991                 dev_priv->display.get_initial_plane_config =
14992                         i9xx_get_initial_plane_config;
14993                 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
14994                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14995                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14996         } else if (IS_G4X(dev_priv)) {
14997                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14998                 dev_priv->display.get_initial_plane_config =
14999                         i9xx_get_initial_plane_config;
15000                 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15001                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15002                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15003         } else if (IS_PINEVIEW(dev_priv)) {
15004                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15005                 dev_priv->display.get_initial_plane_config =
15006                         i9xx_get_initial_plane_config;
15007                 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15008                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15009                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15010         } else if (!IS_GEN2(dev_priv)) {
15011                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15012                 dev_priv->display.get_initial_plane_config =
15013                         i9xx_get_initial_plane_config;
15014                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
15015                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15016                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15017         } else {
15018                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15019                 dev_priv->display.get_initial_plane_config =
15020                         i9xx_get_initial_plane_config;
15021                 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15022                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15023                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15024         }
15025
15026         /* Returns the core display clock speed */
15027         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15028                 dev_priv->display.get_display_clock_speed =
15029                         skylake_get_display_clock_speed;
15030         else if (IS_BROXTON(dev_priv))
15031                 dev_priv->display.get_display_clock_speed =
15032                         broxton_get_display_clock_speed;
15033         else if (IS_BROADWELL(dev_priv))
15034                 dev_priv->display.get_display_clock_speed =
15035                         broadwell_get_display_clock_speed;
15036         else if (IS_HASWELL(dev_priv))
15037                 dev_priv->display.get_display_clock_speed =
15038                         haswell_get_display_clock_speed;
15039         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15040                 dev_priv->display.get_display_clock_speed =
15041                         valleyview_get_display_clock_speed;
15042         else if (IS_GEN5(dev_priv))
15043                 dev_priv->display.get_display_clock_speed =
15044                         ilk_get_display_clock_speed;
15045         else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
15046                  IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
15047                 dev_priv->display.get_display_clock_speed =
15048                         i945_get_display_clock_speed;
15049         else if (IS_GM45(dev_priv))
15050                 dev_priv->display.get_display_clock_speed =
15051                         gm45_get_display_clock_speed;
15052         else if (IS_CRESTLINE(dev_priv))
15053                 dev_priv->display.get_display_clock_speed =
15054                         i965gm_get_display_clock_speed;
15055         else if (IS_PINEVIEW(dev_priv))
15056                 dev_priv->display.get_display_clock_speed =
15057                         pnv_get_display_clock_speed;
15058         else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
15059                 dev_priv->display.get_display_clock_speed =
15060                         g33_get_display_clock_speed;
15061         else if (IS_I915G(dev_priv))
15062                 dev_priv->display.get_display_clock_speed =
15063                         i915_get_display_clock_speed;
15064         else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
15065                 dev_priv->display.get_display_clock_speed =
15066                         i9xx_misc_get_display_clock_speed;
15067         else if (IS_I915GM(dev_priv))
15068                 dev_priv->display.get_display_clock_speed =
15069                         i915gm_get_display_clock_speed;
15070         else if (IS_I865G(dev_priv))
15071                 dev_priv->display.get_display_clock_speed =
15072                         i865_get_display_clock_speed;
15073         else if (IS_I85X(dev_priv))
15074                 dev_priv->display.get_display_clock_speed =
15075                         i85x_get_display_clock_speed;
15076         else { /* 830 */
15077                 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
15078                 dev_priv->display.get_display_clock_speed =
15079                         i830_get_display_clock_speed;
15080         }
15081
15082         if (IS_GEN5(dev_priv)) {
15083                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
15084         } else if (IS_GEN6(dev_priv)) {
15085                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
15086         } else if (IS_IVYBRIDGE(dev_priv)) {
15087                 /* FIXME: detect B0+ stepping and use auto training */
15088                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
15089         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
15090                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
15091                 if (IS_BROADWELL(dev_priv)) {
15092                         dev_priv->display.modeset_commit_cdclk =
15093                                 broadwell_modeset_commit_cdclk;
15094                         dev_priv->display.modeset_calc_cdclk =
15095                                 broadwell_modeset_calc_cdclk;
15096                 }
15097         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15098                 dev_priv->display.modeset_commit_cdclk =
15099                         valleyview_modeset_commit_cdclk;
15100                 dev_priv->display.modeset_calc_cdclk =
15101                         valleyview_modeset_calc_cdclk;
15102         } else if (IS_BROXTON(dev_priv)) {
15103                 dev_priv->display.modeset_commit_cdclk =
15104                         broxton_modeset_commit_cdclk;
15105                 dev_priv->display.modeset_calc_cdclk =
15106                         broxton_modeset_calc_cdclk;
15107         }
15108
15109         switch (INTEL_INFO(dev_priv)->gen) {
15110         case 2:
15111                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
15112                 break;
15113
15114         case 3:
15115                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
15116                 break;
15117
15118         case 4:
15119         case 5:
15120                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
15121                 break;
15122
15123         case 6:
15124                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
15125                 break;
15126         case 7:
15127         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15128                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
15129                 break;
15130         case 9:
15131                 /* Drop through - unsupported since execlist only. */
15132         default:
15133                 /* Default just returns -ENODEV to indicate unsupported */
15134                 dev_priv->display.queue_flip = intel_default_queue_flip;
15135         }
15136 }
15137
15138 /*
15139  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15140  * resume, or other times.  This quirk makes sure that's the case for
15141  * affected systems.
15142  */
15143 static void quirk_pipea_force(struct drm_device *dev)
15144 {
15145         struct drm_i915_private *dev_priv = dev->dev_private;
15146
15147         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15148         DRM_INFO("applying pipe a force quirk\n");
15149 }
15150
15151 static void quirk_pipeb_force(struct drm_device *dev)
15152 {
15153         struct drm_i915_private *dev_priv = dev->dev_private;
15154
15155         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15156         DRM_INFO("applying pipe b force quirk\n");
15157 }
15158
15159 /*
15160  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15161  */
15162 static void quirk_ssc_force_disable(struct drm_device *dev)
15163 {
15164         struct drm_i915_private *dev_priv = dev->dev_private;
15165         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15166         DRM_INFO("applying lvds SSC disable quirk\n");
15167 }
15168
15169 /*
15170  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15171  * brightness value
15172  */
15173 static void quirk_invert_brightness(struct drm_device *dev)
15174 {
15175         struct drm_i915_private *dev_priv = dev->dev_private;
15176         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15177         DRM_INFO("applying inverted panel brightness quirk\n");
15178 }
15179
15180 /* Some VBT's incorrectly indicate no backlight is present */
15181 static void quirk_backlight_present(struct drm_device *dev)
15182 {
15183         struct drm_i915_private *dev_priv = dev->dev_private;
15184         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15185         DRM_INFO("applying backlight present quirk\n");
15186 }
15187
15188 struct intel_quirk {
15189         int device;
15190         int subsystem_vendor;
15191         int subsystem_device;
15192         void (*hook)(struct drm_device *dev);
15193 };
15194
15195 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15196 struct intel_dmi_quirk {
15197         void (*hook)(struct drm_device *dev);
15198         const struct dmi_system_id (*dmi_id_list)[];
15199 };
15200
15201 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15202 {
15203         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15204         return 1;
15205 }
15206
15207 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15208         {
15209                 .dmi_id_list = &(const struct dmi_system_id[]) {
15210                         {
15211                                 .callback = intel_dmi_reverse_brightness,
15212                                 .ident = "NCR Corporation",
15213                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15214                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
15215                                 },
15216                         },
15217                         { }  /* terminating entry */
15218                 },
15219                 .hook = quirk_invert_brightness,
15220         },
15221 };
15222
15223 static struct intel_quirk intel_quirks[] = {
15224         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15225         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15226
15227         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15228         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15229
15230         /* 830 needs to leave pipe A & dpll A up */
15231         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15232
15233         /* 830 needs to leave pipe B & dpll B up */
15234         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15235
15236         /* Lenovo U160 cannot use SSC on LVDS */
15237         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15238
15239         /* Sony Vaio Y cannot use SSC on LVDS */
15240         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15241
15242         /* Acer Aspire 5734Z must invert backlight brightness */
15243         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15244
15245         /* Acer/eMachines G725 */
15246         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15247
15248         /* Acer/eMachines e725 */
15249         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15250
15251         /* Acer/Packard Bell NCL20 */
15252         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15253
15254         /* Acer Aspire 4736Z */
15255         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15256
15257         /* Acer Aspire 5336 */
15258         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15259
15260         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15261         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15262
15263         /* Acer C720 Chromebook (Core i3 4005U) */
15264         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15265
15266         /* Apple Macbook 2,1 (Core 2 T7400) */
15267         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15268
15269         /* Apple Macbook 4,1 */
15270         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15271
15272         /* Toshiba CB35 Chromebook (Celeron 2955U) */
15273         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15274
15275         /* HP Chromebook 14 (Celeron 2955U) */
15276         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15277
15278         /* Dell Chromebook 11 */
15279         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15280
15281         /* Dell Chromebook 11 (2015 version) */
15282         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15283 };
15284
15285 static void intel_init_quirks(struct drm_device *dev)
15286 {
15287         struct pci_dev *d = dev->pdev;
15288         int i;
15289
15290         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15291                 struct intel_quirk *q = &intel_quirks[i];
15292
15293                 if (d->device == q->device &&
15294                     (d->subsystem_vendor == q->subsystem_vendor ||
15295                      q->subsystem_vendor == PCI_ANY_ID) &&
15296                     (d->subsystem_device == q->subsystem_device ||
15297                      q->subsystem_device == PCI_ANY_ID))
15298                         q->hook(dev);
15299         }
15300         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15301                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15302                         intel_dmi_quirks[i].hook(dev);
15303         }
15304 }
15305
15306 /* Disable the VGA plane that we never use */
15307 static void i915_disable_vga(struct drm_device *dev)
15308 {
15309         struct drm_i915_private *dev_priv = dev->dev_private;
15310         u8 sr1;
15311         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15312
15313         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15314         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15315         outb(SR01, VGA_SR_INDEX);
15316         sr1 = inb(VGA_SR_DATA);
15317         outb(sr1 | 1<<5, VGA_SR_DATA);
15318         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15319         udelay(300);
15320
15321         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15322         POSTING_READ(vga_reg);
15323 }
15324
15325 void intel_modeset_init_hw(struct drm_device *dev)
15326 {
15327         struct drm_i915_private *dev_priv = dev->dev_private;
15328
15329         intel_update_cdclk(dev);
15330
15331         dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15332
15333         intel_init_clock_gating(dev);
15334         intel_enable_gt_powersave(dev);
15335 }
15336
15337 /*
15338  * Calculate what we think the watermarks should be for the state we've read
15339  * out of the hardware and then immediately program those watermarks so that
15340  * we ensure the hardware settings match our internal state.
15341  *
15342  * We can calculate what we think WM's should be by creating a duplicate of the
15343  * current state (which was constructed during hardware readout) and running it
15344  * through the atomic check code to calculate new watermark values in the
15345  * state object.
15346  */
15347 static void sanitize_watermarks(struct drm_device *dev)
15348 {
15349         struct drm_i915_private *dev_priv = to_i915(dev);
15350         struct drm_atomic_state *state;
15351         struct drm_crtc *crtc;
15352         struct drm_crtc_state *cstate;
15353         struct drm_modeset_acquire_ctx ctx;
15354         int ret;
15355         int i;
15356
15357         /* Only supported on platforms that use atomic watermark design */
15358         if (!dev_priv->display.optimize_watermarks)
15359                 return;
15360
15361         /*
15362          * We need to hold connection_mutex before calling duplicate_state so
15363          * that the connector loop is protected.
15364          */
15365         drm_modeset_acquire_init(&ctx, 0);
15366 retry:
15367         ret = drm_modeset_lock_all_ctx(dev, &ctx);
15368         if (ret == -EDEADLK) {
15369                 drm_modeset_backoff(&ctx);
15370                 goto retry;
15371         } else if (WARN_ON(ret)) {
15372                 goto fail;
15373         }
15374
15375         state = drm_atomic_helper_duplicate_state(dev, &ctx);
15376         if (WARN_ON(IS_ERR(state)))
15377                 goto fail;
15378
15379         /*
15380          * Hardware readout is the only time we don't want to calculate
15381          * intermediate watermarks (since we don't trust the current
15382          * watermarks).
15383          */
15384         to_intel_atomic_state(state)->skip_intermediate_wm = true;
15385
15386         ret = intel_atomic_check(dev, state);
15387         if (ret) {
15388                 /*
15389                  * If we fail here, it means that the hardware appears to be
15390                  * programmed in a way that shouldn't be possible, given our
15391                  * understanding of watermark requirements.  This might mean a
15392                  * mistake in the hardware readout code or a mistake in the
15393                  * watermark calculations for a given platform.  Raise a WARN
15394                  * so that this is noticeable.
15395                  *
15396                  * If this actually happens, we'll have to just leave the
15397                  * BIOS-programmed watermarks untouched and hope for the best.
15398                  */
15399                 WARN(true, "Could not determine valid watermarks for inherited state\n");
15400                 goto fail;
15401         }
15402
15403         /* Write calculated watermark values back */
15404         to_i915(dev)->wm.config = to_intel_atomic_state(state)->wm_config;
15405         for_each_crtc_in_state(state, crtc, cstate, i) {
15406                 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15407
15408                 cs->wm.need_postvbl_update = true;
15409                 dev_priv->display.optimize_watermarks(cs);
15410         }
15411
15412         drm_atomic_state_free(state);
15413 fail:
15414         drm_modeset_drop_locks(&ctx);
15415         drm_modeset_acquire_fini(&ctx);
15416 }
15417
15418 void intel_modeset_init(struct drm_device *dev)
15419 {
15420         struct drm_i915_private *dev_priv = to_i915(dev);
15421         struct i915_ggtt *ggtt = &dev_priv->ggtt;
15422         int sprite, ret;
15423         enum pipe pipe;
15424         struct intel_crtc *crtc;
15425
15426         drm_mode_config_init(dev);
15427
15428         dev->mode_config.min_width = 0;
15429         dev->mode_config.min_height = 0;
15430
15431         dev->mode_config.preferred_depth = 24;
15432         dev->mode_config.prefer_shadow = 1;
15433
15434         dev->mode_config.allow_fb_modifiers = true;
15435
15436         dev->mode_config.funcs = &intel_mode_funcs;
15437
15438         intel_init_quirks(dev);
15439
15440         intel_init_pm(dev);
15441
15442         if (INTEL_INFO(dev)->num_pipes == 0)
15443                 return;
15444
15445         /*
15446          * There may be no VBT; and if the BIOS enabled SSC we can
15447          * just keep using it to avoid unnecessary flicker.  Whereas if the
15448          * BIOS isn't using it, don't assume it will work even if the VBT
15449          * indicates as much.
15450          */
15451         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15452                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15453                                             DREF_SSC1_ENABLE);
15454
15455                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15456                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15457                                      bios_lvds_use_ssc ? "en" : "dis",
15458                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15459                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15460                 }
15461         }
15462
15463         if (IS_GEN2(dev)) {
15464                 dev->mode_config.max_width = 2048;
15465                 dev->mode_config.max_height = 2048;
15466         } else if (IS_GEN3(dev)) {
15467                 dev->mode_config.max_width = 4096;
15468                 dev->mode_config.max_height = 4096;
15469         } else {
15470                 dev->mode_config.max_width = 8192;
15471                 dev->mode_config.max_height = 8192;
15472         }
15473
15474         if (IS_845G(dev) || IS_I865G(dev)) {
15475                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15476                 dev->mode_config.cursor_height = 1023;
15477         } else if (IS_GEN2(dev)) {
15478                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15479                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15480         } else {
15481                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15482                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15483         }
15484
15485         dev->mode_config.fb_base = ggtt->mappable_base;
15486
15487         DRM_DEBUG_KMS("%d display pipe%s available.\n",
15488                       INTEL_INFO(dev)->num_pipes,
15489                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15490
15491         for_each_pipe(dev_priv, pipe) {
15492                 intel_crtc_init(dev, pipe);
15493                 for_each_sprite(dev_priv, pipe, sprite) {
15494                         ret = intel_plane_init(dev, pipe, sprite);
15495                         if (ret)
15496                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15497                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
15498                 }
15499         }
15500
15501         intel_update_czclk(dev_priv);
15502         intel_update_rawclk(dev_priv);
15503         intel_update_cdclk(dev);
15504
15505         intel_shared_dpll_init(dev);
15506
15507         /* Just disable it once at startup */
15508         i915_disable_vga(dev);
15509         intel_setup_outputs(dev);
15510
15511         drm_modeset_lock_all(dev);
15512         intel_modeset_setup_hw_state(dev);
15513         drm_modeset_unlock_all(dev);
15514
15515         for_each_intel_crtc(dev, crtc) {
15516                 struct intel_initial_plane_config plane_config = {};
15517
15518                 if (!crtc->active)
15519                         continue;
15520
15521                 /*
15522                  * Note that reserving the BIOS fb up front prevents us
15523                  * from stuffing other stolen allocations like the ring
15524                  * on top.  This prevents some ugliness at boot time, and
15525                  * can even allow for smooth boot transitions if the BIOS
15526                  * fb is large enough for the active pipe configuration.
15527                  */
15528                 dev_priv->display.get_initial_plane_config(crtc,
15529                                                            &plane_config);
15530
15531                 /*
15532                  * If the fb is shared between multiple heads, we'll
15533                  * just get the first one.
15534                  */
15535                 intel_find_initial_plane_obj(crtc, &plane_config);
15536         }
15537
15538         /*
15539          * Make sure hardware watermarks really match the state we read out.
15540          * Note that we need to do this after reconstructing the BIOS fb's
15541          * since the watermark calculation done here will use pstate->fb.
15542          */
15543         sanitize_watermarks(dev);
15544 }
15545
15546 static void intel_enable_pipe_a(struct drm_device *dev)
15547 {
15548         struct intel_connector *connector;
15549         struct drm_connector *crt = NULL;
15550         struct intel_load_detect_pipe load_detect_temp;
15551         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15552
15553         /* We can't just switch on the pipe A, we need to set things up with a
15554          * proper mode and output configuration. As a gross hack, enable pipe A
15555          * by enabling the load detect pipe once. */
15556         for_each_intel_connector(dev, connector) {
15557                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15558                         crt = &connector->base;
15559                         break;
15560                 }
15561         }
15562
15563         if (!crt)
15564                 return;
15565
15566         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15567                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15568 }
15569
15570 static bool
15571 intel_check_plane_mapping(struct intel_crtc *crtc)
15572 {
15573         struct drm_device *dev = crtc->base.dev;
15574         struct drm_i915_private *dev_priv = dev->dev_private;
15575         u32 val;
15576
15577         if (INTEL_INFO(dev)->num_pipes == 1)
15578                 return true;
15579
15580         val = I915_READ(DSPCNTR(!crtc->plane));
15581
15582         if ((val & DISPLAY_PLANE_ENABLE) &&
15583             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15584                 return false;
15585
15586         return true;
15587 }
15588
15589 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15590 {
15591         struct drm_device *dev = crtc->base.dev;
15592         struct intel_encoder *encoder;
15593
15594         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15595                 return true;
15596
15597         return false;
15598 }
15599
15600 static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15601 {
15602         struct drm_device *dev = encoder->base.dev;
15603         struct intel_connector *connector;
15604
15605         for_each_connector_on_encoder(dev, &encoder->base, connector)
15606                 return true;
15607
15608         return false;
15609 }
15610
15611 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15612 {
15613         struct drm_device *dev = crtc->base.dev;
15614         struct drm_i915_private *dev_priv = dev->dev_private;
15615         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15616
15617         /* Clear any frame start delays used for debugging left by the BIOS */
15618         if (!transcoder_is_dsi(cpu_transcoder)) {
15619                 i915_reg_t reg = PIPECONF(cpu_transcoder);
15620
15621                 I915_WRITE(reg,
15622                            I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15623         }
15624
15625         /* restore vblank interrupts to correct state */
15626         drm_crtc_vblank_reset(&crtc->base);
15627         if (crtc->active) {
15628                 struct intel_plane *plane;
15629
15630                 drm_crtc_vblank_on(&crtc->base);
15631
15632                 /* Disable everything but the primary plane */
15633                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15634                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15635                                 continue;
15636
15637                         plane->disable_plane(&plane->base, &crtc->base);
15638                 }
15639         }
15640
15641         /* We need to sanitize the plane -> pipe mapping first because this will
15642          * disable the crtc (and hence change the state) if it is wrong. Note
15643          * that gen4+ has a fixed plane -> pipe mapping.  */
15644         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15645                 bool plane;
15646
15647                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15648                               crtc->base.base.id);
15649
15650                 /* Pipe has the wrong plane attached and the plane is active.
15651                  * Temporarily change the plane mapping and disable everything
15652                  * ...  */
15653                 plane = crtc->plane;
15654                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15655                 crtc->plane = !plane;
15656                 intel_crtc_disable_noatomic(&crtc->base);
15657                 crtc->plane = plane;
15658         }
15659
15660         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15661             crtc->pipe == PIPE_A && !crtc->active) {
15662                 /* BIOS forgot to enable pipe A, this mostly happens after
15663                  * resume. Force-enable the pipe to fix this, the update_dpms
15664                  * call below we restore the pipe to the right state, but leave
15665                  * the required bits on. */
15666                 intel_enable_pipe_a(dev);
15667         }
15668
15669         /* Adjust the state of the output pipe according to whether we
15670          * have active connectors/encoders. */
15671         if (crtc->active && !intel_crtc_has_encoders(crtc))
15672                 intel_crtc_disable_noatomic(&crtc->base);
15673
15674         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15675                 /*
15676                  * We start out with underrun reporting disabled to avoid races.
15677                  * For correct bookkeeping mark this on active crtcs.
15678                  *
15679                  * Also on gmch platforms we dont have any hardware bits to
15680                  * disable the underrun reporting. Which means we need to start
15681                  * out with underrun reporting disabled also on inactive pipes,
15682                  * since otherwise we'll complain about the garbage we read when
15683                  * e.g. coming up after runtime pm.
15684                  *
15685                  * No protection against concurrent access is required - at
15686                  * worst a fifo underrun happens which also sets this to false.
15687                  */
15688                 crtc->cpu_fifo_underrun_disabled = true;
15689                 crtc->pch_fifo_underrun_disabled = true;
15690         }
15691 }
15692
15693 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15694 {
15695         struct intel_connector *connector;
15696         struct drm_device *dev = encoder->base.dev;
15697
15698         /* We need to check both for a crtc link (meaning that the
15699          * encoder is active and trying to read from a pipe) and the
15700          * pipe itself being active. */
15701         bool has_active_crtc = encoder->base.crtc &&
15702                 to_intel_crtc(encoder->base.crtc)->active;
15703
15704         if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
15705                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15706                               encoder->base.base.id,
15707                               encoder->base.name);
15708
15709                 /* Connector is active, but has no active pipe. This is
15710                  * fallout from our resume register restoring. Disable
15711                  * the encoder manually again. */
15712                 if (encoder->base.crtc) {
15713                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15714                                       encoder->base.base.id,
15715                                       encoder->base.name);
15716                         encoder->disable(encoder);
15717                         if (encoder->post_disable)
15718                                 encoder->post_disable(encoder);
15719                 }
15720                 encoder->base.crtc = NULL;
15721
15722                 /* Inconsistent output/port/pipe state happens presumably due to
15723                  * a bug in one of the get_hw_state functions. Or someplace else
15724                  * in our code, like the register restore mess on resume. Clamp
15725                  * things to off as a safer default. */
15726                 for_each_intel_connector(dev, connector) {
15727                         if (connector->encoder != encoder)
15728                                 continue;
15729                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15730                         connector->base.encoder = NULL;
15731                 }
15732         }
15733         /* Enabled encoders without active connectors will be fixed in
15734          * the crtc fixup. */
15735 }
15736
15737 void i915_redisable_vga_power_on(struct drm_device *dev)
15738 {
15739         struct drm_i915_private *dev_priv = dev->dev_private;
15740         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15741
15742         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15743                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15744                 i915_disable_vga(dev);
15745         }
15746 }
15747
15748 void i915_redisable_vga(struct drm_device *dev)
15749 {
15750         struct drm_i915_private *dev_priv = dev->dev_private;
15751
15752         /* This function can be called both from intel_modeset_setup_hw_state or
15753          * at a very early point in our resume sequence, where the power well
15754          * structures are not yet restored. Since this function is at a very
15755          * paranoid "someone might have enabled VGA while we were not looking"
15756          * level, just check if the power well is enabled instead of trying to
15757          * follow the "don't touch the power well if we don't need it" policy
15758          * the rest of the driver uses. */
15759         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15760                 return;
15761
15762         i915_redisable_vga_power_on(dev);
15763
15764         intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15765 }
15766
15767 static bool primary_get_hw_state(struct intel_plane *plane)
15768 {
15769         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15770
15771         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15772 }
15773
15774 /* FIXME read out full plane state for all planes */
15775 static void readout_plane_state(struct intel_crtc *crtc)
15776 {
15777         struct drm_plane *primary = crtc->base.primary;
15778         struct intel_plane_state *plane_state =
15779                 to_intel_plane_state(primary->state);
15780
15781         plane_state->visible = crtc->active &&
15782                 primary_get_hw_state(to_intel_plane(primary));
15783
15784         if (plane_state->visible)
15785                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15786 }
15787
15788 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15789 {
15790         struct drm_i915_private *dev_priv = dev->dev_private;
15791         enum pipe pipe;
15792         struct intel_crtc *crtc;
15793         struct intel_encoder *encoder;
15794         struct intel_connector *connector;
15795         int i;
15796
15797         dev_priv->active_crtcs = 0;
15798
15799         for_each_intel_crtc(dev, crtc) {
15800                 struct intel_crtc_state *crtc_state = crtc->config;
15801                 int pixclk = 0;
15802
15803                 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
15804                 memset(crtc_state, 0, sizeof(*crtc_state));
15805                 crtc_state->base.crtc = &crtc->base;
15806
15807                 crtc_state->base.active = crtc_state->base.enable =
15808                         dev_priv->display.get_pipe_config(crtc, crtc_state);
15809
15810                 crtc->base.enabled = crtc_state->base.enable;
15811                 crtc->active = crtc_state->base.active;
15812
15813                 if (crtc_state->base.active) {
15814                         dev_priv->active_crtcs |= 1 << crtc->pipe;
15815
15816                         if (IS_BROADWELL(dev_priv)) {
15817                                 pixclk = ilk_pipe_pixel_rate(crtc_state);
15818
15819                                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15820                                 if (crtc_state->ips_enabled)
15821                                         pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15822                         } else if (IS_VALLEYVIEW(dev_priv) ||
15823                                    IS_CHERRYVIEW(dev_priv) ||
15824                                    IS_BROXTON(dev_priv))
15825                                 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
15826                         else
15827                                 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15828                 }
15829
15830                 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15831
15832                 readout_plane_state(crtc);
15833
15834                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15835                               crtc->base.base.id,
15836                               crtc->active ? "enabled" : "disabled");
15837         }
15838
15839         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15840                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15841
15842                 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
15843                                                   &pll->config.hw_state);
15844                 pll->config.crtc_mask = 0;
15845                 for_each_intel_crtc(dev, crtc) {
15846                         if (crtc->active && crtc->config->shared_dpll == pll)
15847                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15848                 }
15849                 pll->active_mask = pll->config.crtc_mask;
15850
15851                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15852                               pll->name, pll->config.crtc_mask, pll->on);
15853         }
15854
15855         for_each_intel_encoder(dev, encoder) {
15856                 pipe = 0;
15857
15858                 if (encoder->get_hw_state(encoder, &pipe)) {
15859                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15860                         encoder->base.crtc = &crtc->base;
15861                         encoder->get_config(encoder, crtc->config);
15862                 } else {
15863                         encoder->base.crtc = NULL;
15864                 }
15865
15866                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15867                               encoder->base.base.id,
15868                               encoder->base.name,
15869                               encoder->base.crtc ? "enabled" : "disabled",
15870                               pipe_name(pipe));
15871         }
15872
15873         for_each_intel_connector(dev, connector) {
15874                 if (connector->get_hw_state(connector)) {
15875                         connector->base.dpms = DRM_MODE_DPMS_ON;
15876
15877                         encoder = connector->encoder;
15878                         connector->base.encoder = &encoder->base;
15879
15880                         if (encoder->base.crtc &&
15881                             encoder->base.crtc->state->active) {
15882                                 /*
15883                                  * This has to be done during hardware readout
15884                                  * because anything calling .crtc_disable may
15885                                  * rely on the connector_mask being accurate.
15886                                  */
15887                                 encoder->base.crtc->state->connector_mask |=
15888                                         1 << drm_connector_index(&connector->base);
15889                                 encoder->base.crtc->state->encoder_mask |=
15890                                         1 << drm_encoder_index(&encoder->base);
15891                         }
15892
15893                 } else {
15894                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15895                         connector->base.encoder = NULL;
15896                 }
15897                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15898                               connector->base.base.id,
15899                               connector->base.name,
15900                               connector->base.encoder ? "enabled" : "disabled");
15901         }
15902
15903         for_each_intel_crtc(dev, crtc) {
15904                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15905
15906                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15907                 if (crtc->base.state->active) {
15908                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15909                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15910                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15911
15912                         /*
15913                          * The initial mode needs to be set in order to keep
15914                          * the atomic core happy. It wants a valid mode if the
15915                          * crtc's enabled, so we do the above call.
15916                          *
15917                          * At this point some state updated by the connectors
15918                          * in their ->detect() callback has not run yet, so
15919                          * no recalculation can be done yet.
15920                          *
15921                          * Even if we could do a recalculation and modeset
15922                          * right now it would cause a double modeset if
15923                          * fbdev or userspace chooses a different initial mode.
15924                          *
15925                          * If that happens, someone indicated they wanted a
15926                          * mode change, which means it's safe to do a full
15927                          * recalculation.
15928                          */
15929                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15930
15931                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15932                         update_scanline_offset(crtc);
15933                 }
15934
15935                 intel_pipe_config_sanity_check(dev_priv, crtc->config);
15936         }
15937 }
15938
15939 /* Scan out the current hw modeset state,
15940  * and sanitizes it to the current state
15941  */
15942 static void
15943 intel_modeset_setup_hw_state(struct drm_device *dev)
15944 {
15945         struct drm_i915_private *dev_priv = dev->dev_private;
15946         enum pipe pipe;
15947         struct intel_crtc *crtc;
15948         struct intel_encoder *encoder;
15949         int i;
15950
15951         intel_modeset_readout_hw_state(dev);
15952
15953         /* HW state is read out, now we need to sanitize this mess. */
15954         for_each_intel_encoder(dev, encoder) {
15955                 intel_sanitize_encoder(encoder);
15956         }
15957
15958         for_each_pipe(dev_priv, pipe) {
15959                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15960                 intel_sanitize_crtc(crtc);
15961                 intel_dump_pipe_config(crtc, crtc->config,
15962                                        "[setup_hw_state]");
15963         }
15964
15965         intel_modeset_update_connector_atomic_state(dev);
15966
15967         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15968                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15969
15970                 if (!pll->on || pll->active_mask)
15971                         continue;
15972
15973                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15974
15975                 pll->funcs.disable(dev_priv, pll);
15976                 pll->on = false;
15977         }
15978
15979         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
15980                 vlv_wm_get_hw_state(dev);
15981         else if (IS_GEN9(dev))
15982                 skl_wm_get_hw_state(dev);
15983         else if (HAS_PCH_SPLIT(dev))
15984                 ilk_wm_get_hw_state(dev);
15985
15986         for_each_intel_crtc(dev, crtc) {
15987                 unsigned long put_domains;
15988
15989                 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15990                 if (WARN_ON(put_domains))
15991                         modeset_put_power_domains(dev_priv, put_domains);
15992         }
15993         intel_display_set_init_power(dev_priv, false);
15994
15995         intel_fbc_init_pipe_state(dev_priv);
15996 }
15997
15998 void intel_display_resume(struct drm_device *dev)
15999 {
16000         struct drm_i915_private *dev_priv = to_i915(dev);
16001         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
16002         struct drm_modeset_acquire_ctx ctx;
16003         int ret;
16004         bool setup = false;
16005
16006         dev_priv->modeset_restore_state = NULL;
16007
16008         /*
16009          * This is a cludge because with real atomic modeset mode_config.mutex
16010          * won't be taken. Unfortunately some probed state like
16011          * audio_codec_enable is still protected by mode_config.mutex, so lock
16012          * it here for now.
16013          */
16014         mutex_lock(&dev->mode_config.mutex);
16015         drm_modeset_acquire_init(&ctx, 0);
16016
16017 retry:
16018         ret = drm_modeset_lock_all_ctx(dev, &ctx);
16019
16020         if (ret == 0 && !setup) {
16021                 setup = true;
16022
16023                 intel_modeset_setup_hw_state(dev);
16024                 i915_redisable_vga(dev);
16025         }
16026
16027         if (ret == 0 && state) {
16028                 struct drm_crtc_state *crtc_state;
16029                 struct drm_crtc *crtc;
16030                 int i;
16031
16032                 state->acquire_ctx = &ctx;
16033
16034                 /* ignore any reset values/BIOS leftovers in the WM registers */
16035                 to_intel_atomic_state(state)->skip_intermediate_wm = true;
16036
16037                 for_each_crtc_in_state(state, crtc, crtc_state, i) {
16038                         /*
16039                          * Force recalculation even if we restore
16040                          * current state. With fast modeset this may not result
16041                          * in a modeset when the state is compatible.
16042                          */
16043                         crtc_state->mode_changed = true;
16044                 }
16045
16046                 ret = drm_atomic_commit(state);
16047         }
16048
16049         if (ret == -EDEADLK) {
16050                 drm_modeset_backoff(&ctx);
16051                 goto retry;
16052         }
16053
16054         drm_modeset_drop_locks(&ctx);
16055         drm_modeset_acquire_fini(&ctx);
16056         mutex_unlock(&dev->mode_config.mutex);
16057
16058         if (ret) {
16059                 DRM_ERROR("Restoring old state failed with %i\n", ret);
16060                 drm_atomic_state_free(state);
16061         }
16062 }
16063
16064 void intel_modeset_gem_init(struct drm_device *dev)
16065 {
16066         struct drm_crtc *c;
16067         struct drm_i915_gem_object *obj;
16068         int ret;
16069
16070         intel_init_gt_powersave(dev);
16071
16072         intel_modeset_init_hw(dev);
16073
16074         intel_setup_overlay(dev);
16075
16076         /*
16077          * Make sure any fbs we allocated at startup are properly
16078          * pinned & fenced.  When we do the allocation it's too early
16079          * for this.
16080          */
16081         for_each_crtc(dev, c) {
16082                 obj = intel_fb_obj(c->primary->fb);
16083                 if (obj == NULL)
16084                         continue;
16085
16086                 mutex_lock(&dev->struct_mutex);
16087                 ret = intel_pin_and_fence_fb_obj(c->primary->fb,
16088                                                  c->primary->state->rotation);
16089                 mutex_unlock(&dev->struct_mutex);
16090                 if (ret) {
16091                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
16092                                   to_intel_crtc(c)->pipe);
16093                         drm_framebuffer_unreference(c->primary->fb);
16094                         c->primary->fb = NULL;
16095                         c->primary->crtc = c->primary->state->crtc = NULL;
16096                         update_state_fb(c->primary);
16097                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
16098                 }
16099         }
16100
16101         intel_backlight_register(dev);
16102 }
16103
16104 void intel_connector_unregister(struct intel_connector *intel_connector)
16105 {
16106         struct drm_connector *connector = &intel_connector->base;
16107
16108         intel_panel_destroy_backlight(connector);
16109         drm_connector_unregister(connector);
16110 }
16111
16112 void intel_modeset_cleanup(struct drm_device *dev)
16113 {
16114         struct drm_i915_private *dev_priv = dev->dev_private;
16115         struct intel_connector *connector;
16116
16117         intel_disable_gt_powersave(dev);
16118
16119         intel_backlight_unregister(dev);
16120
16121         /*
16122          * Interrupts and polling as the first thing to avoid creating havoc.
16123          * Too much stuff here (turning of connectors, ...) would
16124          * experience fancy races otherwise.
16125          */
16126         intel_irq_uninstall(dev_priv);
16127
16128         /*
16129          * Due to the hpd irq storm handling the hotplug work can re-arm the
16130          * poll handlers. Hence disable polling after hpd handling is shut down.
16131          */
16132         drm_kms_helper_poll_fini(dev);
16133
16134         intel_unregister_dsm_handler();
16135
16136         intel_fbc_global_disable(dev_priv);
16137
16138         /* flush any delayed tasks or pending work */
16139         flush_scheduled_work();
16140
16141         /* destroy the backlight and sysfs files before encoders/connectors */
16142         for_each_intel_connector(dev, connector)
16143                 connector->unregister(connector);
16144
16145         drm_mode_config_cleanup(dev);
16146
16147         intel_cleanup_overlay(dev);
16148
16149         intel_cleanup_gt_powersave(dev);
16150
16151         intel_teardown_gmbus(dev);
16152 }
16153
16154 /*
16155  * Return which encoder is currently attached for connector.
16156  */
16157 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
16158 {
16159         return &intel_attached_encoder(connector)->base;
16160 }
16161
16162 void intel_connector_attach_encoder(struct intel_connector *connector,
16163                                     struct intel_encoder *encoder)
16164 {
16165         connector->encoder = encoder;
16166         drm_mode_connector_attach_encoder(&connector->base,
16167                                           &encoder->base);
16168 }
16169
16170 /*
16171  * set vga decode state - true == enable VGA decode
16172  */
16173 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16174 {
16175         struct drm_i915_private *dev_priv = dev->dev_private;
16176         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16177         u16 gmch_ctrl;
16178
16179         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16180                 DRM_ERROR("failed to read control word\n");
16181                 return -EIO;
16182         }
16183
16184         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16185                 return 0;
16186
16187         if (state)
16188                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16189         else
16190                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16191
16192         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16193                 DRM_ERROR("failed to write control word\n");
16194                 return -EIO;
16195         }
16196
16197         return 0;
16198 }
16199
16200 struct intel_display_error_state {
16201
16202         u32 power_well_driver;
16203
16204         int num_transcoders;
16205
16206         struct intel_cursor_error_state {
16207                 u32 control;
16208                 u32 position;
16209                 u32 base;
16210                 u32 size;
16211         } cursor[I915_MAX_PIPES];
16212
16213         struct intel_pipe_error_state {
16214                 bool power_domain_on;
16215                 u32 source;
16216                 u32 stat;
16217         } pipe[I915_MAX_PIPES];
16218
16219         struct intel_plane_error_state {
16220                 u32 control;
16221                 u32 stride;
16222                 u32 size;
16223                 u32 pos;
16224                 u32 addr;
16225                 u32 surface;
16226                 u32 tile_offset;
16227         } plane[I915_MAX_PIPES];
16228
16229         struct intel_transcoder_error_state {
16230                 bool power_domain_on;
16231                 enum transcoder cpu_transcoder;
16232
16233                 u32 conf;
16234
16235                 u32 htotal;
16236                 u32 hblank;
16237                 u32 hsync;
16238                 u32 vtotal;
16239                 u32 vblank;
16240                 u32 vsync;
16241         } transcoder[4];
16242 };
16243
16244 struct intel_display_error_state *
16245 intel_display_capture_error_state(struct drm_device *dev)
16246 {
16247         struct drm_i915_private *dev_priv = dev->dev_private;
16248         struct intel_display_error_state *error;
16249         int transcoders[] = {
16250                 TRANSCODER_A,
16251                 TRANSCODER_B,
16252                 TRANSCODER_C,
16253                 TRANSCODER_EDP,
16254         };
16255         int i;
16256
16257         if (INTEL_INFO(dev)->num_pipes == 0)
16258                 return NULL;
16259
16260         error = kzalloc(sizeof(*error), GFP_ATOMIC);
16261         if (error == NULL)
16262                 return NULL;
16263
16264         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16265                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16266
16267         for_each_pipe(dev_priv, i) {
16268                 error->pipe[i].power_domain_on =
16269                         __intel_display_power_is_enabled(dev_priv,
16270                                                          POWER_DOMAIN_PIPE(i));
16271                 if (!error->pipe[i].power_domain_on)
16272                         continue;
16273
16274                 error->cursor[i].control = I915_READ(CURCNTR(i));
16275                 error->cursor[i].position = I915_READ(CURPOS(i));
16276                 error->cursor[i].base = I915_READ(CURBASE(i));
16277
16278                 error->plane[i].control = I915_READ(DSPCNTR(i));
16279                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16280                 if (INTEL_INFO(dev)->gen <= 3) {
16281                         error->plane[i].size = I915_READ(DSPSIZE(i));
16282                         error->plane[i].pos = I915_READ(DSPPOS(i));
16283                 }
16284                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16285                         error->plane[i].addr = I915_READ(DSPADDR(i));
16286                 if (INTEL_INFO(dev)->gen >= 4) {
16287                         error->plane[i].surface = I915_READ(DSPSURF(i));
16288                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16289                 }
16290
16291                 error->pipe[i].source = I915_READ(PIPESRC(i));
16292
16293                 if (HAS_GMCH_DISPLAY(dev))
16294                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
16295         }
16296
16297         /* Note: this does not include DSI transcoders. */
16298         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
16299         if (HAS_DDI(dev_priv))
16300                 error->num_transcoders++; /* Account for eDP. */
16301
16302         for (i = 0; i < error->num_transcoders; i++) {
16303                 enum transcoder cpu_transcoder = transcoders[i];
16304
16305                 error->transcoder[i].power_domain_on =
16306                         __intel_display_power_is_enabled(dev_priv,
16307                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16308                 if (!error->transcoder[i].power_domain_on)
16309                         continue;
16310
16311                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16312
16313                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16314                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16315                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16316                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16317                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16318                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16319                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16320         }
16321
16322         return error;
16323 }
16324
16325 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16326
16327 void
16328 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16329                                 struct drm_device *dev,
16330                                 struct intel_display_error_state *error)
16331 {
16332         struct drm_i915_private *dev_priv = dev->dev_private;
16333         int i;
16334
16335         if (!error)
16336                 return;
16337
16338         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16339         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16340                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
16341                            error->power_well_driver);
16342         for_each_pipe(dev_priv, i) {
16343                 err_printf(m, "Pipe [%d]:\n", i);
16344                 err_printf(m, "  Power: %s\n",
16345                            onoff(error->pipe[i].power_domain_on));
16346                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
16347                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
16348
16349                 err_printf(m, "Plane [%d]:\n", i);
16350                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
16351                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
16352                 if (INTEL_INFO(dev)->gen <= 3) {
16353                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
16354                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
16355                 }
16356                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16357                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
16358                 if (INTEL_INFO(dev)->gen >= 4) {
16359                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
16360                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
16361                 }
16362
16363                 err_printf(m, "Cursor [%d]:\n", i);
16364                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
16365                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
16366                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
16367         }
16368
16369         for (i = 0; i < error->num_transcoders; i++) {
16370                 err_printf(m, "CPU transcoder: %s\n",
16371                            transcoder_name(error->transcoder[i].cpu_transcoder));
16372                 err_printf(m, "  Power: %s\n",
16373                            onoff(error->transcoder[i].power_domain_on));
16374                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
16375                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
16376                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
16377                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
16378                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
16379                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
16380                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
16381         }
16382 }