]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Remove forced stop ring on suspend/unload
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define CTX_LRI_HEADER_0                0x01
160 #define CTX_CONTEXT_CONTROL             0x02
161 #define CTX_RING_HEAD                   0x04
162 #define CTX_RING_TAIL                   0x06
163 #define CTX_RING_BUFFER_START           0x08
164 #define CTX_RING_BUFFER_CONTROL         0x0a
165 #define CTX_BB_HEAD_U                   0x0c
166 #define CTX_BB_HEAD_L                   0x0e
167 #define CTX_BB_STATE                    0x10
168 #define CTX_SECOND_BB_HEAD_U            0x12
169 #define CTX_SECOND_BB_HEAD_L            0x14
170 #define CTX_SECOND_BB_STATE             0x16
171 #define CTX_BB_PER_CTX_PTR              0x18
172 #define CTX_RCS_INDIRECT_CTX            0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
174 #define CTX_LRI_HEADER_1                0x21
175 #define CTX_CTX_TIMESTAMP               0x22
176 #define CTX_PDP3_UDW                    0x24
177 #define CTX_PDP3_LDW                    0x26
178 #define CTX_PDP2_UDW                    0x28
179 #define CTX_PDP2_LDW                    0x2a
180 #define CTX_PDP1_UDW                    0x2c
181 #define CTX_PDP1_LDW                    0x2e
182 #define CTX_PDP0_UDW                    0x30
183 #define CTX_PDP0_LDW                    0x32
184 #define CTX_LRI_HEADER_2                0x41
185 #define CTX_R_PWR_CLK_STATE             0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196         (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
200         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211         FAULT_AND_HANG = 0,
212         FAULT_AND_HALT, /* Debug only */
213         FAULT_AND_STREAM,
214         FAULT_AND_CONTINUE /* Unsupported */
215 };
216 #define GEN8_CTX_ID_SHIFT 32
217 #define GEN8_CTX_ID_WIDTH 21
218 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
219 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
220
221 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
222 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
223
224 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
225                                             struct intel_engine_cs *engine);
226 static int intel_lr_context_pin(struct i915_gem_context *ctx,
227                                 struct intel_engine_cs *engine);
228
229 /**
230  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
231  * @dev_priv: i915 device private
232  * @enable_execlists: value of i915.enable_execlists module parameter.
233  *
234  * Only certain platforms support Execlists (the prerequisites being
235  * support for Logical Ring Contexts and Aliasing PPGTT or better).
236  *
237  * Return: 1 if Execlists is supported and has to be enabled.
238  */
239 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
240 {
241         /* On platforms with execlist available, vGPU will only
242          * support execlist mode, no ring buffer mode.
243          */
244         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
245                 return 1;
246
247         if (INTEL_GEN(dev_priv) >= 9)
248                 return 1;
249
250         if (enable_execlists == 0)
251                 return 0;
252
253         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
254             USES_PPGTT(dev_priv) &&
255             i915.use_mmio_flip >= 0)
256                 return 1;
257
258         return 0;
259 }
260
261 static void
262 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
263 {
264         struct drm_i915_private *dev_priv = engine->i915;
265
266         if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
267                 engine->idle_lite_restore_wa = ~0;
268
269         engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
270                                         IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
271                                         (engine->id == VCS || engine->id == VCS2);
272
273         engine->ctx_desc_template = GEN8_CTX_VALID;
274         if (IS_GEN8(dev_priv))
275                 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
276         engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
277
278         /* TODO: WaDisableLiteRestore when we start using semaphore
279          * signalling between Command Streamers */
280         /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
281
282         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
283         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
284         if (engine->disable_lite_restore_wa)
285                 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
286 }
287
288 /**
289  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
290  *                                        descriptor for a pinned context
291  * @ctx: Context to work on
292  * @engine: Engine the descriptor will be used with
293  *
294  * The context descriptor encodes various attributes of a context,
295  * including its GTT address and some flags. Because it's fairly
296  * expensive to calculate, we'll just do it once and cache the result,
297  * which remains valid until the context is unpinned.
298  *
299  * This is what a descriptor looks like, from LSB to MSB::
300  *
301  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
302  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
303  *      bits 32-52:    ctx ID, a globally unique tag
304  *      bits 53-54:    mbz, reserved for use by hardware
305  *      bits 55-63:    group ID, currently unused and set to 0
306  */
307 static void
308 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
309                                    struct intel_engine_cs *engine)
310 {
311         struct intel_context *ce = &ctx->engine[engine->id];
312         u64 desc;
313
314         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
315
316         desc = ctx->desc_template;                              /* bits  3-4  */
317         desc |= engine->ctx_desc_template;                      /* bits  0-11 */
318         desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
319                                                                 /* bits 12-31 */
320         desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;           /* bits 32-52 */
321
322         ce->lrc_desc = desc;
323 }
324
325 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
326                                      struct intel_engine_cs *engine)
327 {
328         return ctx->engine[engine->id].lrc_desc;
329 }
330
331 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
332                                  struct drm_i915_gem_request *rq1)
333 {
334
335         struct intel_engine_cs *engine = rq0->engine;
336         struct drm_i915_private *dev_priv = rq0->i915;
337         uint64_t desc[2];
338
339         if (rq1) {
340                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
341                 rq1->elsp_submitted++;
342         } else {
343                 desc[1] = 0;
344         }
345
346         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
347         rq0->elsp_submitted++;
348
349         /* You must always write both descriptors in the order below. */
350         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
351         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
352
353         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
354         /* The context is automatically loaded after the following */
355         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
356
357         /* ELSP is a wo register, use another nearby reg for posting */
358         POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
359 }
360
361 static void
362 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
363 {
364         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
365         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
366         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
367         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
368 }
369
370 static void execlists_update_context(struct drm_i915_gem_request *rq)
371 {
372         struct intel_engine_cs *engine = rq->engine;
373         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
374         uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
375
376         reg_state[CTX_RING_TAIL+1] = intel_ring_offset(rq->ring, rq->tail);
377
378         /* True 32b PPGTT with dynamic page allocation: update PDP
379          * registers and point the unallocated PDPs to scratch page.
380          * PML4 is allocated during ppgtt init, so this is not needed
381          * in 48-bit mode.
382          */
383         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
384                 execlists_update_context_pdps(ppgtt, reg_state);
385 }
386
387 static void execlists_elsp_submit_contexts(struct drm_i915_gem_request *rq0,
388                                            struct drm_i915_gem_request *rq1)
389 {
390         struct drm_i915_private *dev_priv = rq0->i915;
391         unsigned int fw_domains = rq0->engine->fw_domains;
392
393         execlists_update_context(rq0);
394
395         if (rq1)
396                 execlists_update_context(rq1);
397
398         spin_lock_irq(&dev_priv->uncore.lock);
399         intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
400
401         execlists_elsp_write(rq0, rq1);
402
403         intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
404         spin_unlock_irq(&dev_priv->uncore.lock);
405 }
406
407 static inline void execlists_context_status_change(
408                 struct drm_i915_gem_request *rq,
409                 unsigned long status)
410 {
411         /*
412          * Only used when GVT-g is enabled now. When GVT-g is disabled,
413          * The compiler should eliminate this function as dead-code.
414          */
415         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
416                 return;
417
418         atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
419 }
420
421 static void execlists_unqueue(struct intel_engine_cs *engine)
422 {
423         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
424         struct drm_i915_gem_request *cursor, *tmp;
425
426         assert_spin_locked(&engine->execlist_lock);
427
428         /*
429          * If irqs are not active generate a warning as batches that finish
430          * without the irqs may get lost and a GPU Hang may occur.
431          */
432         WARN_ON(!intel_irqs_enabled(engine->i915));
433
434         /* Try to read in pairs */
435         list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
436                                  execlist_link) {
437                 if (!req0) {
438                         req0 = cursor;
439                 } else if (req0->ctx == cursor->ctx) {
440                         /* Same ctx: ignore first request, as second request
441                          * will update tail past first request's workload */
442                         cursor->elsp_submitted = req0->elsp_submitted;
443                         list_del(&req0->execlist_link);
444                         i915_gem_request_put(req0);
445                         req0 = cursor;
446                 } else {
447                         if (IS_ENABLED(CONFIG_DRM_I915_GVT)) {
448                                 /*
449                                  * req0 (after merged) ctx requires single
450                                  * submission, stop picking
451                                  */
452                                 if (req0->ctx->execlists_force_single_submission)
453                                         break;
454                                 /*
455                                  * req0 ctx doesn't require single submission,
456                                  * but next req ctx requires, stop picking
457                                  */
458                                 if (cursor->ctx->execlists_force_single_submission)
459                                         break;
460                         }
461                         req1 = cursor;
462                         WARN_ON(req1->elsp_submitted);
463                         break;
464                 }
465         }
466
467         if (unlikely(!req0))
468                 return;
469
470         execlists_context_status_change(req0, INTEL_CONTEXT_SCHEDULE_IN);
471
472         if (req1)
473                 execlists_context_status_change(req1,
474                                                 INTEL_CONTEXT_SCHEDULE_IN);
475
476         if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
477                 /*
478                  * WaIdleLiteRestore: make sure we never cause a lite restore
479                  * with HEAD==TAIL.
480                  *
481                  * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
482                  * resubmit the request. See gen8_emit_request() for where we
483                  * prepare the padding after the end of the request.
484                  */
485                 req0->tail += 8;
486                 req0->tail &= req0->ring->size - 1;
487         }
488
489         execlists_elsp_submit_contexts(req0, req1);
490 }
491
492 static unsigned int
493 execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
494 {
495         struct drm_i915_gem_request *head_req;
496
497         assert_spin_locked(&engine->execlist_lock);
498
499         head_req = list_first_entry_or_null(&engine->execlist_queue,
500                                             struct drm_i915_gem_request,
501                                             execlist_link);
502
503         if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
504                return 0;
505
506         WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
507
508         if (--head_req->elsp_submitted > 0)
509                 return 0;
510
511         execlists_context_status_change(head_req, INTEL_CONTEXT_SCHEDULE_OUT);
512
513         list_del(&head_req->execlist_link);
514         i915_gem_request_put(head_req);
515
516         return 1;
517 }
518
519 static u32
520 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
521                    u32 *context_id)
522 {
523         struct drm_i915_private *dev_priv = engine->i915;
524         u32 status;
525
526         read_pointer %= GEN8_CSB_ENTRIES;
527
528         status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
529
530         if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
531                 return 0;
532
533         *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
534                                                               read_pointer));
535
536         return status;
537 }
538
539 /*
540  * Check the unread Context Status Buffers and manage the submission of new
541  * contexts to the ELSP accordingly.
542  */
543 static void intel_lrc_irq_handler(unsigned long data)
544 {
545         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
546         struct drm_i915_private *dev_priv = engine->i915;
547         u32 status_pointer;
548         unsigned int read_pointer, write_pointer;
549         u32 csb[GEN8_CSB_ENTRIES][2];
550         unsigned int csb_read = 0, i;
551         unsigned int submit_contexts = 0;
552
553         intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
554
555         status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
556
557         read_pointer = engine->next_context_status_buffer;
558         write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
559         if (read_pointer > write_pointer)
560                 write_pointer += GEN8_CSB_ENTRIES;
561
562         while (read_pointer < write_pointer) {
563                 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
564                         break;
565                 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
566                                                       &csb[csb_read][1]);
567                 csb_read++;
568         }
569
570         engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
571
572         /* Update the read pointer to the old write pointer. Manual ringbuffer
573          * management ftw </sarcasm> */
574         I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
575                       _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
576                                     engine->next_context_status_buffer << 8));
577
578         intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
579
580         spin_lock(&engine->execlist_lock);
581
582         for (i = 0; i < csb_read; i++) {
583                 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
584                         if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
585                                 if (execlists_check_remove_request(engine, csb[i][1]))
586                                         WARN(1, "Lite Restored request removed from queue\n");
587                         } else
588                                 WARN(1, "Preemption without Lite Restore\n");
589                 }
590
591                 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
592                     GEN8_CTX_STATUS_ELEMENT_SWITCH))
593                         submit_contexts +=
594                                 execlists_check_remove_request(engine, csb[i][1]);
595         }
596
597         if (submit_contexts) {
598                 if (!engine->disable_lite_restore_wa ||
599                     (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
600                         execlists_unqueue(engine);
601         }
602
603         spin_unlock(&engine->execlist_lock);
604
605         if (unlikely(submit_contexts > 2))
606                 DRM_ERROR("More than two context complete events?\n");
607 }
608
609 static void execlists_submit_request(struct drm_i915_gem_request *request)
610 {
611         struct intel_engine_cs *engine = request->engine;
612         struct drm_i915_gem_request *cursor;
613         int num_elements = 0;
614
615         spin_lock_bh(&engine->execlist_lock);
616
617         list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
618                 if (++num_elements > 2)
619                         break;
620
621         if (num_elements > 2) {
622                 struct drm_i915_gem_request *tail_req;
623
624                 tail_req = list_last_entry(&engine->execlist_queue,
625                                            struct drm_i915_gem_request,
626                                            execlist_link);
627
628                 if (request->ctx == tail_req->ctx) {
629                         WARN(tail_req->elsp_submitted != 0,
630                                 "More than 2 already-submitted reqs queued\n");
631                         list_del(&tail_req->execlist_link);
632                         i915_gem_request_put(tail_req);
633                 }
634         }
635
636         i915_gem_request_get(request);
637         list_add_tail(&request->execlist_link, &engine->execlist_queue);
638         request->ctx_hw_id = request->ctx->hw_id;
639         if (num_elements == 0)
640                 execlists_unqueue(engine);
641
642         spin_unlock_bh(&engine->execlist_lock);
643 }
644
645 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
646 {
647         struct intel_engine_cs *engine = request->engine;
648         struct intel_context *ce = &request->ctx->engine[engine->id];
649         int ret;
650
651         /* Flush enough space to reduce the likelihood of waiting after
652          * we start building the request - in which case we will just
653          * have to repeat work.
654          */
655         request->reserved_space += EXECLISTS_REQUEST_SIZE;
656
657         if (!ce->state) {
658                 ret = execlists_context_deferred_alloc(request->ctx, engine);
659                 if (ret)
660                         return ret;
661         }
662
663         request->ring = ce->ring;
664
665         if (i915.enable_guc_submission) {
666                 /*
667                  * Check that the GuC has space for the request before
668                  * going any further, as the i915_add_request() call
669                  * later on mustn't fail ...
670                  */
671                 ret = i915_guc_wq_check_space(request);
672                 if (ret)
673                         return ret;
674         }
675
676         ret = intel_lr_context_pin(request->ctx, engine);
677         if (ret)
678                 return ret;
679
680         ret = intel_ring_begin(request, 0);
681         if (ret)
682                 goto err_unpin;
683
684         if (!ce->initialised) {
685                 ret = engine->init_context(request);
686                 if (ret)
687                         goto err_unpin;
688
689                 ce->initialised = true;
690         }
691
692         /* Note that after this point, we have committed to using
693          * this request as it is being used to both track the
694          * state of engine initialisation and liveness of the
695          * golden renderstate above. Think twice before you try
696          * to cancel/unwind this request now.
697          */
698
699         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
700         return 0;
701
702 err_unpin:
703         intel_lr_context_unpin(request->ctx, engine);
704         return ret;
705 }
706
707 /*
708  * intel_logical_ring_advance() - advance the tail and prepare for submission
709  * @request: Request to advance the logical ringbuffer of.
710  *
711  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
712  * really happens during submission is that the context and current tail will be placed
713  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
714  * point, the tail *inside* the context is updated and the ELSP written to.
715  */
716 static int
717 intel_logical_ring_advance(struct drm_i915_gem_request *request)
718 {
719         struct intel_ring *ring = request->ring;
720         struct intel_engine_cs *engine = request->engine;
721
722         intel_ring_advance(ring);
723         request->tail = ring->tail;
724
725         /*
726          * Here we add two extra NOOPs as padding to avoid
727          * lite restore of a context with HEAD==TAIL.
728          *
729          * Caller must reserve WA_TAIL_DWORDS for us!
730          */
731         intel_ring_emit(ring, MI_NOOP);
732         intel_ring_emit(ring, MI_NOOP);
733         intel_ring_advance(ring);
734
735         /* We keep the previous context alive until we retire the following
736          * request. This ensures that any the context object is still pinned
737          * for any residual writes the HW makes into it on the context switch
738          * into the next object following the breadcrumb. Otherwise, we may
739          * retire the context too early.
740          */
741         request->previous_context = engine->last_context;
742         engine->last_context = request->ctx;
743         return 0;
744 }
745
746 void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
747 {
748         struct drm_i915_gem_request *req, *tmp;
749         LIST_HEAD(cancel_list);
750
751         WARN_ON(!mutex_is_locked(&engine->i915->drm.struct_mutex));
752
753         spin_lock_bh(&engine->execlist_lock);
754         list_replace_init(&engine->execlist_queue, &cancel_list);
755         spin_unlock_bh(&engine->execlist_lock);
756
757         list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
758                 list_del(&req->execlist_link);
759                 i915_gem_request_put(req);
760         }
761 }
762
763 static int intel_lr_context_pin(struct i915_gem_context *ctx,
764                                 struct intel_engine_cs *engine)
765 {
766         struct drm_i915_private *dev_priv = ctx->i915;
767         struct intel_context *ce = &ctx->engine[engine->id];
768         void *vaddr;
769         u32 *lrc_reg_state;
770         int ret;
771
772         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
773
774         if (ce->pin_count++)
775                 return 0;
776
777         ret = i915_gem_object_ggtt_pin(ce->state, NULL,
778                                        0, GEN8_LR_CONTEXT_ALIGN,
779                                        PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
780         if (ret)
781                 goto err;
782
783         vaddr = i915_gem_object_pin_map(ce->state);
784         if (IS_ERR(vaddr)) {
785                 ret = PTR_ERR(vaddr);
786                 goto unpin_ctx_obj;
787         }
788
789         lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
790
791         ret = intel_ring_pin(ce->ring);
792         if (ret)
793                 goto unpin_map;
794
795         ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
796         intel_lr_context_descriptor_update(ctx, engine);
797
798         lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ring->vma->node.start;
799         ce->lrc_reg_state = lrc_reg_state;
800         ce->state->dirty = true;
801
802         /* Invalidate GuC TLB. */
803         if (i915.enable_guc_submission)
804                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
805
806         i915_gem_context_get(ctx);
807         return 0;
808
809 unpin_map:
810         i915_gem_object_unpin_map(ce->state);
811 unpin_ctx_obj:
812         i915_gem_object_ggtt_unpin(ce->state);
813 err:
814         ce->pin_count = 0;
815         return ret;
816 }
817
818 void intel_lr_context_unpin(struct i915_gem_context *ctx,
819                             struct intel_engine_cs *engine)
820 {
821         struct intel_context *ce = &ctx->engine[engine->id];
822
823         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
824         GEM_BUG_ON(ce->pin_count == 0);
825
826         if (--ce->pin_count)
827                 return;
828
829         intel_ring_unpin(ce->ring);
830
831         i915_gem_object_unpin_map(ce->state);
832         i915_gem_object_ggtt_unpin(ce->state);
833
834         ce->lrc_vma = NULL;
835         ce->lrc_desc = 0;
836         ce->lrc_reg_state = NULL;
837
838         i915_gem_context_put(ctx);
839 }
840
841 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
842 {
843         int ret, i;
844         struct intel_ring *ring = req->ring;
845         struct i915_workarounds *w = &req->i915->workarounds;
846
847         if (w->count == 0)
848                 return 0;
849
850         ret = req->engine->emit_flush(req, EMIT_BARRIER);
851         if (ret)
852                 return ret;
853
854         ret = intel_ring_begin(req, w->count * 2 + 2);
855         if (ret)
856                 return ret;
857
858         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
859         for (i = 0; i < w->count; i++) {
860                 intel_ring_emit_reg(ring, w->reg[i].addr);
861                 intel_ring_emit(ring, w->reg[i].value);
862         }
863         intel_ring_emit(ring, MI_NOOP);
864
865         intel_ring_advance(ring);
866
867         ret = req->engine->emit_flush(req, EMIT_BARRIER);
868         if (ret)
869                 return ret;
870
871         return 0;
872 }
873
874 #define wa_ctx_emit(batch, index, cmd)                                  \
875         do {                                                            \
876                 int __index = (index)++;                                \
877                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
878                         return -ENOSPC;                                 \
879                 }                                                       \
880                 batch[__index] = (cmd);                                 \
881         } while (0)
882
883 #define wa_ctx_emit_reg(batch, index, reg) \
884         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
885
886 /*
887  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
888  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
889  * but there is a slight complication as this is applied in WA batch where the
890  * values are only initialized once so we cannot take register value at the
891  * beginning and reuse it further; hence we save its value to memory, upload a
892  * constant value with bit21 set and then we restore it back with the saved value.
893  * To simplify the WA, a constant value is formed by using the default value
894  * of this register. This shouldn't be a problem because we are only modifying
895  * it for a short period and this batch in non-premptible. We can ofcourse
896  * use additional instructions that read the actual value of the register
897  * at that time and set our bit of interest but it makes the WA complicated.
898  *
899  * This WA is also required for Gen9 so extracting as a function avoids
900  * code duplication.
901  */
902 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
903                                                 uint32_t *batch,
904                                                 uint32_t index)
905 {
906         struct drm_i915_private *dev_priv = engine->i915;
907         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
908
909         /*
910          * WaDisableLSQCROPERFforOCL:skl,kbl
911          * This WA is implemented in skl_init_clock_gating() but since
912          * this batch updates GEN8_L3SQCREG4 with default value we need to
913          * set this bit here to retain the WA during flush.
914          */
915         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0) ||
916             IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
917                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
918
919         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
920                                    MI_SRM_LRM_GLOBAL_GTT));
921         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
922         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
923         wa_ctx_emit(batch, index, 0);
924
925         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
926         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
927         wa_ctx_emit(batch, index, l3sqc4_flush);
928
929         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
930         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
931                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
932         wa_ctx_emit(batch, index, 0);
933         wa_ctx_emit(batch, index, 0);
934         wa_ctx_emit(batch, index, 0);
935         wa_ctx_emit(batch, index, 0);
936
937         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
938                                    MI_SRM_LRM_GLOBAL_GTT));
939         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
940         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
941         wa_ctx_emit(batch, index, 0);
942
943         return index;
944 }
945
946 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
947                                     uint32_t offset,
948                                     uint32_t start_alignment)
949 {
950         return wa_ctx->offset = ALIGN(offset, start_alignment);
951 }
952
953 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
954                              uint32_t offset,
955                              uint32_t size_alignment)
956 {
957         wa_ctx->size = offset - wa_ctx->offset;
958
959         WARN(wa_ctx->size % size_alignment,
960              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
961              wa_ctx->size, size_alignment);
962         return 0;
963 }
964
965 /*
966  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
967  * initialized at the beginning and shared across all contexts but this field
968  * helps us to have multiple batches at different offsets and select them based
969  * on a criteria. At the moment this batch always start at the beginning of the page
970  * and at this point we don't have multiple wa_ctx batch buffers.
971  *
972  * The number of WA applied are not known at the beginning; we use this field
973  * to return the no of DWORDS written.
974  *
975  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
976  * so it adds NOOPs as padding to make it cacheline aligned.
977  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
978  * makes a complete batch buffer.
979  */
980 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
981                                     struct i915_wa_ctx_bb *wa_ctx,
982                                     uint32_t *batch,
983                                     uint32_t *offset)
984 {
985         uint32_t scratch_addr;
986         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
987
988         /* WaDisableCtxRestoreArbitration:bdw,chv */
989         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
990
991         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
992         if (IS_BROADWELL(engine->i915)) {
993                 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
994                 if (rc < 0)
995                         return rc;
996                 index = rc;
997         }
998
999         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1000         /* Actual scratch location is at 128 bytes offset */
1001         scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1002
1003         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1004         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1005                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1006                                    PIPE_CONTROL_CS_STALL |
1007                                    PIPE_CONTROL_QW_WRITE));
1008         wa_ctx_emit(batch, index, scratch_addr);
1009         wa_ctx_emit(batch, index, 0);
1010         wa_ctx_emit(batch, index, 0);
1011         wa_ctx_emit(batch, index, 0);
1012
1013         /* Pad to end of cacheline */
1014         while (index % CACHELINE_DWORDS)
1015                 wa_ctx_emit(batch, index, MI_NOOP);
1016
1017         /*
1018          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1019          * execution depends on the length specified in terms of cache lines
1020          * in the register CTX_RCS_INDIRECT_CTX
1021          */
1022
1023         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1024 }
1025
1026 /*
1027  *  This batch is started immediately after indirect_ctx batch. Since we ensure
1028  *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1029  *
1030  *  The number of DWORDS written are returned using this field.
1031  *
1032  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1033  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1034  */
1035 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1036                                struct i915_wa_ctx_bb *wa_ctx,
1037                                uint32_t *batch,
1038                                uint32_t *offset)
1039 {
1040         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1041
1042         /* WaDisableCtxRestoreArbitration:bdw,chv */
1043         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1044
1045         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1046
1047         return wa_ctx_end(wa_ctx, *offset = index, 1);
1048 }
1049
1050 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1051                                     struct i915_wa_ctx_bb *wa_ctx,
1052                                     uint32_t *batch,
1053                                     uint32_t *offset)
1054 {
1055         int ret;
1056         struct drm_i915_private *dev_priv = engine->i915;
1057         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1058
1059         /* WaDisableCtxRestoreArbitration:skl,bxt */
1060         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
1061             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1062                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1063
1064         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1065         ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1066         if (ret < 0)
1067                 return ret;
1068         index = ret;
1069
1070         /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1071         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1072         wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1073         wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1074                             GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1075         wa_ctx_emit(batch, index, MI_NOOP);
1076
1077         /* WaClearSlmSpaceAtContextSwitch:kbl */
1078         /* Actual scratch location is at 128 bytes offset */
1079         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1080                 uint32_t scratch_addr
1081                         = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1082
1083                 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1084                 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1085                                            PIPE_CONTROL_GLOBAL_GTT_IVB |
1086                                            PIPE_CONTROL_CS_STALL |
1087                                            PIPE_CONTROL_QW_WRITE));
1088                 wa_ctx_emit(batch, index, scratch_addr);
1089                 wa_ctx_emit(batch, index, 0);
1090                 wa_ctx_emit(batch, index, 0);
1091                 wa_ctx_emit(batch, index, 0);
1092         }
1093
1094         /* WaMediaPoolStateCmdInWABB:bxt */
1095         if (HAS_POOLED_EU(engine->i915)) {
1096                 /*
1097                  * EU pool configuration is setup along with golden context
1098                  * during context initialization. This value depends on
1099                  * device type (2x6 or 3x6) and needs to be updated based
1100                  * on which subslice is disabled especially for 2x6
1101                  * devices, however it is safe to load default
1102                  * configuration of 3x6 device instead of masking off
1103                  * corresponding bits because HW ignores bits of a disabled
1104                  * subslice and drops down to appropriate config. Please
1105                  * see render_state_setup() in i915_gem_render_state.c for
1106                  * possible configurations, to avoid duplication they are
1107                  * not shown here again.
1108                  */
1109                 u32 eu_pool_config = 0x00777000;
1110                 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1111                 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1112                 wa_ctx_emit(batch, index, eu_pool_config);
1113                 wa_ctx_emit(batch, index, 0);
1114                 wa_ctx_emit(batch, index, 0);
1115                 wa_ctx_emit(batch, index, 0);
1116         }
1117
1118         /* Pad to end of cacheline */
1119         while (index % CACHELINE_DWORDS)
1120                 wa_ctx_emit(batch, index, MI_NOOP);
1121
1122         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1123 }
1124
1125 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1126                                struct i915_wa_ctx_bb *wa_ctx,
1127                                uint32_t *batch,
1128                                uint32_t *offset)
1129 {
1130         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1131
1132         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1133         if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1134             IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1135                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1136                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1137                 wa_ctx_emit(batch, index,
1138                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1139                 wa_ctx_emit(batch, index, MI_NOOP);
1140         }
1141
1142         /* WaClearTdlStateAckDirtyBits:bxt */
1143         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1144                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1145
1146                 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1147                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1148
1149                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1150                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1151
1152                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1153                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1154
1155                 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1156                 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1157                 wa_ctx_emit(batch, index, 0x0);
1158                 wa_ctx_emit(batch, index, MI_NOOP);
1159         }
1160
1161         /* WaDisableCtxRestoreArbitration:skl,bxt */
1162         if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1163             IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1164                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1165
1166         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1167
1168         return wa_ctx_end(wa_ctx, *offset = index, 1);
1169 }
1170
1171 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1172 {
1173         int ret;
1174
1175         engine->wa_ctx.obj = i915_gem_object_create(&engine->i915->drm,
1176                                                     PAGE_ALIGN(size));
1177         if (IS_ERR(engine->wa_ctx.obj)) {
1178                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1179                 ret = PTR_ERR(engine->wa_ctx.obj);
1180                 engine->wa_ctx.obj = NULL;
1181                 return ret;
1182         }
1183
1184         ret = i915_gem_object_ggtt_pin(engine->wa_ctx.obj, NULL,
1185                                        0, PAGE_SIZE, 0);
1186         if (ret) {
1187                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1188                                  ret);
1189                 i915_gem_object_put(engine->wa_ctx.obj);
1190                 return ret;
1191         }
1192
1193         return 0;
1194 }
1195
1196 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1197 {
1198         if (engine->wa_ctx.obj) {
1199                 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1200                 i915_gem_object_put(engine->wa_ctx.obj);
1201                 engine->wa_ctx.obj = NULL;
1202         }
1203 }
1204
1205 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1206 {
1207         int ret;
1208         uint32_t *batch;
1209         uint32_t offset;
1210         struct page *page;
1211         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1212
1213         WARN_ON(engine->id != RCS);
1214
1215         /* update this when WA for higher Gen are added */
1216         if (INTEL_GEN(engine->i915) > 9) {
1217                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1218                           INTEL_GEN(engine->i915));
1219                 return 0;
1220         }
1221
1222         /* some WA perform writes to scratch page, ensure it is valid */
1223         if (engine->scratch.obj == NULL) {
1224                 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1225                 return -EINVAL;
1226         }
1227
1228         ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1229         if (ret) {
1230                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1231                 return ret;
1232         }
1233
1234         page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1235         batch = kmap_atomic(page);
1236         offset = 0;
1237
1238         if (IS_GEN8(engine->i915)) {
1239                 ret = gen8_init_indirectctx_bb(engine,
1240                                                &wa_ctx->indirect_ctx,
1241                                                batch,
1242                                                &offset);
1243                 if (ret)
1244                         goto out;
1245
1246                 ret = gen8_init_perctx_bb(engine,
1247                                           &wa_ctx->per_ctx,
1248                                           batch,
1249                                           &offset);
1250                 if (ret)
1251                         goto out;
1252         } else if (IS_GEN9(engine->i915)) {
1253                 ret = gen9_init_indirectctx_bb(engine,
1254                                                &wa_ctx->indirect_ctx,
1255                                                batch,
1256                                                &offset);
1257                 if (ret)
1258                         goto out;
1259
1260                 ret = gen9_init_perctx_bb(engine,
1261                                           &wa_ctx->per_ctx,
1262                                           batch,
1263                                           &offset);
1264                 if (ret)
1265                         goto out;
1266         }
1267
1268 out:
1269         kunmap_atomic(batch);
1270         if (ret)
1271                 lrc_destroy_wa_ctx_obj(engine);
1272
1273         return ret;
1274 }
1275
1276 static void lrc_init_hws(struct intel_engine_cs *engine)
1277 {
1278         struct drm_i915_private *dev_priv = engine->i915;
1279
1280         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1281                    (u32)engine->status_page.gfx_addr);
1282         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1283 }
1284
1285 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1286 {
1287         struct drm_i915_private *dev_priv = engine->i915;
1288         unsigned int next_context_status_buffer_hw;
1289
1290         lrc_init_hws(engine);
1291
1292         I915_WRITE_IMR(engine,
1293                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1294         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1295
1296         I915_WRITE(RING_MODE_GEN7(engine),
1297                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1298                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1299         POSTING_READ(RING_MODE_GEN7(engine));
1300
1301         /*
1302          * Instead of resetting the Context Status Buffer (CSB) read pointer to
1303          * zero, we need to read the write pointer from hardware and use its
1304          * value because "this register is power context save restored".
1305          * Effectively, these states have been observed:
1306          *
1307          *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1308          * BDW  | CSB regs not reset       | CSB regs reset       |
1309          * CHT  | CSB regs not reset       | CSB regs not reset   |
1310          * SKL  |         ?                |         ?            |
1311          * BXT  |         ?                |         ?            |
1312          */
1313         next_context_status_buffer_hw =
1314                 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1315
1316         /*
1317          * When the CSB registers are reset (also after power-up / gpu reset),
1318          * CSB write pointer is set to all 1's, which is not valid, use '5' in
1319          * this special case, so the first element read is CSB[0].
1320          */
1321         if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1322                 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1323
1324         engine->next_context_status_buffer = next_context_status_buffer_hw;
1325         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1326
1327         intel_engine_init_hangcheck(engine);
1328
1329         return intel_mocs_init_engine(engine);
1330 }
1331
1332 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1333 {
1334         struct drm_i915_private *dev_priv = engine->i915;
1335         int ret;
1336
1337         ret = gen8_init_common_ring(engine);
1338         if (ret)
1339                 return ret;
1340
1341         /* We need to disable the AsyncFlip performance optimisations in order
1342          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1343          * programmed to '1' on all products.
1344          *
1345          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1346          */
1347         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1348
1349         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1350
1351         return init_workarounds_ring(engine);
1352 }
1353
1354 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1355 {
1356         int ret;
1357
1358         ret = gen8_init_common_ring(engine);
1359         if (ret)
1360                 return ret;
1361
1362         return init_workarounds_ring(engine);
1363 }
1364
1365 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1366 {
1367         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1368         struct intel_ring *ring = req->ring;
1369         struct intel_engine_cs *engine = req->engine;
1370         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1371         int i, ret;
1372
1373         ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1374         if (ret)
1375                 return ret;
1376
1377         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1378         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1379                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1380
1381                 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1382                 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1383                 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1384                 intel_ring_emit(ring, lower_32_bits(pd_daddr));
1385         }
1386
1387         intel_ring_emit(ring, MI_NOOP);
1388         intel_ring_advance(ring);
1389
1390         return 0;
1391 }
1392
1393 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1394                               u64 offset, u32 len,
1395                               unsigned int dispatch_flags)
1396 {
1397         struct intel_ring *ring = req->ring;
1398         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1399         int ret;
1400
1401         /* Don't rely in hw updating PDPs, specially in lite-restore.
1402          * Ideally, we should set Force PD Restore in ctx descriptor,
1403          * but we can't. Force Restore would be a second option, but
1404          * it is unsafe in case of lite-restore (because the ctx is
1405          * not idle). PML4 is allocated during ppgtt init so this is
1406          * not needed in 48-bit.*/
1407         if (req->ctx->ppgtt &&
1408             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1409                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1410                     !intel_vgpu_active(req->i915)) {
1411                         ret = intel_logical_ring_emit_pdps(req);
1412                         if (ret)
1413                                 return ret;
1414                 }
1415
1416                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1417         }
1418
1419         ret = intel_ring_begin(req, 4);
1420         if (ret)
1421                 return ret;
1422
1423         /* FIXME(BDW): Address space and security selectors. */
1424         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1425                         (ppgtt<<8) |
1426                         (dispatch_flags & I915_DISPATCH_RS ?
1427                          MI_BATCH_RESOURCE_STREAMER : 0));
1428         intel_ring_emit(ring, lower_32_bits(offset));
1429         intel_ring_emit(ring, upper_32_bits(offset));
1430         intel_ring_emit(ring, MI_NOOP);
1431         intel_ring_advance(ring);
1432
1433         return 0;
1434 }
1435
1436 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1437 {
1438         struct drm_i915_private *dev_priv = engine->i915;
1439         I915_WRITE_IMR(engine,
1440                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1441         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1442 }
1443
1444 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1445 {
1446         struct drm_i915_private *dev_priv = engine->i915;
1447         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1448 }
1449
1450 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1451 {
1452         struct intel_ring *ring = request->ring;
1453         u32 cmd;
1454         int ret;
1455
1456         ret = intel_ring_begin(request, 4);
1457         if (ret)
1458                 return ret;
1459
1460         cmd = MI_FLUSH_DW + 1;
1461
1462         /* We always require a command barrier so that subsequent
1463          * commands, such as breadcrumb interrupts, are strictly ordered
1464          * wrt the contents of the write cache being flushed to memory
1465          * (and thus being coherent from the CPU).
1466          */
1467         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1468
1469         if (mode & EMIT_INVALIDATE) {
1470                 cmd |= MI_INVALIDATE_TLB;
1471                 if (request->engine->id == VCS)
1472                         cmd |= MI_INVALIDATE_BSD;
1473         }
1474
1475         intel_ring_emit(ring, cmd);
1476         intel_ring_emit(ring,
1477                         I915_GEM_HWS_SCRATCH_ADDR |
1478                         MI_FLUSH_DW_USE_GTT);
1479         intel_ring_emit(ring, 0); /* upper addr */
1480         intel_ring_emit(ring, 0); /* value */
1481         intel_ring_advance(ring);
1482
1483         return 0;
1484 }
1485
1486 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1487                                   u32 mode)
1488 {
1489         struct intel_ring *ring = request->ring;
1490         struct intel_engine_cs *engine = request->engine;
1491         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1492         bool vf_flush_wa = false, dc_flush_wa = false;
1493         u32 flags = 0;
1494         int ret;
1495         int len;
1496
1497         flags |= PIPE_CONTROL_CS_STALL;
1498
1499         if (mode & EMIT_FLUSH) {
1500                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1501                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1502                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1503                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1504         }
1505
1506         if (mode & EMIT_INVALIDATE) {
1507                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1508                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1509                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1510                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1511                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1512                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1513                 flags |= PIPE_CONTROL_QW_WRITE;
1514                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1515
1516                 /*
1517                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1518                  * pipe control.
1519                  */
1520                 if (IS_GEN9(request->i915))
1521                         vf_flush_wa = true;
1522
1523                 /* WaForGAMHang:kbl */
1524                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1525                         dc_flush_wa = true;
1526         }
1527
1528         len = 6;
1529
1530         if (vf_flush_wa)
1531                 len += 6;
1532
1533         if (dc_flush_wa)
1534                 len += 12;
1535
1536         ret = intel_ring_begin(request, len);
1537         if (ret)
1538                 return ret;
1539
1540         if (vf_flush_wa) {
1541                 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1542                 intel_ring_emit(ring, 0);
1543                 intel_ring_emit(ring, 0);
1544                 intel_ring_emit(ring, 0);
1545                 intel_ring_emit(ring, 0);
1546                 intel_ring_emit(ring, 0);
1547         }
1548
1549         if (dc_flush_wa) {
1550                 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1551                 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1552                 intel_ring_emit(ring, 0);
1553                 intel_ring_emit(ring, 0);
1554                 intel_ring_emit(ring, 0);
1555                 intel_ring_emit(ring, 0);
1556         }
1557
1558         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1559         intel_ring_emit(ring, flags);
1560         intel_ring_emit(ring, scratch_addr);
1561         intel_ring_emit(ring, 0);
1562         intel_ring_emit(ring, 0);
1563         intel_ring_emit(ring, 0);
1564
1565         if (dc_flush_wa) {
1566                 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1567                 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1568                 intel_ring_emit(ring, 0);
1569                 intel_ring_emit(ring, 0);
1570                 intel_ring_emit(ring, 0);
1571                 intel_ring_emit(ring, 0);
1572         }
1573
1574         intel_ring_advance(ring);
1575
1576         return 0;
1577 }
1578
1579 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1580 {
1581         /*
1582          * On BXT A steppings there is a HW coherency issue whereby the
1583          * MI_STORE_DATA_IMM storing the completed request's seqno
1584          * occasionally doesn't invalidate the CPU cache. Work around this by
1585          * clflushing the corresponding cacheline whenever the caller wants
1586          * the coherency to be guaranteed. Note that this cacheline is known
1587          * to be clean at this point, since we only write it in
1588          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1589          * this clflush in practice becomes an invalidate operation.
1590          */
1591         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1592 }
1593
1594 /*
1595  * Reserve space for 2 NOOPs at the end of each request to be
1596  * used as a workaround for not being allowed to do lite
1597  * restore with HEAD==TAIL (WaIdleLiteRestore).
1598  */
1599 #define WA_TAIL_DWORDS 2
1600
1601 static int gen8_emit_request(struct drm_i915_gem_request *request)
1602 {
1603         struct intel_ring *ring = request->ring;
1604         int ret;
1605
1606         ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1607         if (ret)
1608                 return ret;
1609
1610         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1611         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1612
1613         intel_ring_emit(ring, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1614         intel_ring_emit(ring,
1615                         intel_hws_seqno_address(request->engine) |
1616                         MI_FLUSH_DW_USE_GTT);
1617         intel_ring_emit(ring, 0);
1618         intel_ring_emit(ring, request->fence.seqno);
1619         intel_ring_emit(ring, MI_USER_INTERRUPT);
1620         intel_ring_emit(ring, MI_NOOP);
1621         return intel_logical_ring_advance(request);
1622 }
1623
1624 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1625 {
1626         struct intel_ring *ring = request->ring;
1627         int ret;
1628
1629         ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1630         if (ret)
1631                 return ret;
1632
1633         /* We're using qword write, seqno should be aligned to 8 bytes. */
1634         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1635
1636         /* w/a for post sync ops following a GPGPU operation we
1637          * need a prior CS_STALL, which is emitted by the flush
1638          * following the batch.
1639          */
1640         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1641         intel_ring_emit(ring,
1642                         (PIPE_CONTROL_GLOBAL_GTT_IVB |
1643                          PIPE_CONTROL_CS_STALL |
1644                          PIPE_CONTROL_QW_WRITE));
1645         intel_ring_emit(ring, intel_hws_seqno_address(request->engine));
1646         intel_ring_emit(ring, 0);
1647         intel_ring_emit(ring, i915_gem_request_get_seqno(request));
1648         /* We're thrashing one dword of HWS. */
1649         intel_ring_emit(ring, 0);
1650         intel_ring_emit(ring, MI_USER_INTERRUPT);
1651         intel_ring_emit(ring, MI_NOOP);
1652         return intel_logical_ring_advance(request);
1653 }
1654
1655 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1656 {
1657         int ret;
1658
1659         ret = intel_logical_ring_workarounds_emit(req);
1660         if (ret)
1661                 return ret;
1662
1663         ret = intel_rcs_context_init_mocs(req);
1664         /*
1665          * Failing to program the MOCS is non-fatal.The system will not
1666          * run at peak performance. So generate an error and carry on.
1667          */
1668         if (ret)
1669                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1670
1671         return i915_gem_render_state_init(req);
1672 }
1673
1674 /**
1675  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1676  * @engine: Engine Command Streamer.
1677  */
1678 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1679 {
1680         struct drm_i915_private *dev_priv;
1681
1682         if (!intel_engine_initialized(engine))
1683                 return;
1684
1685         /*
1686          * Tasklet cannot be active at this point due intel_mark_active/idle
1687          * so this is just for documentation.
1688          */
1689         if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1690                 tasklet_kill(&engine->irq_tasklet);
1691
1692         dev_priv = engine->i915;
1693
1694         if (engine->buffer) {
1695                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1696         }
1697
1698         if (engine->cleanup)
1699                 engine->cleanup(engine);
1700
1701         intel_engine_cleanup_common(engine);
1702
1703         if (engine->status_page.obj) {
1704                 i915_gem_object_unpin_map(engine->status_page.obj);
1705                 engine->status_page.obj = NULL;
1706         }
1707         intel_lr_context_unpin(dev_priv->kernel_context, engine);
1708
1709         engine->idle_lite_restore_wa = 0;
1710         engine->disable_lite_restore_wa = false;
1711         engine->ctx_desc_template = 0;
1712
1713         lrc_destroy_wa_ctx_obj(engine);
1714         engine->i915 = NULL;
1715 }
1716
1717 void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1718 {
1719         struct intel_engine_cs *engine;
1720
1721         for_each_engine(engine, dev_priv)
1722                 engine->submit_request = execlists_submit_request;
1723 }
1724
1725 static void
1726 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1727 {
1728         /* Default vfuncs which can be overriden by each engine. */
1729         engine->init_hw = gen8_init_common_ring;
1730         engine->emit_flush = gen8_emit_flush;
1731         engine->emit_request = gen8_emit_request;
1732         engine->submit_request = execlists_submit_request;
1733
1734         engine->irq_enable = gen8_logical_ring_enable_irq;
1735         engine->irq_disable = gen8_logical_ring_disable_irq;
1736         engine->emit_bb_start = gen8_emit_bb_start;
1737         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1738                 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1739 }
1740
1741 static inline void
1742 logical_ring_default_irqs(struct intel_engine_cs *engine)
1743 {
1744         unsigned shift = engine->irq_shift;
1745         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1746         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1747 }
1748
1749 static int
1750 lrc_setup_hws(struct intel_engine_cs *engine,
1751               struct drm_i915_gem_object *dctx_obj)
1752 {
1753         void *hws;
1754
1755         /* The HWSP is part of the default context object in LRC mode. */
1756         engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1757                                        LRC_PPHWSP_PN * PAGE_SIZE;
1758         hws = i915_gem_object_pin_map(dctx_obj);
1759         if (IS_ERR(hws))
1760                 return PTR_ERR(hws);
1761         engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1762         engine->status_page.obj = dctx_obj;
1763
1764         return 0;
1765 }
1766
1767 static void
1768 logical_ring_setup(struct intel_engine_cs *engine)
1769 {
1770         struct drm_i915_private *dev_priv = engine->i915;
1771         enum forcewake_domains fw_domains;
1772
1773         intel_engine_setup_common(engine);
1774
1775         /* Intentionally left blank. */
1776         engine->buffer = NULL;
1777
1778         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1779                                                     RING_ELSP(engine),
1780                                                     FW_REG_WRITE);
1781
1782         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1783                                                      RING_CONTEXT_STATUS_PTR(engine),
1784                                                      FW_REG_READ | FW_REG_WRITE);
1785
1786         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1787                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
1788                                                      FW_REG_READ);
1789
1790         engine->fw_domains = fw_domains;
1791
1792         tasklet_init(&engine->irq_tasklet,
1793                      intel_lrc_irq_handler, (unsigned long)engine);
1794
1795         logical_ring_init_platform_invariants(engine);
1796         logical_ring_default_vfuncs(engine);
1797         logical_ring_default_irqs(engine);
1798 }
1799
1800 static int
1801 logical_ring_init(struct intel_engine_cs *engine)
1802 {
1803         struct i915_gem_context *dctx = engine->i915->kernel_context;
1804         int ret;
1805
1806         ret = intel_engine_init_common(engine);
1807         if (ret)
1808                 goto error;
1809
1810         ret = execlists_context_deferred_alloc(dctx, engine);
1811         if (ret)
1812                 goto error;
1813
1814         /* As this is the default context, always pin it */
1815         ret = intel_lr_context_pin(dctx, engine);
1816         if (ret) {
1817                 DRM_ERROR("Failed to pin context for %s: %d\n",
1818                           engine->name, ret);
1819                 goto error;
1820         }
1821
1822         /* And setup the hardware status page. */
1823         ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1824         if (ret) {
1825                 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1826                 goto error;
1827         }
1828
1829         return 0;
1830
1831 error:
1832         intel_logical_ring_cleanup(engine);
1833         return ret;
1834 }
1835
1836 int logical_render_ring_init(struct intel_engine_cs *engine)
1837 {
1838         struct drm_i915_private *dev_priv = engine->i915;
1839         int ret;
1840
1841         logical_ring_setup(engine);
1842
1843         if (HAS_L3_DPF(dev_priv))
1844                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1845
1846         /* Override some for render ring. */
1847         if (INTEL_GEN(dev_priv) >= 9)
1848                 engine->init_hw = gen9_init_render_ring;
1849         else
1850                 engine->init_hw = gen8_init_render_ring;
1851         engine->init_context = gen8_init_rcs_context;
1852         engine->cleanup = intel_fini_pipe_control;
1853         engine->emit_flush = gen8_emit_flush_render;
1854         engine->emit_request = gen8_emit_request_render;
1855
1856         ret = intel_init_pipe_control(engine, 4096);
1857         if (ret)
1858                 return ret;
1859
1860         ret = intel_init_workaround_bb(engine);
1861         if (ret) {
1862                 /*
1863                  * We continue even if we fail to initialize WA batch
1864                  * because we only expect rare glitches but nothing
1865                  * critical to prevent us from using GPU
1866                  */
1867                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1868                           ret);
1869         }
1870
1871         ret = logical_ring_init(engine);
1872         if (ret) {
1873                 lrc_destroy_wa_ctx_obj(engine);
1874         }
1875
1876         return ret;
1877 }
1878
1879 int logical_xcs_ring_init(struct intel_engine_cs *engine)
1880 {
1881         logical_ring_setup(engine);
1882
1883         return logical_ring_init(engine);
1884 }
1885
1886 static u32
1887 make_rpcs(struct drm_i915_private *dev_priv)
1888 {
1889         u32 rpcs = 0;
1890
1891         /*
1892          * No explicit RPCS request is needed to ensure full
1893          * slice/subslice/EU enablement prior to Gen9.
1894         */
1895         if (INTEL_GEN(dev_priv) < 9)
1896                 return 0;
1897
1898         /*
1899          * Starting in Gen9, render power gating can leave
1900          * slice/subslice/EU in a partially enabled state. We
1901          * must make an explicit request through RPCS for full
1902          * enablement.
1903         */
1904         if (INTEL_INFO(dev_priv)->has_slice_pg) {
1905                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1906                 rpcs |= INTEL_INFO(dev_priv)->slice_total <<
1907                         GEN8_RPCS_S_CNT_SHIFT;
1908                 rpcs |= GEN8_RPCS_ENABLE;
1909         }
1910
1911         if (INTEL_INFO(dev_priv)->has_subslice_pg) {
1912                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1913                 rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
1914                         GEN8_RPCS_SS_CNT_SHIFT;
1915                 rpcs |= GEN8_RPCS_ENABLE;
1916         }
1917
1918         if (INTEL_INFO(dev_priv)->has_eu_pg) {
1919                 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
1920                         GEN8_RPCS_EU_MIN_SHIFT;
1921                 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
1922                         GEN8_RPCS_EU_MAX_SHIFT;
1923                 rpcs |= GEN8_RPCS_ENABLE;
1924         }
1925
1926         return rpcs;
1927 }
1928
1929 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1930 {
1931         u32 indirect_ctx_offset;
1932
1933         switch (INTEL_GEN(engine->i915)) {
1934         default:
1935                 MISSING_CASE(INTEL_GEN(engine->i915));
1936                 /* fall through */
1937         case 9:
1938                 indirect_ctx_offset =
1939                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1940                 break;
1941         case 8:
1942                 indirect_ctx_offset =
1943                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1944                 break;
1945         }
1946
1947         return indirect_ctx_offset;
1948 }
1949
1950 static int
1951 populate_lr_context(struct i915_gem_context *ctx,
1952                     struct drm_i915_gem_object *ctx_obj,
1953                     struct intel_engine_cs *engine,
1954                     struct intel_ring *ring)
1955 {
1956         struct drm_i915_private *dev_priv = ctx->i915;
1957         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1958         void *vaddr;
1959         u32 *reg_state;
1960         int ret;
1961
1962         if (!ppgtt)
1963                 ppgtt = dev_priv->mm.aliasing_ppgtt;
1964
1965         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1966         if (ret) {
1967                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1968                 return ret;
1969         }
1970
1971         vaddr = i915_gem_object_pin_map(ctx_obj);
1972         if (IS_ERR(vaddr)) {
1973                 ret = PTR_ERR(vaddr);
1974                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
1975                 return ret;
1976         }
1977         ctx_obj->dirty = true;
1978
1979         /* The second page of the context object contains some fields which must
1980          * be set up prior to the first execution. */
1981         reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1982
1983         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1984          * commands followed by (reg, value) pairs. The values we are setting here are
1985          * only for the first context restore: on a subsequent save, the GPU will
1986          * recreate this batchbuffer with new values (including all the missing
1987          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1988         reg_state[CTX_LRI_HEADER_0] =
1989                 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
1990         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
1991                        RING_CONTEXT_CONTROL(engine),
1992                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1993                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1994                                           (HAS_RESOURCE_STREAMER(dev_priv) ?
1995                                             CTX_CTRL_RS_CTX_ENABLE : 0)));
1996         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
1997                        0);
1998         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
1999                        0);
2000         /* Ring buffer start address is not known until the buffer is pinned.
2001          * It is written to the context image in execlists_update_context()
2002          */
2003         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2004                        RING_START(engine->mmio_base), 0);
2005         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2006                        RING_CTL(engine->mmio_base),
2007                        ((ring->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2008         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2009                        RING_BBADDR_UDW(engine->mmio_base), 0);
2010         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2011                        RING_BBADDR(engine->mmio_base), 0);
2012         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2013                        RING_BBSTATE(engine->mmio_base),
2014                        RING_BB_PPGTT);
2015         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2016                        RING_SBBADDR_UDW(engine->mmio_base), 0);
2017         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2018                        RING_SBBADDR(engine->mmio_base), 0);
2019         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2020                        RING_SBBSTATE(engine->mmio_base), 0);
2021         if (engine->id == RCS) {
2022                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2023                                RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2024                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2025                                RING_INDIRECT_CTX(engine->mmio_base), 0);
2026                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2027                                RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2028                 if (engine->wa_ctx.obj) {
2029                         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2030                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2031
2032                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2033                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2034                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2035
2036                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2037                                 intel_lr_indirect_ctx_offset(engine) << 6;
2038
2039                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2040                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2041                                 0x01;
2042                 }
2043         }
2044         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2045         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2046                        RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2047         /* PDP values well be assigned later if needed */
2048         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2049                        0);
2050         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2051                        0);
2052         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2053                        0);
2054         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2055                        0);
2056         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2057                        0);
2058         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2059                        0);
2060         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2061                        0);
2062         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2063                        0);
2064
2065         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2066                 /* 64b PPGTT (48bit canonical)
2067                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2068                  * other PDP Descriptors are ignored.
2069                  */
2070                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2071         } else {
2072                 /* 32b PPGTT
2073                  * PDP*_DESCRIPTOR contains the base address of space supported.
2074                  * With dynamic page allocation, PDPs may not be allocated at
2075                  * this point. Point the unallocated PDPs to the scratch page
2076                  */
2077                 execlists_update_context_pdps(ppgtt, reg_state);
2078         }
2079
2080         if (engine->id == RCS) {
2081                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2082                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2083                                make_rpcs(dev_priv));
2084         }
2085
2086         i915_gem_object_unpin_map(ctx_obj);
2087
2088         return 0;
2089 }
2090
2091 /**
2092  * intel_lr_context_size() - return the size of the context for an engine
2093  * @engine: which engine to find the context size for
2094  *
2095  * Each engine may require a different amount of space for a context image,
2096  * so when allocating (or copying) an image, this function can be used to
2097  * find the right size for the specific engine.
2098  *
2099  * Return: size (in bytes) of an engine-specific context image
2100  *
2101  * Note: this size includes the HWSP, which is part of the context image
2102  * in LRC mode, but does not include the "shared data page" used with
2103  * GuC submission. The caller should account for this if using the GuC.
2104  */
2105 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2106 {
2107         int ret = 0;
2108
2109         WARN_ON(INTEL_GEN(engine->i915) < 8);
2110
2111         switch (engine->id) {
2112         case RCS:
2113                 if (INTEL_GEN(engine->i915) >= 9)
2114                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2115                 else
2116                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2117                 break;
2118         case VCS:
2119         case BCS:
2120         case VECS:
2121         case VCS2:
2122                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2123                 break;
2124         }
2125
2126         return ret;
2127 }
2128
2129 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2130                                             struct intel_engine_cs *engine)
2131 {
2132         struct drm_i915_gem_object *ctx_obj;
2133         struct intel_context *ce = &ctx->engine[engine->id];
2134         uint32_t context_size;
2135         struct intel_ring *ring;
2136         int ret;
2137
2138         WARN_ON(ce->state);
2139
2140         context_size = round_up(intel_lr_context_size(engine), 4096);
2141
2142         /* One extra page as the sharing data between driver and GuC */
2143         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2144
2145         ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2146         if (IS_ERR(ctx_obj)) {
2147                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2148                 return PTR_ERR(ctx_obj);
2149         }
2150
2151         ring = intel_engine_create_ring(engine, ctx->ring_size);
2152         if (IS_ERR(ring)) {
2153                 ret = PTR_ERR(ring);
2154                 goto error_deref_obj;
2155         }
2156
2157         ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2158         if (ret) {
2159                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2160                 goto error_ring_free;
2161         }
2162
2163         ce->ring = ring;
2164         ce->state = ctx_obj;
2165         ce->initialised = engine->init_context == NULL;
2166
2167         return 0;
2168
2169 error_ring_free:
2170         intel_ring_free(ring);
2171 error_deref_obj:
2172         i915_gem_object_put(ctx_obj);
2173         ce->ring = NULL;
2174         ce->state = NULL;
2175         return ret;
2176 }
2177
2178 void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2179                             struct i915_gem_context *ctx)
2180 {
2181         struct intel_engine_cs *engine;
2182
2183         for_each_engine(engine, dev_priv) {
2184                 struct intel_context *ce = &ctx->engine[engine->id];
2185                 struct drm_i915_gem_object *ctx_obj = ce->state;
2186                 void *vaddr;
2187                 uint32_t *reg_state;
2188
2189                 if (!ctx_obj)
2190                         continue;
2191
2192                 vaddr = i915_gem_object_pin_map(ctx_obj);
2193                 if (WARN_ON(IS_ERR(vaddr)))
2194                         continue;
2195
2196                 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2197                 ctx_obj->dirty = true;
2198
2199                 reg_state[CTX_RING_HEAD+1] = 0;
2200                 reg_state[CTX_RING_TAIL+1] = 0;
2201
2202                 i915_gem_object_unpin_map(ctx_obj);
2203
2204                 ce->ring->head = 0;
2205                 ce->ring->tail = 0;
2206         }
2207 }