]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Split execlist priority queue into rbtree + linked list
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define RING_EXECLIST_QFULL             (1 << 0x2)
142 #define RING_EXECLIST1_VALID            (1 << 0x3)
143 #define RING_EXECLIST0_VALID            (1 << 0x4)
144 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
145 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
146 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
147
148 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
149 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
150 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
151 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
152 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
153 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
154
155 #define GEN8_CTX_STATUS_COMPLETED_MASK \
156          (GEN8_CTX_STATUS_ACTIVE_IDLE | \
157           GEN8_CTX_STATUS_PREEMPTED | \
158           GEN8_CTX_STATUS_ELEMENT_SWITCH)
159
160 #define CTX_LRI_HEADER_0                0x01
161 #define CTX_CONTEXT_CONTROL             0x02
162 #define CTX_RING_HEAD                   0x04
163 #define CTX_RING_TAIL                   0x06
164 #define CTX_RING_BUFFER_START           0x08
165 #define CTX_RING_BUFFER_CONTROL         0x0a
166 #define CTX_BB_HEAD_U                   0x0c
167 #define CTX_BB_HEAD_L                   0x0e
168 #define CTX_BB_STATE                    0x10
169 #define CTX_SECOND_BB_HEAD_U            0x12
170 #define CTX_SECOND_BB_HEAD_L            0x14
171 #define CTX_SECOND_BB_STATE             0x16
172 #define CTX_BB_PER_CTX_PTR              0x18
173 #define CTX_RCS_INDIRECT_CTX            0x1a
174 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
175 #define CTX_LRI_HEADER_1                0x21
176 #define CTX_CTX_TIMESTAMP               0x22
177 #define CTX_PDP3_UDW                    0x24
178 #define CTX_PDP3_LDW                    0x26
179 #define CTX_PDP2_UDW                    0x28
180 #define CTX_PDP2_LDW                    0x2a
181 #define CTX_PDP1_UDW                    0x2c
182 #define CTX_PDP1_LDW                    0x2e
183 #define CTX_PDP0_UDW                    0x30
184 #define CTX_PDP0_LDW                    0x32
185 #define CTX_LRI_HEADER_2                0x41
186 #define CTX_R_PWR_CLK_STATE             0x42
187 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
188
189 #define CTX_REG(reg_state, pos, reg, val) do { \
190         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
191         (reg_state)[(pos)+1] = (val); \
192 } while (0)
193
194 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
195         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
196         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 } while (0)
199
200 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
201         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
202         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
203 } while (0)
204
205 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
206 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
207
208 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
209 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
210
211 #define WA_TAIL_DWORDS 2
212
213 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
214                                             struct intel_engine_cs *engine);
215 static void execlists_init_reg_state(u32 *reg_state,
216                                      struct i915_gem_context *ctx,
217                                      struct intel_engine_cs *engine,
218                                      struct intel_ring *ring);
219
220 /**
221  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
222  * @dev_priv: i915 device private
223  * @enable_execlists: value of i915.enable_execlists module parameter.
224  *
225  * Only certain platforms support Execlists (the prerequisites being
226  * support for Logical Ring Contexts and Aliasing PPGTT or better).
227  *
228  * Return: 1 if Execlists is supported and has to be enabled.
229  */
230 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
231 {
232         /* On platforms with execlist available, vGPU will only
233          * support execlist mode, no ring buffer mode.
234          */
235         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
236                 return 1;
237
238         if (INTEL_GEN(dev_priv) >= 9)
239                 return 1;
240
241         if (enable_execlists == 0)
242                 return 0;
243
244         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
245             USES_PPGTT(dev_priv) &&
246             i915.use_mmio_flip >= 0)
247                 return 1;
248
249         return 0;
250 }
251
252 /**
253  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
254  *                                        descriptor for a pinned context
255  * @ctx: Context to work on
256  * @engine: Engine the descriptor will be used with
257  *
258  * The context descriptor encodes various attributes of a context,
259  * including its GTT address and some flags. Because it's fairly
260  * expensive to calculate, we'll just do it once and cache the result,
261  * which remains valid until the context is unpinned.
262  *
263  * This is what a descriptor looks like, from LSB to MSB::
264  *
265  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
266  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
267  *      bits 32-52:    ctx ID, a globally unique tag
268  *      bits 53-54:    mbz, reserved for use by hardware
269  *      bits 55-63:    group ID, currently unused and set to 0
270  */
271 static void
272 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
273                                    struct intel_engine_cs *engine)
274 {
275         struct intel_context *ce = &ctx->engine[engine->id];
276         u64 desc;
277
278         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
279
280         desc = ctx->desc_template;                              /* bits  0-11 */
281         desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
282                                                                 /* bits 12-31 */
283         desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;           /* bits 32-52 */
284
285         ce->lrc_desc = desc;
286 }
287
288 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
289                                      struct intel_engine_cs *engine)
290 {
291         return ctx->engine[engine->id].lrc_desc;
292 }
293
294 static inline void
295 execlists_context_status_change(struct drm_i915_gem_request *rq,
296                                 unsigned long status)
297 {
298         /*
299          * Only used when GVT-g is enabled now. When GVT-g is disabled,
300          * The compiler should eliminate this function as dead-code.
301          */
302         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
303                 return;
304
305         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
306                                    status, rq);
307 }
308
309 static void
310 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
311 {
312         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
313         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
314         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
315         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
316 }
317
318 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
319 {
320         struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
321         struct i915_hw_ppgtt *ppgtt =
322                 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
323         u32 *reg_state = ce->lrc_reg_state;
324
325         reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
326
327         /* True 32b PPGTT with dynamic page allocation: update PDP
328          * registers and point the unallocated PDPs to scratch page.
329          * PML4 is allocated during ppgtt init, so this is not needed
330          * in 48-bit mode.
331          */
332         if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
333                 execlists_update_context_pdps(ppgtt, reg_state);
334
335         return ce->lrc_desc;
336 }
337
338 static void execlists_submit_ports(struct intel_engine_cs *engine)
339 {
340         struct execlist_port *port = engine->execlist_port;
341         u32 __iomem *elsp =
342                 engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
343         unsigned int n;
344
345         for (n = ARRAY_SIZE(engine->execlist_port); n--; ) {
346                 struct drm_i915_gem_request *rq;
347                 unsigned int count;
348                 u64 desc;
349
350                 rq = port_unpack(&port[n], &count);
351                 if (rq) {
352                         GEM_BUG_ON(count > !n);
353                         if (!count++)
354                                 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
355                         port_set(&port[n], port_pack(rq, count));
356                         desc = execlists_update_context(rq);
357                         GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
358                 } else {
359                         GEM_BUG_ON(!n);
360                         desc = 0;
361                 }
362
363                 writel(upper_32_bits(desc), elsp);
364                 writel(lower_32_bits(desc), elsp);
365         }
366 }
367
368 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
369 {
370         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
371                 i915_gem_context_force_single_submission(ctx));
372 }
373
374 static bool can_merge_ctx(const struct i915_gem_context *prev,
375                           const struct i915_gem_context *next)
376 {
377         if (prev != next)
378                 return false;
379
380         if (ctx_single_port_submission(prev))
381                 return false;
382
383         return true;
384 }
385
386 static void port_assign(struct execlist_port *port,
387                         struct drm_i915_gem_request *rq)
388 {
389         GEM_BUG_ON(rq == port_request(port));
390
391         if (port_isset(port))
392                 i915_gem_request_put(port_request(port));
393
394         port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
395 }
396
397 static void execlists_dequeue(struct intel_engine_cs *engine)
398 {
399         struct drm_i915_gem_request *last;
400         struct execlist_port *port = engine->execlist_port;
401         struct rb_node *rb;
402         bool submit = false;
403
404         last = port_request(port);
405         if (last)
406                 /* WaIdleLiteRestore:bdw,skl
407                  * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
408                  * as we resubmit the request. See gen8_emit_breadcrumb()
409                  * for where we prepare the padding after the end of the
410                  * request.
411                  */
412                 last->tail = last->wa_tail;
413
414         GEM_BUG_ON(port_isset(&port[1]));
415
416         /* Hardware submission is through 2 ports. Conceptually each port
417          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
418          * static for a context, and unique to each, so we only execute
419          * requests belonging to a single context from each ring. RING_HEAD
420          * is maintained by the CS in the context image, it marks the place
421          * where it got up to last time, and through RING_TAIL we tell the CS
422          * where we want to execute up to this time.
423          *
424          * In this list the requests are in order of execution. Consecutive
425          * requests from the same context are adjacent in the ringbuffer. We
426          * can combine these requests into a single RING_TAIL update:
427          *
428          *              RING_HEAD...req1...req2
429          *                                    ^- RING_TAIL
430          * since to execute req2 the CS must first execute req1.
431          *
432          * Our goal then is to point each port to the end of a consecutive
433          * sequence of requests as being the most optimal (fewest wake ups
434          * and context switches) submission.
435          */
436
437         spin_lock_irq(&engine->timeline->lock);
438         rb = engine->execlist_first;
439         GEM_BUG_ON(rb_first(&engine->execlist_queue) != rb);
440         while (rb) {
441                 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
442                 struct drm_i915_gem_request *rq, *rn;
443
444                 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
445                         /*
446                          * Can we combine this request with the current port?
447                          * It has to be the same context/ringbuffer and not
448                          * have any exceptions (e.g. GVT saying never to
449                          * combine contexts).
450                          *
451                          * If we can combine the requests, we can execute both
452                          * by updating the RING_TAIL to point to the end of the
453                          * second request, and so we never need to tell the
454                          * hardware about the first.
455                          */
456                         if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
457                                 /*
458                                  * If we are on the second port and cannot
459                                  * combine this request with the last, then we
460                                  * are done.
461                                  */
462                                 if (port != engine->execlist_port) {
463                                         __list_del_many(&p->requests,
464                                                         &rq->priotree.link);
465                                         goto done;
466                                 }
467
468                                 /*
469                                  * If GVT overrides us we only ever submit
470                                  * port[0], leaving port[1] empty. Note that we
471                                  * also have to be careful that we don't queue
472                                  * the same context (even though a different
473                                  * request) to the second port.
474                                  */
475                                 if (ctx_single_port_submission(last->ctx) ||
476                                     ctx_single_port_submission(rq->ctx)) {
477                                         __list_del_many(&p->requests,
478                                                         &rq->priotree.link);
479                                         goto done;
480                                 }
481
482                                 GEM_BUG_ON(last->ctx == rq->ctx);
483
484                                 if (submit)
485                                         port_assign(port, last);
486                                 port++;
487                         }
488
489                         INIT_LIST_HEAD(&rq->priotree.link);
490                         rq->priotree.priority = INT_MAX;
491
492                         __i915_gem_request_submit(rq);
493                         trace_i915_gem_request_in(rq, port_index(port, engine));
494                         last = rq;
495                         submit = true;
496                 }
497
498                 rb = rb_next(rb);
499                 rb_erase(&p->node, &engine->execlist_queue);
500                 INIT_LIST_HEAD(&p->requests);
501                 if (p->priority != I915_PRIORITY_NORMAL)
502                         kfree(p);
503         }
504 done:
505         engine->execlist_first = rb;
506         if (submit)
507                 port_assign(port, last);
508         spin_unlock_irq(&engine->timeline->lock);
509
510         if (submit)
511                 execlists_submit_ports(engine);
512 }
513
514 static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
515 {
516         const struct execlist_port *port = engine->execlist_port;
517
518         return port_count(&port[0]) + port_count(&port[1]) < 2;
519 }
520
521 /*
522  * Check the unread Context Status Buffers and manage the submission of new
523  * contexts to the ELSP accordingly.
524  */
525 static void intel_lrc_irq_handler(unsigned long data)
526 {
527         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
528         struct execlist_port *port = engine->execlist_port;
529         struct drm_i915_private *dev_priv = engine->i915;
530
531         /* We can skip acquiring intel_runtime_pm_get() here as it was taken
532          * on our behalf by the request (see i915_gem_mark_busy()) and it will
533          * not be relinquished until the device is idle (see
534          * i915_gem_idle_work_handler()). As a precaution, we make sure
535          * that all ELSP are drained i.e. we have processed the CSB,
536          * before allowing ourselves to idle and calling intel_runtime_pm_put().
537          */
538         GEM_BUG_ON(!dev_priv->gt.awake);
539
540         intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
541
542         /* Prefer doing test_and_clear_bit() as a two stage operation to avoid
543          * imposing the cost of a locked atomic transaction when submitting a
544          * new request (outside of the context-switch interrupt).
545          */
546         while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
547                 u32 __iomem *csb_mmio =
548                         dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
549                 u32 __iomem *buf =
550                         dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
551                 unsigned int head, tail;
552
553                 /* The write will be ordered by the uncached read (itself
554                  * a memory barrier), so we do not need another in the form
555                  * of a locked instruction. The race between the interrupt
556                  * handler and the split test/clear is harmless as we order
557                  * our clear before the CSB read. If the interrupt arrived
558                  * first between the test and the clear, we read the updated
559                  * CSB and clear the bit. If the interrupt arrives as we read
560                  * the CSB or later (i.e. after we had cleared the bit) the bit
561                  * is set and we do a new loop.
562                  */
563                 __clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
564                 head = readl(csb_mmio);
565                 tail = GEN8_CSB_WRITE_PTR(head);
566                 head = GEN8_CSB_READ_PTR(head);
567                 while (head != tail) {
568                         struct drm_i915_gem_request *rq;
569                         unsigned int status;
570                         unsigned int count;
571
572                         if (++head == GEN8_CSB_ENTRIES)
573                                 head = 0;
574
575                         /* We are flying near dragons again.
576                          *
577                          * We hold a reference to the request in execlist_port[]
578                          * but no more than that. We are operating in softirq
579                          * context and so cannot hold any mutex or sleep. That
580                          * prevents us stopping the requests we are processing
581                          * in port[] from being retired simultaneously (the
582                          * breadcrumb will be complete before we see the
583                          * context-switch). As we only hold the reference to the
584                          * request, any pointer chasing underneath the request
585                          * is subject to a potential use-after-free. Thus we
586                          * store all of the bookkeeping within port[] as
587                          * required, and avoid using unguarded pointers beneath
588                          * request itself. The same applies to the atomic
589                          * status notifier.
590                          */
591
592                         status = readl(buf + 2 * head);
593                         if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
594                                 continue;
595
596                         /* Check the context/desc id for this event matches */
597                         GEM_DEBUG_BUG_ON(readl(buf + 2 * head + 1) !=
598                                          port->context_id);
599
600                         rq = port_unpack(port, &count);
601                         GEM_BUG_ON(count == 0);
602                         if (--count == 0) {
603                                 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
604                                 GEM_BUG_ON(!i915_gem_request_completed(rq));
605                                 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
606
607                                 trace_i915_gem_request_out(rq);
608                                 i915_gem_request_put(rq);
609
610                                 port[0] = port[1];
611                                 memset(&port[1], 0, sizeof(port[1]));
612                         } else {
613                                 port_set(port, port_pack(rq, count));
614                         }
615
616                         /* After the final element, the hw should be idle */
617                         GEM_BUG_ON(port_count(port) == 0 &&
618                                    !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
619                 }
620
621                 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
622                        csb_mmio);
623         }
624
625         if (execlists_elsp_ready(engine))
626                 execlists_dequeue(engine);
627
628         intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
629 }
630
631 static bool
632 insert_request(struct intel_engine_cs *engine,
633                struct i915_priotree *pt,
634                int prio)
635 {
636         struct i915_priolist *p;
637         struct rb_node **parent, *rb;
638         bool first = true;
639
640         if (unlikely(engine->no_priolist))
641                 prio = I915_PRIORITY_NORMAL;
642
643 find_priolist:
644         /* most positive priority is scheduled first, equal priorities fifo */
645         rb = NULL;
646         parent = &engine->execlist_queue.rb_node;
647         while (*parent) {
648                 rb = *parent;
649                 p = rb_entry(rb, typeof(*p), node);
650                 if (prio > p->priority) {
651                         parent = &rb->rb_left;
652                 } else if (prio < p->priority) {
653                         parent = &rb->rb_right;
654                         first = false;
655                 } else {
656                         list_add_tail(&pt->link, &p->requests);
657                         return false;
658                 }
659         }
660
661         if (prio == I915_PRIORITY_NORMAL) {
662                 p = &engine->default_priolist;
663         } else {
664                 p = kmalloc(sizeof(*p), GFP_ATOMIC);
665                 /* Convert an allocation failure to a priority bump */
666                 if (unlikely(!p)) {
667                         prio = I915_PRIORITY_NORMAL; /* recurses just once */
668
669                         /* To maintain ordering with all rendering, after an
670                          * allocation failure we have to disable all scheduling.
671                          * Requests will then be executed in fifo, and schedule
672                          * will ensure that dependencies are emitted in fifo.
673                          * There will be still some reordering with existing
674                          * requests, so if userspace lied about their
675                          * dependencies that reordering may be visible.
676                          */
677                         engine->no_priolist = true;
678                         goto find_priolist;
679                 }
680         }
681
682         p->priority = prio;
683         rb_link_node(&p->node, rb, parent);
684         rb_insert_color(&p->node, &engine->execlist_queue);
685
686         INIT_LIST_HEAD(&p->requests);
687         list_add_tail(&pt->link, &p->requests);
688
689         if (first)
690                 engine->execlist_first = &p->node;
691
692         return first;
693 }
694
695 static void execlists_submit_request(struct drm_i915_gem_request *request)
696 {
697         struct intel_engine_cs *engine = request->engine;
698         unsigned long flags;
699
700         /* Will be called from irq-context when using foreign fences. */
701         spin_lock_irqsave(&engine->timeline->lock, flags);
702
703         if (insert_request(engine,
704                            &request->priotree,
705                            request->priotree.priority)) {
706                 if (execlists_elsp_ready(engine))
707                         tasklet_hi_schedule(&engine->irq_tasklet);
708         }
709
710         GEM_BUG_ON(!engine->execlist_first);
711         GEM_BUG_ON(list_empty(&request->priotree.link));
712
713         spin_unlock_irqrestore(&engine->timeline->lock, flags);
714 }
715
716 static struct intel_engine_cs *
717 pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
718 {
719         struct intel_engine_cs *engine =
720                 container_of(pt, struct drm_i915_gem_request, priotree)->engine;
721
722         GEM_BUG_ON(!locked);
723
724         if (engine != locked) {
725                 spin_unlock(&locked->timeline->lock);
726                 spin_lock(&engine->timeline->lock);
727         }
728
729         return engine;
730 }
731
732 static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
733 {
734         struct intel_engine_cs *engine;
735         struct i915_dependency *dep, *p;
736         struct i915_dependency stack;
737         LIST_HEAD(dfs);
738
739         if (prio <= READ_ONCE(request->priotree.priority))
740                 return;
741
742         /* Need BKL in order to use the temporary link inside i915_dependency */
743         lockdep_assert_held(&request->i915->drm.struct_mutex);
744
745         stack.signaler = &request->priotree;
746         list_add(&stack.dfs_link, &dfs);
747
748         /* Recursively bump all dependent priorities to match the new request.
749          *
750          * A naive approach would be to use recursion:
751          * static void update_priorities(struct i915_priotree *pt, prio) {
752          *      list_for_each_entry(dep, &pt->signalers_list, signal_link)
753          *              update_priorities(dep->signal, prio)
754          *      insert_request(pt);
755          * }
756          * but that may have unlimited recursion depth and so runs a very
757          * real risk of overunning the kernel stack. Instead, we build
758          * a flat list of all dependencies starting with the current request.
759          * As we walk the list of dependencies, we add all of its dependencies
760          * to the end of the list (this may include an already visited
761          * request) and continue to walk onwards onto the new dependencies. The
762          * end result is a topological list of requests in reverse order, the
763          * last element in the list is the request we must execute first.
764          */
765         list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
766                 struct i915_priotree *pt = dep->signaler;
767
768                 /* Within an engine, there can be no cycle, but we may
769                  * refer to the same dependency chain multiple times
770                  * (redundant dependencies are not eliminated) and across
771                  * engines.
772                  */
773                 list_for_each_entry(p, &pt->signalers_list, signal_link) {
774                         GEM_BUG_ON(p->signaler->priority < pt->priority);
775                         if (prio > READ_ONCE(p->signaler->priority))
776                                 list_move_tail(&p->dfs_link, &dfs);
777                 }
778
779                 list_safe_reset_next(dep, p, dfs_link);
780         }
781
782         engine = request->engine;
783         spin_lock_irq(&engine->timeline->lock);
784
785         /* Fifo and depth-first replacement ensure our deps execute before us */
786         list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
787                 struct i915_priotree *pt = dep->signaler;
788
789                 INIT_LIST_HEAD(&dep->dfs_link);
790
791                 engine = pt_lock_engine(pt, engine);
792
793                 if (prio <= pt->priority)
794                         continue;
795
796                 pt->priority = prio;
797                 if (!list_empty(&pt->link)) {
798                         __list_del_entry(&pt->link);
799                         insert_request(engine, pt, prio);
800                 }
801         }
802
803         spin_unlock_irq(&engine->timeline->lock);
804
805         /* XXX Do we need to preempt to make room for us and our deps? */
806 }
807
808 static struct intel_ring *
809 execlists_context_pin(struct intel_engine_cs *engine,
810                       struct i915_gem_context *ctx)
811 {
812         struct intel_context *ce = &ctx->engine[engine->id];
813         unsigned int flags;
814         void *vaddr;
815         int ret;
816
817         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
818
819         if (likely(ce->pin_count++))
820                 goto out;
821         GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
822
823         if (!ce->state) {
824                 ret = execlists_context_deferred_alloc(ctx, engine);
825                 if (ret)
826                         goto err;
827         }
828         GEM_BUG_ON(!ce->state);
829
830         flags = PIN_GLOBAL | PIN_HIGH;
831         if (ctx->ggtt_offset_bias)
832                 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
833
834         ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
835         if (ret)
836                 goto err;
837
838         vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
839         if (IS_ERR(vaddr)) {
840                 ret = PTR_ERR(vaddr);
841                 goto unpin_vma;
842         }
843
844         ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
845         if (ret)
846                 goto unpin_map;
847
848         intel_lr_context_descriptor_update(ctx, engine);
849
850         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
851         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
852                 i915_ggtt_offset(ce->ring->vma);
853
854         ce->state->obj->mm.dirty = true;
855
856         i915_gem_context_get(ctx);
857 out:
858         return ce->ring;
859
860 unpin_map:
861         i915_gem_object_unpin_map(ce->state->obj);
862 unpin_vma:
863         __i915_vma_unpin(ce->state);
864 err:
865         ce->pin_count = 0;
866         return ERR_PTR(ret);
867 }
868
869 static void execlists_context_unpin(struct intel_engine_cs *engine,
870                                     struct i915_gem_context *ctx)
871 {
872         struct intel_context *ce = &ctx->engine[engine->id];
873
874         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
875         GEM_BUG_ON(ce->pin_count == 0);
876
877         if (--ce->pin_count)
878                 return;
879
880         intel_ring_unpin(ce->ring);
881
882         i915_gem_object_unpin_map(ce->state->obj);
883         i915_vma_unpin(ce->state);
884
885         i915_gem_context_put(ctx);
886 }
887
888 static int execlists_request_alloc(struct drm_i915_gem_request *request)
889 {
890         struct intel_engine_cs *engine = request->engine;
891         struct intel_context *ce = &request->ctx->engine[engine->id];
892         u32 *cs;
893         int ret;
894
895         GEM_BUG_ON(!ce->pin_count);
896
897         /* Flush enough space to reduce the likelihood of waiting after
898          * we start building the request - in which case we will just
899          * have to repeat work.
900          */
901         request->reserved_space += EXECLISTS_REQUEST_SIZE;
902
903         if (i915.enable_guc_submission) {
904                 /*
905                  * Check that the GuC has space for the request before
906                  * going any further, as the i915_add_request() call
907                  * later on mustn't fail ...
908                  */
909                 ret = i915_guc_wq_reserve(request);
910                 if (ret)
911                         goto err;
912         }
913
914         cs = intel_ring_begin(request, 0);
915         if (IS_ERR(cs)) {
916                 ret = PTR_ERR(cs);
917                 goto err_unreserve;
918         }
919
920         if (!ce->initialised) {
921                 ret = engine->init_context(request);
922                 if (ret)
923                         goto err_unreserve;
924
925                 ce->initialised = true;
926         }
927
928         /* Note that after this point, we have committed to using
929          * this request as it is being used to both track the
930          * state of engine initialisation and liveness of the
931          * golden renderstate above. Think twice before you try
932          * to cancel/unwind this request now.
933          */
934
935         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
936         return 0;
937
938 err_unreserve:
939         if (i915.enable_guc_submission)
940                 i915_guc_wq_unreserve(request);
941 err:
942         return ret;
943 }
944
945 /*
946  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
947  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
948  * but there is a slight complication as this is applied in WA batch where the
949  * values are only initialized once so we cannot take register value at the
950  * beginning and reuse it further; hence we save its value to memory, upload a
951  * constant value with bit21 set and then we restore it back with the saved value.
952  * To simplify the WA, a constant value is formed by using the default value
953  * of this register. This shouldn't be a problem because we are only modifying
954  * it for a short period and this batch in non-premptible. We can ofcourse
955  * use additional instructions that read the actual value of the register
956  * at that time and set our bit of interest but it makes the WA complicated.
957  *
958  * This WA is also required for Gen9 so extracting as a function avoids
959  * code duplication.
960  */
961 static u32 *
962 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
963 {
964         *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
965         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
966         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
967         *batch++ = 0;
968
969         *batch++ = MI_LOAD_REGISTER_IMM(1);
970         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
971         *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
972
973         batch = gen8_emit_pipe_control(batch,
974                                        PIPE_CONTROL_CS_STALL |
975                                        PIPE_CONTROL_DC_FLUSH_ENABLE,
976                                        0);
977
978         *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
979         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
980         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
981         *batch++ = 0;
982
983         return batch;
984 }
985
986 /*
987  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
988  * initialized at the beginning and shared across all contexts but this field
989  * helps us to have multiple batches at different offsets and select them based
990  * on a criteria. At the moment this batch always start at the beginning of the page
991  * and at this point we don't have multiple wa_ctx batch buffers.
992  *
993  * The number of WA applied are not known at the beginning; we use this field
994  * to return the no of DWORDS written.
995  *
996  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
997  * so it adds NOOPs as padding to make it cacheline aligned.
998  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
999  * makes a complete batch buffer.
1000  */
1001 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1002 {
1003         /* WaDisableCtxRestoreArbitration:bdw,chv */
1004         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1005
1006         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1007         if (IS_BROADWELL(engine->i915))
1008                 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1009
1010         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1011         /* Actual scratch location is at 128 bytes offset */
1012         batch = gen8_emit_pipe_control(batch,
1013                                        PIPE_CONTROL_FLUSH_L3 |
1014                                        PIPE_CONTROL_GLOBAL_GTT_IVB |
1015                                        PIPE_CONTROL_CS_STALL |
1016                                        PIPE_CONTROL_QW_WRITE,
1017                                        i915_ggtt_offset(engine->scratch) +
1018                                        2 * CACHELINE_BYTES);
1019
1020         /* Pad to end of cacheline */
1021         while ((unsigned long)batch % CACHELINE_BYTES)
1022                 *batch++ = MI_NOOP;
1023
1024         /*
1025          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1026          * execution depends on the length specified in terms of cache lines
1027          * in the register CTX_RCS_INDIRECT_CTX
1028          */
1029
1030         return batch;
1031 }
1032
1033 /*
1034  *  This batch is started immediately after indirect_ctx batch. Since we ensure
1035  *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1036  *
1037  *  The number of DWORDS written are returned using this field.
1038  *
1039  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1040  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1041  */
1042 static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1043 {
1044         /* WaDisableCtxRestoreArbitration:bdw,chv */
1045         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1046         *batch++ = MI_BATCH_BUFFER_END;
1047
1048         return batch;
1049 }
1050
1051 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1052 {
1053         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1054         batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1055
1056         /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1057         *batch++ = MI_LOAD_REGISTER_IMM(1);
1058         *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1059         *batch++ = _MASKED_BIT_DISABLE(
1060                         GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1061         *batch++ = MI_NOOP;
1062
1063         /* WaClearSlmSpaceAtContextSwitch:kbl */
1064         /* Actual scratch location is at 128 bytes offset */
1065         if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1066                 batch = gen8_emit_pipe_control(batch,
1067                                                PIPE_CONTROL_FLUSH_L3 |
1068                                                PIPE_CONTROL_GLOBAL_GTT_IVB |
1069                                                PIPE_CONTROL_CS_STALL |
1070                                                PIPE_CONTROL_QW_WRITE,
1071                                                i915_ggtt_offset(engine->scratch)
1072                                                + 2 * CACHELINE_BYTES);
1073         }
1074
1075         /* WaMediaPoolStateCmdInWABB:bxt,glk */
1076         if (HAS_POOLED_EU(engine->i915)) {
1077                 /*
1078                  * EU pool configuration is setup along with golden context
1079                  * during context initialization. This value depends on
1080                  * device type (2x6 or 3x6) and needs to be updated based
1081                  * on which subslice is disabled especially for 2x6
1082                  * devices, however it is safe to load default
1083                  * configuration of 3x6 device instead of masking off
1084                  * corresponding bits because HW ignores bits of a disabled
1085                  * subslice and drops down to appropriate config. Please
1086                  * see render_state_setup() in i915_gem_render_state.c for
1087                  * possible configurations, to avoid duplication they are
1088                  * not shown here again.
1089                  */
1090                 *batch++ = GEN9_MEDIA_POOL_STATE;
1091                 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1092                 *batch++ = 0x00777000;
1093                 *batch++ = 0;
1094                 *batch++ = 0;
1095                 *batch++ = 0;
1096         }
1097
1098         /* Pad to end of cacheline */
1099         while ((unsigned long)batch % CACHELINE_BYTES)
1100                 *batch++ = MI_NOOP;
1101
1102         return batch;
1103 }
1104
1105 static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1106 {
1107         *batch++ = MI_BATCH_BUFFER_END;
1108
1109         return batch;
1110 }
1111
1112 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1113
1114 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1115 {
1116         struct drm_i915_gem_object *obj;
1117         struct i915_vma *vma;
1118         int err;
1119
1120         obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1121         if (IS_ERR(obj))
1122                 return PTR_ERR(obj);
1123
1124         vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1125         if (IS_ERR(vma)) {
1126                 err = PTR_ERR(vma);
1127                 goto err;
1128         }
1129
1130         err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1131         if (err)
1132                 goto err;
1133
1134         engine->wa_ctx.vma = vma;
1135         return 0;
1136
1137 err:
1138         i915_gem_object_put(obj);
1139         return err;
1140 }
1141
1142 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1143 {
1144         i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1145 }
1146
1147 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1148
1149 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1150 {
1151         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1152         struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1153                                             &wa_ctx->per_ctx };
1154         wa_bb_func_t wa_bb_fn[2];
1155         struct page *page;
1156         void *batch, *batch_ptr;
1157         unsigned int i;
1158         int ret;
1159
1160         if (WARN_ON(engine->id != RCS || !engine->scratch))
1161                 return -EINVAL;
1162
1163         switch (INTEL_GEN(engine->i915)) {
1164         case 9:
1165                 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1166                 wa_bb_fn[1] = gen9_init_perctx_bb;
1167                 break;
1168         case 8:
1169                 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1170                 wa_bb_fn[1] = gen8_init_perctx_bb;
1171                 break;
1172         default:
1173                 MISSING_CASE(INTEL_GEN(engine->i915));
1174                 return 0;
1175         }
1176
1177         ret = lrc_setup_wa_ctx(engine);
1178         if (ret) {
1179                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1180                 return ret;
1181         }
1182
1183         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1184         batch = batch_ptr = kmap_atomic(page);
1185
1186         /*
1187          * Emit the two workaround batch buffers, recording the offset from the
1188          * start of the workaround batch buffer object for each and their
1189          * respective sizes.
1190          */
1191         for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1192                 wa_bb[i]->offset = batch_ptr - batch;
1193                 if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
1194                         ret = -EINVAL;
1195                         break;
1196                 }
1197                 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1198                 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1199         }
1200
1201         BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1202
1203         kunmap_atomic(batch);
1204         if (ret)
1205                 lrc_destroy_wa_ctx(engine);
1206
1207         return ret;
1208 }
1209
1210 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1211 {
1212         struct drm_i915_private *dev_priv = engine->i915;
1213         struct execlist_port *port = engine->execlist_port;
1214         unsigned int n;
1215         bool submit;
1216         int ret;
1217
1218         ret = intel_mocs_init_engine(engine);
1219         if (ret)
1220                 return ret;
1221
1222         intel_engine_reset_breadcrumbs(engine);
1223         intel_engine_init_hangcheck(engine);
1224
1225         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1226         I915_WRITE(RING_MODE_GEN7(engine),
1227                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1228         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1229                    engine->status_page.ggtt_offset);
1230         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1231
1232         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1233
1234         /* After a GPU reset, we may have requests to replay */
1235         clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1236
1237         submit = false;
1238         for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++) {
1239                 if (!port_isset(&port[n]))
1240                         break;
1241
1242                 DRM_DEBUG_DRIVER("Restarting %s:%d from 0x%x\n",
1243                                  engine->name, n,
1244                                  port_request(&port[n])->global_seqno);
1245
1246                 /* Discard the current inflight count */
1247                 port_set(&port[n], port_request(&port[n]));
1248                 submit = true;
1249         }
1250
1251         if (submit && !i915.enable_guc_submission)
1252                 execlists_submit_ports(engine);
1253
1254         return 0;
1255 }
1256
1257 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1258 {
1259         struct drm_i915_private *dev_priv = engine->i915;
1260         int ret;
1261
1262         ret = gen8_init_common_ring(engine);
1263         if (ret)
1264                 return ret;
1265
1266         /* We need to disable the AsyncFlip performance optimisations in order
1267          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1268          * programmed to '1' on all products.
1269          *
1270          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1271          */
1272         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1273
1274         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1275
1276         return init_workarounds_ring(engine);
1277 }
1278
1279 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1280 {
1281         int ret;
1282
1283         ret = gen8_init_common_ring(engine);
1284         if (ret)
1285                 return ret;
1286
1287         return init_workarounds_ring(engine);
1288 }
1289
1290 static void reset_common_ring(struct intel_engine_cs *engine,
1291                               struct drm_i915_gem_request *request)
1292 {
1293         struct execlist_port *port = engine->execlist_port;
1294         struct intel_context *ce;
1295
1296         /* If the request was innocent, we leave the request in the ELSP
1297          * and will try to replay it on restarting. The context image may
1298          * have been corrupted by the reset, in which case we may have
1299          * to service a new GPU hang, but more likely we can continue on
1300          * without impact.
1301          *
1302          * If the request was guilty, we presume the context is corrupt
1303          * and have to at least restore the RING register in the context
1304          * image back to the expected values to skip over the guilty request.
1305          */
1306         if (!request || request->fence.error != -EIO)
1307                 return;
1308
1309         /* We want a simple context + ring to execute the breadcrumb update.
1310          * We cannot rely on the context being intact across the GPU hang,
1311          * so clear it and rebuild just what we need for the breadcrumb.
1312          * All pending requests for this context will be zapped, and any
1313          * future request will be after userspace has had the opportunity
1314          * to recreate its own state.
1315          */
1316         ce = &request->ctx->engine[engine->id];
1317         execlists_init_reg_state(ce->lrc_reg_state,
1318                                  request->ctx, engine, ce->ring);
1319
1320         /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1321         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1322                 i915_ggtt_offset(ce->ring->vma);
1323         ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1324
1325         request->ring->head = request->postfix;
1326         intel_ring_update_space(request->ring);
1327
1328         /* Catch up with any missed context-switch interrupts */
1329         if (request->ctx != port_request(port)->ctx) {
1330                 i915_gem_request_put(port_request(port));
1331                 port[0] = port[1];
1332                 memset(&port[1], 0, sizeof(port[1]));
1333         }
1334
1335         GEM_BUG_ON(request->ctx != port_request(port)->ctx);
1336
1337         /* Reset WaIdleLiteRestore:bdw,skl as well */
1338         request->tail =
1339                 intel_ring_wrap(request->ring,
1340                                 request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
1341         assert_ring_tail_valid(request->ring, request->tail);
1342 }
1343
1344 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1345 {
1346         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1347         struct intel_engine_cs *engine = req->engine;
1348         const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1349         u32 *cs;
1350         int i;
1351
1352         cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1353         if (IS_ERR(cs))
1354                 return PTR_ERR(cs);
1355
1356         *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1357         for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1358                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1359
1360                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1361                 *cs++ = upper_32_bits(pd_daddr);
1362                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1363                 *cs++ = lower_32_bits(pd_daddr);
1364         }
1365
1366         *cs++ = MI_NOOP;
1367         intel_ring_advance(req, cs);
1368
1369         return 0;
1370 }
1371
1372 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1373                               u64 offset, u32 len,
1374                               const unsigned int flags)
1375 {
1376         u32 *cs;
1377         int ret;
1378
1379         /* Don't rely in hw updating PDPs, specially in lite-restore.
1380          * Ideally, we should set Force PD Restore in ctx descriptor,
1381          * but we can't. Force Restore would be a second option, but
1382          * it is unsafe in case of lite-restore (because the ctx is
1383          * not idle). PML4 is allocated during ppgtt init so this is
1384          * not needed in 48-bit.*/
1385         if (req->ctx->ppgtt &&
1386             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
1387             !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1388             !intel_vgpu_active(req->i915)) {
1389                 ret = intel_logical_ring_emit_pdps(req);
1390                 if (ret)
1391                         return ret;
1392
1393                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1394         }
1395
1396         cs = intel_ring_begin(req, 4);
1397         if (IS_ERR(cs))
1398                 return PTR_ERR(cs);
1399
1400         /* FIXME(BDW): Address space and security selectors. */
1401         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1402                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1403                 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1404         *cs++ = lower_32_bits(offset);
1405         *cs++ = upper_32_bits(offset);
1406         *cs++ = MI_NOOP;
1407         intel_ring_advance(req, cs);
1408
1409         return 0;
1410 }
1411
1412 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1413 {
1414         struct drm_i915_private *dev_priv = engine->i915;
1415         I915_WRITE_IMR(engine,
1416                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1417         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1418 }
1419
1420 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1421 {
1422         struct drm_i915_private *dev_priv = engine->i915;
1423         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1424 }
1425
1426 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1427 {
1428         u32 cmd, *cs;
1429
1430         cs = intel_ring_begin(request, 4);
1431         if (IS_ERR(cs))
1432                 return PTR_ERR(cs);
1433
1434         cmd = MI_FLUSH_DW + 1;
1435
1436         /* We always require a command barrier so that subsequent
1437          * commands, such as breadcrumb interrupts, are strictly ordered
1438          * wrt the contents of the write cache being flushed to memory
1439          * (and thus being coherent from the CPU).
1440          */
1441         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1442
1443         if (mode & EMIT_INVALIDATE) {
1444                 cmd |= MI_INVALIDATE_TLB;
1445                 if (request->engine->id == VCS)
1446                         cmd |= MI_INVALIDATE_BSD;
1447         }
1448
1449         *cs++ = cmd;
1450         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1451         *cs++ = 0; /* upper addr */
1452         *cs++ = 0; /* value */
1453         intel_ring_advance(request, cs);
1454
1455         return 0;
1456 }
1457
1458 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1459                                   u32 mode)
1460 {
1461         struct intel_engine_cs *engine = request->engine;
1462         u32 scratch_addr =
1463                 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1464         bool vf_flush_wa = false, dc_flush_wa = false;
1465         u32 *cs, flags = 0;
1466         int len;
1467
1468         flags |= PIPE_CONTROL_CS_STALL;
1469
1470         if (mode & EMIT_FLUSH) {
1471                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1472                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1473                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1474                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1475         }
1476
1477         if (mode & EMIT_INVALIDATE) {
1478                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1479                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1480                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1481                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1482                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1483                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1484                 flags |= PIPE_CONTROL_QW_WRITE;
1485                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1486
1487                 /*
1488                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1489                  * pipe control.
1490                  */
1491                 if (IS_GEN9(request->i915))
1492                         vf_flush_wa = true;
1493
1494                 /* WaForGAMHang:kbl */
1495                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1496                         dc_flush_wa = true;
1497         }
1498
1499         len = 6;
1500
1501         if (vf_flush_wa)
1502                 len += 6;
1503
1504         if (dc_flush_wa)
1505                 len += 12;
1506
1507         cs = intel_ring_begin(request, len);
1508         if (IS_ERR(cs))
1509                 return PTR_ERR(cs);
1510
1511         if (vf_flush_wa)
1512                 cs = gen8_emit_pipe_control(cs, 0, 0);
1513
1514         if (dc_flush_wa)
1515                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1516                                             0);
1517
1518         cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
1519
1520         if (dc_flush_wa)
1521                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
1522
1523         intel_ring_advance(request, cs);
1524
1525         return 0;
1526 }
1527
1528 /*
1529  * Reserve space for 2 NOOPs at the end of each request to be
1530  * used as a workaround for not being allowed to do lite
1531  * restore with HEAD==TAIL (WaIdleLiteRestore).
1532  */
1533 static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1534 {
1535         *cs++ = MI_NOOP;
1536         *cs++ = MI_NOOP;
1537         request->wa_tail = intel_ring_offset(request, cs);
1538 }
1539
1540 static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
1541 {
1542         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1543         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1544
1545         *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1546         *cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1547         *cs++ = 0;
1548         *cs++ = request->global_seqno;
1549         *cs++ = MI_USER_INTERRUPT;
1550         *cs++ = MI_NOOP;
1551         request->tail = intel_ring_offset(request, cs);
1552         assert_ring_tail_valid(request->ring, request->tail);
1553
1554         gen8_emit_wa_tail(request, cs);
1555 }
1556
1557 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1558
1559 static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1560                                         u32 *cs)
1561 {
1562         /* We're using qword write, seqno should be aligned to 8 bytes. */
1563         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1564
1565         /* w/a for post sync ops following a GPGPU operation we
1566          * need a prior CS_STALL, which is emitted by the flush
1567          * following the batch.
1568          */
1569         *cs++ = GFX_OP_PIPE_CONTROL(6);
1570         *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
1571                 PIPE_CONTROL_QW_WRITE;
1572         *cs++ = intel_hws_seqno_address(request->engine);
1573         *cs++ = 0;
1574         *cs++ = request->global_seqno;
1575         /* We're thrashing one dword of HWS. */
1576         *cs++ = 0;
1577         *cs++ = MI_USER_INTERRUPT;
1578         *cs++ = MI_NOOP;
1579         request->tail = intel_ring_offset(request, cs);
1580         assert_ring_tail_valid(request->ring, request->tail);
1581
1582         gen8_emit_wa_tail(request, cs);
1583 }
1584
1585 static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1586
1587 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1588 {
1589         int ret;
1590
1591         ret = intel_ring_workarounds_emit(req);
1592         if (ret)
1593                 return ret;
1594
1595         ret = intel_rcs_context_init_mocs(req);
1596         /*
1597          * Failing to program the MOCS is non-fatal.The system will not
1598          * run at peak performance. So generate an error and carry on.
1599          */
1600         if (ret)
1601                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1602
1603         return i915_gem_render_state_emit(req);
1604 }
1605
1606 /**
1607  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1608  * @engine: Engine Command Streamer.
1609  */
1610 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1611 {
1612         struct drm_i915_private *dev_priv;
1613
1614         /*
1615          * Tasklet cannot be active at this point due intel_mark_active/idle
1616          * so this is just for documentation.
1617          */
1618         if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1619                 tasklet_kill(&engine->irq_tasklet);
1620
1621         dev_priv = engine->i915;
1622
1623         if (engine->buffer) {
1624                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1625         }
1626
1627         if (engine->cleanup)
1628                 engine->cleanup(engine);
1629
1630         if (engine->status_page.vma) {
1631                 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1632                 engine->status_page.vma = NULL;
1633         }
1634
1635         intel_engine_cleanup_common(engine);
1636
1637         lrc_destroy_wa_ctx(engine);
1638         engine->i915 = NULL;
1639         dev_priv->engine[engine->id] = NULL;
1640         kfree(engine);
1641 }
1642
1643 static void execlists_set_default_submission(struct intel_engine_cs *engine)
1644 {
1645         engine->submit_request = execlists_submit_request;
1646         engine->schedule = execlists_schedule;
1647         engine->irq_tasklet.func = intel_lrc_irq_handler;
1648 }
1649
1650 static void
1651 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1652 {
1653         /* Default vfuncs which can be overriden by each engine. */
1654         engine->init_hw = gen8_init_common_ring;
1655         engine->reset_hw = reset_common_ring;
1656
1657         engine->context_pin = execlists_context_pin;
1658         engine->context_unpin = execlists_context_unpin;
1659
1660         engine->request_alloc = execlists_request_alloc;
1661
1662         engine->emit_flush = gen8_emit_flush;
1663         engine->emit_breadcrumb = gen8_emit_breadcrumb;
1664         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1665
1666         engine->set_default_submission = execlists_set_default_submission;
1667
1668         engine->irq_enable = gen8_logical_ring_enable_irq;
1669         engine->irq_disable = gen8_logical_ring_disable_irq;
1670         engine->emit_bb_start = gen8_emit_bb_start;
1671 }
1672
1673 static inline void
1674 logical_ring_default_irqs(struct intel_engine_cs *engine)
1675 {
1676         unsigned shift = engine->irq_shift;
1677         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1678         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1679 }
1680
1681 static int
1682 lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1683 {
1684         const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1685         void *hws;
1686
1687         /* The HWSP is part of the default context object in LRC mode. */
1688         hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1689         if (IS_ERR(hws))
1690                 return PTR_ERR(hws);
1691
1692         engine->status_page.page_addr = hws + hws_offset;
1693         engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1694         engine->status_page.vma = vma;
1695
1696         return 0;
1697 }
1698
1699 static void
1700 logical_ring_setup(struct intel_engine_cs *engine)
1701 {
1702         struct drm_i915_private *dev_priv = engine->i915;
1703         enum forcewake_domains fw_domains;
1704
1705         intel_engine_setup_common(engine);
1706
1707         /* Intentionally left blank. */
1708         engine->buffer = NULL;
1709
1710         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1711                                                     RING_ELSP(engine),
1712                                                     FW_REG_WRITE);
1713
1714         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1715                                                      RING_CONTEXT_STATUS_PTR(engine),
1716                                                      FW_REG_READ | FW_REG_WRITE);
1717
1718         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1719                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
1720                                                      FW_REG_READ);
1721
1722         engine->fw_domains = fw_domains;
1723
1724         tasklet_init(&engine->irq_tasklet,
1725                      intel_lrc_irq_handler, (unsigned long)engine);
1726
1727         logical_ring_default_vfuncs(engine);
1728         logical_ring_default_irqs(engine);
1729 }
1730
1731 static int
1732 logical_ring_init(struct intel_engine_cs *engine)
1733 {
1734         struct i915_gem_context *dctx = engine->i915->kernel_context;
1735         int ret;
1736
1737         ret = intel_engine_init_common(engine);
1738         if (ret)
1739                 goto error;
1740
1741         /* And setup the hardware status page. */
1742         ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1743         if (ret) {
1744                 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1745                 goto error;
1746         }
1747
1748         return 0;
1749
1750 error:
1751         intel_logical_ring_cleanup(engine);
1752         return ret;
1753 }
1754
1755 int logical_render_ring_init(struct intel_engine_cs *engine)
1756 {
1757         struct drm_i915_private *dev_priv = engine->i915;
1758         int ret;
1759
1760         logical_ring_setup(engine);
1761
1762         if (HAS_L3_DPF(dev_priv))
1763                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1764
1765         /* Override some for render ring. */
1766         if (INTEL_GEN(dev_priv) >= 9)
1767                 engine->init_hw = gen9_init_render_ring;
1768         else
1769                 engine->init_hw = gen8_init_render_ring;
1770         engine->init_context = gen8_init_rcs_context;
1771         engine->emit_flush = gen8_emit_flush_render;
1772         engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1773         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1774
1775         ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1776         if (ret)
1777                 return ret;
1778
1779         ret = intel_init_workaround_bb(engine);
1780         if (ret) {
1781                 /*
1782                  * We continue even if we fail to initialize WA batch
1783                  * because we only expect rare glitches but nothing
1784                  * critical to prevent us from using GPU
1785                  */
1786                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1787                           ret);
1788         }
1789
1790         return logical_ring_init(engine);
1791 }
1792
1793 int logical_xcs_ring_init(struct intel_engine_cs *engine)
1794 {
1795         logical_ring_setup(engine);
1796
1797         return logical_ring_init(engine);
1798 }
1799
1800 static u32
1801 make_rpcs(struct drm_i915_private *dev_priv)
1802 {
1803         u32 rpcs = 0;
1804
1805         /*
1806          * No explicit RPCS request is needed to ensure full
1807          * slice/subslice/EU enablement prior to Gen9.
1808         */
1809         if (INTEL_GEN(dev_priv) < 9)
1810                 return 0;
1811
1812         /*
1813          * Starting in Gen9, render power gating can leave
1814          * slice/subslice/EU in a partially enabled state. We
1815          * must make an explicit request through RPCS for full
1816          * enablement.
1817         */
1818         if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1819                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1820                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1821                         GEN8_RPCS_S_CNT_SHIFT;
1822                 rpcs |= GEN8_RPCS_ENABLE;
1823         }
1824
1825         if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1826                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1827                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1828                         GEN8_RPCS_SS_CNT_SHIFT;
1829                 rpcs |= GEN8_RPCS_ENABLE;
1830         }
1831
1832         if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1833                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1834                         GEN8_RPCS_EU_MIN_SHIFT;
1835                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1836                         GEN8_RPCS_EU_MAX_SHIFT;
1837                 rpcs |= GEN8_RPCS_ENABLE;
1838         }
1839
1840         return rpcs;
1841 }
1842
1843 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1844 {
1845         u32 indirect_ctx_offset;
1846
1847         switch (INTEL_GEN(engine->i915)) {
1848         default:
1849                 MISSING_CASE(INTEL_GEN(engine->i915));
1850                 /* fall through */
1851         case 9:
1852                 indirect_ctx_offset =
1853                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1854                 break;
1855         case 8:
1856                 indirect_ctx_offset =
1857                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1858                 break;
1859         }
1860
1861         return indirect_ctx_offset;
1862 }
1863
1864 static void execlists_init_reg_state(u32 *regs,
1865                                      struct i915_gem_context *ctx,
1866                                      struct intel_engine_cs *engine,
1867                                      struct intel_ring *ring)
1868 {
1869         struct drm_i915_private *dev_priv = engine->i915;
1870         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1871         u32 base = engine->mmio_base;
1872         bool rcs = engine->id == RCS;
1873
1874         /* A context is actually a big batch buffer with several
1875          * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
1876          * values we are setting here are only for the first context restore:
1877          * on a subsequent save, the GPU will recreate this batchbuffer with new
1878          * values (including all the missing MI_LOAD_REGISTER_IMM commands that
1879          * we are not initializing here).
1880          */
1881         regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
1882                                  MI_LRI_FORCE_POSTED;
1883
1884         CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
1885                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1886                                    CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1887                                    (HAS_RESOURCE_STREAMER(dev_priv) ?
1888                                    CTX_CTRL_RS_CTX_ENABLE : 0)));
1889         CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
1890         CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
1891         CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
1892         CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
1893                 RING_CTL_SIZE(ring->size) | RING_VALID);
1894         CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
1895         CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
1896         CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
1897         CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
1898         CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
1899         CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
1900         if (rcs) {
1901                 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
1902                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
1903                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
1904                         RING_INDIRECT_CTX_OFFSET(base), 0);
1905
1906                 if (engine->wa_ctx.vma) {
1907                         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1908                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1909
1910                         regs[CTX_RCS_INDIRECT_CTX + 1] =
1911                                 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
1912                                 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
1913
1914                         regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
1915                                 intel_lr_indirect_ctx_offset(engine) << 6;
1916
1917                         regs[CTX_BB_PER_CTX_PTR + 1] =
1918                                 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
1919                 }
1920         }
1921
1922         regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1923
1924         CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
1925         /* PDP values well be assigned later if needed */
1926         CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
1927         CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
1928         CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
1929         CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
1930         CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
1931         CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
1932         CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
1933         CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
1934
1935         if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
1936                 /* 64b PPGTT (48bit canonical)
1937                  * PDP0_DESCRIPTOR contains the base address to PML4 and
1938                  * other PDP Descriptors are ignored.
1939                  */
1940                 ASSIGN_CTX_PML4(ppgtt, regs);
1941         }
1942
1943         if (rcs) {
1944                 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1945                 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
1946                         make_rpcs(dev_priv));
1947         }
1948 }
1949
1950 static int
1951 populate_lr_context(struct i915_gem_context *ctx,
1952                     struct drm_i915_gem_object *ctx_obj,
1953                     struct intel_engine_cs *engine,
1954                     struct intel_ring *ring)
1955 {
1956         void *vaddr;
1957         int ret;
1958
1959         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1960         if (ret) {
1961                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1962                 return ret;
1963         }
1964
1965         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
1966         if (IS_ERR(vaddr)) {
1967                 ret = PTR_ERR(vaddr);
1968                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
1969                 return ret;
1970         }
1971         ctx_obj->mm.dirty = true;
1972
1973         /* The second page of the context object contains some fields which must
1974          * be set up prior to the first execution. */
1975
1976         execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
1977                                  ctx, engine, ring);
1978
1979         i915_gem_object_unpin_map(ctx_obj);
1980
1981         return 0;
1982 }
1983
1984 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
1985                                             struct intel_engine_cs *engine)
1986 {
1987         struct drm_i915_gem_object *ctx_obj;
1988         struct intel_context *ce = &ctx->engine[engine->id];
1989         struct i915_vma *vma;
1990         uint32_t context_size;
1991         struct intel_ring *ring;
1992         int ret;
1993
1994         WARN_ON(ce->state);
1995
1996         context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
1997
1998         /* One extra page as the sharing data between driver and GuC */
1999         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2000
2001         ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2002         if (IS_ERR(ctx_obj)) {
2003                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2004                 return PTR_ERR(ctx_obj);
2005         }
2006
2007         vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2008         if (IS_ERR(vma)) {
2009                 ret = PTR_ERR(vma);
2010                 goto error_deref_obj;
2011         }
2012
2013         ring = intel_engine_create_ring(engine, ctx->ring_size);
2014         if (IS_ERR(ring)) {
2015                 ret = PTR_ERR(ring);
2016                 goto error_deref_obj;
2017         }
2018
2019         ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2020         if (ret) {
2021                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2022                 goto error_ring_free;
2023         }
2024
2025         ce->ring = ring;
2026         ce->state = vma;
2027         ce->initialised |= engine->init_context == NULL;
2028
2029         return 0;
2030
2031 error_ring_free:
2032         intel_ring_free(ring);
2033 error_deref_obj:
2034         i915_gem_object_put(ctx_obj);
2035         return ret;
2036 }
2037
2038 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2039 {
2040         struct intel_engine_cs *engine;
2041         struct i915_gem_context *ctx;
2042         enum intel_engine_id id;
2043
2044         /* Because we emit WA_TAIL_DWORDS there may be a disparity
2045          * between our bookkeeping in ce->ring->head and ce->ring->tail and
2046          * that stored in context. As we only write new commands from
2047          * ce->ring->tail onwards, everything before that is junk. If the GPU
2048          * starts reading from its RING_HEAD from the context, it may try to
2049          * execute that junk and die.
2050          *
2051          * So to avoid that we reset the context images upon resume. For
2052          * simplicity, we just zero everything out.
2053          */
2054         list_for_each_entry(ctx, &dev_priv->context_list, link) {
2055                 for_each_engine(engine, dev_priv, id) {
2056                         struct intel_context *ce = &ctx->engine[engine->id];
2057                         u32 *reg;
2058
2059                         if (!ce->state)
2060                                 continue;
2061
2062                         reg = i915_gem_object_pin_map(ce->state->obj,
2063                                                       I915_MAP_WB);
2064                         if (WARN_ON(IS_ERR(reg)))
2065                                 continue;
2066
2067                         reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2068                         reg[CTX_RING_HEAD+1] = 0;
2069                         reg[CTX_RING_TAIL+1] = 0;
2070
2071                         ce->state->obj->mm.dirty = true;
2072                         i915_gem_object_unpin_map(ce->state->obj);
2073
2074                         intel_ring_reset(ce->ring, 0);
2075                 }
2076         }
2077 }