]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_pm.c
Merge tag 'drm-intel-next-2014-09-01' of git://anongit.freedesktop.org/drm-intel...
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <linux/vgaarb.h>
34 #include <drm/i915_powerwell.h>
35 #include <linux/pm_runtime.h>
36
37 /**
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE                        (1<<0)
55 #define INTEL_RC6p_ENABLE                       (1<<1)
56 #define INTEL_RC6pp_ENABLE                      (1<<2)
57
58 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
59  * framebuffer contents in-memory, aiming at reducing the required bandwidth
60  * during in-memory transfers and, therefore, reduce the power packet.
61  *
62  * The benefits of FBC are mostly visible with solid backgrounds and
63  * variation-less patterns.
64  *
65  * FBC-related functionality can be enabled by the means of the
66  * i915.i915_enable_fbc parameter
67  */
68
69 static void i8xx_disable_fbc(struct drm_device *dev)
70 {
71         struct drm_i915_private *dev_priv = dev->dev_private;
72         u32 fbc_ctl;
73
74         /* Disable compression */
75         fbc_ctl = I915_READ(FBC_CONTROL);
76         if ((fbc_ctl & FBC_CTL_EN) == 0)
77                 return;
78
79         fbc_ctl &= ~FBC_CTL_EN;
80         I915_WRITE(FBC_CONTROL, fbc_ctl);
81
82         /* Wait for compressing bit to clear */
83         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
84                 DRM_DEBUG_KMS("FBC idle timed out\n");
85                 return;
86         }
87
88         DRM_DEBUG_KMS("disabled FBC\n");
89 }
90
91 static void i8xx_enable_fbc(struct drm_crtc *crtc)
92 {
93         struct drm_device *dev = crtc->dev;
94         struct drm_i915_private *dev_priv = dev->dev_private;
95         struct drm_framebuffer *fb = crtc->primary->fb;
96         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
97         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
98         int cfb_pitch;
99         int i;
100         u32 fbc_ctl;
101
102         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
103         if (fb->pitches[0] < cfb_pitch)
104                 cfb_pitch = fb->pitches[0];
105
106         /* FBC_CTL wants 32B or 64B units */
107         if (IS_GEN2(dev))
108                 cfb_pitch = (cfb_pitch / 32) - 1;
109         else
110                 cfb_pitch = (cfb_pitch / 64) - 1;
111
112         /* Clear old tags */
113         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
114                 I915_WRITE(FBC_TAG + (i * 4), 0);
115
116         if (IS_GEN4(dev)) {
117                 u32 fbc_ctl2;
118
119                 /* Set it up... */
120                 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
121                 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
122                 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
123                 I915_WRITE(FBC_FENCE_OFF, crtc->y);
124         }
125
126         /* enable it... */
127         fbc_ctl = I915_READ(FBC_CONTROL);
128         fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
129         fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
130         if (IS_I945GM(dev))
131                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
132         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
133         fbc_ctl |= obj->fence_reg;
134         I915_WRITE(FBC_CONTROL, fbc_ctl);
135
136         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
137                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
138 }
139
140 static bool i8xx_fbc_enabled(struct drm_device *dev)
141 {
142         struct drm_i915_private *dev_priv = dev->dev_private;
143
144         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
145 }
146
147 static void g4x_enable_fbc(struct drm_crtc *crtc)
148 {
149         struct drm_device *dev = crtc->dev;
150         struct drm_i915_private *dev_priv = dev->dev_private;
151         struct drm_framebuffer *fb = crtc->primary->fb;
152         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
153         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
154         u32 dpfc_ctl;
155
156         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
157         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
158                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
159         else
160                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
161         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
162
163         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
164
165         /* enable it... */
166         I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
167
168         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
169 }
170
171 static void g4x_disable_fbc(struct drm_device *dev)
172 {
173         struct drm_i915_private *dev_priv = dev->dev_private;
174         u32 dpfc_ctl;
175
176         /* Disable compression */
177         dpfc_ctl = I915_READ(DPFC_CONTROL);
178         if (dpfc_ctl & DPFC_CTL_EN) {
179                 dpfc_ctl &= ~DPFC_CTL_EN;
180                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
181
182                 DRM_DEBUG_KMS("disabled FBC\n");
183         }
184 }
185
186 static bool g4x_fbc_enabled(struct drm_device *dev)
187 {
188         struct drm_i915_private *dev_priv = dev->dev_private;
189
190         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
191 }
192
193 static void sandybridge_blit_fbc_update(struct drm_device *dev)
194 {
195         struct drm_i915_private *dev_priv = dev->dev_private;
196         u32 blt_ecoskpd;
197
198         /* Make sure blitter notifies FBC of writes */
199
200         /* Blitter is part of Media powerwell on VLV. No impact of
201          * his param in other platforms for now */
202         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
203
204         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
205         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
206                 GEN6_BLITTER_LOCK_SHIFT;
207         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
208         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
209         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
210         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
211                          GEN6_BLITTER_LOCK_SHIFT);
212         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
213         POSTING_READ(GEN6_BLITTER_ECOSKPD);
214
215         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
216 }
217
218 static void ironlake_enable_fbc(struct drm_crtc *crtc)
219 {
220         struct drm_device *dev = crtc->dev;
221         struct drm_i915_private *dev_priv = dev->dev_private;
222         struct drm_framebuffer *fb = crtc->primary->fb;
223         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
224         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
225         u32 dpfc_ctl;
226
227         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
228         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
229                 dev_priv->fbc.threshold++;
230
231         switch (dev_priv->fbc.threshold) {
232         case 4:
233         case 3:
234                 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
235                 break;
236         case 2:
237                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
238                 break;
239         case 1:
240                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
241                 break;
242         }
243         dpfc_ctl |= DPFC_CTL_FENCE_EN;
244         if (IS_GEN5(dev))
245                 dpfc_ctl |= obj->fence_reg;
246
247         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
248         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
249         /* enable it... */
250         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
251
252         if (IS_GEN6(dev)) {
253                 I915_WRITE(SNB_DPFC_CTL_SA,
254                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
255                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
256                 sandybridge_blit_fbc_update(dev);
257         }
258
259         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
260 }
261
262 static void ironlake_disable_fbc(struct drm_device *dev)
263 {
264         struct drm_i915_private *dev_priv = dev->dev_private;
265         u32 dpfc_ctl;
266
267         /* Disable compression */
268         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
269         if (dpfc_ctl & DPFC_CTL_EN) {
270                 dpfc_ctl &= ~DPFC_CTL_EN;
271                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
272
273                 DRM_DEBUG_KMS("disabled FBC\n");
274         }
275 }
276
277 static bool ironlake_fbc_enabled(struct drm_device *dev)
278 {
279         struct drm_i915_private *dev_priv = dev->dev_private;
280
281         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
282 }
283
284 static void gen7_enable_fbc(struct drm_crtc *crtc)
285 {
286         struct drm_device *dev = crtc->dev;
287         struct drm_i915_private *dev_priv = dev->dev_private;
288         struct drm_framebuffer *fb = crtc->primary->fb;
289         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
290         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
291         u32 dpfc_ctl;
292
293         dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
294         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
295                 dev_priv->fbc.threshold++;
296
297         switch (dev_priv->fbc.threshold) {
298         case 4:
299         case 3:
300                 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
301                 break;
302         case 2:
303                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
304                 break;
305         case 1:
306                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
307                 break;
308         }
309
310         dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
311
312         if (dev_priv->fbc.false_color)
313                 dpfc_ctl |= FBC_CTL_FALSE_COLOR;
314
315         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
316
317         if (IS_IVYBRIDGE(dev)) {
318                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
319                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
320                            I915_READ(ILK_DISPLAY_CHICKEN1) |
321                            ILK_FBCQ_DIS);
322         } else {
323                 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
324                 I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
325                            I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
326                            HSW_FBCQ_DIS);
327         }
328
329         I915_WRITE(SNB_DPFC_CTL_SA,
330                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
331         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
332
333         sandybridge_blit_fbc_update(dev);
334
335         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
336 }
337
338 bool intel_fbc_enabled(struct drm_device *dev)
339 {
340         struct drm_i915_private *dev_priv = dev->dev_private;
341
342         if (!dev_priv->display.fbc_enabled)
343                 return false;
344
345         return dev_priv->display.fbc_enabled(dev);
346 }
347
348 static void intel_fbc_work_fn(struct work_struct *__work)
349 {
350         struct intel_fbc_work *work =
351                 container_of(to_delayed_work(__work),
352                              struct intel_fbc_work, work);
353         struct drm_device *dev = work->crtc->dev;
354         struct drm_i915_private *dev_priv = dev->dev_private;
355
356         mutex_lock(&dev->struct_mutex);
357         if (work == dev_priv->fbc.fbc_work) {
358                 /* Double check that we haven't switched fb without cancelling
359                  * the prior work.
360                  */
361                 if (work->crtc->primary->fb == work->fb) {
362                         dev_priv->display.enable_fbc(work->crtc);
363
364                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
365                         dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
366                         dev_priv->fbc.y = work->crtc->y;
367                 }
368
369                 dev_priv->fbc.fbc_work = NULL;
370         }
371         mutex_unlock(&dev->struct_mutex);
372
373         kfree(work);
374 }
375
376 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
377 {
378         if (dev_priv->fbc.fbc_work == NULL)
379                 return;
380
381         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
382
383         /* Synchronisation is provided by struct_mutex and checking of
384          * dev_priv->fbc.fbc_work, so we can perform the cancellation
385          * entirely asynchronously.
386          */
387         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
388                 /* tasklet was killed before being run, clean up */
389                 kfree(dev_priv->fbc.fbc_work);
390
391         /* Mark the work as no longer wanted so that if it does
392          * wake-up (because the work was already running and waiting
393          * for our mutex), it will discover that is no longer
394          * necessary to run.
395          */
396         dev_priv->fbc.fbc_work = NULL;
397 }
398
399 static void intel_enable_fbc(struct drm_crtc *crtc)
400 {
401         struct intel_fbc_work *work;
402         struct drm_device *dev = crtc->dev;
403         struct drm_i915_private *dev_priv = dev->dev_private;
404
405         if (!dev_priv->display.enable_fbc)
406                 return;
407
408         intel_cancel_fbc_work(dev_priv);
409
410         work = kzalloc(sizeof(*work), GFP_KERNEL);
411         if (work == NULL) {
412                 DRM_ERROR("Failed to allocate FBC work structure\n");
413                 dev_priv->display.enable_fbc(crtc);
414                 return;
415         }
416
417         work->crtc = crtc;
418         work->fb = crtc->primary->fb;
419         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
420
421         dev_priv->fbc.fbc_work = work;
422
423         /* Delay the actual enabling to let pageflipping cease and the
424          * display to settle before starting the compression. Note that
425          * this delay also serves a second purpose: it allows for a
426          * vblank to pass after disabling the FBC before we attempt
427          * to modify the control registers.
428          *
429          * A more complicated solution would involve tracking vblanks
430          * following the termination of the page-flipping sequence
431          * and indeed performing the enable as a co-routine and not
432          * waiting synchronously upon the vblank.
433          *
434          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
435          */
436         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
437 }
438
439 void intel_disable_fbc(struct drm_device *dev)
440 {
441         struct drm_i915_private *dev_priv = dev->dev_private;
442
443         intel_cancel_fbc_work(dev_priv);
444
445         if (!dev_priv->display.disable_fbc)
446                 return;
447
448         dev_priv->display.disable_fbc(dev);
449         dev_priv->fbc.plane = -1;
450 }
451
452 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
453                               enum no_fbc_reason reason)
454 {
455         if (dev_priv->fbc.no_fbc_reason == reason)
456                 return false;
457
458         dev_priv->fbc.no_fbc_reason = reason;
459         return true;
460 }
461
462 /**
463  * intel_update_fbc - enable/disable FBC as needed
464  * @dev: the drm_device
465  *
466  * Set up the framebuffer compression hardware at mode set time.  We
467  * enable it if possible:
468  *   - plane A only (on pre-965)
469  *   - no pixel mulitply/line duplication
470  *   - no alpha buffer discard
471  *   - no dual wide
472  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
473  *
474  * We can't assume that any compression will take place (worst case),
475  * so the compressed buffer has to be the same size as the uncompressed
476  * one.  It also must reside (along with the line length buffer) in
477  * stolen memory.
478  *
479  * We need to enable/disable FBC on a global basis.
480  */
481 void intel_update_fbc(struct drm_device *dev)
482 {
483         struct drm_i915_private *dev_priv = dev->dev_private;
484         struct drm_crtc *crtc = NULL, *tmp_crtc;
485         struct intel_crtc *intel_crtc;
486         struct drm_framebuffer *fb;
487         struct drm_i915_gem_object *obj;
488         const struct drm_display_mode *adjusted_mode;
489         unsigned int max_width, max_height;
490
491         if (!HAS_FBC(dev)) {
492                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
493                 return;
494         }
495
496         if (!i915.powersave) {
497                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
498                         DRM_DEBUG_KMS("fbc disabled per module param\n");
499                 return;
500         }
501
502         /*
503          * If FBC is already on, we just have to verify that we can
504          * keep it that way...
505          * Need to disable if:
506          *   - more than one pipe is active
507          *   - changing FBC params (stride, fence, mode)
508          *   - new fb is too large to fit in compressed buffer
509          *   - going to an unsupported config (interlace, pixel multiply, etc.)
510          */
511         for_each_crtc(dev, tmp_crtc) {
512                 if (intel_crtc_active(tmp_crtc) &&
513                     to_intel_crtc(tmp_crtc)->primary_enabled) {
514                         if (crtc) {
515                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
516                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
517                                 goto out_disable;
518                         }
519                         crtc = tmp_crtc;
520                 }
521         }
522
523         if (!crtc || crtc->primary->fb == NULL) {
524                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
525                         DRM_DEBUG_KMS("no output, disabling\n");
526                 goto out_disable;
527         }
528
529         intel_crtc = to_intel_crtc(crtc);
530         fb = crtc->primary->fb;
531         obj = intel_fb_obj(fb);
532         adjusted_mode = &intel_crtc->config.adjusted_mode;
533
534         if (i915.enable_fbc < 0) {
535                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
536                         DRM_DEBUG_KMS("disabled per chip default\n");
537                 goto out_disable;
538         }
539         if (!i915.enable_fbc) {
540                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
541                         DRM_DEBUG_KMS("fbc disabled per module param\n");
542                 goto out_disable;
543         }
544         if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
545             (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
546                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
547                         DRM_DEBUG_KMS("mode incompatible with compression, "
548                                       "disabling\n");
549                 goto out_disable;
550         }
551
552         if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
553                 max_width = 4096;
554                 max_height = 4096;
555         } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
556                 max_width = 4096;
557                 max_height = 2048;
558         } else {
559                 max_width = 2048;
560                 max_height = 1536;
561         }
562         if (intel_crtc->config.pipe_src_w > max_width ||
563             intel_crtc->config.pipe_src_h > max_height) {
564                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
565                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
566                 goto out_disable;
567         }
568         if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
569             intel_crtc->plane != PLANE_A) {
570                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
571                         DRM_DEBUG_KMS("plane not A, disabling compression\n");
572                 goto out_disable;
573         }
574
575         /* The use of a CPU fence is mandatory in order to detect writes
576          * by the CPU to the scanout and trigger updates to the FBC.
577          */
578         if (obj->tiling_mode != I915_TILING_X ||
579             obj->fence_reg == I915_FENCE_REG_NONE) {
580                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
581                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
582                 goto out_disable;
583         }
584
585         /* If the kernel debugger is active, always disable compression */
586         if (in_dbg_master())
587                 goto out_disable;
588
589         if (i915_gem_stolen_setup_compression(dev, obj->base.size,
590                                               drm_format_plane_cpp(fb->pixel_format, 0))) {
591                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
592                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
593                 goto out_disable;
594         }
595
596         /* If the scanout has not changed, don't modify the FBC settings.
597          * Note that we make the fundamental assumption that the fb->obj
598          * cannot be unpinned (and have its GTT offset and fence revoked)
599          * without first being decoupled from the scanout and FBC disabled.
600          */
601         if (dev_priv->fbc.plane == intel_crtc->plane &&
602             dev_priv->fbc.fb_id == fb->base.id &&
603             dev_priv->fbc.y == crtc->y)
604                 return;
605
606         if (intel_fbc_enabled(dev)) {
607                 /* We update FBC along two paths, after changing fb/crtc
608                  * configuration (modeswitching) and after page-flipping
609                  * finishes. For the latter, we know that not only did
610                  * we disable the FBC at the start of the page-flip
611                  * sequence, but also more than one vblank has passed.
612                  *
613                  * For the former case of modeswitching, it is possible
614                  * to switch between two FBC valid configurations
615                  * instantaneously so we do need to disable the FBC
616                  * before we can modify its control registers. We also
617                  * have to wait for the next vblank for that to take
618                  * effect. However, since we delay enabling FBC we can
619                  * assume that a vblank has passed since disabling and
620                  * that we can safely alter the registers in the deferred
621                  * callback.
622                  *
623                  * In the scenario that we go from a valid to invalid
624                  * and then back to valid FBC configuration we have
625                  * no strict enforcement that a vblank occurred since
626                  * disabling the FBC. However, along all current pipe
627                  * disabling paths we do need to wait for a vblank at
628                  * some point. And we wait before enabling FBC anyway.
629                  */
630                 DRM_DEBUG_KMS("disabling active FBC for update\n");
631                 intel_disable_fbc(dev);
632         }
633
634         intel_enable_fbc(crtc);
635         dev_priv->fbc.no_fbc_reason = FBC_OK;
636         return;
637
638 out_disable:
639         /* Multiple disables should be harmless */
640         if (intel_fbc_enabled(dev)) {
641                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
642                 intel_disable_fbc(dev);
643         }
644         i915_gem_stolen_cleanup_compression(dev);
645 }
646
647 static void i915_pineview_get_mem_freq(struct drm_device *dev)
648 {
649         struct drm_i915_private *dev_priv = dev->dev_private;
650         u32 tmp;
651
652         tmp = I915_READ(CLKCFG);
653
654         switch (tmp & CLKCFG_FSB_MASK) {
655         case CLKCFG_FSB_533:
656                 dev_priv->fsb_freq = 533; /* 133*4 */
657                 break;
658         case CLKCFG_FSB_800:
659                 dev_priv->fsb_freq = 800; /* 200*4 */
660                 break;
661         case CLKCFG_FSB_667:
662                 dev_priv->fsb_freq =  667; /* 167*4 */
663                 break;
664         case CLKCFG_FSB_400:
665                 dev_priv->fsb_freq = 400; /* 100*4 */
666                 break;
667         }
668
669         switch (tmp & CLKCFG_MEM_MASK) {
670         case CLKCFG_MEM_533:
671                 dev_priv->mem_freq = 533;
672                 break;
673         case CLKCFG_MEM_667:
674                 dev_priv->mem_freq = 667;
675                 break;
676         case CLKCFG_MEM_800:
677                 dev_priv->mem_freq = 800;
678                 break;
679         }
680
681         /* detect pineview DDR3 setting */
682         tmp = I915_READ(CSHRDDR3CTL);
683         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
684 }
685
686 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
687 {
688         struct drm_i915_private *dev_priv = dev->dev_private;
689         u16 ddrpll, csipll;
690
691         ddrpll = I915_READ16(DDRMPLL1);
692         csipll = I915_READ16(CSIPLL0);
693
694         switch (ddrpll & 0xff) {
695         case 0xc:
696                 dev_priv->mem_freq = 800;
697                 break;
698         case 0x10:
699                 dev_priv->mem_freq = 1066;
700                 break;
701         case 0x14:
702                 dev_priv->mem_freq = 1333;
703                 break;
704         case 0x18:
705                 dev_priv->mem_freq = 1600;
706                 break;
707         default:
708                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
709                                  ddrpll & 0xff);
710                 dev_priv->mem_freq = 0;
711                 break;
712         }
713
714         dev_priv->ips.r_t = dev_priv->mem_freq;
715
716         switch (csipll & 0x3ff) {
717         case 0x00c:
718                 dev_priv->fsb_freq = 3200;
719                 break;
720         case 0x00e:
721                 dev_priv->fsb_freq = 3733;
722                 break;
723         case 0x010:
724                 dev_priv->fsb_freq = 4266;
725                 break;
726         case 0x012:
727                 dev_priv->fsb_freq = 4800;
728                 break;
729         case 0x014:
730                 dev_priv->fsb_freq = 5333;
731                 break;
732         case 0x016:
733                 dev_priv->fsb_freq = 5866;
734                 break;
735         case 0x018:
736                 dev_priv->fsb_freq = 6400;
737                 break;
738         default:
739                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
740                                  csipll & 0x3ff);
741                 dev_priv->fsb_freq = 0;
742                 break;
743         }
744
745         if (dev_priv->fsb_freq == 3200) {
746                 dev_priv->ips.c_m = 0;
747         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
748                 dev_priv->ips.c_m = 1;
749         } else {
750                 dev_priv->ips.c_m = 2;
751         }
752 }
753
754 static const struct cxsr_latency cxsr_latency_table[] = {
755         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
756         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
757         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
758         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
759         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
760
761         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
762         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
763         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
764         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
765         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
766
767         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
768         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
769         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
770         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
771         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
772
773         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
774         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
775         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
776         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
777         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
778
779         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
780         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
781         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
782         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
783         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
784
785         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
786         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
787         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
788         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
789         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
790 };
791
792 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
793                                                          int is_ddr3,
794                                                          int fsb,
795                                                          int mem)
796 {
797         const struct cxsr_latency *latency;
798         int i;
799
800         if (fsb == 0 || mem == 0)
801                 return NULL;
802
803         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
804                 latency = &cxsr_latency_table[i];
805                 if (is_desktop == latency->is_desktop &&
806                     is_ddr3 == latency->is_ddr3 &&
807                     fsb == latency->fsb_freq && mem == latency->mem_freq)
808                         return latency;
809         }
810
811         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
812
813         return NULL;
814 }
815
816 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
817 {
818         struct drm_device *dev = dev_priv->dev;
819         u32 val;
820
821         if (IS_VALLEYVIEW(dev)) {
822                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
823         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
824                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
825         } else if (IS_PINEVIEW(dev)) {
826                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
827                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
828                 I915_WRITE(DSPFW3, val);
829         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
830                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
831                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
832                 I915_WRITE(FW_BLC_SELF, val);
833         } else if (IS_I915GM(dev)) {
834                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
835                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
836                 I915_WRITE(INSTPM, val);
837         } else {
838                 return;
839         }
840
841         DRM_DEBUG_KMS("memory self-refresh is %s\n",
842                       enable ? "enabled" : "disabled");
843 }
844
845 /*
846  * Latency for FIFO fetches is dependent on several factors:
847  *   - memory configuration (speed, channels)
848  *   - chipset
849  *   - current MCH state
850  * It can be fairly high in some situations, so here we assume a fairly
851  * pessimal value.  It's a tradeoff between extra memory fetches (if we
852  * set this value too high, the FIFO will fetch frequently to stay full)
853  * and power consumption (set it too low to save power and we might see
854  * FIFO underruns and display "flicker").
855  *
856  * A value of 5us seems to be a good balance; safe for very low end
857  * platforms but not overly aggressive on lower latency configs.
858  */
859 static const int latency_ns = 5000;
860
861 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
862 {
863         struct drm_i915_private *dev_priv = dev->dev_private;
864         uint32_t dsparb = I915_READ(DSPARB);
865         int size;
866
867         size = dsparb & 0x7f;
868         if (plane)
869                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
870
871         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
872                       plane ? "B" : "A", size);
873
874         return size;
875 }
876
877 static int i830_get_fifo_size(struct drm_device *dev, int plane)
878 {
879         struct drm_i915_private *dev_priv = dev->dev_private;
880         uint32_t dsparb = I915_READ(DSPARB);
881         int size;
882
883         size = dsparb & 0x1ff;
884         if (plane)
885                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
886         size >>= 1; /* Convert to cachelines */
887
888         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
889                       plane ? "B" : "A", size);
890
891         return size;
892 }
893
894 static int i845_get_fifo_size(struct drm_device *dev, int plane)
895 {
896         struct drm_i915_private *dev_priv = dev->dev_private;
897         uint32_t dsparb = I915_READ(DSPARB);
898         int size;
899
900         size = dsparb & 0x7f;
901         size >>= 2; /* Convert to cachelines */
902
903         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
904                       plane ? "B" : "A",
905                       size);
906
907         return size;
908 }
909
910 /* Pineview has different values for various configs */
911 static const struct intel_watermark_params pineview_display_wm = {
912         .fifo_size = PINEVIEW_DISPLAY_FIFO,
913         .max_wm = PINEVIEW_MAX_WM,
914         .default_wm = PINEVIEW_DFT_WM,
915         .guard_size = PINEVIEW_GUARD_WM,
916         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
917 };
918 static const struct intel_watermark_params pineview_display_hplloff_wm = {
919         .fifo_size = PINEVIEW_DISPLAY_FIFO,
920         .max_wm = PINEVIEW_MAX_WM,
921         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
922         .guard_size = PINEVIEW_GUARD_WM,
923         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
924 };
925 static const struct intel_watermark_params pineview_cursor_wm = {
926         .fifo_size = PINEVIEW_CURSOR_FIFO,
927         .max_wm = PINEVIEW_CURSOR_MAX_WM,
928         .default_wm = PINEVIEW_CURSOR_DFT_WM,
929         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
930         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
931 };
932 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
933         .fifo_size = PINEVIEW_CURSOR_FIFO,
934         .max_wm = PINEVIEW_CURSOR_MAX_WM,
935         .default_wm = PINEVIEW_CURSOR_DFT_WM,
936         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
937         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
938 };
939 static const struct intel_watermark_params g4x_wm_info = {
940         .fifo_size = G4X_FIFO_SIZE,
941         .max_wm = G4X_MAX_WM,
942         .default_wm = G4X_MAX_WM,
943         .guard_size = 2,
944         .cacheline_size = G4X_FIFO_LINE_SIZE,
945 };
946 static const struct intel_watermark_params g4x_cursor_wm_info = {
947         .fifo_size = I965_CURSOR_FIFO,
948         .max_wm = I965_CURSOR_MAX_WM,
949         .default_wm = I965_CURSOR_DFT_WM,
950         .guard_size = 2,
951         .cacheline_size = G4X_FIFO_LINE_SIZE,
952 };
953 static const struct intel_watermark_params valleyview_wm_info = {
954         .fifo_size = VALLEYVIEW_FIFO_SIZE,
955         .max_wm = VALLEYVIEW_MAX_WM,
956         .default_wm = VALLEYVIEW_MAX_WM,
957         .guard_size = 2,
958         .cacheline_size = G4X_FIFO_LINE_SIZE,
959 };
960 static const struct intel_watermark_params valleyview_cursor_wm_info = {
961         .fifo_size = I965_CURSOR_FIFO,
962         .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
963         .default_wm = I965_CURSOR_DFT_WM,
964         .guard_size = 2,
965         .cacheline_size = G4X_FIFO_LINE_SIZE,
966 };
967 static const struct intel_watermark_params i965_cursor_wm_info = {
968         .fifo_size = I965_CURSOR_FIFO,
969         .max_wm = I965_CURSOR_MAX_WM,
970         .default_wm = I965_CURSOR_DFT_WM,
971         .guard_size = 2,
972         .cacheline_size = I915_FIFO_LINE_SIZE,
973 };
974 static const struct intel_watermark_params i945_wm_info = {
975         .fifo_size = I945_FIFO_SIZE,
976         .max_wm = I915_MAX_WM,
977         .default_wm = 1,
978         .guard_size = 2,
979         .cacheline_size = I915_FIFO_LINE_SIZE,
980 };
981 static const struct intel_watermark_params i915_wm_info = {
982         .fifo_size = I915_FIFO_SIZE,
983         .max_wm = I915_MAX_WM,
984         .default_wm = 1,
985         .guard_size = 2,
986         .cacheline_size = I915_FIFO_LINE_SIZE,
987 };
988 static const struct intel_watermark_params i830_wm_info = {
989         .fifo_size = I855GM_FIFO_SIZE,
990         .max_wm = I915_MAX_WM,
991         .default_wm = 1,
992         .guard_size = 2,
993         .cacheline_size = I830_FIFO_LINE_SIZE,
994 };
995 static const struct intel_watermark_params i845_wm_info = {
996         .fifo_size = I830_FIFO_SIZE,
997         .max_wm = I915_MAX_WM,
998         .default_wm = 1,
999         .guard_size = 2,
1000         .cacheline_size = I830_FIFO_LINE_SIZE,
1001 };
1002
1003 /**
1004  * intel_calculate_wm - calculate watermark level
1005  * @clock_in_khz: pixel clock
1006  * @wm: chip FIFO params
1007  * @pixel_size: display pixel size
1008  * @latency_ns: memory latency for the platform
1009  *
1010  * Calculate the watermark level (the level at which the display plane will
1011  * start fetching from memory again).  Each chip has a different display
1012  * FIFO size and allocation, so the caller needs to figure that out and pass
1013  * in the correct intel_watermark_params structure.
1014  *
1015  * As the pixel clock runs, the FIFO will be drained at a rate that depends
1016  * on the pixel size.  When it reaches the watermark level, it'll start
1017  * fetching FIFO line sized based chunks from memory until the FIFO fills
1018  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
1019  * will occur, and a display engine hang could result.
1020  */
1021 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1022                                         const struct intel_watermark_params *wm,
1023                                         int fifo_size,
1024                                         int pixel_size,
1025                                         unsigned long latency_ns)
1026 {
1027         long entries_required, wm_size;
1028
1029         /*
1030          * Note: we need to make sure we don't overflow for various clock &
1031          * latency values.
1032          * clocks go from a few thousand to several hundred thousand.
1033          * latency is usually a few thousand
1034          */
1035         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1036                 1000;
1037         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1038
1039         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1040
1041         wm_size = fifo_size - (entries_required + wm->guard_size);
1042
1043         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1044
1045         /* Don't promote wm_size to unsigned... */
1046         if (wm_size > (long)wm->max_wm)
1047                 wm_size = wm->max_wm;
1048         if (wm_size <= 0)
1049                 wm_size = wm->default_wm;
1050         return wm_size;
1051 }
1052
1053 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1054 {
1055         struct drm_crtc *crtc, *enabled = NULL;
1056
1057         for_each_crtc(dev, crtc) {
1058                 if (intel_crtc_active(crtc)) {
1059                         if (enabled)
1060                                 return NULL;
1061                         enabled = crtc;
1062                 }
1063         }
1064
1065         return enabled;
1066 }
1067
1068 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1069 {
1070         struct drm_device *dev = unused_crtc->dev;
1071         struct drm_i915_private *dev_priv = dev->dev_private;
1072         struct drm_crtc *crtc;
1073         const struct cxsr_latency *latency;
1074         u32 reg;
1075         unsigned long wm;
1076
1077         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1078                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1079         if (!latency) {
1080                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1081                 intel_set_memory_cxsr(dev_priv, false);
1082                 return;
1083         }
1084
1085         crtc = single_enabled_crtc(dev);
1086         if (crtc) {
1087                 const struct drm_display_mode *adjusted_mode;
1088                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1089                 int clock;
1090
1091                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1092                 clock = adjusted_mode->crtc_clock;
1093
1094                 /* Display SR */
1095                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1096                                         pineview_display_wm.fifo_size,
1097                                         pixel_size, latency->display_sr);
1098                 reg = I915_READ(DSPFW1);
1099                 reg &= ~DSPFW_SR_MASK;
1100                 reg |= wm << DSPFW_SR_SHIFT;
1101                 I915_WRITE(DSPFW1, reg);
1102                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1103
1104                 /* cursor SR */
1105                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1106                                         pineview_display_wm.fifo_size,
1107                                         pixel_size, latency->cursor_sr);
1108                 reg = I915_READ(DSPFW3);
1109                 reg &= ~DSPFW_CURSOR_SR_MASK;
1110                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1111                 I915_WRITE(DSPFW3, reg);
1112
1113                 /* Display HPLL off SR */
1114                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1115                                         pineview_display_hplloff_wm.fifo_size,
1116                                         pixel_size, latency->display_hpll_disable);
1117                 reg = I915_READ(DSPFW3);
1118                 reg &= ~DSPFW_HPLL_SR_MASK;
1119                 reg |= wm & DSPFW_HPLL_SR_MASK;
1120                 I915_WRITE(DSPFW3, reg);
1121
1122                 /* cursor HPLL off SR */
1123                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1124                                         pineview_display_hplloff_wm.fifo_size,
1125                                         pixel_size, latency->cursor_hpll_disable);
1126                 reg = I915_READ(DSPFW3);
1127                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1128                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1129                 I915_WRITE(DSPFW3, reg);
1130                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1131
1132                 intel_set_memory_cxsr(dev_priv, true);
1133         } else {
1134                 intel_set_memory_cxsr(dev_priv, false);
1135         }
1136 }
1137
1138 static bool g4x_compute_wm0(struct drm_device *dev,
1139                             int plane,
1140                             const struct intel_watermark_params *display,
1141                             int display_latency_ns,
1142                             const struct intel_watermark_params *cursor,
1143                             int cursor_latency_ns,
1144                             int *plane_wm,
1145                             int *cursor_wm)
1146 {
1147         struct drm_crtc *crtc;
1148         const struct drm_display_mode *adjusted_mode;
1149         int htotal, hdisplay, clock, pixel_size;
1150         int line_time_us, line_count;
1151         int entries, tlb_miss;
1152
1153         crtc = intel_get_crtc_for_plane(dev, plane);
1154         if (!intel_crtc_active(crtc)) {
1155                 *cursor_wm = cursor->guard_size;
1156                 *plane_wm = display->guard_size;
1157                 return false;
1158         }
1159
1160         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1161         clock = adjusted_mode->crtc_clock;
1162         htotal = adjusted_mode->crtc_htotal;
1163         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1164         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1165
1166         /* Use the small buffer method to calculate plane watermark */
1167         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1168         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1169         if (tlb_miss > 0)
1170                 entries += tlb_miss;
1171         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1172         *plane_wm = entries + display->guard_size;
1173         if (*plane_wm > (int)display->max_wm)
1174                 *plane_wm = display->max_wm;
1175
1176         /* Use the large buffer method to calculate cursor watermark */
1177         line_time_us = max(htotal * 1000 / clock, 1);
1178         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1179         entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1180         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1181         if (tlb_miss > 0)
1182                 entries += tlb_miss;
1183         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1184         *cursor_wm = entries + cursor->guard_size;
1185         if (*cursor_wm > (int)cursor->max_wm)
1186                 *cursor_wm = (int)cursor->max_wm;
1187
1188         return true;
1189 }
1190
1191 /*
1192  * Check the wm result.
1193  *
1194  * If any calculated watermark values is larger than the maximum value that
1195  * can be programmed into the associated watermark register, that watermark
1196  * must be disabled.
1197  */
1198 static bool g4x_check_srwm(struct drm_device *dev,
1199                            int display_wm, int cursor_wm,
1200                            const struct intel_watermark_params *display,
1201                            const struct intel_watermark_params *cursor)
1202 {
1203         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1204                       display_wm, cursor_wm);
1205
1206         if (display_wm > display->max_wm) {
1207                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1208                               display_wm, display->max_wm);
1209                 return false;
1210         }
1211
1212         if (cursor_wm > cursor->max_wm) {
1213                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1214                               cursor_wm, cursor->max_wm);
1215                 return false;
1216         }
1217
1218         if (!(display_wm || cursor_wm)) {
1219                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1220                 return false;
1221         }
1222
1223         return true;
1224 }
1225
1226 static bool g4x_compute_srwm(struct drm_device *dev,
1227                              int plane,
1228                              int latency_ns,
1229                              const struct intel_watermark_params *display,
1230                              const struct intel_watermark_params *cursor,
1231                              int *display_wm, int *cursor_wm)
1232 {
1233         struct drm_crtc *crtc;
1234         const struct drm_display_mode *adjusted_mode;
1235         int hdisplay, htotal, pixel_size, clock;
1236         unsigned long line_time_us;
1237         int line_count, line_size;
1238         int small, large;
1239         int entries;
1240
1241         if (!latency_ns) {
1242                 *display_wm = *cursor_wm = 0;
1243                 return false;
1244         }
1245
1246         crtc = intel_get_crtc_for_plane(dev, plane);
1247         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1248         clock = adjusted_mode->crtc_clock;
1249         htotal = adjusted_mode->crtc_htotal;
1250         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1251         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1252
1253         line_time_us = max(htotal * 1000 / clock, 1);
1254         line_count = (latency_ns / line_time_us + 1000) / 1000;
1255         line_size = hdisplay * pixel_size;
1256
1257         /* Use the minimum of the small and large buffer method for primary */
1258         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1259         large = line_count * line_size;
1260
1261         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1262         *display_wm = entries + display->guard_size;
1263
1264         /* calculate the self-refresh watermark for display cursor */
1265         entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1266         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1267         *cursor_wm = entries + cursor->guard_size;
1268
1269         return g4x_check_srwm(dev,
1270                               *display_wm, *cursor_wm,
1271                               display, cursor);
1272 }
1273
1274 static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
1275                                       int pixel_size,
1276                                       int *prec_mult,
1277                                       int *drain_latency)
1278 {
1279         int entries;
1280         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1281
1282         if (WARN(clock == 0, "Pixel clock is zero!\n"))
1283                 return false;
1284
1285         if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
1286                 return false;
1287
1288         entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
1289         *prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
1290                                        DRAIN_LATENCY_PRECISION_32;
1291         *drain_latency = (64 * (*prec_mult) * 4) / entries;
1292
1293         if (*drain_latency > DRAIN_LATENCY_MASK)
1294                 *drain_latency = DRAIN_LATENCY_MASK;
1295
1296         return true;
1297 }
1298
1299 /*
1300  * Update drain latency registers of memory arbiter
1301  *
1302  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1303  * to be programmed. Each plane has a drain latency multiplier and a drain
1304  * latency value.
1305  */
1306
1307 static void vlv_update_drain_latency(struct drm_crtc *crtc)
1308 {
1309         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1310         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1311         int pixel_size;
1312         int drain_latency;
1313         enum pipe pipe = intel_crtc->pipe;
1314         int plane_prec, prec_mult, plane_dl;
1315
1316         plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_64 |
1317                    DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_64 |
1318                    (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));
1319
1320         if (!intel_crtc_active(crtc)) {
1321                 I915_WRITE(VLV_DDL(pipe), plane_dl);
1322                 return;
1323         }
1324
1325         /* Primary plane Drain Latency */
1326         pixel_size = crtc->primary->fb->bits_per_pixel / 8;     /* BPP */
1327         if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
1328                 plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
1329                                            DDL_PLANE_PRECISION_64 :
1330                                            DDL_PLANE_PRECISION_32;
1331                 plane_dl |= plane_prec | drain_latency;
1332         }
1333
1334         /* Cursor Drain Latency
1335          * BPP is always 4 for cursor
1336          */
1337         pixel_size = 4;
1338
1339         /* Program cursor DL only if it is enabled */
1340         if (intel_crtc->cursor_base &&
1341             vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
1342                 plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
1343                                            DDL_CURSOR_PRECISION_64 :
1344                                            DDL_CURSOR_PRECISION_32;
1345                 plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
1346         }
1347
1348         I915_WRITE(VLV_DDL(pipe), plane_dl);
1349 }
1350
1351 #define single_plane_enabled(mask) is_power_of_2(mask)
1352
1353 static void valleyview_update_wm(struct drm_crtc *crtc)
1354 {
1355         struct drm_device *dev = crtc->dev;
1356         static const int sr_latency_ns = 12000;
1357         struct drm_i915_private *dev_priv = dev->dev_private;
1358         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1359         int plane_sr, cursor_sr;
1360         int ignore_plane_sr, ignore_cursor_sr;
1361         unsigned int enabled = 0;
1362         bool cxsr_enabled;
1363
1364         vlv_update_drain_latency(crtc);
1365
1366         if (g4x_compute_wm0(dev, PIPE_A,
1367                             &valleyview_wm_info, latency_ns,
1368                             &valleyview_cursor_wm_info, latency_ns,
1369                             &planea_wm, &cursora_wm))
1370                 enabled |= 1 << PIPE_A;
1371
1372         if (g4x_compute_wm0(dev, PIPE_B,
1373                             &valleyview_wm_info, latency_ns,
1374                             &valleyview_cursor_wm_info, latency_ns,
1375                             &planeb_wm, &cursorb_wm))
1376                 enabled |= 1 << PIPE_B;
1377
1378         if (single_plane_enabled(enabled) &&
1379             g4x_compute_srwm(dev, ffs(enabled) - 1,
1380                              sr_latency_ns,
1381                              &valleyview_wm_info,
1382                              &valleyview_cursor_wm_info,
1383                              &plane_sr, &ignore_cursor_sr) &&
1384             g4x_compute_srwm(dev, ffs(enabled) - 1,
1385                              2*sr_latency_ns,
1386                              &valleyview_wm_info,
1387                              &valleyview_cursor_wm_info,
1388                              &ignore_plane_sr, &cursor_sr)) {
1389                 cxsr_enabled = true;
1390         } else {
1391                 cxsr_enabled = false;
1392                 intel_set_memory_cxsr(dev_priv, false);
1393                 plane_sr = cursor_sr = 0;
1394         }
1395
1396         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1397                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1398                       planea_wm, cursora_wm,
1399                       planeb_wm, cursorb_wm,
1400                       plane_sr, cursor_sr);
1401
1402         I915_WRITE(DSPFW1,
1403                    (plane_sr << DSPFW_SR_SHIFT) |
1404                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1405                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1406                    (planea_wm << DSPFW_PLANEA_SHIFT));
1407         I915_WRITE(DSPFW2,
1408                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1409                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1410         I915_WRITE(DSPFW3,
1411                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1412                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1413
1414         if (cxsr_enabled)
1415                 intel_set_memory_cxsr(dev_priv, true);
1416 }
1417
1418 static void cherryview_update_wm(struct drm_crtc *crtc)
1419 {
1420         struct drm_device *dev = crtc->dev;
1421         static const int sr_latency_ns = 12000;
1422         struct drm_i915_private *dev_priv = dev->dev_private;
1423         int planea_wm, planeb_wm, planec_wm;
1424         int cursora_wm, cursorb_wm, cursorc_wm;
1425         int plane_sr, cursor_sr;
1426         int ignore_plane_sr, ignore_cursor_sr;
1427         unsigned int enabled = 0;
1428         bool cxsr_enabled;
1429
1430         vlv_update_drain_latency(crtc);
1431
1432         if (g4x_compute_wm0(dev, PIPE_A,
1433                             &valleyview_wm_info, latency_ns,
1434                             &valleyview_cursor_wm_info, latency_ns,
1435                             &planea_wm, &cursora_wm))
1436                 enabled |= 1 << PIPE_A;
1437
1438         if (g4x_compute_wm0(dev, PIPE_B,
1439                             &valleyview_wm_info, latency_ns,
1440                             &valleyview_cursor_wm_info, latency_ns,
1441                             &planeb_wm, &cursorb_wm))
1442                 enabled |= 1 << PIPE_B;
1443
1444         if (g4x_compute_wm0(dev, PIPE_C,
1445                             &valleyview_wm_info, latency_ns,
1446                             &valleyview_cursor_wm_info, latency_ns,
1447                             &planec_wm, &cursorc_wm))
1448                 enabled |= 1 << PIPE_C;
1449
1450         if (single_plane_enabled(enabled) &&
1451             g4x_compute_srwm(dev, ffs(enabled) - 1,
1452                              sr_latency_ns,
1453                              &valleyview_wm_info,
1454                              &valleyview_cursor_wm_info,
1455                              &plane_sr, &ignore_cursor_sr) &&
1456             g4x_compute_srwm(dev, ffs(enabled) - 1,
1457                              2*sr_latency_ns,
1458                              &valleyview_wm_info,
1459                              &valleyview_cursor_wm_info,
1460                              &ignore_plane_sr, &cursor_sr)) {
1461                 cxsr_enabled = true;
1462         } else {
1463                 cxsr_enabled = false;
1464                 intel_set_memory_cxsr(dev_priv, false);
1465                 plane_sr = cursor_sr = 0;
1466         }
1467
1468         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1469                       "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
1470                       "SR: plane=%d, cursor=%d\n",
1471                       planea_wm, cursora_wm,
1472                       planeb_wm, cursorb_wm,
1473                       planec_wm, cursorc_wm,
1474                       plane_sr, cursor_sr);
1475
1476         I915_WRITE(DSPFW1,
1477                    (plane_sr << DSPFW_SR_SHIFT) |
1478                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1479                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1480                    (planea_wm << DSPFW_PLANEA_SHIFT));
1481         I915_WRITE(DSPFW2,
1482                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1483                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1484         I915_WRITE(DSPFW3,
1485                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1486                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1487         I915_WRITE(DSPFW9_CHV,
1488                    (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
1489                                               DSPFW_CURSORC_MASK)) |
1490                    (planec_wm << DSPFW_PLANEC_SHIFT) |
1491                    (cursorc_wm << DSPFW_CURSORC_SHIFT));
1492
1493         if (cxsr_enabled)
1494                 intel_set_memory_cxsr(dev_priv, true);
1495 }
1496
1497 static void valleyview_update_sprite_wm(struct drm_plane *plane,
1498                                         struct drm_crtc *crtc,
1499                                         uint32_t sprite_width,
1500                                         uint32_t sprite_height,
1501                                         int pixel_size,
1502                                         bool enabled, bool scaled)
1503 {
1504         struct drm_device *dev = crtc->dev;
1505         struct drm_i915_private *dev_priv = dev->dev_private;
1506         int pipe = to_intel_plane(plane)->pipe;
1507         int sprite = to_intel_plane(plane)->plane;
1508         int drain_latency;
1509         int plane_prec;
1510         int sprite_dl;
1511         int prec_mult;
1512
1513         sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_64(sprite) |
1514                     (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));
1515
1516         if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
1517                                                  &drain_latency)) {
1518                 plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
1519                                            DDL_SPRITE_PRECISION_64(sprite) :
1520                                            DDL_SPRITE_PRECISION_32(sprite);
1521                 sprite_dl |= plane_prec |
1522                              (drain_latency << DDL_SPRITE_SHIFT(sprite));
1523         }
1524
1525         I915_WRITE(VLV_DDL(pipe), sprite_dl);
1526 }
1527
1528 static void g4x_update_wm(struct drm_crtc *crtc)
1529 {
1530         struct drm_device *dev = crtc->dev;
1531         static const int sr_latency_ns = 12000;
1532         struct drm_i915_private *dev_priv = dev->dev_private;
1533         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1534         int plane_sr, cursor_sr;
1535         unsigned int enabled = 0;
1536         bool cxsr_enabled;
1537
1538         if (g4x_compute_wm0(dev, PIPE_A,
1539                             &g4x_wm_info, latency_ns,
1540                             &g4x_cursor_wm_info, latency_ns,
1541                             &planea_wm, &cursora_wm))
1542                 enabled |= 1 << PIPE_A;
1543
1544         if (g4x_compute_wm0(dev, PIPE_B,
1545                             &g4x_wm_info, latency_ns,
1546                             &g4x_cursor_wm_info, latency_ns,
1547                             &planeb_wm, &cursorb_wm))
1548                 enabled |= 1 << PIPE_B;
1549
1550         if (single_plane_enabled(enabled) &&
1551             g4x_compute_srwm(dev, ffs(enabled) - 1,
1552                              sr_latency_ns,
1553                              &g4x_wm_info,
1554                              &g4x_cursor_wm_info,
1555                              &plane_sr, &cursor_sr)) {
1556                 cxsr_enabled = true;
1557         } else {
1558                 cxsr_enabled = false;
1559                 intel_set_memory_cxsr(dev_priv, false);
1560                 plane_sr = cursor_sr = 0;
1561         }
1562
1563         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1564                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1565                       planea_wm, cursora_wm,
1566                       planeb_wm, cursorb_wm,
1567                       plane_sr, cursor_sr);
1568
1569         I915_WRITE(DSPFW1,
1570                    (plane_sr << DSPFW_SR_SHIFT) |
1571                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1572                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1573                    (planea_wm << DSPFW_PLANEA_SHIFT));
1574         I915_WRITE(DSPFW2,
1575                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1576                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1577         /* HPLL off in SR has some issues on G4x... disable it */
1578         I915_WRITE(DSPFW3,
1579                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1580                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1581
1582         if (cxsr_enabled)
1583                 intel_set_memory_cxsr(dev_priv, true);
1584 }
1585
1586 static void i965_update_wm(struct drm_crtc *unused_crtc)
1587 {
1588         struct drm_device *dev = unused_crtc->dev;
1589         struct drm_i915_private *dev_priv = dev->dev_private;
1590         struct drm_crtc *crtc;
1591         int srwm = 1;
1592         int cursor_sr = 16;
1593         bool cxsr_enabled;
1594
1595         /* Calc sr entries for one plane configs */
1596         crtc = single_enabled_crtc(dev);
1597         if (crtc) {
1598                 /* self-refresh has much higher latency */
1599                 static const int sr_latency_ns = 12000;
1600                 const struct drm_display_mode *adjusted_mode =
1601                         &to_intel_crtc(crtc)->config.adjusted_mode;
1602                 int clock = adjusted_mode->crtc_clock;
1603                 int htotal = adjusted_mode->crtc_htotal;
1604                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1605                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1606                 unsigned long line_time_us;
1607                 int entries;
1608
1609                 line_time_us = max(htotal * 1000 / clock, 1);
1610
1611                 /* Use ns/us then divide to preserve precision */
1612                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1613                         pixel_size * hdisplay;
1614                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1615                 srwm = I965_FIFO_SIZE - entries;
1616                 if (srwm < 0)
1617                         srwm = 1;
1618                 srwm &= 0x1ff;
1619                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1620                               entries, srwm);
1621
1622                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1623                         pixel_size * to_intel_crtc(crtc)->cursor_width;
1624                 entries = DIV_ROUND_UP(entries,
1625                                           i965_cursor_wm_info.cacheline_size);
1626                 cursor_sr = i965_cursor_wm_info.fifo_size -
1627                         (entries + i965_cursor_wm_info.guard_size);
1628
1629                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1630                         cursor_sr = i965_cursor_wm_info.max_wm;
1631
1632                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1633                               "cursor %d\n", srwm, cursor_sr);
1634
1635                 cxsr_enabled = true;
1636         } else {
1637                 cxsr_enabled = false;
1638                 /* Turn off self refresh if both pipes are enabled */
1639                 intel_set_memory_cxsr(dev_priv, false);
1640         }
1641
1642         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1643                       srwm);
1644
1645         /* 965 has limitations... */
1646         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1647                    (8 << DSPFW_CURSORB_SHIFT) |
1648                    (8 << DSPFW_PLANEB_SHIFT) |
1649                    (8 << DSPFW_PLANEA_SHIFT));
1650         I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
1651                    (8 << DSPFW_PLANEC_SHIFT_OLD));
1652         /* update cursor SR watermark */
1653         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1654
1655         if (cxsr_enabled)
1656                 intel_set_memory_cxsr(dev_priv, true);
1657 }
1658
1659 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1660 {
1661         struct drm_device *dev = unused_crtc->dev;
1662         struct drm_i915_private *dev_priv = dev->dev_private;
1663         const struct intel_watermark_params *wm_info;
1664         uint32_t fwater_lo;
1665         uint32_t fwater_hi;
1666         int cwm, srwm = 1;
1667         int fifo_size;
1668         int planea_wm, planeb_wm;
1669         struct drm_crtc *crtc, *enabled = NULL;
1670
1671         if (IS_I945GM(dev))
1672                 wm_info = &i945_wm_info;
1673         else if (!IS_GEN2(dev))
1674                 wm_info = &i915_wm_info;
1675         else
1676                 wm_info = &i830_wm_info;
1677
1678         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1679         crtc = intel_get_crtc_for_plane(dev, 0);
1680         if (intel_crtc_active(crtc)) {
1681                 const struct drm_display_mode *adjusted_mode;
1682                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1683                 if (IS_GEN2(dev))
1684                         cpp = 4;
1685
1686                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1687                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1688                                                wm_info, fifo_size, cpp,
1689                                                latency_ns);
1690                 enabled = crtc;
1691         } else
1692                 planea_wm = fifo_size - wm_info->guard_size;
1693
1694         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1695         crtc = intel_get_crtc_for_plane(dev, 1);
1696         if (intel_crtc_active(crtc)) {
1697                 const struct drm_display_mode *adjusted_mode;
1698                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1699                 if (IS_GEN2(dev))
1700                         cpp = 4;
1701
1702                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1703                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1704                                                wm_info, fifo_size, cpp,
1705                                                latency_ns);
1706                 if (enabled == NULL)
1707                         enabled = crtc;
1708                 else
1709                         enabled = NULL;
1710         } else
1711                 planeb_wm = fifo_size - wm_info->guard_size;
1712
1713         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1714
1715         if (IS_I915GM(dev) && enabled) {
1716                 struct drm_i915_gem_object *obj;
1717
1718                 obj = intel_fb_obj(enabled->primary->fb);
1719
1720                 /* self-refresh seems busted with untiled */
1721                 if (obj->tiling_mode == I915_TILING_NONE)
1722                         enabled = NULL;
1723         }
1724
1725         /*
1726          * Overlay gets an aggressive default since video jitter is bad.
1727          */
1728         cwm = 2;
1729
1730         /* Play safe and disable self-refresh before adjusting watermarks. */
1731         intel_set_memory_cxsr(dev_priv, false);
1732
1733         /* Calc sr entries for one plane configs */
1734         if (HAS_FW_BLC(dev) && enabled) {
1735                 /* self-refresh has much higher latency */
1736                 static const int sr_latency_ns = 6000;
1737                 const struct drm_display_mode *adjusted_mode =
1738                         &to_intel_crtc(enabled)->config.adjusted_mode;
1739                 int clock = adjusted_mode->crtc_clock;
1740                 int htotal = adjusted_mode->crtc_htotal;
1741                 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1742                 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1743                 unsigned long line_time_us;
1744                 int entries;
1745
1746                 line_time_us = max(htotal * 1000 / clock, 1);
1747
1748                 /* Use ns/us then divide to preserve precision */
1749                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1750                         pixel_size * hdisplay;
1751                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1752                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1753                 srwm = wm_info->fifo_size - entries;
1754                 if (srwm < 0)
1755                         srwm = 1;
1756
1757                 if (IS_I945G(dev) || IS_I945GM(dev))
1758                         I915_WRITE(FW_BLC_SELF,
1759                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1760                 else if (IS_I915GM(dev))
1761                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1762         }
1763
1764         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1765                       planea_wm, planeb_wm, cwm, srwm);
1766
1767         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1768         fwater_hi = (cwm & 0x1f);
1769
1770         /* Set request length to 8 cachelines per fetch */
1771         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1772         fwater_hi = fwater_hi | (1 << 8);
1773
1774         I915_WRITE(FW_BLC, fwater_lo);
1775         I915_WRITE(FW_BLC2, fwater_hi);
1776
1777         if (enabled)
1778                 intel_set_memory_cxsr(dev_priv, true);
1779 }
1780
1781 static void i845_update_wm(struct drm_crtc *unused_crtc)
1782 {
1783         struct drm_device *dev = unused_crtc->dev;
1784         struct drm_i915_private *dev_priv = dev->dev_private;
1785         struct drm_crtc *crtc;
1786         const struct drm_display_mode *adjusted_mode;
1787         uint32_t fwater_lo;
1788         int planea_wm;
1789
1790         crtc = single_enabled_crtc(dev);
1791         if (crtc == NULL)
1792                 return;
1793
1794         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1795         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1796                                        &i845_wm_info,
1797                                        dev_priv->display.get_fifo_size(dev, 0),
1798                                        4, latency_ns);
1799         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1800         fwater_lo |= (3<<8) | planea_wm;
1801
1802         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1803
1804         I915_WRITE(FW_BLC, fwater_lo);
1805 }
1806
1807 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1808                                     struct drm_crtc *crtc)
1809 {
1810         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1811         uint32_t pixel_rate;
1812
1813         pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1814
1815         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1816          * adjust the pixel_rate here. */
1817
1818         if (intel_crtc->config.pch_pfit.enabled) {
1819                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1820                 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1821
1822                 pipe_w = intel_crtc->config.pipe_src_w;
1823                 pipe_h = intel_crtc->config.pipe_src_h;
1824                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1825                 pfit_h = pfit_size & 0xFFFF;
1826                 if (pipe_w < pfit_w)
1827                         pipe_w = pfit_w;
1828                 if (pipe_h < pfit_h)
1829                         pipe_h = pfit_h;
1830
1831                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1832                                      pfit_w * pfit_h);
1833         }
1834
1835         return pixel_rate;
1836 }
1837
1838 /* latency must be in 0.1us units. */
1839 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1840                                uint32_t latency)
1841 {
1842         uint64_t ret;
1843
1844         if (WARN(latency == 0, "Latency value missing\n"))
1845                 return UINT_MAX;
1846
1847         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1848         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1849
1850         return ret;
1851 }
1852
1853 /* latency must be in 0.1us units. */
1854 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1855                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1856                                uint32_t latency)
1857 {
1858         uint32_t ret;
1859
1860         if (WARN(latency == 0, "Latency value missing\n"))
1861                 return UINT_MAX;
1862
1863         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1864         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1865         ret = DIV_ROUND_UP(ret, 64) + 2;
1866         return ret;
1867 }
1868
1869 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1870                            uint8_t bytes_per_pixel)
1871 {
1872         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1873 }
1874
1875 struct ilk_pipe_wm_parameters {
1876         bool active;
1877         uint32_t pipe_htotal;
1878         uint32_t pixel_rate;
1879         struct intel_plane_wm_parameters pri;
1880         struct intel_plane_wm_parameters spr;
1881         struct intel_plane_wm_parameters cur;
1882 };
1883
1884 struct ilk_wm_maximums {
1885         uint16_t pri;
1886         uint16_t spr;
1887         uint16_t cur;
1888         uint16_t fbc;
1889 };
1890
1891 /* used in computing the new watermarks state */
1892 struct intel_wm_config {
1893         unsigned int num_pipes_active;
1894         bool sprites_enabled;
1895         bool sprites_scaled;
1896 };
1897
1898 /*
1899  * For both WM_PIPE and WM_LP.
1900  * mem_value must be in 0.1us units.
1901  */
1902 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1903                                    uint32_t mem_value,
1904                                    bool is_lp)
1905 {
1906         uint32_t method1, method2;
1907
1908         if (!params->active || !params->pri.enabled)
1909                 return 0;
1910
1911         method1 = ilk_wm_method1(params->pixel_rate,
1912                                  params->pri.bytes_per_pixel,
1913                                  mem_value);
1914
1915         if (!is_lp)
1916                 return method1;
1917
1918         method2 = ilk_wm_method2(params->pixel_rate,
1919                                  params->pipe_htotal,
1920                                  params->pri.horiz_pixels,
1921                                  params->pri.bytes_per_pixel,
1922                                  mem_value);
1923
1924         return min(method1, method2);
1925 }
1926
1927 /*
1928  * For both WM_PIPE and WM_LP.
1929  * mem_value must be in 0.1us units.
1930  */
1931 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1932                                    uint32_t mem_value)
1933 {
1934         uint32_t method1, method2;
1935
1936         if (!params->active || !params->spr.enabled)
1937                 return 0;
1938
1939         method1 = ilk_wm_method1(params->pixel_rate,
1940                                  params->spr.bytes_per_pixel,
1941                                  mem_value);
1942         method2 = ilk_wm_method2(params->pixel_rate,
1943                                  params->pipe_htotal,
1944                                  params->spr.horiz_pixels,
1945                                  params->spr.bytes_per_pixel,
1946                                  mem_value);
1947         return min(method1, method2);
1948 }
1949
1950 /*
1951  * For both WM_PIPE and WM_LP.
1952  * mem_value must be in 0.1us units.
1953  */
1954 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1955                                    uint32_t mem_value)
1956 {
1957         if (!params->active || !params->cur.enabled)
1958                 return 0;
1959
1960         return ilk_wm_method2(params->pixel_rate,
1961                               params->pipe_htotal,
1962                               params->cur.horiz_pixels,
1963                               params->cur.bytes_per_pixel,
1964                               mem_value);
1965 }
1966
1967 /* Only for WM_LP. */
1968 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1969                                    uint32_t pri_val)
1970 {
1971         if (!params->active || !params->pri.enabled)
1972                 return 0;
1973
1974         return ilk_wm_fbc(pri_val,
1975                           params->pri.horiz_pixels,
1976                           params->pri.bytes_per_pixel);
1977 }
1978
1979 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1980 {
1981         if (INTEL_INFO(dev)->gen >= 8)
1982                 return 3072;
1983         else if (INTEL_INFO(dev)->gen >= 7)
1984                 return 768;
1985         else
1986                 return 512;
1987 }
1988
1989 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1990                                          int level, bool is_sprite)
1991 {
1992         if (INTEL_INFO(dev)->gen >= 8)
1993                 /* BDW primary/sprite plane watermarks */
1994                 return level == 0 ? 255 : 2047;
1995         else if (INTEL_INFO(dev)->gen >= 7)
1996                 /* IVB/HSW primary/sprite plane watermarks */
1997                 return level == 0 ? 127 : 1023;
1998         else if (!is_sprite)
1999                 /* ILK/SNB primary plane watermarks */
2000                 return level == 0 ? 127 : 511;
2001         else
2002                 /* ILK/SNB sprite plane watermarks */
2003                 return level == 0 ? 63 : 255;
2004 }
2005
2006 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
2007                                           int level)
2008 {
2009         if (INTEL_INFO(dev)->gen >= 7)
2010                 return level == 0 ? 63 : 255;
2011         else
2012                 return level == 0 ? 31 : 63;
2013 }
2014
2015 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
2016 {
2017         if (INTEL_INFO(dev)->gen >= 8)
2018                 return 31;
2019         else
2020                 return 15;
2021 }
2022
2023 /* Calculate the maximum primary/sprite plane watermark */
2024 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2025                                      int level,
2026                                      const struct intel_wm_config *config,
2027                                      enum intel_ddb_partitioning ddb_partitioning,
2028                                      bool is_sprite)
2029 {
2030         unsigned int fifo_size = ilk_display_fifo_size(dev);
2031
2032         /* if sprites aren't enabled, sprites get nothing */
2033         if (is_sprite && !config->sprites_enabled)
2034                 return 0;
2035
2036         /* HSW allows LP1+ watermarks even with multiple pipes */
2037         if (level == 0 || config->num_pipes_active > 1) {
2038                 fifo_size /= INTEL_INFO(dev)->num_pipes;
2039
2040                 /*
2041                  * For some reason the non self refresh
2042                  * FIFO size is only half of the self
2043                  * refresh FIFO size on ILK/SNB.
2044                  */
2045                 if (INTEL_INFO(dev)->gen <= 6)
2046                         fifo_size /= 2;
2047         }
2048
2049         if (config->sprites_enabled) {
2050                 /* level 0 is always calculated with 1:1 split */
2051                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2052                         if (is_sprite)
2053                                 fifo_size *= 5;
2054                         fifo_size /= 6;
2055                 } else {
2056                         fifo_size /= 2;
2057                 }
2058         }
2059
2060         /* clamp to max that the registers can hold */
2061         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
2062 }
2063
2064 /* Calculate the maximum cursor plane watermark */
2065 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2066                                       int level,
2067                                       const struct intel_wm_config *config)
2068 {
2069         /* HSW LP1+ watermarks w/ multiple pipes */
2070         if (level > 0 && config->num_pipes_active > 1)
2071                 return 64;
2072
2073         /* otherwise just report max that registers can hold */
2074         return ilk_cursor_wm_reg_max(dev, level);
2075 }
2076
2077 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2078                                     int level,
2079                                     const struct intel_wm_config *config,
2080                                     enum intel_ddb_partitioning ddb_partitioning,
2081                                     struct ilk_wm_maximums *max)
2082 {
2083         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2084         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2085         max->cur = ilk_cursor_wm_max(dev, level, config);
2086         max->fbc = ilk_fbc_wm_reg_max(dev);
2087 }
2088
2089 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
2090                                         int level,
2091                                         struct ilk_wm_maximums *max)
2092 {
2093         max->pri = ilk_plane_wm_reg_max(dev, level, false);
2094         max->spr = ilk_plane_wm_reg_max(dev, level, true);
2095         max->cur = ilk_cursor_wm_reg_max(dev, level);
2096         max->fbc = ilk_fbc_wm_reg_max(dev);
2097 }
2098
2099 static bool ilk_validate_wm_level(int level,
2100                                   const struct ilk_wm_maximums *max,
2101                                   struct intel_wm_level *result)
2102 {
2103         bool ret;
2104
2105         /* already determined to be invalid? */
2106         if (!result->enable)
2107                 return false;
2108
2109         result->enable = result->pri_val <= max->pri &&
2110                          result->spr_val <= max->spr &&
2111                          result->cur_val <= max->cur;
2112
2113         ret = result->enable;
2114
2115         /*
2116          * HACK until we can pre-compute everything,
2117          * and thus fail gracefully if LP0 watermarks
2118          * are exceeded...
2119          */
2120         if (level == 0 && !result->enable) {
2121                 if (result->pri_val > max->pri)
2122                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2123                                       level, result->pri_val, max->pri);
2124                 if (result->spr_val > max->spr)
2125                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2126                                       level, result->spr_val, max->spr);
2127                 if (result->cur_val > max->cur)
2128                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2129                                       level, result->cur_val, max->cur);
2130
2131                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2132                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2133                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2134                 result->enable = true;
2135         }
2136
2137         return ret;
2138 }
2139
2140 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2141                                  int level,
2142                                  const struct ilk_pipe_wm_parameters *p,
2143                                  struct intel_wm_level *result)
2144 {
2145         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2146         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2147         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2148
2149         /* WM1+ latency values stored in 0.5us units */
2150         if (level > 0) {
2151                 pri_latency *= 5;
2152                 spr_latency *= 5;
2153                 cur_latency *= 5;
2154         }
2155
2156         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2157         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2158         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2159         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2160         result->enable = true;
2161 }
2162
2163 static uint32_t
2164 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2165 {
2166         struct drm_i915_private *dev_priv = dev->dev_private;
2167         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2168         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2169         u32 linetime, ips_linetime;
2170
2171         if (!intel_crtc_active(crtc))
2172                 return 0;
2173
2174         /* The WM are computed with base on how long it takes to fill a single
2175          * row at the given clock rate, multiplied by 8.
2176          * */
2177         linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2178                                      mode->crtc_clock);
2179         ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2180                                          intel_ddi_get_cdclk_freq(dev_priv));
2181
2182         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2183                PIPE_WM_LINETIME_TIME(linetime);
2184 }
2185
2186 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2187 {
2188         struct drm_i915_private *dev_priv = dev->dev_private;
2189
2190         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2191                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2192
2193                 wm[0] = (sskpd >> 56) & 0xFF;
2194                 if (wm[0] == 0)
2195                         wm[0] = sskpd & 0xF;
2196                 wm[1] = (sskpd >> 4) & 0xFF;
2197                 wm[2] = (sskpd >> 12) & 0xFF;
2198                 wm[3] = (sskpd >> 20) & 0x1FF;
2199                 wm[4] = (sskpd >> 32) & 0x1FF;
2200         } else if (INTEL_INFO(dev)->gen >= 6) {
2201                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2202
2203                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2204                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2205                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2206                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2207         } else if (INTEL_INFO(dev)->gen >= 5) {
2208                 uint32_t mltr = I915_READ(MLTR_ILK);
2209
2210                 /* ILK primary LP0 latency is 700 ns */
2211                 wm[0] = 7;
2212                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2213                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2214         }
2215 }
2216
2217 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2218 {
2219         /* ILK sprite LP0 latency is 1300 ns */
2220         if (INTEL_INFO(dev)->gen == 5)
2221                 wm[0] = 13;
2222 }
2223
2224 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2225 {
2226         /* ILK cursor LP0 latency is 1300 ns */
2227         if (INTEL_INFO(dev)->gen == 5)
2228                 wm[0] = 13;
2229
2230         /* WaDoubleCursorLP3Latency:ivb */
2231         if (IS_IVYBRIDGE(dev))
2232                 wm[3] *= 2;
2233 }
2234
2235 int ilk_wm_max_level(const struct drm_device *dev)
2236 {
2237         /* how many WM levels are we expecting */
2238         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2239                 return 4;
2240         else if (INTEL_INFO(dev)->gen >= 6)
2241                 return 3;
2242         else
2243                 return 2;
2244 }
2245
2246 static void intel_print_wm_latency(struct drm_device *dev,
2247                                    const char *name,
2248                                    const uint16_t wm[5])
2249 {
2250         int level, max_level = ilk_wm_max_level(dev);
2251
2252         for (level = 0; level <= max_level; level++) {
2253                 unsigned int latency = wm[level];
2254
2255                 if (latency == 0) {
2256                         DRM_ERROR("%s WM%d latency not provided\n",
2257                                   name, level);
2258                         continue;
2259                 }
2260
2261                 /* WM1+ latency values in 0.5us units */
2262                 if (level > 0)
2263                         latency *= 5;
2264
2265                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2266                               name, level, wm[level],
2267                               latency / 10, latency % 10);
2268         }
2269 }
2270
2271 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2272                                     uint16_t wm[5], uint16_t min)
2273 {
2274         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2275
2276         if (wm[0] >= min)
2277                 return false;
2278
2279         wm[0] = max(wm[0], min);
2280         for (level = 1; level <= max_level; level++)
2281                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2282
2283         return true;
2284 }
2285
2286 static void snb_wm_latency_quirk(struct drm_device *dev)
2287 {
2288         struct drm_i915_private *dev_priv = dev->dev_private;
2289         bool changed;
2290
2291         /*
2292          * The BIOS provided WM memory latency values are often
2293          * inadequate for high resolution displays. Adjust them.
2294          */
2295         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2296                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2297                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2298
2299         if (!changed)
2300                 return;
2301
2302         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2303         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2304         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2305         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2306 }
2307
2308 static void ilk_setup_wm_latency(struct drm_device *dev)
2309 {
2310         struct drm_i915_private *dev_priv = dev->dev_private;
2311
2312         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2313
2314         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2315                sizeof(dev_priv->wm.pri_latency));
2316         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2317                sizeof(dev_priv->wm.pri_latency));
2318
2319         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2320         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2321
2322         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2323         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2324         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2325
2326         if (IS_GEN6(dev))
2327                 snb_wm_latency_quirk(dev);
2328 }
2329
2330 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2331                                       struct ilk_pipe_wm_parameters *p)
2332 {
2333         struct drm_device *dev = crtc->dev;
2334         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2335         enum pipe pipe = intel_crtc->pipe;
2336         struct drm_plane *plane;
2337
2338         if (!intel_crtc_active(crtc))
2339                 return;
2340
2341         p->active = true;
2342         p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2343         p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2344         p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2345         p->cur.bytes_per_pixel = 4;
2346         p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2347         p->cur.horiz_pixels = intel_crtc->cursor_width;
2348         /* TODO: for now, assume primary and cursor planes are always enabled. */
2349         p->pri.enabled = true;
2350         p->cur.enabled = true;
2351
2352         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2353                 struct intel_plane *intel_plane = to_intel_plane(plane);
2354
2355                 if (intel_plane->pipe == pipe) {
2356                         p->spr = intel_plane->wm;
2357                         break;
2358                 }
2359         }
2360 }
2361
2362 static void ilk_compute_wm_config(struct drm_device *dev,
2363                                   struct intel_wm_config *config)
2364 {
2365         struct intel_crtc *intel_crtc;
2366
2367         /* Compute the currently _active_ config */
2368         for_each_intel_crtc(dev, intel_crtc) {
2369                 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2370
2371                 if (!wm->pipe_enabled)
2372                         continue;
2373
2374                 config->sprites_enabled |= wm->sprites_enabled;
2375                 config->sprites_scaled |= wm->sprites_scaled;
2376                 config->num_pipes_active++;
2377         }
2378 }
2379
2380 /* Compute new watermarks for the pipe */
2381 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2382                                   const struct ilk_pipe_wm_parameters *params,
2383                                   struct intel_pipe_wm *pipe_wm)
2384 {
2385         struct drm_device *dev = crtc->dev;
2386         const struct drm_i915_private *dev_priv = dev->dev_private;
2387         int level, max_level = ilk_wm_max_level(dev);
2388         /* LP0 watermark maximums depend on this pipe alone */
2389         struct intel_wm_config config = {
2390                 .num_pipes_active = 1,
2391                 .sprites_enabled = params->spr.enabled,
2392                 .sprites_scaled = params->spr.scaled,
2393         };
2394         struct ilk_wm_maximums max;
2395
2396         pipe_wm->pipe_enabled = params->active;
2397         pipe_wm->sprites_enabled = params->spr.enabled;
2398         pipe_wm->sprites_scaled = params->spr.scaled;
2399
2400         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2401         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2402                 max_level = 1;
2403
2404         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2405         if (params->spr.scaled)
2406                 max_level = 0;
2407
2408         ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2409
2410         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2411                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2412
2413         /* LP0 watermarks always use 1/2 DDB partitioning */
2414         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2415
2416         /* At least LP0 must be valid */
2417         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2418                 return false;
2419
2420         ilk_compute_wm_reg_maximums(dev, 1, &max);
2421
2422         for (level = 1; level <= max_level; level++) {
2423                 struct intel_wm_level wm = {};
2424
2425                 ilk_compute_wm_level(dev_priv, level, params, &wm);
2426
2427                 /*
2428                  * Disable any watermark level that exceeds the
2429                  * register maximums since such watermarks are
2430                  * always invalid.
2431                  */
2432                 if (!ilk_validate_wm_level(level, &max, &wm))
2433                         break;
2434
2435                 pipe_wm->wm[level] = wm;
2436         }
2437
2438         return true;
2439 }
2440
2441 /*
2442  * Merge the watermarks from all active pipes for a specific level.
2443  */
2444 static void ilk_merge_wm_level(struct drm_device *dev,
2445                                int level,
2446                                struct intel_wm_level *ret_wm)
2447 {
2448         const struct intel_crtc *intel_crtc;
2449
2450         ret_wm->enable = true;
2451
2452         for_each_intel_crtc(dev, intel_crtc) {
2453                 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2454                 const struct intel_wm_level *wm = &active->wm[level];
2455
2456                 if (!active->pipe_enabled)
2457                         continue;
2458
2459                 /*
2460                  * The watermark values may have been used in the past,
2461                  * so we must maintain them in the registers for some
2462                  * time even if the level is now disabled.
2463                  */
2464                 if (!wm->enable)
2465                         ret_wm->enable = false;
2466
2467                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2468                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2469                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2470                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2471         }
2472 }
2473
2474 /*
2475  * Merge all low power watermarks for all active pipes.
2476  */
2477 static void ilk_wm_merge(struct drm_device *dev,
2478                          const struct intel_wm_config *config,
2479                          const struct ilk_wm_maximums *max,
2480                          struct intel_pipe_wm *merged)
2481 {
2482         int level, max_level = ilk_wm_max_level(dev);
2483         int last_enabled_level = max_level;
2484
2485         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2486         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2487             config->num_pipes_active > 1)
2488                 return;
2489
2490         /* ILK: FBC WM must be disabled always */
2491         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2492
2493         /* merge each WM1+ level */
2494         for (level = 1; level <= max_level; level++) {
2495                 struct intel_wm_level *wm = &merged->wm[level];
2496
2497                 ilk_merge_wm_level(dev, level, wm);
2498
2499                 if (level > last_enabled_level)
2500                         wm->enable = false;
2501                 else if (!ilk_validate_wm_level(level, max, wm))
2502                         /* make sure all following levels get disabled */
2503                         last_enabled_level = level - 1;
2504
2505                 /*
2506                  * The spec says it is preferred to disable
2507                  * FBC WMs instead of disabling a WM level.
2508                  */
2509                 if (wm->fbc_val > max->fbc) {
2510                         if (wm->enable)
2511                                 merged->fbc_wm_enabled = false;
2512                         wm->fbc_val = 0;
2513                 }
2514         }
2515
2516         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2517         /*
2518          * FIXME this is racy. FBC might get enabled later.
2519          * What we should check here is whether FBC can be
2520          * enabled sometime later.
2521          */
2522         if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2523                 for (level = 2; level <= max_level; level++) {
2524                         struct intel_wm_level *wm = &merged->wm[level];
2525
2526                         wm->enable = false;
2527                 }
2528         }
2529 }
2530
2531 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2532 {
2533         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2534         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2535 }
2536
2537 /* The value we need to program into the WM_LPx latency field */
2538 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2539 {
2540         struct drm_i915_private *dev_priv = dev->dev_private;
2541
2542         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2543                 return 2 * level;
2544         else
2545                 return dev_priv->wm.pri_latency[level];
2546 }
2547
2548 static void ilk_compute_wm_results(struct drm_device *dev,
2549                                    const struct intel_pipe_wm *merged,
2550                                    enum intel_ddb_partitioning partitioning,
2551                                    struct ilk_wm_values *results)
2552 {
2553         struct intel_crtc *intel_crtc;
2554         int level, wm_lp;
2555
2556         results->enable_fbc_wm = merged->fbc_wm_enabled;
2557         results->partitioning = partitioning;
2558
2559         /* LP1+ register values */
2560         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2561                 const struct intel_wm_level *r;
2562
2563                 level = ilk_wm_lp_to_level(wm_lp, merged);
2564
2565                 r = &merged->wm[level];
2566
2567                 /*
2568                  * Maintain the watermark values even if the level is
2569                  * disabled. Doing otherwise could cause underruns.
2570                  */
2571                 results->wm_lp[wm_lp - 1] =
2572                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2573                         (r->pri_val << WM1_LP_SR_SHIFT) |
2574                         r->cur_val;
2575
2576                 if (r->enable)
2577                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2578
2579                 if (INTEL_INFO(dev)->gen >= 8)
2580                         results->wm_lp[wm_lp - 1] |=
2581                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2582                 else
2583                         results->wm_lp[wm_lp - 1] |=
2584                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2585
2586                 /*
2587                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2588                  * level is disabled. Doing otherwise could cause underruns.
2589                  */
2590                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2591                         WARN_ON(wm_lp != 1);
2592                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2593                 } else
2594                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2595         }
2596
2597         /* LP0 register values */
2598         for_each_intel_crtc(dev, intel_crtc) {
2599                 enum pipe pipe = intel_crtc->pipe;
2600                 const struct intel_wm_level *r =
2601                         &intel_crtc->wm.active.wm[0];
2602
2603                 if (WARN_ON(!r->enable))
2604                         continue;
2605
2606                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2607
2608                 results->wm_pipe[pipe] =
2609                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2610                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2611                         r->cur_val;
2612         }
2613 }
2614
2615 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2616  * case both are at the same level. Prefer r1 in case they're the same. */
2617 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2618                                                   struct intel_pipe_wm *r1,
2619                                                   struct intel_pipe_wm *r2)
2620 {
2621         int level, max_level = ilk_wm_max_level(dev);
2622         int level1 = 0, level2 = 0;
2623
2624         for (level = 1; level <= max_level; level++) {
2625                 if (r1->wm[level].enable)
2626                         level1 = level;
2627                 if (r2->wm[level].enable)
2628                         level2 = level;
2629         }
2630
2631         if (level1 == level2) {
2632                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2633                         return r2;
2634                 else
2635                         return r1;
2636         } else if (level1 > level2) {
2637                 return r1;
2638         } else {
2639                 return r2;
2640         }
2641 }
2642
2643 /* dirty bits used to track which watermarks need changes */
2644 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2645 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2646 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2647 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2648 #define WM_DIRTY_FBC (1 << 24)
2649 #define WM_DIRTY_DDB (1 << 25)
2650
2651 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2652                                          const struct ilk_wm_values *old,
2653                                          const struct ilk_wm_values *new)
2654 {
2655         unsigned int dirty = 0;
2656         enum pipe pipe;
2657         int wm_lp;
2658
2659         for_each_pipe(pipe) {
2660                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2661                         dirty |= WM_DIRTY_LINETIME(pipe);
2662                         /* Must disable LP1+ watermarks too */
2663                         dirty |= WM_DIRTY_LP_ALL;
2664                 }
2665
2666                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2667                         dirty |= WM_DIRTY_PIPE(pipe);
2668                         /* Must disable LP1+ watermarks too */
2669                         dirty |= WM_DIRTY_LP_ALL;
2670                 }
2671         }
2672
2673         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2674                 dirty |= WM_DIRTY_FBC;
2675                 /* Must disable LP1+ watermarks too */
2676                 dirty |= WM_DIRTY_LP_ALL;
2677         }
2678
2679         if (old->partitioning != new->partitioning) {
2680                 dirty |= WM_DIRTY_DDB;
2681                 /* Must disable LP1+ watermarks too */
2682                 dirty |= WM_DIRTY_LP_ALL;
2683         }
2684
2685         /* LP1+ watermarks already deemed dirty, no need to continue */
2686         if (dirty & WM_DIRTY_LP_ALL)
2687                 return dirty;
2688
2689         /* Find the lowest numbered LP1+ watermark in need of an update... */
2690         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2691                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2692                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2693                         break;
2694         }
2695
2696         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2697         for (; wm_lp <= 3; wm_lp++)
2698                 dirty |= WM_DIRTY_LP(wm_lp);
2699
2700         return dirty;
2701 }
2702
2703 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2704                                unsigned int dirty)
2705 {
2706         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2707         bool changed = false;
2708
2709         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2710                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2711                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2712                 changed = true;
2713         }
2714         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2715                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2716                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2717                 changed = true;
2718         }
2719         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2720                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2721                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2722                 changed = true;
2723         }
2724
2725         /*
2726          * Don't touch WM1S_LP_EN here.
2727          * Doing so could cause underruns.
2728          */
2729
2730         return changed;
2731 }
2732
2733 /*
2734  * The spec says we shouldn't write when we don't need, because every write
2735  * causes WMs to be re-evaluated, expending some power.
2736  */
2737 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2738                                 struct ilk_wm_values *results)
2739 {
2740         struct drm_device *dev = dev_priv->dev;
2741         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2742         unsigned int dirty;
2743         uint32_t val;
2744
2745         dirty = ilk_compute_wm_dirty(dev, previous, results);
2746         if (!dirty)
2747                 return;
2748
2749         _ilk_disable_lp_wm(dev_priv, dirty);
2750
2751         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2752                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2753         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2754                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2755         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2756                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2757
2758         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2759                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2760         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2761                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2762         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2763                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2764
2765         if (dirty & WM_DIRTY_DDB) {
2766                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2767                         val = I915_READ(WM_MISC);
2768                         if (results->partitioning == INTEL_DDB_PART_1_2)
2769                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2770                         else
2771                                 val |= WM_MISC_DATA_PARTITION_5_6;
2772                         I915_WRITE(WM_MISC, val);
2773                 } else {
2774                         val = I915_READ(DISP_ARB_CTL2);
2775                         if (results->partitioning == INTEL_DDB_PART_1_2)
2776                                 val &= ~DISP_DATA_PARTITION_5_6;
2777                         else
2778                                 val |= DISP_DATA_PARTITION_5_6;
2779                         I915_WRITE(DISP_ARB_CTL2, val);
2780                 }
2781         }
2782
2783         if (dirty & WM_DIRTY_FBC) {
2784                 val = I915_READ(DISP_ARB_CTL);
2785                 if (results->enable_fbc_wm)
2786                         val &= ~DISP_FBC_WM_DIS;
2787                 else
2788                         val |= DISP_FBC_WM_DIS;
2789                 I915_WRITE(DISP_ARB_CTL, val);
2790         }
2791
2792         if (dirty & WM_DIRTY_LP(1) &&
2793             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2794                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2795
2796         if (INTEL_INFO(dev)->gen >= 7) {
2797                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2798                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2799                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2800                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2801         }
2802
2803         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2804                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2805         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2806                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2807         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2808                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2809
2810         dev_priv->wm.hw = *results;
2811 }
2812
2813 static bool ilk_disable_lp_wm(struct drm_device *dev)
2814 {
2815         struct drm_i915_private *dev_priv = dev->dev_private;
2816
2817         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2818 }
2819
2820 static void ilk_update_wm(struct drm_crtc *crtc)
2821 {
2822         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2823         struct drm_device *dev = crtc->dev;
2824         struct drm_i915_private *dev_priv = dev->dev_private;
2825         struct ilk_wm_maximums max;
2826         struct ilk_pipe_wm_parameters params = {};
2827         struct ilk_wm_values results = {};
2828         enum intel_ddb_partitioning partitioning;
2829         struct intel_pipe_wm pipe_wm = {};
2830         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2831         struct intel_wm_config config = {};
2832
2833         ilk_compute_wm_parameters(crtc, &params);
2834
2835         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2836
2837         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2838                 return;
2839
2840         intel_crtc->wm.active = pipe_wm;
2841
2842         ilk_compute_wm_config(dev, &config);
2843
2844         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2845         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2846
2847         /* 5/6 split only in single pipe config on IVB+ */
2848         if (INTEL_INFO(dev)->gen >= 7 &&
2849             config.num_pipes_active == 1 && config.sprites_enabled) {
2850                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2851                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2852
2853                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2854         } else {
2855                 best_lp_wm = &lp_wm_1_2;
2856         }
2857
2858         partitioning = (best_lp_wm == &lp_wm_1_2) ?
2859                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2860
2861         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2862
2863         ilk_write_wm_values(dev_priv, &results);
2864 }
2865
2866 static void
2867 ilk_update_sprite_wm(struct drm_plane *plane,
2868                      struct drm_crtc *crtc,
2869                      uint32_t sprite_width, uint32_t sprite_height,
2870                      int pixel_size, bool enabled, bool scaled)
2871 {
2872         struct drm_device *dev = plane->dev;
2873         struct intel_plane *intel_plane = to_intel_plane(plane);
2874
2875         intel_plane->wm.enabled = enabled;
2876         intel_plane->wm.scaled = scaled;
2877         intel_plane->wm.horiz_pixels = sprite_width;
2878         intel_plane->wm.vert_pixels = sprite_width;
2879         intel_plane->wm.bytes_per_pixel = pixel_size;
2880
2881         /*
2882          * IVB workaround: must disable low power watermarks for at least
2883          * one frame before enabling scaling.  LP watermarks can be re-enabled
2884          * when scaling is disabled.
2885          *
2886          * WaCxSRDisabledForSpriteScaling:ivb
2887          */
2888         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2889                 intel_wait_for_vblank(dev, intel_plane->pipe);
2890
2891         ilk_update_wm(crtc);
2892 }
2893
2894 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2895 {
2896         struct drm_device *dev = crtc->dev;
2897         struct drm_i915_private *dev_priv = dev->dev_private;
2898         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2899         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2900         struct intel_pipe_wm *active = &intel_crtc->wm.active;
2901         enum pipe pipe = intel_crtc->pipe;
2902         static const unsigned int wm0_pipe_reg[] = {
2903                 [PIPE_A] = WM0_PIPEA_ILK,
2904                 [PIPE_B] = WM0_PIPEB_ILK,
2905                 [PIPE_C] = WM0_PIPEC_IVB,
2906         };
2907
2908         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2909         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2910                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2911
2912         active->pipe_enabled = intel_crtc_active(crtc);
2913
2914         if (active->pipe_enabled) {
2915                 u32 tmp = hw->wm_pipe[pipe];
2916
2917                 /*
2918                  * For active pipes LP0 watermark is marked as
2919                  * enabled, and LP1+ watermaks as disabled since
2920                  * we can't really reverse compute them in case
2921                  * multiple pipes are active.
2922                  */
2923                 active->wm[0].enable = true;
2924                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2925                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2926                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2927                 active->linetime = hw->wm_linetime[pipe];
2928         } else {
2929                 int level, max_level = ilk_wm_max_level(dev);
2930
2931                 /*
2932                  * For inactive pipes, all watermark levels
2933                  * should be marked as enabled but zeroed,
2934                  * which is what we'd compute them to.
2935                  */
2936                 for (level = 0; level <= max_level; level++)
2937                         active->wm[level].enable = true;
2938         }
2939 }
2940
2941 void ilk_wm_get_hw_state(struct drm_device *dev)
2942 {
2943         struct drm_i915_private *dev_priv = dev->dev_private;
2944         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2945         struct drm_crtc *crtc;
2946
2947         for_each_crtc(dev, crtc)
2948                 ilk_pipe_wm_get_hw_state(crtc);
2949
2950         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2951         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2952         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2953
2954         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2955         if (INTEL_INFO(dev)->gen >= 7) {
2956                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2957                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2958         }
2959
2960         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2961                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2962                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2963         else if (IS_IVYBRIDGE(dev))
2964                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2965                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2966
2967         hw->enable_fbc_wm =
2968                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2969 }
2970
2971 /**
2972  * intel_update_watermarks - update FIFO watermark values based on current modes
2973  *
2974  * Calculate watermark values for the various WM regs based on current mode
2975  * and plane configuration.
2976  *
2977  * There are several cases to deal with here:
2978  *   - normal (i.e. non-self-refresh)
2979  *   - self-refresh (SR) mode
2980  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2981  *   - lines are small relative to FIFO size (buffer can hold more than 2
2982  *     lines), so need to account for TLB latency
2983  *
2984  *   The normal calculation is:
2985  *     watermark = dotclock * bytes per pixel * latency
2986  *   where latency is platform & configuration dependent (we assume pessimal
2987  *   values here).
2988  *
2989  *   The SR calculation is:
2990  *     watermark = (trunc(latency/line time)+1) * surface width *
2991  *       bytes per pixel
2992  *   where
2993  *     line time = htotal / dotclock
2994  *     surface width = hdisplay for normal plane and 64 for cursor
2995  *   and latency is assumed to be high, as above.
2996  *
2997  * The final value programmed to the register should always be rounded up,
2998  * and include an extra 2 entries to account for clock crossings.
2999  *
3000  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3001  * to set the non-SR watermarks to 8.
3002  */
3003 void intel_update_watermarks(struct drm_crtc *crtc)
3004 {
3005         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3006
3007         if (dev_priv->display.update_wm)
3008                 dev_priv->display.update_wm(crtc);
3009 }
3010
3011 void intel_update_sprite_watermarks(struct drm_plane *plane,
3012                                     struct drm_crtc *crtc,
3013                                     uint32_t sprite_width,
3014                                     uint32_t sprite_height,
3015                                     int pixel_size,
3016                                     bool enabled, bool scaled)
3017 {
3018         struct drm_i915_private *dev_priv = plane->dev->dev_private;
3019
3020         if (dev_priv->display.update_sprite_wm)
3021                 dev_priv->display.update_sprite_wm(plane, crtc,
3022                                                    sprite_width, sprite_height,
3023                                                    pixel_size, enabled, scaled);
3024 }
3025
3026 static struct drm_i915_gem_object *
3027 intel_alloc_context_page(struct drm_device *dev)
3028 {
3029         struct drm_i915_gem_object *ctx;
3030         int ret;
3031
3032         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3033
3034         ctx = i915_gem_alloc_object(dev, 4096);
3035         if (!ctx) {
3036                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3037                 return NULL;
3038         }
3039
3040         ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
3041         if (ret) {
3042                 DRM_ERROR("failed to pin power context: %d\n", ret);
3043                 goto err_unref;
3044         }
3045
3046         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3047         if (ret) {
3048                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3049                 goto err_unpin;
3050         }
3051
3052         return ctx;
3053
3054 err_unpin:
3055         i915_gem_object_ggtt_unpin(ctx);
3056 err_unref:
3057         drm_gem_object_unreference(&ctx->base);
3058         return NULL;
3059 }
3060
3061 /**
3062  * Lock protecting IPS related data structures
3063  */
3064 DEFINE_SPINLOCK(mchdev_lock);
3065
3066 /* Global for IPS driver to get at the current i915 device. Protected by
3067  * mchdev_lock. */
3068 static struct drm_i915_private *i915_mch_dev;
3069
3070 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3071 {
3072         struct drm_i915_private *dev_priv = dev->dev_private;
3073         u16 rgvswctl;
3074
3075         assert_spin_locked(&mchdev_lock);
3076
3077         rgvswctl = I915_READ16(MEMSWCTL);
3078         if (rgvswctl & MEMCTL_CMD_STS) {
3079                 DRM_DEBUG("gpu busy, RCS change rejected\n");
3080                 return false; /* still busy with another command */
3081         }
3082
3083         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3084                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3085         I915_WRITE16(MEMSWCTL, rgvswctl);
3086         POSTING_READ16(MEMSWCTL);
3087
3088         rgvswctl |= MEMCTL_CMD_STS;
3089         I915_WRITE16(MEMSWCTL, rgvswctl);
3090
3091         return true;
3092 }
3093
3094 static void ironlake_enable_drps(struct drm_device *dev)
3095 {
3096         struct drm_i915_private *dev_priv = dev->dev_private;
3097         u32 rgvmodectl = I915_READ(MEMMODECTL);
3098         u8 fmax, fmin, fstart, vstart;
3099
3100         spin_lock_irq(&mchdev_lock);
3101
3102         /* Enable temp reporting */
3103         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3104         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3105
3106         /* 100ms RC evaluation intervals */
3107         I915_WRITE(RCUPEI, 100000);
3108         I915_WRITE(RCDNEI, 100000);
3109
3110         /* Set max/min thresholds to 90ms and 80ms respectively */
3111         I915_WRITE(RCBMAXAVG, 90000);
3112         I915_WRITE(RCBMINAVG, 80000);
3113
3114         I915_WRITE(MEMIHYST, 1);
3115
3116         /* Set up min, max, and cur for interrupt handling */
3117         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3118         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3119         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3120                 MEMMODE_FSTART_SHIFT;
3121
3122         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3123                 PXVFREQ_PX_SHIFT;
3124
3125         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3126         dev_priv->ips.fstart = fstart;
3127
3128         dev_priv->ips.max_delay = fstart;
3129         dev_priv->ips.min_delay = fmin;
3130         dev_priv->ips.cur_delay = fstart;
3131
3132         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3133                          fmax, fmin, fstart);
3134
3135         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3136
3137         /*
3138          * Interrupts will be enabled in ironlake_irq_postinstall
3139          */
3140
3141         I915_WRITE(VIDSTART, vstart);
3142         POSTING_READ(VIDSTART);
3143
3144         rgvmodectl |= MEMMODE_SWMODE_EN;
3145         I915_WRITE(MEMMODECTL, rgvmodectl);
3146
3147         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3148                 DRM_ERROR("stuck trying to change perf mode\n");
3149         mdelay(1);
3150
3151         ironlake_set_drps(dev, fstart);
3152
3153         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3154                 I915_READ(0x112e0);
3155         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3156         dev_priv->ips.last_count2 = I915_READ(0x112f4);
3157         dev_priv->ips.last_time2 = ktime_get_raw_ns();
3158
3159         spin_unlock_irq(&mchdev_lock);
3160 }
3161
3162 static void ironlake_disable_drps(struct drm_device *dev)
3163 {
3164         struct drm_i915_private *dev_priv = dev->dev_private;
3165         u16 rgvswctl;
3166
3167         spin_lock_irq(&mchdev_lock);
3168
3169         rgvswctl = I915_READ16(MEMSWCTL);
3170
3171         /* Ack interrupts, disable EFC interrupt */
3172         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3173         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3174         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3175         I915_WRITE(DEIIR, DE_PCU_EVENT);
3176         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3177
3178         /* Go back to the starting frequency */
3179         ironlake_set_drps(dev, dev_priv->ips.fstart);
3180         mdelay(1);
3181         rgvswctl |= MEMCTL_CMD_STS;
3182         I915_WRITE(MEMSWCTL, rgvswctl);
3183         mdelay(1);
3184
3185         spin_unlock_irq(&mchdev_lock);
3186 }
3187
3188 /* There's a funny hw issue where the hw returns all 0 when reading from
3189  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3190  * ourselves, instead of doing a rmw cycle (which might result in us clearing
3191  * all limits and the gpu stuck at whatever frequency it is at atm).
3192  */
3193 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3194 {
3195         u32 limits;
3196
3197         /* Only set the down limit when we've reached the lowest level to avoid
3198          * getting more interrupts, otherwise leave this clear. This prevents a
3199          * race in the hw when coming out of rc6: There's a tiny window where
3200          * the hw runs at the minimal clock before selecting the desired
3201          * frequency, if the down threshold expires in that window we will not
3202          * receive a down interrupt. */
3203         limits = dev_priv->rps.max_freq_softlimit << 24;
3204         if (val <= dev_priv->rps.min_freq_softlimit)
3205                 limits |= dev_priv->rps.min_freq_softlimit << 16;
3206
3207         return limits;
3208 }
3209
3210 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3211 {
3212         int new_power;
3213
3214         new_power = dev_priv->rps.power;
3215         switch (dev_priv->rps.power) {
3216         case LOW_POWER:
3217                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3218                         new_power = BETWEEN;
3219                 break;
3220
3221         case BETWEEN:
3222                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3223                         new_power = LOW_POWER;
3224                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3225                         new_power = HIGH_POWER;
3226                 break;
3227
3228         case HIGH_POWER:
3229                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3230                         new_power = BETWEEN;
3231                 break;
3232         }
3233         /* Max/min bins are special */
3234         if (val == dev_priv->rps.min_freq_softlimit)
3235                 new_power = LOW_POWER;
3236         if (val == dev_priv->rps.max_freq_softlimit)
3237                 new_power = HIGH_POWER;
3238         if (new_power == dev_priv->rps.power)
3239                 return;
3240
3241         /* Note the units here are not exactly 1us, but 1280ns. */
3242         switch (new_power) {
3243         case LOW_POWER:
3244                 /* Upclock if more than 95% busy over 16ms */
3245                 I915_WRITE(GEN6_RP_UP_EI, 12500);
3246                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3247
3248                 /* Downclock if less than 85% busy over 32ms */
3249                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3250                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3251
3252                 I915_WRITE(GEN6_RP_CONTROL,
3253                            GEN6_RP_MEDIA_TURBO |
3254                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3255                            GEN6_RP_MEDIA_IS_GFX |
3256                            GEN6_RP_ENABLE |
3257                            GEN6_RP_UP_BUSY_AVG |
3258                            GEN6_RP_DOWN_IDLE_AVG);
3259                 break;
3260
3261         case BETWEEN:
3262                 /* Upclock if more than 90% busy over 13ms */
3263                 I915_WRITE(GEN6_RP_UP_EI, 10250);
3264                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3265
3266                 /* Downclock if less than 75% busy over 32ms */
3267                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3268                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3269
3270                 I915_WRITE(GEN6_RP_CONTROL,
3271                            GEN6_RP_MEDIA_TURBO |
3272                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3273                            GEN6_RP_MEDIA_IS_GFX |
3274                            GEN6_RP_ENABLE |
3275                            GEN6_RP_UP_BUSY_AVG |
3276                            GEN6_RP_DOWN_IDLE_AVG);
3277                 break;
3278
3279         case HIGH_POWER:
3280                 /* Upclock if more than 85% busy over 10ms */
3281                 I915_WRITE(GEN6_RP_UP_EI, 8000);
3282                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3283
3284                 /* Downclock if less than 60% busy over 32ms */
3285                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3286                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3287
3288                 I915_WRITE(GEN6_RP_CONTROL,
3289                            GEN6_RP_MEDIA_TURBO |
3290                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3291                            GEN6_RP_MEDIA_IS_GFX |
3292                            GEN6_RP_ENABLE |
3293                            GEN6_RP_UP_BUSY_AVG |
3294                            GEN6_RP_DOWN_IDLE_AVG);
3295                 break;
3296         }
3297
3298         dev_priv->rps.power = new_power;
3299         dev_priv->rps.last_adj = 0;
3300 }
3301
3302 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3303 {
3304         u32 mask = 0;
3305
3306         if (val > dev_priv->rps.min_freq_softlimit)
3307                 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3308         if (val < dev_priv->rps.max_freq_softlimit)
3309                 mask |= GEN6_PM_RP_UP_THRESHOLD;
3310
3311         mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
3312         mask &= dev_priv->pm_rps_events;
3313
3314         /* IVB and SNB hard hangs on looping batchbuffer
3315          * if GEN6_PM_UP_EI_EXPIRED is masked.
3316          */
3317         if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3318                 mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3319
3320         if (IS_GEN8(dev_priv->dev))
3321                 mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
3322
3323         return ~mask;
3324 }
3325
3326 /* gen6_set_rps is called to update the frequency request, but should also be
3327  * called when the range (min_delay and max_delay) is modified so that we can
3328  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3329 void gen6_set_rps(struct drm_device *dev, u8 val)
3330 {
3331         struct drm_i915_private *dev_priv = dev->dev_private;
3332
3333         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3334         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3335         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3336
3337         /* min/max delay may still have been modified so be sure to
3338          * write the limits value.
3339          */
3340         if (val != dev_priv->rps.cur_freq) {
3341                 gen6_set_rps_thresholds(dev_priv, val);
3342
3343                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3344                         I915_WRITE(GEN6_RPNSWREQ,
3345                                    HSW_FREQUENCY(val));
3346                 else
3347                         I915_WRITE(GEN6_RPNSWREQ,
3348                                    GEN6_FREQUENCY(val) |
3349                                    GEN6_OFFSET(0) |
3350                                    GEN6_AGGRESSIVE_TURBO);
3351         }
3352
3353         /* Make sure we continue to get interrupts
3354          * until we hit the minimum or maximum frequencies.
3355          */
3356         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3357         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3358
3359         POSTING_READ(GEN6_RPNSWREQ);
3360
3361         dev_priv->rps.cur_freq = val;
3362         trace_intel_gpu_freq_change(val * 50);
3363 }
3364
3365 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3366  *
3367  * * If Gfx is Idle, then
3368  * 1. Mask Turbo interrupts
3369  * 2. Bring up Gfx clock
3370  * 3. Change the freq to Rpn and wait till P-Unit updates freq
3371  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3372  * 5. Unmask Turbo interrupts
3373 */
3374 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3375 {
3376         struct drm_device *dev = dev_priv->dev;
3377
3378         /* Latest VLV doesn't need to force the gfx clock */
3379         if (dev->pdev->revision >= 0xd) {
3380                 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3381                 return;
3382         }
3383
3384         /*
3385          * When we are idle.  Drop to min voltage state.
3386          */
3387
3388         if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3389                 return;
3390
3391         /* Mask turbo interrupt so that they will not come in between */
3392         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3393
3394         vlv_force_gfx_clock(dev_priv, true);
3395
3396         dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3397
3398         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3399                                         dev_priv->rps.min_freq_softlimit);
3400
3401         if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3402                                 & GENFREQSTATUS) == 0, 5))
3403                 DRM_ERROR("timed out waiting for Punit\n");
3404
3405         vlv_force_gfx_clock(dev_priv, false);
3406
3407         I915_WRITE(GEN6_PMINTRMSK,
3408                    gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3409 }
3410
3411 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3412 {
3413         struct drm_device *dev = dev_priv->dev;
3414
3415         mutex_lock(&dev_priv->rps.hw_lock);
3416         if (dev_priv->rps.enabled) {
3417                 if (IS_CHERRYVIEW(dev))
3418                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3419                 else if (IS_VALLEYVIEW(dev))
3420                         vlv_set_rps_idle(dev_priv);
3421                 else
3422                         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3423                 dev_priv->rps.last_adj = 0;
3424         }
3425         mutex_unlock(&dev_priv->rps.hw_lock);
3426 }
3427
3428 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3429 {
3430         struct drm_device *dev = dev_priv->dev;
3431
3432         mutex_lock(&dev_priv->rps.hw_lock);
3433         if (dev_priv->rps.enabled) {
3434                 if (IS_VALLEYVIEW(dev))
3435                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3436                 else
3437                         gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3438                 dev_priv->rps.last_adj = 0;
3439         }
3440         mutex_unlock(&dev_priv->rps.hw_lock);
3441 }
3442
3443 void valleyview_set_rps(struct drm_device *dev, u8 val)
3444 {
3445         struct drm_i915_private *dev_priv = dev->dev_private;
3446
3447         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3448         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3449         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3450
3451         DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3452                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3453                          dev_priv->rps.cur_freq,
3454                          vlv_gpu_freq(dev_priv, val), val);
3455
3456         if (val != dev_priv->rps.cur_freq)
3457                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3458
3459         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3460
3461         dev_priv->rps.cur_freq = val;
3462         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3463 }
3464
3465 static void gen8_disable_rps_interrupts(struct drm_device *dev)
3466 {
3467         struct drm_i915_private *dev_priv = dev->dev_private;
3468
3469         I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
3470         I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
3471                                    ~dev_priv->pm_rps_events);
3472         /* Complete PM interrupt masking here doesn't race with the rps work
3473          * item again unmasking PM interrupts because that is using a different
3474          * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
3475          * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
3476          * gen8_enable_rps will clean up. */
3477
3478         spin_lock_irq(&dev_priv->irq_lock);
3479         dev_priv->rps.pm_iir = 0;
3480         spin_unlock_irq(&dev_priv->irq_lock);
3481
3482         I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3483 }
3484
3485 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3486 {
3487         struct drm_i915_private *dev_priv = dev->dev_private;
3488
3489         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3490         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3491                                 ~dev_priv->pm_rps_events);
3492         /* Complete PM interrupt masking here doesn't race with the rps work
3493          * item again unmasking PM interrupts because that is using a different
3494          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3495          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3496
3497         spin_lock_irq(&dev_priv->irq_lock);
3498         dev_priv->rps.pm_iir = 0;
3499         spin_unlock_irq(&dev_priv->irq_lock);
3500
3501         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3502 }
3503
3504 static void gen6_disable_rps(struct drm_device *dev)
3505 {
3506         struct drm_i915_private *dev_priv = dev->dev_private;
3507
3508         I915_WRITE(GEN6_RC_CONTROL, 0);
3509         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3510
3511         if (IS_BROADWELL(dev))
3512                 gen8_disable_rps_interrupts(dev);
3513         else
3514                 gen6_disable_rps_interrupts(dev);
3515 }
3516
3517 static void cherryview_disable_rps(struct drm_device *dev)
3518 {
3519         struct drm_i915_private *dev_priv = dev->dev_private;
3520
3521         I915_WRITE(GEN6_RC_CONTROL, 0);
3522
3523         gen8_disable_rps_interrupts(dev);
3524 }
3525
3526 static void valleyview_disable_rps(struct drm_device *dev)
3527 {
3528         struct drm_i915_private *dev_priv = dev->dev_private;
3529
3530         I915_WRITE(GEN6_RC_CONTROL, 0);
3531
3532         gen6_disable_rps_interrupts(dev);
3533 }
3534
3535 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3536 {
3537         if (IS_VALLEYVIEW(dev)) {
3538                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
3539                         mode = GEN6_RC_CTL_RC6_ENABLE;
3540                 else
3541                         mode = 0;
3542         }
3543         DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3544                       (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3545                       (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3546                       (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3547 }
3548
3549 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3550 {
3551         /* No RC6 before Ironlake */
3552         if (INTEL_INFO(dev)->gen < 5)
3553                 return 0;
3554
3555         /* RC6 is only on Ironlake mobile not on desktop */
3556         if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
3557                 return 0;
3558
3559         /* Respect the kernel parameter if it is set */
3560         if (enable_rc6 >= 0) {
3561                 int mask;
3562
3563                 if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
3564                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
3565                                INTEL_RC6pp_ENABLE;
3566                 else
3567                         mask = INTEL_RC6_ENABLE;
3568
3569                 if ((enable_rc6 & mask) != enable_rc6)
3570                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
3571                                       enable_rc6 & mask, enable_rc6, mask);
3572
3573                 return enable_rc6 & mask;
3574         }
3575
3576         /* Disable RC6 on Ironlake */
3577         if (INTEL_INFO(dev)->gen == 5)
3578                 return 0;
3579
3580         if (IS_IVYBRIDGE(dev))
3581                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3582
3583         return INTEL_RC6_ENABLE;
3584 }
3585
3586 int intel_enable_rc6(const struct drm_device *dev)
3587 {
3588         return i915.enable_rc6;
3589 }
3590
3591 static void gen8_enable_rps_interrupts(struct drm_device *dev)
3592 {
3593         struct drm_i915_private *dev_priv = dev->dev_private;
3594
3595         spin_lock_irq(&dev_priv->irq_lock);
3596         WARN_ON(dev_priv->rps.pm_iir);
3597         gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3598         I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3599         spin_unlock_irq(&dev_priv->irq_lock);
3600 }
3601
3602 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3603 {
3604         struct drm_i915_private *dev_priv = dev->dev_private;
3605
3606         spin_lock_irq(&dev_priv->irq_lock);
3607         WARN_ON(dev_priv->rps.pm_iir);
3608         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3609         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3610         spin_unlock_irq(&dev_priv->irq_lock);
3611 }
3612
3613 static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
3614 {
3615         /* All of these values are in units of 50MHz */
3616         dev_priv->rps.cur_freq          = 0;
3617         /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3618         dev_priv->rps.rp1_freq          = (rp_state_cap >>  8) & 0xff;
3619         dev_priv->rps.rp0_freq          = (rp_state_cap >>  0) & 0xff;
3620         dev_priv->rps.min_freq          = (rp_state_cap >> 16) & 0xff;
3621         /* XXX: only BYT has a special efficient freq */
3622         dev_priv->rps.efficient_freq    = dev_priv->rps.rp1_freq;
3623         /* hw_max = RP0 until we check for overclocking */
3624         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
3625
3626         /* Preserve min/max settings in case of re-init */
3627         if (dev_priv->rps.max_freq_softlimit == 0)
3628                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3629
3630         if (dev_priv->rps.min_freq_softlimit == 0)
3631                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3632 }
3633
3634 static void gen8_enable_rps(struct drm_device *dev)
3635 {
3636         struct drm_i915_private *dev_priv = dev->dev_private;
3637         struct intel_engine_cs *ring;
3638         uint32_t rc6_mask = 0, rp_state_cap;
3639         int unused;
3640
3641         /* 1a: Software RC state - RC0 */
3642         I915_WRITE(GEN6_RC_STATE, 0);
3643
3644         /* 1c & 1d: Get forcewake during program sequence. Although the driver
3645          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3646         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3647
3648         /* 2a: Disable RC states. */
3649         I915_WRITE(GEN6_RC_CONTROL, 0);
3650
3651         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3652         parse_rp_state_cap(dev_priv, rp_state_cap);
3653
3654         /* 2b: Program RC6 thresholds.*/
3655         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3656         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3657         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3658         for_each_ring(ring, dev_priv, unused)
3659                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3660         I915_WRITE(GEN6_RC_SLEEP, 0);
3661         if (IS_BROADWELL(dev))
3662                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
3663         else
3664                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3665
3666         /* 3: Enable RC6 */
3667         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3668                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3669         intel_print_rc6_info(dev, rc6_mask);
3670         if (IS_BROADWELL(dev))
3671                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3672                                 GEN7_RC_CTL_TO_MODE |
3673                                 rc6_mask);
3674         else
3675                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3676                                 GEN6_RC_CTL_EI_MODE(1) |
3677                                 rc6_mask);
3678
3679         /* 4 Program defaults and thresholds for RPS*/
3680         I915_WRITE(GEN6_RPNSWREQ,
3681                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3682         I915_WRITE(GEN6_RC_VIDEO_FREQ,
3683                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3684         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3685         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3686
3687         /* Docs recommend 900MHz, and 300 MHz respectively */
3688         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3689                    dev_priv->rps.max_freq_softlimit << 24 |
3690                    dev_priv->rps.min_freq_softlimit << 16);
3691
3692         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3693         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3694         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3695         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3696
3697         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3698
3699         /* 5: Enable RPS */
3700         I915_WRITE(GEN6_RP_CONTROL,
3701                    GEN6_RP_MEDIA_TURBO |
3702                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3703                    GEN6_RP_MEDIA_IS_GFX |
3704                    GEN6_RP_ENABLE |
3705                    GEN6_RP_UP_BUSY_AVG |
3706                    GEN6_RP_DOWN_IDLE_AVG);
3707
3708         /* 6: Ring frequency + overclocking (our driver does this later */
3709
3710         gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3711
3712         gen8_enable_rps_interrupts(dev);
3713
3714         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3715 }
3716
3717 static void gen6_enable_rps(struct drm_device *dev)
3718 {
3719         struct drm_i915_private *dev_priv = dev->dev_private;
3720         struct intel_engine_cs *ring;
3721         u32 rp_state_cap;
3722         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3723         u32 gtfifodbg;
3724         int rc6_mode;
3725         int i, ret;
3726
3727         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3728
3729         /* Here begins a magic sequence of register writes to enable
3730          * auto-downclocking.
3731          *
3732          * Perhaps there might be some value in exposing these to
3733          * userspace...
3734          */
3735         I915_WRITE(GEN6_RC_STATE, 0);
3736
3737         /* Clear the DBG now so we don't confuse earlier errors */
3738         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3739                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3740                 I915_WRITE(GTFIFODBG, gtfifodbg);
3741         }
3742
3743         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3744
3745         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3746
3747         parse_rp_state_cap(dev_priv, rp_state_cap);
3748
3749         /* disable the counters and set deterministic thresholds */
3750         I915_WRITE(GEN6_RC_CONTROL, 0);
3751
3752         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3753         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3754         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3755         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3756         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3757
3758         for_each_ring(ring, dev_priv, i)
3759                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3760
3761         I915_WRITE(GEN6_RC_SLEEP, 0);
3762         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3763         if (IS_IVYBRIDGE(dev))
3764                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3765         else
3766                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3767         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3768         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3769
3770         /* Check if we are enabling RC6 */
3771         rc6_mode = intel_enable_rc6(dev_priv->dev);
3772         if (rc6_mode & INTEL_RC6_ENABLE)
3773                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3774
3775         /* We don't use those on Haswell */
3776         if (!IS_HASWELL(dev)) {
3777                 if (rc6_mode & INTEL_RC6p_ENABLE)
3778                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3779
3780                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3781                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3782         }
3783
3784         intel_print_rc6_info(dev, rc6_mask);
3785
3786         I915_WRITE(GEN6_RC_CONTROL,
3787                    rc6_mask |
3788                    GEN6_RC_CTL_EI_MODE(1) |
3789                    GEN6_RC_CTL_HW_ENABLE);
3790
3791         /* Power down if completely idle for over 50ms */
3792         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3793         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3794
3795         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3796         if (ret)
3797                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3798
3799         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3800         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3801                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3802                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3803                                  (pcu_mbox & 0xff) * 50);
3804                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
3805         }
3806
3807         dev_priv->rps.power = HIGH_POWER; /* force a reset */
3808         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3809
3810         gen6_enable_rps_interrupts(dev);
3811
3812         rc6vids = 0;
3813         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3814         if (IS_GEN6(dev) && ret) {
3815                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3816         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3817                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3818                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3819                 rc6vids &= 0xffff00;
3820                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3821                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3822                 if (ret)
3823                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3824         }
3825
3826         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3827 }
3828
3829 static void __gen6_update_ring_freq(struct drm_device *dev)
3830 {
3831         struct drm_i915_private *dev_priv = dev->dev_private;
3832         int min_freq = 15;
3833         unsigned int gpu_freq;
3834         unsigned int max_ia_freq, min_ring_freq;
3835         int scaling_factor = 180;
3836         struct cpufreq_policy *policy;
3837
3838         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3839
3840         policy = cpufreq_cpu_get(0);
3841         if (policy) {
3842                 max_ia_freq = policy->cpuinfo.max_freq;
3843                 cpufreq_cpu_put(policy);
3844         } else {
3845                 /*
3846                  * Default to measured freq if none found, PCU will ensure we
3847                  * don't go over
3848                  */
3849                 max_ia_freq = tsc_khz;
3850         }
3851
3852         /* Convert from kHz to MHz */
3853         max_ia_freq /= 1000;
3854
3855         min_ring_freq = I915_READ(DCLK) & 0xf;
3856         /* convert DDR frequency from units of 266.6MHz to bandwidth */
3857         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3858
3859         /*
3860          * For each potential GPU frequency, load a ring frequency we'd like
3861          * to use for memory access.  We do this by specifying the IA frequency
3862          * the PCU should use as a reference to determine the ring frequency.
3863          */
3864         for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
3865              gpu_freq--) {
3866                 int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
3867                 unsigned int ia_freq = 0, ring_freq = 0;
3868
3869                 if (INTEL_INFO(dev)->gen >= 8) {
3870                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
3871                         ring_freq = max(min_ring_freq, gpu_freq);
3872                 } else if (IS_HASWELL(dev)) {
3873                         ring_freq = mult_frac(gpu_freq, 5, 4);
3874                         ring_freq = max(min_ring_freq, ring_freq);
3875                         /* leave ia_freq as the default, chosen by cpufreq */
3876                 } else {
3877                         /* On older processors, there is no separate ring
3878                          * clock domain, so in order to boost the bandwidth
3879                          * of the ring, we need to upclock the CPU (ia_freq).
3880                          *
3881                          * For GPU frequencies less than 750MHz,
3882                          * just use the lowest ring freq.
3883                          */
3884                         if (gpu_freq < min_freq)
3885                                 ia_freq = 800;
3886                         else
3887                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3888                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3889                 }
3890
3891                 sandybridge_pcode_write(dev_priv,
3892                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3893                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3894                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3895                                         gpu_freq);
3896         }
3897 }
3898
3899 void gen6_update_ring_freq(struct drm_device *dev)
3900 {
3901         struct drm_i915_private *dev_priv = dev->dev_private;
3902
3903         if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
3904                 return;
3905
3906         mutex_lock(&dev_priv->rps.hw_lock);
3907         __gen6_update_ring_freq(dev);
3908         mutex_unlock(&dev_priv->rps.hw_lock);
3909 }
3910
3911 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
3912 {
3913         u32 val, rp0;
3914
3915         val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
3916         rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
3917
3918         return rp0;
3919 }
3920
3921 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3922 {
3923         u32 val, rpe;
3924
3925         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
3926         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
3927
3928         return rpe;
3929 }
3930
3931 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
3932 {
3933         u32 val, rp1;
3934
3935         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3936         rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
3937
3938         return rp1;
3939 }
3940
3941 static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
3942 {
3943         u32 val, rpn;
3944
3945         val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
3946         rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
3947         return rpn;
3948 }
3949
3950 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
3951 {
3952         u32 val, rp1;
3953
3954         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3955
3956         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
3957
3958         return rp1;
3959 }
3960
3961 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3962 {
3963         u32 val, rp0;
3964
3965         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3966
3967         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3968         /* Clamp to max */
3969         rp0 = min_t(u32, rp0, 0xea);
3970
3971         return rp0;
3972 }
3973
3974 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3975 {
3976         u32 val, rpe;
3977
3978         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3979         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3980         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3981         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3982
3983         return rpe;
3984 }
3985
3986 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3987 {
3988         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3989 }
3990
3991 /* Check that the pctx buffer wasn't move under us. */
3992 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
3993 {
3994         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3995
3996         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
3997                              dev_priv->vlv_pctx->stolen->start);
3998 }
3999
4000
4001 /* Check that the pcbr address is not empty. */
4002 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
4003 {
4004         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4005
4006         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
4007 }
4008
4009 static void cherryview_setup_pctx(struct drm_device *dev)
4010 {
4011         struct drm_i915_private *dev_priv = dev->dev_private;
4012         unsigned long pctx_paddr, paddr;
4013         struct i915_gtt *gtt = &dev_priv->gtt;
4014         u32 pcbr;
4015         int pctx_size = 32*1024;
4016
4017         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4018
4019         pcbr = I915_READ(VLV_PCBR);
4020         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4021                 paddr = (dev_priv->mm.stolen_base +
4022                          (gtt->stolen_size - pctx_size));
4023
4024                 pctx_paddr = (paddr & (~4095));
4025                 I915_WRITE(VLV_PCBR, pctx_paddr);
4026         }
4027 }
4028
4029 static void valleyview_setup_pctx(struct drm_device *dev)
4030 {
4031         struct drm_i915_private *dev_priv = dev->dev_private;
4032         struct drm_i915_gem_object *pctx;
4033         unsigned long pctx_paddr;
4034         u32 pcbr;
4035         int pctx_size = 24*1024;
4036
4037         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4038
4039         pcbr = I915_READ(VLV_PCBR);
4040         if (pcbr) {
4041                 /* BIOS set it up already, grab the pre-alloc'd space */
4042                 int pcbr_offset;
4043
4044                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
4045                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
4046                                                                       pcbr_offset,
4047                                                                       I915_GTT_OFFSET_NONE,
4048                                                                       pctx_size);
4049                 goto out;
4050         }
4051
4052         /*
4053          * From the Gunit register HAS:
4054          * The Gfx driver is expected to program this register and ensure
4055          * proper allocation within Gfx stolen memory.  For example, this
4056          * register should be programmed such than the PCBR range does not
4057          * overlap with other ranges, such as the frame buffer, protected
4058          * memory, or any other relevant ranges.
4059          */
4060         pctx = i915_gem_object_create_stolen(dev, pctx_size);
4061         if (!pctx) {
4062                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
4063                 return;
4064         }
4065
4066         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
4067         I915_WRITE(VLV_PCBR, pctx_paddr);
4068
4069 out:
4070         dev_priv->vlv_pctx = pctx;
4071 }
4072
4073 static void valleyview_cleanup_pctx(struct drm_device *dev)
4074 {
4075         struct drm_i915_private *dev_priv = dev->dev_private;
4076
4077         if (WARN_ON(!dev_priv->vlv_pctx))
4078                 return;
4079
4080         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
4081         dev_priv->vlv_pctx = NULL;
4082 }
4083
4084 static void valleyview_init_gt_powersave(struct drm_device *dev)
4085 {
4086         struct drm_i915_private *dev_priv = dev->dev_private;
4087
4088         valleyview_setup_pctx(dev);
4089
4090         mutex_lock(&dev_priv->rps.hw_lock);
4091
4092         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
4093         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4094         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4095                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4096                          dev_priv->rps.max_freq);
4097
4098         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
4099         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4100                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4101                          dev_priv->rps.efficient_freq);
4102
4103         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
4104         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4105                          vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4106                          dev_priv->rps.rp1_freq);
4107
4108         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
4109         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4110                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4111                          dev_priv->rps.min_freq);
4112
4113         /* Preserve min/max settings in case of re-init */
4114         if (dev_priv->rps.max_freq_softlimit == 0)
4115                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4116
4117         if (dev_priv->rps.min_freq_softlimit == 0)
4118                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4119
4120         mutex_unlock(&dev_priv->rps.hw_lock);
4121 }
4122
4123 static void cherryview_init_gt_powersave(struct drm_device *dev)
4124 {
4125         struct drm_i915_private *dev_priv = dev->dev_private;
4126
4127         cherryview_setup_pctx(dev);
4128
4129         mutex_lock(&dev_priv->rps.hw_lock);
4130
4131         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
4132         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4133         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4134                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4135                          dev_priv->rps.max_freq);
4136
4137         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
4138         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4139                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4140                          dev_priv->rps.efficient_freq);
4141
4142         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
4143         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4144                          vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4145                          dev_priv->rps.rp1_freq);
4146
4147         dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
4148         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4149                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4150                          dev_priv->rps.min_freq);
4151
4152         /* Preserve min/max settings in case of re-init */
4153         if (dev_priv->rps.max_freq_softlimit == 0)
4154                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4155
4156         if (dev_priv->rps.min_freq_softlimit == 0)
4157                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4158
4159         mutex_unlock(&dev_priv->rps.hw_lock);
4160 }
4161
4162 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
4163 {
4164         valleyview_cleanup_pctx(dev);
4165 }
4166
4167 static void cherryview_enable_rps(struct drm_device *dev)
4168 {
4169         struct drm_i915_private *dev_priv = dev->dev_private;
4170         struct intel_engine_cs *ring;
4171         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4172         int i;
4173
4174         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4175
4176         gtfifodbg = I915_READ(GTFIFODBG);
4177         if (gtfifodbg) {
4178                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4179                                  gtfifodbg);
4180                 I915_WRITE(GTFIFODBG, gtfifodbg);
4181         }
4182
4183         cherryview_check_pctx(dev_priv);
4184
4185         /* 1a & 1b: Get forcewake during program sequence. Although the driver
4186          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4187         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4188
4189         /* 2a: Program RC6 thresholds.*/
4190         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4191         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4192         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4193
4194         for_each_ring(ring, dev_priv, i)
4195                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4196         I915_WRITE(GEN6_RC_SLEEP, 0);
4197
4198         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4199
4200         /* allows RC6 residency counter to work */
4201         I915_WRITE(VLV_COUNTER_CONTROL,
4202                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4203                                       VLV_MEDIA_RC6_COUNT_EN |
4204                                       VLV_RENDER_RC6_COUNT_EN));
4205
4206         /* For now we assume BIOS is allocating and populating the PCBR  */
4207         pcbr = I915_READ(VLV_PCBR);
4208
4209         DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);
4210
4211         /* 3: Enable RC6 */
4212         if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
4213                                                 (pcbr >> VLV_PCBR_ADDR_SHIFT))
4214                 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
4215
4216         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4217
4218         /* 4 Program defaults and thresholds for RPS*/
4219         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4220         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4221         I915_WRITE(GEN6_RP_UP_EI, 66000);
4222         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4223
4224         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4225
4226         /* WaDisablePwrmtrEvent:chv (pre-production hw) */
4227         I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
4228         I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
4229
4230         /* 5: Enable RPS */
4231         I915_WRITE(GEN6_RP_CONTROL,
4232                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4233                    GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
4234                    GEN6_RP_ENABLE |
4235                    GEN6_RP_UP_BUSY_AVG |
4236                    GEN6_RP_DOWN_IDLE_AVG);
4237
4238         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4239
4240         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4241         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4242
4243         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4244         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4245                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4246                          dev_priv->rps.cur_freq);
4247
4248         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4249                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4250                          dev_priv->rps.efficient_freq);
4251
4252         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4253
4254         gen8_enable_rps_interrupts(dev);
4255
4256         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4257 }
4258
4259 static void valleyview_enable_rps(struct drm_device *dev)
4260 {
4261         struct drm_i915_private *dev_priv = dev->dev_private;
4262         struct intel_engine_cs *ring;
4263         u32 gtfifodbg, val, rc6_mode = 0;
4264         int i;
4265
4266         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4267
4268         valleyview_check_pctx(dev_priv);
4269
4270         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4271                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4272                                  gtfifodbg);
4273                 I915_WRITE(GTFIFODBG, gtfifodbg);
4274         }
4275
4276         /* If VLV, Forcewake all wells, else re-direct to regular path */
4277         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4278
4279         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4280         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4281         I915_WRITE(GEN6_RP_UP_EI, 66000);
4282         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4283
4284         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4285         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
4286
4287         I915_WRITE(GEN6_RP_CONTROL,
4288                    GEN6_RP_MEDIA_TURBO |
4289                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4290                    GEN6_RP_MEDIA_IS_GFX |
4291                    GEN6_RP_ENABLE |
4292                    GEN6_RP_UP_BUSY_AVG |
4293                    GEN6_RP_DOWN_IDLE_CONT);
4294
4295         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4296         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4297         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4298
4299         for_each_ring(ring, dev_priv, i)
4300                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4301
4302         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4303
4304         /* allows RC6 residency counter to work */
4305         I915_WRITE(VLV_COUNTER_CONTROL,
4306                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
4307                                       VLV_RENDER_RC0_COUNT_EN |
4308                                       VLV_MEDIA_RC6_COUNT_EN |
4309                                       VLV_RENDER_RC6_COUNT_EN));
4310
4311         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4312                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4313
4314         intel_print_rc6_info(dev, rc6_mode);
4315
4316         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4317
4318         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4319
4320         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4321         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4322
4323         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4324         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4325                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4326                          dev_priv->rps.cur_freq);
4327
4328         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4329                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4330                          dev_priv->rps.efficient_freq);
4331
4332         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4333
4334         gen6_enable_rps_interrupts(dev);
4335
4336         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4337 }
4338
4339 void ironlake_teardown_rc6(struct drm_device *dev)
4340 {
4341         struct drm_i915_private *dev_priv = dev->dev_private;
4342
4343         if (dev_priv->ips.renderctx) {
4344                 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4345                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4346                 dev_priv->ips.renderctx = NULL;
4347         }
4348
4349         if (dev_priv->ips.pwrctx) {
4350                 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4351                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4352                 dev_priv->ips.pwrctx = NULL;
4353         }
4354 }
4355
4356 static void ironlake_disable_rc6(struct drm_device *dev)
4357 {
4358         struct drm_i915_private *dev_priv = dev->dev_private;
4359
4360         if (I915_READ(PWRCTXA)) {
4361                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4362                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4363                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4364                          50);
4365
4366                 I915_WRITE(PWRCTXA, 0);
4367                 POSTING_READ(PWRCTXA);
4368
4369                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4370                 POSTING_READ(RSTDBYCTL);
4371         }
4372 }
4373
4374 static int ironlake_setup_rc6(struct drm_device *dev)
4375 {
4376         struct drm_i915_private *dev_priv = dev->dev_private;
4377
4378         if (dev_priv->ips.renderctx == NULL)
4379                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4380         if (!dev_priv->ips.renderctx)
4381                 return -ENOMEM;
4382
4383         if (dev_priv->ips.pwrctx == NULL)
4384                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4385         if (!dev_priv->ips.pwrctx) {
4386                 ironlake_teardown_rc6(dev);
4387                 return -ENOMEM;
4388         }
4389
4390         return 0;
4391 }
4392
4393 static void ironlake_enable_rc6(struct drm_device *dev)
4394 {
4395         struct drm_i915_private *dev_priv = dev->dev_private;
4396         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4397         bool was_interruptible;
4398         int ret;
4399
4400         /* rc6 disabled by default due to repeated reports of hanging during
4401          * boot and resume.
4402          */
4403         if (!intel_enable_rc6(dev))
4404                 return;
4405
4406         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4407
4408         ret = ironlake_setup_rc6(dev);
4409         if (ret)
4410                 return;
4411
4412         was_interruptible = dev_priv->mm.interruptible;
4413         dev_priv->mm.interruptible = false;
4414
4415         /*
4416          * GPU can automatically power down the render unit if given a page
4417          * to save state.
4418          */
4419         ret = intel_ring_begin(ring, 6);
4420         if (ret) {
4421                 ironlake_teardown_rc6(dev);
4422                 dev_priv->mm.interruptible = was_interruptible;
4423                 return;
4424         }
4425
4426         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4427         intel_ring_emit(ring, MI_SET_CONTEXT);
4428         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4429                         MI_MM_SPACE_GTT |
4430                         MI_SAVE_EXT_STATE_EN |
4431                         MI_RESTORE_EXT_STATE_EN |
4432                         MI_RESTORE_INHIBIT);
4433         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
4434         intel_ring_emit(ring, MI_NOOP);
4435         intel_ring_emit(ring, MI_FLUSH);
4436         intel_ring_advance(ring);
4437
4438         /*
4439          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
4440          * does an implicit flush, combined with MI_FLUSH above, it should be
4441          * safe to assume that renderctx is valid
4442          */
4443         ret = intel_ring_idle(ring);
4444         dev_priv->mm.interruptible = was_interruptible;
4445         if (ret) {
4446                 DRM_ERROR("failed to enable ironlake power savings\n");
4447                 ironlake_teardown_rc6(dev);
4448                 return;
4449         }
4450
4451         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4452         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4453
4454         intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4455 }
4456
4457 static unsigned long intel_pxfreq(u32 vidfreq)
4458 {
4459         unsigned long freq;
4460         int div = (vidfreq & 0x3f0000) >> 16;
4461         int post = (vidfreq & 0x3000) >> 12;
4462         int pre = (vidfreq & 0x7);
4463
4464         if (!pre)
4465                 return 0;
4466
4467         freq = ((div * 133333) / ((1<<post) * pre));
4468
4469         return freq;
4470 }
4471
4472 static const struct cparams {
4473         u16 i;
4474         u16 t;
4475         u16 m;
4476         u16 c;
4477 } cparams[] = {
4478         { 1, 1333, 301, 28664 },
4479         { 1, 1066, 294, 24460 },
4480         { 1, 800, 294, 25192 },
4481         { 0, 1333, 276, 27605 },
4482         { 0, 1066, 276, 27605 },
4483         { 0, 800, 231, 23784 },
4484 };
4485
4486 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4487 {
4488         u64 total_count, diff, ret;
4489         u32 count1, count2, count3, m = 0, c = 0;
4490         unsigned long now = jiffies_to_msecs(jiffies), diff1;
4491         int i;
4492
4493         assert_spin_locked(&mchdev_lock);
4494
4495         diff1 = now - dev_priv->ips.last_time1;
4496
4497         /* Prevent division-by-zero if we are asking too fast.
4498          * Also, we don't get interesting results if we are polling
4499          * faster than once in 10ms, so just return the saved value
4500          * in such cases.
4501          */
4502         if (diff1 <= 10)
4503                 return dev_priv->ips.chipset_power;
4504
4505         count1 = I915_READ(DMIEC);
4506         count2 = I915_READ(DDREC);
4507         count3 = I915_READ(CSIEC);
4508
4509         total_count = count1 + count2 + count3;
4510
4511         /* FIXME: handle per-counter overflow */
4512         if (total_count < dev_priv->ips.last_count1) {
4513                 diff = ~0UL - dev_priv->ips.last_count1;
4514                 diff += total_count;
4515         } else {
4516                 diff = total_count - dev_priv->ips.last_count1;
4517         }
4518
4519         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4520                 if (cparams[i].i == dev_priv->ips.c_m &&
4521                     cparams[i].t == dev_priv->ips.r_t) {
4522                         m = cparams[i].m;
4523                         c = cparams[i].c;
4524                         break;
4525                 }
4526         }
4527
4528         diff = div_u64(diff, diff1);
4529         ret = ((m * diff) + c);
4530         ret = div_u64(ret, 10);
4531
4532         dev_priv->ips.last_count1 = total_count;
4533         dev_priv->ips.last_time1 = now;
4534
4535         dev_priv->ips.chipset_power = ret;
4536
4537         return ret;
4538 }
4539
4540 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4541 {
4542         struct drm_device *dev = dev_priv->dev;
4543         unsigned long val;
4544
4545         if (INTEL_INFO(dev)->gen != 5)
4546                 return 0;
4547
4548         spin_lock_irq(&mchdev_lock);
4549
4550         val = __i915_chipset_val(dev_priv);
4551
4552         spin_unlock_irq(&mchdev_lock);
4553
4554         return val;
4555 }
4556
4557 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4558 {
4559         unsigned long m, x, b;
4560         u32 tsfs;
4561
4562         tsfs = I915_READ(TSFS);
4563
4564         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4565         x = I915_READ8(TR1);
4566
4567         b = tsfs & TSFS_INTR_MASK;
4568
4569         return ((m * x) / 127) - b;
4570 }
4571
4572 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4573 {
4574         struct drm_device *dev = dev_priv->dev;
4575         static const struct v_table {
4576                 u16 vd; /* in .1 mil */
4577                 u16 vm; /* in .1 mil */
4578         } v_table[] = {
4579                 { 0, 0, },
4580                 { 375, 0, },
4581                 { 500, 0, },
4582                 { 625, 0, },
4583                 { 750, 0, },
4584                 { 875, 0, },
4585                 { 1000, 0, },
4586                 { 1125, 0, },
4587                 { 4125, 3000, },
4588                 { 4125, 3000, },
4589                 { 4125, 3000, },
4590                 { 4125, 3000, },
4591                 { 4125, 3000, },
4592                 { 4125, 3000, },
4593                 { 4125, 3000, },
4594                 { 4125, 3000, },
4595                 { 4125, 3000, },
4596                 { 4125, 3000, },
4597                 { 4125, 3000, },
4598                 { 4125, 3000, },
4599                 { 4125, 3000, },
4600                 { 4125, 3000, },
4601                 { 4125, 3000, },
4602                 { 4125, 3000, },
4603                 { 4125, 3000, },
4604                 { 4125, 3000, },
4605                 { 4125, 3000, },
4606                 { 4125, 3000, },
4607                 { 4125, 3000, },
4608                 { 4125, 3000, },
4609                 { 4125, 3000, },
4610                 { 4125, 3000, },
4611                 { 4250, 3125, },
4612                 { 4375, 3250, },
4613                 { 4500, 3375, },
4614                 { 4625, 3500, },
4615                 { 4750, 3625, },
4616                 { 4875, 3750, },
4617                 { 5000, 3875, },
4618                 { 5125, 4000, },
4619                 { 5250, 4125, },
4620                 { 5375, 4250, },
4621                 { 5500, 4375, },
4622                 { 5625, 4500, },
4623                 { 5750, 4625, },
4624                 { 5875, 4750, },
4625                 { 6000, 4875, },
4626                 { 6125, 5000, },
4627                 { 6250, 5125, },
4628                 { 6375, 5250, },
4629                 { 6500, 5375, },
4630                 { 6625, 5500, },
4631                 { 6750, 5625, },
4632                 { 6875, 5750, },
4633                 { 7000, 5875, },
4634                 { 7125, 6000, },
4635                 { 7250, 6125, },
4636                 { 7375, 6250, },
4637                 { 7500, 6375, },
4638                 { 7625, 6500, },
4639                 { 7750, 6625, },
4640                 { 7875, 6750, },
4641                 { 8000, 6875, },
4642                 { 8125, 7000, },
4643                 { 8250, 7125, },
4644                 { 8375, 7250, },
4645                 { 8500, 7375, },
4646                 { 8625, 7500, },
4647                 { 8750, 7625, },
4648                 { 8875, 7750, },
4649                 { 9000, 7875, },
4650                 { 9125, 8000, },
4651                 { 9250, 8125, },
4652                 { 9375, 8250, },
4653                 { 9500, 8375, },
4654                 { 9625, 8500, },
4655                 { 9750, 8625, },
4656                 { 9875, 8750, },
4657                 { 10000, 8875, },
4658                 { 10125, 9000, },
4659                 { 10250, 9125, },
4660                 { 10375, 9250, },
4661                 { 10500, 9375, },
4662                 { 10625, 9500, },
4663                 { 10750, 9625, },
4664                 { 10875, 9750, },
4665                 { 11000, 9875, },
4666                 { 11125, 10000, },
4667                 { 11250, 10125, },
4668                 { 11375, 10250, },
4669                 { 11500, 10375, },
4670                 { 11625, 10500, },
4671                 { 11750, 10625, },
4672                 { 11875, 10750, },
4673                 { 12000, 10875, },
4674                 { 12125, 11000, },
4675                 { 12250, 11125, },
4676                 { 12375, 11250, },
4677                 { 12500, 11375, },
4678                 { 12625, 11500, },
4679                 { 12750, 11625, },
4680                 { 12875, 11750, },
4681                 { 13000, 11875, },
4682                 { 13125, 12000, },
4683                 { 13250, 12125, },
4684                 { 13375, 12250, },
4685                 { 13500, 12375, },
4686                 { 13625, 12500, },
4687                 { 13750, 12625, },
4688                 { 13875, 12750, },
4689                 { 14000, 12875, },
4690                 { 14125, 13000, },
4691                 { 14250, 13125, },
4692                 { 14375, 13250, },
4693                 { 14500, 13375, },
4694                 { 14625, 13500, },
4695                 { 14750, 13625, },
4696                 { 14875, 13750, },
4697                 { 15000, 13875, },
4698                 { 15125, 14000, },
4699                 { 15250, 14125, },
4700                 { 15375, 14250, },
4701                 { 15500, 14375, },
4702                 { 15625, 14500, },
4703                 { 15750, 14625, },
4704                 { 15875, 14750, },
4705                 { 16000, 14875, },
4706                 { 16125, 15000, },
4707         };
4708         if (INTEL_INFO(dev)->is_mobile)
4709                 return v_table[pxvid].vm;
4710         else
4711                 return v_table[pxvid].vd;
4712 }
4713
4714 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4715 {
4716         u64 now, diff, diffms;
4717         u32 count;
4718
4719         assert_spin_locked(&mchdev_lock);
4720
4721         now = ktime_get_raw_ns();
4722         diffms = now - dev_priv->ips.last_time2;
4723         do_div(diffms, NSEC_PER_MSEC);
4724
4725         /* Don't divide by 0 */
4726         if (!diffms)
4727                 return;
4728
4729         count = I915_READ(GFXEC);
4730
4731         if (count < dev_priv->ips.last_count2) {
4732                 diff = ~0UL - dev_priv->ips.last_count2;
4733                 diff += count;
4734         } else {
4735                 diff = count - dev_priv->ips.last_count2;
4736         }
4737
4738         dev_priv->ips.last_count2 = count;
4739         dev_priv->ips.last_time2 = now;
4740
4741         /* More magic constants... */
4742         diff = diff * 1181;
4743         diff = div_u64(diff, diffms * 10);
4744         dev_priv->ips.gfx_power = diff;
4745 }
4746
4747 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4748 {
4749         struct drm_device *dev = dev_priv->dev;
4750
4751         if (INTEL_INFO(dev)->gen != 5)
4752                 return;
4753
4754         spin_lock_irq(&mchdev_lock);
4755
4756         __i915_update_gfx_val(dev_priv);
4757
4758         spin_unlock_irq(&mchdev_lock);
4759 }
4760
4761 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4762 {
4763         unsigned long t, corr, state1, corr2, state2;
4764         u32 pxvid, ext_v;
4765
4766         assert_spin_locked(&mchdev_lock);
4767
4768         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4769         pxvid = (pxvid >> 24) & 0x7f;
4770         ext_v = pvid_to_extvid(dev_priv, pxvid);
4771
4772         state1 = ext_v;
4773
4774         t = i915_mch_val(dev_priv);
4775
4776         /* Revel in the empirically derived constants */
4777
4778         /* Correction factor in 1/100000 units */
4779         if (t > 80)
4780                 corr = ((t * 2349) + 135940);
4781         else if (t >= 50)
4782                 corr = ((t * 964) + 29317);
4783         else /* < 50 */
4784                 corr = ((t * 301) + 1004);
4785
4786         corr = corr * ((150142 * state1) / 10000 - 78642);
4787         corr /= 100000;
4788         corr2 = (corr * dev_priv->ips.corr);
4789
4790         state2 = (corr2 * state1) / 10000;
4791         state2 /= 100; /* convert to mW */
4792
4793         __i915_update_gfx_val(dev_priv);
4794
4795         return dev_priv->ips.gfx_power + state2;
4796 }
4797
4798 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4799 {
4800         struct drm_device *dev = dev_priv->dev;
4801         unsigned long val;
4802
4803         if (INTEL_INFO(dev)->gen != 5)
4804                 return 0;
4805
4806         spin_lock_irq(&mchdev_lock);
4807
4808         val = __i915_gfx_val(dev_priv);
4809
4810         spin_unlock_irq(&mchdev_lock);
4811
4812         return val;
4813 }
4814
4815 /**
4816  * i915_read_mch_val - return value for IPS use
4817  *
4818  * Calculate and return a value for the IPS driver to use when deciding whether
4819  * we have thermal and power headroom to increase CPU or GPU power budget.
4820  */
4821 unsigned long i915_read_mch_val(void)
4822 {
4823         struct drm_i915_private *dev_priv;
4824         unsigned long chipset_val, graphics_val, ret = 0;
4825
4826         spin_lock_irq(&mchdev_lock);
4827         if (!i915_mch_dev)
4828                 goto out_unlock;
4829         dev_priv = i915_mch_dev;
4830
4831         chipset_val = __i915_chipset_val(dev_priv);
4832         graphics_val = __i915_gfx_val(dev_priv);
4833
4834         ret = chipset_val + graphics_val;
4835
4836 out_unlock:
4837         spin_unlock_irq(&mchdev_lock);
4838
4839         return ret;
4840 }
4841 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4842
4843 /**
4844  * i915_gpu_raise - raise GPU frequency limit
4845  *
4846  * Raise the limit; IPS indicates we have thermal headroom.
4847  */
4848 bool i915_gpu_raise(void)
4849 {
4850         struct drm_i915_private *dev_priv;
4851         bool ret = true;
4852
4853         spin_lock_irq(&mchdev_lock);
4854         if (!i915_mch_dev) {
4855                 ret = false;
4856                 goto out_unlock;
4857         }
4858         dev_priv = i915_mch_dev;
4859
4860         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4861                 dev_priv->ips.max_delay--;
4862
4863 out_unlock:
4864         spin_unlock_irq(&mchdev_lock);
4865
4866         return ret;
4867 }
4868 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4869
4870 /**
4871  * i915_gpu_lower - lower GPU frequency limit
4872  *
4873  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4874  * frequency maximum.
4875  */
4876 bool i915_gpu_lower(void)
4877 {
4878         struct drm_i915_private *dev_priv;
4879         bool ret = true;
4880
4881         spin_lock_irq(&mchdev_lock);
4882         if (!i915_mch_dev) {
4883                 ret = false;
4884                 goto out_unlock;
4885         }
4886         dev_priv = i915_mch_dev;
4887
4888         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4889                 dev_priv->ips.max_delay++;
4890
4891 out_unlock:
4892         spin_unlock_irq(&mchdev_lock);
4893
4894         return ret;
4895 }
4896 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4897
4898 /**
4899  * i915_gpu_busy - indicate GPU business to IPS
4900  *
4901  * Tell the IPS driver whether or not the GPU is busy.
4902  */
4903 bool i915_gpu_busy(void)
4904 {
4905         struct drm_i915_private *dev_priv;
4906         struct intel_engine_cs *ring;
4907         bool ret = false;
4908         int i;
4909
4910         spin_lock_irq(&mchdev_lock);
4911         if (!i915_mch_dev)
4912                 goto out_unlock;
4913         dev_priv = i915_mch_dev;
4914
4915         for_each_ring(ring, dev_priv, i)
4916                 ret |= !list_empty(&ring->request_list);
4917
4918 out_unlock:
4919         spin_unlock_irq(&mchdev_lock);
4920
4921         return ret;
4922 }
4923 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4924
4925 /**
4926  * i915_gpu_turbo_disable - disable graphics turbo
4927  *
4928  * Disable graphics turbo by resetting the max frequency and setting the
4929  * current frequency to the default.
4930  */
4931 bool i915_gpu_turbo_disable(void)
4932 {
4933         struct drm_i915_private *dev_priv;
4934         bool ret = true;
4935
4936         spin_lock_irq(&mchdev_lock);
4937         if (!i915_mch_dev) {
4938                 ret = false;
4939                 goto out_unlock;
4940         }
4941         dev_priv = i915_mch_dev;
4942
4943         dev_priv->ips.max_delay = dev_priv->ips.fstart;
4944
4945         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4946                 ret = false;
4947
4948 out_unlock:
4949         spin_unlock_irq(&mchdev_lock);
4950
4951         return ret;
4952 }
4953 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4954
4955 /**
4956  * Tells the intel_ips driver that the i915 driver is now loaded, if
4957  * IPS got loaded first.
4958  *
4959  * This awkward dance is so that neither module has to depend on the
4960  * other in order for IPS to do the appropriate communication of
4961  * GPU turbo limits to i915.
4962  */
4963 static void
4964 ips_ping_for_i915_load(void)
4965 {
4966         void (*link)(void);
4967
4968         link = symbol_get(ips_link_to_i915_driver);
4969         if (link) {
4970                 link();
4971                 symbol_put(ips_link_to_i915_driver);
4972         }
4973 }
4974
4975 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4976 {
4977         /* We only register the i915 ips part with intel-ips once everything is
4978          * set up, to avoid intel-ips sneaking in and reading bogus values. */
4979         spin_lock_irq(&mchdev_lock);
4980         i915_mch_dev = dev_priv;
4981         spin_unlock_irq(&mchdev_lock);
4982
4983         ips_ping_for_i915_load();
4984 }
4985
4986 void intel_gpu_ips_teardown(void)
4987 {
4988         spin_lock_irq(&mchdev_lock);
4989         i915_mch_dev = NULL;
4990         spin_unlock_irq(&mchdev_lock);
4991 }
4992
4993 static void intel_init_emon(struct drm_device *dev)
4994 {
4995         struct drm_i915_private *dev_priv = dev->dev_private;
4996         u32 lcfuse;
4997         u8 pxw[16];
4998         int i;
4999
5000         /* Disable to program */
5001         I915_WRITE(ECR, 0);
5002         POSTING_READ(ECR);
5003
5004         /* Program energy weights for various events */
5005         I915_WRITE(SDEW, 0x15040d00);
5006         I915_WRITE(CSIEW0, 0x007f0000);
5007         I915_WRITE(CSIEW1, 0x1e220004);
5008         I915_WRITE(CSIEW2, 0x04000004);
5009
5010         for (i = 0; i < 5; i++)
5011                 I915_WRITE(PEW + (i * 4), 0);
5012         for (i = 0; i < 3; i++)
5013                 I915_WRITE(DEW + (i * 4), 0);
5014
5015         /* Program P-state weights to account for frequency power adjustment */
5016         for (i = 0; i < 16; i++) {
5017                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5018                 unsigned long freq = intel_pxfreq(pxvidfreq);
5019                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5020                         PXVFREQ_PX_SHIFT;
5021                 unsigned long val;
5022
5023                 val = vid * vid;
5024                 val *= (freq / 1000);
5025                 val *= 255;
5026                 val /= (127*127*900);
5027                 if (val > 0xff)
5028                         DRM_ERROR("bad pxval: %ld\n", val);
5029                 pxw[i] = val;
5030         }
5031         /* Render standby states get 0 weight */
5032         pxw[14] = 0;
5033         pxw[15] = 0;
5034
5035         for (i = 0; i < 4; i++) {
5036                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5037                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5038                 I915_WRITE(PXW + (i * 4), val);
5039         }
5040
5041         /* Adjust magic regs to magic values (more experimental results) */
5042         I915_WRITE(OGW0, 0);
5043         I915_WRITE(OGW1, 0);
5044         I915_WRITE(EG0, 0x00007f00);
5045         I915_WRITE(EG1, 0x0000000e);
5046         I915_WRITE(EG2, 0x000e0000);
5047         I915_WRITE(EG3, 0x68000300);
5048         I915_WRITE(EG4, 0x42000000);
5049         I915_WRITE(EG5, 0x00140031);
5050         I915_WRITE(EG6, 0);
5051         I915_WRITE(EG7, 0);
5052
5053         for (i = 0; i < 8; i++)
5054                 I915_WRITE(PXWL + (i * 4), 0);
5055
5056         /* Enable PMON + select events */
5057         I915_WRITE(ECR, 0x80000019);
5058
5059         lcfuse = I915_READ(LCFUSE02);
5060
5061         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5062 }
5063
5064 void intel_init_gt_powersave(struct drm_device *dev)
5065 {
5066         i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
5067
5068         if (IS_CHERRYVIEW(dev))
5069                 cherryview_init_gt_powersave(dev);
5070         else if (IS_VALLEYVIEW(dev))
5071                 valleyview_init_gt_powersave(dev);
5072 }
5073
5074 void intel_cleanup_gt_powersave(struct drm_device *dev)
5075 {
5076         if (IS_CHERRYVIEW(dev))
5077                 return;
5078         else if (IS_VALLEYVIEW(dev))
5079                 valleyview_cleanup_gt_powersave(dev);
5080 }
5081
5082 /**
5083  * intel_suspend_gt_powersave - suspend PM work and helper threads
5084  * @dev: drm device
5085  *
5086  * We don't want to disable RC6 or other features here, we just want
5087  * to make sure any work we've queued has finished and won't bother
5088  * us while we're suspended.
5089  */
5090 void intel_suspend_gt_powersave(struct drm_device *dev)
5091 {
5092         struct drm_i915_private *dev_priv = dev->dev_private;
5093
5094         /* Interrupts should be disabled already to avoid re-arming. */
5095         WARN_ON(intel_irqs_enabled(dev_priv));
5096
5097         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5098
5099         cancel_work_sync(&dev_priv->rps.work);
5100
5101         /* Force GPU to min freq during suspend */
5102         gen6_rps_idle(dev_priv);
5103 }
5104
5105 void intel_disable_gt_powersave(struct drm_device *dev)
5106 {
5107         struct drm_i915_private *dev_priv = dev->dev_private;
5108
5109         /* Interrupts should be disabled already to avoid re-arming. */
5110         WARN_ON(intel_irqs_enabled(dev_priv));
5111
5112         if (IS_IRONLAKE_M(dev)) {
5113                 ironlake_disable_drps(dev);
5114                 ironlake_disable_rc6(dev);
5115         } else if (INTEL_INFO(dev)->gen >= 6) {
5116                 intel_suspend_gt_powersave(dev);
5117
5118                 mutex_lock(&dev_priv->rps.hw_lock);
5119                 if (IS_CHERRYVIEW(dev))
5120                         cherryview_disable_rps(dev);
5121                 else if (IS_VALLEYVIEW(dev))
5122                         valleyview_disable_rps(dev);
5123                 else
5124                         gen6_disable_rps(dev);
5125                 dev_priv->rps.enabled = false;
5126                 mutex_unlock(&dev_priv->rps.hw_lock);
5127         }
5128 }
5129
5130 static void intel_gen6_powersave_work(struct work_struct *work)
5131 {
5132         struct drm_i915_private *dev_priv =
5133                 container_of(work, struct drm_i915_private,
5134                              rps.delayed_resume_work.work);
5135         struct drm_device *dev = dev_priv->dev;
5136
5137         mutex_lock(&dev_priv->rps.hw_lock);
5138
5139         if (IS_CHERRYVIEW(dev)) {
5140                 cherryview_enable_rps(dev);
5141         } else if (IS_VALLEYVIEW(dev)) {
5142                 valleyview_enable_rps(dev);
5143         } else if (IS_BROADWELL(dev)) {
5144                 gen8_enable_rps(dev);
5145                 __gen6_update_ring_freq(dev);
5146         } else {
5147                 gen6_enable_rps(dev);
5148                 __gen6_update_ring_freq(dev);
5149         }
5150         dev_priv->rps.enabled = true;
5151         mutex_unlock(&dev_priv->rps.hw_lock);
5152
5153         intel_runtime_pm_put(dev_priv);
5154 }
5155
5156 void intel_enable_gt_powersave(struct drm_device *dev)
5157 {
5158         struct drm_i915_private *dev_priv = dev->dev_private;
5159
5160         if (IS_IRONLAKE_M(dev)) {
5161                 mutex_lock(&dev->struct_mutex);
5162                 ironlake_enable_drps(dev);
5163                 ironlake_enable_rc6(dev);
5164                 intel_init_emon(dev);
5165                 mutex_unlock(&dev->struct_mutex);
5166         } else if (INTEL_INFO(dev)->gen >= 6) {
5167                 /*
5168                  * PCU communication is slow and this doesn't need to be
5169                  * done at any specific time, so do this out of our fast path
5170                  * to make resume and init faster.
5171                  *
5172                  * We depend on the HW RC6 power context save/restore
5173                  * mechanism when entering D3 through runtime PM suspend. So
5174                  * disable RPM until RPS/RC6 is properly setup. We can only
5175                  * get here via the driver load/system resume/runtime resume
5176                  * paths, so the _noresume version is enough (and in case of
5177                  * runtime resume it's necessary).
5178                  */
5179                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5180                                            round_jiffies_up_relative(HZ)))
5181                         intel_runtime_pm_get_noresume(dev_priv);
5182         }
5183 }
5184
5185 void intel_reset_gt_powersave(struct drm_device *dev)
5186 {
5187         struct drm_i915_private *dev_priv = dev->dev_private;
5188
5189         dev_priv->rps.enabled = false;
5190         intel_enable_gt_powersave(dev);
5191 }
5192
5193 static void ibx_init_clock_gating(struct drm_device *dev)
5194 {
5195         struct drm_i915_private *dev_priv = dev->dev_private;
5196
5197         /*
5198          * On Ibex Peak and Cougar Point, we need to disable clock
5199          * gating for the panel power sequencer or it will fail to
5200          * start up when no ports are active.
5201          */
5202         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5203 }
5204
5205 static void g4x_disable_trickle_feed(struct drm_device *dev)
5206 {
5207         struct drm_i915_private *dev_priv = dev->dev_private;
5208         int pipe;
5209
5210         for_each_pipe(pipe) {
5211                 I915_WRITE(DSPCNTR(pipe),
5212                            I915_READ(DSPCNTR(pipe)) |
5213                            DISPPLANE_TRICKLE_FEED_DISABLE);
5214                 intel_flush_primary_plane(dev_priv, pipe);
5215         }
5216 }
5217
5218 static void ilk_init_lp_watermarks(struct drm_device *dev)
5219 {
5220         struct drm_i915_private *dev_priv = dev->dev_private;
5221
5222         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5223         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5224         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5225
5226         /*
5227          * Don't touch WM1S_LP_EN here.
5228          * Doing so could cause underruns.
5229          */
5230 }
5231
5232 static void ironlake_init_clock_gating(struct drm_device *dev)
5233 {
5234         struct drm_i915_private *dev_priv = dev->dev_private;
5235         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5236
5237         /*
5238          * Required for FBC
5239          * WaFbcDisableDpfcClockGating:ilk
5240          */
5241         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5242                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5243                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5244
5245         I915_WRITE(PCH_3DCGDIS0,
5246                    MARIUNIT_CLOCK_GATE_DISABLE |
5247                    SVSMUNIT_CLOCK_GATE_DISABLE);
5248         I915_WRITE(PCH_3DCGDIS1,
5249                    VFMUNIT_CLOCK_GATE_DISABLE);
5250
5251         /*
5252          * According to the spec the following bits should be set in
5253          * order to enable memory self-refresh
5254          * The bit 22/21 of 0x42004
5255          * The bit 5 of 0x42020
5256          * The bit 15 of 0x45000
5257          */
5258         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5259                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
5260                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5261         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5262         I915_WRITE(DISP_ARB_CTL,
5263                    (I915_READ(DISP_ARB_CTL) |
5264                     DISP_FBC_WM_DIS));
5265
5266         ilk_init_lp_watermarks(dev);
5267
5268         /*
5269          * Based on the document from hardware guys the following bits
5270          * should be set unconditionally in order to enable FBC.
5271          * The bit 22 of 0x42000
5272          * The bit 22 of 0x42004
5273          * The bit 7,8,9 of 0x42020.
5274          */
5275         if (IS_IRONLAKE_M(dev)) {
5276                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5277                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5278                            I915_READ(ILK_DISPLAY_CHICKEN1) |
5279                            ILK_FBCQ_DIS);
5280                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5281                            I915_READ(ILK_DISPLAY_CHICKEN2) |
5282                            ILK_DPARB_GATE);
5283         }
5284
5285         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5286
5287         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5288                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5289                    ILK_ELPIN_409_SELECT);
5290         I915_WRITE(_3D_CHICKEN2,
5291                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5292                    _3D_CHICKEN2_WM_READ_PIPELINED);
5293
5294         /* WaDisableRenderCachePipelinedFlush:ilk */
5295         I915_WRITE(CACHE_MODE_0,
5296                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5297
5298         /* WaDisable_RenderCache_OperationalFlush:ilk */
5299         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5300
5301         g4x_disable_trickle_feed(dev);
5302
5303         ibx_init_clock_gating(dev);
5304 }
5305
5306 static void cpt_init_clock_gating(struct drm_device *dev)
5307 {
5308         struct drm_i915_private *dev_priv = dev->dev_private;
5309         int pipe;
5310         uint32_t val;
5311
5312         /*
5313          * On Ibex Peak and Cougar Point, we need to disable clock
5314          * gating for the panel power sequencer or it will fail to
5315          * start up when no ports are active.
5316          */
5317         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5318                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5319                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
5320         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5321                    DPLS_EDP_PPS_FIX_DIS);
5322         /* The below fixes the weird display corruption, a few pixels shifted
5323          * downward, on (only) LVDS of some HP laptops with IVY.
5324          */
5325         for_each_pipe(pipe) {
5326                 val = I915_READ(TRANS_CHICKEN2(pipe));
5327                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5328                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5329                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5330                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5331                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5332                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5333                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5334                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5335         }
5336         /* WADP0ClockGatingDisable */
5337         for_each_pipe(pipe) {
5338                 I915_WRITE(TRANS_CHICKEN1(pipe),
5339                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5340         }
5341 }
5342
5343 static void gen6_check_mch_setup(struct drm_device *dev)
5344 {
5345         struct drm_i915_private *dev_priv = dev->dev_private;
5346         uint32_t tmp;
5347
5348         tmp = I915_READ(MCH_SSKPD);
5349         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
5350                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
5351                               tmp);
5352 }
5353
5354 static void gen6_init_clock_gating(struct drm_device *dev)
5355 {
5356         struct drm_i915_private *dev_priv = dev->dev_private;
5357         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5358
5359         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5360
5361         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5362                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5363                    ILK_ELPIN_409_SELECT);
5364
5365         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5366         I915_WRITE(_3D_CHICKEN,
5367                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5368
5369         /* WaSetupGtModeTdRowDispatch:snb */
5370         if (IS_SNB_GT1(dev))
5371                 I915_WRITE(GEN6_GT_MODE,
5372                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
5373
5374         /* WaDisable_RenderCache_OperationalFlush:snb */
5375         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5376
5377         /*
5378          * BSpec recoomends 8x4 when MSAA is used,
5379          * however in practice 16x4 seems fastest.
5380          *
5381          * Note that PS/WM thread counts depend on the WIZ hashing
5382          * disable bit, which we don't touch here, but it's good
5383          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5384          */
5385         I915_WRITE(GEN6_GT_MODE,
5386                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5387
5388         ilk_init_lp_watermarks(dev);
5389
5390         I915_WRITE(CACHE_MODE_0,
5391                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5392
5393         I915_WRITE(GEN6_UCGCTL1,
5394                    I915_READ(GEN6_UCGCTL1) |
5395                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5396                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5397
5398         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5399          * gating disable must be set.  Failure to set it results in
5400          * flickering pixels due to Z write ordering failures after
5401          * some amount of runtime in the Mesa "fire" demo, and Unigine
5402          * Sanctuary and Tropics, and apparently anything else with
5403          * alpha test or pixel discard.
5404          *
5405          * According to the spec, bit 11 (RCCUNIT) must also be set,
5406          * but we didn't debug actual testcases to find it out.
5407          *
5408          * WaDisableRCCUnitClockGating:snb
5409          * WaDisableRCPBUnitClockGating:snb
5410          */
5411         I915_WRITE(GEN6_UCGCTL2,
5412                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5413                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5414
5415         /* WaStripsFansDisableFastClipPerformanceFix:snb */
5416         I915_WRITE(_3D_CHICKEN3,
5417                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5418
5419         /*
5420          * Bspec says:
5421          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
5422          * 3DSTATE_SF number of SF output attributes is more than 16."
5423          */
5424         I915_WRITE(_3D_CHICKEN3,
5425                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
5426
5427         /*
5428          * According to the spec the following bits should be
5429          * set in order to enable memory self-refresh and fbc:
5430          * The bit21 and bit22 of 0x42000
5431          * The bit21 and bit22 of 0x42004
5432          * The bit5 and bit7 of 0x42020
5433          * The bit14 of 0x70180
5434          * The bit14 of 0x71180
5435          *
5436          * WaFbcAsynchFlipDisableFbcQueue:snb
5437          */
5438         I915_WRITE(ILK_DISPLAY_CHICKEN1,
5439                    I915_READ(ILK_DISPLAY_CHICKEN1) |
5440                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5441         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5442                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5443                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5444         I915_WRITE(ILK_DSPCLK_GATE_D,
5445                    I915_READ(ILK_DSPCLK_GATE_D) |
5446                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
5447                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5448
5449         g4x_disable_trickle_feed(dev);
5450
5451         cpt_init_clock_gating(dev);
5452
5453         gen6_check_mch_setup(dev);
5454 }
5455
5456 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5457 {
5458         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5459
5460         /*
5461          * WaVSThreadDispatchOverride:ivb,vlv
5462          *
5463          * This actually overrides the dispatch
5464          * mode for all thread types.
5465          */
5466         reg &= ~GEN7_FF_SCHED_MASK;
5467         reg |= GEN7_FF_TS_SCHED_HW;
5468         reg |= GEN7_FF_VS_SCHED_HW;
5469         reg |= GEN7_FF_DS_SCHED_HW;
5470
5471         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5472 }
5473
5474 static void lpt_init_clock_gating(struct drm_device *dev)
5475 {
5476         struct drm_i915_private *dev_priv = dev->dev_private;
5477
5478         /*
5479          * TODO: this bit should only be enabled when really needed, then
5480          * disabled when not needed anymore in order to save power.
5481          */
5482         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5483                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5484                            I915_READ(SOUTH_DSPCLK_GATE_D) |
5485                            PCH_LP_PARTITION_LEVEL_DISABLE);
5486
5487         /* WADPOClockGatingDisable:hsw */
5488         I915_WRITE(_TRANSA_CHICKEN1,
5489                    I915_READ(_TRANSA_CHICKEN1) |
5490                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5491 }
5492
5493 static void lpt_suspend_hw(struct drm_device *dev)
5494 {
5495         struct drm_i915_private *dev_priv = dev->dev_private;
5496
5497         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5498                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5499
5500                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5501                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5502         }
5503 }
5504
5505 static void gen8_init_clock_gating(struct drm_device *dev)
5506 {
5507         struct drm_i915_private *dev_priv = dev->dev_private;
5508         enum pipe pipe;
5509
5510         I915_WRITE(WM3_LP_ILK, 0);
5511         I915_WRITE(WM2_LP_ILK, 0);
5512         I915_WRITE(WM1_LP_ILK, 0);
5513
5514         /* FIXME(BDW): Check all the w/a, some might only apply to
5515          * pre-production hw. */
5516
5517         /* WaDisablePartialInstShootdown:bdw */
5518         I915_WRITE(GEN8_ROW_CHICKEN,
5519                    _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5520
5521         /* WaDisableThreadStallDopClockGating:bdw */
5522         /* FIXME: Unclear whether we really need this on production bdw. */
5523         I915_WRITE(GEN8_ROW_CHICKEN,
5524                    _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5525
5526         /*
5527          * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
5528          * pre-production hardware
5529          */
5530         I915_WRITE(HALF_SLICE_CHICKEN3,
5531                    _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
5532         I915_WRITE(HALF_SLICE_CHICKEN3,
5533                    _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5534         I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
5535
5536         I915_WRITE(_3D_CHICKEN3,
5537                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2)));
5538
5539         I915_WRITE(COMMON_SLICE_CHICKEN2,
5540                    _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
5541
5542         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5543                    _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
5544
5545         /* WaDisableDopClockGating:bdw May not be needed for production */
5546         I915_WRITE(GEN7_ROW_CHICKEN2,
5547                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5548
5549         /* WaSwitchSolVfFArbitrationPriority:bdw */
5550         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5551
5552         /* WaPsrDPAMaskVBlankInSRD:bdw */
5553         I915_WRITE(CHICKEN_PAR1_1,
5554                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5555
5556         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5557         for_each_pipe(pipe) {
5558                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
5559                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
5560                            BDW_DPRS_MASK_VBLANK_SRD);
5561         }
5562
5563         /* Use Force Non-Coherent whenever executing a 3D context. This is a
5564          * workaround for for a possible hang in the unlikely event a TLB
5565          * invalidation occurs during a PSD flush.
5566          */
5567         I915_WRITE(HDC_CHICKEN0,
5568                    I915_READ(HDC_CHICKEN0) |
5569                    _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
5570
5571         /* WaVSRefCountFullforceMissDisable:bdw */
5572         /* WaDSRefCountFullforceMissDisable:bdw */
5573         I915_WRITE(GEN7_FF_THREAD_MODE,
5574                    I915_READ(GEN7_FF_THREAD_MODE) &
5575                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5576
5577         /*
5578          * BSpec recommends 8x4 when MSAA is used,
5579          * however in practice 16x4 seems fastest.
5580          *
5581          * Note that PS/WM thread counts depend on the WIZ hashing
5582          * disable bit, which we don't touch here, but it's good
5583          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5584          */
5585         I915_WRITE(GEN7_GT_MODE,
5586                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5587
5588         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5589                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5590
5591         /* WaDisableSDEUnitClockGating:bdw */
5592         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5593                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5594
5595         /* Wa4x4STCOptimizationDisable:bdw */
5596         I915_WRITE(CACHE_MODE_1,
5597                    _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
5598 }
5599
5600 static void haswell_init_clock_gating(struct drm_device *dev)
5601 {
5602         struct drm_i915_private *dev_priv = dev->dev_private;
5603
5604         ilk_init_lp_watermarks(dev);
5605
5606         /* L3 caching of data atomics doesn't work -- disable it. */
5607         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5608         I915_WRITE(HSW_ROW_CHICKEN3,
5609                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5610
5611         /* This is required by WaCatErrorRejectionIssue:hsw */
5612         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5613                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5614                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5615
5616         /* WaVSRefCountFullforceMissDisable:hsw */
5617         I915_WRITE(GEN7_FF_THREAD_MODE,
5618                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5619
5620         /* WaDisable_RenderCache_OperationalFlush:hsw */
5621         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5622
5623         /* enable HiZ Raw Stall Optimization */
5624         I915_WRITE(CACHE_MODE_0_GEN7,
5625                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5626
5627         /* WaDisable4x2SubspanOptimization:hsw */
5628         I915_WRITE(CACHE_MODE_1,
5629                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5630
5631         /*
5632          * BSpec recommends 8x4 when MSAA is used,
5633          * however in practice 16x4 seems fastest.
5634          *
5635          * Note that PS/WM thread counts depend on the WIZ hashing
5636          * disable bit, which we don't touch here, but it's good
5637          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5638          */
5639         I915_WRITE(GEN7_GT_MODE,
5640                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5641
5642         /* WaSwitchSolVfFArbitrationPriority:hsw */
5643         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5644
5645         /* WaRsPkgCStateDisplayPMReq:hsw */
5646         I915_WRITE(CHICKEN_PAR1_1,
5647                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5648
5649         lpt_init_clock_gating(dev);
5650 }
5651
5652 static void ivybridge_init_clock_gating(struct drm_device *dev)
5653 {
5654         struct drm_i915_private *dev_priv = dev->dev_private;
5655         uint32_t snpcr;
5656
5657         ilk_init_lp_watermarks(dev);
5658
5659         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5660
5661         /* WaDisableEarlyCull:ivb */
5662         I915_WRITE(_3D_CHICKEN3,
5663                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5664
5665         /* WaDisableBackToBackFlipFix:ivb */
5666         I915_WRITE(IVB_CHICKEN3,
5667                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5668                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5669
5670         /* WaDisablePSDDualDispatchEnable:ivb */
5671         if (IS_IVB_GT1(dev))
5672                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5673                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5674
5675         /* WaDisable_RenderCache_OperationalFlush:ivb */
5676         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5677
5678         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5679         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5680                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5681
5682         /* WaApplyL3ControlAndL3ChickenMode:ivb */
5683         I915_WRITE(GEN7_L3CNTLREG1,
5684                         GEN7_WA_FOR_GEN7_L3_CONTROL);
5685         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5686                    GEN7_WA_L3_CHICKEN_MODE);
5687         if (IS_IVB_GT1(dev))
5688                 I915_WRITE(GEN7_ROW_CHICKEN2,
5689                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5690         else {
5691                 /* must write both registers */
5692                 I915_WRITE(GEN7_ROW_CHICKEN2,
5693                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5694                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5695                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5696         }
5697
5698         /* WaForceL3Serialization:ivb */
5699         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5700                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5701
5702         /*
5703          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5704          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5705          */
5706         I915_WRITE(GEN6_UCGCTL2,
5707                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5708
5709         /* This is required by WaCatErrorRejectionIssue:ivb */
5710         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5711                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5712                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5713
5714         g4x_disable_trickle_feed(dev);
5715
5716         gen7_setup_fixed_func_scheduler(dev_priv);
5717
5718         if (0) { /* causes HiZ corruption on ivb:gt1 */
5719                 /* enable HiZ Raw Stall Optimization */
5720                 I915_WRITE(CACHE_MODE_0_GEN7,
5721                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5722         }
5723
5724         /* WaDisable4x2SubspanOptimization:ivb */
5725         I915_WRITE(CACHE_MODE_1,
5726                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5727
5728         /*
5729          * BSpec recommends 8x4 when MSAA is used,
5730          * however in practice 16x4 seems fastest.
5731          *
5732          * Note that PS/WM thread counts depend on the WIZ hashing
5733          * disable bit, which we don't touch here, but it's good
5734          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5735          */
5736         I915_WRITE(GEN7_GT_MODE,
5737                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5738
5739         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5740         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5741         snpcr |= GEN6_MBC_SNPCR_MED;
5742         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5743
5744         if (!HAS_PCH_NOP(dev))
5745                 cpt_init_clock_gating(dev);
5746
5747         gen6_check_mch_setup(dev);
5748 }
5749
5750 static void valleyview_init_clock_gating(struct drm_device *dev)
5751 {
5752         struct drm_i915_private *dev_priv = dev->dev_private;
5753         u32 val;
5754
5755         mutex_lock(&dev_priv->rps.hw_lock);
5756         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5757         mutex_unlock(&dev_priv->rps.hw_lock);
5758         switch ((val >> 6) & 3) {
5759         case 0:
5760         case 1:
5761                 dev_priv->mem_freq = 800;
5762                 break;
5763         case 2:
5764                 dev_priv->mem_freq = 1066;
5765                 break;
5766         case 3:
5767                 dev_priv->mem_freq = 1333;
5768                 break;
5769         }
5770         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5771
5772         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5773
5774         /* WaDisableEarlyCull:vlv */
5775         I915_WRITE(_3D_CHICKEN3,
5776                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5777
5778         /* WaDisableBackToBackFlipFix:vlv */
5779         I915_WRITE(IVB_CHICKEN3,
5780                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5781                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5782
5783         /* WaPsdDispatchEnable:vlv */
5784         /* WaDisablePSDDualDispatchEnable:vlv */
5785         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5786                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5787                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5788
5789         /* WaDisable_RenderCache_OperationalFlush:vlv */
5790         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5791
5792         /* WaForceL3Serialization:vlv */
5793         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5794                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5795
5796         /* WaDisableDopClockGating:vlv */
5797         I915_WRITE(GEN7_ROW_CHICKEN2,
5798                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5799
5800         /* This is required by WaCatErrorRejectionIssue:vlv */
5801         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5802                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5803                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5804
5805         gen7_setup_fixed_func_scheduler(dev_priv);
5806
5807         /*
5808          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5809          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5810          */
5811         I915_WRITE(GEN6_UCGCTL2,
5812                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5813
5814         /* WaDisableL3Bank2xClockGate:vlv
5815          * Disabling L3 clock gating- MMIO 940c[25] = 1
5816          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
5817         I915_WRITE(GEN7_UCGCTL4,
5818                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5819
5820         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5821
5822         /*
5823          * BSpec says this must be set, even though
5824          * WaDisable4x2SubspanOptimization isn't listed for VLV.
5825          */
5826         I915_WRITE(CACHE_MODE_1,
5827                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5828
5829         /*
5830          * WaIncreaseL3CreditsForVLVB0:vlv
5831          * This is the hardware default actually.
5832          */
5833         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5834
5835         /*
5836          * WaDisableVLVClockGating_VBIIssue:vlv
5837          * Disable clock gating on th GCFG unit to prevent a delay
5838          * in the reporting of vblank events.
5839          */
5840         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5841 }
5842
5843 static void cherryview_init_clock_gating(struct drm_device *dev)
5844 {
5845         struct drm_i915_private *dev_priv = dev->dev_private;
5846         u32 val;
5847
5848         mutex_lock(&dev_priv->rps.hw_lock);
5849         val = vlv_punit_read(dev_priv, CCK_FUSE_REG);
5850         mutex_unlock(&dev_priv->rps.hw_lock);
5851         switch ((val >> 2) & 0x7) {
5852         case 0:
5853         case 1:
5854                         dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_200;
5855                         dev_priv->mem_freq = 1600;
5856                         break;
5857         case 2:
5858                         dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_267;
5859                         dev_priv->mem_freq = 1600;
5860                         break;
5861         case 3:
5862                         dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_333;
5863                         dev_priv->mem_freq = 2000;
5864                         break;
5865         case 4:
5866                         dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_320;
5867                         dev_priv->mem_freq = 1600;
5868                         break;
5869         case 5:
5870                         dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_400;
5871                         dev_priv->mem_freq = 1600;
5872                         break;
5873         }
5874         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5875
5876         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5877
5878         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5879
5880         /* WaDisablePartialInstShootdown:chv */
5881         I915_WRITE(GEN8_ROW_CHICKEN,
5882                    _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5883
5884         /* WaDisableThreadStallDopClockGating:chv */
5885         I915_WRITE(GEN8_ROW_CHICKEN,
5886                    _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5887
5888         /* WaVSRefCountFullforceMissDisable:chv */
5889         /* WaDSRefCountFullforceMissDisable:chv */
5890         I915_WRITE(GEN7_FF_THREAD_MODE,
5891                    I915_READ(GEN7_FF_THREAD_MODE) &
5892                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5893
5894         /* WaDisableSemaphoreAndSyncFlipWait:chv */
5895         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5896                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5897
5898         /* WaDisableCSUnitClockGating:chv */
5899         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5900                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5901
5902         /* WaDisableSDEUnitClockGating:chv */
5903         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5904                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5905
5906         /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
5907         I915_WRITE(HALF_SLICE_CHICKEN3,
5908                    _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5909
5910         /* WaDisableGunitClockGating:chv (pre-production hw) */
5911         I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
5912                    GINT_DIS);
5913
5914         /* WaDisableFfDopClockGating:chv (pre-production hw) */
5915         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5916                    _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
5917
5918         /* WaDisableDopClockGating:chv (pre-production hw) */
5919         I915_WRITE(GEN7_ROW_CHICKEN2,
5920                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5921         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5922                    GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
5923 }
5924
5925 static void g4x_init_clock_gating(struct drm_device *dev)
5926 {
5927         struct drm_i915_private *dev_priv = dev->dev_private;
5928         uint32_t dspclk_gate;
5929
5930         I915_WRITE(RENCLK_GATE_D1, 0);
5931         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5932                    GS_UNIT_CLOCK_GATE_DISABLE |
5933                    CL_UNIT_CLOCK_GATE_DISABLE);
5934         I915_WRITE(RAMCLK_GATE_D, 0);
5935         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5936                 OVRUNIT_CLOCK_GATE_DISABLE |
5937                 OVCUNIT_CLOCK_GATE_DISABLE;
5938         if (IS_GM45(dev))
5939                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5940         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5941
5942         /* WaDisableRenderCachePipelinedFlush */
5943         I915_WRITE(CACHE_MODE_0,
5944                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5945
5946         /* WaDisable_RenderCache_OperationalFlush:g4x */
5947         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5948
5949         g4x_disable_trickle_feed(dev);
5950 }
5951
5952 static void crestline_init_clock_gating(struct drm_device *dev)
5953 {
5954         struct drm_i915_private *dev_priv = dev->dev_private;
5955
5956         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5957         I915_WRITE(RENCLK_GATE_D2, 0);
5958         I915_WRITE(DSPCLK_GATE_D, 0);
5959         I915_WRITE(RAMCLK_GATE_D, 0);
5960         I915_WRITE16(DEUC, 0);
5961         I915_WRITE(MI_ARB_STATE,
5962                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5963
5964         /* WaDisable_RenderCache_OperationalFlush:gen4 */
5965         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5966 }
5967
5968 static void broadwater_init_clock_gating(struct drm_device *dev)
5969 {
5970         struct drm_i915_private *dev_priv = dev->dev_private;
5971
5972         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5973                    I965_RCC_CLOCK_GATE_DISABLE |
5974                    I965_RCPB_CLOCK_GATE_DISABLE |
5975                    I965_ISC_CLOCK_GATE_DISABLE |
5976                    I965_FBC_CLOCK_GATE_DISABLE);
5977         I915_WRITE(RENCLK_GATE_D2, 0);
5978         I915_WRITE(MI_ARB_STATE,
5979                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5980
5981         /* WaDisable_RenderCache_OperationalFlush:gen4 */
5982         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5983 }
5984
5985 static void gen3_init_clock_gating(struct drm_device *dev)
5986 {
5987         struct drm_i915_private *dev_priv = dev->dev_private;
5988         u32 dstate = I915_READ(D_STATE);
5989
5990         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5991                 DSTATE_DOT_CLOCK_GATING;
5992         I915_WRITE(D_STATE, dstate);
5993
5994         if (IS_PINEVIEW(dev))
5995                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5996
5997         /* IIR "flip pending" means done if this bit is set */
5998         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5999
6000         /* interrupts should cause a wake up from C3 */
6001         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6002
6003         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6004         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6005 }
6006
6007 static void i85x_init_clock_gating(struct drm_device *dev)
6008 {
6009         struct drm_i915_private *dev_priv = dev->dev_private;
6010
6011         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6012
6013         /* interrupts should cause a wake up from C3 */
6014         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6015                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6016 }
6017
6018 static void i830_init_clock_gating(struct drm_device *dev)
6019 {
6020         struct drm_i915_private *dev_priv = dev->dev_private;
6021
6022         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6023 }
6024
6025 void intel_init_clock_gating(struct drm_device *dev)
6026 {
6027         struct drm_i915_private *dev_priv = dev->dev_private;
6028
6029         dev_priv->display.init_clock_gating(dev);
6030 }
6031
6032 void intel_suspend_hw(struct drm_device *dev)
6033 {
6034         if (HAS_PCH_LPT(dev))
6035                 lpt_suspend_hw(dev);
6036 }
6037
6038 #define for_each_power_well(i, power_well, domain_mask, power_domains)  \
6039         for (i = 0;                                                     \
6040              i < (power_domains)->power_well_count &&                   \
6041                  ((power_well) = &(power_domains)->power_wells[i]);     \
6042              i++)                                                       \
6043                 if ((power_well)->domains & (domain_mask))
6044
6045 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
6046         for (i = (power_domains)->power_well_count - 1;                  \
6047              i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
6048              i--)                                                        \
6049                 if ((power_well)->domains & (domain_mask))
6050
6051 /**
6052  * We should only use the power well if we explicitly asked the hardware to
6053  * enable it, so check if it's enabled and also check if we've requested it to
6054  * be enabled.
6055  */
6056 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
6057                                    struct i915_power_well *power_well)
6058 {
6059         return I915_READ(HSW_PWR_WELL_DRIVER) ==
6060                      (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
6061 }
6062
6063 bool intel_display_power_enabled_unlocked(struct drm_i915_private *dev_priv,
6064                                           enum intel_display_power_domain domain)
6065 {
6066         struct i915_power_domains *power_domains;
6067         struct i915_power_well *power_well;
6068         bool is_enabled;
6069         int i;
6070
6071         if (dev_priv->pm.suspended)
6072                 return false;
6073
6074         power_domains = &dev_priv->power_domains;
6075
6076         is_enabled = true;
6077
6078         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6079                 if (power_well->always_on)
6080                         continue;
6081
6082                 if (!power_well->hw_enabled) {
6083                         is_enabled = false;
6084                         break;
6085                 }
6086         }
6087
6088         return is_enabled;
6089 }
6090
6091 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
6092                                  enum intel_display_power_domain domain)
6093 {
6094         struct i915_power_domains *power_domains;
6095         bool ret;
6096
6097         power_domains = &dev_priv->power_domains;
6098
6099         mutex_lock(&power_domains->lock);
6100         ret = intel_display_power_enabled_unlocked(dev_priv, domain);
6101         mutex_unlock(&power_domains->lock);
6102
6103         return ret;
6104 }
6105
6106 /*
6107  * Starting with Haswell, we have a "Power Down Well" that can be turned off
6108  * when not needed anymore. We have 4 registers that can request the power well
6109  * to be enabled, and it will only be disabled if none of the registers is
6110  * requesting it to be enabled.
6111  */
6112 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
6113 {
6114         struct drm_device *dev = dev_priv->dev;
6115
6116         /*
6117          * After we re-enable the power well, if we touch VGA register 0x3d5
6118          * we'll get unclaimed register interrupts. This stops after we write
6119          * anything to the VGA MSR register. The vgacon module uses this
6120          * register all the time, so if we unbind our driver and, as a
6121          * consequence, bind vgacon, we'll get stuck in an infinite loop at
6122          * console_unlock(). So make here we touch the VGA MSR register, making
6123          * sure vgacon can keep working normally without triggering interrupts
6124          * and error messages.
6125          */
6126         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6127         outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
6128         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6129
6130         if (IS_BROADWELL(dev))
6131                 gen8_irq_power_well_post_enable(dev_priv);
6132 }
6133
6134 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
6135                                struct i915_power_well *power_well, bool enable)
6136 {
6137         bool is_enabled, enable_requested;
6138         uint32_t tmp;
6139
6140         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
6141         is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
6142         enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
6143
6144         if (enable) {
6145                 if (!enable_requested)
6146                         I915_WRITE(HSW_PWR_WELL_DRIVER,
6147                                    HSW_PWR_WELL_ENABLE_REQUEST);
6148
6149                 if (!is_enabled) {
6150                         DRM_DEBUG_KMS("Enabling power well\n");
6151                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
6152                                       HSW_PWR_WELL_STATE_ENABLED), 20))
6153                                 DRM_ERROR("Timeout enabling power well\n");
6154                 }
6155
6156                 hsw_power_well_post_enable(dev_priv);
6157         } else {
6158                 if (enable_requested) {
6159                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
6160                         POSTING_READ(HSW_PWR_WELL_DRIVER);
6161                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
6162                 }
6163         }
6164 }
6165
6166 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
6167                                    struct i915_power_well *power_well)
6168 {
6169         hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
6170
6171         /*
6172          * We're taking over the BIOS, so clear any requests made by it since
6173          * the driver is in charge now.
6174          */
6175         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
6176                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
6177 }
6178
6179 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
6180                                   struct i915_power_well *power_well)
6181 {
6182         hsw_set_power_well(dev_priv, power_well, true);
6183 }
6184
6185 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
6186                                    struct i915_power_well *power_well)
6187 {
6188         hsw_set_power_well(dev_priv, power_well, false);
6189 }
6190
6191 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
6192                                            struct i915_power_well *power_well)
6193 {
6194 }
6195
6196 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
6197                                              struct i915_power_well *power_well)
6198 {
6199         return true;
6200 }
6201
6202 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
6203                                struct i915_power_well *power_well, bool enable)
6204 {
6205         enum punit_power_well power_well_id = power_well->data;
6206         u32 mask;
6207         u32 state;
6208         u32 ctrl;
6209
6210         mask = PUNIT_PWRGT_MASK(power_well_id);
6211         state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
6212                          PUNIT_PWRGT_PWR_GATE(power_well_id);
6213
6214         mutex_lock(&dev_priv->rps.hw_lock);
6215
6216 #define COND \
6217         ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
6218
6219         if (COND)
6220                 goto out;
6221
6222         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
6223         ctrl &= ~mask;
6224         ctrl |= state;
6225         vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
6226
6227         if (wait_for(COND, 100))
6228                 DRM_ERROR("timout setting power well state %08x (%08x)\n",
6229                           state,
6230                           vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
6231
6232 #undef COND
6233
6234 out:
6235         mutex_unlock(&dev_priv->rps.hw_lock);
6236 }
6237
6238 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
6239                                    struct i915_power_well *power_well)
6240 {
6241         vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
6242 }
6243
6244 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
6245                                   struct i915_power_well *power_well)
6246 {
6247         vlv_set_power_well(dev_priv, power_well, true);
6248 }
6249
6250 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
6251                                    struct i915_power_well *power_well)
6252 {
6253         vlv_set_power_well(dev_priv, power_well, false);
6254 }
6255
6256 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
6257                                    struct i915_power_well *power_well)
6258 {
6259         int power_well_id = power_well->data;
6260         bool enabled = false;
6261         u32 mask;
6262         u32 state;
6263         u32 ctrl;
6264
6265         mask = PUNIT_PWRGT_MASK(power_well_id);
6266         ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
6267
6268         mutex_lock(&dev_priv->rps.hw_lock);
6269
6270         state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
6271         /*
6272          * We only ever set the power-on and power-gate states, anything
6273          * else is unexpected.
6274          */
6275         WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
6276                 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
6277         if (state == ctrl)
6278                 enabled = true;
6279
6280         /*
6281          * A transient state at this point would mean some unexpected party
6282          * is poking at the power controls too.
6283          */
6284         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
6285         WARN_ON(ctrl != state);
6286
6287         mutex_unlock(&dev_priv->rps.hw_lock);
6288
6289         return enabled;
6290 }
6291
6292 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
6293                                           struct i915_power_well *power_well)
6294 {
6295         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6296
6297         vlv_set_power_well(dev_priv, power_well, true);
6298
6299         spin_lock_irq(&dev_priv->irq_lock);
6300         valleyview_enable_display_irqs(dev_priv);
6301         spin_unlock_irq(&dev_priv->irq_lock);
6302
6303         /*
6304          * During driver initialization/resume we can avoid restoring the
6305          * part of the HW/SW state that will be inited anyway explicitly.
6306          */
6307         if (dev_priv->power_domains.initializing)
6308                 return;
6309
6310         intel_hpd_init(dev_priv->dev);
6311
6312         i915_redisable_vga_power_on(dev_priv->dev);
6313 }
6314
6315 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
6316                                            struct i915_power_well *power_well)
6317 {
6318         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6319
6320         spin_lock_irq(&dev_priv->irq_lock);
6321         valleyview_disable_display_irqs(dev_priv);
6322         spin_unlock_irq(&dev_priv->irq_lock);
6323
6324         vlv_set_power_well(dev_priv, power_well, false);
6325 }
6326
6327 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
6328                                            struct i915_power_well *power_well)
6329 {
6330         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
6331
6332         /*
6333          * Enable the CRI clock source so we can get at the
6334          * display and the reference clock for VGA
6335          * hotplug / manual detection.
6336          */
6337         I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6338                    DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6339         udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
6340
6341         vlv_set_power_well(dev_priv, power_well, true);
6342
6343         /*
6344          * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
6345          *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
6346          *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
6347          *   b. The other bits such as sfr settings / modesel may all
6348          *      be set to 0.
6349          *
6350          * This should only be done on init and resume from S3 with
6351          * both PLLs disabled, or we risk losing DPIO and PLL
6352          * synchronization.
6353          */
6354         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
6355 }
6356
6357 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
6358                                             struct i915_power_well *power_well)
6359 {
6360         struct drm_device *dev = dev_priv->dev;
6361         enum pipe pipe;
6362
6363         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
6364
6365         for_each_pipe(pipe)
6366                 assert_pll_disabled(dev_priv, pipe);
6367
6368         /* Assert common reset */
6369         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
6370
6371         vlv_set_power_well(dev_priv, power_well, false);
6372 }
6373
6374 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
6375                                            struct i915_power_well *power_well)
6376 {
6377         enum dpio_phy phy;
6378
6379         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
6380                      power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
6381
6382         /*
6383          * Enable the CRI clock source so we can get at the
6384          * display and the reference clock for VGA
6385          * hotplug / manual detection.
6386          */
6387         if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
6388                 phy = DPIO_PHY0;
6389                 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6390                            DPLL_REFA_CLK_ENABLE_VLV);
6391                 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6392                            DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6393         } else {
6394                 phy = DPIO_PHY1;
6395                 I915_WRITE(DPLL(PIPE_C), I915_READ(DPLL(PIPE_C)) |
6396                            DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6397         }
6398         udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
6399         vlv_set_power_well(dev_priv, power_well, true);
6400
6401         /* Poll for phypwrgood signal */
6402         if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
6403                 DRM_ERROR("Display PHY %d is not power up\n", phy);
6404
6405         I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) |
6406                    PHY_COM_LANE_RESET_DEASSERT(phy));
6407 }
6408
6409 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
6410                                             struct i915_power_well *power_well)
6411 {
6412         enum dpio_phy phy;
6413
6414         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
6415                      power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
6416
6417         if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
6418                 phy = DPIO_PHY0;
6419                 assert_pll_disabled(dev_priv, PIPE_A);
6420                 assert_pll_disabled(dev_priv, PIPE_B);
6421         } else {
6422                 phy = DPIO_PHY1;
6423                 assert_pll_disabled(dev_priv, PIPE_C);
6424         }
6425
6426         I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) &
6427                    ~PHY_COM_LANE_RESET_DEASSERT(phy));
6428
6429         vlv_set_power_well(dev_priv, power_well, false);
6430 }
6431
6432 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
6433                                         struct i915_power_well *power_well)
6434 {
6435         enum pipe pipe = power_well->data;
6436         bool enabled;
6437         u32 state, ctrl;
6438
6439         mutex_lock(&dev_priv->rps.hw_lock);
6440
6441         state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
6442         /*
6443          * We only ever set the power-on and power-gate states, anything
6444          * else is unexpected.
6445          */
6446         WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
6447         enabled = state == DP_SSS_PWR_ON(pipe);
6448
6449         /*
6450          * A transient state at this point would mean some unexpected party
6451          * is poking at the power controls too.
6452          */
6453         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
6454         WARN_ON(ctrl << 16 != state);
6455
6456         mutex_unlock(&dev_priv->rps.hw_lock);
6457
6458         return enabled;
6459 }
6460
6461 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
6462                                     struct i915_power_well *power_well,
6463                                     bool enable)
6464 {
6465         enum pipe pipe = power_well->data;
6466         u32 state;
6467         u32 ctrl;
6468
6469         state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
6470
6471         mutex_lock(&dev_priv->rps.hw_lock);
6472
6473 #define COND \
6474         ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
6475
6476         if (COND)
6477                 goto out;
6478
6479         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6480         ctrl &= ~DP_SSC_MASK(pipe);
6481         ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
6482         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
6483
6484         if (wait_for(COND, 100))
6485                 DRM_ERROR("timout setting power well state %08x (%08x)\n",
6486                           state,
6487                           vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
6488
6489 #undef COND
6490
6491 out:
6492         mutex_unlock(&dev_priv->rps.hw_lock);
6493 }
6494
6495 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
6496                                         struct i915_power_well *power_well)
6497 {
6498         chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
6499 }
6500
6501 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
6502                                        struct i915_power_well *power_well)
6503 {
6504         WARN_ON_ONCE(power_well->data != PIPE_A &&
6505                      power_well->data != PIPE_B &&
6506                      power_well->data != PIPE_C);
6507
6508         chv_set_pipe_power_well(dev_priv, power_well, true);
6509 }
6510
6511 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
6512                                         struct i915_power_well *power_well)
6513 {
6514         WARN_ON_ONCE(power_well->data != PIPE_A &&
6515                      power_well->data != PIPE_B &&
6516                      power_well->data != PIPE_C);
6517
6518         chv_set_pipe_power_well(dev_priv, power_well, false);
6519 }
6520
6521 static void check_power_well_state(struct drm_i915_private *dev_priv,
6522                                    struct i915_power_well *power_well)
6523 {
6524         bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
6525
6526         if (power_well->always_on || !i915.disable_power_well) {
6527                 if (!enabled)
6528                         goto mismatch;
6529
6530                 return;
6531         }
6532
6533         if (enabled != (power_well->count > 0))
6534                 goto mismatch;
6535
6536         return;
6537
6538 mismatch:
6539         WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
6540                   power_well->name, power_well->always_on, enabled,
6541                   power_well->count, i915.disable_power_well);
6542 }
6543
6544 void intel_display_power_get(struct drm_i915_private *dev_priv,
6545                              enum intel_display_power_domain domain)
6546 {
6547         struct i915_power_domains *power_domains;
6548         struct i915_power_well *power_well;
6549         int i;
6550
6551         intel_runtime_pm_get(dev_priv);
6552
6553         power_domains = &dev_priv->power_domains;
6554
6555         mutex_lock(&power_domains->lock);
6556
6557         for_each_power_well(i, power_well, BIT(domain), power_domains) {
6558                 if (!power_well->count++) {
6559                         DRM_DEBUG_KMS("enabling %s\n", power_well->name);
6560                         power_well->ops->enable(dev_priv, power_well);
6561                         power_well->hw_enabled = true;
6562                 }
6563
6564                 check_power_well_state(dev_priv, power_well);
6565         }
6566
6567         power_domains->domain_use_count[domain]++;
6568
6569         mutex_unlock(&power_domains->lock);
6570 }
6571
6572 void intel_display_power_put(struct drm_i915_private *dev_priv,
6573                              enum intel_display_power_domain domain)
6574 {
6575         struct i915_power_domains *power_domains;
6576         struct i915_power_well *power_well;
6577         int i;
6578
6579         power_domains = &dev_priv->power_domains;
6580
6581         mutex_lock(&power_domains->lock);
6582
6583         WARN_ON(!power_domains->domain_use_count[domain]);
6584         power_domains->domain_use_count[domain]--;
6585
6586         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6587                 WARN_ON(!power_well->count);
6588
6589                 if (!--power_well->count && i915.disable_power_well) {
6590                         DRM_DEBUG_KMS("disabling %s\n", power_well->name);
6591                         power_well->hw_enabled = false;
6592                         power_well->ops->disable(dev_priv, power_well);
6593                 }
6594
6595                 check_power_well_state(dev_priv, power_well);
6596         }
6597
6598         mutex_unlock(&power_domains->lock);
6599
6600         intel_runtime_pm_put(dev_priv);
6601 }
6602
6603 static struct i915_power_domains *hsw_pwr;
6604
6605 /* Display audio driver power well request */
6606 int i915_request_power_well(void)
6607 {
6608         struct drm_i915_private *dev_priv;
6609
6610         if (!hsw_pwr)
6611                 return -ENODEV;
6612
6613         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6614                                 power_domains);
6615         intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
6616         return 0;
6617 }
6618 EXPORT_SYMBOL_GPL(i915_request_power_well);
6619
6620 /* Display audio driver power well release */
6621 int i915_release_power_well(void)
6622 {
6623         struct drm_i915_private *dev_priv;
6624
6625         if (!hsw_pwr)
6626                 return -ENODEV;
6627
6628         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6629                                 power_domains);
6630         intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
6631         return 0;
6632 }
6633 EXPORT_SYMBOL_GPL(i915_release_power_well);
6634
6635 /*
6636  * Private interface for the audio driver to get CDCLK in kHz.
6637  *
6638  * Caller must request power well using i915_request_power_well() prior to
6639  * making the call.
6640  */
6641 int i915_get_cdclk_freq(void)
6642 {
6643         struct drm_i915_private *dev_priv;
6644
6645         if (!hsw_pwr)
6646                 return -ENODEV;
6647
6648         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6649                                 power_domains);
6650
6651         return intel_ddi_get_cdclk_freq(dev_priv);
6652 }
6653 EXPORT_SYMBOL_GPL(i915_get_cdclk_freq);
6654
6655
6656 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
6657
6658 #define HSW_ALWAYS_ON_POWER_DOMAINS (                   \
6659         BIT(POWER_DOMAIN_PIPE_A) |                      \
6660         BIT(POWER_DOMAIN_TRANSCODER_EDP) |              \
6661         BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |          \
6662         BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |          \
6663         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |          \
6664         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |          \
6665         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |          \
6666         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |          \
6667         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |          \
6668         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |          \
6669         BIT(POWER_DOMAIN_PORT_CRT) |                    \
6670         BIT(POWER_DOMAIN_PLLS) |                        \
6671         BIT(POWER_DOMAIN_INIT))
6672 #define HSW_DISPLAY_POWER_DOMAINS (                             \
6673         (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |    \
6674         BIT(POWER_DOMAIN_INIT))
6675
6676 #define BDW_ALWAYS_ON_POWER_DOMAINS (                   \
6677         HSW_ALWAYS_ON_POWER_DOMAINS |                   \
6678         BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
6679 #define BDW_DISPLAY_POWER_DOMAINS (                             \
6680         (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |    \
6681         BIT(POWER_DOMAIN_INIT))
6682
6683 #define VLV_ALWAYS_ON_POWER_DOMAINS     BIT(POWER_DOMAIN_INIT)
6684 #define VLV_DISPLAY_POWER_DOMAINS       POWER_DOMAIN_MASK
6685
6686 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (         \
6687         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6688         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6689         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6690         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6691         BIT(POWER_DOMAIN_PORT_CRT) |            \
6692         BIT(POWER_DOMAIN_INIT))
6693
6694 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (  \
6695         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6696         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6697         BIT(POWER_DOMAIN_INIT))
6698
6699 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (  \
6700         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6701         BIT(POWER_DOMAIN_INIT))
6702
6703 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (  \
6704         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6705         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6706         BIT(POWER_DOMAIN_INIT))
6707
6708 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (  \
6709         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6710         BIT(POWER_DOMAIN_INIT))
6711
6712 #define CHV_PIPE_A_POWER_DOMAINS (      \
6713         BIT(POWER_DOMAIN_PIPE_A) |      \
6714         BIT(POWER_DOMAIN_INIT))
6715
6716 #define CHV_PIPE_B_POWER_DOMAINS (      \
6717         BIT(POWER_DOMAIN_PIPE_B) |      \
6718         BIT(POWER_DOMAIN_INIT))
6719
6720 #define CHV_PIPE_C_POWER_DOMAINS (      \
6721         BIT(POWER_DOMAIN_PIPE_C) |      \
6722         BIT(POWER_DOMAIN_INIT))
6723
6724 #define CHV_DPIO_CMN_BC_POWER_DOMAINS (         \
6725         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6726         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6727         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6728         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6729         BIT(POWER_DOMAIN_INIT))
6730
6731 #define CHV_DPIO_CMN_D_POWER_DOMAINS (          \
6732         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |  \
6733         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |  \
6734         BIT(POWER_DOMAIN_INIT))
6735
6736 #define CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS (  \
6737         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |  \
6738         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |  \
6739         BIT(POWER_DOMAIN_INIT))
6740
6741 #define CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS (  \
6742         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |  \
6743         BIT(POWER_DOMAIN_INIT))
6744
6745 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
6746         .sync_hw = i9xx_always_on_power_well_noop,
6747         .enable = i9xx_always_on_power_well_noop,
6748         .disable = i9xx_always_on_power_well_noop,
6749         .is_enabled = i9xx_always_on_power_well_enabled,
6750 };
6751
6752 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
6753         .sync_hw = chv_pipe_power_well_sync_hw,
6754         .enable = chv_pipe_power_well_enable,
6755         .disable = chv_pipe_power_well_disable,
6756         .is_enabled = chv_pipe_power_well_enabled,
6757 };
6758
6759 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
6760         .sync_hw = vlv_power_well_sync_hw,
6761         .enable = chv_dpio_cmn_power_well_enable,
6762         .disable = chv_dpio_cmn_power_well_disable,
6763         .is_enabled = vlv_power_well_enabled,
6764 };
6765
6766 static struct i915_power_well i9xx_always_on_power_well[] = {
6767         {
6768                 .name = "always-on",
6769                 .always_on = 1,
6770                 .domains = POWER_DOMAIN_MASK,
6771                 .ops = &i9xx_always_on_power_well_ops,
6772         },
6773 };
6774
6775 static const struct i915_power_well_ops hsw_power_well_ops = {
6776         .sync_hw = hsw_power_well_sync_hw,
6777         .enable = hsw_power_well_enable,
6778         .disable = hsw_power_well_disable,
6779         .is_enabled = hsw_power_well_enabled,
6780 };
6781
6782 static struct i915_power_well hsw_power_wells[] = {
6783         {
6784                 .name = "always-on",
6785                 .always_on = 1,
6786                 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
6787                 .ops = &i9xx_always_on_power_well_ops,
6788         },
6789         {
6790                 .name = "display",
6791                 .domains = HSW_DISPLAY_POWER_DOMAINS,
6792                 .ops = &hsw_power_well_ops,
6793         },
6794 };
6795
6796 static struct i915_power_well bdw_power_wells[] = {
6797         {
6798                 .name = "always-on",
6799                 .always_on = 1,
6800                 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
6801                 .ops = &i9xx_always_on_power_well_ops,
6802         },
6803         {
6804                 .name = "display",
6805                 .domains = BDW_DISPLAY_POWER_DOMAINS,
6806                 .ops = &hsw_power_well_ops,
6807         },
6808 };
6809
6810 static const struct i915_power_well_ops vlv_display_power_well_ops = {
6811         .sync_hw = vlv_power_well_sync_hw,
6812         .enable = vlv_display_power_well_enable,
6813         .disable = vlv_display_power_well_disable,
6814         .is_enabled = vlv_power_well_enabled,
6815 };
6816
6817 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
6818         .sync_hw = vlv_power_well_sync_hw,
6819         .enable = vlv_dpio_cmn_power_well_enable,
6820         .disable = vlv_dpio_cmn_power_well_disable,
6821         .is_enabled = vlv_power_well_enabled,
6822 };
6823
6824 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
6825         .sync_hw = vlv_power_well_sync_hw,
6826         .enable = vlv_power_well_enable,
6827         .disable = vlv_power_well_disable,
6828         .is_enabled = vlv_power_well_enabled,
6829 };
6830
6831 static struct i915_power_well vlv_power_wells[] = {
6832         {
6833                 .name = "always-on",
6834                 .always_on = 1,
6835                 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
6836                 .ops = &i9xx_always_on_power_well_ops,
6837         },
6838         {
6839                 .name = "display",
6840                 .domains = VLV_DISPLAY_POWER_DOMAINS,
6841                 .data = PUNIT_POWER_WELL_DISP2D,
6842                 .ops = &vlv_display_power_well_ops,
6843         },
6844         {
6845                 .name = "dpio-tx-b-01",
6846                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6847                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6848                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6849                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6850                 .ops = &vlv_dpio_power_well_ops,
6851                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
6852         },
6853         {
6854                 .name = "dpio-tx-b-23",
6855                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6856                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6857                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6858                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6859                 .ops = &vlv_dpio_power_well_ops,
6860                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
6861         },
6862         {
6863                 .name = "dpio-tx-c-01",
6864                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6865                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6866                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6867                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6868                 .ops = &vlv_dpio_power_well_ops,
6869                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
6870         },
6871         {
6872                 .name = "dpio-tx-c-23",
6873                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6874                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6875                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6876                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6877                 .ops = &vlv_dpio_power_well_ops,
6878                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
6879         },
6880         {
6881                 .name = "dpio-common",
6882                 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
6883                 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
6884                 .ops = &vlv_dpio_cmn_power_well_ops,
6885         },
6886 };
6887
6888 static struct i915_power_well chv_power_wells[] = {
6889         {
6890                 .name = "always-on",
6891                 .always_on = 1,
6892                 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
6893                 .ops = &i9xx_always_on_power_well_ops,
6894         },
6895 #if 0
6896         {
6897                 .name = "display",
6898                 .domains = VLV_DISPLAY_POWER_DOMAINS,
6899                 .data = PUNIT_POWER_WELL_DISP2D,
6900                 .ops = &vlv_display_power_well_ops,
6901         },
6902         {
6903                 .name = "pipe-a",
6904                 .domains = CHV_PIPE_A_POWER_DOMAINS,
6905                 .data = PIPE_A,
6906                 .ops = &chv_pipe_power_well_ops,
6907         },
6908         {
6909                 .name = "pipe-b",
6910                 .domains = CHV_PIPE_B_POWER_DOMAINS,
6911                 .data = PIPE_B,
6912                 .ops = &chv_pipe_power_well_ops,
6913         },
6914         {
6915                 .name = "pipe-c",
6916                 .domains = CHV_PIPE_C_POWER_DOMAINS,
6917                 .data = PIPE_C,
6918                 .ops = &chv_pipe_power_well_ops,
6919         },
6920 #endif
6921         {
6922                 .name = "dpio-common-bc",
6923                 /*
6924                  * XXX: cmnreset for one PHY seems to disturb the other.
6925                  * As a workaround keep both powered on at the same
6926                  * time for now.
6927                  */
6928                 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
6929                 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
6930                 .ops = &chv_dpio_cmn_power_well_ops,
6931         },
6932         {
6933                 .name = "dpio-common-d",
6934                 /*
6935                  * XXX: cmnreset for one PHY seems to disturb the other.
6936                  * As a workaround keep both powered on at the same
6937                  * time for now.
6938                  */
6939                 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
6940                 .data = PUNIT_POWER_WELL_DPIO_CMN_D,
6941                 .ops = &chv_dpio_cmn_power_well_ops,
6942         },
6943 #if 0
6944         {
6945                 .name = "dpio-tx-b-01",
6946                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6947                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
6948                 .ops = &vlv_dpio_power_well_ops,
6949                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
6950         },
6951         {
6952                 .name = "dpio-tx-b-23",
6953                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6954                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
6955                 .ops = &vlv_dpio_power_well_ops,
6956                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
6957         },
6958         {
6959                 .name = "dpio-tx-c-01",
6960                 .domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6961                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6962                 .ops = &vlv_dpio_power_well_ops,
6963                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
6964         },
6965         {
6966                 .name = "dpio-tx-c-23",
6967                 .domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6968                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6969                 .ops = &vlv_dpio_power_well_ops,
6970                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
6971         },
6972         {
6973                 .name = "dpio-tx-d-01",
6974                 .domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
6975                            CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
6976                 .ops = &vlv_dpio_power_well_ops,
6977                 .data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_01,
6978         },
6979         {
6980                 .name = "dpio-tx-d-23",
6981                 .domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
6982                            CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
6983                 .ops = &vlv_dpio_power_well_ops,
6984                 .data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_23,
6985         },
6986 #endif
6987 };
6988
6989 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
6990                                                  enum punit_power_well power_well_id)
6991 {
6992         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6993         struct i915_power_well *power_well;
6994         int i;
6995
6996         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
6997                 if (power_well->data == power_well_id)
6998                         return power_well;
6999         }
7000
7001         return NULL;
7002 }
7003
7004 #define set_power_wells(power_domains, __power_wells) ({                \
7005         (power_domains)->power_wells = (__power_wells);                 \
7006         (power_domains)->power_well_count = ARRAY_SIZE(__power_wells);  \
7007 })
7008
7009 int intel_power_domains_init(struct drm_i915_private *dev_priv)
7010 {
7011         struct i915_power_domains *power_domains = &dev_priv->power_domains;
7012
7013         mutex_init(&power_domains->lock);
7014
7015         /*
7016          * The enabling order will be from lower to higher indexed wells,
7017          * the disabling order is reversed.
7018          */
7019         if (IS_HASWELL(dev_priv->dev)) {
7020                 set_power_wells(power_domains, hsw_power_wells);
7021                 hsw_pwr = power_domains;
7022         } else if (IS_BROADWELL(dev_priv->dev)) {
7023                 set_power_wells(power_domains, bdw_power_wells);
7024                 hsw_pwr = power_domains;
7025         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
7026                 set_power_wells(power_domains, chv_power_wells);
7027         } else if (IS_VALLEYVIEW(dev_priv->dev)) {
7028                 set_power_wells(power_domains, vlv_power_wells);
7029         } else {
7030                 set_power_wells(power_domains, i9xx_always_on_power_well);
7031         }
7032
7033         return 0;
7034 }
7035
7036 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
7037 {
7038         hsw_pwr = NULL;
7039 }
7040
7041 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
7042 {
7043         struct i915_power_domains *power_domains = &dev_priv->power_domains;
7044         struct i915_power_well *power_well;
7045         int i;
7046
7047         mutex_lock(&power_domains->lock);
7048         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
7049                 power_well->ops->sync_hw(dev_priv, power_well);
7050                 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
7051                                                                      power_well);
7052         }
7053         mutex_unlock(&power_domains->lock);
7054 }
7055
7056 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
7057 {
7058         struct i915_power_well *cmn =
7059                 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
7060         struct i915_power_well *disp2d =
7061                 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
7062
7063         /* nothing to do if common lane is already off */
7064         if (!cmn->ops->is_enabled(dev_priv, cmn))
7065                 return;
7066
7067         /* If the display might be already active skip this */
7068         if (disp2d->ops->is_enabled(dev_priv, disp2d) &&
7069             I915_READ(DPIO_CTL) & DPIO_CMNRST)
7070                 return;
7071
7072         DRM_DEBUG_KMS("toggling display PHY side reset\n");
7073
7074         /* cmnlane needs DPLL registers */
7075         disp2d->ops->enable(dev_priv, disp2d);
7076
7077         /*
7078          * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
7079          * Need to assert and de-assert PHY SB reset by gating the
7080          * common lane power, then un-gating it.
7081          * Simply ungating isn't enough to reset the PHY enough to get
7082          * ports and lanes running.
7083          */
7084         cmn->ops->disable(dev_priv, cmn);
7085 }
7086
7087 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
7088 {
7089         struct drm_device *dev = dev_priv->dev;
7090         struct i915_power_domains *power_domains = &dev_priv->power_domains;
7091
7092         power_domains->initializing = true;
7093
7094         if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
7095                 mutex_lock(&power_domains->lock);
7096                 vlv_cmnlane_wa(dev_priv);
7097                 mutex_unlock(&power_domains->lock);
7098         }
7099
7100         /* For now, we need the power well to be always enabled. */
7101         intel_display_set_init_power(dev_priv, true);
7102         intel_power_domains_resume(dev_priv);
7103         power_domains->initializing = false;
7104 }
7105
7106 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
7107 {
7108         intel_runtime_pm_get(dev_priv);
7109 }
7110
7111 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
7112 {
7113         intel_runtime_pm_put(dev_priv);
7114 }
7115
7116 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
7117 {
7118         struct drm_device *dev = dev_priv->dev;
7119         struct device *device = &dev->pdev->dev;
7120
7121         if (!HAS_RUNTIME_PM(dev))
7122                 return;
7123
7124         pm_runtime_get_sync(device);
7125         WARN(dev_priv->pm.suspended, "Device still suspended.\n");
7126 }
7127
7128 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
7129 {
7130         struct drm_device *dev = dev_priv->dev;
7131         struct device *device = &dev->pdev->dev;
7132
7133         if (!HAS_RUNTIME_PM(dev))
7134                 return;
7135
7136         WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
7137         pm_runtime_get_noresume(device);
7138 }
7139
7140 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
7141 {
7142         struct drm_device *dev = dev_priv->dev;
7143         struct device *device = &dev->pdev->dev;
7144
7145         if (!HAS_RUNTIME_PM(dev))
7146                 return;
7147
7148         pm_runtime_mark_last_busy(device);
7149         pm_runtime_put_autosuspend(device);
7150 }
7151
7152 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
7153 {
7154         struct drm_device *dev = dev_priv->dev;
7155         struct device *device = &dev->pdev->dev;
7156
7157         if (!HAS_RUNTIME_PM(dev))
7158                 return;
7159
7160         pm_runtime_set_active(device);
7161
7162         /*
7163          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
7164          * requirement.
7165          */
7166         if (!intel_enable_rc6(dev)) {
7167                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
7168                 return;
7169         }
7170
7171         pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
7172         pm_runtime_mark_last_busy(device);
7173         pm_runtime_use_autosuspend(device);
7174
7175         pm_runtime_put_autosuspend(device);
7176 }
7177
7178 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
7179 {
7180         struct drm_device *dev = dev_priv->dev;
7181         struct device *device = &dev->pdev->dev;
7182
7183         if (!HAS_RUNTIME_PM(dev))
7184                 return;
7185
7186         if (!intel_enable_rc6(dev))
7187                 return;
7188
7189         /* Make sure we're not suspended first. */
7190         pm_runtime_get_sync(device);
7191         pm_runtime_disable(device);
7192 }
7193
7194 /* Set up chip specific power management-related functions */
7195 void intel_init_pm(struct drm_device *dev)
7196 {
7197         struct drm_i915_private *dev_priv = dev->dev_private;
7198
7199         if (HAS_FBC(dev)) {
7200                 if (INTEL_INFO(dev)->gen >= 7) {
7201                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7202                         dev_priv->display.enable_fbc = gen7_enable_fbc;
7203                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
7204                 } else if (INTEL_INFO(dev)->gen >= 5) {
7205                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7206                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
7207                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
7208                 } else if (IS_GM45(dev)) {
7209                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
7210                         dev_priv->display.enable_fbc = g4x_enable_fbc;
7211                         dev_priv->display.disable_fbc = g4x_disable_fbc;
7212                 } else {
7213                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
7214                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
7215                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
7216
7217                         /* This value was pulled out of someone's hat */
7218                         I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
7219                 }
7220         }
7221
7222         /* For cxsr */
7223         if (IS_PINEVIEW(dev))
7224                 i915_pineview_get_mem_freq(dev);
7225         else if (IS_GEN5(dev))
7226                 i915_ironlake_get_mem_freq(dev);
7227
7228         /* For FIFO watermark updates */
7229         if (HAS_PCH_SPLIT(dev)) {
7230                 ilk_setup_wm_latency(dev);
7231
7232                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7233                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7234                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7235                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7236                         dev_priv->display.update_wm = ilk_update_wm;
7237                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7238                 } else {
7239                         DRM_DEBUG_KMS("Failed to read display plane latency. "
7240                                       "Disable CxSR\n");
7241                 }
7242
7243                 if (IS_GEN5(dev))
7244                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7245                 else if (IS_GEN6(dev))
7246                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7247                 else if (IS_IVYBRIDGE(dev))
7248                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7249                 else if (IS_HASWELL(dev))
7250                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7251                 else if (INTEL_INFO(dev)->gen == 8)
7252                         dev_priv->display.init_clock_gating = gen8_init_clock_gating;
7253         } else if (IS_CHERRYVIEW(dev)) {
7254                 dev_priv->display.update_wm = cherryview_update_wm;
7255                 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7256                 dev_priv->display.init_clock_gating =
7257                         cherryview_init_clock_gating;
7258         } else if (IS_VALLEYVIEW(dev)) {
7259                 dev_priv->display.update_wm = valleyview_update_wm;
7260                 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7261                 dev_priv->display.init_clock_gating =
7262                         valleyview_init_clock_gating;
7263         } else if (IS_PINEVIEW(dev)) {
7264                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7265                                             dev_priv->is_ddr3,
7266                                             dev_priv->fsb_freq,
7267                                             dev_priv->mem_freq)) {
7268                         DRM_INFO("failed to find known CxSR latency "
7269                                  "(found ddr%s fsb freq %d, mem freq %d), "
7270                                  "disabling CxSR\n",
7271                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7272                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7273                         /* Disable CxSR and never update its watermark again */
7274                         intel_set_memory_cxsr(dev_priv, false);
7275                         dev_priv->display.update_wm = NULL;
7276                 } else
7277                         dev_priv->display.update_wm = pineview_update_wm;
7278                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7279         } else if (IS_G4X(dev)) {
7280                 dev_priv->display.update_wm = g4x_update_wm;
7281                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7282         } else if (IS_GEN4(dev)) {
7283                 dev_priv->display.update_wm = i965_update_wm;
7284                 if (IS_CRESTLINE(dev))
7285                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7286                 else if (IS_BROADWATER(dev))
7287                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7288         } else if (IS_GEN3(dev)) {
7289                 dev_priv->display.update_wm = i9xx_update_wm;
7290                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7291                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7292         } else if (IS_GEN2(dev)) {
7293                 if (INTEL_INFO(dev)->num_pipes == 1) {
7294                         dev_priv->display.update_wm = i845_update_wm;
7295                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7296                 } else {
7297                         dev_priv->display.update_wm = i9xx_update_wm;
7298                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7299                 }
7300
7301                 if (IS_I85X(dev) || IS_I865G(dev))
7302                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7303                 else
7304                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
7305         } else {
7306                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7307         }
7308 }
7309
7310 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
7311 {
7312         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7313
7314         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7315                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7316                 return -EAGAIN;
7317         }
7318
7319         I915_WRITE(GEN6_PCODE_DATA, *val);
7320         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7321
7322         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7323                      500)) {
7324                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7325                 return -ETIMEDOUT;
7326         }
7327
7328         *val = I915_READ(GEN6_PCODE_DATA);
7329         I915_WRITE(GEN6_PCODE_DATA, 0);
7330
7331         return 0;
7332 }
7333
7334 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
7335 {
7336         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7337
7338         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7339                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7340                 return -EAGAIN;
7341         }
7342
7343         I915_WRITE(GEN6_PCODE_DATA, val);
7344         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7345
7346         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7347                      500)) {
7348                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7349                 return -ETIMEDOUT;
7350         }
7351
7352         I915_WRITE(GEN6_PCODE_DATA, 0);
7353
7354         return 0;
7355 }
7356
7357 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7358 {
7359         int div;
7360
7361         /* 4 x czclk */
7362         switch (dev_priv->mem_freq) {
7363         case 800:
7364                 div = 10;
7365                 break;
7366         case 1066:
7367                 div = 12;
7368                 break;
7369         case 1333:
7370                 div = 16;
7371                 break;
7372         default:
7373                 return -1;
7374         }
7375
7376         return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
7377 }
7378
7379 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7380 {
7381         int mul;
7382
7383         /* 4 x czclk */
7384         switch (dev_priv->mem_freq) {
7385         case 800:
7386                 mul = 10;
7387                 break;
7388         case 1066:
7389                 mul = 12;
7390                 break;
7391         case 1333:
7392                 mul = 16;
7393                 break;
7394         default:
7395                 return -1;
7396         }
7397
7398         return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
7399 }
7400
7401 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7402 {
7403         int div, freq;
7404
7405         switch (dev_priv->rps.cz_freq) {
7406         case 200:
7407                 div = 5;
7408                 break;
7409         case 267:
7410                 div = 6;
7411                 break;
7412         case 320:
7413         case 333:
7414         case 400:
7415                 div = 8;
7416                 break;
7417         default:
7418                 return -1;
7419         }
7420
7421         freq = (DIV_ROUND_CLOSEST((dev_priv->rps.cz_freq * val), 2 * div) / 2);
7422
7423         return freq;
7424 }
7425
7426 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7427 {
7428         int mul, opcode;
7429
7430         switch (dev_priv->rps.cz_freq) {
7431         case 200:
7432                 mul = 5;
7433                 break;
7434         case 267:
7435                 mul = 6;
7436                 break;
7437         case 320:
7438         case 333:
7439         case 400:
7440                 mul = 8;
7441                 break;
7442         default:
7443                 return -1;
7444         }
7445
7446         opcode = (DIV_ROUND_CLOSEST((val * 2 * mul), dev_priv->rps.cz_freq) * 2);
7447
7448         return opcode;
7449 }
7450
7451 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7452 {
7453         int ret = -1;
7454
7455         if (IS_CHERRYVIEW(dev_priv->dev))
7456                 ret = chv_gpu_freq(dev_priv, val);
7457         else if (IS_VALLEYVIEW(dev_priv->dev))
7458                 ret = byt_gpu_freq(dev_priv, val);
7459
7460         return ret;
7461 }
7462
7463 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7464 {
7465         int ret = -1;
7466
7467         if (IS_CHERRYVIEW(dev_priv->dev))
7468                 ret = chv_freq_opcode(dev_priv, val);
7469         else if (IS_VALLEYVIEW(dev_priv->dev))
7470                 ret = byt_freq_opcode(dev_priv, val);
7471
7472         return ret;
7473 }
7474
7475 void intel_pm_setup(struct drm_device *dev)
7476 {
7477         struct drm_i915_private *dev_priv = dev->dev_private;
7478
7479         mutex_init(&dev_priv->rps.hw_lock);
7480
7481         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7482                           intel_gen6_powersave_work);
7483
7484         dev_priv->pm.suspended = false;
7485         dev_priv->pm._irqs_disabled = false;
7486 }