]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
Merge branch 'nvme-4.10-fixes' of git://git.infradead.org/nvme into for-linus
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 /* Rough estimate of the typical request size, performing a flush,
38  * set-context and then emitting the batch.
39  */
40 #define LEGACY_REQUEST_SIZE 200
41
42 int __intel_ring_space(int head, int tail, int size)
43 {
44         int space = head - tail;
45         if (space <= 0)
46                 space += size;
47         return space - I915_RING_FREE_SPACE;
48 }
49
50 void intel_ring_update_space(struct intel_ring *ring)
51 {
52         if (ring->last_retired_head != -1) {
53                 ring->head = ring->last_retired_head;
54                 ring->last_retired_head = -1;
55         }
56
57         ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
58                                          ring->tail, ring->size);
59 }
60
61 static int
62 gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
63 {
64         struct intel_ring *ring = req->ring;
65         u32 cmd;
66         int ret;
67
68         cmd = MI_FLUSH;
69
70         if (mode & EMIT_INVALIDATE)
71                 cmd |= MI_READ_FLUSH;
72
73         ret = intel_ring_begin(req, 2);
74         if (ret)
75                 return ret;
76
77         intel_ring_emit(ring, cmd);
78         intel_ring_emit(ring, MI_NOOP);
79         intel_ring_advance(ring);
80
81         return 0;
82 }
83
84 static int
85 gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
86 {
87         struct intel_ring *ring = req->ring;
88         u32 cmd;
89         int ret;
90
91         /*
92          * read/write caches:
93          *
94          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
95          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
96          * also flushed at 2d versus 3d pipeline switches.
97          *
98          * read-only caches:
99          *
100          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
101          * MI_READ_FLUSH is set, and is always flushed on 965.
102          *
103          * I915_GEM_DOMAIN_COMMAND may not exist?
104          *
105          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
106          * invalidated when MI_EXE_FLUSH is set.
107          *
108          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
109          * invalidated with every MI_FLUSH.
110          *
111          * TLBs:
112          *
113          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
114          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
115          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
116          * are flushed at any MI_FLUSH.
117          */
118
119         cmd = MI_FLUSH;
120         if (mode & EMIT_INVALIDATE) {
121                 cmd |= MI_EXE_FLUSH;
122                 if (IS_G4X(req->i915) || IS_GEN5(req->i915))
123                         cmd |= MI_INVALIDATE_ISP;
124         }
125
126         ret = intel_ring_begin(req, 2);
127         if (ret)
128                 return ret;
129
130         intel_ring_emit(ring, cmd);
131         intel_ring_emit(ring, MI_NOOP);
132         intel_ring_advance(ring);
133
134         return 0;
135 }
136
137 /**
138  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
139  * implementing two workarounds on gen6.  From section 1.4.7.1
140  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
141  *
142  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
143  * produced by non-pipelined state commands), software needs to first
144  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
145  * 0.
146  *
147  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
148  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
149  *
150  * And the workaround for these two requires this workaround first:
151  *
152  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
153  * BEFORE the pipe-control with a post-sync op and no write-cache
154  * flushes.
155  *
156  * And this last workaround is tricky because of the requirements on
157  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
158  * volume 2 part 1:
159  *
160  *     "1 of the following must also be set:
161  *      - Render Target Cache Flush Enable ([12] of DW1)
162  *      - Depth Cache Flush Enable ([0] of DW1)
163  *      - Stall at Pixel Scoreboard ([1] of DW1)
164  *      - Depth Stall ([13] of DW1)
165  *      - Post-Sync Operation ([13] of DW1)
166  *      - Notify Enable ([8] of DW1)"
167  *
168  * The cache flushes require the workaround flush that triggered this
169  * one, so we can't use it.  Depth stall would trigger the same.
170  * Post-sync nonzero is what triggered this second workaround, so we
171  * can't use that one either.  Notify enable is IRQs, which aren't
172  * really our business.  That leaves only stall at scoreboard.
173  */
174 static int
175 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176 {
177         struct intel_ring *ring = req->ring;
178         u32 scratch_addr =
179                 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
180         int ret;
181
182         ret = intel_ring_begin(req, 6);
183         if (ret)
184                 return ret;
185
186         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
187         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
189         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
190         intel_ring_emit(ring, 0); /* low dword */
191         intel_ring_emit(ring, 0); /* high dword */
192         intel_ring_emit(ring, MI_NOOP);
193         intel_ring_advance(ring);
194
195         ret = intel_ring_begin(req, 6);
196         if (ret)
197                 return ret;
198
199         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
200         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
201         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
202         intel_ring_emit(ring, 0);
203         intel_ring_emit(ring, 0);
204         intel_ring_emit(ring, MI_NOOP);
205         intel_ring_advance(ring);
206
207         return 0;
208 }
209
210 static int
211 gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
212 {
213         struct intel_ring *ring = req->ring;
214         u32 scratch_addr =
215                 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
216         u32 flags = 0;
217         int ret;
218
219         /* Force SNB workarounds for PIPE_CONTROL flushes */
220         ret = intel_emit_post_sync_nonzero_flush(req);
221         if (ret)
222                 return ret;
223
224         /* Just flush everything.  Experiments have shown that reducing the
225          * number of bits based on the write domains has little performance
226          * impact.
227          */
228         if (mode & EMIT_FLUSH) {
229                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
230                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
231                 /*
232                  * Ensure that any following seqno writes only happen
233                  * when the render cache is indeed flushed.
234                  */
235                 flags |= PIPE_CONTROL_CS_STALL;
236         }
237         if (mode & EMIT_INVALIDATE) {
238                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
239                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
240                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
241                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
242                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
243                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
244                 /*
245                  * TLB invalidate requires a post-sync write.
246                  */
247                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
248         }
249
250         ret = intel_ring_begin(req, 4);
251         if (ret)
252                 return ret;
253
254         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
255         intel_ring_emit(ring, flags);
256         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
257         intel_ring_emit(ring, 0);
258         intel_ring_advance(ring);
259
260         return 0;
261 }
262
263 static int
264 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
265 {
266         struct intel_ring *ring = req->ring;
267         int ret;
268
269         ret = intel_ring_begin(req, 4);
270         if (ret)
271                 return ret;
272
273         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
274         intel_ring_emit(ring,
275                         PIPE_CONTROL_CS_STALL |
276                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
277         intel_ring_emit(ring, 0);
278         intel_ring_emit(ring, 0);
279         intel_ring_advance(ring);
280
281         return 0;
282 }
283
284 static int
285 gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
286 {
287         struct intel_ring *ring = req->ring;
288         u32 scratch_addr =
289                 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
290         u32 flags = 0;
291         int ret;
292
293         /*
294          * Ensure that any following seqno writes only happen when the render
295          * cache is indeed flushed.
296          *
297          * Workaround: 4th PIPE_CONTROL command (except the ones with only
298          * read-cache invalidate bits set) must have the CS_STALL bit set. We
299          * don't try to be clever and just set it unconditionally.
300          */
301         flags |= PIPE_CONTROL_CS_STALL;
302
303         /* Just flush everything.  Experiments have shown that reducing the
304          * number of bits based on the write domains has little performance
305          * impact.
306          */
307         if (mode & EMIT_FLUSH) {
308                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
309                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
310                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
311                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
312         }
313         if (mode & EMIT_INVALIDATE) {
314                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
315                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
316                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
317                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
318                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
319                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
320                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
321                 /*
322                  * TLB invalidate requires a post-sync write.
323                  */
324                 flags |= PIPE_CONTROL_QW_WRITE;
325                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
326
327                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
328
329                 /* Workaround: we must issue a pipe_control with CS-stall bit
330                  * set before a pipe_control command that has the state cache
331                  * invalidate bit set. */
332                 gen7_render_ring_cs_stall_wa(req);
333         }
334
335         ret = intel_ring_begin(req, 4);
336         if (ret)
337                 return ret;
338
339         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
340         intel_ring_emit(ring, flags);
341         intel_ring_emit(ring, scratch_addr);
342         intel_ring_emit(ring, 0);
343         intel_ring_advance(ring);
344
345         return 0;
346 }
347
348 static int
349 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
350                        u32 flags, u32 scratch_addr)
351 {
352         struct intel_ring *ring = req->ring;
353         int ret;
354
355         ret = intel_ring_begin(req, 6);
356         if (ret)
357                 return ret;
358
359         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
360         intel_ring_emit(ring, flags);
361         intel_ring_emit(ring, scratch_addr);
362         intel_ring_emit(ring, 0);
363         intel_ring_emit(ring, 0);
364         intel_ring_emit(ring, 0);
365         intel_ring_advance(ring);
366
367         return 0;
368 }
369
370 static int
371 gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
372 {
373         u32 scratch_addr =
374                 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
375         u32 flags = 0;
376         int ret;
377
378         flags |= PIPE_CONTROL_CS_STALL;
379
380         if (mode & EMIT_FLUSH) {
381                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
382                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
383                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
384                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
385         }
386         if (mode & EMIT_INVALIDATE) {
387                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
388                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
389                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
390                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
391                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
392                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
393                 flags |= PIPE_CONTROL_QW_WRITE;
394                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
395
396                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
397                 ret = gen8_emit_pipe_control(req,
398                                              PIPE_CONTROL_CS_STALL |
399                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
400                                              0);
401                 if (ret)
402                         return ret;
403         }
404
405         return gen8_emit_pipe_control(req, flags, scratch_addr);
406 }
407
408 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
409 {
410         struct drm_i915_private *dev_priv = engine->i915;
411         u32 addr;
412
413         addr = dev_priv->status_page_dmah->busaddr;
414         if (INTEL_GEN(dev_priv) >= 4)
415                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
416         I915_WRITE(HWS_PGA, addr);
417 }
418
419 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
420 {
421         struct drm_i915_private *dev_priv = engine->i915;
422         i915_reg_t mmio;
423
424         /* The ring status page addresses are no longer next to the rest of
425          * the ring registers as of gen7.
426          */
427         if (IS_GEN7(dev_priv)) {
428                 switch (engine->id) {
429                 case RCS:
430                         mmio = RENDER_HWS_PGA_GEN7;
431                         break;
432                 case BCS:
433                         mmio = BLT_HWS_PGA_GEN7;
434                         break;
435                 /*
436                  * VCS2 actually doesn't exist on Gen7. Only shut up
437                  * gcc switch check warning
438                  */
439                 case VCS2:
440                 case VCS:
441                         mmio = BSD_HWS_PGA_GEN7;
442                         break;
443                 case VECS:
444                         mmio = VEBOX_HWS_PGA_GEN7;
445                         break;
446                 }
447         } else if (IS_GEN6(dev_priv)) {
448                 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
449         } else {
450                 /* XXX: gen8 returns to sanity */
451                 mmio = RING_HWS_PGA(engine->mmio_base);
452         }
453
454         I915_WRITE(mmio, engine->status_page.ggtt_offset);
455         POSTING_READ(mmio);
456
457         /*
458          * Flush the TLB for this page
459          *
460          * FIXME: These two bits have disappeared on gen8, so a question
461          * arises: do we still need this and if so how should we go about
462          * invalidating the TLB?
463          */
464         if (IS_GEN(dev_priv, 6, 7)) {
465                 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
466
467                 /* ring should be idle before issuing a sync flush*/
468                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
469
470                 I915_WRITE(reg,
471                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
472                                               INSTPM_SYNC_FLUSH));
473                 if (intel_wait_for_register(dev_priv,
474                                             reg, INSTPM_SYNC_FLUSH, 0,
475                                             1000))
476                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
477                                   engine->name);
478         }
479 }
480
481 static bool stop_ring(struct intel_engine_cs *engine)
482 {
483         struct drm_i915_private *dev_priv = engine->i915;
484
485         if (INTEL_GEN(dev_priv) > 2) {
486                 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
487                 if (intel_wait_for_register(dev_priv,
488                                             RING_MI_MODE(engine->mmio_base),
489                                             MODE_IDLE,
490                                             MODE_IDLE,
491                                             1000)) {
492                         DRM_ERROR("%s : timed out trying to stop ring\n",
493                                   engine->name);
494                         /* Sometimes we observe that the idle flag is not
495                          * set even though the ring is empty. So double
496                          * check before giving up.
497                          */
498                         if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
499                                 return false;
500                 }
501         }
502
503         I915_WRITE_CTL(engine, 0);
504         I915_WRITE_HEAD(engine, 0);
505         I915_WRITE_TAIL(engine, 0);
506
507         if (INTEL_GEN(dev_priv) > 2) {
508                 (void)I915_READ_CTL(engine);
509                 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
510         }
511
512         return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
513 }
514
515 static int init_ring_common(struct intel_engine_cs *engine)
516 {
517         struct drm_i915_private *dev_priv = engine->i915;
518         struct intel_ring *ring = engine->buffer;
519         int ret = 0;
520
521         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
522
523         if (!stop_ring(engine)) {
524                 /* G45 ring initialization often fails to reset head to zero */
525                 DRM_DEBUG_KMS("%s head not reset to zero "
526                               "ctl %08x head %08x tail %08x start %08x\n",
527                               engine->name,
528                               I915_READ_CTL(engine),
529                               I915_READ_HEAD(engine),
530                               I915_READ_TAIL(engine),
531                               I915_READ_START(engine));
532
533                 if (!stop_ring(engine)) {
534                         DRM_ERROR("failed to set %s head to zero "
535                                   "ctl %08x head %08x tail %08x start %08x\n",
536                                   engine->name,
537                                   I915_READ_CTL(engine),
538                                   I915_READ_HEAD(engine),
539                                   I915_READ_TAIL(engine),
540                                   I915_READ_START(engine));
541                         ret = -EIO;
542                         goto out;
543                 }
544         }
545
546         if (HWS_NEEDS_PHYSICAL(dev_priv))
547                 ring_setup_phys_status_page(engine);
548         else
549                 intel_ring_setup_status_page(engine);
550
551         intel_engine_reset_breadcrumbs(engine);
552
553         /* Enforce ordering by reading HEAD register back */
554         I915_READ_HEAD(engine);
555
556         /* Initialize the ring. This must happen _after_ we've cleared the ring
557          * registers with the above sequence (the readback of the HEAD registers
558          * also enforces ordering), otherwise the hw might lose the new ring
559          * register values. */
560         I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
561
562         /* WaClearRingBufHeadRegAtInit:ctg,elk */
563         if (I915_READ_HEAD(engine))
564                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
565                           engine->name, I915_READ_HEAD(engine));
566
567         intel_ring_update_space(ring);
568         I915_WRITE_HEAD(engine, ring->head);
569         I915_WRITE_TAIL(engine, ring->tail);
570         (void)I915_READ_TAIL(engine);
571
572         I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
573
574         /* If the head is still not zero, the ring is dead */
575         if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
576                                        RING_VALID, RING_VALID,
577                                        50)) {
578                 DRM_ERROR("%s initialization failed "
579                           "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
580                           engine->name,
581                           I915_READ_CTL(engine),
582                           I915_READ_CTL(engine) & RING_VALID,
583                           I915_READ_HEAD(engine), ring->head,
584                           I915_READ_TAIL(engine), ring->tail,
585                           I915_READ_START(engine),
586                           i915_ggtt_offset(ring->vma));
587                 ret = -EIO;
588                 goto out;
589         }
590
591         intel_engine_init_hangcheck(engine);
592
593 out:
594         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
595
596         return ret;
597 }
598
599 static void reset_ring_common(struct intel_engine_cs *engine,
600                               struct drm_i915_gem_request *request)
601 {
602         struct intel_ring *ring = request->ring;
603
604         ring->head = request->postfix;
605         ring->last_retired_head = -1;
606 }
607
608 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
609 {
610         struct intel_ring *ring = req->ring;
611         struct i915_workarounds *w = &req->i915->workarounds;
612         int ret, i;
613
614         if (w->count == 0)
615                 return 0;
616
617         ret = req->engine->emit_flush(req, EMIT_BARRIER);
618         if (ret)
619                 return ret;
620
621         ret = intel_ring_begin(req, (w->count * 2 + 2));
622         if (ret)
623                 return ret;
624
625         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
626         for (i = 0; i < w->count; i++) {
627                 intel_ring_emit_reg(ring, w->reg[i].addr);
628                 intel_ring_emit(ring, w->reg[i].value);
629         }
630         intel_ring_emit(ring, MI_NOOP);
631
632         intel_ring_advance(ring);
633
634         ret = req->engine->emit_flush(req, EMIT_BARRIER);
635         if (ret)
636                 return ret;
637
638         DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
639
640         return 0;
641 }
642
643 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
644 {
645         int ret;
646
647         ret = intel_ring_workarounds_emit(req);
648         if (ret != 0)
649                 return ret;
650
651         ret = i915_gem_render_state_emit(req);
652         if (ret)
653                 return ret;
654
655         return 0;
656 }
657
658 static int wa_add(struct drm_i915_private *dev_priv,
659                   i915_reg_t addr,
660                   const u32 mask, const u32 val)
661 {
662         const u32 idx = dev_priv->workarounds.count;
663
664         if (WARN_ON(idx >= I915_MAX_WA_REGS))
665                 return -ENOSPC;
666
667         dev_priv->workarounds.reg[idx].addr = addr;
668         dev_priv->workarounds.reg[idx].value = val;
669         dev_priv->workarounds.reg[idx].mask = mask;
670
671         dev_priv->workarounds.count++;
672
673         return 0;
674 }
675
676 #define WA_REG(addr, mask, val) do { \
677                 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
678                 if (r) \
679                         return r; \
680         } while (0)
681
682 #define WA_SET_BIT_MASKED(addr, mask) \
683         WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
684
685 #define WA_CLR_BIT_MASKED(addr, mask) \
686         WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
687
688 #define WA_SET_FIELD_MASKED(addr, mask, value) \
689         WA_REG(addr, mask, _MASKED_FIELD(mask, value))
690
691 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
692 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
693
694 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
695
696 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
697                                  i915_reg_t reg)
698 {
699         struct drm_i915_private *dev_priv = engine->i915;
700         struct i915_workarounds *wa = &dev_priv->workarounds;
701         const uint32_t index = wa->hw_whitelist_count[engine->id];
702
703         if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
704                 return -EINVAL;
705
706         WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
707                  i915_mmio_reg_offset(reg));
708         wa->hw_whitelist_count[engine->id]++;
709
710         return 0;
711 }
712
713 static int gen8_init_workarounds(struct intel_engine_cs *engine)
714 {
715         struct drm_i915_private *dev_priv = engine->i915;
716
717         WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
718
719         /* WaDisableAsyncFlipPerfMode:bdw,chv */
720         WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
721
722         /* WaDisablePartialInstShootdown:bdw,chv */
723         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
724                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
725
726         /* Use Force Non-Coherent whenever executing a 3D context. This is a
727          * workaround for for a possible hang in the unlikely event a TLB
728          * invalidation occurs during a PSD flush.
729          */
730         /* WaForceEnableNonCoherent:bdw,chv */
731         /* WaHdcDisableFetchWhenMasked:bdw,chv */
732         WA_SET_BIT_MASKED(HDC_CHICKEN0,
733                           HDC_DONOT_FETCH_MEM_WHEN_MASKED |
734                           HDC_FORCE_NON_COHERENT);
735
736         /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
737          * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
738          *  polygons in the same 8x4 pixel/sample area to be processed without
739          *  stalling waiting for the earlier ones to write to Hierarchical Z
740          *  buffer."
741          *
742          * This optimization is off by default for BDW and CHV; turn it on.
743          */
744         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
745
746         /* Wa4x4STCOptimizationDisable:bdw,chv */
747         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
748
749         /*
750          * BSpec recommends 8x4 when MSAA is used,
751          * however in practice 16x4 seems fastest.
752          *
753          * Note that PS/WM thread counts depend on the WIZ hashing
754          * disable bit, which we don't touch here, but it's good
755          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
756          */
757         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
758                             GEN6_WIZ_HASHING_MASK,
759                             GEN6_WIZ_HASHING_16x4);
760
761         return 0;
762 }
763
764 static int bdw_init_workarounds(struct intel_engine_cs *engine)
765 {
766         struct drm_i915_private *dev_priv = engine->i915;
767         int ret;
768
769         ret = gen8_init_workarounds(engine);
770         if (ret)
771                 return ret;
772
773         /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
774         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
775
776         /* WaDisableDopClockGating:bdw */
777         WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
778                           DOP_CLOCK_GATING_DISABLE);
779
780         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
781                           GEN8_SAMPLER_POWER_BYPASS_DIS);
782
783         WA_SET_BIT_MASKED(HDC_CHICKEN0,
784                           /* WaForceContextSaveRestoreNonCoherent:bdw */
785                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
786                           /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
787                           (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
788
789         return 0;
790 }
791
792 static int chv_init_workarounds(struct intel_engine_cs *engine)
793 {
794         struct drm_i915_private *dev_priv = engine->i915;
795         int ret;
796
797         ret = gen8_init_workarounds(engine);
798         if (ret)
799                 return ret;
800
801         /* WaDisableThreadStallDopClockGating:chv */
802         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
803
804         /* Improve HiZ throughput on CHV. */
805         WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
806
807         return 0;
808 }
809
810 static int gen9_init_workarounds(struct intel_engine_cs *engine)
811 {
812         struct drm_i915_private *dev_priv = engine->i915;
813         int ret;
814
815         /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
816         I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
817
818         /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
819         I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
820                    GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
821
822         /* WaDisableKillLogic:bxt,skl,kbl */
823         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
824                    ECOCHK_DIS_TLB);
825
826         /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
827         /* WaDisablePartialInstShootdown:skl,bxt,kbl */
828         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
829                           FLOW_CONTROL_ENABLE |
830                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
831
832         /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
833         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
834                           GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
835
836         /* WaDisableDgMirrorFixInHalfSliceChicken5:bxt */
837         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
838                 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
839                                   GEN9_DG_MIRROR_FIX_ENABLE);
840
841         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
842         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
843                 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
844                                   GEN9_RHWO_OPTIMIZATION_DISABLE);
845                 /*
846                  * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
847                  * but we do that in per ctx batchbuffer as there is an issue
848                  * with this register not getting restored on ctx restore
849                  */
850         }
851
852         /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
853         WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
854                           GEN9_ENABLE_GPGPU_PREEMPTION);
855
856         /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
857         /* WaDisablePartialResolveInVc:skl,bxt,kbl */
858         WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
859                                          GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
860
861         /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
862         WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
863                           GEN9_CCS_TLB_PREFETCH_ENABLE);
864
865         /* WaDisableMaskBasedCammingInRCC:bxt */
866         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
867                 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
868                                   PIXEL_MASK_CAMMING_DISABLE);
869
870         /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
871         WA_SET_BIT_MASKED(HDC_CHICKEN0,
872                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
873                           HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
874
875         /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
876          * both tied to WaForceContextSaveRestoreNonCoherent
877          * in some hsds for skl. We keep the tie for all gen9. The
878          * documentation is a bit hazy and so we want to get common behaviour,
879          * even though there is no clear evidence we would need both on kbl/bxt.
880          * This area has been source of system hangs so we play it safe
881          * and mimic the skl regardless of what bspec says.
882          *
883          * Use Force Non-Coherent whenever executing a 3D context. This
884          * is a workaround for a possible hang in the unlikely event
885          * a TLB invalidation occurs during a PSD flush.
886          */
887
888         /* WaForceEnableNonCoherent:skl,bxt,kbl */
889         WA_SET_BIT_MASKED(HDC_CHICKEN0,
890                           HDC_FORCE_NON_COHERENT);
891
892         /* WaDisableHDCInvalidation:skl,bxt,kbl */
893         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
894                    BDW_DISABLE_HDC_INVALIDATION);
895
896         /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
897         if (IS_SKYLAKE(dev_priv) ||
898             IS_KABYLAKE(dev_priv) ||
899             IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
900                 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
901                                   GEN8_SAMPLER_POWER_BYPASS_DIS);
902
903         /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
904         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
905
906         /* WaOCLCoherentLineFlush:skl,bxt,kbl */
907         I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
908                                     GEN8_LQSC_FLUSH_COHERENT_LINES));
909
910         /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
911         ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
912         if (ret)
913                 return ret;
914
915         /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
916         ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
917         if (ret)
918                 return ret;
919
920         /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
921         ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
922         if (ret)
923                 return ret;
924
925         return 0;
926 }
927
928 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
929 {
930         struct drm_i915_private *dev_priv = engine->i915;
931         u8 vals[3] = { 0, 0, 0 };
932         unsigned int i;
933
934         for (i = 0; i < 3; i++) {
935                 u8 ss;
936
937                 /*
938                  * Only consider slices where one, and only one, subslice has 7
939                  * EUs
940                  */
941                 if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
942                         continue;
943
944                 /*
945                  * subslice_7eu[i] != 0 (because of the check above) and
946                  * ss_max == 4 (maximum number of subslices possible per slice)
947                  *
948                  * ->    0 <= ss <= 3;
949                  */
950                 ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
951                 vals[i] = 3 - ss;
952         }
953
954         if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
955                 return 0;
956
957         /* Tune IZ hashing. See intel_device_info_runtime_init() */
958         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
959                             GEN9_IZ_HASHING_MASK(2) |
960                             GEN9_IZ_HASHING_MASK(1) |
961                             GEN9_IZ_HASHING_MASK(0),
962                             GEN9_IZ_HASHING(2, vals[2]) |
963                             GEN9_IZ_HASHING(1, vals[1]) |
964                             GEN9_IZ_HASHING(0, vals[0]));
965
966         return 0;
967 }
968
969 static int skl_init_workarounds(struct intel_engine_cs *engine)
970 {
971         struct drm_i915_private *dev_priv = engine->i915;
972         int ret;
973
974         ret = gen9_init_workarounds(engine);
975         if (ret)
976                 return ret;
977
978         /*
979          * Actual WA is to disable percontext preemption granularity control
980          * until D0 which is the default case so this is equivalent to
981          * !WaDisablePerCtxtPreemptionGranularityControl:skl
982          */
983         I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
984                    _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
985
986         /* WaEnableGapsTsvCreditFix:skl */
987         I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
988                                    GEN9_GAPS_TSV_CREDIT_DISABLE));
989
990         /* WaDisableGafsUnitClkGating:skl */
991         WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
992
993         /* WaInPlaceDecompressionHang:skl */
994         if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
995                 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
996                            GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
997
998         /* WaDisableLSQCROPERFforOCL:skl */
999         ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1000         if (ret)
1001                 return ret;
1002
1003         return skl_tune_iz_hashing(engine);
1004 }
1005
1006 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1007 {
1008         struct drm_i915_private *dev_priv = engine->i915;
1009         int ret;
1010
1011         ret = gen9_init_workarounds(engine);
1012         if (ret)
1013                 return ret;
1014
1015         /* WaStoreMultiplePTEenable:bxt */
1016         /* This is a requirement according to Hardware specification */
1017         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1018                 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1019
1020         /* WaSetClckGatingDisableMedia:bxt */
1021         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1022                 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1023                                             ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1024         }
1025
1026         /* WaDisableThreadStallDopClockGating:bxt */
1027         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1028                           STALL_DOP_GATING_DISABLE);
1029
1030         /* WaDisablePooledEuLoadBalancingFix:bxt */
1031         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
1032                 WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
1033                                   GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
1034         }
1035
1036         /* WaDisableSbeCacheDispatchPortSharing:bxt */
1037         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1038                 WA_SET_BIT_MASKED(
1039                         GEN7_HALF_SLICE_CHICKEN1,
1040                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1041         }
1042
1043         /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1044         /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1045         /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1046         /* WaDisableLSQCROPERFforOCL:bxt */
1047         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1048                 ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1049                 if (ret)
1050                         return ret;
1051
1052                 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1053                 if (ret)
1054                         return ret;
1055         }
1056
1057         /* WaProgramL3SqcReg1DefaultForPerf:bxt */
1058         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1059                 I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
1060                                            L3_HIGH_PRIO_CREDITS(2));
1061
1062         /* WaToEnableHwFixForPushConstHWBug:bxt */
1063         if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1064                 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1065                                   GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1066
1067         /* WaInPlaceDecompressionHang:bxt */
1068         if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1069                 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1070                            GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1071
1072         return 0;
1073 }
1074
1075 static int kbl_init_workarounds(struct intel_engine_cs *engine)
1076 {
1077         struct drm_i915_private *dev_priv = engine->i915;
1078         int ret;
1079
1080         ret = gen9_init_workarounds(engine);
1081         if (ret)
1082                 return ret;
1083
1084         /* WaEnableGapsTsvCreditFix:kbl */
1085         I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1086                                    GEN9_GAPS_TSV_CREDIT_DISABLE));
1087
1088         /* WaDisableDynamicCreditSharing:kbl */
1089         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1090                 WA_SET_BIT(GAMT_CHKN_BIT_REG,
1091                            GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1092
1093         /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1094         if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1095                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1096                                   HDC_FENCE_DEST_SLM_DISABLE);
1097
1098         /* WaToEnableHwFixForPushConstHWBug:kbl */
1099         if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1100                 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1101                                   GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1102
1103         /* WaDisableGafsUnitClkGating:kbl */
1104         WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1105
1106         /* WaDisableSbeCacheDispatchPortSharing:kbl */
1107         WA_SET_BIT_MASKED(
1108                 GEN7_HALF_SLICE_CHICKEN1,
1109                 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1110
1111         /* WaInPlaceDecompressionHang:kbl */
1112         WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1113                    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1114
1115         /* WaDisableLSQCROPERFforOCL:kbl */
1116         ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1117         if (ret)
1118                 return ret;
1119
1120         return 0;
1121 }
1122
1123 int init_workarounds_ring(struct intel_engine_cs *engine)
1124 {
1125         struct drm_i915_private *dev_priv = engine->i915;
1126
1127         WARN_ON(engine->id != RCS);
1128
1129         dev_priv->workarounds.count = 0;
1130         dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1131
1132         if (IS_BROADWELL(dev_priv))
1133                 return bdw_init_workarounds(engine);
1134
1135         if (IS_CHERRYVIEW(dev_priv))
1136                 return chv_init_workarounds(engine);
1137
1138         if (IS_SKYLAKE(dev_priv))
1139                 return skl_init_workarounds(engine);
1140
1141         if (IS_BROXTON(dev_priv))
1142                 return bxt_init_workarounds(engine);
1143
1144         if (IS_KABYLAKE(dev_priv))
1145                 return kbl_init_workarounds(engine);
1146
1147         return 0;
1148 }
1149
1150 static int init_render_ring(struct intel_engine_cs *engine)
1151 {
1152         struct drm_i915_private *dev_priv = engine->i915;
1153         int ret = init_ring_common(engine);
1154         if (ret)
1155                 return ret;
1156
1157         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1158         if (IS_GEN(dev_priv, 4, 6))
1159                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1160
1161         /* We need to disable the AsyncFlip performance optimisations in order
1162          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1163          * programmed to '1' on all products.
1164          *
1165          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1166          */
1167         if (IS_GEN(dev_priv, 6, 7))
1168                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1169
1170         /* Required for the hardware to program scanline values for waiting */
1171         /* WaEnableFlushTlbInvalidationMode:snb */
1172         if (IS_GEN6(dev_priv))
1173                 I915_WRITE(GFX_MODE,
1174                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1175
1176         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1177         if (IS_GEN7(dev_priv))
1178                 I915_WRITE(GFX_MODE_GEN7,
1179                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1180                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1181
1182         if (IS_GEN6(dev_priv)) {
1183                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1184                  * "If this bit is set, STCunit will have LRA as replacement
1185                  *  policy. [...] This bit must be reset.  LRA replacement
1186                  *  policy is not supported."
1187                  */
1188                 I915_WRITE(CACHE_MODE_0,
1189                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1190         }
1191
1192         if (IS_GEN(dev_priv, 6, 7))
1193                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1194
1195         if (INTEL_INFO(dev_priv)->gen >= 6)
1196                 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1197
1198         return init_workarounds_ring(engine);
1199 }
1200
1201 static void render_ring_cleanup(struct intel_engine_cs *engine)
1202 {
1203         struct drm_i915_private *dev_priv = engine->i915;
1204
1205         i915_vma_unpin_and_release(&dev_priv->semaphore);
1206 }
1207
1208 static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *out)
1209 {
1210         struct drm_i915_private *dev_priv = req->i915;
1211         struct intel_engine_cs *waiter;
1212         enum intel_engine_id id;
1213
1214         for_each_engine(waiter, dev_priv, id) {
1215                 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1216                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1217                         continue;
1218
1219                 *out++ = GFX_OP_PIPE_CONTROL(6);
1220                 *out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1221                           PIPE_CONTROL_QW_WRITE |
1222                           PIPE_CONTROL_CS_STALL);
1223                 *out++ = lower_32_bits(gtt_offset);
1224                 *out++ = upper_32_bits(gtt_offset);
1225                 *out++ = req->global_seqno;
1226                 *out++ = 0;
1227                 *out++ = (MI_SEMAPHORE_SIGNAL |
1228                           MI_SEMAPHORE_TARGET(waiter->hw_id));
1229                 *out++ = 0;
1230         }
1231
1232         return out;
1233 }
1234
1235 static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *out)
1236 {
1237         struct drm_i915_private *dev_priv = req->i915;
1238         struct intel_engine_cs *waiter;
1239         enum intel_engine_id id;
1240
1241         for_each_engine(waiter, dev_priv, id) {
1242                 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1243                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1244                         continue;
1245
1246                 *out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1247                 *out++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
1248                 *out++ = upper_32_bits(gtt_offset);
1249                 *out++ = req->global_seqno;
1250                 *out++ = (MI_SEMAPHORE_SIGNAL |
1251                           MI_SEMAPHORE_TARGET(waiter->hw_id));
1252                 *out++ = 0;
1253         }
1254
1255         return out;
1256 }
1257
1258 static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *out)
1259 {
1260         struct drm_i915_private *dev_priv = req->i915;
1261         struct intel_engine_cs *engine;
1262         enum intel_engine_id id;
1263         int num_rings = 0;
1264
1265         for_each_engine(engine, dev_priv, id) {
1266                 i915_reg_t mbox_reg;
1267
1268                 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
1269                         continue;
1270
1271                 mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
1272                 if (i915_mmio_reg_valid(mbox_reg)) {
1273                         *out++ = MI_LOAD_REGISTER_IMM(1);
1274                         *out++ = i915_mmio_reg_offset(mbox_reg);
1275                         *out++ = req->global_seqno;
1276                         num_rings++;
1277                 }
1278         }
1279         if (num_rings & 1)
1280                 *out++ = MI_NOOP;
1281
1282         return out;
1283 }
1284
1285 static void i9xx_submit_request(struct drm_i915_gem_request *request)
1286 {
1287         struct drm_i915_private *dev_priv = request->i915;
1288
1289         i915_gem_request_submit(request);
1290
1291         I915_WRITE_TAIL(request->engine, request->tail);
1292 }
1293
1294 static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req,
1295                                  u32 *out)
1296 {
1297         *out++ = MI_STORE_DWORD_INDEX;
1298         *out++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
1299         *out++ = req->global_seqno;
1300         *out++ = MI_USER_INTERRUPT;
1301
1302         req->tail = intel_ring_offset(req->ring, out);
1303 }
1304
1305 static const int i9xx_emit_breadcrumb_sz = 4;
1306
1307 /**
1308  * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
1309  *
1310  * @request - request to write to the ring
1311  *
1312  * Update the mailbox registers in the *other* rings with the current seqno.
1313  * This acts like a signal in the canonical semaphore.
1314  */
1315 static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req,
1316                                       u32 *out)
1317 {
1318         return i9xx_emit_breadcrumb(req,
1319                                     req->engine->semaphore.signal(req, out));
1320 }
1321
1322 static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
1323                                         u32 *out)
1324 {
1325         struct intel_engine_cs *engine = req->engine;
1326
1327         if (engine->semaphore.signal)
1328                 out = engine->semaphore.signal(req, out);
1329
1330         *out++ = GFX_OP_PIPE_CONTROL(6);
1331         *out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1332                                PIPE_CONTROL_CS_STALL |
1333                                PIPE_CONTROL_QW_WRITE);
1334         *out++ = intel_hws_seqno_address(engine);
1335         *out++ = 0;
1336         *out++ = req->global_seqno;
1337         /* We're thrashing one dword of HWS. */
1338         *out++ = 0;
1339         *out++ = MI_USER_INTERRUPT;
1340         *out++ = MI_NOOP;
1341
1342         req->tail = intel_ring_offset(req->ring, out);
1343 }
1344
1345 static const int gen8_render_emit_breadcrumb_sz = 8;
1346
1347 /**
1348  * intel_ring_sync - sync the waiter to the signaller on seqno
1349  *
1350  * @waiter - ring that is waiting
1351  * @signaller - ring which has, or will signal
1352  * @seqno - seqno which the waiter will block on
1353  */
1354
1355 static int
1356 gen8_ring_sync_to(struct drm_i915_gem_request *req,
1357                   struct drm_i915_gem_request *signal)
1358 {
1359         struct intel_ring *ring = req->ring;
1360         struct drm_i915_private *dev_priv = req->i915;
1361         u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
1362         struct i915_hw_ppgtt *ppgtt;
1363         int ret;
1364
1365         ret = intel_ring_begin(req, 4);
1366         if (ret)
1367                 return ret;
1368
1369         intel_ring_emit(ring,
1370                         MI_SEMAPHORE_WAIT |
1371                         MI_SEMAPHORE_GLOBAL_GTT |
1372                         MI_SEMAPHORE_SAD_GTE_SDD);
1373         intel_ring_emit(ring, signal->global_seqno);
1374         intel_ring_emit(ring, lower_32_bits(offset));
1375         intel_ring_emit(ring, upper_32_bits(offset));
1376         intel_ring_advance(ring);
1377
1378         /* When the !RCS engines idle waiting upon a semaphore, they lose their
1379          * pagetables and we must reload them before executing the batch.
1380          * We do this on the i915_switch_context() following the wait and
1381          * before the dispatch.
1382          */
1383         ppgtt = req->ctx->ppgtt;
1384         if (ppgtt && req->engine->id != RCS)
1385                 ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
1386         return 0;
1387 }
1388
1389 static int
1390 gen6_ring_sync_to(struct drm_i915_gem_request *req,
1391                   struct drm_i915_gem_request *signal)
1392 {
1393         struct intel_ring *ring = req->ring;
1394         u32 dw1 = MI_SEMAPHORE_MBOX |
1395                   MI_SEMAPHORE_COMPARE |
1396                   MI_SEMAPHORE_REGISTER;
1397         u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
1398         int ret;
1399
1400         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1401
1402         ret = intel_ring_begin(req, 4);
1403         if (ret)
1404                 return ret;
1405
1406         intel_ring_emit(ring, dw1 | wait_mbox);
1407         /* Throughout all of the GEM code, seqno passed implies our current
1408          * seqno is >= the last seqno executed. However for hardware the
1409          * comparison is strictly greater than.
1410          */
1411         intel_ring_emit(ring, signal->global_seqno - 1);
1412         intel_ring_emit(ring, 0);
1413         intel_ring_emit(ring, MI_NOOP);
1414         intel_ring_advance(ring);
1415
1416         return 0;
1417 }
1418
1419 static void
1420 gen5_seqno_barrier(struct intel_engine_cs *engine)
1421 {
1422         /* MI_STORE are internally buffered by the GPU and not flushed
1423          * either by MI_FLUSH or SyncFlush or any other combination of
1424          * MI commands.
1425          *
1426          * "Only the submission of the store operation is guaranteed.
1427          * The write result will be complete (coherent) some time later
1428          * (this is practically a finite period but there is no guaranteed
1429          * latency)."
1430          *
1431          * Empirically, we observe that we need a delay of at least 75us to
1432          * be sure that the seqno write is visible by the CPU.
1433          */
1434         usleep_range(125, 250);
1435 }
1436
1437 static void
1438 gen6_seqno_barrier(struct intel_engine_cs *engine)
1439 {
1440         struct drm_i915_private *dev_priv = engine->i915;
1441
1442         /* Workaround to force correct ordering between irq and seqno writes on
1443          * ivb (and maybe also on snb) by reading from a CS register (like
1444          * ACTHD) before reading the status page.
1445          *
1446          * Note that this effectively stalls the read by the time it takes to
1447          * do a memory transaction, which more or less ensures that the write
1448          * from the GPU has sufficient time to invalidate the CPU cacheline.
1449          * Alternatively we could delay the interrupt from the CS ring to give
1450          * the write time to land, but that would incur a delay after every
1451          * batch i.e. much more frequent than a delay when waiting for the
1452          * interrupt (with the same net latency).
1453          *
1454          * Also note that to prevent whole machine hangs on gen7, we have to
1455          * take the spinlock to guard against concurrent cacheline access.
1456          */
1457         spin_lock_irq(&dev_priv->uncore.lock);
1458         POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1459         spin_unlock_irq(&dev_priv->uncore.lock);
1460 }
1461
1462 static void
1463 gen5_irq_enable(struct intel_engine_cs *engine)
1464 {
1465         gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1466 }
1467
1468 static void
1469 gen5_irq_disable(struct intel_engine_cs *engine)
1470 {
1471         gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1472 }
1473
1474 static void
1475 i9xx_irq_enable(struct intel_engine_cs *engine)
1476 {
1477         struct drm_i915_private *dev_priv = engine->i915;
1478
1479         dev_priv->irq_mask &= ~engine->irq_enable_mask;
1480         I915_WRITE(IMR, dev_priv->irq_mask);
1481         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1482 }
1483
1484 static void
1485 i9xx_irq_disable(struct intel_engine_cs *engine)
1486 {
1487         struct drm_i915_private *dev_priv = engine->i915;
1488
1489         dev_priv->irq_mask |= engine->irq_enable_mask;
1490         I915_WRITE(IMR, dev_priv->irq_mask);
1491 }
1492
1493 static void
1494 i8xx_irq_enable(struct intel_engine_cs *engine)
1495 {
1496         struct drm_i915_private *dev_priv = engine->i915;
1497
1498         dev_priv->irq_mask &= ~engine->irq_enable_mask;
1499         I915_WRITE16(IMR, dev_priv->irq_mask);
1500         POSTING_READ16(RING_IMR(engine->mmio_base));
1501 }
1502
1503 static void
1504 i8xx_irq_disable(struct intel_engine_cs *engine)
1505 {
1506         struct drm_i915_private *dev_priv = engine->i915;
1507
1508         dev_priv->irq_mask |= engine->irq_enable_mask;
1509         I915_WRITE16(IMR, dev_priv->irq_mask);
1510 }
1511
1512 static int
1513 bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1514 {
1515         struct intel_ring *ring = req->ring;
1516         int ret;
1517
1518         ret = intel_ring_begin(req, 2);
1519         if (ret)
1520                 return ret;
1521
1522         intel_ring_emit(ring, MI_FLUSH);
1523         intel_ring_emit(ring, MI_NOOP);
1524         intel_ring_advance(ring);
1525         return 0;
1526 }
1527
1528 static void
1529 gen6_irq_enable(struct intel_engine_cs *engine)
1530 {
1531         struct drm_i915_private *dev_priv = engine->i915;
1532
1533         I915_WRITE_IMR(engine,
1534                        ~(engine->irq_enable_mask |
1535                          engine->irq_keep_mask));
1536         gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1537 }
1538
1539 static void
1540 gen6_irq_disable(struct intel_engine_cs *engine)
1541 {
1542         struct drm_i915_private *dev_priv = engine->i915;
1543
1544         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1545         gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1546 }
1547
1548 static void
1549 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1550 {
1551         struct drm_i915_private *dev_priv = engine->i915;
1552
1553         I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1554         gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
1555 }
1556
1557 static void
1558 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1559 {
1560         struct drm_i915_private *dev_priv = engine->i915;
1561
1562         I915_WRITE_IMR(engine, ~0);
1563         gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
1564 }
1565
1566 static void
1567 gen8_irq_enable(struct intel_engine_cs *engine)
1568 {
1569         struct drm_i915_private *dev_priv = engine->i915;
1570
1571         I915_WRITE_IMR(engine,
1572                        ~(engine->irq_enable_mask |
1573                          engine->irq_keep_mask));
1574         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1575 }
1576
1577 static void
1578 gen8_irq_disable(struct intel_engine_cs *engine)
1579 {
1580         struct drm_i915_private *dev_priv = engine->i915;
1581
1582         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1583 }
1584
1585 static int
1586 i965_emit_bb_start(struct drm_i915_gem_request *req,
1587                    u64 offset, u32 length,
1588                    unsigned int dispatch_flags)
1589 {
1590         struct intel_ring *ring = req->ring;
1591         int ret;
1592
1593         ret = intel_ring_begin(req, 2);
1594         if (ret)
1595                 return ret;
1596
1597         intel_ring_emit(ring,
1598                         MI_BATCH_BUFFER_START |
1599                         MI_BATCH_GTT |
1600                         (dispatch_flags & I915_DISPATCH_SECURE ?
1601                          0 : MI_BATCH_NON_SECURE_I965));
1602         intel_ring_emit(ring, offset);
1603         intel_ring_advance(ring);
1604
1605         return 0;
1606 }
1607
1608 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1609 #define I830_BATCH_LIMIT (256*1024)
1610 #define I830_TLB_ENTRIES (2)
1611 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1612 static int
1613 i830_emit_bb_start(struct drm_i915_gem_request *req,
1614                    u64 offset, u32 len,
1615                    unsigned int dispatch_flags)
1616 {
1617         struct intel_ring *ring = req->ring;
1618         u32 cs_offset = i915_ggtt_offset(req->engine->scratch);
1619         int ret;
1620
1621         ret = intel_ring_begin(req, 6);
1622         if (ret)
1623                 return ret;
1624
1625         /* Evict the invalid PTE TLBs */
1626         intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1627         intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1628         intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1629         intel_ring_emit(ring, cs_offset);
1630         intel_ring_emit(ring, 0xdeadbeef);
1631         intel_ring_emit(ring, MI_NOOP);
1632         intel_ring_advance(ring);
1633
1634         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1635                 if (len > I830_BATCH_LIMIT)
1636                         return -ENOSPC;
1637
1638                 ret = intel_ring_begin(req, 6 + 2);
1639                 if (ret)
1640                         return ret;
1641
1642                 /* Blit the batch (which has now all relocs applied) to the
1643                  * stable batch scratch bo area (so that the CS never
1644                  * stumbles over its tlb invalidation bug) ...
1645                  */
1646                 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1647                 intel_ring_emit(ring,
1648                                 BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1649                 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1650                 intel_ring_emit(ring, cs_offset);
1651                 intel_ring_emit(ring, 4096);
1652                 intel_ring_emit(ring, offset);
1653
1654                 intel_ring_emit(ring, MI_FLUSH);
1655                 intel_ring_emit(ring, MI_NOOP);
1656                 intel_ring_advance(ring);
1657
1658                 /* ... and execute it. */
1659                 offset = cs_offset;
1660         }
1661
1662         ret = intel_ring_begin(req, 2);
1663         if (ret)
1664                 return ret;
1665
1666         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1667         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1668                                         0 : MI_BATCH_NON_SECURE));
1669         intel_ring_advance(ring);
1670
1671         return 0;
1672 }
1673
1674 static int
1675 i915_emit_bb_start(struct drm_i915_gem_request *req,
1676                    u64 offset, u32 len,
1677                    unsigned int dispatch_flags)
1678 {
1679         struct intel_ring *ring = req->ring;
1680         int ret;
1681
1682         ret = intel_ring_begin(req, 2);
1683         if (ret)
1684                 return ret;
1685
1686         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1687         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1688                                         0 : MI_BATCH_NON_SECURE));
1689         intel_ring_advance(ring);
1690
1691         return 0;
1692 }
1693
1694 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1695 {
1696         struct drm_i915_private *dev_priv = engine->i915;
1697
1698         if (!dev_priv->status_page_dmah)
1699                 return;
1700
1701         drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1702         engine->status_page.page_addr = NULL;
1703 }
1704
1705 static void cleanup_status_page(struct intel_engine_cs *engine)
1706 {
1707         struct i915_vma *vma;
1708         struct drm_i915_gem_object *obj;
1709
1710         vma = fetch_and_zero(&engine->status_page.vma);
1711         if (!vma)
1712                 return;
1713
1714         obj = vma->obj;
1715
1716         i915_vma_unpin(vma);
1717         i915_vma_close(vma);
1718
1719         i915_gem_object_unpin_map(obj);
1720         __i915_gem_object_release_unless_active(obj);
1721 }
1722
1723 static int init_status_page(struct intel_engine_cs *engine)
1724 {
1725         struct drm_i915_gem_object *obj;
1726         struct i915_vma *vma;
1727         unsigned int flags;
1728         void *vaddr;
1729         int ret;
1730
1731         obj = i915_gem_object_create_internal(engine->i915, 4096);
1732         if (IS_ERR(obj)) {
1733                 DRM_ERROR("Failed to allocate status page\n");
1734                 return PTR_ERR(obj);
1735         }
1736
1737         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1738         if (ret)
1739                 goto err;
1740
1741         vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1742         if (IS_ERR(vma)) {
1743                 ret = PTR_ERR(vma);
1744                 goto err;
1745         }
1746
1747         flags = PIN_GLOBAL;
1748         if (!HAS_LLC(engine->i915))
1749                 /* On g33, we cannot place HWS above 256MiB, so
1750                  * restrict its pinning to the low mappable arena.
1751                  * Though this restriction is not documented for
1752                  * gen4, gen5, or byt, they also behave similarly
1753                  * and hang if the HWS is placed at the top of the
1754                  * GTT. To generalise, it appears that all !llc
1755                  * platforms have issues with us placing the HWS
1756                  * above the mappable region (even though we never
1757                  * actualy map it).
1758                  */
1759                 flags |= PIN_MAPPABLE;
1760         ret = i915_vma_pin(vma, 0, 4096, flags);
1761         if (ret)
1762                 goto err;
1763
1764         vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1765         if (IS_ERR(vaddr)) {
1766                 ret = PTR_ERR(vaddr);
1767                 goto err_unpin;
1768         }
1769
1770         engine->status_page.vma = vma;
1771         engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1772         engine->status_page.page_addr = memset(vaddr, 0, 4096);
1773
1774         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1775                          engine->name, i915_ggtt_offset(vma));
1776         return 0;
1777
1778 err_unpin:
1779         i915_vma_unpin(vma);
1780 err:
1781         i915_gem_object_put(obj);
1782         return ret;
1783 }
1784
1785 static int init_phys_status_page(struct intel_engine_cs *engine)
1786 {
1787         struct drm_i915_private *dev_priv = engine->i915;
1788
1789         dev_priv->status_page_dmah =
1790                 drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1791         if (!dev_priv->status_page_dmah)
1792                 return -ENOMEM;
1793
1794         engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1795         memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1796
1797         return 0;
1798 }
1799
1800 int intel_ring_pin(struct intel_ring *ring)
1801 {
1802         /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1803         unsigned int flags = PIN_GLOBAL | PIN_OFFSET_BIAS | 4096;
1804         enum i915_map_type map;
1805         struct i915_vma *vma = ring->vma;
1806         void *addr;
1807         int ret;
1808
1809         GEM_BUG_ON(ring->vaddr);
1810
1811         map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;
1812
1813         if (vma->obj->stolen)
1814                 flags |= PIN_MAPPABLE;
1815
1816         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1817                 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1818                         ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1819                 else
1820                         ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1821                 if (unlikely(ret))
1822                         return ret;
1823         }
1824
1825         ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1826         if (unlikely(ret))
1827                 return ret;
1828
1829         if (i915_vma_is_map_and_fenceable(vma))
1830                 addr = (void __force *)i915_vma_pin_iomap(vma);
1831         else
1832                 addr = i915_gem_object_pin_map(vma->obj, map);
1833         if (IS_ERR(addr))
1834                 goto err;
1835
1836         ring->vaddr = addr;
1837         return 0;
1838
1839 err:
1840         i915_vma_unpin(vma);
1841         return PTR_ERR(addr);
1842 }
1843
1844 void intel_ring_unpin(struct intel_ring *ring)
1845 {
1846         GEM_BUG_ON(!ring->vma);
1847         GEM_BUG_ON(!ring->vaddr);
1848
1849         if (i915_vma_is_map_and_fenceable(ring->vma))
1850                 i915_vma_unpin_iomap(ring->vma);
1851         else
1852                 i915_gem_object_unpin_map(ring->vma->obj);
1853         ring->vaddr = NULL;
1854
1855         i915_vma_unpin(ring->vma);
1856 }
1857
1858 static struct i915_vma *
1859 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1860 {
1861         struct drm_i915_gem_object *obj;
1862         struct i915_vma *vma;
1863
1864         obj = i915_gem_object_create_stolen(&dev_priv->drm, size);
1865         if (!obj)
1866                 obj = i915_gem_object_create(&dev_priv->drm, size);
1867         if (IS_ERR(obj))
1868                 return ERR_CAST(obj);
1869
1870         /* mark ring buffers as read-only from GPU side by default */
1871         obj->gt_ro = 1;
1872
1873         vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
1874         if (IS_ERR(vma))
1875                 goto err;
1876
1877         return vma;
1878
1879 err:
1880         i915_gem_object_put(obj);
1881         return vma;
1882 }
1883
1884 struct intel_ring *
1885 intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1886 {
1887         struct intel_ring *ring;
1888         struct i915_vma *vma;
1889
1890         GEM_BUG_ON(!is_power_of_2(size));
1891         GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1892
1893         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1894         if (!ring)
1895                 return ERR_PTR(-ENOMEM);
1896
1897         ring->engine = engine;
1898
1899         INIT_LIST_HEAD(&ring->request_list);
1900
1901         ring->size = size;
1902         /* Workaround an erratum on the i830 which causes a hang if
1903          * the TAIL pointer points to within the last 2 cachelines
1904          * of the buffer.
1905          */
1906         ring->effective_size = size;
1907         if (IS_I830(engine->i915) || IS_845G(engine->i915))
1908                 ring->effective_size -= 2 * CACHELINE_BYTES;
1909
1910         ring->last_retired_head = -1;
1911         intel_ring_update_space(ring);
1912
1913         vma = intel_ring_create_vma(engine->i915, size);
1914         if (IS_ERR(vma)) {
1915                 kfree(ring);
1916                 return ERR_CAST(vma);
1917         }
1918         ring->vma = vma;
1919
1920         return ring;
1921 }
1922
1923 void
1924 intel_ring_free(struct intel_ring *ring)
1925 {
1926         struct drm_i915_gem_object *obj = ring->vma->obj;
1927
1928         i915_vma_close(ring->vma);
1929         __i915_gem_object_release_unless_active(obj);
1930
1931         kfree(ring);
1932 }
1933
1934 static int intel_ring_context_pin(struct i915_gem_context *ctx,
1935                                   struct intel_engine_cs *engine)
1936 {
1937         struct intel_context *ce = &ctx->engine[engine->id];
1938         int ret;
1939
1940         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1941
1942         if (ce->pin_count++)
1943                 return 0;
1944
1945         if (ce->state) {
1946                 struct i915_vma *vma;
1947
1948                 vma = i915_gem_context_pin_legacy(ctx, PIN_HIGH);
1949                 if (IS_ERR(vma)) {
1950                         ret = PTR_ERR(vma);
1951                         goto error;
1952                 }
1953         }
1954
1955         /* The kernel context is only used as a placeholder for flushing the
1956          * active context. It is never used for submitting user rendering and
1957          * as such never requires the golden render context, and so we can skip
1958          * emitting it when we switch to the kernel context. This is required
1959          * as during eviction we cannot allocate and pin the renderstate in
1960          * order to initialise the context.
1961          */
1962         if (ctx == ctx->i915->kernel_context)
1963                 ce->initialised = true;
1964
1965         i915_gem_context_get(ctx);
1966         return 0;
1967
1968 error:
1969         ce->pin_count = 0;
1970         return ret;
1971 }
1972
1973 static void intel_ring_context_unpin(struct i915_gem_context *ctx,
1974                                      struct intel_engine_cs *engine)
1975 {
1976         struct intel_context *ce = &ctx->engine[engine->id];
1977
1978         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1979
1980         if (--ce->pin_count)
1981                 return;
1982
1983         if (ce->state)
1984                 i915_vma_unpin(ce->state);
1985
1986         i915_gem_context_put(ctx);
1987 }
1988
1989 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1990 {
1991         struct drm_i915_private *dev_priv = engine->i915;
1992         struct intel_ring *ring;
1993         int ret;
1994
1995         WARN_ON(engine->buffer);
1996
1997         intel_engine_setup_common(engine);
1998
1999         ret = intel_engine_init_common(engine);
2000         if (ret)
2001                 goto error;
2002
2003         /* We may need to do things with the shrinker which
2004          * require us to immediately switch back to the default
2005          * context. This can cause a problem as pinning the
2006          * default context also requires GTT space which may not
2007          * be available. To avoid this we always pin the default
2008          * context.
2009          */
2010         ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
2011         if (ret)
2012                 goto error;
2013
2014         ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
2015         if (IS_ERR(ring)) {
2016                 ret = PTR_ERR(ring);
2017                 goto error;
2018         }
2019
2020         if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2021                 WARN_ON(engine->id != RCS);
2022                 ret = init_phys_status_page(engine);
2023                 if (ret)
2024                         goto error;
2025         } else {
2026                 ret = init_status_page(engine);
2027                 if (ret)
2028                         goto error;
2029         }
2030
2031         ret = intel_ring_pin(ring);
2032         if (ret) {
2033                 intel_ring_free(ring);
2034                 goto error;
2035         }
2036         engine->buffer = ring;
2037
2038         return 0;
2039
2040 error:
2041         intel_engine_cleanup(engine);
2042         return ret;
2043 }
2044
2045 void intel_engine_cleanup(struct intel_engine_cs *engine)
2046 {
2047         struct drm_i915_private *dev_priv;
2048
2049         dev_priv = engine->i915;
2050
2051         if (engine->buffer) {
2052                 WARN_ON(INTEL_GEN(dev_priv) > 2 &&
2053                         (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2054
2055                 intel_ring_unpin(engine->buffer);
2056                 intel_ring_free(engine->buffer);
2057                 engine->buffer = NULL;
2058         }
2059
2060         if (engine->cleanup)
2061                 engine->cleanup(engine);
2062
2063         if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2064                 WARN_ON(engine->id != RCS);
2065                 cleanup_phys_status_page(engine);
2066         } else {
2067                 cleanup_status_page(engine);
2068         }
2069
2070         intel_engine_cleanup_common(engine);
2071
2072         intel_ring_context_unpin(dev_priv->kernel_context, engine);
2073
2074         engine->i915 = NULL;
2075         dev_priv->engine[engine->id] = NULL;
2076         kfree(engine);
2077 }
2078
2079 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
2080 {
2081         struct intel_engine_cs *engine;
2082         enum intel_engine_id id;
2083
2084         for_each_engine(engine, dev_priv, id) {
2085                 engine->buffer->head = engine->buffer->tail;
2086                 engine->buffer->last_retired_head = -1;
2087         }
2088 }
2089
2090 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2091 {
2092         int ret;
2093
2094         /* Flush enough space to reduce the likelihood of waiting after
2095          * we start building the request - in which case we will just
2096          * have to repeat work.
2097          */
2098         request->reserved_space += LEGACY_REQUEST_SIZE;
2099
2100         request->ring = request->engine->buffer;
2101
2102         ret = intel_ring_begin(request, 0);
2103         if (ret)
2104                 return ret;
2105
2106         request->reserved_space -= LEGACY_REQUEST_SIZE;
2107         return 0;
2108 }
2109
2110 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2111 {
2112         struct intel_ring *ring = req->ring;
2113         struct drm_i915_gem_request *target;
2114         long timeout;
2115
2116         lockdep_assert_held(&req->i915->drm.struct_mutex);
2117
2118         intel_ring_update_space(ring);
2119         if (ring->space >= bytes)
2120                 return 0;
2121
2122         /*
2123          * Space is reserved in the ringbuffer for finalising the request,
2124          * as that cannot be allowed to fail. During request finalisation,
2125          * reserved_space is set to 0 to stop the overallocation and the
2126          * assumption is that then we never need to wait (which has the
2127          * risk of failing with EINTR).
2128          *
2129          * See also i915_gem_request_alloc() and i915_add_request().
2130          */
2131         GEM_BUG_ON(!req->reserved_space);
2132
2133         list_for_each_entry(target, &ring->request_list, ring_link) {
2134                 unsigned space;
2135
2136                 /* Would completion of this request free enough space? */
2137                 space = __intel_ring_space(target->postfix, ring->tail,
2138                                            ring->size);
2139                 if (space >= bytes)
2140                         break;
2141         }
2142
2143         if (WARN_ON(&target->ring_link == &ring->request_list))
2144                 return -ENOSPC;
2145
2146         timeout = i915_wait_request(target,
2147                                     I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
2148                                     MAX_SCHEDULE_TIMEOUT);
2149         if (timeout < 0)
2150                 return timeout;
2151
2152         i915_gem_request_retire_upto(target);
2153
2154         intel_ring_update_space(ring);
2155         GEM_BUG_ON(ring->space < bytes);
2156         return 0;
2157 }
2158
2159 int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
2160 {
2161         struct intel_ring *ring = req->ring;
2162         int remain_actual = ring->size - ring->tail;
2163         int remain_usable = ring->effective_size - ring->tail;
2164         int bytes = num_dwords * sizeof(u32);
2165         int total_bytes, wait_bytes;
2166         bool need_wrap = false;
2167
2168         total_bytes = bytes + req->reserved_space;
2169
2170         if (unlikely(bytes > remain_usable)) {
2171                 /*
2172                  * Not enough space for the basic request. So need to flush
2173                  * out the remainder and then wait for base + reserved.
2174                  */
2175                 wait_bytes = remain_actual + total_bytes;
2176                 need_wrap = true;
2177         } else if (unlikely(total_bytes > remain_usable)) {
2178                 /*
2179                  * The base request will fit but the reserved space
2180                  * falls off the end. So we don't need an immediate wrap
2181                  * and only need to effectively wait for the reserved
2182                  * size space from the start of ringbuffer.
2183                  */
2184                 wait_bytes = remain_actual + req->reserved_space;
2185         } else {
2186                 /* No wrapping required, just waiting. */
2187                 wait_bytes = total_bytes;
2188         }
2189
2190         if (wait_bytes > ring->space) {
2191                 int ret = wait_for_space(req, wait_bytes);
2192                 if (unlikely(ret))
2193                         return ret;
2194         }
2195
2196         if (unlikely(need_wrap)) {
2197                 GEM_BUG_ON(remain_actual > ring->space);
2198                 GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2199
2200                 /* Fill the tail with MI_NOOP */
2201                 memset(ring->vaddr + ring->tail, 0, remain_actual);
2202                 ring->tail = 0;
2203                 ring->space -= remain_actual;
2204         }
2205
2206         ring->space -= bytes;
2207         GEM_BUG_ON(ring->space < 0);
2208         return 0;
2209 }
2210
2211 /* Align the ring tail to a cacheline boundary */
2212 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2213 {
2214         struct intel_ring *ring = req->ring;
2215         int num_dwords =
2216                 (ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2217         int ret;
2218
2219         if (num_dwords == 0)
2220                 return 0;
2221
2222         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2223         ret = intel_ring_begin(req, num_dwords);
2224         if (ret)
2225                 return ret;
2226
2227         while (num_dwords--)
2228                 intel_ring_emit(ring, MI_NOOP);
2229
2230         intel_ring_advance(ring);
2231
2232         return 0;
2233 }
2234
2235 static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
2236 {
2237         struct drm_i915_private *dev_priv = request->i915;
2238
2239         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2240
2241        /* Every tail move must follow the sequence below */
2242
2243         /* Disable notification that the ring is IDLE. The GT
2244          * will then assume that it is busy and bring it out of rc6.
2245          */
2246         I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2247                       _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2248
2249         /* Clear the context id. Here be magic! */
2250         I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2251
2252         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2253         if (intel_wait_for_register_fw(dev_priv,
2254                                        GEN6_BSD_SLEEP_PSMI_CONTROL,
2255                                        GEN6_BSD_SLEEP_INDICATOR,
2256                                        0,
2257                                        50))
2258                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2259
2260         /* Now that the ring is fully powered up, update the tail */
2261         i9xx_submit_request(request);
2262
2263         /* Let the ring send IDLE messages to the GT again,
2264          * and so let it sleep to conserve power when idle.
2265          */
2266         I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2267                       _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2268
2269         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2270 }
2271
2272 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2273 {
2274         struct intel_ring *ring = req->ring;
2275         uint32_t cmd;
2276         int ret;
2277
2278         ret = intel_ring_begin(req, 4);
2279         if (ret)
2280                 return ret;
2281
2282         cmd = MI_FLUSH_DW;
2283         if (INTEL_GEN(req->i915) >= 8)
2284                 cmd += 1;
2285
2286         /* We always require a command barrier so that subsequent
2287          * commands, such as breadcrumb interrupts, are strictly ordered
2288          * wrt the contents of the write cache being flushed to memory
2289          * (and thus being coherent from the CPU).
2290          */
2291         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2292
2293         /*
2294          * Bspec vol 1c.5 - video engine command streamer:
2295          * "If ENABLED, all TLBs will be invalidated once the flush
2296          * operation is complete. This bit is only valid when the
2297          * Post-Sync Operation field is a value of 1h or 3h."
2298          */
2299         if (mode & EMIT_INVALIDATE)
2300                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2301
2302         intel_ring_emit(ring, cmd);
2303         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2304         if (INTEL_GEN(req->i915) >= 8) {
2305                 intel_ring_emit(ring, 0); /* upper addr */
2306                 intel_ring_emit(ring, 0); /* value */
2307         } else  {
2308                 intel_ring_emit(ring, 0);
2309                 intel_ring_emit(ring, MI_NOOP);
2310         }
2311         intel_ring_advance(ring);
2312         return 0;
2313 }
2314
2315 static int
2316 gen8_emit_bb_start(struct drm_i915_gem_request *req,
2317                    u64 offset, u32 len,
2318                    unsigned int dispatch_flags)
2319 {
2320         struct intel_ring *ring = req->ring;
2321         bool ppgtt = USES_PPGTT(req->i915) &&
2322                         !(dispatch_flags & I915_DISPATCH_SECURE);
2323         int ret;
2324
2325         ret = intel_ring_begin(req, 4);
2326         if (ret)
2327                 return ret;
2328
2329         /* FIXME(BDW): Address space and security selectors. */
2330         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2331                         (dispatch_flags & I915_DISPATCH_RS ?
2332                          MI_BATCH_RESOURCE_STREAMER : 0));
2333         intel_ring_emit(ring, lower_32_bits(offset));
2334         intel_ring_emit(ring, upper_32_bits(offset));
2335         intel_ring_emit(ring, MI_NOOP);
2336         intel_ring_advance(ring);
2337
2338         return 0;
2339 }
2340
2341 static int
2342 hsw_emit_bb_start(struct drm_i915_gem_request *req,
2343                   u64 offset, u32 len,
2344                   unsigned int dispatch_flags)
2345 {
2346         struct intel_ring *ring = req->ring;
2347         int ret;
2348
2349         ret = intel_ring_begin(req, 2);
2350         if (ret)
2351                 return ret;
2352
2353         intel_ring_emit(ring,
2354                         MI_BATCH_BUFFER_START |
2355                         (dispatch_flags & I915_DISPATCH_SECURE ?
2356                          0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2357                         (dispatch_flags & I915_DISPATCH_RS ?
2358                          MI_BATCH_RESOURCE_STREAMER : 0));
2359         /* bit0-7 is the length on GEN6+ */
2360         intel_ring_emit(ring, offset);
2361         intel_ring_advance(ring);
2362
2363         return 0;
2364 }
2365
2366 static int
2367 gen6_emit_bb_start(struct drm_i915_gem_request *req,
2368                    u64 offset, u32 len,
2369                    unsigned int dispatch_flags)
2370 {
2371         struct intel_ring *ring = req->ring;
2372         int ret;
2373
2374         ret = intel_ring_begin(req, 2);
2375         if (ret)
2376                 return ret;
2377
2378         intel_ring_emit(ring,
2379                         MI_BATCH_BUFFER_START |
2380                         (dispatch_flags & I915_DISPATCH_SECURE ?
2381                          0 : MI_BATCH_NON_SECURE_I965));
2382         /* bit0-7 is the length on GEN6+ */
2383         intel_ring_emit(ring, offset);
2384         intel_ring_advance(ring);
2385
2386         return 0;
2387 }
2388
2389 /* Blitter support (SandyBridge+) */
2390
2391 static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2392 {
2393         struct intel_ring *ring = req->ring;
2394         uint32_t cmd;
2395         int ret;
2396
2397         ret = intel_ring_begin(req, 4);
2398         if (ret)
2399                 return ret;
2400
2401         cmd = MI_FLUSH_DW;
2402         if (INTEL_GEN(req->i915) >= 8)
2403                 cmd += 1;
2404
2405         /* We always require a command barrier so that subsequent
2406          * commands, such as breadcrumb interrupts, are strictly ordered
2407          * wrt the contents of the write cache being flushed to memory
2408          * (and thus being coherent from the CPU).
2409          */
2410         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2411
2412         /*
2413          * Bspec vol 1c.3 - blitter engine command streamer:
2414          * "If ENABLED, all TLBs will be invalidated once the flush
2415          * operation is complete. This bit is only valid when the
2416          * Post-Sync Operation field is a value of 1h or 3h."
2417          */
2418         if (mode & EMIT_INVALIDATE)
2419                 cmd |= MI_INVALIDATE_TLB;
2420         intel_ring_emit(ring, cmd);
2421         intel_ring_emit(ring,
2422                         I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2423         if (INTEL_GEN(req->i915) >= 8) {
2424                 intel_ring_emit(ring, 0); /* upper addr */
2425                 intel_ring_emit(ring, 0); /* value */
2426         } else  {
2427                 intel_ring_emit(ring, 0);
2428                 intel_ring_emit(ring, MI_NOOP);
2429         }
2430         intel_ring_advance(ring);
2431
2432         return 0;
2433 }
2434
2435 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2436                                        struct intel_engine_cs *engine)
2437 {
2438         struct drm_i915_gem_object *obj;
2439         int ret, i;
2440
2441         if (!i915.semaphores)
2442                 return;
2443
2444         if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
2445                 struct i915_vma *vma;
2446
2447                 obj = i915_gem_object_create(&dev_priv->drm, 4096);
2448                 if (IS_ERR(obj))
2449                         goto err;
2450
2451                 vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
2452                 if (IS_ERR(vma))
2453                         goto err_obj;
2454
2455                 ret = i915_gem_object_set_to_gtt_domain(obj, false);
2456                 if (ret)
2457                         goto err_obj;
2458
2459                 ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
2460                 if (ret)
2461                         goto err_obj;
2462
2463                 dev_priv->semaphore = vma;
2464         }
2465
2466         if (INTEL_GEN(dev_priv) >= 8) {
2467                 u32 offset = i915_ggtt_offset(dev_priv->semaphore);
2468
2469                 engine->semaphore.sync_to = gen8_ring_sync_to;
2470                 engine->semaphore.signal = gen8_xcs_signal;
2471
2472                 for (i = 0; i < I915_NUM_ENGINES; i++) {
2473                         u32 ring_offset;
2474
2475                         if (i != engine->id)
2476                                 ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
2477                         else
2478                                 ring_offset = MI_SEMAPHORE_SYNC_INVALID;
2479
2480                         engine->semaphore.signal_ggtt[i] = ring_offset;
2481                 }
2482         } else if (INTEL_GEN(dev_priv) >= 6) {
2483                 engine->semaphore.sync_to = gen6_ring_sync_to;
2484                 engine->semaphore.signal = gen6_signal;
2485
2486                 /*
2487                  * The current semaphore is only applied on pre-gen8
2488                  * platform.  And there is no VCS2 ring on the pre-gen8
2489                  * platform. So the semaphore between RCS and VCS2 is
2490                  * initialized as INVALID.  Gen8 will initialize the
2491                  * sema between VCS2 and RCS later.
2492                  */
2493                 for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2494                         static const struct {
2495                                 u32 wait_mbox;
2496                                 i915_reg_t mbox_reg;
2497                         } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
2498                                 [RCS_HW] = {
2499                                         [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
2500                                         [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
2501                                         [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2502                                 },
2503                                 [VCS_HW] = {
2504                                         [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
2505                                         [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
2506                                         [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2507                                 },
2508                                 [BCS_HW] = {
2509                                         [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
2510                                         [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
2511                                         [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2512                                 },
2513                                 [VECS_HW] = {
2514                                         [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2515                                         [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2516                                         [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2517                                 },
2518                         };
2519                         u32 wait_mbox;
2520                         i915_reg_t mbox_reg;
2521
2522                         if (i == engine->hw_id) {
2523                                 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2524                                 mbox_reg = GEN6_NOSYNC;
2525                         } else {
2526                                 wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
2527                                 mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2528                         }
2529
2530                         engine->semaphore.mbox.wait[i] = wait_mbox;
2531                         engine->semaphore.mbox.signal[i] = mbox_reg;
2532                 }
2533         }
2534
2535         return;
2536
2537 err_obj:
2538         i915_gem_object_put(obj);
2539 err:
2540         DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
2541         i915.semaphores = 0;
2542 }
2543
2544 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2545                                 struct intel_engine_cs *engine)
2546 {
2547         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
2548
2549         if (INTEL_GEN(dev_priv) >= 8) {
2550                 engine->irq_enable = gen8_irq_enable;
2551                 engine->irq_disable = gen8_irq_disable;
2552                 engine->irq_seqno_barrier = gen6_seqno_barrier;
2553         } else if (INTEL_GEN(dev_priv) >= 6) {
2554                 engine->irq_enable = gen6_irq_enable;
2555                 engine->irq_disable = gen6_irq_disable;
2556                 engine->irq_seqno_barrier = gen6_seqno_barrier;
2557         } else if (INTEL_GEN(dev_priv) >= 5) {
2558                 engine->irq_enable = gen5_irq_enable;
2559                 engine->irq_disable = gen5_irq_disable;
2560                 engine->irq_seqno_barrier = gen5_seqno_barrier;
2561         } else if (INTEL_GEN(dev_priv) >= 3) {
2562                 engine->irq_enable = i9xx_irq_enable;
2563                 engine->irq_disable = i9xx_irq_disable;
2564         } else {
2565                 engine->irq_enable = i8xx_irq_enable;
2566                 engine->irq_disable = i8xx_irq_disable;
2567         }
2568 }
2569
2570 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2571                                       struct intel_engine_cs *engine)
2572 {
2573         intel_ring_init_irq(dev_priv, engine);
2574         intel_ring_init_semaphores(dev_priv, engine);
2575
2576         engine->init_hw = init_ring_common;
2577         engine->reset_hw = reset_ring_common;
2578
2579         engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2580         engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2581         if (i915.semaphores) {
2582                 int num_rings;
2583
2584                 engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2585
2586                 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
2587                 if (INTEL_GEN(dev_priv) >= 8) {
2588                         engine->emit_breadcrumb_sz += num_rings * 6;
2589                 } else {
2590                         engine->emit_breadcrumb_sz += num_rings * 3;
2591                         if (num_rings & 1)
2592                                 engine->emit_breadcrumb_sz++;
2593                 }
2594         }
2595         engine->submit_request = i9xx_submit_request;
2596
2597         if (INTEL_GEN(dev_priv) >= 8)
2598                 engine->emit_bb_start = gen8_emit_bb_start;
2599         else if (INTEL_GEN(dev_priv) >= 6)
2600                 engine->emit_bb_start = gen6_emit_bb_start;
2601         else if (INTEL_GEN(dev_priv) >= 4)
2602                 engine->emit_bb_start = i965_emit_bb_start;
2603         else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2604                 engine->emit_bb_start = i830_emit_bb_start;
2605         else
2606                 engine->emit_bb_start = i915_emit_bb_start;
2607 }
2608
2609 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2610 {
2611         struct drm_i915_private *dev_priv = engine->i915;
2612         int ret;
2613
2614         intel_ring_default_vfuncs(dev_priv, engine);
2615
2616         if (HAS_L3_DPF(dev_priv))
2617                 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2618
2619         if (INTEL_GEN(dev_priv) >= 8) {
2620                 engine->init_context = intel_rcs_ctx_init;
2621                 engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
2622                 engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
2623                 engine->emit_flush = gen8_render_ring_flush;
2624                 if (i915.semaphores) {
2625                         int num_rings;
2626
2627                         engine->semaphore.signal = gen8_rcs_signal;
2628
2629                         num_rings =
2630                                 hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
2631                         engine->emit_breadcrumb_sz += num_rings * 6;
2632                 }
2633         } else if (INTEL_GEN(dev_priv) >= 6) {
2634                 engine->init_context = intel_rcs_ctx_init;
2635                 engine->emit_flush = gen7_render_ring_flush;
2636                 if (IS_GEN6(dev_priv))
2637                         engine->emit_flush = gen6_render_ring_flush;
2638         } else if (IS_GEN5(dev_priv)) {
2639                 engine->emit_flush = gen4_render_ring_flush;
2640         } else {
2641                 if (INTEL_GEN(dev_priv) < 4)
2642                         engine->emit_flush = gen2_render_ring_flush;
2643                 else
2644                         engine->emit_flush = gen4_render_ring_flush;
2645                 engine->irq_enable_mask = I915_USER_INTERRUPT;
2646         }
2647
2648         if (IS_HASWELL(dev_priv))
2649                 engine->emit_bb_start = hsw_emit_bb_start;
2650
2651         engine->init_hw = init_render_ring;
2652         engine->cleanup = render_ring_cleanup;
2653
2654         ret = intel_init_ring_buffer(engine);
2655         if (ret)
2656                 return ret;
2657
2658         if (INTEL_GEN(dev_priv) >= 6) {
2659                 ret = intel_engine_create_scratch(engine, 4096);
2660                 if (ret)
2661                         return ret;
2662         } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2663                 ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2664                 if (ret)
2665                         return ret;
2666         }
2667
2668         return 0;
2669 }
2670
2671 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2672 {
2673         struct drm_i915_private *dev_priv = engine->i915;
2674
2675         intel_ring_default_vfuncs(dev_priv, engine);
2676
2677         if (INTEL_GEN(dev_priv) >= 6) {
2678                 /* gen6 bsd needs a special wa for tail updates */
2679                 if (IS_GEN6(dev_priv))
2680                         engine->submit_request = gen6_bsd_submit_request;
2681                 engine->emit_flush = gen6_bsd_ring_flush;
2682                 if (INTEL_GEN(dev_priv) < 8)
2683                         engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2684         } else {
2685                 engine->mmio_base = BSD_RING_BASE;
2686                 engine->emit_flush = bsd_ring_flush;
2687                 if (IS_GEN5(dev_priv))
2688                         engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2689                 else
2690                         engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2691         }
2692
2693         return intel_init_ring_buffer(engine);
2694 }
2695
2696 /**
2697  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2698  */
2699 int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2700 {
2701         struct drm_i915_private *dev_priv = engine->i915;
2702
2703         intel_ring_default_vfuncs(dev_priv, engine);
2704
2705         engine->emit_flush = gen6_bsd_ring_flush;
2706
2707         return intel_init_ring_buffer(engine);
2708 }
2709
2710 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2711 {
2712         struct drm_i915_private *dev_priv = engine->i915;
2713
2714         intel_ring_default_vfuncs(dev_priv, engine);
2715
2716         engine->emit_flush = gen6_ring_flush;
2717         if (INTEL_GEN(dev_priv) < 8)
2718                 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2719
2720         return intel_init_ring_buffer(engine);
2721 }
2722
2723 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2724 {
2725         struct drm_i915_private *dev_priv = engine->i915;
2726
2727         intel_ring_default_vfuncs(dev_priv, engine);
2728
2729         engine->emit_flush = gen6_ring_flush;
2730
2731         if (INTEL_GEN(dev_priv) < 8) {
2732                 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2733                 engine->irq_enable = hsw_vebox_irq_enable;
2734                 engine->irq_disable = hsw_vebox_irq_disable;
2735         }
2736
2737         return intel_init_ring_buffer(engine);
2738 }