]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/vc4/vc4_crtc.c
Merge branch 'cec-defines' into for-linus
[karo-tx-linux.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * output's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, this file also manages
19  * setup of the VC4 HVS's display elements on the CRTC.
20  *
21  * The 2835 has 3 different pixel valves.  pv0 in the audio power
22  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
23  * image domain can feed either HDMI or the SDTV controller.  The
24  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25  * SDTV, etc.) according to which output type is chosen in the mux.
26  *
27  * For power management, the pixel valve's registers are all clocked
28  * by the AXI clock, while the timings and FIFOs make use of the
29  * output-specific clock.  Since the encoders also directly consume
30  * the CPRMAN clocks, and know what timings they need, they are the
31  * ones that set the clock.
32  */
33
34 #include "drm_atomic.h"
35 #include "drm_atomic_helper.h"
36 #include "drm_crtc_helper.h"
37 #include "linux/clk.h"
38 #include "drm_fb_cma_helper.h"
39 #include "linux/component.h"
40 #include "linux/of_device.h"
41 #include "vc4_drv.h"
42 #include "vc4_regs.h"
43
44 struct vc4_crtc {
45         struct drm_crtc base;
46         const struct vc4_crtc_data *data;
47         void __iomem *regs;
48
49         /* Which HVS channel we're using for our CRTC. */
50         int channel;
51
52         struct drm_pending_vblank_event *event;
53 };
54
55 struct vc4_crtc_state {
56         struct drm_crtc_state base;
57         /* Dlist area for this CRTC configuration. */
58         struct drm_mm_node mm;
59 };
60
61 static inline struct vc4_crtc *
62 to_vc4_crtc(struct drm_crtc *crtc)
63 {
64         return (struct vc4_crtc *)crtc;
65 }
66
67 static inline struct vc4_crtc_state *
68 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
69 {
70         return (struct vc4_crtc_state *)crtc_state;
71 }
72
73 struct vc4_crtc_data {
74         /* Which channel of the HVS this pixelvalve sources from. */
75         int hvs_channel;
76
77         enum vc4_encoder_type encoder0_type;
78         enum vc4_encoder_type encoder1_type;
79 };
80
81 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
82 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
83
84 #define CRTC_REG(reg) { reg, #reg }
85 static const struct {
86         u32 reg;
87         const char *name;
88 } crtc_regs[] = {
89         CRTC_REG(PV_CONTROL),
90         CRTC_REG(PV_V_CONTROL),
91         CRTC_REG(PV_VSYNCD_EVEN),
92         CRTC_REG(PV_HORZA),
93         CRTC_REG(PV_HORZB),
94         CRTC_REG(PV_VERTA),
95         CRTC_REG(PV_VERTB),
96         CRTC_REG(PV_VERTA_EVEN),
97         CRTC_REG(PV_VERTB_EVEN),
98         CRTC_REG(PV_INTEN),
99         CRTC_REG(PV_INTSTAT),
100         CRTC_REG(PV_STAT),
101         CRTC_REG(PV_HACT_ACT),
102 };
103
104 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
105 {
106         int i;
107
108         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
109                 DRM_INFO("0x%04x (%s): 0x%08x\n",
110                          crtc_regs[i].reg, crtc_regs[i].name,
111                          CRTC_READ(crtc_regs[i].reg));
112         }
113 }
114
115 #ifdef CONFIG_DEBUG_FS
116 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
117 {
118         struct drm_info_node *node = (struct drm_info_node *)m->private;
119         struct drm_device *dev = node->minor->dev;
120         int crtc_index = (uintptr_t)node->info_ent->data;
121         struct drm_crtc *crtc;
122         struct vc4_crtc *vc4_crtc;
123         int i;
124
125         i = 0;
126         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
127                 if (i == crtc_index)
128                         break;
129                 i++;
130         }
131         if (!crtc)
132                 return 0;
133         vc4_crtc = to_vc4_crtc(crtc);
134
135         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
136                 seq_printf(m, "%s (0x%04x): 0x%08x\n",
137                            crtc_regs[i].name, crtc_regs[i].reg,
138                            CRTC_READ(crtc_regs[i].reg));
139         }
140
141         return 0;
142 }
143 #endif
144
145 static void vc4_crtc_destroy(struct drm_crtc *crtc)
146 {
147         drm_crtc_cleanup(crtc);
148 }
149
150 static u32 vc4_get_fifo_full_level(u32 format)
151 {
152         static const u32 fifo_len_bytes = 64;
153         static const u32 hvs_latency_pix = 6;
154
155         switch (format) {
156         case PV_CONTROL_FORMAT_DSIV_16:
157         case PV_CONTROL_FORMAT_DSIC_16:
158                 return fifo_len_bytes - 2 * hvs_latency_pix;
159         case PV_CONTROL_FORMAT_DSIV_18:
160                 return fifo_len_bytes - 14;
161         case PV_CONTROL_FORMAT_24:
162         case PV_CONTROL_FORMAT_DSIV_24:
163         default:
164                 return fifo_len_bytes - 3 * hvs_latency_pix;
165         }
166 }
167
168 /*
169  * Returns the clock select bit for the connector attached to the
170  * CRTC.
171  */
172 static int vc4_get_clock_select(struct drm_crtc *crtc)
173 {
174         struct drm_connector *connector;
175
176         drm_for_each_connector(connector, crtc->dev) {
177                 if (connector->state->crtc == crtc) {
178                         struct drm_encoder *encoder = connector->encoder;
179                         struct vc4_encoder *vc4_encoder =
180                                 to_vc4_encoder(encoder);
181
182                         return vc4_encoder->clock_select;
183                 }
184         }
185
186         return -1;
187 }
188
189 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
190 {
191         struct drm_device *dev = crtc->dev;
192         struct vc4_dev *vc4 = to_vc4_dev(dev);
193         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
194         struct drm_crtc_state *state = crtc->state;
195         struct drm_display_mode *mode = &state->adjusted_mode;
196         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
197         u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0));
198         u32 format = PV_CONTROL_FORMAT_24;
199         bool debug_dump_regs = false;
200         int clock_select = vc4_get_clock_select(crtc);
201
202         if (debug_dump_regs) {
203                 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
204                 vc4_crtc_dump_regs(vc4_crtc);
205         }
206
207         /* Reset the PV fifo. */
208         CRTC_WRITE(PV_CONTROL, 0);
209         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
210         CRTC_WRITE(PV_CONTROL, 0);
211
212         CRTC_WRITE(PV_HORZA,
213                    VC4_SET_FIELD(mode->htotal - mode->hsync_end,
214                                  PV_HORZA_HBP) |
215                    VC4_SET_FIELD(mode->hsync_end - mode->hsync_start,
216                                  PV_HORZA_HSYNC));
217         CRTC_WRITE(PV_HORZB,
218                    VC4_SET_FIELD(mode->hsync_start - mode->hdisplay,
219                                  PV_HORZB_HFP) |
220                    VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE));
221
222         CRTC_WRITE(PV_VERTA,
223                    VC4_SET_FIELD(mode->vtotal - mode->vsync_end,
224                                  PV_VERTA_VBP) |
225                    VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
226                                  PV_VERTA_VSYNC));
227         CRTC_WRITE(PV_VERTB,
228                    VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
229                                  PV_VERTB_VFP) |
230                    VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
231
232         if (interlace) {
233                 CRTC_WRITE(PV_VERTA_EVEN,
234                            VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1,
235                                          PV_VERTA_VBP) |
236                            VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
237                                          PV_VERTA_VSYNC));
238                 CRTC_WRITE(PV_VERTB_EVEN,
239                            VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
240                                          PV_VERTB_VFP) |
241                            VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
242         }
243
244         CRTC_WRITE(PV_HACT_ACT, mode->hdisplay);
245
246         CRTC_WRITE(PV_V_CONTROL,
247                    PV_VCONTROL_CONTINUOUS |
248                    (interlace ? PV_VCONTROL_INTERLACE : 0));
249
250         CRTC_WRITE(PV_CONTROL,
251                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
252                    VC4_SET_FIELD(vc4_get_fifo_full_level(format),
253                                  PV_CONTROL_FIFO_LEVEL) |
254                    PV_CONTROL_CLR_AT_START |
255                    PV_CONTROL_TRIGGER_UNDERFLOW |
256                    PV_CONTROL_WAIT_HSTART |
257                    VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
258                    PV_CONTROL_FIFO_CLR |
259                    PV_CONTROL_EN);
260
261         HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
262                   SCALER_DISPBKGND_AUTOHS |
263                   (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
264
265         if (debug_dump_regs) {
266                 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
267                 vc4_crtc_dump_regs(vc4_crtc);
268         }
269 }
270
271 static void require_hvs_enabled(struct drm_device *dev)
272 {
273         struct vc4_dev *vc4 = to_vc4_dev(dev);
274
275         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
276                      SCALER_DISPCTRL_ENABLE);
277 }
278
279 static void vc4_crtc_disable(struct drm_crtc *crtc)
280 {
281         struct drm_device *dev = crtc->dev;
282         struct vc4_dev *vc4 = to_vc4_dev(dev);
283         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
284         u32 chan = vc4_crtc->channel;
285         int ret;
286         require_hvs_enabled(dev);
287
288         CRTC_WRITE(PV_V_CONTROL,
289                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
290         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
291         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
292
293         if (HVS_READ(SCALER_DISPCTRLX(chan)) &
294             SCALER_DISPCTRLX_ENABLE) {
295                 HVS_WRITE(SCALER_DISPCTRLX(chan),
296                           SCALER_DISPCTRLX_RESET);
297
298                 /* While the docs say that reset is self-clearing, it
299                  * seems it doesn't actually.
300                  */
301                 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
302         }
303
304         /* Once we leave, the scaler should be disabled and its fifo empty. */
305
306         WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
307
308         WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
309                                    SCALER_DISPSTATX_MODE) !=
310                      SCALER_DISPSTATX_MODE_DISABLED);
311
312         WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
313                       (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
314                      SCALER_DISPSTATX_EMPTY);
315 }
316
317 static void vc4_crtc_enable(struct drm_crtc *crtc)
318 {
319         struct drm_device *dev = crtc->dev;
320         struct vc4_dev *vc4 = to_vc4_dev(dev);
321         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
322         struct drm_crtc_state *state = crtc->state;
323         struct drm_display_mode *mode = &state->adjusted_mode;
324
325         require_hvs_enabled(dev);
326
327         /* Turn on the scaler, which will wait for vstart to start
328          * compositing.
329          */
330         HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
331                   VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
332                   VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
333                   SCALER_DISPCTRLX_ENABLE);
334
335         /* Turn on the pixel valve, which will emit the vstart signal. */
336         CRTC_WRITE(PV_V_CONTROL,
337                    CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
338 }
339
340 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
341                                  struct drm_crtc_state *state)
342 {
343         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
344         struct drm_device *dev = crtc->dev;
345         struct vc4_dev *vc4 = to_vc4_dev(dev);
346         struct drm_plane *plane;
347         unsigned long flags;
348         u32 dlist_count = 0;
349         int ret;
350
351         /* The pixelvalve can only feed one encoder (and encoders are
352          * 1:1 with connectors.)
353          */
354         if (hweight32(state->connector_mask) > 1)
355                 return -EINVAL;
356
357         drm_atomic_crtc_state_for_each_plane(plane, state) {
358                 struct drm_plane_state *plane_state =
359                         state->state->plane_states[drm_plane_index(plane)];
360
361                 /* plane might not have changed, in which case take
362                  * current state:
363                  */
364                 if (!plane_state)
365                         plane_state = plane->state;
366
367                 dlist_count += vc4_plane_dlist_size(plane_state);
368         }
369
370         dlist_count++; /* Account for SCALER_CTL0_END. */
371
372         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
373         ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
374                                  dlist_count, 1, 0);
375         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
376         if (ret)
377                 return ret;
378
379         return 0;
380 }
381
382 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
383                                   struct drm_crtc_state *old_state)
384 {
385         struct drm_device *dev = crtc->dev;
386         struct vc4_dev *vc4 = to_vc4_dev(dev);
387         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
388         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
389         struct drm_plane *plane;
390         bool debug_dump_regs = false;
391         u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
392         u32 __iomem *dlist_next = dlist_start;
393
394         if (debug_dump_regs) {
395                 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
396                 vc4_hvs_dump_state(dev);
397         }
398
399         /* Copy all the active planes' dlist contents to the hardware dlist. */
400         drm_atomic_crtc_for_each_plane(plane, crtc) {
401                 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
402         }
403
404         writel(SCALER_CTL0_END, dlist_next);
405         dlist_next++;
406
407         WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
408
409         HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
410                   vc4_state->mm.start);
411
412         if (debug_dump_regs) {
413                 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
414                 vc4_hvs_dump_state(dev);
415         }
416
417         if (crtc->state->event) {
418                 unsigned long flags;
419
420                 crtc->state->event->pipe = drm_crtc_index(crtc);
421
422                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
423
424                 spin_lock_irqsave(&dev->event_lock, flags);
425                 vc4_crtc->event = crtc->state->event;
426                 spin_unlock_irqrestore(&dev->event_lock, flags);
427                 crtc->state->event = NULL;
428         }
429 }
430
431 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
432 {
433         struct vc4_dev *vc4 = to_vc4_dev(dev);
434         struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
435
436         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
437
438         return 0;
439 }
440
441 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
442 {
443         struct vc4_dev *vc4 = to_vc4_dev(dev);
444         struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
445
446         CRTC_WRITE(PV_INTEN, 0);
447 }
448
449 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
450 {
451         struct drm_crtc *crtc = &vc4_crtc->base;
452         struct drm_device *dev = crtc->dev;
453         unsigned long flags;
454
455         spin_lock_irqsave(&dev->event_lock, flags);
456         if (vc4_crtc->event) {
457                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
458                 vc4_crtc->event = NULL;
459         }
460         spin_unlock_irqrestore(&dev->event_lock, flags);
461 }
462
463 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
464 {
465         struct vc4_crtc *vc4_crtc = data;
466         u32 stat = CRTC_READ(PV_INTSTAT);
467         irqreturn_t ret = IRQ_NONE;
468
469         if (stat & PV_INT_VFP_START) {
470                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
471                 drm_crtc_handle_vblank(&vc4_crtc->base);
472                 vc4_crtc_handle_page_flip(vc4_crtc);
473                 ret = IRQ_HANDLED;
474         }
475
476         return ret;
477 }
478
479 struct vc4_async_flip_state {
480         struct drm_crtc *crtc;
481         struct drm_framebuffer *fb;
482         struct drm_pending_vblank_event *event;
483
484         struct vc4_seqno_cb cb;
485 };
486
487 /* Called when the V3D execution for the BO being flipped to is done, so that
488  * we can actually update the plane's address to point to it.
489  */
490 static void
491 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
492 {
493         struct vc4_async_flip_state *flip_state =
494                 container_of(cb, struct vc4_async_flip_state, cb);
495         struct drm_crtc *crtc = flip_state->crtc;
496         struct drm_device *dev = crtc->dev;
497         struct vc4_dev *vc4 = to_vc4_dev(dev);
498         struct drm_plane *plane = crtc->primary;
499
500         vc4_plane_async_set_fb(plane, flip_state->fb);
501         if (flip_state->event) {
502                 unsigned long flags;
503
504                 spin_lock_irqsave(&dev->event_lock, flags);
505                 drm_crtc_send_vblank_event(crtc, flip_state->event);
506                 spin_unlock_irqrestore(&dev->event_lock, flags);
507         }
508
509         drm_framebuffer_unreference(flip_state->fb);
510         kfree(flip_state);
511
512         up(&vc4->async_modeset);
513 }
514
515 /* Implements async (non-vblank-synced) page flips.
516  *
517  * The page flip ioctl needs to return immediately, so we grab the
518  * modeset semaphore on the pipe, and queue the address update for
519  * when V3D is done with the BO being flipped to.
520  */
521 static int vc4_async_page_flip(struct drm_crtc *crtc,
522                                struct drm_framebuffer *fb,
523                                struct drm_pending_vblank_event *event,
524                                uint32_t flags)
525 {
526         struct drm_device *dev = crtc->dev;
527         struct vc4_dev *vc4 = to_vc4_dev(dev);
528         struct drm_plane *plane = crtc->primary;
529         int ret = 0;
530         struct vc4_async_flip_state *flip_state;
531         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
532         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
533
534         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
535         if (!flip_state)
536                 return -ENOMEM;
537
538         drm_framebuffer_reference(fb);
539         flip_state->fb = fb;
540         flip_state->crtc = crtc;
541         flip_state->event = event;
542
543         /* Make sure all other async modesetes have landed. */
544         ret = down_interruptible(&vc4->async_modeset);
545         if (ret) {
546                 drm_framebuffer_unreference(fb);
547                 kfree(flip_state);
548                 return ret;
549         }
550
551         /* Immediately update the plane's legacy fb pointer, so that later
552          * modeset prep sees the state that will be present when the semaphore
553          * is released.
554          */
555         drm_atomic_set_fb_for_plane(plane->state, fb);
556         plane->fb = fb;
557
558         vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
559                            vc4_async_page_flip_complete);
560
561         /* Driver takes ownership of state on successful async commit. */
562         return 0;
563 }
564
565 static int vc4_page_flip(struct drm_crtc *crtc,
566                          struct drm_framebuffer *fb,
567                          struct drm_pending_vblank_event *event,
568                          uint32_t flags)
569 {
570         if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
571                 return vc4_async_page_flip(crtc, fb, event, flags);
572         else
573                 return drm_atomic_helper_page_flip(crtc, fb, event, flags);
574 }
575
576 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
577 {
578         struct vc4_crtc_state *vc4_state;
579
580         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
581         if (!vc4_state)
582                 return NULL;
583
584         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
585         return &vc4_state->base;
586 }
587
588 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
589                                    struct drm_crtc_state *state)
590 {
591         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
592         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
593
594         if (vc4_state->mm.allocated) {
595                 unsigned long flags;
596
597                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
598                 drm_mm_remove_node(&vc4_state->mm);
599                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
600
601         }
602
603         __drm_atomic_helper_crtc_destroy_state(crtc, state);
604 }
605
606 static const struct drm_crtc_funcs vc4_crtc_funcs = {
607         .set_config = drm_atomic_helper_set_config,
608         .destroy = vc4_crtc_destroy,
609         .page_flip = vc4_page_flip,
610         .set_property = NULL,
611         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
612         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
613         .reset = drm_atomic_helper_crtc_reset,
614         .atomic_duplicate_state = vc4_crtc_duplicate_state,
615         .atomic_destroy_state = vc4_crtc_destroy_state,
616 };
617
618 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
619         .mode_set_nofb = vc4_crtc_mode_set_nofb,
620         .disable = vc4_crtc_disable,
621         .enable = vc4_crtc_enable,
622         .atomic_check = vc4_crtc_atomic_check,
623         .atomic_flush = vc4_crtc_atomic_flush,
624 };
625
626 static const struct vc4_crtc_data pv0_data = {
627         .hvs_channel = 0,
628         .encoder0_type = VC4_ENCODER_TYPE_DSI0,
629         .encoder1_type = VC4_ENCODER_TYPE_DPI,
630 };
631
632 static const struct vc4_crtc_data pv1_data = {
633         .hvs_channel = 2,
634         .encoder0_type = VC4_ENCODER_TYPE_DSI1,
635         .encoder1_type = VC4_ENCODER_TYPE_SMI,
636 };
637
638 static const struct vc4_crtc_data pv2_data = {
639         .hvs_channel = 1,
640         .encoder0_type = VC4_ENCODER_TYPE_VEC,
641         .encoder1_type = VC4_ENCODER_TYPE_HDMI,
642 };
643
644 static const struct of_device_id vc4_crtc_dt_match[] = {
645         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
646         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
647         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
648         {}
649 };
650
651 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
652                                         struct drm_crtc *crtc)
653 {
654         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
655         struct drm_encoder *encoder;
656
657         drm_for_each_encoder(encoder, drm) {
658                 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
659
660                 if (vc4_encoder->type == vc4_crtc->data->encoder0_type) {
661                         vc4_encoder->clock_select = 0;
662                         encoder->possible_crtcs |= drm_crtc_mask(crtc);
663                 } else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) {
664                         vc4_encoder->clock_select = 1;
665                         encoder->possible_crtcs |= drm_crtc_mask(crtc);
666                 }
667         }
668 }
669
670 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
671 {
672         struct platform_device *pdev = to_platform_device(dev);
673         struct drm_device *drm = dev_get_drvdata(master);
674         struct vc4_dev *vc4 = to_vc4_dev(drm);
675         struct vc4_crtc *vc4_crtc;
676         struct drm_crtc *crtc;
677         struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
678         const struct of_device_id *match;
679         int ret, i;
680
681         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
682         if (!vc4_crtc)
683                 return -ENOMEM;
684         crtc = &vc4_crtc->base;
685
686         match = of_match_device(vc4_crtc_dt_match, dev);
687         if (!match)
688                 return -ENODEV;
689         vc4_crtc->data = match->data;
690
691         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
692         if (IS_ERR(vc4_crtc->regs))
693                 return PTR_ERR(vc4_crtc->regs);
694
695         /* For now, we create just the primary and the legacy cursor
696          * planes.  We should be able to stack more planes on easily,
697          * but to do that we would need to compute the bandwidth
698          * requirement of the plane configuration, and reject ones
699          * that will take too much.
700          */
701         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
702         if (IS_ERR(primary_plane)) {
703                 dev_err(dev, "failed to construct primary plane\n");
704                 ret = PTR_ERR(primary_plane);
705                 goto err;
706         }
707
708         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
709                                   &vc4_crtc_funcs, NULL);
710         drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
711         primary_plane->crtc = crtc;
712         vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
713         vc4_crtc->channel = vc4_crtc->data->hvs_channel;
714
715         /* Set up some arbitrary number of planes.  We're not limited
716          * by a set number of physical registers, just the space in
717          * the HVS (16k) and how small an plane can be (28 bytes).
718          * However, each plane we set up takes up some memory, and
719          * increases the cost of looping over planes, which atomic
720          * modesetting does quite a bit.  As a result, we pick a
721          * modest number of planes to expose, that should hopefully
722          * still cover any sane usecase.
723          */
724         for (i = 0; i < 8; i++) {
725                 struct drm_plane *plane =
726                         vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
727
728                 if (IS_ERR(plane))
729                         continue;
730
731                 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
732         }
733
734         /* Set up the legacy cursor after overlay initialization,
735          * since we overlay planes on the CRTC in the order they were
736          * initialized.
737          */
738         cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
739         if (!IS_ERR(cursor_plane)) {
740                 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
741                 cursor_plane->crtc = crtc;
742                 crtc->cursor = cursor_plane;
743         }
744
745         CRTC_WRITE(PV_INTEN, 0);
746         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
747         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
748                                vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
749         if (ret)
750                 goto err_destroy_planes;
751
752         vc4_set_crtc_possible_masks(drm, crtc);
753
754         platform_set_drvdata(pdev, vc4_crtc);
755
756         return 0;
757
758 err_destroy_planes:
759         list_for_each_entry_safe(destroy_plane, temp,
760                                  &drm->mode_config.plane_list, head) {
761                 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
762                     destroy_plane->funcs->destroy(destroy_plane);
763         }
764 err:
765         return ret;
766 }
767
768 static void vc4_crtc_unbind(struct device *dev, struct device *master,
769                             void *data)
770 {
771         struct platform_device *pdev = to_platform_device(dev);
772         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
773
774         vc4_crtc_destroy(&vc4_crtc->base);
775
776         CRTC_WRITE(PV_INTEN, 0);
777
778         platform_set_drvdata(pdev, NULL);
779 }
780
781 static const struct component_ops vc4_crtc_ops = {
782         .bind   = vc4_crtc_bind,
783         .unbind = vc4_crtc_unbind,
784 };
785
786 static int vc4_crtc_dev_probe(struct platform_device *pdev)
787 {
788         return component_add(&pdev->dev, &vc4_crtc_ops);
789 }
790
791 static int vc4_crtc_dev_remove(struct platform_device *pdev)
792 {
793         component_del(&pdev->dev, &vc4_crtc_ops);
794         return 0;
795 }
796
797 struct platform_driver vc4_crtc_driver = {
798         .probe = vc4_crtc_dev_probe,
799         .remove = vc4_crtc_dev_remove,
800         .driver = {
801                 .name = "vc4_crtc",
802                 .of_match_table = vc4_crtc_dt_match,
803         },
804 };