]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/vc4/vc4_crtc.c
Merge tag 'usb-4.7-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[karo-tx-linux.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * output's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, this file also manages
19  * setup of the VC4 HVS's display elements on the CRTC.
20  *
21  * The 2835 has 3 different pixel valves.  pv0 in the audio power
22  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
23  * image domain can feed either HDMI or the SDTV controller.  The
24  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25  * SDTV, etc.) according to which output type is chosen in the mux.
26  *
27  * For power management, the pixel valve's registers are all clocked
28  * by the AXI clock, while the timings and FIFOs make use of the
29  * output-specific clock.  Since the encoders also directly consume
30  * the CPRMAN clocks, and know what timings they need, they are the
31  * ones that set the clock.
32  */
33
34 #include "drm_atomic.h"
35 #include "drm_atomic_helper.h"
36 #include "drm_crtc_helper.h"
37 #include "linux/clk.h"
38 #include "drm_fb_cma_helper.h"
39 #include "linux/component.h"
40 #include "linux/of_device.h"
41 #include "vc4_drv.h"
42 #include "vc4_regs.h"
43
44 struct vc4_crtc {
45         struct drm_crtc base;
46         const struct vc4_crtc_data *data;
47         void __iomem *regs;
48
49         /* Which HVS channel we're using for our CRTC. */
50         int channel;
51
52         u8 lut_r[256];
53         u8 lut_g[256];
54         u8 lut_b[256];
55
56         struct drm_pending_vblank_event *event;
57 };
58
59 struct vc4_crtc_state {
60         struct drm_crtc_state base;
61         /* Dlist area for this CRTC configuration. */
62         struct drm_mm_node mm;
63 };
64
65 static inline struct vc4_crtc *
66 to_vc4_crtc(struct drm_crtc *crtc)
67 {
68         return (struct vc4_crtc *)crtc;
69 }
70
71 static inline struct vc4_crtc_state *
72 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
73 {
74         return (struct vc4_crtc_state *)crtc_state;
75 }
76
77 struct vc4_crtc_data {
78         /* Which channel of the HVS this pixelvalve sources from. */
79         int hvs_channel;
80
81         enum vc4_encoder_type encoder0_type;
82         enum vc4_encoder_type encoder1_type;
83 };
84
85 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
86 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
87
88 #define CRTC_REG(reg) { reg, #reg }
89 static const struct {
90         u32 reg;
91         const char *name;
92 } crtc_regs[] = {
93         CRTC_REG(PV_CONTROL),
94         CRTC_REG(PV_V_CONTROL),
95         CRTC_REG(PV_VSYNCD_EVEN),
96         CRTC_REG(PV_HORZA),
97         CRTC_REG(PV_HORZB),
98         CRTC_REG(PV_VERTA),
99         CRTC_REG(PV_VERTB),
100         CRTC_REG(PV_VERTA_EVEN),
101         CRTC_REG(PV_VERTB_EVEN),
102         CRTC_REG(PV_INTEN),
103         CRTC_REG(PV_INTSTAT),
104         CRTC_REG(PV_STAT),
105         CRTC_REG(PV_HACT_ACT),
106 };
107
108 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
109 {
110         int i;
111
112         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
113                 DRM_INFO("0x%04x (%s): 0x%08x\n",
114                          crtc_regs[i].reg, crtc_regs[i].name,
115                          CRTC_READ(crtc_regs[i].reg));
116         }
117 }
118
119 #ifdef CONFIG_DEBUG_FS
120 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
121 {
122         struct drm_info_node *node = (struct drm_info_node *)m->private;
123         struct drm_device *dev = node->minor->dev;
124         int crtc_index = (uintptr_t)node->info_ent->data;
125         struct drm_crtc *crtc;
126         struct vc4_crtc *vc4_crtc;
127         int i;
128
129         i = 0;
130         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
131                 if (i == crtc_index)
132                         break;
133                 i++;
134         }
135         if (!crtc)
136                 return 0;
137         vc4_crtc = to_vc4_crtc(crtc);
138
139         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
140                 seq_printf(m, "%s (0x%04x): 0x%08x\n",
141                            crtc_regs[i].name, crtc_regs[i].reg,
142                            CRTC_READ(crtc_regs[i].reg));
143         }
144
145         return 0;
146 }
147 #endif
148
149 static void vc4_crtc_destroy(struct drm_crtc *crtc)
150 {
151         drm_crtc_cleanup(crtc);
152 }
153
154 static void
155 vc4_crtc_lut_load(struct drm_crtc *crtc)
156 {
157         struct drm_device *dev = crtc->dev;
158         struct vc4_dev *vc4 = to_vc4_dev(dev);
159         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
160         u32 i;
161
162         /* The LUT memory is laid out with each HVS channel in order,
163          * each of which takes 256 writes for R, 256 for G, then 256
164          * for B.
165          */
166         HVS_WRITE(SCALER_GAMADDR,
167                   SCALER_GAMADDR_AUTOINC |
168                   (vc4_crtc->channel * 3 * crtc->gamma_size));
169
170         for (i = 0; i < crtc->gamma_size; i++)
171                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
172         for (i = 0; i < crtc->gamma_size; i++)
173                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
174         for (i = 0; i < crtc->gamma_size; i++)
175                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
176 }
177
178 static void
179 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
180                    uint32_t start, uint32_t size)
181 {
182         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
183         u32 i;
184
185         for (i = start; i < start + size; i++) {
186                 vc4_crtc->lut_r[i] = r[i] >> 8;
187                 vc4_crtc->lut_g[i] = g[i] >> 8;
188                 vc4_crtc->lut_b[i] = b[i] >> 8;
189         }
190
191         vc4_crtc_lut_load(crtc);
192 }
193
194 static u32 vc4_get_fifo_full_level(u32 format)
195 {
196         static const u32 fifo_len_bytes = 64;
197         static const u32 hvs_latency_pix = 6;
198
199         switch (format) {
200         case PV_CONTROL_FORMAT_DSIV_16:
201         case PV_CONTROL_FORMAT_DSIC_16:
202                 return fifo_len_bytes - 2 * hvs_latency_pix;
203         case PV_CONTROL_FORMAT_DSIV_18:
204                 return fifo_len_bytes - 14;
205         case PV_CONTROL_FORMAT_24:
206         case PV_CONTROL_FORMAT_DSIV_24:
207         default:
208                 return fifo_len_bytes - 3 * hvs_latency_pix;
209         }
210 }
211
212 /*
213  * Returns the clock select bit for the connector attached to the
214  * CRTC.
215  */
216 static int vc4_get_clock_select(struct drm_crtc *crtc)
217 {
218         struct drm_connector *connector;
219
220         drm_for_each_connector(connector, crtc->dev) {
221                 if (connector->state->crtc == crtc) {
222                         struct drm_encoder *encoder = connector->encoder;
223                         struct vc4_encoder *vc4_encoder =
224                                 to_vc4_encoder(encoder);
225
226                         return vc4_encoder->clock_select;
227                 }
228         }
229
230         return -1;
231 }
232
233 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
234 {
235         struct drm_device *dev = crtc->dev;
236         struct vc4_dev *vc4 = to_vc4_dev(dev);
237         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
238         struct drm_crtc_state *state = crtc->state;
239         struct drm_display_mode *mode = &state->adjusted_mode;
240         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
241         u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0));
242         u32 format = PV_CONTROL_FORMAT_24;
243         bool debug_dump_regs = false;
244         int clock_select = vc4_get_clock_select(crtc);
245
246         if (debug_dump_regs) {
247                 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
248                 vc4_crtc_dump_regs(vc4_crtc);
249         }
250
251         /* Reset the PV fifo. */
252         CRTC_WRITE(PV_CONTROL, 0);
253         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
254         CRTC_WRITE(PV_CONTROL, 0);
255
256         CRTC_WRITE(PV_HORZA,
257                    VC4_SET_FIELD(mode->htotal - mode->hsync_end,
258                                  PV_HORZA_HBP) |
259                    VC4_SET_FIELD(mode->hsync_end - mode->hsync_start,
260                                  PV_HORZA_HSYNC));
261         CRTC_WRITE(PV_HORZB,
262                    VC4_SET_FIELD(mode->hsync_start - mode->hdisplay,
263                                  PV_HORZB_HFP) |
264                    VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE));
265
266         CRTC_WRITE(PV_VERTA,
267                    VC4_SET_FIELD(mode->vtotal - mode->vsync_end,
268                                  PV_VERTA_VBP) |
269                    VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
270                                  PV_VERTA_VSYNC));
271         CRTC_WRITE(PV_VERTB,
272                    VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
273                                  PV_VERTB_VFP) |
274                    VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
275
276         if (interlace) {
277                 CRTC_WRITE(PV_VERTA_EVEN,
278                            VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1,
279                                          PV_VERTA_VBP) |
280                            VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
281                                          PV_VERTA_VSYNC));
282                 CRTC_WRITE(PV_VERTB_EVEN,
283                            VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
284                                          PV_VERTB_VFP) |
285                            VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
286         }
287
288         CRTC_WRITE(PV_HACT_ACT, mode->hdisplay);
289
290         CRTC_WRITE(PV_V_CONTROL,
291                    PV_VCONTROL_CONTINUOUS |
292                    (interlace ? PV_VCONTROL_INTERLACE : 0));
293
294         CRTC_WRITE(PV_CONTROL,
295                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
296                    VC4_SET_FIELD(vc4_get_fifo_full_level(format),
297                                  PV_CONTROL_FIFO_LEVEL) |
298                    PV_CONTROL_CLR_AT_START |
299                    PV_CONTROL_TRIGGER_UNDERFLOW |
300                    PV_CONTROL_WAIT_HSTART |
301                    VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
302                    PV_CONTROL_FIFO_CLR |
303                    PV_CONTROL_EN);
304
305         HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
306                   SCALER_DISPBKGND_AUTOHS |
307                   SCALER_DISPBKGND_GAMMA |
308                   (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
309
310         /* Reload the LUT, since the SRAMs would have been disabled if
311          * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
312          */
313         vc4_crtc_lut_load(crtc);
314
315         if (debug_dump_regs) {
316                 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
317                 vc4_crtc_dump_regs(vc4_crtc);
318         }
319 }
320
321 static void require_hvs_enabled(struct drm_device *dev)
322 {
323         struct vc4_dev *vc4 = to_vc4_dev(dev);
324
325         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
326                      SCALER_DISPCTRL_ENABLE);
327 }
328
329 static void vc4_crtc_disable(struct drm_crtc *crtc)
330 {
331         struct drm_device *dev = crtc->dev;
332         struct vc4_dev *vc4 = to_vc4_dev(dev);
333         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
334         u32 chan = vc4_crtc->channel;
335         int ret;
336         require_hvs_enabled(dev);
337
338         CRTC_WRITE(PV_V_CONTROL,
339                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
340         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
341         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
342
343         if (HVS_READ(SCALER_DISPCTRLX(chan)) &
344             SCALER_DISPCTRLX_ENABLE) {
345                 HVS_WRITE(SCALER_DISPCTRLX(chan),
346                           SCALER_DISPCTRLX_RESET);
347
348                 /* While the docs say that reset is self-clearing, it
349                  * seems it doesn't actually.
350                  */
351                 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
352         }
353
354         /* Once we leave, the scaler should be disabled and its fifo empty. */
355
356         WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
357
358         WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
359                                    SCALER_DISPSTATX_MODE) !=
360                      SCALER_DISPSTATX_MODE_DISABLED);
361
362         WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
363                       (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
364                      SCALER_DISPSTATX_EMPTY);
365 }
366
367 static void vc4_crtc_enable(struct drm_crtc *crtc)
368 {
369         struct drm_device *dev = crtc->dev;
370         struct vc4_dev *vc4 = to_vc4_dev(dev);
371         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
372         struct drm_crtc_state *state = crtc->state;
373         struct drm_display_mode *mode = &state->adjusted_mode;
374
375         require_hvs_enabled(dev);
376
377         /* Turn on the scaler, which will wait for vstart to start
378          * compositing.
379          */
380         HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
381                   VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
382                   VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
383                   SCALER_DISPCTRLX_ENABLE);
384
385         /* Turn on the pixel valve, which will emit the vstart signal. */
386         CRTC_WRITE(PV_V_CONTROL,
387                    CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
388 }
389
390 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
391                                  struct drm_crtc_state *state)
392 {
393         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
394         struct drm_device *dev = crtc->dev;
395         struct vc4_dev *vc4 = to_vc4_dev(dev);
396         struct drm_plane *plane;
397         unsigned long flags;
398         u32 dlist_count = 0;
399         int ret;
400
401         /* The pixelvalve can only feed one encoder (and encoders are
402          * 1:1 with connectors.)
403          */
404         if (hweight32(state->connector_mask) > 1)
405                 return -EINVAL;
406
407         drm_atomic_crtc_state_for_each_plane(plane, state) {
408                 struct drm_plane_state *plane_state =
409                         state->state->plane_states[drm_plane_index(plane)];
410
411                 /* plane might not have changed, in which case take
412                  * current state:
413                  */
414                 if (!plane_state)
415                         plane_state = plane->state;
416
417                 dlist_count += vc4_plane_dlist_size(plane_state);
418         }
419
420         dlist_count++; /* Account for SCALER_CTL0_END. */
421
422         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
423         ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
424                                  dlist_count, 1, 0);
425         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
426         if (ret)
427                 return ret;
428
429         return 0;
430 }
431
432 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
433                                   struct drm_crtc_state *old_state)
434 {
435         struct drm_device *dev = crtc->dev;
436         struct vc4_dev *vc4 = to_vc4_dev(dev);
437         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
438         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
439         struct drm_plane *plane;
440         bool debug_dump_regs = false;
441         u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
442         u32 __iomem *dlist_next = dlist_start;
443
444         if (debug_dump_regs) {
445                 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
446                 vc4_hvs_dump_state(dev);
447         }
448
449         /* Copy all the active planes' dlist contents to the hardware dlist. */
450         drm_atomic_crtc_for_each_plane(plane, crtc) {
451                 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
452         }
453
454         writel(SCALER_CTL0_END, dlist_next);
455         dlist_next++;
456
457         WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
458
459         if (crtc->state->event) {
460                 unsigned long flags;
461
462                 crtc->state->event->pipe = drm_crtc_index(crtc);
463
464                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
465
466                 spin_lock_irqsave(&dev->event_lock, flags);
467                 vc4_crtc->event = crtc->state->event;
468                 crtc->state->event = NULL;
469
470                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
471                           vc4_state->mm.start);
472
473                 spin_unlock_irqrestore(&dev->event_lock, flags);
474         } else {
475                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
476                           vc4_state->mm.start);
477         }
478
479         if (debug_dump_regs) {
480                 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
481                 vc4_hvs_dump_state(dev);
482         }
483 }
484
485 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
486 {
487         struct vc4_dev *vc4 = to_vc4_dev(dev);
488         struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
489
490         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
491
492         return 0;
493 }
494
495 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
496 {
497         struct vc4_dev *vc4 = to_vc4_dev(dev);
498         struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
499
500         CRTC_WRITE(PV_INTEN, 0);
501 }
502
503 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
504 {
505         struct drm_crtc *crtc = &vc4_crtc->base;
506         struct drm_device *dev = crtc->dev;
507         struct vc4_dev *vc4 = to_vc4_dev(dev);
508         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
509         u32 chan = vc4_crtc->channel;
510         unsigned long flags;
511
512         spin_lock_irqsave(&dev->event_lock, flags);
513         if (vc4_crtc->event &&
514             (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
515                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
516                 vc4_crtc->event = NULL;
517                 drm_crtc_vblank_put(crtc);
518         }
519         spin_unlock_irqrestore(&dev->event_lock, flags);
520 }
521
522 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
523 {
524         struct vc4_crtc *vc4_crtc = data;
525         u32 stat = CRTC_READ(PV_INTSTAT);
526         irqreturn_t ret = IRQ_NONE;
527
528         if (stat & PV_INT_VFP_START) {
529                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
530                 drm_crtc_handle_vblank(&vc4_crtc->base);
531                 vc4_crtc_handle_page_flip(vc4_crtc);
532                 ret = IRQ_HANDLED;
533         }
534
535         return ret;
536 }
537
538 struct vc4_async_flip_state {
539         struct drm_crtc *crtc;
540         struct drm_framebuffer *fb;
541         struct drm_pending_vblank_event *event;
542
543         struct vc4_seqno_cb cb;
544 };
545
546 /* Called when the V3D execution for the BO being flipped to is done, so that
547  * we can actually update the plane's address to point to it.
548  */
549 static void
550 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
551 {
552         struct vc4_async_flip_state *flip_state =
553                 container_of(cb, struct vc4_async_flip_state, cb);
554         struct drm_crtc *crtc = flip_state->crtc;
555         struct drm_device *dev = crtc->dev;
556         struct vc4_dev *vc4 = to_vc4_dev(dev);
557         struct drm_plane *plane = crtc->primary;
558
559         vc4_plane_async_set_fb(plane, flip_state->fb);
560         if (flip_state->event) {
561                 unsigned long flags;
562
563                 spin_lock_irqsave(&dev->event_lock, flags);
564                 drm_crtc_send_vblank_event(crtc, flip_state->event);
565                 spin_unlock_irqrestore(&dev->event_lock, flags);
566         }
567
568         drm_crtc_vblank_put(crtc);
569         drm_framebuffer_unreference(flip_state->fb);
570         kfree(flip_state);
571
572         up(&vc4->async_modeset);
573 }
574
575 /* Implements async (non-vblank-synced) page flips.
576  *
577  * The page flip ioctl needs to return immediately, so we grab the
578  * modeset semaphore on the pipe, and queue the address update for
579  * when V3D is done with the BO being flipped to.
580  */
581 static int vc4_async_page_flip(struct drm_crtc *crtc,
582                                struct drm_framebuffer *fb,
583                                struct drm_pending_vblank_event *event,
584                                uint32_t flags)
585 {
586         struct drm_device *dev = crtc->dev;
587         struct vc4_dev *vc4 = to_vc4_dev(dev);
588         struct drm_plane *plane = crtc->primary;
589         int ret = 0;
590         struct vc4_async_flip_state *flip_state;
591         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
592         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
593
594         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
595         if (!flip_state)
596                 return -ENOMEM;
597
598         drm_framebuffer_reference(fb);
599         flip_state->fb = fb;
600         flip_state->crtc = crtc;
601         flip_state->event = event;
602
603         /* Make sure all other async modesetes have landed. */
604         ret = down_interruptible(&vc4->async_modeset);
605         if (ret) {
606                 drm_framebuffer_unreference(fb);
607                 kfree(flip_state);
608                 return ret;
609         }
610
611         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
612
613         /* Immediately update the plane's legacy fb pointer, so that later
614          * modeset prep sees the state that will be present when the semaphore
615          * is released.
616          */
617         drm_atomic_set_fb_for_plane(plane->state, fb);
618         plane->fb = fb;
619
620         vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
621                            vc4_async_page_flip_complete);
622
623         /* Driver takes ownership of state on successful async commit. */
624         return 0;
625 }
626
627 static int vc4_page_flip(struct drm_crtc *crtc,
628                          struct drm_framebuffer *fb,
629                          struct drm_pending_vblank_event *event,
630                          uint32_t flags)
631 {
632         if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
633                 return vc4_async_page_flip(crtc, fb, event, flags);
634         else
635                 return drm_atomic_helper_page_flip(crtc, fb, event, flags);
636 }
637
638 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
639 {
640         struct vc4_crtc_state *vc4_state;
641
642         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
643         if (!vc4_state)
644                 return NULL;
645
646         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
647         return &vc4_state->base;
648 }
649
650 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
651                                    struct drm_crtc_state *state)
652 {
653         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
654         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
655
656         if (vc4_state->mm.allocated) {
657                 unsigned long flags;
658
659                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
660                 drm_mm_remove_node(&vc4_state->mm);
661                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
662
663         }
664
665         __drm_atomic_helper_crtc_destroy_state(state);
666 }
667
668 static const struct drm_crtc_funcs vc4_crtc_funcs = {
669         .set_config = drm_atomic_helper_set_config,
670         .destroy = vc4_crtc_destroy,
671         .page_flip = vc4_page_flip,
672         .set_property = NULL,
673         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
674         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
675         .reset = drm_atomic_helper_crtc_reset,
676         .atomic_duplicate_state = vc4_crtc_duplicate_state,
677         .atomic_destroy_state = vc4_crtc_destroy_state,
678         .gamma_set = vc4_crtc_gamma_set,
679 };
680
681 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
682         .mode_set_nofb = vc4_crtc_mode_set_nofb,
683         .disable = vc4_crtc_disable,
684         .enable = vc4_crtc_enable,
685         .atomic_check = vc4_crtc_atomic_check,
686         .atomic_flush = vc4_crtc_atomic_flush,
687 };
688
689 static const struct vc4_crtc_data pv0_data = {
690         .hvs_channel = 0,
691         .encoder0_type = VC4_ENCODER_TYPE_DSI0,
692         .encoder1_type = VC4_ENCODER_TYPE_DPI,
693 };
694
695 static const struct vc4_crtc_data pv1_data = {
696         .hvs_channel = 2,
697         .encoder0_type = VC4_ENCODER_TYPE_DSI1,
698         .encoder1_type = VC4_ENCODER_TYPE_SMI,
699 };
700
701 static const struct vc4_crtc_data pv2_data = {
702         .hvs_channel = 1,
703         .encoder0_type = VC4_ENCODER_TYPE_VEC,
704         .encoder1_type = VC4_ENCODER_TYPE_HDMI,
705 };
706
707 static const struct of_device_id vc4_crtc_dt_match[] = {
708         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
709         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
710         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
711         {}
712 };
713
714 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
715                                         struct drm_crtc *crtc)
716 {
717         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
718         struct drm_encoder *encoder;
719
720         drm_for_each_encoder(encoder, drm) {
721                 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
722
723                 if (vc4_encoder->type == vc4_crtc->data->encoder0_type) {
724                         vc4_encoder->clock_select = 0;
725                         encoder->possible_crtcs |= drm_crtc_mask(crtc);
726                 } else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) {
727                         vc4_encoder->clock_select = 1;
728                         encoder->possible_crtcs |= drm_crtc_mask(crtc);
729                 }
730         }
731 }
732
733 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
734 {
735         struct platform_device *pdev = to_platform_device(dev);
736         struct drm_device *drm = dev_get_drvdata(master);
737         struct vc4_dev *vc4 = to_vc4_dev(drm);
738         struct vc4_crtc *vc4_crtc;
739         struct drm_crtc *crtc;
740         struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
741         const struct of_device_id *match;
742         int ret, i;
743
744         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
745         if (!vc4_crtc)
746                 return -ENOMEM;
747         crtc = &vc4_crtc->base;
748
749         match = of_match_device(vc4_crtc_dt_match, dev);
750         if (!match)
751                 return -ENODEV;
752         vc4_crtc->data = match->data;
753
754         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
755         if (IS_ERR(vc4_crtc->regs))
756                 return PTR_ERR(vc4_crtc->regs);
757
758         /* For now, we create just the primary and the legacy cursor
759          * planes.  We should be able to stack more planes on easily,
760          * but to do that we would need to compute the bandwidth
761          * requirement of the plane configuration, and reject ones
762          * that will take too much.
763          */
764         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
765         if (IS_ERR(primary_plane)) {
766                 dev_err(dev, "failed to construct primary plane\n");
767                 ret = PTR_ERR(primary_plane);
768                 goto err;
769         }
770
771         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
772                                   &vc4_crtc_funcs, NULL);
773         drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
774         primary_plane->crtc = crtc;
775         vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
776         vc4_crtc->channel = vc4_crtc->data->hvs_channel;
777         drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
778
779         /* Set up some arbitrary number of planes.  We're not limited
780          * by a set number of physical registers, just the space in
781          * the HVS (16k) and how small an plane can be (28 bytes).
782          * However, each plane we set up takes up some memory, and
783          * increases the cost of looping over planes, which atomic
784          * modesetting does quite a bit.  As a result, we pick a
785          * modest number of planes to expose, that should hopefully
786          * still cover any sane usecase.
787          */
788         for (i = 0; i < 8; i++) {
789                 struct drm_plane *plane =
790                         vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
791
792                 if (IS_ERR(plane))
793                         continue;
794
795                 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
796         }
797
798         /* Set up the legacy cursor after overlay initialization,
799          * since we overlay planes on the CRTC in the order they were
800          * initialized.
801          */
802         cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
803         if (!IS_ERR(cursor_plane)) {
804                 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
805                 cursor_plane->crtc = crtc;
806                 crtc->cursor = cursor_plane;
807         }
808
809         CRTC_WRITE(PV_INTEN, 0);
810         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
811         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
812                                vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
813         if (ret)
814                 goto err_destroy_planes;
815
816         vc4_set_crtc_possible_masks(drm, crtc);
817
818         for (i = 0; i < crtc->gamma_size; i++) {
819                 vc4_crtc->lut_r[i] = i;
820                 vc4_crtc->lut_g[i] = i;
821                 vc4_crtc->lut_b[i] = i;
822         }
823
824         platform_set_drvdata(pdev, vc4_crtc);
825
826         return 0;
827
828 err_destroy_planes:
829         list_for_each_entry_safe(destroy_plane, temp,
830                                  &drm->mode_config.plane_list, head) {
831                 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
832                     destroy_plane->funcs->destroy(destroy_plane);
833         }
834 err:
835         return ret;
836 }
837
838 static void vc4_crtc_unbind(struct device *dev, struct device *master,
839                             void *data)
840 {
841         struct platform_device *pdev = to_platform_device(dev);
842         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
843
844         vc4_crtc_destroy(&vc4_crtc->base);
845
846         CRTC_WRITE(PV_INTEN, 0);
847
848         platform_set_drvdata(pdev, NULL);
849 }
850
851 static const struct component_ops vc4_crtc_ops = {
852         .bind   = vc4_crtc_bind,
853         .unbind = vc4_crtc_unbind,
854 };
855
856 static int vc4_crtc_dev_probe(struct platform_device *pdev)
857 {
858         return component_add(&pdev->dev, &vc4_crtc_ops);
859 }
860
861 static int vc4_crtc_dev_remove(struct platform_device *pdev)
862 {
863         component_del(&pdev->dev, &vc4_crtc_ops);
864         return 0;
865 }
866
867 struct platform_driver vc4_crtc_driver = {
868         .probe = vc4_crtc_dev_probe,
869         .remove = vc4_crtc_dev_remove,
870         .driver = {
871                 .name = "vc4_crtc",
872                 .of_match_table = vc4_crtc_dt_match,
873         },
874 };