]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/iio/accel/bmc150-accel-core.c
Merge branch 'xtensa-sim-params' into xtensa-fixes
[karo-tx-linux.git] / drivers / iio / accel / bmc150-accel-core.c
1 /*
2  * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
3  *  - BMC150
4  *  - BMI055
5  *  - BMA255
6  *  - BMA250E
7  *  - BMA222E
8  *  - BMA280
9  *
10  * Copyright (c) 2014, Intel Corporation.
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms and conditions of the GNU General Public License,
14  * version 2, as published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope it will be useful, but WITHOUT
17  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
19  * more details.
20  */
21
22 #include <linux/module.h>
23 #include <linux/i2c.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <linux/acpi.h>
28 #include <linux/pm.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/iio/iio.h>
31 #include <linux/iio/sysfs.h>
32 #include <linux/iio/buffer.h>
33 #include <linux/iio/events.h>
34 #include <linux/iio/trigger.h>
35 #include <linux/iio/trigger_consumer.h>
36 #include <linux/iio/triggered_buffer.h>
37 #include <linux/regmap.h>
38
39 #include "bmc150-accel.h"
40
41 #define BMC150_ACCEL_DRV_NAME                   "bmc150_accel"
42 #define BMC150_ACCEL_IRQ_NAME                   "bmc150_accel_event"
43
44 #define BMC150_ACCEL_REG_CHIP_ID                0x00
45
46 #define BMC150_ACCEL_REG_INT_STATUS_2           0x0B
47 #define BMC150_ACCEL_ANY_MOTION_MASK            0x07
48 #define BMC150_ACCEL_ANY_MOTION_BIT_X           BIT(0)
49 #define BMC150_ACCEL_ANY_MOTION_BIT_Y           BIT(1)
50 #define BMC150_ACCEL_ANY_MOTION_BIT_Z           BIT(2)
51 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN        BIT(3)
52
53 #define BMC150_ACCEL_REG_PMU_LPW                0x11
54 #define BMC150_ACCEL_PMU_MODE_MASK              0xE0
55 #define BMC150_ACCEL_PMU_MODE_SHIFT             5
56 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK     0x17
57 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT    1
58
59 #define BMC150_ACCEL_REG_PMU_RANGE              0x0F
60
61 #define BMC150_ACCEL_DEF_RANGE_2G               0x03
62 #define BMC150_ACCEL_DEF_RANGE_4G               0x05
63 #define BMC150_ACCEL_DEF_RANGE_8G               0x08
64 #define BMC150_ACCEL_DEF_RANGE_16G              0x0C
65
66 /* Default BW: 125Hz */
67 #define BMC150_ACCEL_REG_PMU_BW         0x10
68 #define BMC150_ACCEL_DEF_BW                     125
69
70 #define BMC150_ACCEL_REG_RESET                  0x14
71 #define BMC150_ACCEL_RESET_VAL                  0xB6
72
73 #define BMC150_ACCEL_REG_INT_MAP_0              0x19
74 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE        BIT(2)
75
76 #define BMC150_ACCEL_REG_INT_MAP_1              0x1A
77 #define BMC150_ACCEL_INT_MAP_1_BIT_DATA         BIT(0)
78 #define BMC150_ACCEL_INT_MAP_1_BIT_FWM          BIT(1)
79 #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL        BIT(2)
80
81 #define BMC150_ACCEL_REG_INT_RST_LATCH          0x21
82 #define BMC150_ACCEL_INT_MODE_LATCH_RESET       0x80
83 #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
84 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT     0x00
85
86 #define BMC150_ACCEL_REG_INT_EN_0               0x16
87 #define BMC150_ACCEL_INT_EN_BIT_SLP_X           BIT(0)
88 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y           BIT(1)
89 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z           BIT(2)
90
91 #define BMC150_ACCEL_REG_INT_EN_1               0x17
92 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN         BIT(4)
93 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN        BIT(5)
94 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN          BIT(6)
95
96 #define BMC150_ACCEL_REG_INT_OUT_CTRL           0x20
97 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL      BIT(0)
98
99 #define BMC150_ACCEL_REG_INT_5                  0x27
100 #define BMC150_ACCEL_SLOPE_DUR_MASK             0x03
101
102 #define BMC150_ACCEL_REG_INT_6                  0x28
103 #define BMC150_ACCEL_SLOPE_THRES_MASK           0xFF
104
105 /* Slope duration in terms of number of samples */
106 #define BMC150_ACCEL_DEF_SLOPE_DURATION         1
107 /* in terms of multiples of g's/LSB, based on range */
108 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD        1
109
110 #define BMC150_ACCEL_REG_XOUT_L         0x02
111
112 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS        100
113
114 /* Sleep Duration values */
115 #define BMC150_ACCEL_SLEEP_500_MICRO            0x05
116 #define BMC150_ACCEL_SLEEP_1_MS         0x06
117 #define BMC150_ACCEL_SLEEP_2_MS         0x07
118 #define BMC150_ACCEL_SLEEP_4_MS         0x08
119 #define BMC150_ACCEL_SLEEP_6_MS         0x09
120 #define BMC150_ACCEL_SLEEP_10_MS                0x0A
121 #define BMC150_ACCEL_SLEEP_25_MS                0x0B
122 #define BMC150_ACCEL_SLEEP_50_MS                0x0C
123 #define BMC150_ACCEL_SLEEP_100_MS               0x0D
124 #define BMC150_ACCEL_SLEEP_500_MS               0x0E
125 #define BMC150_ACCEL_SLEEP_1_SEC                0x0F
126
127 #define BMC150_ACCEL_REG_TEMP                   0x08
128 #define BMC150_ACCEL_TEMP_CENTER_VAL            24
129
130 #define BMC150_ACCEL_AXIS_TO_REG(axis)  (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
131 #define BMC150_AUTO_SUSPEND_DELAY_MS            2000
132
133 #define BMC150_ACCEL_REG_FIFO_STATUS            0x0E
134 #define BMC150_ACCEL_REG_FIFO_CONFIG0           0x30
135 #define BMC150_ACCEL_REG_FIFO_CONFIG1           0x3E
136 #define BMC150_ACCEL_REG_FIFO_DATA              0x3F
137 #define BMC150_ACCEL_FIFO_LENGTH                32
138
139 enum bmc150_accel_axis {
140         AXIS_X,
141         AXIS_Y,
142         AXIS_Z,
143         AXIS_MAX,
144 };
145
146 enum bmc150_power_modes {
147         BMC150_ACCEL_SLEEP_MODE_NORMAL,
148         BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
149         BMC150_ACCEL_SLEEP_MODE_LPM,
150         BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
151 };
152
153 struct bmc150_scale_info {
154         int scale;
155         u8 reg_range;
156 };
157
158 struct bmc150_accel_chip_info {
159         const char *name;
160         u8 chip_id;
161         const struct iio_chan_spec *channels;
162         int num_channels;
163         const struct bmc150_scale_info scale_table[4];
164 };
165
166 struct bmc150_accel_interrupt {
167         const struct bmc150_accel_interrupt_info *info;
168         atomic_t users;
169 };
170
171 struct bmc150_accel_trigger {
172         struct bmc150_accel_data *data;
173         struct iio_trigger *indio_trig;
174         int (*setup)(struct bmc150_accel_trigger *t, bool state);
175         int intr;
176         bool enabled;
177 };
178
179 enum bmc150_accel_interrupt_id {
180         BMC150_ACCEL_INT_DATA_READY,
181         BMC150_ACCEL_INT_ANY_MOTION,
182         BMC150_ACCEL_INT_WATERMARK,
183         BMC150_ACCEL_INTERRUPTS,
184 };
185
186 enum bmc150_accel_trigger_id {
187         BMC150_ACCEL_TRIGGER_DATA_READY,
188         BMC150_ACCEL_TRIGGER_ANY_MOTION,
189         BMC150_ACCEL_TRIGGERS,
190 };
191
192 struct bmc150_accel_data {
193         struct regmap *regmap;
194         int irq;
195         struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
196         atomic_t active_intr;
197         struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
198         struct mutex mutex;
199         u8 fifo_mode, watermark;
200         s16 buffer[8];
201         u8 bw_bits;
202         u32 slope_dur;
203         u32 slope_thres;
204         u32 range;
205         int ev_enable_state;
206         int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
207         const struct bmc150_accel_chip_info *chip_info;
208 };
209
210 static const struct {
211         int val;
212         int val2;
213         u8 bw_bits;
214 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
215                                      {31, 260000, 0x09},
216                                      {62, 500000, 0x0A},
217                                      {125, 0, 0x0B},
218                                      {250, 0, 0x0C},
219                                      {500, 0, 0x0D},
220                                      {1000, 0, 0x0E},
221                                      {2000, 0, 0x0F} };
222
223 static const struct {
224         int bw_bits;
225         int msec;
226 } bmc150_accel_sample_upd_time[] = { {0x08, 64},
227                                      {0x09, 32},
228                                      {0x0A, 16},
229                                      {0x0B, 8},
230                                      {0x0C, 4},
231                                      {0x0D, 2},
232                                      {0x0E, 1},
233                                      {0x0F, 1} };
234
235 static const struct {
236         int sleep_dur;
237         u8 reg_value;
238 } bmc150_accel_sleep_value_table[] = { {0, 0},
239                                        {500, BMC150_ACCEL_SLEEP_500_MICRO},
240                                        {1000, BMC150_ACCEL_SLEEP_1_MS},
241                                        {2000, BMC150_ACCEL_SLEEP_2_MS},
242                                        {4000, BMC150_ACCEL_SLEEP_4_MS},
243                                        {6000, BMC150_ACCEL_SLEEP_6_MS},
244                                        {10000, BMC150_ACCEL_SLEEP_10_MS},
245                                        {25000, BMC150_ACCEL_SLEEP_25_MS},
246                                        {50000, BMC150_ACCEL_SLEEP_50_MS},
247                                        {100000, BMC150_ACCEL_SLEEP_100_MS},
248                                        {500000, BMC150_ACCEL_SLEEP_500_MS},
249                                        {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
250
251 const struct regmap_config bmc150_regmap_conf = {
252         .reg_bits = 8,
253         .val_bits = 8,
254         .max_register = 0x3f,
255 };
256 EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
257
258 static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
259                                  enum bmc150_power_modes mode,
260                                  int dur_us)
261 {
262         struct device *dev = regmap_get_device(data->regmap);
263         int i;
264         int ret;
265         u8 lpw_bits;
266         int dur_val = -1;
267
268         if (dur_us > 0) {
269                 for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
270                                                                          ++i) {
271                         if (bmc150_accel_sleep_value_table[i].sleep_dur ==
272                                                                         dur_us)
273                                 dur_val =
274                                 bmc150_accel_sleep_value_table[i].reg_value;
275                 }
276         } else {
277                 dur_val = 0;
278         }
279
280         if (dur_val < 0)
281                 return -EINVAL;
282
283         lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
284         lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
285
286         dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
287
288         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
289         if (ret < 0) {
290                 dev_err(dev, "Error writing reg_pmu_lpw\n");
291                 return ret;
292         }
293
294         return 0;
295 }
296
297 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
298                                int val2)
299 {
300         int i;
301         int ret;
302
303         for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
304                 if (bmc150_accel_samp_freq_table[i].val == val &&
305                     bmc150_accel_samp_freq_table[i].val2 == val2) {
306                         ret = regmap_write(data->regmap,
307                                 BMC150_ACCEL_REG_PMU_BW,
308                                 bmc150_accel_samp_freq_table[i].bw_bits);
309                         if (ret < 0)
310                                 return ret;
311
312                         data->bw_bits =
313                                 bmc150_accel_samp_freq_table[i].bw_bits;
314                         return 0;
315                 }
316         }
317
318         return -EINVAL;
319 }
320
321 static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
322 {
323         struct device *dev = regmap_get_device(data->regmap);
324         int ret;
325
326         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
327                                         data->slope_thres);
328         if (ret < 0) {
329                 dev_err(dev, "Error writing reg_int_6\n");
330                 return ret;
331         }
332
333         ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
334                                  BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
335         if (ret < 0) {
336                 dev_err(dev, "Error updating reg_int_5\n");
337                 return ret;
338         }
339
340         dev_dbg(dev, "%s: %x %x\n", __func__, data->slope_thres,
341                 data->slope_dur);
342
343         return ret;
344 }
345
346 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
347                                          bool state)
348 {
349         if (state)
350                 return bmc150_accel_update_slope(t->data);
351
352         return 0;
353 }
354
355 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
356                                int *val2)
357 {
358         int i;
359
360         for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
361                 if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
362                         *val = bmc150_accel_samp_freq_table[i].val;
363                         *val2 = bmc150_accel_samp_freq_table[i].val2;
364                         return IIO_VAL_INT_PLUS_MICRO;
365                 }
366         }
367
368         return -EINVAL;
369 }
370
371 #ifdef CONFIG_PM
372 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
373 {
374         int i;
375
376         for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
377                 if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
378                         return bmc150_accel_sample_upd_time[i].msec;
379         }
380
381         return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
382 }
383
384 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
385 {
386         struct device *dev = regmap_get_device(data->regmap);
387         int ret;
388
389         if (on) {
390                 ret = pm_runtime_get_sync(dev);
391         } else {
392                 pm_runtime_mark_last_busy(dev);
393                 ret = pm_runtime_put_autosuspend(dev);
394         }
395
396         if (ret < 0) {
397                 dev_err(dev,
398                         "Failed: bmc150_accel_set_power_state for %d\n", on);
399                 if (on)
400                         pm_runtime_put_noidle(dev);
401
402                 return ret;
403         }
404
405         return 0;
406 }
407 #else
408 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
409 {
410         return 0;
411 }
412 #endif
413
414 static const struct bmc150_accel_interrupt_info {
415         u8 map_reg;
416         u8 map_bitmask;
417         u8 en_reg;
418         u8 en_bitmask;
419 } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
420         { /* data ready interrupt */
421                 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
422                 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
423                 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
424                 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
425         },
426         {  /* motion interrupt */
427                 .map_reg = BMC150_ACCEL_REG_INT_MAP_0,
428                 .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
429                 .en_reg = BMC150_ACCEL_REG_INT_EN_0,
430                 .en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
431                         BMC150_ACCEL_INT_EN_BIT_SLP_Y |
432                         BMC150_ACCEL_INT_EN_BIT_SLP_Z
433         },
434         { /* fifo watermark interrupt */
435                 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
436                 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
437                 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
438                 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
439         },
440 };
441
442 static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
443                                           struct bmc150_accel_data *data)
444 {
445         int i;
446
447         for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
448                 data->interrupts[i].info = &bmc150_accel_interrupts[i];
449 }
450
451 static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
452                                       bool state)
453 {
454         struct device *dev = regmap_get_device(data->regmap);
455         struct bmc150_accel_interrupt *intr = &data->interrupts[i];
456         const struct bmc150_accel_interrupt_info *info = intr->info;
457         int ret;
458
459         if (state) {
460                 if (atomic_inc_return(&intr->users) > 1)
461                         return 0;
462         } else {
463                 if (atomic_dec_return(&intr->users) > 0)
464                         return 0;
465         }
466
467         /*
468          * We will expect the enable and disable to do operation in reverse
469          * order. This will happen here anyway, as our resume operation uses
470          * sync mode runtime pm calls. The suspend operation will be delayed
471          * by autosuspend delay.
472          * So the disable operation will still happen in reverse order of
473          * enable operation. When runtime pm is disabled the mode is always on,
474          * so sequence doesn't matter.
475          */
476         ret = bmc150_accel_set_power_state(data, state);
477         if (ret < 0)
478                 return ret;
479
480         /* map the interrupt to the appropriate pins */
481         ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
482                                  (state ? info->map_bitmask : 0));
483         if (ret < 0) {
484                 dev_err(dev, "Error updating reg_int_map\n");
485                 goto out_fix_power_state;
486         }
487
488         /* enable/disable the interrupt */
489         ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
490                                  (state ? info->en_bitmask : 0));
491         if (ret < 0) {
492                 dev_err(dev, "Error updating reg_int_en\n");
493                 goto out_fix_power_state;
494         }
495
496         if (state)
497                 atomic_inc(&data->active_intr);
498         else
499                 atomic_dec(&data->active_intr);
500
501         return 0;
502
503 out_fix_power_state:
504         bmc150_accel_set_power_state(data, false);
505         return ret;
506 }
507
508 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
509 {
510         struct device *dev = regmap_get_device(data->regmap);
511         int ret, i;
512
513         for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
514                 if (data->chip_info->scale_table[i].scale == val) {
515                         ret = regmap_write(data->regmap,
516                                      BMC150_ACCEL_REG_PMU_RANGE,
517                                      data->chip_info->scale_table[i].reg_range);
518                         if (ret < 0) {
519                                 dev_err(dev, "Error writing pmu_range\n");
520                                 return ret;
521                         }
522
523                         data->range = data->chip_info->scale_table[i].reg_range;
524                         return 0;
525                 }
526         }
527
528         return -EINVAL;
529 }
530
531 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
532 {
533         struct device *dev = regmap_get_device(data->regmap);
534         int ret;
535         unsigned int value;
536
537         mutex_lock(&data->mutex);
538
539         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
540         if (ret < 0) {
541                 dev_err(dev, "Error reading reg_temp\n");
542                 mutex_unlock(&data->mutex);
543                 return ret;
544         }
545         *val = sign_extend32(value, 7);
546
547         mutex_unlock(&data->mutex);
548
549         return IIO_VAL_INT;
550 }
551
552 static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
553                                  struct iio_chan_spec const *chan,
554                                  int *val)
555 {
556         struct device *dev = regmap_get_device(data->regmap);
557         int ret;
558         int axis = chan->scan_index;
559         __le16 raw_val;
560
561         mutex_lock(&data->mutex);
562         ret = bmc150_accel_set_power_state(data, true);
563         if (ret < 0) {
564                 mutex_unlock(&data->mutex);
565                 return ret;
566         }
567
568         ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
569                                &raw_val, sizeof(raw_val));
570         if (ret < 0) {
571                 dev_err(dev, "Error reading axis %d\n", axis);
572                 bmc150_accel_set_power_state(data, false);
573                 mutex_unlock(&data->mutex);
574                 return ret;
575         }
576         *val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
577                              chan->scan_type.realbits - 1);
578         ret = bmc150_accel_set_power_state(data, false);
579         mutex_unlock(&data->mutex);
580         if (ret < 0)
581                 return ret;
582
583         return IIO_VAL_INT;
584 }
585
586 static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
587                                  struct iio_chan_spec const *chan,
588                                  int *val, int *val2, long mask)
589 {
590         struct bmc150_accel_data *data = iio_priv(indio_dev);
591         int ret;
592
593         switch (mask) {
594         case IIO_CHAN_INFO_RAW:
595                 switch (chan->type) {
596                 case IIO_TEMP:
597                         return bmc150_accel_get_temp(data, val);
598                 case IIO_ACCEL:
599                         if (iio_buffer_enabled(indio_dev))
600                                 return -EBUSY;
601                         else
602                                 return bmc150_accel_get_axis(data, chan, val);
603                 default:
604                         return -EINVAL;
605                 }
606         case IIO_CHAN_INFO_OFFSET:
607                 if (chan->type == IIO_TEMP) {
608                         *val = BMC150_ACCEL_TEMP_CENTER_VAL;
609                         return IIO_VAL_INT;
610                 } else {
611                         return -EINVAL;
612                 }
613         case IIO_CHAN_INFO_SCALE:
614                 *val = 0;
615                 switch (chan->type) {
616                 case IIO_TEMP:
617                         *val2 = 500000;
618                         return IIO_VAL_INT_PLUS_MICRO;
619                 case IIO_ACCEL:
620                 {
621                         int i;
622                         const struct bmc150_scale_info *si;
623                         int st_size = ARRAY_SIZE(data->chip_info->scale_table);
624
625                         for (i = 0; i < st_size; ++i) {
626                                 si = &data->chip_info->scale_table[i];
627                                 if (si->reg_range == data->range) {
628                                         *val2 = si->scale;
629                                         return IIO_VAL_INT_PLUS_MICRO;
630                                 }
631                         }
632                         return -EINVAL;
633                 }
634                 default:
635                         return -EINVAL;
636                 }
637         case IIO_CHAN_INFO_SAMP_FREQ:
638                 mutex_lock(&data->mutex);
639                 ret = bmc150_accel_get_bw(data, val, val2);
640                 mutex_unlock(&data->mutex);
641                 return ret;
642         default:
643                 return -EINVAL;
644         }
645 }
646
647 static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
648                                   struct iio_chan_spec const *chan,
649                                   int val, int val2, long mask)
650 {
651         struct bmc150_accel_data *data = iio_priv(indio_dev);
652         int ret;
653
654         switch (mask) {
655         case IIO_CHAN_INFO_SAMP_FREQ:
656                 mutex_lock(&data->mutex);
657                 ret = bmc150_accel_set_bw(data, val, val2);
658                 mutex_unlock(&data->mutex);
659                 break;
660         case IIO_CHAN_INFO_SCALE:
661                 if (val)
662                         return -EINVAL;
663
664                 mutex_lock(&data->mutex);
665                 ret = bmc150_accel_set_scale(data, val2);
666                 mutex_unlock(&data->mutex);
667                 return ret;
668         default:
669                 ret = -EINVAL;
670         }
671
672         return ret;
673 }
674
675 static int bmc150_accel_read_event(struct iio_dev *indio_dev,
676                                    const struct iio_chan_spec *chan,
677                                    enum iio_event_type type,
678                                    enum iio_event_direction dir,
679                                    enum iio_event_info info,
680                                    int *val, int *val2)
681 {
682         struct bmc150_accel_data *data = iio_priv(indio_dev);
683
684         *val2 = 0;
685         switch (info) {
686         case IIO_EV_INFO_VALUE:
687                 *val = data->slope_thres;
688                 break;
689         case IIO_EV_INFO_PERIOD:
690                 *val = data->slope_dur;
691                 break;
692         default:
693                 return -EINVAL;
694         }
695
696         return IIO_VAL_INT;
697 }
698
699 static int bmc150_accel_write_event(struct iio_dev *indio_dev,
700                                     const struct iio_chan_spec *chan,
701                                     enum iio_event_type type,
702                                     enum iio_event_direction dir,
703                                     enum iio_event_info info,
704                                     int val, int val2)
705 {
706         struct bmc150_accel_data *data = iio_priv(indio_dev);
707
708         if (data->ev_enable_state)
709                 return -EBUSY;
710
711         switch (info) {
712         case IIO_EV_INFO_VALUE:
713                 data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
714                 break;
715         case IIO_EV_INFO_PERIOD:
716                 data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
717                 break;
718         default:
719                 return -EINVAL;
720         }
721
722         return 0;
723 }
724
725 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
726                                           const struct iio_chan_spec *chan,
727                                           enum iio_event_type type,
728                                           enum iio_event_direction dir)
729 {
730         struct bmc150_accel_data *data = iio_priv(indio_dev);
731
732         return data->ev_enable_state;
733 }
734
735 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
736                                            const struct iio_chan_spec *chan,
737                                            enum iio_event_type type,
738                                            enum iio_event_direction dir,
739                                            int state)
740 {
741         struct bmc150_accel_data *data = iio_priv(indio_dev);
742         int ret;
743
744         if (state == data->ev_enable_state)
745                 return 0;
746
747         mutex_lock(&data->mutex);
748
749         ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
750                                          state);
751         if (ret < 0) {
752                 mutex_unlock(&data->mutex);
753                 return ret;
754         }
755
756         data->ev_enable_state = state;
757         mutex_unlock(&data->mutex);
758
759         return 0;
760 }
761
762 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
763                                          struct iio_trigger *trig)
764 {
765         struct bmc150_accel_data *data = iio_priv(indio_dev);
766         int i;
767
768         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
769                 if (data->triggers[i].indio_trig == trig)
770                         return 0;
771         }
772
773         return -EINVAL;
774 }
775
776 static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
777                                                struct device_attribute *attr,
778                                                char *buf)
779 {
780         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
781         struct bmc150_accel_data *data = iio_priv(indio_dev);
782         int wm;
783
784         mutex_lock(&data->mutex);
785         wm = data->watermark;
786         mutex_unlock(&data->mutex);
787
788         return sprintf(buf, "%d\n", wm);
789 }
790
791 static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
792                                            struct device_attribute *attr,
793                                            char *buf)
794 {
795         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
796         struct bmc150_accel_data *data = iio_priv(indio_dev);
797         bool state;
798
799         mutex_lock(&data->mutex);
800         state = data->fifo_mode;
801         mutex_unlock(&data->mutex);
802
803         return sprintf(buf, "%d\n", state);
804 }
805
806 static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
807 static IIO_CONST_ATTR(hwfifo_watermark_max,
808                       __stringify(BMC150_ACCEL_FIFO_LENGTH));
809 static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
810                        bmc150_accel_get_fifo_state, NULL, 0);
811 static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
812                        bmc150_accel_get_fifo_watermark, NULL, 0);
813
814 static const struct attribute *bmc150_accel_fifo_attributes[] = {
815         &iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
816         &iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
817         &iio_dev_attr_hwfifo_watermark.dev_attr.attr,
818         &iio_dev_attr_hwfifo_enabled.dev_attr.attr,
819         NULL,
820 };
821
822 static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
823 {
824         struct bmc150_accel_data *data = iio_priv(indio_dev);
825
826         if (val > BMC150_ACCEL_FIFO_LENGTH)
827                 val = BMC150_ACCEL_FIFO_LENGTH;
828
829         mutex_lock(&data->mutex);
830         data->watermark = val;
831         mutex_unlock(&data->mutex);
832
833         return 0;
834 }
835
836 /*
837  * We must read at least one full frame in one burst, otherwise the rest of the
838  * frame data is discarded.
839  */
840 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
841                                       char *buffer, int samples)
842 {
843         struct device *dev = regmap_get_device(data->regmap);
844         int sample_length = 3 * 2;
845         int ret;
846         int total_length = samples * sample_length;
847         int i;
848         size_t step = regmap_get_raw_read_max(data->regmap);
849
850         if (!step || step > total_length)
851                 step = total_length;
852         else if (step < total_length)
853                 step = sample_length;
854
855         /*
856          * Seems we have a bus with size limitation so we have to execute
857          * multiple reads
858          */
859         for (i = 0; i < total_length; i += step) {
860                 ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
861                                       &buffer[i], step);
862                 if (ret)
863                         break;
864         }
865
866         if (ret)
867                 dev_err(dev,
868                         "Error transferring data from fifo in single steps of %zu\n",
869                         step);
870
871         return ret;
872 }
873
874 static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
875                                      unsigned samples, bool irq)
876 {
877         struct bmc150_accel_data *data = iio_priv(indio_dev);
878         struct device *dev = regmap_get_device(data->regmap);
879         int ret, i;
880         u8 count;
881         u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
882         int64_t tstamp;
883         uint64_t sample_period;
884         unsigned int val;
885
886         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
887         if (ret < 0) {
888                 dev_err(dev, "Error reading reg_fifo_status\n");
889                 return ret;
890         }
891
892         count = val & 0x7F;
893
894         if (!count)
895                 return 0;
896
897         /*
898          * If we getting called from IRQ handler we know the stored timestamp is
899          * fairly accurate for the last stored sample. Otherwise, if we are
900          * called as a result of a read operation from userspace and hence
901          * before the watermark interrupt was triggered, take a timestamp
902          * now. We can fall anywhere in between two samples so the error in this
903          * case is at most one sample period.
904          */
905         if (!irq) {
906                 data->old_timestamp = data->timestamp;
907                 data->timestamp = iio_get_time_ns(indio_dev);
908         }
909
910         /*
911          * Approximate timestamps for each of the sample based on the sampling
912          * frequency, timestamp for last sample and number of samples.
913          *
914          * Note that we can't use the current bandwidth settings to compute the
915          * sample period because the sample rate varies with the device
916          * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
917          * small variation adds when we store a large number of samples and
918          * creates significant jitter between the last and first samples in
919          * different batches (e.g. 32ms vs 21ms).
920          *
921          * To avoid this issue we compute the actual sample period ourselves
922          * based on the timestamp delta between the last two flush operations.
923          */
924         sample_period = (data->timestamp - data->old_timestamp);
925         do_div(sample_period, count);
926         tstamp = data->timestamp - (count - 1) * sample_period;
927
928         if (samples && count > samples)
929                 count = samples;
930
931         ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
932         if (ret)
933                 return ret;
934
935         /*
936          * Ideally we want the IIO core to handle the demux when running in fifo
937          * mode but not when running in triggered buffer mode. Unfortunately
938          * this does not seem to be possible, so stick with driver demux for
939          * now.
940          */
941         for (i = 0; i < count; i++) {
942                 u16 sample[8];
943                 int j, bit;
944
945                 j = 0;
946                 for_each_set_bit(bit, indio_dev->active_scan_mask,
947                                  indio_dev->masklength)
948                         memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
949
950                 iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
951
952                 tstamp += sample_period;
953         }
954
955         return count;
956 }
957
958 static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
959 {
960         struct bmc150_accel_data *data = iio_priv(indio_dev);
961         int ret;
962
963         mutex_lock(&data->mutex);
964         ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
965         mutex_unlock(&data->mutex);
966
967         return ret;
968 }
969
970 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
971                 "15.620000 31.260000 62.50000 125 250 500 1000 2000");
972
973 static struct attribute *bmc150_accel_attributes[] = {
974         &iio_const_attr_sampling_frequency_available.dev_attr.attr,
975         NULL,
976 };
977
978 static const struct attribute_group bmc150_accel_attrs_group = {
979         .attrs = bmc150_accel_attributes,
980 };
981
982 static const struct iio_event_spec bmc150_accel_event = {
983                 .type = IIO_EV_TYPE_ROC,
984                 .dir = IIO_EV_DIR_EITHER,
985                 .mask_separate = BIT(IIO_EV_INFO_VALUE) |
986                                  BIT(IIO_EV_INFO_ENABLE) |
987                                  BIT(IIO_EV_INFO_PERIOD)
988 };
989
990 #define BMC150_ACCEL_CHANNEL(_axis, bits) {                             \
991         .type = IIO_ACCEL,                                              \
992         .modified = 1,                                                  \
993         .channel2 = IIO_MOD_##_axis,                                    \
994         .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),                   \
995         .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |          \
996                                 BIT(IIO_CHAN_INFO_SAMP_FREQ),           \
997         .scan_index = AXIS_##_axis,                                     \
998         .scan_type = {                                                  \
999                 .sign = 's',                                            \
1000                 .realbits = (bits),                                     \
1001                 .storagebits = 16,                                      \
1002                 .shift = 16 - (bits),                                   \
1003                 .endianness = IIO_LE,                                   \
1004         },                                                              \
1005         .event_spec = &bmc150_accel_event,                              \
1006         .num_event_specs = 1                                            \
1007 }
1008
1009 #define BMC150_ACCEL_CHANNELS(bits) {                                   \
1010         {                                                               \
1011                 .type = IIO_TEMP,                                       \
1012                 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |          \
1013                                       BIT(IIO_CHAN_INFO_SCALE) |        \
1014                                       BIT(IIO_CHAN_INFO_OFFSET),        \
1015                 .scan_index = -1,                                       \
1016         },                                                              \
1017         BMC150_ACCEL_CHANNEL(X, bits),                                  \
1018         BMC150_ACCEL_CHANNEL(Y, bits),                                  \
1019         BMC150_ACCEL_CHANNEL(Z, bits),                                  \
1020         IIO_CHAN_SOFT_TIMESTAMP(3),                                     \
1021 }
1022
1023 static const struct iio_chan_spec bma222e_accel_channels[] =
1024         BMC150_ACCEL_CHANNELS(8);
1025 static const struct iio_chan_spec bma250e_accel_channels[] =
1026         BMC150_ACCEL_CHANNELS(10);
1027 static const struct iio_chan_spec bmc150_accel_channels[] =
1028         BMC150_ACCEL_CHANNELS(12);
1029 static const struct iio_chan_spec bma280_accel_channels[] =
1030         BMC150_ACCEL_CHANNELS(14);
1031
1032 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1033         [bmc150] = {
1034                 .name = "BMC150A",
1035                 .chip_id = 0xFA,
1036                 .channels = bmc150_accel_channels,
1037                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1038                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1039                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1040                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1041                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1042         },
1043         [bmi055] = {
1044                 .name = "BMI055A",
1045                 .chip_id = 0xFA,
1046                 .channels = bmc150_accel_channels,
1047                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1048                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1049                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1050                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1051                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1052         },
1053         [bma255] = {
1054                 .name = "BMA0255",
1055                 .chip_id = 0xFA,
1056                 .channels = bmc150_accel_channels,
1057                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1058                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1059                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1060                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1061                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1062         },
1063         [bma250e] = {
1064                 .name = "BMA250E",
1065                 .chip_id = 0xF9,
1066                 .channels = bma250e_accel_channels,
1067                 .num_channels = ARRAY_SIZE(bma250e_accel_channels),
1068                 .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1069                                  {76590, BMC150_ACCEL_DEF_RANGE_4G},
1070                                  {153277, BMC150_ACCEL_DEF_RANGE_8G},
1071                                  {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1072         },
1073         [bma222e] = {
1074                 .name = "BMA222E",
1075                 .chip_id = 0xF8,
1076                 .channels = bma222e_accel_channels,
1077                 .num_channels = ARRAY_SIZE(bma222e_accel_channels),
1078                 .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1079                                  {306457, BMC150_ACCEL_DEF_RANGE_4G},
1080                                  {612915, BMC150_ACCEL_DEF_RANGE_8G},
1081                                  {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1082         },
1083         [bma280] = {
1084                 .name = "BMA0280",
1085                 .chip_id = 0xFB,
1086                 .channels = bma280_accel_channels,
1087                 .num_channels = ARRAY_SIZE(bma280_accel_channels),
1088                 .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1089                                  {4785, BMC150_ACCEL_DEF_RANGE_4G},
1090                                  {9581, BMC150_ACCEL_DEF_RANGE_8G},
1091                                  {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1092         },
1093 };
1094
1095 static const struct iio_info bmc150_accel_info = {
1096         .attrs                  = &bmc150_accel_attrs_group,
1097         .read_raw               = bmc150_accel_read_raw,
1098         .write_raw              = bmc150_accel_write_raw,
1099         .read_event_value       = bmc150_accel_read_event,
1100         .write_event_value      = bmc150_accel_write_event,
1101         .write_event_config     = bmc150_accel_write_event_config,
1102         .read_event_config      = bmc150_accel_read_event_config,
1103         .driver_module          = THIS_MODULE,
1104 };
1105
1106 static const struct iio_info bmc150_accel_info_fifo = {
1107         .attrs                  = &bmc150_accel_attrs_group,
1108         .read_raw               = bmc150_accel_read_raw,
1109         .write_raw              = bmc150_accel_write_raw,
1110         .read_event_value       = bmc150_accel_read_event,
1111         .write_event_value      = bmc150_accel_write_event,
1112         .write_event_config     = bmc150_accel_write_event_config,
1113         .read_event_config      = bmc150_accel_read_event_config,
1114         .validate_trigger       = bmc150_accel_validate_trigger,
1115         .hwfifo_set_watermark   = bmc150_accel_set_watermark,
1116         .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
1117         .driver_module          = THIS_MODULE,
1118 };
1119
1120 static const unsigned long bmc150_accel_scan_masks[] = {
1121                                         BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
1122                                         0};
1123
1124 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1125 {
1126         struct iio_poll_func *pf = p;
1127         struct iio_dev *indio_dev = pf->indio_dev;
1128         struct bmc150_accel_data *data = iio_priv(indio_dev);
1129         int ret;
1130
1131         mutex_lock(&data->mutex);
1132         ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
1133                                data->buffer, AXIS_MAX * 2);
1134         mutex_unlock(&data->mutex);
1135         if (ret < 0)
1136                 goto err_read;
1137
1138         iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1139                                            pf->timestamp);
1140 err_read:
1141         iio_trigger_notify_done(indio_dev->trig);
1142
1143         return IRQ_HANDLED;
1144 }
1145
1146 static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1147 {
1148         struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1149         struct bmc150_accel_data *data = t->data;
1150         struct device *dev = regmap_get_device(data->regmap);
1151         int ret;
1152
1153         /* new data interrupts don't need ack */
1154         if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1155                 return 0;
1156
1157         mutex_lock(&data->mutex);
1158         /* clear any latched interrupt */
1159         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1160                            BMC150_ACCEL_INT_MODE_LATCH_INT |
1161                            BMC150_ACCEL_INT_MODE_LATCH_RESET);
1162         mutex_unlock(&data->mutex);
1163         if (ret < 0) {
1164                 dev_err(dev, "Error writing reg_int_rst_latch\n");
1165                 return ret;
1166         }
1167
1168         return 0;
1169 }
1170
1171 static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1172                                           bool state)
1173 {
1174         struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1175         struct bmc150_accel_data *data = t->data;
1176         int ret;
1177
1178         mutex_lock(&data->mutex);
1179
1180         if (t->enabled == state) {
1181                 mutex_unlock(&data->mutex);
1182                 return 0;
1183         }
1184
1185         if (t->setup) {
1186                 ret = t->setup(t, state);
1187                 if (ret < 0) {
1188                         mutex_unlock(&data->mutex);
1189                         return ret;
1190                 }
1191         }
1192
1193         ret = bmc150_accel_set_interrupt(data, t->intr, state);
1194         if (ret < 0) {
1195                 mutex_unlock(&data->mutex);
1196                 return ret;
1197         }
1198
1199         t->enabled = state;
1200
1201         mutex_unlock(&data->mutex);
1202
1203         return ret;
1204 }
1205
1206 static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1207         .set_trigger_state = bmc150_accel_trigger_set_state,
1208         .try_reenable = bmc150_accel_trig_try_reen,
1209         .owner = THIS_MODULE,
1210 };
1211
1212 static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1213 {
1214         struct bmc150_accel_data *data = iio_priv(indio_dev);
1215         struct device *dev = regmap_get_device(data->regmap);
1216         int dir;
1217         int ret;
1218         unsigned int val;
1219
1220         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1221         if (ret < 0) {
1222                 dev_err(dev, "Error reading reg_int_status_2\n");
1223                 return ret;
1224         }
1225
1226         if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1227                 dir = IIO_EV_DIR_FALLING;
1228         else
1229                 dir = IIO_EV_DIR_RISING;
1230
1231         if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1232                 iio_push_event(indio_dev,
1233                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1234                                                   0,
1235                                                   IIO_MOD_X,
1236                                                   IIO_EV_TYPE_ROC,
1237                                                   dir),
1238                                data->timestamp);
1239
1240         if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1241                 iio_push_event(indio_dev,
1242                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1243                                                   0,
1244                                                   IIO_MOD_Y,
1245                                                   IIO_EV_TYPE_ROC,
1246                                                   dir),
1247                                data->timestamp);
1248
1249         if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1250                 iio_push_event(indio_dev,
1251                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1252                                                   0,
1253                                                   IIO_MOD_Z,
1254                                                   IIO_EV_TYPE_ROC,
1255                                                   dir),
1256                                data->timestamp);
1257
1258         return ret;
1259 }
1260
1261 static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1262 {
1263         struct iio_dev *indio_dev = private;
1264         struct bmc150_accel_data *data = iio_priv(indio_dev);
1265         struct device *dev = regmap_get_device(data->regmap);
1266         bool ack = false;
1267         int ret;
1268
1269         mutex_lock(&data->mutex);
1270
1271         if (data->fifo_mode) {
1272                 ret = __bmc150_accel_fifo_flush(indio_dev,
1273                                                 BMC150_ACCEL_FIFO_LENGTH, true);
1274                 if (ret > 0)
1275                         ack = true;
1276         }
1277
1278         if (data->ev_enable_state) {
1279                 ret = bmc150_accel_handle_roc_event(indio_dev);
1280                 if (ret > 0)
1281                         ack = true;
1282         }
1283
1284         if (ack) {
1285                 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1286                                    BMC150_ACCEL_INT_MODE_LATCH_INT |
1287                                    BMC150_ACCEL_INT_MODE_LATCH_RESET);
1288                 if (ret)
1289                         dev_err(dev, "Error writing reg_int_rst_latch\n");
1290
1291                 ret = IRQ_HANDLED;
1292         } else {
1293                 ret = IRQ_NONE;
1294         }
1295
1296         mutex_unlock(&data->mutex);
1297
1298         return ret;
1299 }
1300
1301 static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1302 {
1303         struct iio_dev *indio_dev = private;
1304         struct bmc150_accel_data *data = iio_priv(indio_dev);
1305         bool ack = false;
1306         int i;
1307
1308         data->old_timestamp = data->timestamp;
1309         data->timestamp = iio_get_time_ns(indio_dev);
1310
1311         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1312                 if (data->triggers[i].enabled) {
1313                         iio_trigger_poll(data->triggers[i].indio_trig);
1314                         ack = true;
1315                         break;
1316                 }
1317         }
1318
1319         if (data->ev_enable_state || data->fifo_mode)
1320                 return IRQ_WAKE_THREAD;
1321
1322         if (ack)
1323                 return IRQ_HANDLED;
1324
1325         return IRQ_NONE;
1326 }
1327
1328 static const struct {
1329         int intr;
1330         const char *name;
1331         int (*setup)(struct bmc150_accel_trigger *t, bool state);
1332 } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1333         {
1334                 .intr = 0,
1335                 .name = "%s-dev%d",
1336         },
1337         {
1338                 .intr = 1,
1339                 .name = "%s-any-motion-dev%d",
1340                 .setup = bmc150_accel_any_motion_setup,
1341         },
1342 };
1343
1344 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1345                                              int from)
1346 {
1347         int i;
1348
1349         for (i = from; i >= 0; i--) {
1350                 if (data->triggers[i].indio_trig) {
1351                         iio_trigger_unregister(data->triggers[i].indio_trig);
1352                         data->triggers[i].indio_trig = NULL;
1353                 }
1354         }
1355 }
1356
1357 static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1358                                        struct bmc150_accel_data *data)
1359 {
1360         struct device *dev = regmap_get_device(data->regmap);
1361         int i, ret;
1362
1363         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1364                 struct bmc150_accel_trigger *t = &data->triggers[i];
1365
1366                 t->indio_trig = devm_iio_trigger_alloc(dev,
1367                                         bmc150_accel_triggers[i].name,
1368                                                        indio_dev->name,
1369                                                        indio_dev->id);
1370                 if (!t->indio_trig) {
1371                         ret = -ENOMEM;
1372                         break;
1373                 }
1374
1375                 t->indio_trig->dev.parent = dev;
1376                 t->indio_trig->ops = &bmc150_accel_trigger_ops;
1377                 t->intr = bmc150_accel_triggers[i].intr;
1378                 t->data = data;
1379                 t->setup = bmc150_accel_triggers[i].setup;
1380                 iio_trigger_set_drvdata(t->indio_trig, t);
1381
1382                 ret = iio_trigger_register(t->indio_trig);
1383                 if (ret)
1384                         break;
1385         }
1386
1387         if (ret)
1388                 bmc150_accel_unregister_triggers(data, i - 1);
1389
1390         return ret;
1391 }
1392
1393 #define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
1394 #define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
1395 #define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00
1396
1397 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1398 {
1399         struct device *dev = regmap_get_device(data->regmap);
1400         u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1401         int ret;
1402
1403         ret = regmap_write(data->regmap, reg, data->fifo_mode);
1404         if (ret < 0) {
1405                 dev_err(dev, "Error writing reg_fifo_config1\n");
1406                 return ret;
1407         }
1408
1409         if (!data->fifo_mode)
1410                 return 0;
1411
1412         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
1413                            data->watermark);
1414         if (ret < 0)
1415                 dev_err(dev, "Error writing reg_fifo_config0\n");
1416
1417         return ret;
1418 }
1419
1420 static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1421 {
1422         struct bmc150_accel_data *data = iio_priv(indio_dev);
1423
1424         return bmc150_accel_set_power_state(data, true);
1425 }
1426
1427 static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1428 {
1429         struct bmc150_accel_data *data = iio_priv(indio_dev);
1430         int ret = 0;
1431
1432         if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1433                 return iio_triggered_buffer_postenable(indio_dev);
1434
1435         mutex_lock(&data->mutex);
1436
1437         if (!data->watermark)
1438                 goto out;
1439
1440         ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1441                                          true);
1442         if (ret)
1443                 goto out;
1444
1445         data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1446
1447         ret = bmc150_accel_fifo_set_mode(data);
1448         if (ret) {
1449                 data->fifo_mode = 0;
1450                 bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1451                                            false);
1452         }
1453
1454 out:
1455         mutex_unlock(&data->mutex);
1456
1457         return ret;
1458 }
1459
1460 static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1461 {
1462         struct bmc150_accel_data *data = iio_priv(indio_dev);
1463
1464         if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1465                 return iio_triggered_buffer_predisable(indio_dev);
1466
1467         mutex_lock(&data->mutex);
1468
1469         if (!data->fifo_mode)
1470                 goto out;
1471
1472         bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1473         __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1474         data->fifo_mode = 0;
1475         bmc150_accel_fifo_set_mode(data);
1476
1477 out:
1478         mutex_unlock(&data->mutex);
1479
1480         return 0;
1481 }
1482
1483 static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1484 {
1485         struct bmc150_accel_data *data = iio_priv(indio_dev);
1486
1487         return bmc150_accel_set_power_state(data, false);
1488 }
1489
1490 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1491         .preenable = bmc150_accel_buffer_preenable,
1492         .postenable = bmc150_accel_buffer_postenable,
1493         .predisable = bmc150_accel_buffer_predisable,
1494         .postdisable = bmc150_accel_buffer_postdisable,
1495 };
1496
1497 static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1498 {
1499         struct device *dev = regmap_get_device(data->regmap);
1500         int ret, i;
1501         unsigned int val;
1502
1503         /*
1504          * Reset chip to get it in a known good state. A delay of 1.8ms after
1505          * reset is required according to the data sheets of supported chips.
1506          */
1507         regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
1508                      BMC150_ACCEL_RESET_VAL);
1509         usleep_range(1800, 2500);
1510
1511         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1512         if (ret < 0) {
1513                 dev_err(dev, "Error: Reading chip id\n");
1514                 return ret;
1515         }
1516
1517         dev_dbg(dev, "Chip Id %x\n", val);
1518         for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1519                 if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1520                         data->chip_info = &bmc150_accel_chip_info_tbl[i];
1521                         break;
1522                 }
1523         }
1524
1525         if (!data->chip_info) {
1526                 dev_err(dev, "Invalid chip %x\n", val);
1527                 return -ENODEV;
1528         }
1529
1530         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1531         if (ret < 0)
1532                 return ret;
1533
1534         /* Set Bandwidth */
1535         ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1536         if (ret < 0)
1537                 return ret;
1538
1539         /* Set Default Range */
1540         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
1541                            BMC150_ACCEL_DEF_RANGE_4G);
1542         if (ret < 0) {
1543                 dev_err(dev, "Error writing reg_pmu_range\n");
1544                 return ret;
1545         }
1546
1547         data->range = BMC150_ACCEL_DEF_RANGE_4G;
1548
1549         /* Set default slope duration and thresholds */
1550         data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1551         data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1552         ret = bmc150_accel_update_slope(data);
1553         if (ret < 0)
1554                 return ret;
1555
1556         /* Set default as latched interrupts */
1557         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1558                            BMC150_ACCEL_INT_MODE_LATCH_INT |
1559                            BMC150_ACCEL_INT_MODE_LATCH_RESET);
1560         if (ret < 0) {
1561                 dev_err(dev, "Error writing reg_int_rst_latch\n");
1562                 return ret;
1563         }
1564
1565         return 0;
1566 }
1567
1568 int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
1569                             const char *name, bool block_supported)
1570 {
1571         struct bmc150_accel_data *data;
1572         struct iio_dev *indio_dev;
1573         int ret;
1574
1575         indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1576         if (!indio_dev)
1577                 return -ENOMEM;
1578
1579         data = iio_priv(indio_dev);
1580         dev_set_drvdata(dev, indio_dev);
1581         data->irq = irq;
1582
1583         data->regmap = regmap;
1584
1585         ret = bmc150_accel_chip_init(data);
1586         if (ret < 0)
1587                 return ret;
1588
1589         mutex_init(&data->mutex);
1590
1591         indio_dev->dev.parent = dev;
1592         indio_dev->channels = data->chip_info->channels;
1593         indio_dev->num_channels = data->chip_info->num_channels;
1594         indio_dev->name = name ? name : data->chip_info->name;
1595         indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1596         indio_dev->modes = INDIO_DIRECT_MODE;
1597         indio_dev->info = &bmc150_accel_info;
1598
1599         ret = iio_triggered_buffer_setup(indio_dev,
1600                                          &iio_pollfunc_store_time,
1601                                          bmc150_accel_trigger_handler,
1602                                          &bmc150_accel_buffer_ops);
1603         if (ret < 0) {
1604                 dev_err(dev, "Failed: iio triggered buffer setup\n");
1605                 return ret;
1606         }
1607
1608         if (data->irq > 0) {
1609                 ret = devm_request_threaded_irq(
1610                                                 dev, data->irq,
1611                                                 bmc150_accel_irq_handler,
1612                                                 bmc150_accel_irq_thread_handler,
1613                                                 IRQF_TRIGGER_RISING,
1614                                                 BMC150_ACCEL_IRQ_NAME,
1615                                                 indio_dev);
1616                 if (ret)
1617                         goto err_buffer_cleanup;
1618
1619                 /*
1620                  * Set latched mode interrupt. While certain interrupts are
1621                  * non-latched regardless of this settings (e.g. new data) we
1622                  * want to use latch mode when we can to prevent interrupt
1623                  * flooding.
1624                  */
1625                 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1626                                    BMC150_ACCEL_INT_MODE_LATCH_RESET);
1627                 if (ret < 0) {
1628                         dev_err(dev, "Error writing reg_int_rst_latch\n");
1629                         goto err_buffer_cleanup;
1630                 }
1631
1632                 bmc150_accel_interrupts_setup(indio_dev, data);
1633
1634                 ret = bmc150_accel_triggers_setup(indio_dev, data);
1635                 if (ret)
1636                         goto err_buffer_cleanup;
1637
1638                 if (block_supported) {
1639                         indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1640                         indio_dev->info = &bmc150_accel_info_fifo;
1641                         iio_buffer_set_attrs(indio_dev->buffer,
1642                                              bmc150_accel_fifo_attributes);
1643                 }
1644         }
1645
1646         ret = pm_runtime_set_active(dev);
1647         if (ret)
1648                 goto err_trigger_unregister;
1649
1650         pm_runtime_enable(dev);
1651         pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
1652         pm_runtime_use_autosuspend(dev);
1653
1654         ret = iio_device_register(indio_dev);
1655         if (ret < 0) {
1656                 dev_err(dev, "Unable to register iio device\n");
1657                 goto err_trigger_unregister;
1658         }
1659
1660         return 0;
1661
1662 err_trigger_unregister:
1663         bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1664 err_buffer_cleanup:
1665         iio_triggered_buffer_cleanup(indio_dev);
1666
1667         return ret;
1668 }
1669 EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1670
1671 int bmc150_accel_core_remove(struct device *dev)
1672 {
1673         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1674         struct bmc150_accel_data *data = iio_priv(indio_dev);
1675
1676         iio_device_unregister(indio_dev);
1677
1678         pm_runtime_disable(dev);
1679         pm_runtime_set_suspended(dev);
1680         pm_runtime_put_noidle(dev);
1681
1682         bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1683
1684         iio_triggered_buffer_cleanup(indio_dev);
1685
1686         mutex_lock(&data->mutex);
1687         bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1688         mutex_unlock(&data->mutex);
1689
1690         return 0;
1691 }
1692 EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1693
1694 #ifdef CONFIG_PM_SLEEP
1695 static int bmc150_accel_suspend(struct device *dev)
1696 {
1697         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1698         struct bmc150_accel_data *data = iio_priv(indio_dev);
1699
1700         mutex_lock(&data->mutex);
1701         bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1702         mutex_unlock(&data->mutex);
1703
1704         return 0;
1705 }
1706
1707 static int bmc150_accel_resume(struct device *dev)
1708 {
1709         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1710         struct bmc150_accel_data *data = iio_priv(indio_dev);
1711
1712         mutex_lock(&data->mutex);
1713         if (atomic_read(&data->active_intr))
1714                 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1715         bmc150_accel_fifo_set_mode(data);
1716         mutex_unlock(&data->mutex);
1717
1718         return 0;
1719 }
1720 #endif
1721
1722 #ifdef CONFIG_PM
1723 static int bmc150_accel_runtime_suspend(struct device *dev)
1724 {
1725         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1726         struct bmc150_accel_data *data = iio_priv(indio_dev);
1727         int ret;
1728
1729         dev_dbg(dev,  __func__);
1730         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1731         if (ret < 0)
1732                 return -EAGAIN;
1733
1734         return 0;
1735 }
1736
1737 static int bmc150_accel_runtime_resume(struct device *dev)
1738 {
1739         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1740         struct bmc150_accel_data *data = iio_priv(indio_dev);
1741         int ret;
1742         int sleep_val;
1743
1744         dev_dbg(dev,  __func__);
1745
1746         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1747         if (ret < 0)
1748                 return ret;
1749         ret = bmc150_accel_fifo_set_mode(data);
1750         if (ret < 0)
1751                 return ret;
1752
1753         sleep_val = bmc150_accel_get_startup_times(data);
1754         if (sleep_val < 20)
1755                 usleep_range(sleep_val * 1000, 20000);
1756         else
1757                 msleep_interruptible(sleep_val);
1758
1759         return 0;
1760 }
1761 #endif
1762
1763 const struct dev_pm_ops bmc150_accel_pm_ops = {
1764         SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1765         SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1766                            bmc150_accel_runtime_resume, NULL)
1767 };
1768 EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1769
1770 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1771 MODULE_LICENSE("GPL v2");
1772 MODULE_DESCRIPTION("BMC150 accelerometer driver");