]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/infiniband/core/verbs.c
Merge branch 'i2c/for-current' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[karo-tx-linux.git] / drivers / infiniband / core / verbs.c
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53
54 #include "core_priv.h"
55
56 static const char * const ib_events[] = {
57         [IB_EVENT_CQ_ERR]               = "CQ error",
58         [IB_EVENT_QP_FATAL]             = "QP fatal error",
59         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
60         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
61         [IB_EVENT_COMM_EST]             = "communication established",
62         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
63         [IB_EVENT_PATH_MIG]             = "path migration successful",
64         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
65         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
66         [IB_EVENT_PORT_ACTIVE]          = "port active",
67         [IB_EVENT_PORT_ERR]             = "port error",
68         [IB_EVENT_LID_CHANGE]           = "LID change",
69         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
70         [IB_EVENT_SM_CHANGE]            = "SM change",
71         [IB_EVENT_SRQ_ERR]              = "SRQ error",
72         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
73         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
74         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
75         [IB_EVENT_GID_CHANGE]           = "GID changed",
76 };
77
78 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
79 {
80         size_t index = event;
81
82         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
83                         ib_events[index] : "unrecognized event";
84 }
85 EXPORT_SYMBOL(ib_event_msg);
86
87 static const char * const wc_statuses[] = {
88         [IB_WC_SUCCESS]                 = "success",
89         [IB_WC_LOC_LEN_ERR]             = "local length error",
90         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
91         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
92         [IB_WC_LOC_PROT_ERR]            = "local protection error",
93         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
94         [IB_WC_MW_BIND_ERR]             = "memory management operation error",
95         [IB_WC_BAD_RESP_ERR]            = "bad response error",
96         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
97         [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
98         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
99         [IB_WC_REM_OP_ERR]              = "remote operation error",
100         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
101         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
102         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
103         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
104         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
105         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
106         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
107         [IB_WC_FATAL_ERR]               = "fatal error",
108         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
109         [IB_WC_GENERAL_ERR]             = "general error",
110 };
111
112 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
113 {
114         size_t index = status;
115
116         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
117                         wc_statuses[index] : "unrecognized status";
118 }
119 EXPORT_SYMBOL(ib_wc_status_msg);
120
121 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
122 {
123         switch (rate) {
124         case IB_RATE_2_5_GBPS: return  1;
125         case IB_RATE_5_GBPS:   return  2;
126         case IB_RATE_10_GBPS:  return  4;
127         case IB_RATE_20_GBPS:  return  8;
128         case IB_RATE_30_GBPS:  return 12;
129         case IB_RATE_40_GBPS:  return 16;
130         case IB_RATE_60_GBPS:  return 24;
131         case IB_RATE_80_GBPS:  return 32;
132         case IB_RATE_120_GBPS: return 48;
133         default:               return -1;
134         }
135 }
136 EXPORT_SYMBOL(ib_rate_to_mult);
137
138 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
139 {
140         switch (mult) {
141         case 1:  return IB_RATE_2_5_GBPS;
142         case 2:  return IB_RATE_5_GBPS;
143         case 4:  return IB_RATE_10_GBPS;
144         case 8:  return IB_RATE_20_GBPS;
145         case 12: return IB_RATE_30_GBPS;
146         case 16: return IB_RATE_40_GBPS;
147         case 24: return IB_RATE_60_GBPS;
148         case 32: return IB_RATE_80_GBPS;
149         case 48: return IB_RATE_120_GBPS;
150         default: return IB_RATE_PORT_CURRENT;
151         }
152 }
153 EXPORT_SYMBOL(mult_to_ib_rate);
154
155 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
156 {
157         switch (rate) {
158         case IB_RATE_2_5_GBPS: return 2500;
159         case IB_RATE_5_GBPS:   return 5000;
160         case IB_RATE_10_GBPS:  return 10000;
161         case IB_RATE_20_GBPS:  return 20000;
162         case IB_RATE_30_GBPS:  return 30000;
163         case IB_RATE_40_GBPS:  return 40000;
164         case IB_RATE_60_GBPS:  return 60000;
165         case IB_RATE_80_GBPS:  return 80000;
166         case IB_RATE_120_GBPS: return 120000;
167         case IB_RATE_14_GBPS:  return 14062;
168         case IB_RATE_56_GBPS:  return 56250;
169         case IB_RATE_112_GBPS: return 112500;
170         case IB_RATE_168_GBPS: return 168750;
171         case IB_RATE_25_GBPS:  return 25781;
172         case IB_RATE_100_GBPS: return 103125;
173         case IB_RATE_200_GBPS: return 206250;
174         case IB_RATE_300_GBPS: return 309375;
175         default:               return -1;
176         }
177 }
178 EXPORT_SYMBOL(ib_rate_to_mbps);
179
180 __attribute_const__ enum rdma_transport_type
181 rdma_node_get_transport(enum rdma_node_type node_type)
182 {
183         switch (node_type) {
184         case RDMA_NODE_IB_CA:
185         case RDMA_NODE_IB_SWITCH:
186         case RDMA_NODE_IB_ROUTER:
187                 return RDMA_TRANSPORT_IB;
188         case RDMA_NODE_RNIC:
189                 return RDMA_TRANSPORT_IWARP;
190         case RDMA_NODE_USNIC:
191                 return RDMA_TRANSPORT_USNIC;
192         case RDMA_NODE_USNIC_UDP:
193                 return RDMA_TRANSPORT_USNIC_UDP;
194         default:
195                 BUG();
196                 return 0;
197         }
198 }
199 EXPORT_SYMBOL(rdma_node_get_transport);
200
201 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
202 {
203         if (device->get_link_layer)
204                 return device->get_link_layer(device, port_num);
205
206         switch (rdma_node_get_transport(device->node_type)) {
207         case RDMA_TRANSPORT_IB:
208                 return IB_LINK_LAYER_INFINIBAND;
209         case RDMA_TRANSPORT_IWARP:
210         case RDMA_TRANSPORT_USNIC:
211         case RDMA_TRANSPORT_USNIC_UDP:
212                 return IB_LINK_LAYER_ETHERNET;
213         default:
214                 return IB_LINK_LAYER_UNSPECIFIED;
215         }
216 }
217 EXPORT_SYMBOL(rdma_port_get_link_layer);
218
219 /* Protection domains */
220
221 /**
222  * ib_alloc_pd - Allocates an unused protection domain.
223  * @device: The device on which to allocate the protection domain.
224  *
225  * A protection domain object provides an association between QPs, shared
226  * receive queues, address handles, memory regions, and memory windows.
227  *
228  * Every PD has a local_dma_lkey which can be used as the lkey value for local
229  * memory operations.
230  */
231 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
232                 const char *caller)
233 {
234         struct ib_pd *pd;
235         int mr_access_flags = 0;
236
237         pd = device->alloc_pd(device, NULL, NULL);
238         if (IS_ERR(pd))
239                 return pd;
240
241         pd->device = device;
242         pd->uobject = NULL;
243         pd->__internal_mr = NULL;
244         atomic_set(&pd->usecnt, 0);
245         pd->flags = flags;
246
247         if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
248                 pd->local_dma_lkey = device->local_dma_lkey;
249         else
250                 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
251
252         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
253                 pr_warn("%s: enabling unsafe global rkey\n", caller);
254                 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
255         }
256
257         if (mr_access_flags) {
258                 struct ib_mr *mr;
259
260                 mr = pd->device->get_dma_mr(pd, mr_access_flags);
261                 if (IS_ERR(mr)) {
262                         ib_dealloc_pd(pd);
263                         return ERR_CAST(mr);
264                 }
265
266                 mr->device      = pd->device;
267                 mr->pd          = pd;
268                 mr->uobject     = NULL;
269                 mr->need_inval  = false;
270
271                 pd->__internal_mr = mr;
272
273                 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
274                         pd->local_dma_lkey = pd->__internal_mr->lkey;
275
276                 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
277                         pd->unsafe_global_rkey = pd->__internal_mr->rkey;
278         }
279
280         return pd;
281 }
282 EXPORT_SYMBOL(__ib_alloc_pd);
283
284 /**
285  * ib_dealloc_pd - Deallocates a protection domain.
286  * @pd: The protection domain to deallocate.
287  *
288  * It is an error to call this function while any resources in the pd still
289  * exist.  The caller is responsible to synchronously destroy them and
290  * guarantee no new allocations will happen.
291  */
292 void ib_dealloc_pd(struct ib_pd *pd)
293 {
294         int ret;
295
296         if (pd->__internal_mr) {
297                 ret = pd->device->dereg_mr(pd->__internal_mr);
298                 WARN_ON(ret);
299                 pd->__internal_mr = NULL;
300         }
301
302         /* uverbs manipulates usecnt with proper locking, while the kabi
303            requires the caller to guarantee we can't race here. */
304         WARN_ON(atomic_read(&pd->usecnt));
305
306         /* Making delalloc_pd a void return is a WIP, no driver should return
307            an error here. */
308         ret = pd->device->dealloc_pd(pd);
309         WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
310 }
311 EXPORT_SYMBOL(ib_dealloc_pd);
312
313 /* Address handles */
314
315 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr)
316 {
317         struct ib_ah *ah;
318
319         ah = pd->device->create_ah(pd, ah_attr, NULL);
320
321         if (!IS_ERR(ah)) {
322                 ah->device  = pd->device;
323                 ah->pd      = pd;
324                 ah->uobject = NULL;
325                 ah->type    = ah_attr->type;
326                 atomic_inc(&pd->usecnt);
327         }
328
329         return ah;
330 }
331 EXPORT_SYMBOL(rdma_create_ah);
332
333 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
334 {
335         const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
336         struct iphdr ip4h_checked;
337         const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
338
339         /* If it's IPv6, the version must be 6, otherwise, the first
340          * 20 bytes (before the IPv4 header) are garbled.
341          */
342         if (ip6h->version != 6)
343                 return (ip4h->version == 4) ? 4 : 0;
344         /* version may be 6 or 4 because the first 20 bytes could be garbled */
345
346         /* RoCE v2 requires no options, thus header length
347          * must be 5 words
348          */
349         if (ip4h->ihl != 5)
350                 return 6;
351
352         /* Verify checksum.
353          * We can't write on scattered buffers so we need to copy to
354          * temp buffer.
355          */
356         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
357         ip4h_checked.check = 0;
358         ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
359         /* if IPv4 header checksum is OK, believe it */
360         if (ip4h->check == ip4h_checked.check)
361                 return 4;
362         return 6;
363 }
364 EXPORT_SYMBOL(ib_get_rdma_header_version);
365
366 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
367                                                      u8 port_num,
368                                                      const struct ib_grh *grh)
369 {
370         int grh_version;
371
372         if (rdma_protocol_ib(device, port_num))
373                 return RDMA_NETWORK_IB;
374
375         grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
376
377         if (grh_version == 4)
378                 return RDMA_NETWORK_IPV4;
379
380         if (grh->next_hdr == IPPROTO_UDP)
381                 return RDMA_NETWORK_IPV6;
382
383         return RDMA_NETWORK_ROCE_V1;
384 }
385
386 struct find_gid_index_context {
387         u16 vlan_id;
388         enum ib_gid_type gid_type;
389 };
390
391 static bool find_gid_index(const union ib_gid *gid,
392                            const struct ib_gid_attr *gid_attr,
393                            void *context)
394 {
395         struct find_gid_index_context *ctx =
396                 (struct find_gid_index_context *)context;
397
398         if (ctx->gid_type != gid_attr->gid_type)
399                 return false;
400
401         if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
402             (is_vlan_dev(gid_attr->ndev) &&
403              vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
404                 return false;
405
406         return true;
407 }
408
409 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
410                                    u16 vlan_id, const union ib_gid *sgid,
411                                    enum ib_gid_type gid_type,
412                                    u16 *gid_index)
413 {
414         struct find_gid_index_context context = {.vlan_id = vlan_id,
415                                                  .gid_type = gid_type};
416
417         return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
418                                      &context, gid_index);
419 }
420
421 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
422                               enum rdma_network_type net_type,
423                               union ib_gid *sgid, union ib_gid *dgid)
424 {
425         struct sockaddr_in  src_in;
426         struct sockaddr_in  dst_in;
427         __be32 src_saddr, dst_saddr;
428
429         if (!sgid || !dgid)
430                 return -EINVAL;
431
432         if (net_type == RDMA_NETWORK_IPV4) {
433                 memcpy(&src_in.sin_addr.s_addr,
434                        &hdr->roce4grh.saddr, 4);
435                 memcpy(&dst_in.sin_addr.s_addr,
436                        &hdr->roce4grh.daddr, 4);
437                 src_saddr = src_in.sin_addr.s_addr;
438                 dst_saddr = dst_in.sin_addr.s_addr;
439                 ipv6_addr_set_v4mapped(src_saddr,
440                                        (struct in6_addr *)sgid);
441                 ipv6_addr_set_v4mapped(dst_saddr,
442                                        (struct in6_addr *)dgid);
443                 return 0;
444         } else if (net_type == RDMA_NETWORK_IPV6 ||
445                    net_type == RDMA_NETWORK_IB) {
446                 *dgid = hdr->ibgrh.dgid;
447                 *sgid = hdr->ibgrh.sgid;
448                 return 0;
449         } else {
450                 return -EINVAL;
451         }
452 }
453 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
454
455 /*
456  * This function creates ah from the incoming packet.
457  * Incoming packet has dgid of the receiver node on which this code is
458  * getting executed and, sgid contains the GID of the sender.
459  *
460  * When resolving mac address of destination, the arrived dgid is used
461  * as sgid and, sgid is used as dgid because sgid contains destinations
462  * GID whom to respond to.
463  *
464  * This is why when calling rdma_addr_find_l2_eth_by_grh() function, the
465  * position of arguments dgid and sgid do not match the order of the
466  * parameters.
467  */
468 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
469                        const struct ib_wc *wc, const struct ib_grh *grh,
470                        struct rdma_ah_attr *ah_attr)
471 {
472         u32 flow_class;
473         u16 gid_index;
474         int ret;
475         enum rdma_network_type net_type = RDMA_NETWORK_IB;
476         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
477         int hoplimit = 0xff;
478         union ib_gid dgid;
479         union ib_gid sgid;
480
481         memset(ah_attr, 0, sizeof *ah_attr);
482         ah_attr->type = rdma_ah_find_type(device, port_num);
483         if (rdma_cap_eth_ah(device, port_num)) {
484                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
485                         net_type = wc->network_hdr_type;
486                 else
487                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
488                 gid_type = ib_network_to_gid_type(net_type);
489         }
490         ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
491                                         &sgid, &dgid);
492         if (ret)
493                 return ret;
494
495         if (rdma_protocol_roce(device, port_num)) {
496                 int if_index = 0;
497                 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
498                                 wc->vlan_id : 0xffff;
499                 struct net_device *idev;
500                 struct net_device *resolved_dev;
501
502                 if (!(wc->wc_flags & IB_WC_GRH))
503                         return -EPROTOTYPE;
504
505                 if (!device->get_netdev)
506                         return -EOPNOTSUPP;
507
508                 idev = device->get_netdev(device, port_num);
509                 if (!idev)
510                         return -ENODEV;
511
512                 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
513                                                    ah_attr->roce.dmac,
514                                                    wc->wc_flags & IB_WC_WITH_VLAN ?
515                                                    NULL : &vlan_id,
516                                                    &if_index, &hoplimit);
517                 if (ret) {
518                         dev_put(idev);
519                         return ret;
520                 }
521
522                 resolved_dev = dev_get_by_index(&init_net, if_index);
523                 rcu_read_lock();
524                 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
525                                                                    resolved_dev))
526                         ret = -EHOSTUNREACH;
527                 rcu_read_unlock();
528                 dev_put(idev);
529                 dev_put(resolved_dev);
530                 if (ret)
531                         return ret;
532
533                 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
534                                               &dgid, gid_type, &gid_index);
535                 if (ret)
536                         return ret;
537         }
538
539         rdma_ah_set_dlid(ah_attr, wc->slid);
540         rdma_ah_set_sl(ah_attr, wc->sl);
541         rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
542         rdma_ah_set_port_num(ah_attr, port_num);
543
544         if (wc->wc_flags & IB_WC_GRH) {
545                 if (!rdma_cap_eth_ah(device, port_num)) {
546                         if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
547                                 ret = ib_find_cached_gid_by_port(device, &dgid,
548                                                                  IB_GID_TYPE_IB,
549                                                                  port_num, NULL,
550                                                                  &gid_index);
551                                 if (ret)
552                                         return ret;
553                         } else {
554                                 gid_index = 0;
555                         }
556                 }
557
558                 flow_class = be32_to_cpu(grh->version_tclass_flow);
559                 rdma_ah_set_grh(ah_attr, &sgid,
560                                 flow_class & 0xFFFFF,
561                                 (u8)gid_index, hoplimit,
562                                 (flow_class >> 20) & 0xFF);
563
564         }
565         return 0;
566 }
567 EXPORT_SYMBOL(ib_init_ah_from_wc);
568
569 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
570                                    const struct ib_grh *grh, u8 port_num)
571 {
572         struct rdma_ah_attr ah_attr;
573         int ret;
574
575         ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
576         if (ret)
577                 return ERR_PTR(ret);
578
579         return rdma_create_ah(pd, &ah_attr);
580 }
581 EXPORT_SYMBOL(ib_create_ah_from_wc);
582
583 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
584 {
585         if (ah->type != ah_attr->type)
586                 return -EINVAL;
587
588         return ah->device->modify_ah ?
589                 ah->device->modify_ah(ah, ah_attr) :
590                 -ENOSYS;
591 }
592 EXPORT_SYMBOL(rdma_modify_ah);
593
594 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
595 {
596         return ah->device->query_ah ?
597                 ah->device->query_ah(ah, ah_attr) :
598                 -ENOSYS;
599 }
600 EXPORT_SYMBOL(rdma_query_ah);
601
602 int rdma_destroy_ah(struct ib_ah *ah)
603 {
604         struct ib_pd *pd;
605         int ret;
606
607         pd = ah->pd;
608         ret = ah->device->destroy_ah(ah);
609         if (!ret)
610                 atomic_dec(&pd->usecnt);
611
612         return ret;
613 }
614 EXPORT_SYMBOL(rdma_destroy_ah);
615
616 /* Shared receive queues */
617
618 struct ib_srq *ib_create_srq(struct ib_pd *pd,
619                              struct ib_srq_init_attr *srq_init_attr)
620 {
621         struct ib_srq *srq;
622
623         if (!pd->device->create_srq)
624                 return ERR_PTR(-ENOSYS);
625
626         srq = pd->device->create_srq(pd, srq_init_attr, NULL);
627
628         if (!IS_ERR(srq)) {
629                 srq->device        = pd->device;
630                 srq->pd            = pd;
631                 srq->uobject       = NULL;
632                 srq->event_handler = srq_init_attr->event_handler;
633                 srq->srq_context   = srq_init_attr->srq_context;
634                 srq->srq_type      = srq_init_attr->srq_type;
635                 if (srq->srq_type == IB_SRQT_XRC) {
636                         srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
637                         srq->ext.xrc.cq   = srq_init_attr->ext.xrc.cq;
638                         atomic_inc(&srq->ext.xrc.xrcd->usecnt);
639                         atomic_inc(&srq->ext.xrc.cq->usecnt);
640                 }
641                 atomic_inc(&pd->usecnt);
642                 atomic_set(&srq->usecnt, 0);
643         }
644
645         return srq;
646 }
647 EXPORT_SYMBOL(ib_create_srq);
648
649 int ib_modify_srq(struct ib_srq *srq,
650                   struct ib_srq_attr *srq_attr,
651                   enum ib_srq_attr_mask srq_attr_mask)
652 {
653         return srq->device->modify_srq ?
654                 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
655                 -ENOSYS;
656 }
657 EXPORT_SYMBOL(ib_modify_srq);
658
659 int ib_query_srq(struct ib_srq *srq,
660                  struct ib_srq_attr *srq_attr)
661 {
662         return srq->device->query_srq ?
663                 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
664 }
665 EXPORT_SYMBOL(ib_query_srq);
666
667 int ib_destroy_srq(struct ib_srq *srq)
668 {
669         struct ib_pd *pd;
670         enum ib_srq_type srq_type;
671         struct ib_xrcd *uninitialized_var(xrcd);
672         struct ib_cq *uninitialized_var(cq);
673         int ret;
674
675         if (atomic_read(&srq->usecnt))
676                 return -EBUSY;
677
678         pd = srq->pd;
679         srq_type = srq->srq_type;
680         if (srq_type == IB_SRQT_XRC) {
681                 xrcd = srq->ext.xrc.xrcd;
682                 cq = srq->ext.xrc.cq;
683         }
684
685         ret = srq->device->destroy_srq(srq);
686         if (!ret) {
687                 atomic_dec(&pd->usecnt);
688                 if (srq_type == IB_SRQT_XRC) {
689                         atomic_dec(&xrcd->usecnt);
690                         atomic_dec(&cq->usecnt);
691                 }
692         }
693
694         return ret;
695 }
696 EXPORT_SYMBOL(ib_destroy_srq);
697
698 /* Queue pairs */
699
700 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
701 {
702         struct ib_qp *qp = context;
703         unsigned long flags;
704
705         spin_lock_irqsave(&qp->device->event_handler_lock, flags);
706         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
707                 if (event->element.qp->event_handler)
708                         event->element.qp->event_handler(event, event->element.qp->qp_context);
709         spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
710 }
711
712 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
713 {
714         mutex_lock(&xrcd->tgt_qp_mutex);
715         list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
716         mutex_unlock(&xrcd->tgt_qp_mutex);
717 }
718
719 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
720                                   void (*event_handler)(struct ib_event *, void *),
721                                   void *qp_context)
722 {
723         struct ib_qp *qp;
724         unsigned long flags;
725         int err;
726
727         qp = kzalloc(sizeof *qp, GFP_KERNEL);
728         if (!qp)
729                 return ERR_PTR(-ENOMEM);
730
731         qp->real_qp = real_qp;
732         err = ib_open_shared_qp_security(qp, real_qp->device);
733         if (err) {
734                 kfree(qp);
735                 return ERR_PTR(err);
736         }
737
738         qp->real_qp = real_qp;
739         atomic_inc(&real_qp->usecnt);
740         qp->device = real_qp->device;
741         qp->event_handler = event_handler;
742         qp->qp_context = qp_context;
743         qp->qp_num = real_qp->qp_num;
744         qp->qp_type = real_qp->qp_type;
745
746         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
747         list_add(&qp->open_list, &real_qp->open_list);
748         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
749
750         return qp;
751 }
752
753 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
754                          struct ib_qp_open_attr *qp_open_attr)
755 {
756         struct ib_qp *qp, *real_qp;
757
758         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
759                 return ERR_PTR(-EINVAL);
760
761         qp = ERR_PTR(-EINVAL);
762         mutex_lock(&xrcd->tgt_qp_mutex);
763         list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
764                 if (real_qp->qp_num == qp_open_attr->qp_num) {
765                         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
766                                           qp_open_attr->qp_context);
767                         break;
768                 }
769         }
770         mutex_unlock(&xrcd->tgt_qp_mutex);
771         return qp;
772 }
773 EXPORT_SYMBOL(ib_open_qp);
774
775 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
776                 struct ib_qp_init_attr *qp_init_attr)
777 {
778         struct ib_qp *real_qp = qp;
779
780         qp->event_handler = __ib_shared_qp_event_handler;
781         qp->qp_context = qp;
782         qp->pd = NULL;
783         qp->send_cq = qp->recv_cq = NULL;
784         qp->srq = NULL;
785         qp->xrcd = qp_init_attr->xrcd;
786         atomic_inc(&qp_init_attr->xrcd->usecnt);
787         INIT_LIST_HEAD(&qp->open_list);
788
789         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
790                           qp_init_attr->qp_context);
791         if (!IS_ERR(qp))
792                 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
793         else
794                 real_qp->device->destroy_qp(real_qp);
795         return qp;
796 }
797
798 struct ib_qp *ib_create_qp(struct ib_pd *pd,
799                            struct ib_qp_init_attr *qp_init_attr)
800 {
801         struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
802         struct ib_qp *qp;
803         int ret;
804
805         if (qp_init_attr->rwq_ind_tbl &&
806             (qp_init_attr->recv_cq ||
807             qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
808             qp_init_attr->cap.max_recv_sge))
809                 return ERR_PTR(-EINVAL);
810
811         /*
812          * If the callers is using the RDMA API calculate the resources
813          * needed for the RDMA READ/WRITE operations.
814          *
815          * Note that these callers need to pass in a port number.
816          */
817         if (qp_init_attr->cap.max_rdma_ctxs)
818                 rdma_rw_init_qp(device, qp_init_attr);
819
820         qp = device->create_qp(pd, qp_init_attr, NULL);
821         if (IS_ERR(qp))
822                 return qp;
823
824         ret = ib_create_qp_security(qp, device);
825         if (ret) {
826                 ib_destroy_qp(qp);
827                 return ERR_PTR(ret);
828         }
829
830         qp->device     = device;
831         qp->real_qp    = qp;
832         qp->uobject    = NULL;
833         qp->qp_type    = qp_init_attr->qp_type;
834         qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
835
836         atomic_set(&qp->usecnt, 0);
837         qp->mrs_used = 0;
838         spin_lock_init(&qp->mr_lock);
839         INIT_LIST_HEAD(&qp->rdma_mrs);
840         INIT_LIST_HEAD(&qp->sig_mrs);
841
842         if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
843                 return ib_create_xrc_qp(qp, qp_init_attr);
844
845         qp->event_handler = qp_init_attr->event_handler;
846         qp->qp_context = qp_init_attr->qp_context;
847         if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
848                 qp->recv_cq = NULL;
849                 qp->srq = NULL;
850         } else {
851                 qp->recv_cq = qp_init_attr->recv_cq;
852                 if (qp_init_attr->recv_cq)
853                         atomic_inc(&qp_init_attr->recv_cq->usecnt);
854                 qp->srq = qp_init_attr->srq;
855                 if (qp->srq)
856                         atomic_inc(&qp_init_attr->srq->usecnt);
857         }
858
859         qp->pd      = pd;
860         qp->send_cq = qp_init_attr->send_cq;
861         qp->xrcd    = NULL;
862
863         atomic_inc(&pd->usecnt);
864         if (qp_init_attr->send_cq)
865                 atomic_inc(&qp_init_attr->send_cq->usecnt);
866         if (qp_init_attr->rwq_ind_tbl)
867                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
868
869         if (qp_init_attr->cap.max_rdma_ctxs) {
870                 ret = rdma_rw_init_mrs(qp, qp_init_attr);
871                 if (ret) {
872                         pr_err("failed to init MR pool ret= %d\n", ret);
873                         ib_destroy_qp(qp);
874                         return ERR_PTR(ret);
875                 }
876         }
877
878         /*
879          * Note: all hw drivers guarantee that max_send_sge is lower than
880          * the device RDMA WRITE SGE limit but not all hw drivers ensure that
881          * max_send_sge <= max_sge_rd.
882          */
883         qp->max_write_sge = qp_init_attr->cap.max_send_sge;
884         qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
885                                  device->attrs.max_sge_rd);
886
887         return qp;
888 }
889 EXPORT_SYMBOL(ib_create_qp);
890
891 static const struct {
892         int                     valid;
893         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
894         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
895 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
896         [IB_QPS_RESET] = {
897                 [IB_QPS_RESET] = { .valid = 1 },
898                 [IB_QPS_INIT]  = {
899                         .valid = 1,
900                         .req_param = {
901                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
902                                                 IB_QP_PORT                      |
903                                                 IB_QP_QKEY),
904                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
905                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
906                                                 IB_QP_PORT                      |
907                                                 IB_QP_ACCESS_FLAGS),
908                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
909                                                 IB_QP_PORT                      |
910                                                 IB_QP_ACCESS_FLAGS),
911                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
912                                                 IB_QP_PORT                      |
913                                                 IB_QP_ACCESS_FLAGS),
914                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
915                                                 IB_QP_PORT                      |
916                                                 IB_QP_ACCESS_FLAGS),
917                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
918                                                 IB_QP_QKEY),
919                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
920                                                 IB_QP_QKEY),
921                         }
922                 },
923         },
924         [IB_QPS_INIT]  = {
925                 [IB_QPS_RESET] = { .valid = 1 },
926                 [IB_QPS_ERR] =   { .valid = 1 },
927                 [IB_QPS_INIT]  = {
928                         .valid = 1,
929                         .opt_param = {
930                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
931                                                 IB_QP_PORT                      |
932                                                 IB_QP_QKEY),
933                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
934                                                 IB_QP_PORT                      |
935                                                 IB_QP_ACCESS_FLAGS),
936                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
937                                                 IB_QP_PORT                      |
938                                                 IB_QP_ACCESS_FLAGS),
939                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
940                                                 IB_QP_PORT                      |
941                                                 IB_QP_ACCESS_FLAGS),
942                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
943                                                 IB_QP_PORT                      |
944                                                 IB_QP_ACCESS_FLAGS),
945                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
946                                                 IB_QP_QKEY),
947                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
948                                                 IB_QP_QKEY),
949                         }
950                 },
951                 [IB_QPS_RTR]   = {
952                         .valid = 1,
953                         .req_param = {
954                                 [IB_QPT_UC]  = (IB_QP_AV                        |
955                                                 IB_QP_PATH_MTU                  |
956                                                 IB_QP_DEST_QPN                  |
957                                                 IB_QP_RQ_PSN),
958                                 [IB_QPT_RC]  = (IB_QP_AV                        |
959                                                 IB_QP_PATH_MTU                  |
960                                                 IB_QP_DEST_QPN                  |
961                                                 IB_QP_RQ_PSN                    |
962                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
963                                                 IB_QP_MIN_RNR_TIMER),
964                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
965                                                 IB_QP_PATH_MTU                  |
966                                                 IB_QP_DEST_QPN                  |
967                                                 IB_QP_RQ_PSN),
968                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
969                                                 IB_QP_PATH_MTU                  |
970                                                 IB_QP_DEST_QPN                  |
971                                                 IB_QP_RQ_PSN                    |
972                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
973                                                 IB_QP_MIN_RNR_TIMER),
974                         },
975                         .opt_param = {
976                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
977                                                  IB_QP_QKEY),
978                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
979                                                  IB_QP_ACCESS_FLAGS             |
980                                                  IB_QP_PKEY_INDEX),
981                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
982                                                  IB_QP_ACCESS_FLAGS             |
983                                                  IB_QP_PKEY_INDEX),
984                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
985                                                  IB_QP_ACCESS_FLAGS             |
986                                                  IB_QP_PKEY_INDEX),
987                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
988                                                  IB_QP_ACCESS_FLAGS             |
989                                                  IB_QP_PKEY_INDEX),
990                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
991                                                  IB_QP_QKEY),
992                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
993                                                  IB_QP_QKEY),
994                          },
995                 },
996         },
997         [IB_QPS_RTR]   = {
998                 [IB_QPS_RESET] = { .valid = 1 },
999                 [IB_QPS_ERR] =   { .valid = 1 },
1000                 [IB_QPS_RTS]   = {
1001                         .valid = 1,
1002                         .req_param = {
1003                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
1004                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
1005                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
1006                                                 IB_QP_RETRY_CNT                 |
1007                                                 IB_QP_RNR_RETRY                 |
1008                                                 IB_QP_SQ_PSN                    |
1009                                                 IB_QP_MAX_QP_RD_ATOMIC),
1010                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
1011                                                 IB_QP_RETRY_CNT                 |
1012                                                 IB_QP_RNR_RETRY                 |
1013                                                 IB_QP_SQ_PSN                    |
1014                                                 IB_QP_MAX_QP_RD_ATOMIC),
1015                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
1016                                                 IB_QP_SQ_PSN),
1017                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1018                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1019                         },
1020                         .opt_param = {
1021                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
1022                                                  IB_QP_QKEY),
1023                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
1024                                                  IB_QP_ALT_PATH                 |
1025                                                  IB_QP_ACCESS_FLAGS             |
1026                                                  IB_QP_PATH_MIG_STATE),
1027                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1028                                                  IB_QP_ALT_PATH                 |
1029                                                  IB_QP_ACCESS_FLAGS             |
1030                                                  IB_QP_MIN_RNR_TIMER            |
1031                                                  IB_QP_PATH_MIG_STATE),
1032                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1033                                                  IB_QP_ALT_PATH                 |
1034                                                  IB_QP_ACCESS_FLAGS             |
1035                                                  IB_QP_PATH_MIG_STATE),
1036                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1037                                                  IB_QP_ALT_PATH                 |
1038                                                  IB_QP_ACCESS_FLAGS             |
1039                                                  IB_QP_MIN_RNR_TIMER            |
1040                                                  IB_QP_PATH_MIG_STATE),
1041                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1042                                                  IB_QP_QKEY),
1043                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1044                                                  IB_QP_QKEY),
1045                                  [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1046                          }
1047                 }
1048         },
1049         [IB_QPS_RTS]   = {
1050                 [IB_QPS_RESET] = { .valid = 1 },
1051                 [IB_QPS_ERR] =   { .valid = 1 },
1052                 [IB_QPS_RTS]   = {
1053                         .valid = 1,
1054                         .opt_param = {
1055                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1056                                                 IB_QP_QKEY),
1057                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1058                                                 IB_QP_ACCESS_FLAGS              |
1059                                                 IB_QP_ALT_PATH                  |
1060                                                 IB_QP_PATH_MIG_STATE),
1061                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1062                                                 IB_QP_ACCESS_FLAGS              |
1063                                                 IB_QP_ALT_PATH                  |
1064                                                 IB_QP_PATH_MIG_STATE            |
1065                                                 IB_QP_MIN_RNR_TIMER),
1066                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1067                                                 IB_QP_ACCESS_FLAGS              |
1068                                                 IB_QP_ALT_PATH                  |
1069                                                 IB_QP_PATH_MIG_STATE),
1070                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1071                                                 IB_QP_ACCESS_FLAGS              |
1072                                                 IB_QP_ALT_PATH                  |
1073                                                 IB_QP_PATH_MIG_STATE            |
1074                                                 IB_QP_MIN_RNR_TIMER),
1075                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1076                                                 IB_QP_QKEY),
1077                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1078                                                 IB_QP_QKEY),
1079                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1080                         }
1081                 },
1082                 [IB_QPS_SQD]   = {
1083                         .valid = 1,
1084                         .opt_param = {
1085                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1086                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1087                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1088                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1089                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1090                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1091                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1092                         }
1093                 },
1094         },
1095         [IB_QPS_SQD]   = {
1096                 [IB_QPS_RESET] = { .valid = 1 },
1097                 [IB_QPS_ERR] =   { .valid = 1 },
1098                 [IB_QPS_RTS]   = {
1099                         .valid = 1,
1100                         .opt_param = {
1101                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1102                                                 IB_QP_QKEY),
1103                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1104                                                 IB_QP_ALT_PATH                  |
1105                                                 IB_QP_ACCESS_FLAGS              |
1106                                                 IB_QP_PATH_MIG_STATE),
1107                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1108                                                 IB_QP_ALT_PATH                  |
1109                                                 IB_QP_ACCESS_FLAGS              |
1110                                                 IB_QP_MIN_RNR_TIMER             |
1111                                                 IB_QP_PATH_MIG_STATE),
1112                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1113                                                 IB_QP_ALT_PATH                  |
1114                                                 IB_QP_ACCESS_FLAGS              |
1115                                                 IB_QP_PATH_MIG_STATE),
1116                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1117                                                 IB_QP_ALT_PATH                  |
1118                                                 IB_QP_ACCESS_FLAGS              |
1119                                                 IB_QP_MIN_RNR_TIMER             |
1120                                                 IB_QP_PATH_MIG_STATE),
1121                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1122                                                 IB_QP_QKEY),
1123                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1124                                                 IB_QP_QKEY),
1125                         }
1126                 },
1127                 [IB_QPS_SQD]   = {
1128                         .valid = 1,
1129                         .opt_param = {
1130                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1131                                                 IB_QP_QKEY),
1132                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1133                                                 IB_QP_ALT_PATH                  |
1134                                                 IB_QP_ACCESS_FLAGS              |
1135                                                 IB_QP_PKEY_INDEX                |
1136                                                 IB_QP_PATH_MIG_STATE),
1137                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1138                                                 IB_QP_AV                        |
1139                                                 IB_QP_TIMEOUT                   |
1140                                                 IB_QP_RETRY_CNT                 |
1141                                                 IB_QP_RNR_RETRY                 |
1142                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1143                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1144                                                 IB_QP_ALT_PATH                  |
1145                                                 IB_QP_ACCESS_FLAGS              |
1146                                                 IB_QP_PKEY_INDEX                |
1147                                                 IB_QP_MIN_RNR_TIMER             |
1148                                                 IB_QP_PATH_MIG_STATE),
1149                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1150                                                 IB_QP_AV                        |
1151                                                 IB_QP_TIMEOUT                   |
1152                                                 IB_QP_RETRY_CNT                 |
1153                                                 IB_QP_RNR_RETRY                 |
1154                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1155                                                 IB_QP_ALT_PATH                  |
1156                                                 IB_QP_ACCESS_FLAGS              |
1157                                                 IB_QP_PKEY_INDEX                |
1158                                                 IB_QP_PATH_MIG_STATE),
1159                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1160                                                 IB_QP_AV                        |
1161                                                 IB_QP_TIMEOUT                   |
1162                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1163                                                 IB_QP_ALT_PATH                  |
1164                                                 IB_QP_ACCESS_FLAGS              |
1165                                                 IB_QP_PKEY_INDEX                |
1166                                                 IB_QP_MIN_RNR_TIMER             |
1167                                                 IB_QP_PATH_MIG_STATE),
1168                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1169                                                 IB_QP_QKEY),
1170                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1171                                                 IB_QP_QKEY),
1172                         }
1173                 }
1174         },
1175         [IB_QPS_SQE]   = {
1176                 [IB_QPS_RESET] = { .valid = 1 },
1177                 [IB_QPS_ERR] =   { .valid = 1 },
1178                 [IB_QPS_RTS]   = {
1179                         .valid = 1,
1180                         .opt_param = {
1181                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1182                                                 IB_QP_QKEY),
1183                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1184                                                 IB_QP_ACCESS_FLAGS),
1185                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1186                                                 IB_QP_QKEY),
1187                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1188                                                 IB_QP_QKEY),
1189                         }
1190                 }
1191         },
1192         [IB_QPS_ERR] = {
1193                 [IB_QPS_RESET] = { .valid = 1 },
1194                 [IB_QPS_ERR] =   { .valid = 1 }
1195         }
1196 };
1197
1198 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1199                        enum ib_qp_type type, enum ib_qp_attr_mask mask,
1200                        enum rdma_link_layer ll)
1201 {
1202         enum ib_qp_attr_mask req_param, opt_param;
1203
1204         if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1205             next_state < 0 || next_state > IB_QPS_ERR)
1206                 return 0;
1207
1208         if (mask & IB_QP_CUR_STATE  &&
1209             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1210             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1211                 return 0;
1212
1213         if (!qp_state_table[cur_state][next_state].valid)
1214                 return 0;
1215
1216         req_param = qp_state_table[cur_state][next_state].req_param[type];
1217         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1218
1219         if ((mask & req_param) != req_param)
1220                 return 0;
1221
1222         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1223                 return 0;
1224
1225         return 1;
1226 }
1227 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1228
1229 int ib_resolve_eth_dmac(struct ib_device *device,
1230                         struct rdma_ah_attr *ah_attr)
1231 {
1232         int           ret = 0;
1233         struct ib_global_route *grh;
1234
1235         if (!rdma_is_port_valid(device, rdma_ah_get_port_num(ah_attr)))
1236                 return -EINVAL;
1237
1238         if (ah_attr->type != RDMA_AH_ATTR_TYPE_ROCE)
1239                 return 0;
1240
1241         grh = rdma_ah_retrieve_grh(ah_attr);
1242
1243         if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw)) {
1244                 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
1245                                 ah_attr->roce.dmac);
1246         } else {
1247                 union ib_gid            sgid;
1248                 struct ib_gid_attr      sgid_attr;
1249                 int                     ifindex;
1250                 int                     hop_limit;
1251
1252                 ret = ib_query_gid(device,
1253                                    rdma_ah_get_port_num(ah_attr),
1254                                    grh->sgid_index,
1255                                    &sgid, &sgid_attr);
1256
1257                 if (ret || !sgid_attr.ndev) {
1258                         if (!ret)
1259                                 ret = -ENXIO;
1260                         goto out;
1261                 }
1262
1263                 ifindex = sgid_attr.ndev->ifindex;
1264
1265                 ret =
1266                 rdma_addr_find_l2_eth_by_grh(&sgid, &grh->dgid,
1267                                              ah_attr->roce.dmac,
1268                                              NULL, &ifindex, &hop_limit);
1269
1270                 dev_put(sgid_attr.ndev);
1271
1272                 grh->hop_limit = hop_limit;
1273         }
1274 out:
1275         return ret;
1276 }
1277 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1278
1279 /**
1280  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1281  * @qp: The QP to modify.
1282  * @attr: On input, specifies the QP attributes to modify.  On output,
1283  *   the current values of selected QP attributes are returned.
1284  * @attr_mask: A bit-mask used to specify which attributes of the QP
1285  *   are being modified.
1286  * @udata: pointer to user's input output buffer information
1287  *   are being modified.
1288  * It returns 0 on success and returns appropriate error code on error.
1289  */
1290 int ib_modify_qp_with_udata(struct ib_qp *qp, struct ib_qp_attr *attr,
1291                             int attr_mask, struct ib_udata *udata)
1292 {
1293         int ret;
1294
1295         if (attr_mask & IB_QP_AV) {
1296                 ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1297                 if (ret)
1298                         return ret;
1299         }
1300         return ib_security_modify_qp(qp, attr, attr_mask, udata);
1301 }
1302 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1303
1304 int ib_modify_qp(struct ib_qp *qp,
1305                  struct ib_qp_attr *qp_attr,
1306                  int qp_attr_mask)
1307 {
1308         return ib_modify_qp_with_udata(qp, qp_attr, qp_attr_mask, NULL);
1309 }
1310 EXPORT_SYMBOL(ib_modify_qp);
1311
1312 int ib_query_qp(struct ib_qp *qp,
1313                 struct ib_qp_attr *qp_attr,
1314                 int qp_attr_mask,
1315                 struct ib_qp_init_attr *qp_init_attr)
1316 {
1317         return qp->device->query_qp ?
1318                 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1319                 -ENOSYS;
1320 }
1321 EXPORT_SYMBOL(ib_query_qp);
1322
1323 int ib_close_qp(struct ib_qp *qp)
1324 {
1325         struct ib_qp *real_qp;
1326         unsigned long flags;
1327
1328         real_qp = qp->real_qp;
1329         if (real_qp == qp)
1330                 return -EINVAL;
1331
1332         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1333         list_del(&qp->open_list);
1334         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1335
1336         atomic_dec(&real_qp->usecnt);
1337         ib_close_shared_qp_security(qp->qp_sec);
1338         kfree(qp);
1339
1340         return 0;
1341 }
1342 EXPORT_SYMBOL(ib_close_qp);
1343
1344 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1345 {
1346         struct ib_xrcd *xrcd;
1347         struct ib_qp *real_qp;
1348         int ret;
1349
1350         real_qp = qp->real_qp;
1351         xrcd = real_qp->xrcd;
1352
1353         mutex_lock(&xrcd->tgt_qp_mutex);
1354         ib_close_qp(qp);
1355         if (atomic_read(&real_qp->usecnt) == 0)
1356                 list_del(&real_qp->xrcd_list);
1357         else
1358                 real_qp = NULL;
1359         mutex_unlock(&xrcd->tgt_qp_mutex);
1360
1361         if (real_qp) {
1362                 ret = ib_destroy_qp(real_qp);
1363                 if (!ret)
1364                         atomic_dec(&xrcd->usecnt);
1365                 else
1366                         __ib_insert_xrcd_qp(xrcd, real_qp);
1367         }
1368
1369         return 0;
1370 }
1371
1372 int ib_destroy_qp(struct ib_qp *qp)
1373 {
1374         struct ib_pd *pd;
1375         struct ib_cq *scq, *rcq;
1376         struct ib_srq *srq;
1377         struct ib_rwq_ind_table *ind_tbl;
1378         struct ib_qp_security *sec;
1379         int ret;
1380
1381         WARN_ON_ONCE(qp->mrs_used > 0);
1382
1383         if (atomic_read(&qp->usecnt))
1384                 return -EBUSY;
1385
1386         if (qp->real_qp != qp)
1387                 return __ib_destroy_shared_qp(qp);
1388
1389         pd   = qp->pd;
1390         scq  = qp->send_cq;
1391         rcq  = qp->recv_cq;
1392         srq  = qp->srq;
1393         ind_tbl = qp->rwq_ind_tbl;
1394         sec  = qp->qp_sec;
1395         if (sec)
1396                 ib_destroy_qp_security_begin(sec);
1397
1398         if (!qp->uobject)
1399                 rdma_rw_cleanup_mrs(qp);
1400
1401         ret = qp->device->destroy_qp(qp);
1402         if (!ret) {
1403                 if (pd)
1404                         atomic_dec(&pd->usecnt);
1405                 if (scq)
1406                         atomic_dec(&scq->usecnt);
1407                 if (rcq)
1408                         atomic_dec(&rcq->usecnt);
1409                 if (srq)
1410                         atomic_dec(&srq->usecnt);
1411                 if (ind_tbl)
1412                         atomic_dec(&ind_tbl->usecnt);
1413                 if (sec)
1414                         ib_destroy_qp_security_end(sec);
1415         } else {
1416                 if (sec)
1417                         ib_destroy_qp_security_abort(sec);
1418         }
1419
1420         return ret;
1421 }
1422 EXPORT_SYMBOL(ib_destroy_qp);
1423
1424 /* Completion queues */
1425
1426 struct ib_cq *ib_create_cq(struct ib_device *device,
1427                            ib_comp_handler comp_handler,
1428                            void (*event_handler)(struct ib_event *, void *),
1429                            void *cq_context,
1430                            const struct ib_cq_init_attr *cq_attr)
1431 {
1432         struct ib_cq *cq;
1433
1434         cq = device->create_cq(device, cq_attr, NULL, NULL);
1435
1436         if (!IS_ERR(cq)) {
1437                 cq->device        = device;
1438                 cq->uobject       = NULL;
1439                 cq->comp_handler  = comp_handler;
1440                 cq->event_handler = event_handler;
1441                 cq->cq_context    = cq_context;
1442                 atomic_set(&cq->usecnt, 0);
1443         }
1444
1445         return cq;
1446 }
1447 EXPORT_SYMBOL(ib_create_cq);
1448
1449 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1450 {
1451         return cq->device->modify_cq ?
1452                 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1453 }
1454 EXPORT_SYMBOL(ib_modify_cq);
1455
1456 int ib_destroy_cq(struct ib_cq *cq)
1457 {
1458         if (atomic_read(&cq->usecnt))
1459                 return -EBUSY;
1460
1461         return cq->device->destroy_cq(cq);
1462 }
1463 EXPORT_SYMBOL(ib_destroy_cq);
1464
1465 int ib_resize_cq(struct ib_cq *cq, int cqe)
1466 {
1467         return cq->device->resize_cq ?
1468                 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1469 }
1470 EXPORT_SYMBOL(ib_resize_cq);
1471
1472 /* Memory regions */
1473
1474 int ib_dereg_mr(struct ib_mr *mr)
1475 {
1476         struct ib_pd *pd = mr->pd;
1477         int ret;
1478
1479         ret = mr->device->dereg_mr(mr);
1480         if (!ret)
1481                 atomic_dec(&pd->usecnt);
1482
1483         return ret;
1484 }
1485 EXPORT_SYMBOL(ib_dereg_mr);
1486
1487 /**
1488  * ib_alloc_mr() - Allocates a memory region
1489  * @pd:            protection domain associated with the region
1490  * @mr_type:       memory region type
1491  * @max_num_sg:    maximum sg entries available for registration.
1492  *
1493  * Notes:
1494  * Memory registeration page/sg lists must not exceed max_num_sg.
1495  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1496  * max_num_sg * used_page_size.
1497  *
1498  */
1499 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1500                           enum ib_mr_type mr_type,
1501                           u32 max_num_sg)
1502 {
1503         struct ib_mr *mr;
1504
1505         if (!pd->device->alloc_mr)
1506                 return ERR_PTR(-ENOSYS);
1507
1508         mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1509         if (!IS_ERR(mr)) {
1510                 mr->device  = pd->device;
1511                 mr->pd      = pd;
1512                 mr->uobject = NULL;
1513                 atomic_inc(&pd->usecnt);
1514                 mr->need_inval = false;
1515         }
1516
1517         return mr;
1518 }
1519 EXPORT_SYMBOL(ib_alloc_mr);
1520
1521 /* "Fast" memory regions */
1522
1523 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1524                             int mr_access_flags,
1525                             struct ib_fmr_attr *fmr_attr)
1526 {
1527         struct ib_fmr *fmr;
1528
1529         if (!pd->device->alloc_fmr)
1530                 return ERR_PTR(-ENOSYS);
1531
1532         fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1533         if (!IS_ERR(fmr)) {
1534                 fmr->device = pd->device;
1535                 fmr->pd     = pd;
1536                 atomic_inc(&pd->usecnt);
1537         }
1538
1539         return fmr;
1540 }
1541 EXPORT_SYMBOL(ib_alloc_fmr);
1542
1543 int ib_unmap_fmr(struct list_head *fmr_list)
1544 {
1545         struct ib_fmr *fmr;
1546
1547         if (list_empty(fmr_list))
1548                 return 0;
1549
1550         fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1551         return fmr->device->unmap_fmr(fmr_list);
1552 }
1553 EXPORT_SYMBOL(ib_unmap_fmr);
1554
1555 int ib_dealloc_fmr(struct ib_fmr *fmr)
1556 {
1557         struct ib_pd *pd;
1558         int ret;
1559
1560         pd = fmr->pd;
1561         ret = fmr->device->dealloc_fmr(fmr);
1562         if (!ret)
1563                 atomic_dec(&pd->usecnt);
1564
1565         return ret;
1566 }
1567 EXPORT_SYMBOL(ib_dealloc_fmr);
1568
1569 /* Multicast groups */
1570
1571 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1572 {
1573         int ret;
1574
1575         if (!qp->device->attach_mcast)
1576                 return -ENOSYS;
1577         if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD ||
1578             lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1579             lid == be16_to_cpu(IB_LID_PERMISSIVE))
1580                 return -EINVAL;
1581
1582         ret = qp->device->attach_mcast(qp, gid, lid);
1583         if (!ret)
1584                 atomic_inc(&qp->usecnt);
1585         return ret;
1586 }
1587 EXPORT_SYMBOL(ib_attach_mcast);
1588
1589 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1590 {
1591         int ret;
1592
1593         if (!qp->device->detach_mcast)
1594                 return -ENOSYS;
1595         if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD ||
1596             lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1597             lid == be16_to_cpu(IB_LID_PERMISSIVE))
1598                 return -EINVAL;
1599
1600         ret = qp->device->detach_mcast(qp, gid, lid);
1601         if (!ret)
1602                 atomic_dec(&qp->usecnt);
1603         return ret;
1604 }
1605 EXPORT_SYMBOL(ib_detach_mcast);
1606
1607 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1608 {
1609         struct ib_xrcd *xrcd;
1610
1611         if (!device->alloc_xrcd)
1612                 return ERR_PTR(-ENOSYS);
1613
1614         xrcd = device->alloc_xrcd(device, NULL, NULL);
1615         if (!IS_ERR(xrcd)) {
1616                 xrcd->device = device;
1617                 xrcd->inode = NULL;
1618                 atomic_set(&xrcd->usecnt, 0);
1619                 mutex_init(&xrcd->tgt_qp_mutex);
1620                 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1621         }
1622
1623         return xrcd;
1624 }
1625 EXPORT_SYMBOL(ib_alloc_xrcd);
1626
1627 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1628 {
1629         struct ib_qp *qp;
1630         int ret;
1631
1632         if (atomic_read(&xrcd->usecnt))
1633                 return -EBUSY;
1634
1635         while (!list_empty(&xrcd->tgt_qp_list)) {
1636                 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1637                 ret = ib_destroy_qp(qp);
1638                 if (ret)
1639                         return ret;
1640         }
1641
1642         return xrcd->device->dealloc_xrcd(xrcd);
1643 }
1644 EXPORT_SYMBOL(ib_dealloc_xrcd);
1645
1646 /**
1647  * ib_create_wq - Creates a WQ associated with the specified protection
1648  * domain.
1649  * @pd: The protection domain associated with the WQ.
1650  * @wq_init_attr: A list of initial attributes required to create the
1651  * WQ. If WQ creation succeeds, then the attributes are updated to
1652  * the actual capabilities of the created WQ.
1653  *
1654  * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1655  * the requested size of the WQ, and set to the actual values allocated
1656  * on return.
1657  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1658  * at least as large as the requested values.
1659  */
1660 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1661                            struct ib_wq_init_attr *wq_attr)
1662 {
1663         struct ib_wq *wq;
1664
1665         if (!pd->device->create_wq)
1666                 return ERR_PTR(-ENOSYS);
1667
1668         wq = pd->device->create_wq(pd, wq_attr, NULL);
1669         if (!IS_ERR(wq)) {
1670                 wq->event_handler = wq_attr->event_handler;
1671                 wq->wq_context = wq_attr->wq_context;
1672                 wq->wq_type = wq_attr->wq_type;
1673                 wq->cq = wq_attr->cq;
1674                 wq->device = pd->device;
1675                 wq->pd = pd;
1676                 wq->uobject = NULL;
1677                 atomic_inc(&pd->usecnt);
1678                 atomic_inc(&wq_attr->cq->usecnt);
1679                 atomic_set(&wq->usecnt, 0);
1680         }
1681         return wq;
1682 }
1683 EXPORT_SYMBOL(ib_create_wq);
1684
1685 /**
1686  * ib_destroy_wq - Destroys the specified WQ.
1687  * @wq: The WQ to destroy.
1688  */
1689 int ib_destroy_wq(struct ib_wq *wq)
1690 {
1691         int err;
1692         struct ib_cq *cq = wq->cq;
1693         struct ib_pd *pd = wq->pd;
1694
1695         if (atomic_read(&wq->usecnt))
1696                 return -EBUSY;
1697
1698         err = wq->device->destroy_wq(wq);
1699         if (!err) {
1700                 atomic_dec(&pd->usecnt);
1701                 atomic_dec(&cq->usecnt);
1702         }
1703         return err;
1704 }
1705 EXPORT_SYMBOL(ib_destroy_wq);
1706
1707 /**
1708  * ib_modify_wq - Modifies the specified WQ.
1709  * @wq: The WQ to modify.
1710  * @wq_attr: On input, specifies the WQ attributes to modify.
1711  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1712  *   are being modified.
1713  * On output, the current values of selected WQ attributes are returned.
1714  */
1715 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1716                  u32 wq_attr_mask)
1717 {
1718         int err;
1719
1720         if (!wq->device->modify_wq)
1721                 return -ENOSYS;
1722
1723         err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1724         return err;
1725 }
1726 EXPORT_SYMBOL(ib_modify_wq);
1727
1728 /*
1729  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1730  * @device: The device on which to create the rwq indirection table.
1731  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1732  * create the Indirection Table.
1733  *
1734  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1735  *      than the created ib_rwq_ind_table object and the caller is responsible
1736  *      for its memory allocation/free.
1737  */
1738 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1739                                                  struct ib_rwq_ind_table_init_attr *init_attr)
1740 {
1741         struct ib_rwq_ind_table *rwq_ind_table;
1742         int i;
1743         u32 table_size;
1744
1745         if (!device->create_rwq_ind_table)
1746                 return ERR_PTR(-ENOSYS);
1747
1748         table_size = (1 << init_attr->log_ind_tbl_size);
1749         rwq_ind_table = device->create_rwq_ind_table(device,
1750                                 init_attr, NULL);
1751         if (IS_ERR(rwq_ind_table))
1752                 return rwq_ind_table;
1753
1754         rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1755         rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1756         rwq_ind_table->device = device;
1757         rwq_ind_table->uobject = NULL;
1758         atomic_set(&rwq_ind_table->usecnt, 0);
1759
1760         for (i = 0; i < table_size; i++)
1761                 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1762
1763         return rwq_ind_table;
1764 }
1765 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1766
1767 /*
1768  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1769  * @wq_ind_table: The Indirection Table to destroy.
1770 */
1771 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1772 {
1773         int err, i;
1774         u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1775         struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1776
1777         if (atomic_read(&rwq_ind_table->usecnt))
1778                 return -EBUSY;
1779
1780         err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1781         if (!err) {
1782                 for (i = 0; i < table_size; i++)
1783                         atomic_dec(&ind_tbl[i]->usecnt);
1784         }
1785
1786         return err;
1787 }
1788 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1789
1790 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1791                                struct ib_flow_attr *flow_attr,
1792                                int domain)
1793 {
1794         struct ib_flow *flow_id;
1795         if (!qp->device->create_flow)
1796                 return ERR_PTR(-ENOSYS);
1797
1798         flow_id = qp->device->create_flow(qp, flow_attr, domain);
1799         if (!IS_ERR(flow_id)) {
1800                 atomic_inc(&qp->usecnt);
1801                 flow_id->qp = qp;
1802         }
1803         return flow_id;
1804 }
1805 EXPORT_SYMBOL(ib_create_flow);
1806
1807 int ib_destroy_flow(struct ib_flow *flow_id)
1808 {
1809         int err;
1810         struct ib_qp *qp = flow_id->qp;
1811
1812         err = qp->device->destroy_flow(flow_id);
1813         if (!err)
1814                 atomic_dec(&qp->usecnt);
1815         return err;
1816 }
1817 EXPORT_SYMBOL(ib_destroy_flow);
1818
1819 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1820                        struct ib_mr_status *mr_status)
1821 {
1822         return mr->device->check_mr_status ?
1823                 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1824 }
1825 EXPORT_SYMBOL(ib_check_mr_status);
1826
1827 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1828                          int state)
1829 {
1830         if (!device->set_vf_link_state)
1831                 return -ENOSYS;
1832
1833         return device->set_vf_link_state(device, vf, port, state);
1834 }
1835 EXPORT_SYMBOL(ib_set_vf_link_state);
1836
1837 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1838                      struct ifla_vf_info *info)
1839 {
1840         if (!device->get_vf_config)
1841                 return -ENOSYS;
1842
1843         return device->get_vf_config(device, vf, port, info);
1844 }
1845 EXPORT_SYMBOL(ib_get_vf_config);
1846
1847 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1848                     struct ifla_vf_stats *stats)
1849 {
1850         if (!device->get_vf_stats)
1851                 return -ENOSYS;
1852
1853         return device->get_vf_stats(device, vf, port, stats);
1854 }
1855 EXPORT_SYMBOL(ib_get_vf_stats);
1856
1857 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1858                    int type)
1859 {
1860         if (!device->set_vf_guid)
1861                 return -ENOSYS;
1862
1863         return device->set_vf_guid(device, vf, port, guid, type);
1864 }
1865 EXPORT_SYMBOL(ib_set_vf_guid);
1866
1867 /**
1868  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1869  *     and set it the memory region.
1870  * @mr:            memory region
1871  * @sg:            dma mapped scatterlist
1872  * @sg_nents:      number of entries in sg
1873  * @sg_offset:     offset in bytes into sg
1874  * @page_size:     page vector desired page size
1875  *
1876  * Constraints:
1877  * - The first sg element is allowed to have an offset.
1878  * - Each sg element must either be aligned to page_size or virtually
1879  *   contiguous to the previous element. In case an sg element has a
1880  *   non-contiguous offset, the mapping prefix will not include it.
1881  * - The last sg element is allowed to have length less than page_size.
1882  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1883  *   then only max_num_sg entries will be mapped.
1884  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
1885  *   constraints holds and the page_size argument is ignored.
1886  *
1887  * Returns the number of sg elements that were mapped to the memory region.
1888  *
1889  * After this completes successfully, the  memory region
1890  * is ready for registration.
1891  */
1892 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1893                  unsigned int *sg_offset, unsigned int page_size)
1894 {
1895         if (unlikely(!mr->device->map_mr_sg))
1896                 return -ENOSYS;
1897
1898         mr->page_size = page_size;
1899
1900         return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1901 }
1902 EXPORT_SYMBOL(ib_map_mr_sg);
1903
1904 /**
1905  * ib_sg_to_pages() - Convert the largest prefix of a sg list
1906  *     to a page vector
1907  * @mr:            memory region
1908  * @sgl:           dma mapped scatterlist
1909  * @sg_nents:      number of entries in sg
1910  * @sg_offset_p:   IN:  start offset in bytes into sg
1911  *                 OUT: offset in bytes for element n of the sg of the first
1912  *                      byte that has not been processed where n is the return
1913  *                      value of this function.
1914  * @set_page:      driver page assignment function pointer
1915  *
1916  * Core service helper for drivers to convert the largest
1917  * prefix of given sg list to a page vector. The sg list
1918  * prefix converted is the prefix that meet the requirements
1919  * of ib_map_mr_sg.
1920  *
1921  * Returns the number of sg elements that were assigned to
1922  * a page vector.
1923  */
1924 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1925                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1926 {
1927         struct scatterlist *sg;
1928         u64 last_end_dma_addr = 0;
1929         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1930         unsigned int last_page_off = 0;
1931         u64 page_mask = ~((u64)mr->page_size - 1);
1932         int i, ret;
1933
1934         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1935                 return -EINVAL;
1936
1937         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1938         mr->length = 0;
1939
1940         for_each_sg(sgl, sg, sg_nents, i) {
1941                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
1942                 u64 prev_addr = dma_addr;
1943                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1944                 u64 end_dma_addr = dma_addr + dma_len;
1945                 u64 page_addr = dma_addr & page_mask;
1946
1947                 /*
1948                  * For the second and later elements, check whether either the
1949                  * end of element i-1 or the start of element i is not aligned
1950                  * on a page boundary.
1951                  */
1952                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1953                         /* Stop mapping if there is a gap. */
1954                         if (last_end_dma_addr != dma_addr)
1955                                 break;
1956
1957                         /*
1958                          * Coalesce this element with the last. If it is small
1959                          * enough just update mr->length. Otherwise start
1960                          * mapping from the next page.
1961                          */
1962                         goto next_page;
1963                 }
1964
1965                 do {
1966                         ret = set_page(mr, page_addr);
1967                         if (unlikely(ret < 0)) {
1968                                 sg_offset = prev_addr - sg_dma_address(sg);
1969                                 mr->length += prev_addr - dma_addr;
1970                                 if (sg_offset_p)
1971                                         *sg_offset_p = sg_offset;
1972                                 return i || sg_offset ? i : ret;
1973                         }
1974                         prev_addr = page_addr;
1975 next_page:
1976                         page_addr += mr->page_size;
1977                 } while (page_addr < end_dma_addr);
1978
1979                 mr->length += dma_len;
1980                 last_end_dma_addr = end_dma_addr;
1981                 last_page_off = end_dma_addr & ~page_mask;
1982
1983                 sg_offset = 0;
1984         }
1985
1986         if (sg_offset_p)
1987                 *sg_offset_p = 0;
1988         return i;
1989 }
1990 EXPORT_SYMBOL(ib_sg_to_pages);
1991
1992 struct ib_drain_cqe {
1993         struct ib_cqe cqe;
1994         struct completion done;
1995 };
1996
1997 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1998 {
1999         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2000                                                 cqe);
2001
2002         complete(&cqe->done);
2003 }
2004
2005 /*
2006  * Post a WR and block until its completion is reaped for the SQ.
2007  */
2008 static void __ib_drain_sq(struct ib_qp *qp)
2009 {
2010         struct ib_cq *cq = qp->send_cq;
2011         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2012         struct ib_drain_cqe sdrain;
2013         struct ib_send_wr swr = {}, *bad_swr;
2014         int ret;
2015
2016         swr.wr_cqe = &sdrain.cqe;
2017         sdrain.cqe.done = ib_drain_qp_done;
2018         init_completion(&sdrain.done);
2019
2020         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2021         if (ret) {
2022                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2023                 return;
2024         }
2025
2026         ret = ib_post_send(qp, &swr, &bad_swr);
2027         if (ret) {
2028                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2029                 return;
2030         }
2031
2032         if (cq->poll_ctx == IB_POLL_DIRECT)
2033                 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2034                         ib_process_cq_direct(cq, -1);
2035         else
2036                 wait_for_completion(&sdrain.done);
2037 }
2038
2039 /*
2040  * Post a WR and block until its completion is reaped for the RQ.
2041  */
2042 static void __ib_drain_rq(struct ib_qp *qp)
2043 {
2044         struct ib_cq *cq = qp->recv_cq;
2045         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2046         struct ib_drain_cqe rdrain;
2047         struct ib_recv_wr rwr = {}, *bad_rwr;
2048         int ret;
2049
2050         rwr.wr_cqe = &rdrain.cqe;
2051         rdrain.cqe.done = ib_drain_qp_done;
2052         init_completion(&rdrain.done);
2053
2054         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2055         if (ret) {
2056                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2057                 return;
2058         }
2059
2060         ret = ib_post_recv(qp, &rwr, &bad_rwr);
2061         if (ret) {
2062                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2063                 return;
2064         }
2065
2066         if (cq->poll_ctx == IB_POLL_DIRECT)
2067                 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2068                         ib_process_cq_direct(cq, -1);
2069         else
2070                 wait_for_completion(&rdrain.done);
2071 }
2072
2073 /**
2074  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2075  *                 application.
2076  * @qp:            queue pair to drain
2077  *
2078  * If the device has a provider-specific drain function, then
2079  * call that.  Otherwise call the generic drain function
2080  * __ib_drain_sq().
2081  *
2082  * The caller must:
2083  *
2084  * ensure there is room in the CQ and SQ for the drain work request and
2085  * completion.
2086  *
2087  * allocate the CQ using ib_alloc_cq().
2088  *
2089  * ensure that there are no other contexts that are posting WRs concurrently.
2090  * Otherwise the drain is not guaranteed.
2091  */
2092 void ib_drain_sq(struct ib_qp *qp)
2093 {
2094         if (qp->device->drain_sq)
2095                 qp->device->drain_sq(qp);
2096         else
2097                 __ib_drain_sq(qp);
2098 }
2099 EXPORT_SYMBOL(ib_drain_sq);
2100
2101 /**
2102  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2103  *                 application.
2104  * @qp:            queue pair to drain
2105  *
2106  * If the device has a provider-specific drain function, then
2107  * call that.  Otherwise call the generic drain function
2108  * __ib_drain_rq().
2109  *
2110  * The caller must:
2111  *
2112  * ensure there is room in the CQ and RQ for the drain work request and
2113  * completion.
2114  *
2115  * allocate the CQ using ib_alloc_cq().
2116  *
2117  * ensure that there are no other contexts that are posting WRs concurrently.
2118  * Otherwise the drain is not guaranteed.
2119  */
2120 void ib_drain_rq(struct ib_qp *qp)
2121 {
2122         if (qp->device->drain_rq)
2123                 qp->device->drain_rq(qp);
2124         else
2125                 __ib_drain_rq(qp);
2126 }
2127 EXPORT_SYMBOL(ib_drain_rq);
2128
2129 /**
2130  * ib_drain_qp() - Block until all CQEs have been consumed by the
2131  *                 application on both the RQ and SQ.
2132  * @qp:            queue pair to drain
2133  *
2134  * The caller must:
2135  *
2136  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2137  * and completions.
2138  *
2139  * allocate the CQs using ib_alloc_cq().
2140  *
2141  * ensure that there are no other contexts that are posting WRs concurrently.
2142  * Otherwise the drain is not guaranteed.
2143  */
2144 void ib_drain_qp(struct ib_qp *qp)
2145 {
2146         ib_drain_sq(qp);
2147         if (!qp->srq)
2148                 ib_drain_rq(qp);
2149 }
2150 EXPORT_SYMBOL(ib_drain_qp);