]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/infiniband/hw/hfi1/verbs.c
IB/core, opa_vnic, hfi1, mlx5: Properly free rdma_netdev
[karo-tx-linux.git] / drivers / infiniband / hw / hfi1 / verbs.c
1 /*
2  * Copyright(c) 2015 - 2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56
57 #include "hfi.h"
58 #include "common.h"
59 #include "device.h"
60 #include "trace.h"
61 #include "qp.h"
62 #include "verbs_txreq.h"
63 #include "debugfs.h"
64 #include "vnic.h"
65
66 static unsigned int hfi1_lkey_table_size = 16;
67 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
68                    S_IRUGO);
69 MODULE_PARM_DESC(lkey_table_size,
70                  "LKEY table size in bits (2^n, 1 <= n <= 23)");
71
72 static unsigned int hfi1_max_pds = 0xFFFF;
73 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
74 MODULE_PARM_DESC(max_pds,
75                  "Maximum number of protection domains to support");
76
77 static unsigned int hfi1_max_ahs = 0xFFFF;
78 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
79 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
80
81 unsigned int hfi1_max_cqes = 0x2FFFFF;
82 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
83 MODULE_PARM_DESC(max_cqes,
84                  "Maximum number of completion queue entries to support");
85
86 unsigned int hfi1_max_cqs = 0x1FFFF;
87 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
88 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
89
90 unsigned int hfi1_max_qp_wrs = 0x3FFF;
91 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
92 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
93
94 unsigned int hfi1_max_qps = 32768;
95 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
96 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
97
98 unsigned int hfi1_max_sges = 0x60;
99 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
100 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
101
102 unsigned int hfi1_max_mcast_grps = 16384;
103 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
104 MODULE_PARM_DESC(max_mcast_grps,
105                  "Maximum number of multicast groups to support");
106
107 unsigned int hfi1_max_mcast_qp_attached = 16;
108 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
109                    uint, S_IRUGO);
110 MODULE_PARM_DESC(max_mcast_qp_attached,
111                  "Maximum number of attached QPs to support");
112
113 unsigned int hfi1_max_srqs = 1024;
114 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
115 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
116
117 unsigned int hfi1_max_srq_sges = 128;
118 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
119 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
120
121 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
122 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
123 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
124
125 unsigned short piothreshold = 256;
126 module_param(piothreshold, ushort, S_IRUGO);
127 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
128
129 #define COPY_CACHELESS 1
130 #define COPY_ADAPTIVE  2
131 static unsigned int sge_copy_mode;
132 module_param(sge_copy_mode, uint, S_IRUGO);
133 MODULE_PARM_DESC(sge_copy_mode,
134                  "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
135
136 static void verbs_sdma_complete(
137         struct sdma_txreq *cookie,
138         int status);
139
140 static int pio_wait(struct rvt_qp *qp,
141                     struct send_context *sc,
142                     struct hfi1_pkt_state *ps,
143                     u32 flag);
144
145 /* Length of buffer to create verbs txreq cache name */
146 #define TXREQ_NAME_LEN 24
147
148 static uint wss_threshold;
149 module_param(wss_threshold, uint, S_IRUGO);
150 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
151 static uint wss_clean_period = 256;
152 module_param(wss_clean_period, uint, S_IRUGO);
153 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
154
155 /* memory working set size */
156 struct hfi1_wss {
157         unsigned long *entries;
158         atomic_t total_count;
159         atomic_t clean_counter;
160         atomic_t clean_entry;
161
162         int threshold;
163         int num_entries;
164         long pages_mask;
165 };
166
167 static struct hfi1_wss wss;
168
169 int hfi1_wss_init(void)
170 {
171         long llc_size;
172         long llc_bits;
173         long table_size;
174         long table_bits;
175
176         /* check for a valid percent range - default to 80 if none or invalid */
177         if (wss_threshold < 1 || wss_threshold > 100)
178                 wss_threshold = 80;
179         /* reject a wildly large period */
180         if (wss_clean_period > 1000000)
181                 wss_clean_period = 256;
182         /* reject a zero period */
183         if (wss_clean_period == 0)
184                 wss_clean_period = 1;
185
186         /*
187          * Calculate the table size - the next power of 2 larger than the
188          * LLC size.  LLC size is in KiB.
189          */
190         llc_size = wss_llc_size() * 1024;
191         table_size = roundup_pow_of_two(llc_size);
192
193         /* one bit per page in rounded up table */
194         llc_bits = llc_size / PAGE_SIZE;
195         table_bits = table_size / PAGE_SIZE;
196         wss.pages_mask = table_bits - 1;
197         wss.num_entries = table_bits / BITS_PER_LONG;
198
199         wss.threshold = (llc_bits * wss_threshold) / 100;
200         if (wss.threshold == 0)
201                 wss.threshold = 1;
202
203         atomic_set(&wss.clean_counter, wss_clean_period);
204
205         wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries),
206                               GFP_KERNEL);
207         if (!wss.entries) {
208                 hfi1_wss_exit();
209                 return -ENOMEM;
210         }
211
212         return 0;
213 }
214
215 void hfi1_wss_exit(void)
216 {
217         /* coded to handle partially initialized and repeat callers */
218         kfree(wss.entries);
219         wss.entries = NULL;
220 }
221
222 /*
223  * Advance the clean counter.  When the clean period has expired,
224  * clean an entry.
225  *
226  * This is implemented in atomics to avoid locking.  Because multiple
227  * variables are involved, it can be racy which can lead to slightly
228  * inaccurate information.  Since this is only a heuristic, this is
229  * OK.  Any innaccuracies will clean themselves out as the counter
230  * advances.  That said, it is unlikely the entry clean operation will
231  * race - the next possible racer will not start until the next clean
232  * period.
233  *
234  * The clean counter is implemented as a decrement to zero.  When zero
235  * is reached an entry is cleaned.
236  */
237 static void wss_advance_clean_counter(void)
238 {
239         int entry;
240         int weight;
241         unsigned long bits;
242
243         /* become the cleaner if we decrement the counter to zero */
244         if (atomic_dec_and_test(&wss.clean_counter)) {
245                 /*
246                  * Set, not add, the clean period.  This avoids an issue
247                  * where the counter could decrement below the clean period.
248                  * Doing a set can result in lost decrements, slowing the
249                  * clean advance.  Since this a heuristic, this possible
250                  * slowdown is OK.
251                  *
252                  * An alternative is to loop, advancing the counter by a
253                  * clean period until the result is > 0. However, this could
254                  * lead to several threads keeping another in the clean loop.
255                  * This could be mitigated by limiting the number of times
256                  * we stay in the loop.
257                  */
258                 atomic_set(&wss.clean_counter, wss_clean_period);
259
260                 /*
261                  * Uniquely grab the entry to clean and move to next.
262                  * The current entry is always the lower bits of
263                  * wss.clean_entry.  The table size, wss.num_entries,
264                  * is always a power-of-2.
265                  */
266                 entry = (atomic_inc_return(&wss.clean_entry) - 1)
267                         & (wss.num_entries - 1);
268
269                 /* clear the entry and count the bits */
270                 bits = xchg(&wss.entries[entry], 0);
271                 weight = hweight64((u64)bits);
272                 /* only adjust the contended total count if needed */
273                 if (weight)
274                         atomic_sub(weight, &wss.total_count);
275         }
276 }
277
278 /*
279  * Insert the given address into the working set array.
280  */
281 static void wss_insert(void *address)
282 {
283         u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask;
284         u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
285         u32 nr = page & (BITS_PER_LONG - 1);
286
287         if (!test_and_set_bit(nr, &wss.entries[entry]))
288                 atomic_inc(&wss.total_count);
289
290         wss_advance_clean_counter();
291 }
292
293 /*
294  * Is the working set larger than the threshold?
295  */
296 static inline bool wss_exceeds_threshold(void)
297 {
298         return atomic_read(&wss.total_count) >= wss.threshold;
299 }
300
301 /*
302  * Translate ib_wr_opcode into ib_wc_opcode.
303  */
304 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
305         [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
306         [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
307         [IB_WR_SEND] = IB_WC_SEND,
308         [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
309         [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
310         [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
311         [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
312         [IB_WR_SEND_WITH_INV] = IB_WC_SEND,
313         [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
314         [IB_WR_REG_MR] = IB_WC_REG_MR
315 };
316
317 /*
318  * Length of header by opcode, 0 --> not supported
319  */
320 const u8 hdr_len_by_opcode[256] = {
321         /* RC */
322         [IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
323         [IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
324         [IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
325         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
326         [IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
327         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
328         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
329         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
330         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
331         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
332         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
333         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
334         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
335         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
336         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
337         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
338         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
339         [IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
340         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4 + 8,
341         [IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
342         [IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
343         [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = 12 + 8 + 4,
344         [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = 12 + 8 + 4,
345         /* UC */
346         [IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
347         [IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
348         [IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
349         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
350         [IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
351         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
352         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
353         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
354         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
355         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
356         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
357         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
358         /* UD */
359         [IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
360         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
361 };
362
363 static const opcode_handler opcode_handler_tbl[256] = {
364         /* RC */
365         [IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
366         [IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
367         [IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
368         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
369         [IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
370         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
371         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
372         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
373         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
374         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
375         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
376         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
377         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
378         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
379         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
380         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
381         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
382         [IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
383         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
384         [IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
385         [IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
386         [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = &hfi1_rc_rcv,
387         [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = &hfi1_rc_rcv,
388         /* UC */
389         [IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
390         [IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
391         [IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
392         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
393         [IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
394         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
395         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
396         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
397         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
398         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
399         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
400         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
401         /* UD */
402         [IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
403         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
404         /* CNP */
405         [IB_OPCODE_CNP]                               = &hfi1_cnp_rcv
406 };
407
408 #define OPMASK 0x1f
409
410 static const u32 pio_opmask[BIT(3)] = {
411         /* RC */
412         [IB_OPCODE_RC >> 5] =
413                 BIT(RC_OP(SEND_ONLY) & OPMASK) |
414                 BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
415                 BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
416                 BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
417                 BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
418                 BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
419                 BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
420                 BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
421                 BIT(RC_OP(FETCH_ADD) & OPMASK),
422         /* UC */
423         [IB_OPCODE_UC >> 5] =
424                 BIT(UC_OP(SEND_ONLY) & OPMASK) |
425                 BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
426                 BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
427                 BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
428 };
429
430 /*
431  * System image GUID.
432  */
433 __be64 ib_hfi1_sys_image_guid;
434
435 /**
436  * hfi1_copy_sge - copy data to SGE memory
437  * @ss: the SGE state
438  * @data: the data to copy
439  * @length: the length of the data
440  * @release: boolean to release MR
441  * @copy_last: do a separate copy of the last 8 bytes
442  */
443 void hfi1_copy_sge(
444         struct rvt_sge_state *ss,
445         void *data, u32 length,
446         bool release,
447         bool copy_last)
448 {
449         struct rvt_sge *sge = &ss->sge;
450         int i;
451         bool in_last = false;
452         bool cacheless_copy = false;
453
454         if (sge_copy_mode == COPY_CACHELESS) {
455                 cacheless_copy = length >= PAGE_SIZE;
456         } else if (sge_copy_mode == COPY_ADAPTIVE) {
457                 if (length >= PAGE_SIZE) {
458                         /*
459                          * NOTE: this *assumes*:
460                          * o The first vaddr is the dest.
461                          * o If multiple pages, then vaddr is sequential.
462                          */
463                         wss_insert(sge->vaddr);
464                         if (length >= (2 * PAGE_SIZE))
465                                 wss_insert(sge->vaddr + PAGE_SIZE);
466
467                         cacheless_copy = wss_exceeds_threshold();
468                 } else {
469                         wss_advance_clean_counter();
470                 }
471         }
472         if (copy_last) {
473                 if (length > 8) {
474                         length -= 8;
475                 } else {
476                         copy_last = false;
477                         in_last = true;
478                 }
479         }
480
481 again:
482         while (length) {
483                 u32 len = rvt_get_sge_length(sge, length);
484
485                 WARN_ON_ONCE(len == 0);
486                 if (unlikely(in_last)) {
487                         /* enforce byte transfer ordering */
488                         for (i = 0; i < len; i++)
489                                 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
490                 } else if (cacheless_copy) {
491                         cacheless_memcpy(sge->vaddr, data, len);
492                 } else {
493                         memcpy(sge->vaddr, data, len);
494                 }
495                 rvt_update_sge(ss, len, release);
496                 data += len;
497                 length -= len;
498         }
499
500         if (copy_last) {
501                 copy_last = false;
502                 in_last = true;
503                 length = 8;
504                 goto again;
505         }
506 }
507
508 /*
509  * Make sure the QP is ready and able to accept the given opcode.
510  */
511 static inline opcode_handler qp_ok(int opcode, struct hfi1_packet *packet)
512 {
513         if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
514                 return NULL;
515         if (((opcode & RVT_OPCODE_QP_MASK) == packet->qp->allowed_ops) ||
516             (opcode == IB_OPCODE_CNP))
517                 return opcode_handler_tbl[opcode];
518
519         return NULL;
520 }
521
522 static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc)
523 {
524 #ifdef CONFIG_FAULT_INJECTION
525         if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP)
526                 /*
527                  * In order to drop non-IB traffic we
528                  * set PbcInsertHrc to NONE (0x2).
529                  * The packet will still be delivered
530                  * to the receiving node but a
531                  * KHdrHCRCErr (KDETH packet with a bad
532                  * HCRC) will be triggered and the
533                  * packet will not be delivered to the
534                  * correct context.
535                  */
536                 pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT;
537         else
538                 /*
539                  * In order to drop regular verbs
540                  * traffic we set the PbcTestEbp
541                  * flag. The packet will still be
542                  * delivered to the receiving node but
543                  * a 'late ebp error' will be
544                  * triggered and will be dropped.
545                  */
546                 pbc |= PBC_TEST_EBP;
547 #endif
548         return pbc;
549 }
550
551 /**
552  * hfi1_ib_rcv - process an incoming packet
553  * @packet: data packet information
554  *
555  * This is called to process an incoming packet at interrupt level.
556  *
557  * Tlen is the length of the header + data + CRC in bytes.
558  */
559 void hfi1_ib_rcv(struct hfi1_packet *packet)
560 {
561         struct hfi1_ctxtdata *rcd = packet->rcd;
562         struct ib_header *hdr = packet->hdr;
563         u32 tlen = packet->tlen;
564         struct hfi1_pportdata *ppd = rcd->ppd;
565         struct hfi1_ibport *ibp = rcd_to_iport(rcd);
566         struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
567         opcode_handler packet_handler;
568         unsigned long flags;
569         u32 qp_num;
570         int lnh;
571         u8 opcode;
572         u16 lid;
573
574         /* Check for GRH */
575         lnh = ib_get_lnh(hdr);
576         if (lnh == HFI1_LRH_BTH) {
577                 packet->ohdr = &hdr->u.oth;
578         } else if (lnh == HFI1_LRH_GRH) {
579                 u32 vtf;
580
581                 packet->ohdr = &hdr->u.l.oth;
582                 if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
583                         goto drop;
584                 vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
585                 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
586                         goto drop;
587                 packet->rcv_flags |= HFI1_HAS_GRH;
588         } else {
589                 goto drop;
590         }
591
592         trace_input_ibhdr(rcd->dd, hdr);
593
594         opcode = ib_bth_get_opcode(packet->ohdr);
595         inc_opstats(tlen, &rcd->opstats->stats[opcode]);
596
597         /* Get the destination QP number. */
598         qp_num = be32_to_cpu(packet->ohdr->bth[1]) & RVT_QPN_MASK;
599         lid = ib_get_dlid(hdr);
600         if (unlikely((lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
601                      (lid != be16_to_cpu(IB_LID_PERMISSIVE)))) {
602                 struct rvt_mcast *mcast;
603                 struct rvt_mcast_qp *p;
604
605                 if (lnh != HFI1_LRH_GRH)
606                         goto drop;
607                 mcast = rvt_mcast_find(&ibp->rvp, &hdr->u.l.grh.dgid, lid);
608                 if (!mcast)
609                         goto drop;
610                 list_for_each_entry_rcu(p, &mcast->qp_list, list) {
611                         packet->qp = p->qp;
612                         spin_lock_irqsave(&packet->qp->r_lock, flags);
613                         packet_handler = qp_ok(opcode, packet);
614                         if (likely(packet_handler))
615                                 packet_handler(packet);
616                         else
617                                 ibp->rvp.n_pkt_drops++;
618                         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
619                 }
620                 /*
621                  * Notify rvt_multicast_detach() if it is waiting for us
622                  * to finish.
623                  */
624                 if (atomic_dec_return(&mcast->refcount) <= 1)
625                         wake_up(&mcast->wait);
626         } else {
627                 rcu_read_lock();
628                 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
629                 if (!packet->qp) {
630                         rcu_read_unlock();
631                         goto drop;
632                 }
633                 if (unlikely(hfi1_dbg_fault_opcode(packet->qp, opcode,
634                                                    true))) {
635                         rcu_read_unlock();
636                         goto drop;
637                 }
638                 spin_lock_irqsave(&packet->qp->r_lock, flags);
639                 packet_handler = qp_ok(opcode, packet);
640                 if (likely(packet_handler))
641                         packet_handler(packet);
642                 else
643                         ibp->rvp.n_pkt_drops++;
644                 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
645                 rcu_read_unlock();
646         }
647         return;
648
649 drop:
650         ibp->rvp.n_pkt_drops++;
651 }
652
653 /*
654  * This is called from a timer to check for QPs
655  * which need kernel memory in order to send a packet.
656  */
657 static void mem_timer(unsigned long data)
658 {
659         struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data;
660         struct list_head *list = &dev->memwait;
661         struct rvt_qp *qp = NULL;
662         struct iowait *wait;
663         unsigned long flags;
664         struct hfi1_qp_priv *priv;
665
666         write_seqlock_irqsave(&dev->iowait_lock, flags);
667         if (!list_empty(list)) {
668                 wait = list_first_entry(list, struct iowait, list);
669                 qp = iowait_to_qp(wait);
670                 priv = qp->priv;
671                 list_del_init(&priv->s_iowait.list);
672                 priv->s_iowait.lock = NULL;
673                 /* refcount held until actual wake up */
674                 if (!list_empty(list))
675                         mod_timer(&dev->mem_timer, jiffies + 1);
676         }
677         write_sequnlock_irqrestore(&dev->iowait_lock, flags);
678
679         if (qp)
680                 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
681 }
682
683 /*
684  * This is called with progress side lock held.
685  */
686 /* New API */
687 static void verbs_sdma_complete(
688         struct sdma_txreq *cookie,
689         int status)
690 {
691         struct verbs_txreq *tx =
692                 container_of(cookie, struct verbs_txreq, txreq);
693         struct rvt_qp *qp = tx->qp;
694
695         spin_lock(&qp->s_lock);
696         if (tx->wqe) {
697                 hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
698         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
699                 struct ib_header *hdr;
700
701                 hdr = &tx->phdr.hdr;
702                 hfi1_rc_send_complete(qp, hdr);
703         }
704         spin_unlock(&qp->s_lock);
705
706         hfi1_put_txreq(tx);
707 }
708
709 static int wait_kmem(struct hfi1_ibdev *dev,
710                      struct rvt_qp *qp,
711                      struct hfi1_pkt_state *ps)
712 {
713         struct hfi1_qp_priv *priv = qp->priv;
714         unsigned long flags;
715         int ret = 0;
716
717         spin_lock_irqsave(&qp->s_lock, flags);
718         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
719                 write_seqlock(&dev->iowait_lock);
720                 list_add_tail(&ps->s_txreq->txreq.list,
721                               &priv->s_iowait.tx_head);
722                 if (list_empty(&priv->s_iowait.list)) {
723                         if (list_empty(&dev->memwait))
724                                 mod_timer(&dev->mem_timer, jiffies + 1);
725                         qp->s_flags |= RVT_S_WAIT_KMEM;
726                         list_add_tail(&priv->s_iowait.list, &dev->memwait);
727                         priv->s_iowait.lock = &dev->iowait_lock;
728                         trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
729                         rvt_get_qp(qp);
730                 }
731                 write_sequnlock(&dev->iowait_lock);
732                 qp->s_flags &= ~RVT_S_BUSY;
733                 ret = -EBUSY;
734         }
735         spin_unlock_irqrestore(&qp->s_lock, flags);
736
737         return ret;
738 }
739
740 /*
741  * This routine calls txadds for each sg entry.
742  *
743  * Add failures will revert the sge cursor
744  */
745 static noinline int build_verbs_ulp_payload(
746         struct sdma_engine *sde,
747         u32 length,
748         struct verbs_txreq *tx)
749 {
750         struct rvt_sge_state *ss = tx->ss;
751         struct rvt_sge *sg_list = ss->sg_list;
752         struct rvt_sge sge = ss->sge;
753         u8 num_sge = ss->num_sge;
754         u32 len;
755         int ret = 0;
756
757         while (length) {
758                 len = ss->sge.length;
759                 if (len > length)
760                         len = length;
761                 if (len > ss->sge.sge_length)
762                         len = ss->sge.sge_length;
763                 WARN_ON_ONCE(len == 0);
764                 ret = sdma_txadd_kvaddr(
765                         sde->dd,
766                         &tx->txreq,
767                         ss->sge.vaddr,
768                         len);
769                 if (ret)
770                         goto bail_txadd;
771                 rvt_update_sge(ss, len, false);
772                 length -= len;
773         }
774         return ret;
775 bail_txadd:
776         /* unwind cursor */
777         ss->sge = sge;
778         ss->num_sge = num_sge;
779         ss->sg_list = sg_list;
780         return ret;
781 }
782
783 /*
784  * Build the number of DMA descriptors needed to send length bytes of data.
785  *
786  * NOTE: DMA mapping is held in the tx until completed in the ring or
787  *       the tx desc is freed without having been submitted to the ring
788  *
789  * This routine ensures all the helper routine calls succeed.
790  */
791 /* New API */
792 static int build_verbs_tx_desc(
793         struct sdma_engine *sde,
794         u32 length,
795         struct verbs_txreq *tx,
796         struct hfi1_ahg_info *ahg_info,
797         u64 pbc)
798 {
799         int ret = 0;
800         struct hfi1_sdma_header *phdr = &tx->phdr;
801         u16 hdrbytes = tx->hdr_dwords << 2;
802
803         if (!ahg_info->ahgcount) {
804                 ret = sdma_txinit_ahg(
805                         &tx->txreq,
806                         ahg_info->tx_flags,
807                         hdrbytes + length,
808                         ahg_info->ahgidx,
809                         0,
810                         NULL,
811                         0,
812                         verbs_sdma_complete);
813                 if (ret)
814                         goto bail_txadd;
815                 phdr->pbc = cpu_to_le64(pbc);
816                 ret = sdma_txadd_kvaddr(
817                         sde->dd,
818                         &tx->txreq,
819                         phdr,
820                         hdrbytes);
821                 if (ret)
822                         goto bail_txadd;
823         } else {
824                 ret = sdma_txinit_ahg(
825                         &tx->txreq,
826                         ahg_info->tx_flags,
827                         length,
828                         ahg_info->ahgidx,
829                         ahg_info->ahgcount,
830                         ahg_info->ahgdesc,
831                         hdrbytes,
832                         verbs_sdma_complete);
833                 if (ret)
834                         goto bail_txadd;
835         }
836         /* add the ulp payload - if any. tx->ss can be NULL for acks */
837         if (tx->ss)
838                 ret = build_verbs_ulp_payload(sde, length, tx);
839 bail_txadd:
840         return ret;
841 }
842
843 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
844                         u64 pbc)
845 {
846         struct hfi1_qp_priv *priv = qp->priv;
847         struct hfi1_ahg_info *ahg_info = priv->s_ahg;
848         u32 hdrwords = qp->s_hdrwords;
849         u32 len = ps->s_txreq->s_cur_size;
850         u32 plen = hdrwords + ((len + 3) >> 2) + 2; /* includes pbc */
851         struct hfi1_ibdev *dev = ps->dev;
852         struct hfi1_pportdata *ppd = ps->ppd;
853         struct verbs_txreq *tx;
854         u8 sc5 = priv->s_sc;
855
856         int ret;
857
858         tx = ps->s_txreq;
859         if (!sdma_txreq_built(&tx->txreq)) {
860                 if (likely(pbc == 0)) {
861                         u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
862                         u8 opcode = get_opcode(&tx->phdr.hdr);
863
864                         /* No vl15 here */
865                         /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
866                         pbc |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
867
868                         if (unlikely(hfi1_dbg_fault_opcode(qp, opcode, false)))
869                                 pbc = hfi1_fault_tx(qp, opcode, pbc);
870                         pbc = create_pbc(ppd,
871                                          pbc,
872                                          qp->srate_mbps,
873                                          vl,
874                                          plen);
875                 }
876                 tx->wqe = qp->s_wqe;
877                 ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc);
878                 if (unlikely(ret))
879                         goto bail_build;
880         }
881         ret =  sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq);
882         if (unlikely(ret < 0)) {
883                 if (ret == -ECOMM)
884                         goto bail_ecomm;
885                 return ret;
886         }
887         trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
888                                 &ps->s_txreq->phdr.hdr);
889         return ret;
890
891 bail_ecomm:
892         /* The current one got "sent" */
893         return 0;
894 bail_build:
895         ret = wait_kmem(dev, qp, ps);
896         if (!ret) {
897                 /* free txreq - bad state */
898                 hfi1_put_txreq(ps->s_txreq);
899                 ps->s_txreq = NULL;
900         }
901         return ret;
902 }
903
904 /*
905  * If we are now in the error state, return zero to flush the
906  * send work request.
907  */
908 static int pio_wait(struct rvt_qp *qp,
909                     struct send_context *sc,
910                     struct hfi1_pkt_state *ps,
911                     u32 flag)
912 {
913         struct hfi1_qp_priv *priv = qp->priv;
914         struct hfi1_devdata *dd = sc->dd;
915         struct hfi1_ibdev *dev = &dd->verbs_dev;
916         unsigned long flags;
917         int ret = 0;
918
919         /*
920          * Note that as soon as want_buffer() is called and
921          * possibly before it returns, sc_piobufavail()
922          * could be called. Therefore, put QP on the I/O wait list before
923          * enabling the PIO avail interrupt.
924          */
925         spin_lock_irqsave(&qp->s_lock, flags);
926         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
927                 write_seqlock(&dev->iowait_lock);
928                 list_add_tail(&ps->s_txreq->txreq.list,
929                               &priv->s_iowait.tx_head);
930                 if (list_empty(&priv->s_iowait.list)) {
931                         struct hfi1_ibdev *dev = &dd->verbs_dev;
932                         int was_empty;
933
934                         dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
935                         dev->n_piodrain += !!(flag & RVT_S_WAIT_PIO_DRAIN);
936                         qp->s_flags |= flag;
937                         was_empty = list_empty(&sc->piowait);
938                         list_add_tail(&priv->s_iowait.list, &sc->piowait);
939                         priv->s_iowait.lock = &dev->iowait_lock;
940                         trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
941                         rvt_get_qp(qp);
942                         /* counting: only call wantpiobuf_intr if first user */
943                         if (was_empty)
944                                 hfi1_sc_wantpiobuf_intr(sc, 1);
945                 }
946                 write_sequnlock(&dev->iowait_lock);
947                 qp->s_flags &= ~RVT_S_BUSY;
948                 ret = -EBUSY;
949         }
950         spin_unlock_irqrestore(&qp->s_lock, flags);
951         return ret;
952 }
953
954 static void verbs_pio_complete(void *arg, int code)
955 {
956         struct rvt_qp *qp = (struct rvt_qp *)arg;
957         struct hfi1_qp_priv *priv = qp->priv;
958
959         if (iowait_pio_dec(&priv->s_iowait))
960                 iowait_drain_wakeup(&priv->s_iowait);
961 }
962
963 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
964                         u64 pbc)
965 {
966         struct hfi1_qp_priv *priv = qp->priv;
967         u32 hdrwords = qp->s_hdrwords;
968         struct rvt_sge_state *ss = ps->s_txreq->ss;
969         u32 len = ps->s_txreq->s_cur_size;
970         u32 dwords = (len + 3) >> 2;
971         u32 plen = hdrwords + dwords + 2; /* includes pbc */
972         struct hfi1_pportdata *ppd = ps->ppd;
973         u32 *hdr = (u32 *)&ps->s_txreq->phdr.hdr;
974         u8 sc5;
975         unsigned long flags = 0;
976         struct send_context *sc;
977         struct pio_buf *pbuf;
978         int wc_status = IB_WC_SUCCESS;
979         int ret = 0;
980         pio_release_cb cb = NULL;
981
982         /* only RC/UC use complete */
983         switch (qp->ibqp.qp_type) {
984         case IB_QPT_RC:
985         case IB_QPT_UC:
986                 cb = verbs_pio_complete;
987                 break;
988         default:
989                 break;
990         }
991
992         /* vl15 special case taken care of in ud.c */
993         sc5 = priv->s_sc;
994         sc = ps->s_txreq->psc;
995
996         if (likely(pbc == 0)) {
997                 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
998                 struct verbs_txreq *tx = ps->s_txreq;
999                 u8 opcode = get_opcode(&tx->phdr.hdr);
1000
1001                 /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
1002                 pbc |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
1003                 if (unlikely(hfi1_dbg_fault_opcode(qp, opcode, false)))
1004                         pbc = hfi1_fault_tx(qp, opcode, pbc);
1005                 pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen);
1006         }
1007         if (cb)
1008                 iowait_pio_inc(&priv->s_iowait);
1009         pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1010         if (unlikely(!pbuf)) {
1011                 if (cb)
1012                         verbs_pio_complete(qp, 0);
1013                 if (ppd->host_link_state != HLS_UP_ACTIVE) {
1014                         /*
1015                          * If we have filled the PIO buffers to capacity and are
1016                          * not in an active state this request is not going to
1017                          * go out to so just complete it with an error or else a
1018                          * ULP or the core may be stuck waiting.
1019                          */
1020                         hfi1_cdbg(
1021                                 PIO,
1022                                 "alloc failed. state not active, completing");
1023                         wc_status = IB_WC_GENERAL_ERR;
1024                         goto pio_bail;
1025                 } else {
1026                         /*
1027                          * This is a normal occurrence. The PIO buffs are full
1028                          * up but we are still happily sending, well we could be
1029                          * so lets continue to queue the request.
1030                          */
1031                         hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1032                         ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1033                         if (!ret)
1034                                 /* txreq not queued - free */
1035                                 goto bail;
1036                         /* tx consumed in wait */
1037                         return ret;
1038                 }
1039         }
1040
1041         if (len == 0) {
1042                 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1043         } else {
1044                 if (ss) {
1045                         seg_pio_copy_start(pbuf, pbc, hdr, hdrwords * 4);
1046                         while (len) {
1047                                 void *addr = ss->sge.vaddr;
1048                                 u32 slen = ss->sge.length;
1049
1050                                 if (slen > len)
1051                                         slen = len;
1052                                 rvt_update_sge(ss, slen, false);
1053                                 seg_pio_copy_mid(pbuf, addr, slen);
1054                                 len -= slen;
1055                         }
1056                         seg_pio_copy_end(pbuf);
1057                 }
1058         }
1059
1060         trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1061                                &ps->s_txreq->phdr.hdr);
1062
1063 pio_bail:
1064         if (qp->s_wqe) {
1065                 spin_lock_irqsave(&qp->s_lock, flags);
1066                 hfi1_send_complete(qp, qp->s_wqe, wc_status);
1067                 spin_unlock_irqrestore(&qp->s_lock, flags);
1068         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1069                 spin_lock_irqsave(&qp->s_lock, flags);
1070                 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1071                 spin_unlock_irqrestore(&qp->s_lock, flags);
1072         }
1073
1074         ret = 0;
1075
1076 bail:
1077         hfi1_put_txreq(ps->s_txreq);
1078         return ret;
1079 }
1080
1081 /*
1082  * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1083  * being an entry from the partition key table), return 0
1084  * otherwise. Use the matching criteria for egress partition keys
1085  * specified in the OPAv1 spec., section 9.1l.7.
1086  */
1087 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1088 {
1089         u16 mkey = pkey & PKEY_LOW_15_MASK;
1090         u16 mentry = ent & PKEY_LOW_15_MASK;
1091
1092         if (mkey == mentry) {
1093                 /*
1094                  * If pkey[15] is set (full partition member),
1095                  * is bit 15 in the corresponding table element
1096                  * clear (limited member)?
1097                  */
1098                 if (pkey & PKEY_MEMBER_MASK)
1099                         return !!(ent & PKEY_MEMBER_MASK);
1100                 return 1;
1101         }
1102         return 0;
1103 }
1104
1105 /**
1106  * egress_pkey_check - check P_KEY of a packet
1107  * @ppd:    Physical IB port data
1108  * @lrh: Local route header
1109  * @bth: Base transport header
1110  * @sc5:    SC for packet
1111  * @s_pkey_index: It will be used for look up optimization for kernel contexts
1112  * only. If it is negative value, then it means user contexts is calling this
1113  * function.
1114  *
1115  * It checks if hdr's pkey is valid.
1116  *
1117  * Return: 0 on success, otherwise, 1
1118  */
1119 int egress_pkey_check(struct hfi1_pportdata *ppd, __be16 *lrh, __be32 *bth,
1120                       u8 sc5, int8_t s_pkey_index)
1121 {
1122         struct hfi1_devdata *dd;
1123         int i;
1124         u16 pkey;
1125         int is_user_ctxt_mechanism = (s_pkey_index < 0);
1126
1127         if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1128                 return 0;
1129
1130         pkey = (u16)be32_to_cpu(bth[0]);
1131
1132         /* If SC15, pkey[0:14] must be 0x7fff */
1133         if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1134                 goto bad;
1135
1136         /* Is the pkey = 0x0, or 0x8000? */
1137         if ((pkey & PKEY_LOW_15_MASK) == 0)
1138                 goto bad;
1139
1140         /*
1141          * For the kernel contexts only, if a qp is passed into the function,
1142          * the most likely matching pkey has index qp->s_pkey_index
1143          */
1144         if (!is_user_ctxt_mechanism &&
1145             egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1146                 return 0;
1147         }
1148
1149         for (i = 0; i < MAX_PKEY_VALUES; i++) {
1150                 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1151                         return 0;
1152         }
1153 bad:
1154         /*
1155          * For the user-context mechanism, the P_KEY check would only happen
1156          * once per SDMA request, not once per packet.  Therefore, there's no
1157          * need to increment the counter for the user-context mechanism.
1158          */
1159         if (!is_user_ctxt_mechanism) {
1160                 incr_cntr64(&ppd->port_xmit_constraint_errors);
1161                 dd = ppd->dd;
1162                 if (!(dd->err_info_xmit_constraint.status &
1163                       OPA_EI_STATUS_SMASK)) {
1164                         u16 slid = be16_to_cpu(lrh[3]);
1165
1166                         dd->err_info_xmit_constraint.status |=
1167                                 OPA_EI_STATUS_SMASK;
1168                         dd->err_info_xmit_constraint.slid = slid;
1169                         dd->err_info_xmit_constraint.pkey = pkey;
1170                 }
1171         }
1172         return 1;
1173 }
1174
1175 /**
1176  * get_send_routine - choose an egress routine
1177  *
1178  * Choose an egress routine based on QP type
1179  * and size
1180  */
1181 static inline send_routine get_send_routine(struct rvt_qp *qp,
1182                                             struct verbs_txreq *tx)
1183 {
1184         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1185         struct hfi1_qp_priv *priv = qp->priv;
1186         struct ib_header *h = &tx->phdr.hdr;
1187
1188         if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1189                 return dd->process_pio_send;
1190         switch (qp->ibqp.qp_type) {
1191         case IB_QPT_SMI:
1192                 return dd->process_pio_send;
1193         case IB_QPT_GSI:
1194         case IB_QPT_UD:
1195                 break;
1196         case IB_QPT_UC:
1197         case IB_QPT_RC: {
1198                 u8 op = get_opcode(h);
1199
1200                 if (piothreshold &&
1201                     tx->s_cur_size <= min(piothreshold, qp->pmtu) &&
1202                     (BIT(op & OPMASK) & pio_opmask[op >> 5]) &&
1203                     iowait_sdma_pending(&priv->s_iowait) == 0 &&
1204                     !sdma_txreq_built(&tx->txreq))
1205                         return dd->process_pio_send;
1206                 break;
1207         }
1208         default:
1209                 break;
1210         }
1211         return dd->process_dma_send;
1212 }
1213
1214 /**
1215  * hfi1_verbs_send - send a packet
1216  * @qp: the QP to send on
1217  * @ps: the state of the packet to send
1218  *
1219  * Return zero if packet is sent or queued OK.
1220  * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1221  */
1222 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1223 {
1224         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1225         struct hfi1_qp_priv *priv = qp->priv;
1226         struct ib_other_headers *ohdr;
1227         struct ib_header *hdr;
1228         send_routine sr;
1229         int ret;
1230         u8 lnh;
1231
1232         hdr = &ps->s_txreq->phdr.hdr;
1233         /* locate the pkey within the headers */
1234         lnh = ib_get_lnh(hdr);
1235         if (lnh == HFI1_LRH_GRH)
1236                 ohdr = &hdr->u.l.oth;
1237         else
1238                 ohdr = &hdr->u.oth;
1239
1240         sr = get_send_routine(qp, ps->s_txreq);
1241         ret = egress_pkey_check(dd->pport,
1242                                 hdr->lrh,
1243                                 ohdr->bth,
1244                                 priv->s_sc,
1245                                 qp->s_pkey_index);
1246         if (unlikely(ret)) {
1247                 /*
1248                  * The value we are returning here does not get propagated to
1249                  * the verbs caller. Thus we need to complete the request with
1250                  * error otherwise the caller could be sitting waiting on the
1251                  * completion event. Only do this for PIO. SDMA has its own
1252                  * mechanism for handling the errors. So for SDMA we can just
1253                  * return.
1254                  */
1255                 if (sr == dd->process_pio_send) {
1256                         unsigned long flags;
1257
1258                         hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1259                                   __func__);
1260                         spin_lock_irqsave(&qp->s_lock, flags);
1261                         hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1262                         spin_unlock_irqrestore(&qp->s_lock, flags);
1263                 }
1264                 return -EINVAL;
1265         }
1266         if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1267                 return pio_wait(qp,
1268                                 ps->s_txreq->psc,
1269                                 ps,
1270                                 RVT_S_WAIT_PIO_DRAIN);
1271         return sr(qp, ps, 0);
1272 }
1273
1274 /**
1275  * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1276  * @dd: the device data structure
1277  */
1278 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1279 {
1280         struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1281         u32 ver = dd->dc8051_ver;
1282
1283         memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1284
1285         rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) |
1286                 ((u64)(dc8051_ver_min(ver)) << 16) |
1287                 (u64)dc8051_ver_patch(ver);
1288
1289         rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1290                         IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1291                         IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1292                         IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1293                         IB_DEVICE_MEM_MGT_EXTENSIONS |
1294                         IB_DEVICE_RDMA_NETDEV_OPA_VNIC;
1295         rdi->dparms.props.page_size_cap = PAGE_SIZE;
1296         rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1297         rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1298         rdi->dparms.props.hw_ver = dd->minrev;
1299         rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1300         rdi->dparms.props.max_mr_size = U64_MAX;
1301         rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1302         rdi->dparms.props.max_qp = hfi1_max_qps;
1303         rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
1304         rdi->dparms.props.max_sge = hfi1_max_sges;
1305         rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1306         rdi->dparms.props.max_cq = hfi1_max_cqs;
1307         rdi->dparms.props.max_ah = hfi1_max_ahs;
1308         rdi->dparms.props.max_cqe = hfi1_max_cqes;
1309         rdi->dparms.props.max_mr = rdi->lkey_table.max;
1310         rdi->dparms.props.max_fmr = rdi->lkey_table.max;
1311         rdi->dparms.props.max_map_per_fmr = 32767;
1312         rdi->dparms.props.max_pd = hfi1_max_pds;
1313         rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1314         rdi->dparms.props.max_qp_init_rd_atom = 255;
1315         rdi->dparms.props.max_srq = hfi1_max_srqs;
1316         rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1317         rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1318         rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1319         rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1320         rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1321         rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1322         rdi->dparms.props.max_total_mcast_qp_attach =
1323                                         rdi->dparms.props.max_mcast_qp_attach *
1324                                         rdi->dparms.props.max_mcast_grp;
1325 }
1326
1327 static inline u16 opa_speed_to_ib(u16 in)
1328 {
1329         u16 out = 0;
1330
1331         if (in & OPA_LINK_SPEED_25G)
1332                 out |= IB_SPEED_EDR;
1333         if (in & OPA_LINK_SPEED_12_5G)
1334                 out |= IB_SPEED_FDR;
1335
1336         return out;
1337 }
1338
1339 /*
1340  * Convert a single OPA link width (no multiple flags) to an IB value.
1341  * A zero OPA link width means link down, which means the IB width value
1342  * is a don't care.
1343  */
1344 static inline u16 opa_width_to_ib(u16 in)
1345 {
1346         switch (in) {
1347         case OPA_LINK_WIDTH_1X:
1348         /* map 2x and 3x to 1x as they don't exist in IB */
1349         case OPA_LINK_WIDTH_2X:
1350         case OPA_LINK_WIDTH_3X:
1351                 return IB_WIDTH_1X;
1352         default: /* link down or unknown, return our largest width */
1353         case OPA_LINK_WIDTH_4X:
1354                 return IB_WIDTH_4X;
1355         }
1356 }
1357
1358 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1359                       struct ib_port_attr *props)
1360 {
1361         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1362         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1363         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1364         u16 lid = ppd->lid;
1365
1366         /* props being zeroed by the caller, avoid zeroing it here */
1367         props->lid = lid ? lid : 0;
1368         props->lmc = ppd->lmc;
1369         /* OPA logical states match IB logical states */
1370         props->state = driver_lstate(ppd);
1371         props->phys_state = hfi1_ibphys_portstate(ppd);
1372         props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1373         props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1374         /* see rate_show() in ib core/sysfs.c */
1375         props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1376         props->max_vl_num = ppd->vls_supported;
1377
1378         /* Once we are a "first class" citizen and have added the OPA MTUs to
1379          * the core we can advertise the larger MTU enum to the ULPs, for now
1380          * advertise only 4K.
1381          *
1382          * Those applications which are either OPA aware or pass the MTU enum
1383          * from the Path Records to us will get the new 8k MTU.  Those that
1384          * attempt to process the MTU enum may fail in various ways.
1385          */
1386         props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1387                                       4096 : hfi1_max_mtu), IB_MTU_4096);
1388         props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1389                 mtu_to_enum(ppd->ibmtu, IB_MTU_2048);
1390
1391         return 0;
1392 }
1393
1394 static int modify_device(struct ib_device *device,
1395                          int device_modify_mask,
1396                          struct ib_device_modify *device_modify)
1397 {
1398         struct hfi1_devdata *dd = dd_from_ibdev(device);
1399         unsigned i;
1400         int ret;
1401
1402         if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1403                                    IB_DEVICE_MODIFY_NODE_DESC)) {
1404                 ret = -EOPNOTSUPP;
1405                 goto bail;
1406         }
1407
1408         if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1409                 memcpy(device->node_desc, device_modify->node_desc,
1410                        IB_DEVICE_NODE_DESC_MAX);
1411                 for (i = 0; i < dd->num_pports; i++) {
1412                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1413
1414                         hfi1_node_desc_chg(ibp);
1415                 }
1416         }
1417
1418         if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1419                 ib_hfi1_sys_image_guid =
1420                         cpu_to_be64(device_modify->sys_image_guid);
1421                 for (i = 0; i < dd->num_pports; i++) {
1422                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1423
1424                         hfi1_sys_guid_chg(ibp);
1425                 }
1426         }
1427
1428         ret = 0;
1429
1430 bail:
1431         return ret;
1432 }
1433
1434 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1435 {
1436         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1437         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1438         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1439         int ret;
1440
1441         set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1442                              OPA_LINKDOWN_REASON_UNKNOWN);
1443         ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1444         return ret;
1445 }
1446
1447 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1448                             int guid_index, __be64 *guid)
1449 {
1450         struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1451
1452         if (guid_index >= HFI1_GUIDS_PER_PORT)
1453                 return -EINVAL;
1454
1455         *guid = get_sguid(ibp, guid_index);
1456         return 0;
1457 }
1458
1459 /*
1460  * convert ah port,sl to sc
1461  */
1462 u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah)
1463 {
1464         struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah));
1465
1466         return ibp->sl_to_sc[rdma_ah_get_sl(ah)];
1467 }
1468
1469 static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr)
1470 {
1471         struct hfi1_ibport *ibp;
1472         struct hfi1_pportdata *ppd;
1473         struct hfi1_devdata *dd;
1474         u8 sc5;
1475
1476         /* test the mapping for validity */
1477         ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1478         ppd = ppd_from_ibp(ibp);
1479         sc5 = ibp->sl_to_sc[rdma_ah_get_sl(ah_attr)];
1480         dd = dd_from_ppd(ppd);
1481         if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1482                 return -EINVAL;
1483         return 0;
1484 }
1485
1486 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1487                                struct rdma_ah_attr *ah_attr,
1488                                struct rvt_ah *ah)
1489 {
1490         struct hfi1_ibport *ibp;
1491         struct hfi1_pportdata *ppd;
1492         struct hfi1_devdata *dd;
1493         u8 sc5;
1494
1495         /*
1496          * Do not trust reading anything from rvt_ah at this point as it is not
1497          * done being setup. We can however modify things which we need to set.
1498          */
1499
1500         ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1501         ppd = ppd_from_ibp(ibp);
1502         sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)];
1503         dd = dd_from_ppd(ppd);
1504         ah->vl = sc_to_vlt(dd, sc5);
1505         if (ah->vl < num_vls || ah->vl == 15)
1506                 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1507 }
1508
1509 struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid)
1510 {
1511         struct rdma_ah_attr attr;
1512         struct ib_ah *ah = ERR_PTR(-EINVAL);
1513         struct rvt_qp *qp0;
1514         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1515         struct hfi1_devdata *dd = dd_from_ppd(ppd);
1516         u8 port_num = ppd->port;
1517
1518         memset(&attr, 0, sizeof(attr));
1519         attr.type = rdma_ah_find_type(&dd->verbs_dev.rdi.ibdev, port_num);
1520         rdma_ah_set_dlid(&attr, dlid);
1521         rdma_ah_set_port_num(&attr, ppd_from_ibp(ibp)->port);
1522         rcu_read_lock();
1523         qp0 = rcu_dereference(ibp->rvp.qp[0]);
1524         if (qp0)
1525                 ah = rdma_create_ah(qp0->ibqp.pd, &attr);
1526         rcu_read_unlock();
1527         return ah;
1528 }
1529
1530 /**
1531  * hfi1_get_npkeys - return the size of the PKEY table for context 0
1532  * @dd: the hfi1_ib device
1533  */
1534 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1535 {
1536         return ARRAY_SIZE(dd->pport[0].pkeys);
1537 }
1538
1539 static void init_ibport(struct hfi1_pportdata *ppd)
1540 {
1541         struct hfi1_ibport *ibp = &ppd->ibport_data;
1542         size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1543         int i;
1544
1545         for (i = 0; i < sz; i++) {
1546                 ibp->sl_to_sc[i] = i;
1547                 ibp->sc_to_sl[i] = i;
1548         }
1549
1550         spin_lock_init(&ibp->rvp.lock);
1551         /* Set the prefix to the default value (see ch. 4.1.1) */
1552         ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1553         ibp->rvp.sm_lid = 0;
1554         /* Below should only set bits defined in OPA PortInfo.CapabilityMask */
1555         ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1556                 IB_PORT_CAP_MASK_NOTICE_SUP;
1557         ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1558         ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1559         ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1560         ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1561         ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1562
1563         RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1564         RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1565 }
1566
1567 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str,
1568                                 size_t str_len)
1569 {
1570         struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1571         struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1572         u32 ver = dd_from_dev(dev)->dc8051_ver;
1573
1574         snprintf(str, str_len, "%u.%u.%u", dc8051_ver_maj(ver),
1575                  dc8051_ver_min(ver), dc8051_ver_patch(ver));
1576 }
1577
1578 static const char * const driver_cntr_names[] = {
1579         /* must be element 0*/
1580         "DRIVER_KernIntr",
1581         "DRIVER_ErrorIntr",
1582         "DRIVER_Tx_Errs",
1583         "DRIVER_Rcv_Errs",
1584         "DRIVER_HW_Errs",
1585         "DRIVER_NoPIOBufs",
1586         "DRIVER_CtxtsOpen",
1587         "DRIVER_RcvLen_Errs",
1588         "DRIVER_EgrBufFull",
1589         "DRIVER_EgrHdrFull"
1590 };
1591
1592 static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */
1593 static const char **dev_cntr_names;
1594 static const char **port_cntr_names;
1595 static int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names);
1596 static int num_dev_cntrs;
1597 static int num_port_cntrs;
1598 static int cntr_names_initialized;
1599
1600 /*
1601  * Convert a list of names separated by '\n' into an array of NULL terminated
1602  * strings. Optionally some entries can be reserved in the array to hold extra
1603  * external strings.
1604  */
1605 static int init_cntr_names(const char *names_in,
1606                            const size_t names_len,
1607                            int num_extra_names,
1608                            int *num_cntrs,
1609                            const char ***cntr_names)
1610 {
1611         char *names_out, *p, **q;
1612         int i, n;
1613
1614         n = 0;
1615         for (i = 0; i < names_len; i++)
1616                 if (names_in[i] == '\n')
1617                         n++;
1618
1619         names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len,
1620                             GFP_KERNEL);
1621         if (!names_out) {
1622                 *num_cntrs = 0;
1623                 *cntr_names = NULL;
1624                 return -ENOMEM;
1625         }
1626
1627         p = names_out + (n + num_extra_names) * sizeof(char *);
1628         memcpy(p, names_in, names_len);
1629
1630         q = (char **)names_out;
1631         for (i = 0; i < n; i++) {
1632                 q[i] = p;
1633                 p = strchr(p, '\n');
1634                 *p++ = '\0';
1635         }
1636
1637         *num_cntrs = n;
1638         *cntr_names = (const char **)names_out;
1639         return 0;
1640 }
1641
1642 static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev,
1643                                             u8 port_num)
1644 {
1645         int i, err;
1646
1647         mutex_lock(&cntr_names_lock);
1648         if (!cntr_names_initialized) {
1649                 struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1650
1651                 err = init_cntr_names(dd->cntrnames,
1652                                       dd->cntrnameslen,
1653                                       num_driver_cntrs,
1654                                       &num_dev_cntrs,
1655                                       &dev_cntr_names);
1656                 if (err) {
1657                         mutex_unlock(&cntr_names_lock);
1658                         return NULL;
1659                 }
1660
1661                 for (i = 0; i < num_driver_cntrs; i++)
1662                         dev_cntr_names[num_dev_cntrs + i] =
1663                                 driver_cntr_names[i];
1664
1665                 err = init_cntr_names(dd->portcntrnames,
1666                                       dd->portcntrnameslen,
1667                                       0,
1668                                       &num_port_cntrs,
1669                                       &port_cntr_names);
1670                 if (err) {
1671                         kfree(dev_cntr_names);
1672                         dev_cntr_names = NULL;
1673                         mutex_unlock(&cntr_names_lock);
1674                         return NULL;
1675                 }
1676                 cntr_names_initialized = 1;
1677         }
1678         mutex_unlock(&cntr_names_lock);
1679
1680         if (!port_num)
1681                 return rdma_alloc_hw_stats_struct(
1682                                 dev_cntr_names,
1683                                 num_dev_cntrs + num_driver_cntrs,
1684                                 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1685         else
1686                 return rdma_alloc_hw_stats_struct(
1687                                 port_cntr_names,
1688                                 num_port_cntrs,
1689                                 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1690 }
1691
1692 static u64 hfi1_sps_ints(void)
1693 {
1694         unsigned long flags;
1695         struct hfi1_devdata *dd;
1696         u64 sps_ints = 0;
1697
1698         spin_lock_irqsave(&hfi1_devs_lock, flags);
1699         list_for_each_entry(dd, &hfi1_dev_list, list) {
1700                 sps_ints += get_all_cpu_total(dd->int_counter);
1701         }
1702         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1703         return sps_ints;
1704 }
1705
1706 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats,
1707                         u8 port, int index)
1708 {
1709         u64 *values;
1710         int count;
1711
1712         if (!port) {
1713                 u64 *stats = (u64 *)&hfi1_stats;
1714                 int i;
1715
1716                 hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values);
1717                 values[num_dev_cntrs] = hfi1_sps_ints();
1718                 for (i = 1; i < num_driver_cntrs; i++)
1719                         values[num_dev_cntrs + i] = stats[i];
1720                 count = num_dev_cntrs + num_driver_cntrs;
1721         } else {
1722                 struct hfi1_ibport *ibp = to_iport(ibdev, port);
1723
1724                 hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values);
1725                 count = num_port_cntrs;
1726         }
1727
1728         memcpy(stats->value, values, count * sizeof(u64));
1729         return count;
1730 }
1731
1732 /**
1733  * hfi1_register_ib_device - register our device with the infiniband core
1734  * @dd: the device data structure
1735  * Return 0 if successful, errno if unsuccessful.
1736  */
1737 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1738 {
1739         struct hfi1_ibdev *dev = &dd->verbs_dev;
1740         struct ib_device *ibdev = &dev->rdi.ibdev;
1741         struct hfi1_pportdata *ppd = dd->pport;
1742         struct hfi1_ibport *ibp = &ppd->ibport_data;
1743         unsigned i;
1744         int ret;
1745         size_t lcpysz = IB_DEVICE_NAME_MAX;
1746
1747         for (i = 0; i < dd->num_pports; i++)
1748                 init_ibport(ppd + i);
1749
1750         /* Only need to initialize non-zero fields. */
1751
1752         setup_timer(&dev->mem_timer, mem_timer, (unsigned long)dev);
1753
1754         seqlock_init(&dev->iowait_lock);
1755         seqlock_init(&dev->txwait_lock);
1756         INIT_LIST_HEAD(&dev->txwait);
1757         INIT_LIST_HEAD(&dev->memwait);
1758
1759         ret = verbs_txreq_init(dev);
1760         if (ret)
1761                 goto err_verbs_txreq;
1762
1763         /* Use first-port GUID as node guid */
1764         ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX);
1765
1766         /*
1767          * The system image GUID is supposed to be the same for all
1768          * HFIs in a single system but since there can be other
1769          * device types in the system, we can't be sure this is unique.
1770          */
1771         if (!ib_hfi1_sys_image_guid)
1772                 ib_hfi1_sys_image_guid = ibdev->node_guid;
1773         lcpysz = strlcpy(ibdev->name, class_name(), lcpysz);
1774         strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz);
1775         ibdev->owner = THIS_MODULE;
1776         ibdev->phys_port_cnt = dd->num_pports;
1777         ibdev->dev.parent = &dd->pcidev->dev;
1778         ibdev->modify_device = modify_device;
1779         ibdev->alloc_hw_stats = alloc_hw_stats;
1780         ibdev->get_hw_stats = get_hw_stats;
1781         ibdev->alloc_rdma_netdev = hfi1_vnic_alloc_rn;
1782
1783         /* keep process mad in the driver */
1784         ibdev->process_mad = hfi1_process_mad;
1785         ibdev->get_dev_fw_str = hfi1_get_dev_fw_str;
1786
1787         strncpy(ibdev->node_desc, init_utsname()->nodename,
1788                 sizeof(ibdev->node_desc));
1789
1790         /*
1791          * Fill in rvt info object.
1792          */
1793         dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files;
1794         dd->verbs_dev.rdi.driver_f.get_card_name = get_card_name;
1795         dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1796         dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1797         dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1798         dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1799         dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1800         dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1801         dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1802         /*
1803          * Fill in rvt info device attributes.
1804          */
1805         hfi1_fill_device_attr(dd);
1806
1807         /* queue pair */
1808         dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1809         dd->verbs_dev.rdi.dparms.qpn_start = 0;
1810         dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1811         dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1812         dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1813         dd->verbs_dev.rdi.dparms.qpn_res_end =
1814         dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1815         dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1816         dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1817         dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1818         dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1819         dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA;
1820         dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1821
1822         dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1823         dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1824         dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1825         dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1826         dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt;
1827         dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1828         dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1829         dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1830         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1831         dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1832         dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1833         dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1834         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1835         dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1836         dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1837         dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1838         dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1839         dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc;
1840         dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe;
1841
1842         /* completeion queue */
1843         snprintf(dd->verbs_dev.rdi.dparms.cq_name,
1844                  sizeof(dd->verbs_dev.rdi.dparms.cq_name),
1845                  "hfi1_cq%d", dd->unit);
1846         dd->verbs_dev.rdi.dparms.node = dd->node;
1847
1848         /* misc settings */
1849         dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1850         dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1851         dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1852         dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1853
1854         /* post send table */
1855         dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1856
1857         ppd = dd->pport;
1858         for (i = 0; i < dd->num_pports; i++, ppd++)
1859                 rvt_init_port(&dd->verbs_dev.rdi,
1860                               &ppd->ibport_data.rvp,
1861                               i,
1862                               ppd->pkeys);
1863
1864         ret = rvt_register_device(&dd->verbs_dev.rdi);
1865         if (ret)
1866                 goto err_verbs_txreq;
1867
1868         ret = hfi1_verbs_register_sysfs(dd);
1869         if (ret)
1870                 goto err_class;
1871
1872         return ret;
1873
1874 err_class:
1875         rvt_unregister_device(&dd->verbs_dev.rdi);
1876 err_verbs_txreq:
1877         verbs_txreq_exit(dev);
1878         dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1879         return ret;
1880 }
1881
1882 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1883 {
1884         struct hfi1_ibdev *dev = &dd->verbs_dev;
1885
1886         hfi1_verbs_unregister_sysfs(dd);
1887
1888         rvt_unregister_device(&dd->verbs_dev.rdi);
1889
1890         if (!list_empty(&dev->txwait))
1891                 dd_dev_err(dd, "txwait list not empty!\n");
1892         if (!list_empty(&dev->memwait))
1893                 dd_dev_err(dd, "memwait list not empty!\n");
1894
1895         del_timer_sync(&dev->mem_timer);
1896         verbs_txreq_exit(dev);
1897
1898         mutex_lock(&cntr_names_lock);
1899         kfree(dev_cntr_names);
1900         kfree(port_cntr_names);
1901         dev_cntr_names = NULL;
1902         port_cntr_names = NULL;
1903         cntr_names_initialized = 0;
1904         mutex_unlock(&cntr_names_lock);
1905 }
1906
1907 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1908 {
1909         struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1910         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1911         struct ib_header *hdr = packet->hdr;
1912         struct rvt_qp *qp = packet->qp;
1913         u32 lqpn, rqpn = 0;
1914         u16 rlid = 0;
1915         u8 sl, sc5, svc_type;
1916
1917         switch (packet->qp->ibqp.qp_type) {
1918         case IB_QPT_UC:
1919                 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1920                 rqpn = qp->remote_qpn;
1921                 svc_type = IB_CC_SVCTYPE_UC;
1922                 break;
1923         case IB_QPT_RC:
1924                 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1925                 rqpn = qp->remote_qpn;
1926                 svc_type = IB_CC_SVCTYPE_RC;
1927                 break;
1928         case IB_QPT_SMI:
1929         case IB_QPT_GSI:
1930         case IB_QPT_UD:
1931                 svc_type = IB_CC_SVCTYPE_UD;
1932                 break;
1933         default:
1934                 ibp->rvp.n_pkt_drops++;
1935                 return;
1936         }
1937
1938         sc5 = hfi1_9B_get_sc5(hdr, packet->rhf);
1939         sl = ibp->sc_to_sl[sc5];
1940         lqpn = qp->ibqp.qp_num;
1941
1942         process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
1943 }