]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/infiniband/ulp/iser/iser_verbs.c
IB/core: Change ib_create_cq to use struct ib_cq_init_attr
[karo-tx-linux.git] / drivers / infiniband / ulp / iser / iser_verbs.c
1 /*
2  * Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved.
3  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
4  * Copyright (c) 2013-2014 Mellanox Technologies. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/slab.h>
37 #include <linux/delay.h>
38
39 #include "iscsi_iser.h"
40
41 #define ISCSI_ISER_MAX_CONN     8
42 #define ISER_MAX_RX_LEN         (ISER_QP_MAX_RECV_DTOS * ISCSI_ISER_MAX_CONN)
43 #define ISER_MAX_TX_LEN         (ISER_QP_MAX_REQ_DTOS  * ISCSI_ISER_MAX_CONN)
44 #define ISER_MAX_CQ_LEN         (ISER_MAX_RX_LEN + ISER_MAX_TX_LEN + \
45                                  ISCSI_ISER_MAX_CONN)
46
47 static int iser_cq_poll_limit = 512;
48
49 static void iser_cq_tasklet_fn(unsigned long data);
50 static void iser_cq_callback(struct ib_cq *cq, void *cq_context);
51
52 static void iser_cq_event_callback(struct ib_event *cause, void *context)
53 {
54         iser_err("cq event %s (%d)\n",
55                  ib_event_msg(cause->event), cause->event);
56 }
57
58 static void iser_qp_event_callback(struct ib_event *cause, void *context)
59 {
60         iser_err("qp event %s (%d)\n",
61                  ib_event_msg(cause->event), cause->event);
62 }
63
64 static void iser_event_handler(struct ib_event_handler *handler,
65                                 struct ib_event *event)
66 {
67         iser_err("async event %s (%d) on device %s port %d\n",
68                  ib_event_msg(event->event), event->event,
69                  event->device->name, event->element.port_num);
70 }
71
72 /**
73  * iser_create_device_ib_res - creates Protection Domain (PD), Completion
74  * Queue (CQ), DMA Memory Region (DMA MR) with the device associated with
75  * the adapator.
76  *
77  * returns 0 on success, -1 on failure
78  */
79 static int iser_create_device_ib_res(struct iser_device *device)
80 {
81         struct ib_device_attr *dev_attr = &device->dev_attr;
82         int ret, i, max_cqe;
83
84         ret = ib_query_device(device->ib_device, dev_attr);
85         if (ret) {
86                 pr_warn("Query device failed for %s\n", device->ib_device->name);
87                 return ret;
88         }
89
90         /* Assign function handles  - based on FMR support */
91         if (device->ib_device->alloc_fmr && device->ib_device->dealloc_fmr &&
92             device->ib_device->map_phys_fmr && device->ib_device->unmap_fmr) {
93                 iser_info("FMR supported, using FMR for registration\n");
94                 device->iser_alloc_rdma_reg_res = iser_create_fmr_pool;
95                 device->iser_free_rdma_reg_res = iser_free_fmr_pool;
96                 device->iser_reg_rdma_mem = iser_reg_rdma_mem_fmr;
97                 device->iser_unreg_rdma_mem = iser_unreg_mem_fmr;
98         } else
99         if (dev_attr->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) {
100                 iser_info("FastReg supported, using FastReg for registration\n");
101                 device->iser_alloc_rdma_reg_res = iser_create_fastreg_pool;
102                 device->iser_free_rdma_reg_res = iser_free_fastreg_pool;
103                 device->iser_reg_rdma_mem = iser_reg_rdma_mem_fastreg;
104                 device->iser_unreg_rdma_mem = iser_unreg_mem_fastreg;
105         } else {
106                 iser_err("IB device does not support FMRs nor FastRegs, can't register memory\n");
107                 return -1;
108         }
109
110         device->comps_used = min_t(int, num_online_cpus(),
111                                  device->ib_device->num_comp_vectors);
112
113         device->comps = kcalloc(device->comps_used, sizeof(*device->comps),
114                                 GFP_KERNEL);
115         if (!device->comps)
116                 goto comps_err;
117
118         max_cqe = min(ISER_MAX_CQ_LEN, dev_attr->max_cqe);
119
120         iser_info("using %d CQs, device %s supports %d vectors max_cqe %d\n",
121                   device->comps_used, device->ib_device->name,
122                   device->ib_device->num_comp_vectors, max_cqe);
123
124         device->pd = ib_alloc_pd(device->ib_device);
125         if (IS_ERR(device->pd))
126                 goto pd_err;
127
128         for (i = 0; i < device->comps_used; i++) {
129                 struct ib_cq_init_attr cq_attr = {};
130                 struct iser_comp *comp = &device->comps[i];
131
132                 comp->device = device;
133                 cq_attr.cqe = max_cqe;
134                 cq_attr.comp_vector = i;
135                 comp->cq = ib_create_cq(device->ib_device,
136                                         iser_cq_callback,
137                                         iser_cq_event_callback,
138                                         (void *)comp,
139                                         &cq_attr);
140                 if (IS_ERR(comp->cq)) {
141                         comp->cq = NULL;
142                         goto cq_err;
143                 }
144
145                 if (ib_req_notify_cq(comp->cq, IB_CQ_NEXT_COMP))
146                         goto cq_err;
147
148                 tasklet_init(&comp->tasklet, iser_cq_tasklet_fn,
149                              (unsigned long)comp);
150         }
151
152         device->mr = ib_get_dma_mr(device->pd, IB_ACCESS_LOCAL_WRITE |
153                                    IB_ACCESS_REMOTE_WRITE |
154                                    IB_ACCESS_REMOTE_READ);
155         if (IS_ERR(device->mr))
156                 goto dma_mr_err;
157
158         INIT_IB_EVENT_HANDLER(&device->event_handler, device->ib_device,
159                                 iser_event_handler);
160         if (ib_register_event_handler(&device->event_handler))
161                 goto handler_err;
162
163         return 0;
164
165 handler_err:
166         ib_dereg_mr(device->mr);
167 dma_mr_err:
168         for (i = 0; i < device->comps_used; i++)
169                 tasklet_kill(&device->comps[i].tasklet);
170 cq_err:
171         for (i = 0; i < device->comps_used; i++) {
172                 struct iser_comp *comp = &device->comps[i];
173
174                 if (comp->cq)
175                         ib_destroy_cq(comp->cq);
176         }
177         ib_dealloc_pd(device->pd);
178 pd_err:
179         kfree(device->comps);
180 comps_err:
181         iser_err("failed to allocate an IB resource\n");
182         return -1;
183 }
184
185 /**
186  * iser_free_device_ib_res - destroy/dealloc/dereg the DMA MR,
187  * CQ and PD created with the device associated with the adapator.
188  */
189 static void iser_free_device_ib_res(struct iser_device *device)
190 {
191         int i;
192         BUG_ON(device->mr == NULL);
193
194         for (i = 0; i < device->comps_used; i++) {
195                 struct iser_comp *comp = &device->comps[i];
196
197                 tasklet_kill(&comp->tasklet);
198                 ib_destroy_cq(comp->cq);
199                 comp->cq = NULL;
200         }
201
202         (void)ib_unregister_event_handler(&device->event_handler);
203         (void)ib_dereg_mr(device->mr);
204         (void)ib_dealloc_pd(device->pd);
205
206         kfree(device->comps);
207         device->comps = NULL;
208
209         device->mr = NULL;
210         device->pd = NULL;
211 }
212
213 /**
214  * iser_create_fmr_pool - Creates FMR pool and page_vector
215  *
216  * returns 0 on success, or errno code on failure
217  */
218 int iser_create_fmr_pool(struct ib_conn *ib_conn, unsigned cmds_max)
219 {
220         struct iser_device *device = ib_conn->device;
221         struct ib_fmr_pool_param params;
222         int ret = -ENOMEM;
223
224         ib_conn->fmr.page_vec = kmalloc(sizeof(*ib_conn->fmr.page_vec) +
225                                         (sizeof(u64)*(ISCSI_ISER_SG_TABLESIZE + 1)),
226                                         GFP_KERNEL);
227         if (!ib_conn->fmr.page_vec)
228                 return ret;
229
230         ib_conn->fmr.page_vec->pages = (u64 *)(ib_conn->fmr.page_vec + 1);
231
232         params.page_shift        = SHIFT_4K;
233         /* when the first/last SG element are not start/end *
234          * page aligned, the map whould be of N+1 pages     */
235         params.max_pages_per_fmr = ISCSI_ISER_SG_TABLESIZE + 1;
236         /* make the pool size twice the max number of SCSI commands *
237          * the ML is expected to queue, watermark for unmap at 50%  */
238         params.pool_size         = cmds_max * 2;
239         params.dirty_watermark   = cmds_max;
240         params.cache             = 0;
241         params.flush_function    = NULL;
242         params.access            = (IB_ACCESS_LOCAL_WRITE  |
243                                     IB_ACCESS_REMOTE_WRITE |
244                                     IB_ACCESS_REMOTE_READ);
245
246         ib_conn->fmr.pool = ib_create_fmr_pool(device->pd, &params);
247         if (!IS_ERR(ib_conn->fmr.pool))
248                 return 0;
249
250         /* no FMR => no need for page_vec */
251         kfree(ib_conn->fmr.page_vec);
252         ib_conn->fmr.page_vec = NULL;
253
254         ret = PTR_ERR(ib_conn->fmr.pool);
255         ib_conn->fmr.pool = NULL;
256         if (ret != -ENOSYS) {
257                 iser_err("FMR allocation failed, err %d\n", ret);
258                 return ret;
259         } else {
260                 iser_warn("FMRs are not supported, using unaligned mode\n");
261                 return 0;
262         }
263 }
264
265 /**
266  * iser_free_fmr_pool - releases the FMR pool and page vec
267  */
268 void iser_free_fmr_pool(struct ib_conn *ib_conn)
269 {
270         iser_info("freeing conn %p fmr pool %p\n",
271                   ib_conn, ib_conn->fmr.pool);
272
273         if (ib_conn->fmr.pool != NULL)
274                 ib_destroy_fmr_pool(ib_conn->fmr.pool);
275
276         ib_conn->fmr.pool = NULL;
277
278         kfree(ib_conn->fmr.page_vec);
279         ib_conn->fmr.page_vec = NULL;
280 }
281
282 static int
283 iser_alloc_pi_ctx(struct ib_device *ib_device, struct ib_pd *pd,
284                   struct fast_reg_descriptor *desc)
285 {
286         struct iser_pi_context *pi_ctx = NULL;
287         struct ib_mr_init_attr mr_init_attr = {.max_reg_descriptors = 2,
288                                                .flags = IB_MR_SIGNATURE_EN};
289         int ret = 0;
290
291         desc->pi_ctx = kzalloc(sizeof(*desc->pi_ctx), GFP_KERNEL);
292         if (!desc->pi_ctx)
293                 return -ENOMEM;
294
295         pi_ctx = desc->pi_ctx;
296
297         pi_ctx->prot_frpl = ib_alloc_fast_reg_page_list(ib_device,
298                                             ISCSI_ISER_SG_TABLESIZE);
299         if (IS_ERR(pi_ctx->prot_frpl)) {
300                 ret = PTR_ERR(pi_ctx->prot_frpl);
301                 goto prot_frpl_failure;
302         }
303
304         pi_ctx->prot_mr = ib_alloc_fast_reg_mr(pd,
305                                         ISCSI_ISER_SG_TABLESIZE + 1);
306         if (IS_ERR(pi_ctx->prot_mr)) {
307                 ret = PTR_ERR(pi_ctx->prot_mr);
308                 goto prot_mr_failure;
309         }
310         desc->reg_indicators |= ISER_PROT_KEY_VALID;
311
312         pi_ctx->sig_mr = ib_create_mr(pd, &mr_init_attr);
313         if (IS_ERR(pi_ctx->sig_mr)) {
314                 ret = PTR_ERR(pi_ctx->sig_mr);
315                 goto sig_mr_failure;
316         }
317         desc->reg_indicators |= ISER_SIG_KEY_VALID;
318         desc->reg_indicators &= ~ISER_FASTREG_PROTECTED;
319
320         return 0;
321
322 sig_mr_failure:
323         ib_dereg_mr(desc->pi_ctx->prot_mr);
324 prot_mr_failure:
325         ib_free_fast_reg_page_list(desc->pi_ctx->prot_frpl);
326 prot_frpl_failure:
327         kfree(desc->pi_ctx);
328
329         return ret;
330 }
331
332 static void
333 iser_free_pi_ctx(struct iser_pi_context *pi_ctx)
334 {
335         ib_free_fast_reg_page_list(pi_ctx->prot_frpl);
336         ib_dereg_mr(pi_ctx->prot_mr);
337         ib_destroy_mr(pi_ctx->sig_mr);
338         kfree(pi_ctx);
339 }
340
341 static int
342 iser_create_fastreg_desc(struct ib_device *ib_device, struct ib_pd *pd,
343                          bool pi_enable, struct fast_reg_descriptor *desc)
344 {
345         int ret;
346
347         desc->data_frpl = ib_alloc_fast_reg_page_list(ib_device,
348                                                       ISCSI_ISER_SG_TABLESIZE + 1);
349         if (IS_ERR(desc->data_frpl)) {
350                 ret = PTR_ERR(desc->data_frpl);
351                 iser_err("Failed to allocate ib_fast_reg_page_list err=%d\n",
352                          ret);
353                 return PTR_ERR(desc->data_frpl);
354         }
355
356         desc->data_mr = ib_alloc_fast_reg_mr(pd, ISCSI_ISER_SG_TABLESIZE + 1);
357         if (IS_ERR(desc->data_mr)) {
358                 ret = PTR_ERR(desc->data_mr);
359                 iser_err("Failed to allocate ib_fast_reg_mr err=%d\n", ret);
360                 goto fast_reg_mr_failure;
361         }
362         desc->reg_indicators |= ISER_DATA_KEY_VALID;
363
364         if (pi_enable) {
365                 ret = iser_alloc_pi_ctx(ib_device, pd, desc);
366                 if (ret)
367                         goto pi_ctx_alloc_failure;
368         }
369
370         return 0;
371 pi_ctx_alloc_failure:
372         ib_dereg_mr(desc->data_mr);
373 fast_reg_mr_failure:
374         ib_free_fast_reg_page_list(desc->data_frpl);
375
376         return ret;
377 }
378
379 /**
380  * iser_create_fastreg_pool - Creates pool of fast_reg descriptors
381  * for fast registration work requests.
382  * returns 0 on success, or errno code on failure
383  */
384 int iser_create_fastreg_pool(struct ib_conn *ib_conn, unsigned cmds_max)
385 {
386         struct iser_device *device = ib_conn->device;
387         struct fast_reg_descriptor *desc;
388         int i, ret;
389
390         INIT_LIST_HEAD(&ib_conn->fastreg.pool);
391         ib_conn->fastreg.pool_size = 0;
392         for (i = 0; i < cmds_max; i++) {
393                 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
394                 if (!desc) {
395                         iser_err("Failed to allocate a new fast_reg descriptor\n");
396                         ret = -ENOMEM;
397                         goto err;
398                 }
399
400                 ret = iser_create_fastreg_desc(device->ib_device, device->pd,
401                                                ib_conn->pi_support, desc);
402                 if (ret) {
403                         iser_err("Failed to create fastreg descriptor err=%d\n",
404                                  ret);
405                         kfree(desc);
406                         goto err;
407                 }
408
409                 list_add_tail(&desc->list, &ib_conn->fastreg.pool);
410                 ib_conn->fastreg.pool_size++;
411         }
412
413         return 0;
414
415 err:
416         iser_free_fastreg_pool(ib_conn);
417         return ret;
418 }
419
420 /**
421  * iser_free_fastreg_pool - releases the pool of fast_reg descriptors
422  */
423 void iser_free_fastreg_pool(struct ib_conn *ib_conn)
424 {
425         struct fast_reg_descriptor *desc, *tmp;
426         int i = 0;
427
428         if (list_empty(&ib_conn->fastreg.pool))
429                 return;
430
431         iser_info("freeing conn %p fr pool\n", ib_conn);
432
433         list_for_each_entry_safe(desc, tmp, &ib_conn->fastreg.pool, list) {
434                 list_del(&desc->list);
435                 ib_free_fast_reg_page_list(desc->data_frpl);
436                 ib_dereg_mr(desc->data_mr);
437                 if (desc->pi_ctx)
438                         iser_free_pi_ctx(desc->pi_ctx);
439                 kfree(desc);
440                 ++i;
441         }
442
443         if (i < ib_conn->fastreg.pool_size)
444                 iser_warn("pool still has %d regions registered\n",
445                           ib_conn->fastreg.pool_size - i);
446 }
447
448 /**
449  * iser_create_ib_conn_res - Queue-Pair (QP)
450  *
451  * returns 0 on success, -1 on failure
452  */
453 static int iser_create_ib_conn_res(struct ib_conn *ib_conn)
454 {
455         struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn,
456                                                    ib_conn);
457         struct iser_device      *device;
458         struct ib_device_attr *dev_attr;
459         struct ib_qp_init_attr  init_attr;
460         int                     ret = -ENOMEM;
461         int index, min_index = 0;
462
463         BUG_ON(ib_conn->device == NULL);
464
465         device = ib_conn->device;
466         dev_attr = &device->dev_attr;
467
468         memset(&init_attr, 0, sizeof init_attr);
469
470         mutex_lock(&ig.connlist_mutex);
471         /* select the CQ with the minimal number of usages */
472         for (index = 0; index < device->comps_used; index++) {
473                 if (device->comps[index].active_qps <
474                     device->comps[min_index].active_qps)
475                         min_index = index;
476         }
477         ib_conn->comp = &device->comps[min_index];
478         ib_conn->comp->active_qps++;
479         mutex_unlock(&ig.connlist_mutex);
480         iser_info("cq index %d used for ib_conn %p\n", min_index, ib_conn);
481
482         init_attr.event_handler = iser_qp_event_callback;
483         init_attr.qp_context    = (void *)ib_conn;
484         init_attr.send_cq       = ib_conn->comp->cq;
485         init_attr.recv_cq       = ib_conn->comp->cq;
486         init_attr.cap.max_recv_wr  = ISER_QP_MAX_RECV_DTOS;
487         init_attr.cap.max_send_sge = 2;
488         init_attr.cap.max_recv_sge = 1;
489         init_attr.sq_sig_type   = IB_SIGNAL_REQ_WR;
490         init_attr.qp_type       = IB_QPT_RC;
491         if (ib_conn->pi_support) {
492                 init_attr.cap.max_send_wr = ISER_QP_SIG_MAX_REQ_DTOS + 1;
493                 init_attr.create_flags |= IB_QP_CREATE_SIGNATURE_EN;
494                 iser_conn->max_cmds =
495                         ISER_GET_MAX_XMIT_CMDS(ISER_QP_SIG_MAX_REQ_DTOS);
496         } else {
497                 if (dev_attr->max_qp_wr > ISER_QP_MAX_REQ_DTOS) {
498                         init_attr.cap.max_send_wr  = ISER_QP_MAX_REQ_DTOS + 1;
499                         iser_conn->max_cmds =
500                                 ISER_GET_MAX_XMIT_CMDS(ISER_QP_MAX_REQ_DTOS);
501                 } else {
502                         init_attr.cap.max_send_wr = dev_attr->max_qp_wr;
503                         iser_conn->max_cmds =
504                                 ISER_GET_MAX_XMIT_CMDS(dev_attr->max_qp_wr);
505                         iser_dbg("device %s supports max_send_wr %d\n",
506                                  device->ib_device->name, dev_attr->max_qp_wr);
507                 }
508         }
509
510         ret = rdma_create_qp(ib_conn->cma_id, device->pd, &init_attr);
511         if (ret)
512                 goto out_err;
513
514         ib_conn->qp = ib_conn->cma_id->qp;
515         iser_info("setting conn %p cma_id %p qp %p\n",
516                   ib_conn, ib_conn->cma_id,
517                   ib_conn->cma_id->qp);
518         return ret;
519
520 out_err:
521         mutex_lock(&ig.connlist_mutex);
522         ib_conn->comp->active_qps--;
523         mutex_unlock(&ig.connlist_mutex);
524         iser_err("unable to alloc mem or create resource, err %d\n", ret);
525
526         return ret;
527 }
528
529 /**
530  * based on the resolved device node GUID see if there already allocated
531  * device for this device. If there's no such, create one.
532  */
533 static
534 struct iser_device *iser_device_find_by_ib_device(struct rdma_cm_id *cma_id)
535 {
536         struct iser_device *device;
537
538         mutex_lock(&ig.device_list_mutex);
539
540         list_for_each_entry(device, &ig.device_list, ig_list)
541                 /* find if there's a match using the node GUID */
542                 if (device->ib_device->node_guid == cma_id->device->node_guid)
543                         goto inc_refcnt;
544
545         device = kzalloc(sizeof *device, GFP_KERNEL);
546         if (device == NULL)
547                 goto out;
548
549         /* assign this device to the device */
550         device->ib_device = cma_id->device;
551         /* init the device and link it into ig device list */
552         if (iser_create_device_ib_res(device)) {
553                 kfree(device);
554                 device = NULL;
555                 goto out;
556         }
557         list_add(&device->ig_list, &ig.device_list);
558
559 inc_refcnt:
560         device->refcount++;
561 out:
562         mutex_unlock(&ig.device_list_mutex);
563         return device;
564 }
565
566 /* if there's no demand for this device, release it */
567 static void iser_device_try_release(struct iser_device *device)
568 {
569         mutex_lock(&ig.device_list_mutex);
570         device->refcount--;
571         iser_info("device %p refcount %d\n", device, device->refcount);
572         if (!device->refcount) {
573                 iser_free_device_ib_res(device);
574                 list_del(&device->ig_list);
575                 kfree(device);
576         }
577         mutex_unlock(&ig.device_list_mutex);
578 }
579
580 /**
581  * Called with state mutex held
582  **/
583 static int iser_conn_state_comp_exch(struct iser_conn *iser_conn,
584                                      enum iser_conn_state comp,
585                                      enum iser_conn_state exch)
586 {
587         int ret;
588
589         ret = (iser_conn->state == comp);
590         if (ret)
591                 iser_conn->state = exch;
592
593         return ret;
594 }
595
596 void iser_release_work(struct work_struct *work)
597 {
598         struct iser_conn *iser_conn;
599
600         iser_conn = container_of(work, struct iser_conn, release_work);
601
602         /* Wait for conn_stop to complete */
603         wait_for_completion(&iser_conn->stop_completion);
604         /* Wait for IB resouces cleanup to complete */
605         wait_for_completion(&iser_conn->ib_completion);
606
607         mutex_lock(&iser_conn->state_mutex);
608         iser_conn->state = ISER_CONN_DOWN;
609         mutex_unlock(&iser_conn->state_mutex);
610
611         iser_conn_release(iser_conn);
612 }
613
614 /**
615  * iser_free_ib_conn_res - release IB related resources
616  * @iser_conn: iser connection struct
617  * @destroy: indicator if we need to try to release the
618  *     iser device and memory regoins pool (only iscsi
619  *     shutdown and DEVICE_REMOVAL will use this).
620  *
621  * This routine is called with the iser state mutex held
622  * so the cm_id removal is out of here. It is Safe to
623  * be invoked multiple times.
624  */
625 static void iser_free_ib_conn_res(struct iser_conn *iser_conn,
626                                   bool destroy)
627 {
628         struct ib_conn *ib_conn = &iser_conn->ib_conn;
629         struct iser_device *device = ib_conn->device;
630
631         iser_info("freeing conn %p cma_id %p qp %p\n",
632                   iser_conn, ib_conn->cma_id, ib_conn->qp);
633
634         if (ib_conn->qp != NULL) {
635                 ib_conn->comp->active_qps--;
636                 rdma_destroy_qp(ib_conn->cma_id);
637                 ib_conn->qp = NULL;
638         }
639
640         if (destroy) {
641                 if (iser_conn->rx_descs)
642                         iser_free_rx_descriptors(iser_conn);
643
644                 if (device != NULL) {
645                         iser_device_try_release(device);
646                         ib_conn->device = NULL;
647                 }
648         }
649 }
650
651 /**
652  * Frees all conn objects and deallocs conn descriptor
653  */
654 void iser_conn_release(struct iser_conn *iser_conn)
655 {
656         struct ib_conn *ib_conn = &iser_conn->ib_conn;
657
658         mutex_lock(&ig.connlist_mutex);
659         list_del(&iser_conn->conn_list);
660         mutex_unlock(&ig.connlist_mutex);
661
662         mutex_lock(&iser_conn->state_mutex);
663         /* In case we endup here without ep_disconnect being invoked. */
664         if (iser_conn->state != ISER_CONN_DOWN) {
665                 iser_warn("iser conn %p state %d, expected state down.\n",
666                           iser_conn, iser_conn->state);
667                 iscsi_destroy_endpoint(iser_conn->ep);
668                 iser_conn->state = ISER_CONN_DOWN;
669         }
670         /*
671          * In case we never got to bind stage, we still need to
672          * release IB resources (which is safe to call more than once).
673          */
674         iser_free_ib_conn_res(iser_conn, true);
675         mutex_unlock(&iser_conn->state_mutex);
676
677         if (ib_conn->cma_id != NULL) {
678                 rdma_destroy_id(ib_conn->cma_id);
679                 ib_conn->cma_id = NULL;
680         }
681
682         kfree(iser_conn);
683 }
684
685 /**
686  * triggers start of the disconnect procedures and wait for them to be done
687  * Called with state mutex held
688  */
689 int iser_conn_terminate(struct iser_conn *iser_conn)
690 {
691         struct ib_conn *ib_conn = &iser_conn->ib_conn;
692         struct ib_send_wr *bad_wr;
693         int err = 0;
694
695         /* terminate the iser conn only if the conn state is UP */
696         if (!iser_conn_state_comp_exch(iser_conn, ISER_CONN_UP,
697                                        ISER_CONN_TERMINATING))
698                 return 0;
699
700         iser_info("iser_conn %p state %d\n", iser_conn, iser_conn->state);
701
702         /* suspend queuing of new iscsi commands */
703         if (iser_conn->iscsi_conn)
704                 iscsi_suspend_queue(iser_conn->iscsi_conn);
705
706         /*
707          * In case we didn't already clean up the cma_id (peer initiated
708          * a disconnection), we need to Cause the CMA to change the QP
709          * state to ERROR.
710          */
711         if (ib_conn->cma_id) {
712                 err = rdma_disconnect(ib_conn->cma_id);
713                 if (err)
714                         iser_err("Failed to disconnect, conn: 0x%p err %d\n",
715                                  iser_conn, err);
716
717                 /* post an indication that all flush errors were consumed */
718                 err = ib_post_send(ib_conn->qp, &ib_conn->beacon, &bad_wr);
719                 if (err) {
720                         iser_err("conn %p failed to post beacon", ib_conn);
721                         return 1;
722                 }
723
724                 wait_for_completion(&ib_conn->flush_comp);
725         }
726
727         return 1;
728 }
729
730 /**
731  * Called with state mutex held
732  **/
733 static void iser_connect_error(struct rdma_cm_id *cma_id)
734 {
735         struct iser_conn *iser_conn;
736
737         iser_conn = (struct iser_conn *)cma_id->context;
738         iser_conn->state = ISER_CONN_TERMINATING;
739 }
740
741 /**
742  * Called with state mutex held
743  **/
744 static void iser_addr_handler(struct rdma_cm_id *cma_id)
745 {
746         struct iser_device *device;
747         struct iser_conn   *iser_conn;
748         struct ib_conn   *ib_conn;
749         int    ret;
750
751         iser_conn = (struct iser_conn *)cma_id->context;
752         if (iser_conn->state != ISER_CONN_PENDING)
753                 /* bailout */
754                 return;
755
756         ib_conn = &iser_conn->ib_conn;
757         device = iser_device_find_by_ib_device(cma_id);
758         if (!device) {
759                 iser_err("device lookup/creation failed\n");
760                 iser_connect_error(cma_id);
761                 return;
762         }
763
764         ib_conn->device = device;
765
766         /* connection T10-PI support */
767         if (iser_pi_enable) {
768                 if (!(device->dev_attr.device_cap_flags &
769                       IB_DEVICE_SIGNATURE_HANDOVER)) {
770                         iser_warn("T10-PI requested but not supported on %s, "
771                                   "continue without T10-PI\n",
772                                   ib_conn->device->ib_device->name);
773                         ib_conn->pi_support = false;
774                 } else {
775                         ib_conn->pi_support = true;
776                 }
777         }
778
779         ret = rdma_resolve_route(cma_id, 1000);
780         if (ret) {
781                 iser_err("resolve route failed: %d\n", ret);
782                 iser_connect_error(cma_id);
783                 return;
784         }
785 }
786
787 /**
788  * Called with state mutex held
789  **/
790 static void iser_route_handler(struct rdma_cm_id *cma_id)
791 {
792         struct rdma_conn_param conn_param;
793         int    ret;
794         struct iser_cm_hdr req_hdr;
795         struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
796         struct ib_conn *ib_conn = &iser_conn->ib_conn;
797         struct iser_device *device = ib_conn->device;
798
799         if (iser_conn->state != ISER_CONN_PENDING)
800                 /* bailout */
801                 return;
802
803         ret = iser_create_ib_conn_res(ib_conn);
804         if (ret)
805                 goto failure;
806
807         memset(&conn_param, 0, sizeof conn_param);
808         conn_param.responder_resources = device->dev_attr.max_qp_rd_atom;
809         conn_param.initiator_depth     = 1;
810         conn_param.retry_count         = 7;
811         conn_param.rnr_retry_count     = 6;
812
813         memset(&req_hdr, 0, sizeof(req_hdr));
814         req_hdr.flags = (ISER_ZBVA_NOT_SUPPORTED |
815                         ISER_SEND_W_INV_NOT_SUPPORTED);
816         conn_param.private_data         = (void *)&req_hdr;
817         conn_param.private_data_len     = sizeof(struct iser_cm_hdr);
818
819         ret = rdma_connect(cma_id, &conn_param);
820         if (ret) {
821                 iser_err("failure connecting: %d\n", ret);
822                 goto failure;
823         }
824
825         return;
826 failure:
827         iser_connect_error(cma_id);
828 }
829
830 static void iser_connected_handler(struct rdma_cm_id *cma_id)
831 {
832         struct iser_conn *iser_conn;
833         struct ib_qp_attr attr;
834         struct ib_qp_init_attr init_attr;
835
836         iser_conn = (struct iser_conn *)cma_id->context;
837         if (iser_conn->state != ISER_CONN_PENDING)
838                 /* bailout */
839                 return;
840
841         (void)ib_query_qp(cma_id->qp, &attr, ~0, &init_attr);
842         iser_info("remote qpn:%x my qpn:%x\n", attr.dest_qp_num, cma_id->qp->qp_num);
843
844         iser_conn->state = ISER_CONN_UP;
845         complete(&iser_conn->up_completion);
846 }
847
848 static void iser_disconnected_handler(struct rdma_cm_id *cma_id)
849 {
850         struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
851
852         if (iser_conn_terminate(iser_conn)) {
853                 if (iser_conn->iscsi_conn)
854                         iscsi_conn_failure(iser_conn->iscsi_conn,
855                                            ISCSI_ERR_CONN_FAILED);
856                 else
857                         iser_err("iscsi_iser connection isn't bound\n");
858         }
859 }
860
861 static void iser_cleanup_handler(struct rdma_cm_id *cma_id,
862                                  bool destroy)
863 {
864         struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
865
866         /*
867          * We are not guaranteed that we visited disconnected_handler
868          * by now, call it here to be safe that we handle CM drep
869          * and flush errors.
870          */
871         iser_disconnected_handler(cma_id);
872         iser_free_ib_conn_res(iser_conn, destroy);
873         complete(&iser_conn->ib_completion);
874 };
875
876 static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event)
877 {
878         struct iser_conn *iser_conn;
879         int ret = 0;
880
881         iser_conn = (struct iser_conn *)cma_id->context;
882         iser_info("%s (%d): status %d conn %p id %p\n",
883                   rdma_event_msg(event->event), event->event,
884                   event->status, cma_id->context, cma_id);
885
886         mutex_lock(&iser_conn->state_mutex);
887         switch (event->event) {
888         case RDMA_CM_EVENT_ADDR_RESOLVED:
889                 iser_addr_handler(cma_id);
890                 break;
891         case RDMA_CM_EVENT_ROUTE_RESOLVED:
892                 iser_route_handler(cma_id);
893                 break;
894         case RDMA_CM_EVENT_ESTABLISHED:
895                 iser_connected_handler(cma_id);
896                 break;
897         case RDMA_CM_EVENT_ADDR_ERROR:
898         case RDMA_CM_EVENT_ROUTE_ERROR:
899         case RDMA_CM_EVENT_CONNECT_ERROR:
900         case RDMA_CM_EVENT_UNREACHABLE:
901         case RDMA_CM_EVENT_REJECTED:
902                 iser_connect_error(cma_id);
903                 break;
904         case RDMA_CM_EVENT_DISCONNECTED:
905         case RDMA_CM_EVENT_ADDR_CHANGE:
906         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
907                 iser_cleanup_handler(cma_id, false);
908                 break;
909         case RDMA_CM_EVENT_DEVICE_REMOVAL:
910                 /*
911                  * we *must* destroy the device as we cannot rely
912                  * on iscsid to be around to initiate error handling.
913                  * also if we are not in state DOWN implicitly destroy
914                  * the cma_id.
915                  */
916                 iser_cleanup_handler(cma_id, true);
917                 if (iser_conn->state != ISER_CONN_DOWN) {
918                         iser_conn->ib_conn.cma_id = NULL;
919                         ret = 1;
920                 }
921                 break;
922         default:
923                 iser_err("Unexpected RDMA CM event: %s (%d)\n",
924                          rdma_event_msg(event->event), event->event);
925                 break;
926         }
927         mutex_unlock(&iser_conn->state_mutex);
928
929         return ret;
930 }
931
932 void iser_conn_init(struct iser_conn *iser_conn)
933 {
934         iser_conn->state = ISER_CONN_INIT;
935         iser_conn->ib_conn.post_recv_buf_count = 0;
936         init_completion(&iser_conn->ib_conn.flush_comp);
937         init_completion(&iser_conn->stop_completion);
938         init_completion(&iser_conn->ib_completion);
939         init_completion(&iser_conn->up_completion);
940         INIT_LIST_HEAD(&iser_conn->conn_list);
941         spin_lock_init(&iser_conn->ib_conn.lock);
942         mutex_init(&iser_conn->state_mutex);
943 }
944
945  /**
946  * starts the process of connecting to the target
947  * sleeps until the connection is established or rejected
948  */
949 int iser_connect(struct iser_conn   *iser_conn,
950                  struct sockaddr    *src_addr,
951                  struct sockaddr    *dst_addr,
952                  int                 non_blocking)
953 {
954         struct ib_conn *ib_conn = &iser_conn->ib_conn;
955         int err = 0;
956
957         mutex_lock(&iser_conn->state_mutex);
958
959         sprintf(iser_conn->name, "%pISp", dst_addr);
960
961         iser_info("connecting to: %s\n", iser_conn->name);
962
963         /* the device is known only --after-- address resolution */
964         ib_conn->device = NULL;
965
966         iser_conn->state = ISER_CONN_PENDING;
967
968         ib_conn->beacon.wr_id = ISER_BEACON_WRID;
969         ib_conn->beacon.opcode = IB_WR_SEND;
970
971         ib_conn->cma_id = rdma_create_id(iser_cma_handler,
972                                          (void *)iser_conn,
973                                          RDMA_PS_TCP, IB_QPT_RC);
974         if (IS_ERR(ib_conn->cma_id)) {
975                 err = PTR_ERR(ib_conn->cma_id);
976                 iser_err("rdma_create_id failed: %d\n", err);
977                 goto id_failure;
978         }
979
980         err = rdma_resolve_addr(ib_conn->cma_id, src_addr, dst_addr, 1000);
981         if (err) {
982                 iser_err("rdma_resolve_addr failed: %d\n", err);
983                 goto addr_failure;
984         }
985
986         if (!non_blocking) {
987                 wait_for_completion_interruptible(&iser_conn->up_completion);
988
989                 if (iser_conn->state != ISER_CONN_UP) {
990                         err =  -EIO;
991                         goto connect_failure;
992                 }
993         }
994         mutex_unlock(&iser_conn->state_mutex);
995
996         mutex_lock(&ig.connlist_mutex);
997         list_add(&iser_conn->conn_list, &ig.connlist);
998         mutex_unlock(&ig.connlist_mutex);
999         return 0;
1000
1001 id_failure:
1002         ib_conn->cma_id = NULL;
1003 addr_failure:
1004         iser_conn->state = ISER_CONN_DOWN;
1005 connect_failure:
1006         mutex_unlock(&iser_conn->state_mutex);
1007         iser_conn_release(iser_conn);
1008         return err;
1009 }
1010
1011 int iser_post_recvl(struct iser_conn *iser_conn)
1012 {
1013         struct ib_recv_wr rx_wr, *rx_wr_failed;
1014         struct ib_conn *ib_conn = &iser_conn->ib_conn;
1015         struct ib_sge     sge;
1016         int ib_ret;
1017
1018         sge.addr   = iser_conn->login_resp_dma;
1019         sge.length = ISER_RX_LOGIN_SIZE;
1020         sge.lkey   = ib_conn->device->mr->lkey;
1021
1022         rx_wr.wr_id   = (uintptr_t)iser_conn->login_resp_buf;
1023         rx_wr.sg_list = &sge;
1024         rx_wr.num_sge = 1;
1025         rx_wr.next    = NULL;
1026
1027         ib_conn->post_recv_buf_count++;
1028         ib_ret  = ib_post_recv(ib_conn->qp, &rx_wr, &rx_wr_failed);
1029         if (ib_ret) {
1030                 iser_err("ib_post_recv failed ret=%d\n", ib_ret);
1031                 ib_conn->post_recv_buf_count--;
1032         }
1033         return ib_ret;
1034 }
1035
1036 int iser_post_recvm(struct iser_conn *iser_conn, int count)
1037 {
1038         struct ib_recv_wr *rx_wr, *rx_wr_failed;
1039         int i, ib_ret;
1040         struct ib_conn *ib_conn = &iser_conn->ib_conn;
1041         unsigned int my_rx_head = iser_conn->rx_desc_head;
1042         struct iser_rx_desc *rx_desc;
1043
1044         for (rx_wr = ib_conn->rx_wr, i = 0; i < count; i++, rx_wr++) {
1045                 rx_desc         = &iser_conn->rx_descs[my_rx_head];
1046                 rx_wr->wr_id    = (uintptr_t)rx_desc;
1047                 rx_wr->sg_list  = &rx_desc->rx_sg;
1048                 rx_wr->num_sge  = 1;
1049                 rx_wr->next     = rx_wr + 1;
1050                 my_rx_head = (my_rx_head + 1) & iser_conn->qp_max_recv_dtos_mask;
1051         }
1052
1053         rx_wr--;
1054         rx_wr->next = NULL; /* mark end of work requests list */
1055
1056         ib_conn->post_recv_buf_count += count;
1057         ib_ret  = ib_post_recv(ib_conn->qp, ib_conn->rx_wr, &rx_wr_failed);
1058         if (ib_ret) {
1059                 iser_err("ib_post_recv failed ret=%d\n", ib_ret);
1060                 ib_conn->post_recv_buf_count -= count;
1061         } else
1062                 iser_conn->rx_desc_head = my_rx_head;
1063         return ib_ret;
1064 }
1065
1066
1067 /**
1068  * iser_start_send - Initiate a Send DTO operation
1069  *
1070  * returns 0 on success, -1 on failure
1071  */
1072 int iser_post_send(struct ib_conn *ib_conn, struct iser_tx_desc *tx_desc,
1073                    bool signal)
1074 {
1075         int               ib_ret;
1076         struct ib_send_wr send_wr, *send_wr_failed;
1077
1078         ib_dma_sync_single_for_device(ib_conn->device->ib_device,
1079                                       tx_desc->dma_addr, ISER_HEADERS_LEN,
1080                                       DMA_TO_DEVICE);
1081
1082         send_wr.next       = NULL;
1083         send_wr.wr_id      = (uintptr_t)tx_desc;
1084         send_wr.sg_list    = tx_desc->tx_sg;
1085         send_wr.num_sge    = tx_desc->num_sge;
1086         send_wr.opcode     = IB_WR_SEND;
1087         send_wr.send_flags = signal ? IB_SEND_SIGNALED : 0;
1088
1089         ib_ret = ib_post_send(ib_conn->qp, &send_wr, &send_wr_failed);
1090         if (ib_ret)
1091                 iser_err("ib_post_send failed, ret:%d\n", ib_ret);
1092
1093         return ib_ret;
1094 }
1095
1096 /**
1097  * is_iser_tx_desc - Indicate if the completion wr_id
1098  *     is a TX descriptor or not.
1099  * @iser_conn: iser connection
1100  * @wr_id: completion WR identifier
1101  *
1102  * Since we cannot rely on wc opcode in FLUSH errors
1103  * we must work around it by checking if the wr_id address
1104  * falls in the iser connection rx_descs buffer. If so
1105  * it is an RX descriptor, otherwize it is a TX.
1106  */
1107 static inline bool
1108 is_iser_tx_desc(struct iser_conn *iser_conn, void *wr_id)
1109 {
1110         void *start = iser_conn->rx_descs;
1111         int len = iser_conn->num_rx_descs * sizeof(*iser_conn->rx_descs);
1112
1113         if (wr_id >= start && wr_id < start + len)
1114                 return false;
1115
1116         return true;
1117 }
1118
1119 /**
1120  * iser_handle_comp_error() - Handle error completion
1121  * @ib_conn:   connection RDMA resources
1122  * @wc:        work completion
1123  *
1124  * Notes: We may handle a FLUSH error completion and in this case
1125  *        we only cleanup in case TX type was DATAOUT. For non-FLUSH
1126  *        error completion we should also notify iscsi layer that
1127  *        connection is failed (in case we passed bind stage).
1128  */
1129 static void
1130 iser_handle_comp_error(struct ib_conn *ib_conn,
1131                        struct ib_wc *wc)
1132 {
1133         void *wr_id = (void *)(uintptr_t)wc->wr_id;
1134         struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn,
1135                                                    ib_conn);
1136
1137         if (wc->status != IB_WC_WR_FLUSH_ERR)
1138                 if (iser_conn->iscsi_conn)
1139                         iscsi_conn_failure(iser_conn->iscsi_conn,
1140                                            ISCSI_ERR_CONN_FAILED);
1141
1142         if (wc->wr_id == ISER_FASTREG_LI_WRID)
1143                 return;
1144
1145         if (is_iser_tx_desc(iser_conn, wr_id)) {
1146                 struct iser_tx_desc *desc = wr_id;
1147
1148                 if (desc->type == ISCSI_TX_DATAOUT)
1149                         kmem_cache_free(ig.desc_cache, desc);
1150         } else {
1151                 ib_conn->post_recv_buf_count--;
1152         }
1153 }
1154
1155 /**
1156  * iser_handle_wc - handle a single work completion
1157  * @wc: work completion
1158  *
1159  * Soft-IRQ context, work completion can be either
1160  * SEND or RECV, and can turn out successful or
1161  * with error (or flush error).
1162  */
1163 static void iser_handle_wc(struct ib_wc *wc)
1164 {
1165         struct ib_conn *ib_conn;
1166         struct iser_tx_desc *tx_desc;
1167         struct iser_rx_desc *rx_desc;
1168
1169         ib_conn = wc->qp->qp_context;
1170         if (likely(wc->status == IB_WC_SUCCESS)) {
1171                 if (wc->opcode == IB_WC_RECV) {
1172                         rx_desc = (struct iser_rx_desc *)(uintptr_t)wc->wr_id;
1173                         iser_rcv_completion(rx_desc, wc->byte_len,
1174                                             ib_conn);
1175                 } else
1176                 if (wc->opcode == IB_WC_SEND) {
1177                         tx_desc = (struct iser_tx_desc *)(uintptr_t)wc->wr_id;
1178                         iser_snd_completion(tx_desc, ib_conn);
1179                 } else {
1180                         iser_err("Unknown wc opcode %d\n", wc->opcode);
1181                 }
1182         } else {
1183                 if (wc->status != IB_WC_WR_FLUSH_ERR)
1184                         iser_err("%s (%d): wr id %llx vend_err %x\n",
1185                                  ib_wc_status_msg(wc->status), wc->status,
1186                                  wc->wr_id, wc->vendor_err);
1187                 else
1188                         iser_dbg("%s (%d): wr id %llx\n",
1189                                  ib_wc_status_msg(wc->status), wc->status,
1190                                  wc->wr_id);
1191
1192                 if (wc->wr_id == ISER_BEACON_WRID)
1193                         /* all flush errors were consumed */
1194                         complete(&ib_conn->flush_comp);
1195                 else
1196                         iser_handle_comp_error(ib_conn, wc);
1197         }
1198 }
1199
1200 /**
1201  * iser_cq_tasklet_fn - iSER completion polling loop
1202  * @data: iSER completion context
1203  *
1204  * Soft-IRQ context, polling connection CQ until
1205  * either CQ was empty or we exausted polling budget
1206  */
1207 static void iser_cq_tasklet_fn(unsigned long data)
1208 {
1209         struct iser_comp *comp = (struct iser_comp *)data;
1210         struct ib_cq *cq = comp->cq;
1211         struct ib_wc *const wcs = comp->wcs;
1212         int i, n, completed = 0;
1213
1214         while ((n = ib_poll_cq(cq, ARRAY_SIZE(comp->wcs), wcs)) > 0) {
1215                 for (i = 0; i < n; i++)
1216                         iser_handle_wc(&wcs[i]);
1217
1218                 completed += n;
1219                 if (completed >= iser_cq_poll_limit)
1220                         break;
1221         }
1222
1223         /*
1224          * It is assumed here that arming CQ only once its empty
1225          * would not cause interrupts to be missed.
1226          */
1227         ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1228
1229         iser_dbg("got %d completions\n", completed);
1230 }
1231
1232 static void iser_cq_callback(struct ib_cq *cq, void *cq_context)
1233 {
1234         struct iser_comp *comp = cq_context;
1235
1236         tasklet_schedule(&comp->tasklet);
1237 }
1238
1239 u8 iser_check_task_pi_status(struct iscsi_iser_task *iser_task,
1240                              enum iser_data_dir cmd_dir, sector_t *sector)
1241 {
1242         struct iser_mem_reg *reg = &iser_task->rdma_reg[cmd_dir];
1243         struct fast_reg_descriptor *desc = reg->mem_h;
1244         unsigned long sector_size = iser_task->sc->device->sector_size;
1245         struct ib_mr_status mr_status;
1246         int ret;
1247
1248         if (desc && desc->reg_indicators & ISER_FASTREG_PROTECTED) {
1249                 desc->reg_indicators &= ~ISER_FASTREG_PROTECTED;
1250                 ret = ib_check_mr_status(desc->pi_ctx->sig_mr,
1251                                          IB_MR_CHECK_SIG_STATUS, &mr_status);
1252                 if (ret) {
1253                         pr_err("ib_check_mr_status failed, ret %d\n", ret);
1254                         goto err;
1255                 }
1256
1257                 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
1258                         sector_t sector_off = mr_status.sig_err.sig_err_offset;
1259
1260                         do_div(sector_off, sector_size + 8);
1261                         *sector = scsi_get_lba(iser_task->sc) + sector_off;
1262
1263                         pr_err("PI error found type %d at sector %llx "
1264                                "expected %x vs actual %x\n",
1265                                mr_status.sig_err.err_type,
1266                                (unsigned long long)*sector,
1267                                mr_status.sig_err.expected,
1268                                mr_status.sig_err.actual);
1269
1270                         switch (mr_status.sig_err.err_type) {
1271                         case IB_SIG_BAD_GUARD:
1272                                 return 0x1;
1273                         case IB_SIG_BAD_REFTAG:
1274                                 return 0x3;
1275                         case IB_SIG_BAD_APPTAG:
1276                                 return 0x2;
1277                         }
1278                 }
1279         }
1280
1281         return 0;
1282 err:
1283         /* Not alot we can do here, return ambiguous guard error */
1284         return 0x1;
1285 }