]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/iommu/arm-smmu-v3.c
Merge tag 'kbuild-uapi-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/masahi...
[karo-tx-linux.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/acpi.h>
24 #include <linux/acpi_iort.h>
25 #include <linux/delay.h>
26 #include <linux/dma-iommu.h>
27 #include <linux/err.h>
28 #include <linux/interrupt.h>
29 #include <linux/iommu.h>
30 #include <linux/iopoll.h>
31 #include <linux/module.h>
32 #include <linux/msi.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_iommu.h>
36 #include <linux/of_platform.h>
37 #include <linux/pci.h>
38 #include <linux/platform_device.h>
39
40 #include <linux/amba/bus.h>
41
42 #include "io-pgtable.h"
43
44 /* MMIO registers */
45 #define ARM_SMMU_IDR0                   0x0
46 #define IDR0_ST_LVL_SHIFT               27
47 #define IDR0_ST_LVL_MASK                0x3
48 #define IDR0_ST_LVL_2LVL                (1 << IDR0_ST_LVL_SHIFT)
49 #define IDR0_STALL_MODEL_SHIFT          24
50 #define IDR0_STALL_MODEL_MASK           0x3
51 #define IDR0_STALL_MODEL_STALL          (0 << IDR0_STALL_MODEL_SHIFT)
52 #define IDR0_STALL_MODEL_FORCE          (2 << IDR0_STALL_MODEL_SHIFT)
53 #define IDR0_TTENDIAN_SHIFT             21
54 #define IDR0_TTENDIAN_MASK              0x3
55 #define IDR0_TTENDIAN_LE                (2 << IDR0_TTENDIAN_SHIFT)
56 #define IDR0_TTENDIAN_BE                (3 << IDR0_TTENDIAN_SHIFT)
57 #define IDR0_TTENDIAN_MIXED             (0 << IDR0_TTENDIAN_SHIFT)
58 #define IDR0_CD2L                       (1 << 19)
59 #define IDR0_VMID16                     (1 << 18)
60 #define IDR0_PRI                        (1 << 16)
61 #define IDR0_SEV                        (1 << 14)
62 #define IDR0_MSI                        (1 << 13)
63 #define IDR0_ASID16                     (1 << 12)
64 #define IDR0_ATS                        (1 << 10)
65 #define IDR0_HYP                        (1 << 9)
66 #define IDR0_COHACC                     (1 << 4)
67 #define IDR0_TTF_SHIFT                  2
68 #define IDR0_TTF_MASK                   0x3
69 #define IDR0_TTF_AARCH64                (2 << IDR0_TTF_SHIFT)
70 #define IDR0_TTF_AARCH32_64             (3 << IDR0_TTF_SHIFT)
71 #define IDR0_S1P                        (1 << 1)
72 #define IDR0_S2P                        (1 << 0)
73
74 #define ARM_SMMU_IDR1                   0x4
75 #define IDR1_TABLES_PRESET              (1 << 30)
76 #define IDR1_QUEUES_PRESET              (1 << 29)
77 #define IDR1_REL                        (1 << 28)
78 #define IDR1_CMDQ_SHIFT                 21
79 #define IDR1_CMDQ_MASK                  0x1f
80 #define IDR1_EVTQ_SHIFT                 16
81 #define IDR1_EVTQ_MASK                  0x1f
82 #define IDR1_PRIQ_SHIFT                 11
83 #define IDR1_PRIQ_MASK                  0x1f
84 #define IDR1_SSID_SHIFT                 6
85 #define IDR1_SSID_MASK                  0x1f
86 #define IDR1_SID_SHIFT                  0
87 #define IDR1_SID_MASK                   0x3f
88
89 #define ARM_SMMU_IDR5                   0x14
90 #define IDR5_STALL_MAX_SHIFT            16
91 #define IDR5_STALL_MAX_MASK             0xffff
92 #define IDR5_GRAN64K                    (1 << 6)
93 #define IDR5_GRAN16K                    (1 << 5)
94 #define IDR5_GRAN4K                     (1 << 4)
95 #define IDR5_OAS_SHIFT                  0
96 #define IDR5_OAS_MASK                   0x7
97 #define IDR5_OAS_32_BIT                 (0 << IDR5_OAS_SHIFT)
98 #define IDR5_OAS_36_BIT                 (1 << IDR5_OAS_SHIFT)
99 #define IDR5_OAS_40_BIT                 (2 << IDR5_OAS_SHIFT)
100 #define IDR5_OAS_42_BIT                 (3 << IDR5_OAS_SHIFT)
101 #define IDR5_OAS_44_BIT                 (4 << IDR5_OAS_SHIFT)
102 #define IDR5_OAS_48_BIT                 (5 << IDR5_OAS_SHIFT)
103
104 #define ARM_SMMU_CR0                    0x20
105 #define CR0_CMDQEN                      (1 << 3)
106 #define CR0_EVTQEN                      (1 << 2)
107 #define CR0_PRIQEN                      (1 << 1)
108 #define CR0_SMMUEN                      (1 << 0)
109
110 #define ARM_SMMU_CR0ACK                 0x24
111
112 #define ARM_SMMU_CR1                    0x28
113 #define CR1_SH_NSH                      0
114 #define CR1_SH_OSH                      2
115 #define CR1_SH_ISH                      3
116 #define CR1_CACHE_NC                    0
117 #define CR1_CACHE_WB                    1
118 #define CR1_CACHE_WT                    2
119 #define CR1_TABLE_SH_SHIFT              10
120 #define CR1_TABLE_OC_SHIFT              8
121 #define CR1_TABLE_IC_SHIFT              6
122 #define CR1_QUEUE_SH_SHIFT              4
123 #define CR1_QUEUE_OC_SHIFT              2
124 #define CR1_QUEUE_IC_SHIFT              0
125
126 #define ARM_SMMU_CR2                    0x2c
127 #define CR2_PTM                         (1 << 2)
128 #define CR2_RECINVSID                   (1 << 1)
129 #define CR2_E2H                         (1 << 0)
130
131 #define ARM_SMMU_GBPA                   0x44
132 #define GBPA_ABORT                      (1 << 20)
133 #define GBPA_UPDATE                     (1 << 31)
134
135 #define ARM_SMMU_IRQ_CTRL               0x50
136 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
137 #define IRQ_CTRL_PRIQ_IRQEN             (1 << 1)
138 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
139
140 #define ARM_SMMU_IRQ_CTRLACK            0x54
141
142 #define ARM_SMMU_GERROR                 0x60
143 #define GERROR_SFM_ERR                  (1 << 8)
144 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
145 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
146 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
147 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
148 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
149 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
150 #define GERROR_CMDQ_ERR                 (1 << 0)
151 #define GERROR_ERR_MASK                 0xfd
152
153 #define ARM_SMMU_GERRORN                0x64
154
155 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
156 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
157 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
158
159 #define ARM_SMMU_STRTAB_BASE            0x80
160 #define STRTAB_BASE_RA                  (1UL << 62)
161 #define STRTAB_BASE_ADDR_SHIFT          6
162 #define STRTAB_BASE_ADDR_MASK           0x3ffffffffffUL
163
164 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
165 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT  0
166 #define STRTAB_BASE_CFG_LOG2SIZE_MASK   0x3f
167 #define STRTAB_BASE_CFG_SPLIT_SHIFT     6
168 #define STRTAB_BASE_CFG_SPLIT_MASK      0x1f
169 #define STRTAB_BASE_CFG_FMT_SHIFT       16
170 #define STRTAB_BASE_CFG_FMT_MASK        0x3
171 #define STRTAB_BASE_CFG_FMT_LINEAR      (0 << STRTAB_BASE_CFG_FMT_SHIFT)
172 #define STRTAB_BASE_CFG_FMT_2LVL        (1 << STRTAB_BASE_CFG_FMT_SHIFT)
173
174 #define ARM_SMMU_CMDQ_BASE              0x90
175 #define ARM_SMMU_CMDQ_PROD              0x98
176 #define ARM_SMMU_CMDQ_CONS              0x9c
177
178 #define ARM_SMMU_EVTQ_BASE              0xa0
179 #define ARM_SMMU_EVTQ_PROD              0x100a8
180 #define ARM_SMMU_EVTQ_CONS              0x100ac
181 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
182 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
183 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
184
185 #define ARM_SMMU_PRIQ_BASE              0xc0
186 #define ARM_SMMU_PRIQ_PROD              0x100c8
187 #define ARM_SMMU_PRIQ_CONS              0x100cc
188 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
189 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
190 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
191
192 /* Common MSI config fields */
193 #define MSI_CFG0_ADDR_SHIFT             2
194 #define MSI_CFG0_ADDR_MASK              0x3fffffffffffUL
195 #define MSI_CFG2_SH_SHIFT               4
196 #define MSI_CFG2_SH_NSH                 (0UL << MSI_CFG2_SH_SHIFT)
197 #define MSI_CFG2_SH_OSH                 (2UL << MSI_CFG2_SH_SHIFT)
198 #define MSI_CFG2_SH_ISH                 (3UL << MSI_CFG2_SH_SHIFT)
199 #define MSI_CFG2_MEMATTR_SHIFT          0
200 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE   (0x1 << MSI_CFG2_MEMATTR_SHIFT)
201
202 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
203 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
204 #define Q_OVERFLOW_FLAG                 (1 << 31)
205 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
206 #define Q_ENT(q, p)                     ((q)->base +                    \
207                                          Q_IDX(q, p) * (q)->ent_dwords)
208
209 #define Q_BASE_RWA                      (1UL << 62)
210 #define Q_BASE_ADDR_SHIFT               5
211 #define Q_BASE_ADDR_MASK                0xfffffffffffUL
212 #define Q_BASE_LOG2SIZE_SHIFT           0
213 #define Q_BASE_LOG2SIZE_MASK            0x1fUL
214
215 /*
216  * Stream table.
217  *
218  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
219  * 2lvl: 128k L1 entries,
220  *       256 lazy entries per table (each table covers a PCI bus)
221  */
222 #define STRTAB_L1_SZ_SHIFT              20
223 #define STRTAB_SPLIT                    8
224
225 #define STRTAB_L1_DESC_DWORDS           1
226 #define STRTAB_L1_DESC_SPAN_SHIFT       0
227 #define STRTAB_L1_DESC_SPAN_MASK        0x1fUL
228 #define STRTAB_L1_DESC_L2PTR_SHIFT      6
229 #define STRTAB_L1_DESC_L2PTR_MASK       0x3ffffffffffUL
230
231 #define STRTAB_STE_DWORDS               8
232 #define STRTAB_STE_0_V                  (1UL << 0)
233 #define STRTAB_STE_0_CFG_SHIFT          1
234 #define STRTAB_STE_0_CFG_MASK           0x7UL
235 #define STRTAB_STE_0_CFG_ABORT          (0UL << STRTAB_STE_0_CFG_SHIFT)
236 #define STRTAB_STE_0_CFG_BYPASS         (4UL << STRTAB_STE_0_CFG_SHIFT)
237 #define STRTAB_STE_0_CFG_S1_TRANS       (5UL << STRTAB_STE_0_CFG_SHIFT)
238 #define STRTAB_STE_0_CFG_S2_TRANS       (6UL << STRTAB_STE_0_CFG_SHIFT)
239
240 #define STRTAB_STE_0_S1FMT_SHIFT        4
241 #define STRTAB_STE_0_S1FMT_LINEAR       (0UL << STRTAB_STE_0_S1FMT_SHIFT)
242 #define STRTAB_STE_0_S1CTXPTR_SHIFT     6
243 #define STRTAB_STE_0_S1CTXPTR_MASK      0x3ffffffffffUL
244 #define STRTAB_STE_0_S1CDMAX_SHIFT      59
245 #define STRTAB_STE_0_S1CDMAX_MASK       0x1fUL
246
247 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
248 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
249 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
250 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
251 #define STRTAB_STE_1_S1C_SH_NSH         0UL
252 #define STRTAB_STE_1_S1C_SH_OSH         2UL
253 #define STRTAB_STE_1_S1C_SH_ISH         3UL
254 #define STRTAB_STE_1_S1CIR_SHIFT        2
255 #define STRTAB_STE_1_S1COR_SHIFT        4
256 #define STRTAB_STE_1_S1CSH_SHIFT        6
257
258 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
259
260 #define STRTAB_STE_1_EATS_ABT           0UL
261 #define STRTAB_STE_1_EATS_TRANS         1UL
262 #define STRTAB_STE_1_EATS_S1CHK         2UL
263 #define STRTAB_STE_1_EATS_SHIFT         28
264
265 #define STRTAB_STE_1_STRW_NSEL1         0UL
266 #define STRTAB_STE_1_STRW_EL2           2UL
267 #define STRTAB_STE_1_STRW_SHIFT         30
268
269 #define STRTAB_STE_1_SHCFG_INCOMING     1UL
270 #define STRTAB_STE_1_SHCFG_SHIFT        44
271
272 #define STRTAB_STE_2_S2VMID_SHIFT       0
273 #define STRTAB_STE_2_S2VMID_MASK        0xffffUL
274 #define STRTAB_STE_2_VTCR_SHIFT         32
275 #define STRTAB_STE_2_VTCR_MASK          0x7ffffUL
276 #define STRTAB_STE_2_S2AA64             (1UL << 51)
277 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
278 #define STRTAB_STE_2_S2PTW              (1UL << 54)
279 #define STRTAB_STE_2_S2R                (1UL << 58)
280
281 #define STRTAB_STE_3_S2TTB_SHIFT        4
282 #define STRTAB_STE_3_S2TTB_MASK         0xfffffffffffUL
283
284 /* Context descriptor (stage-1 only) */
285 #define CTXDESC_CD_DWORDS               8
286 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT     0
287 #define ARM64_TCR_T0SZ_SHIFT            0
288 #define ARM64_TCR_T0SZ_MASK             0x1fUL
289 #define CTXDESC_CD_0_TCR_TG0_SHIFT      6
290 #define ARM64_TCR_TG0_SHIFT             14
291 #define ARM64_TCR_TG0_MASK              0x3UL
292 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT    8
293 #define ARM64_TCR_IRGN0_SHIFT           8
294 #define ARM64_TCR_IRGN0_MASK            0x3UL
295 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT    10
296 #define ARM64_TCR_ORGN0_SHIFT           10
297 #define ARM64_TCR_ORGN0_MASK            0x3UL
298 #define CTXDESC_CD_0_TCR_SH0_SHIFT      12
299 #define ARM64_TCR_SH0_SHIFT             12
300 #define ARM64_TCR_SH0_MASK              0x3UL
301 #define CTXDESC_CD_0_TCR_EPD0_SHIFT     14
302 #define ARM64_TCR_EPD0_SHIFT            7
303 #define ARM64_TCR_EPD0_MASK             0x1UL
304 #define CTXDESC_CD_0_TCR_EPD1_SHIFT     30
305 #define ARM64_TCR_EPD1_SHIFT            23
306 #define ARM64_TCR_EPD1_MASK             0x1UL
307
308 #define CTXDESC_CD_0_ENDI               (1UL << 15)
309 #define CTXDESC_CD_0_V                  (1UL << 31)
310
311 #define CTXDESC_CD_0_TCR_IPS_SHIFT      32
312 #define ARM64_TCR_IPS_SHIFT             32
313 #define ARM64_TCR_IPS_MASK              0x7UL
314 #define CTXDESC_CD_0_TCR_TBI0_SHIFT     38
315 #define ARM64_TCR_TBI0_SHIFT            37
316 #define ARM64_TCR_TBI0_MASK             0x1UL
317
318 #define CTXDESC_CD_0_AA64               (1UL << 41)
319 #define CTXDESC_CD_0_R                  (1UL << 45)
320 #define CTXDESC_CD_0_A                  (1UL << 46)
321 #define CTXDESC_CD_0_ASET_SHIFT         47
322 #define CTXDESC_CD_0_ASET_SHARED        (0UL << CTXDESC_CD_0_ASET_SHIFT)
323 #define CTXDESC_CD_0_ASET_PRIVATE       (1UL << CTXDESC_CD_0_ASET_SHIFT)
324 #define CTXDESC_CD_0_ASID_SHIFT         48
325 #define CTXDESC_CD_0_ASID_MASK          0xffffUL
326
327 #define CTXDESC_CD_1_TTB0_SHIFT         4
328 #define CTXDESC_CD_1_TTB0_MASK          0xfffffffffffUL
329
330 #define CTXDESC_CD_3_MAIR_SHIFT         0
331
332 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
333 #define ARM_SMMU_TCR2CD(tcr, fld)                                       \
334         (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)    \
335          << CTXDESC_CD_0_TCR_##fld##_SHIFT)
336
337 /* Command queue */
338 #define CMDQ_ENT_DWORDS                 2
339 #define CMDQ_MAX_SZ_SHIFT               8
340
341 #define CMDQ_ERR_SHIFT                  24
342 #define CMDQ_ERR_MASK                   0x7f
343 #define CMDQ_ERR_CERROR_NONE_IDX        0
344 #define CMDQ_ERR_CERROR_ILL_IDX         1
345 #define CMDQ_ERR_CERROR_ABT_IDX         2
346
347 #define CMDQ_0_OP_SHIFT                 0
348 #define CMDQ_0_OP_MASK                  0xffUL
349 #define CMDQ_0_SSV                      (1UL << 11)
350
351 #define CMDQ_PREFETCH_0_SID_SHIFT       32
352 #define CMDQ_PREFETCH_1_SIZE_SHIFT      0
353 #define CMDQ_PREFETCH_1_ADDR_MASK       ~0xfffUL
354
355 #define CMDQ_CFGI_0_SID_SHIFT           32
356 #define CMDQ_CFGI_0_SID_MASK            0xffffffffUL
357 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
358 #define CMDQ_CFGI_1_RANGE_SHIFT         0
359 #define CMDQ_CFGI_1_RANGE_MASK          0x1fUL
360
361 #define CMDQ_TLBI_0_VMID_SHIFT          32
362 #define CMDQ_TLBI_0_ASID_SHIFT          48
363 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
364 #define CMDQ_TLBI_1_VA_MASK             ~0xfffUL
365 #define CMDQ_TLBI_1_IPA_MASK            0xfffffffff000UL
366
367 #define CMDQ_PRI_0_SSID_SHIFT           12
368 #define CMDQ_PRI_0_SSID_MASK            0xfffffUL
369 #define CMDQ_PRI_0_SID_SHIFT            32
370 #define CMDQ_PRI_0_SID_MASK             0xffffffffUL
371 #define CMDQ_PRI_1_GRPID_SHIFT          0
372 #define CMDQ_PRI_1_GRPID_MASK           0x1ffUL
373 #define CMDQ_PRI_1_RESP_SHIFT           12
374 #define CMDQ_PRI_1_RESP_DENY            (0UL << CMDQ_PRI_1_RESP_SHIFT)
375 #define CMDQ_PRI_1_RESP_FAIL            (1UL << CMDQ_PRI_1_RESP_SHIFT)
376 #define CMDQ_PRI_1_RESP_SUCC            (2UL << CMDQ_PRI_1_RESP_SHIFT)
377
378 #define CMDQ_SYNC_0_CS_SHIFT            12
379 #define CMDQ_SYNC_0_CS_NONE             (0UL << CMDQ_SYNC_0_CS_SHIFT)
380 #define CMDQ_SYNC_0_CS_SEV              (2UL << CMDQ_SYNC_0_CS_SHIFT)
381
382 /* Event queue */
383 #define EVTQ_ENT_DWORDS                 4
384 #define EVTQ_MAX_SZ_SHIFT               7
385
386 #define EVTQ_0_ID_SHIFT                 0
387 #define EVTQ_0_ID_MASK                  0xffUL
388
389 /* PRI queue */
390 #define PRIQ_ENT_DWORDS                 2
391 #define PRIQ_MAX_SZ_SHIFT               8
392
393 #define PRIQ_0_SID_SHIFT                0
394 #define PRIQ_0_SID_MASK                 0xffffffffUL
395 #define PRIQ_0_SSID_SHIFT               32
396 #define PRIQ_0_SSID_MASK                0xfffffUL
397 #define PRIQ_0_PERM_PRIV                (1UL << 58)
398 #define PRIQ_0_PERM_EXEC                (1UL << 59)
399 #define PRIQ_0_PERM_READ                (1UL << 60)
400 #define PRIQ_0_PERM_WRITE               (1UL << 61)
401 #define PRIQ_0_PRG_LAST                 (1UL << 62)
402 #define PRIQ_0_SSID_V                   (1UL << 63)
403
404 #define PRIQ_1_PRG_IDX_SHIFT            0
405 #define PRIQ_1_PRG_IDX_MASK             0x1ffUL
406 #define PRIQ_1_ADDR_SHIFT               12
407 #define PRIQ_1_ADDR_MASK                0xfffffffffffffUL
408
409 /* High-level queue structures */
410 #define ARM_SMMU_POLL_TIMEOUT_US        100
411
412 #define MSI_IOVA_BASE                   0x8000000
413 #define MSI_IOVA_LENGTH                 0x100000
414
415 static bool disable_bypass;
416 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
417 MODULE_PARM_DESC(disable_bypass,
418         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
419
420 enum pri_resp {
421         PRI_RESP_DENY,
422         PRI_RESP_FAIL,
423         PRI_RESP_SUCC,
424 };
425
426 enum arm_smmu_msi_index {
427         EVTQ_MSI_INDEX,
428         GERROR_MSI_INDEX,
429         PRIQ_MSI_INDEX,
430         ARM_SMMU_MAX_MSIS,
431 };
432
433 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
434         [EVTQ_MSI_INDEX] = {
435                 ARM_SMMU_EVTQ_IRQ_CFG0,
436                 ARM_SMMU_EVTQ_IRQ_CFG1,
437                 ARM_SMMU_EVTQ_IRQ_CFG2,
438         },
439         [GERROR_MSI_INDEX] = {
440                 ARM_SMMU_GERROR_IRQ_CFG0,
441                 ARM_SMMU_GERROR_IRQ_CFG1,
442                 ARM_SMMU_GERROR_IRQ_CFG2,
443         },
444         [PRIQ_MSI_INDEX] = {
445                 ARM_SMMU_PRIQ_IRQ_CFG0,
446                 ARM_SMMU_PRIQ_IRQ_CFG1,
447                 ARM_SMMU_PRIQ_IRQ_CFG2,
448         },
449 };
450
451 struct arm_smmu_cmdq_ent {
452         /* Common fields */
453         u8                              opcode;
454         bool                            substream_valid;
455
456         /* Command-specific fields */
457         union {
458                 #define CMDQ_OP_PREFETCH_CFG    0x1
459                 struct {
460                         u32                     sid;
461                         u8                      size;
462                         u64                     addr;
463                 } prefetch;
464
465                 #define CMDQ_OP_CFGI_STE        0x3
466                 #define CMDQ_OP_CFGI_ALL        0x4
467                 struct {
468                         u32                     sid;
469                         union {
470                                 bool            leaf;
471                                 u8              span;
472                         };
473                 } cfgi;
474
475                 #define CMDQ_OP_TLBI_NH_ASID    0x11
476                 #define CMDQ_OP_TLBI_NH_VA      0x12
477                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
478                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
479                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
480                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
481                 struct {
482                         u16                     asid;
483                         u16                     vmid;
484                         bool                    leaf;
485                         u64                     addr;
486                 } tlbi;
487
488                 #define CMDQ_OP_PRI_RESP        0x41
489                 struct {
490                         u32                     sid;
491                         u32                     ssid;
492                         u16                     grpid;
493                         enum pri_resp           resp;
494                 } pri;
495
496                 #define CMDQ_OP_CMD_SYNC        0x46
497         };
498 };
499
500 struct arm_smmu_queue {
501         int                             irq; /* Wired interrupt */
502
503         __le64                          *base;
504         dma_addr_t                      base_dma;
505         u64                             q_base;
506
507         size_t                          ent_dwords;
508         u32                             max_n_shift;
509         u32                             prod;
510         u32                             cons;
511
512         u32 __iomem                     *prod_reg;
513         u32 __iomem                     *cons_reg;
514 };
515
516 struct arm_smmu_cmdq {
517         struct arm_smmu_queue           q;
518         spinlock_t                      lock;
519 };
520
521 struct arm_smmu_evtq {
522         struct arm_smmu_queue           q;
523         u32                             max_stalls;
524 };
525
526 struct arm_smmu_priq {
527         struct arm_smmu_queue           q;
528 };
529
530 /* High-level stream table and context descriptor structures */
531 struct arm_smmu_strtab_l1_desc {
532         u8                              span;
533
534         __le64                          *l2ptr;
535         dma_addr_t                      l2ptr_dma;
536 };
537
538 struct arm_smmu_s1_cfg {
539         __le64                          *cdptr;
540         dma_addr_t                      cdptr_dma;
541
542         struct arm_smmu_ctx_desc {
543                 u16     asid;
544                 u64     ttbr;
545                 u64     tcr;
546                 u64     mair;
547         }                               cd;
548 };
549
550 struct arm_smmu_s2_cfg {
551         u16                             vmid;
552         u64                             vttbr;
553         u64                             vtcr;
554 };
555
556 struct arm_smmu_strtab_ent {
557         /*
558          * An STE is "assigned" if the master emitting the corresponding SID
559          * is attached to a domain. The behaviour of an unassigned STE is
560          * determined by the disable_bypass parameter, whereas an assigned
561          * STE behaves according to s1_cfg/s2_cfg, which themselves are
562          * configured according to the domain type.
563          */
564         bool                            assigned;
565         struct arm_smmu_s1_cfg          *s1_cfg;
566         struct arm_smmu_s2_cfg          *s2_cfg;
567 };
568
569 struct arm_smmu_strtab_cfg {
570         __le64                          *strtab;
571         dma_addr_t                      strtab_dma;
572         struct arm_smmu_strtab_l1_desc  *l1_desc;
573         unsigned int                    num_l1_ents;
574
575         u64                             strtab_base;
576         u32                             strtab_base_cfg;
577 };
578
579 /* An SMMUv3 instance */
580 struct arm_smmu_device {
581         struct device                   *dev;
582         void __iomem                    *base;
583
584 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
585 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
586 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
587 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
588 #define ARM_SMMU_FEAT_PRI               (1 << 4)
589 #define ARM_SMMU_FEAT_ATS               (1 << 5)
590 #define ARM_SMMU_FEAT_SEV               (1 << 6)
591 #define ARM_SMMU_FEAT_MSI               (1 << 7)
592 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
593 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
594 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
595 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
596 #define ARM_SMMU_FEAT_HYP               (1 << 12)
597         u32                             features;
598
599 #define ARM_SMMU_OPT_SKIP_PREFETCH      (1 << 0)
600         u32                             options;
601
602         struct arm_smmu_cmdq            cmdq;
603         struct arm_smmu_evtq            evtq;
604         struct arm_smmu_priq            priq;
605
606         int                             gerr_irq;
607
608         unsigned long                   ias; /* IPA */
609         unsigned long                   oas; /* PA */
610         unsigned long                   pgsize_bitmap;
611
612 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
613         unsigned int                    asid_bits;
614         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
615
616 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
617         unsigned int                    vmid_bits;
618         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
619
620         unsigned int                    ssid_bits;
621         unsigned int                    sid_bits;
622
623         struct arm_smmu_strtab_cfg      strtab_cfg;
624
625         /* IOMMU core code handle */
626         struct iommu_device             iommu;
627 };
628
629 /* SMMU private data for each master */
630 struct arm_smmu_master_data {
631         struct arm_smmu_device          *smmu;
632         struct arm_smmu_strtab_ent      ste;
633 };
634
635 /* SMMU private data for an IOMMU domain */
636 enum arm_smmu_domain_stage {
637         ARM_SMMU_DOMAIN_S1 = 0,
638         ARM_SMMU_DOMAIN_S2,
639         ARM_SMMU_DOMAIN_NESTED,
640         ARM_SMMU_DOMAIN_BYPASS,
641 };
642
643 struct arm_smmu_domain {
644         struct arm_smmu_device          *smmu;
645         struct mutex                    init_mutex; /* Protects smmu pointer */
646
647         struct io_pgtable_ops           *pgtbl_ops;
648         spinlock_t                      pgtbl_lock;
649
650         enum arm_smmu_domain_stage      stage;
651         union {
652                 struct arm_smmu_s1_cfg  s1_cfg;
653                 struct arm_smmu_s2_cfg  s2_cfg;
654         };
655
656         struct iommu_domain             domain;
657 };
658
659 struct arm_smmu_option_prop {
660         u32 opt;
661         const char *prop;
662 };
663
664 static struct arm_smmu_option_prop arm_smmu_options[] = {
665         { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
666         { 0, NULL},
667 };
668
669 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
670 {
671         return container_of(dom, struct arm_smmu_domain, domain);
672 }
673
674 static void parse_driver_options(struct arm_smmu_device *smmu)
675 {
676         int i = 0;
677
678         do {
679                 if (of_property_read_bool(smmu->dev->of_node,
680                                                 arm_smmu_options[i].prop)) {
681                         smmu->options |= arm_smmu_options[i].opt;
682                         dev_notice(smmu->dev, "option %s\n",
683                                 arm_smmu_options[i].prop);
684                 }
685         } while (arm_smmu_options[++i].opt);
686 }
687
688 /* Low-level queue manipulation functions */
689 static bool queue_full(struct arm_smmu_queue *q)
690 {
691         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
692                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
693 }
694
695 static bool queue_empty(struct arm_smmu_queue *q)
696 {
697         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
698                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
699 }
700
701 static void queue_sync_cons(struct arm_smmu_queue *q)
702 {
703         q->cons = readl_relaxed(q->cons_reg);
704 }
705
706 static void queue_inc_cons(struct arm_smmu_queue *q)
707 {
708         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
709
710         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
711         writel(q->cons, q->cons_reg);
712 }
713
714 static int queue_sync_prod(struct arm_smmu_queue *q)
715 {
716         int ret = 0;
717         u32 prod = readl_relaxed(q->prod_reg);
718
719         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
720                 ret = -EOVERFLOW;
721
722         q->prod = prod;
723         return ret;
724 }
725
726 static void queue_inc_prod(struct arm_smmu_queue *q)
727 {
728         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
729
730         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
731         writel(q->prod, q->prod_reg);
732 }
733
734 /*
735  * Wait for the SMMU to consume items. If drain is true, wait until the queue
736  * is empty. Otherwise, wait until there is at least one free slot.
737  */
738 static int queue_poll_cons(struct arm_smmu_queue *q, bool drain, bool wfe)
739 {
740         ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
741
742         while (queue_sync_cons(q), (drain ? !queue_empty(q) : queue_full(q))) {
743                 if (ktime_compare(ktime_get(), timeout) > 0)
744                         return -ETIMEDOUT;
745
746                 if (wfe) {
747                         wfe();
748                 } else {
749                         cpu_relax();
750                         udelay(1);
751                 }
752         }
753
754         return 0;
755 }
756
757 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
758 {
759         int i;
760
761         for (i = 0; i < n_dwords; ++i)
762                 *dst++ = cpu_to_le64(*src++);
763 }
764
765 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
766 {
767         if (queue_full(q))
768                 return -ENOSPC;
769
770         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
771         queue_inc_prod(q);
772         return 0;
773 }
774
775 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
776 {
777         int i;
778
779         for (i = 0; i < n_dwords; ++i)
780                 *dst++ = le64_to_cpu(*src++);
781 }
782
783 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
784 {
785         if (queue_empty(q))
786                 return -EAGAIN;
787
788         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
789         queue_inc_cons(q);
790         return 0;
791 }
792
793 /* High-level queue accessors */
794 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
795 {
796         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
797         cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
798
799         switch (ent->opcode) {
800         case CMDQ_OP_TLBI_EL2_ALL:
801         case CMDQ_OP_TLBI_NSNH_ALL:
802                 break;
803         case CMDQ_OP_PREFETCH_CFG:
804                 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
805                 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
806                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
807                 break;
808         case CMDQ_OP_CFGI_STE:
809                 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
810                 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
811                 break;
812         case CMDQ_OP_CFGI_ALL:
813                 /* Cover the entire SID range */
814                 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
815                 break;
816         case CMDQ_OP_TLBI_NH_VA:
817                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
818                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
819                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
820                 break;
821         case CMDQ_OP_TLBI_S2_IPA:
822                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
823                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
824                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
825                 break;
826         case CMDQ_OP_TLBI_NH_ASID:
827                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
828                 /* Fallthrough */
829         case CMDQ_OP_TLBI_S12_VMALL:
830                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
831                 break;
832         case CMDQ_OP_PRI_RESP:
833                 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
834                 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
835                 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
836                 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
837                 switch (ent->pri.resp) {
838                 case PRI_RESP_DENY:
839                         cmd[1] |= CMDQ_PRI_1_RESP_DENY;
840                         break;
841                 case PRI_RESP_FAIL:
842                         cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
843                         break;
844                 case PRI_RESP_SUCC:
845                         cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
846                         break;
847                 default:
848                         return -EINVAL;
849                 }
850                 break;
851         case CMDQ_OP_CMD_SYNC:
852                 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
853                 break;
854         default:
855                 return -ENOENT;
856         }
857
858         return 0;
859 }
860
861 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
862 {
863         static const char *cerror_str[] = {
864                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
865                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
866                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
867         };
868
869         int i;
870         u64 cmd[CMDQ_ENT_DWORDS];
871         struct arm_smmu_queue *q = &smmu->cmdq.q;
872         u32 cons = readl_relaxed(q->cons_reg);
873         u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
874         struct arm_smmu_cmdq_ent cmd_sync = {
875                 .opcode = CMDQ_OP_CMD_SYNC,
876         };
877
878         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
879                 idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
880
881         switch (idx) {
882         case CMDQ_ERR_CERROR_ABT_IDX:
883                 dev_err(smmu->dev, "retrying command fetch\n");
884         case CMDQ_ERR_CERROR_NONE_IDX:
885                 return;
886         case CMDQ_ERR_CERROR_ILL_IDX:
887                 /* Fallthrough */
888         default:
889                 break;
890         }
891
892         /*
893          * We may have concurrent producers, so we need to be careful
894          * not to touch any of the shadow cmdq state.
895          */
896         queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
897         dev_err(smmu->dev, "skipping command in error state:\n");
898         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
899                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
900
901         /* Convert the erroneous command into a CMD_SYNC */
902         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
903                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
904                 return;
905         }
906
907         queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
908 }
909
910 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
911                                     struct arm_smmu_cmdq_ent *ent)
912 {
913         u64 cmd[CMDQ_ENT_DWORDS];
914         unsigned long flags;
915         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
916         struct arm_smmu_queue *q = &smmu->cmdq.q;
917
918         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
919                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
920                          ent->opcode);
921                 return;
922         }
923
924         spin_lock_irqsave(&smmu->cmdq.lock, flags);
925         while (queue_insert_raw(q, cmd) == -ENOSPC) {
926                 if (queue_poll_cons(q, false, wfe))
927                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
928         }
929
930         if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, true, wfe))
931                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
932         spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
933 }
934
935 /* Context descriptor manipulation functions */
936 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
937 {
938         u64 val = 0;
939
940         /* Repack the TCR. Just care about TTBR0 for now */
941         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
942         val |= ARM_SMMU_TCR2CD(tcr, TG0);
943         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
944         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
945         val |= ARM_SMMU_TCR2CD(tcr, SH0);
946         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
947         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
948         val |= ARM_SMMU_TCR2CD(tcr, IPS);
949         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
950
951         return val;
952 }
953
954 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
955                                     struct arm_smmu_s1_cfg *cfg)
956 {
957         u64 val;
958
959         /*
960          * We don't need to issue any invalidation here, as we'll invalidate
961          * the STE when installing the new entry anyway.
962          */
963         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
964 #ifdef __BIG_ENDIAN
965               CTXDESC_CD_0_ENDI |
966 #endif
967               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
968               CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
969               CTXDESC_CD_0_V;
970         cfg->cdptr[0] = cpu_to_le64(val);
971
972         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
973         cfg->cdptr[1] = cpu_to_le64(val);
974
975         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
976 }
977
978 /* Stream table manipulation functions */
979 static void
980 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
981 {
982         u64 val = 0;
983
984         val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
985                 << STRTAB_L1_DESC_SPAN_SHIFT;
986         val |= desc->l2ptr_dma &
987                STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
988
989         *dst = cpu_to_le64(val);
990 }
991
992 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
993 {
994         struct arm_smmu_cmdq_ent cmd = {
995                 .opcode = CMDQ_OP_CFGI_STE,
996                 .cfgi   = {
997                         .sid    = sid,
998                         .leaf   = true,
999                 },
1000         };
1001
1002         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1003         cmd.opcode = CMDQ_OP_CMD_SYNC;
1004         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1005 }
1006
1007 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
1008                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
1009 {
1010         /*
1011          * This is hideously complicated, but we only really care about
1012          * three cases at the moment:
1013          *
1014          * 1. Invalid (all zero) -> bypass/fault (init)
1015          * 2. Bypass/fault -> translation/bypass (attach)
1016          * 3. Translation/bypass -> bypass/fault (detach)
1017          *
1018          * Given that we can't update the STE atomically and the SMMU
1019          * doesn't read the thing in a defined order, that leaves us
1020          * with the following maintenance requirements:
1021          *
1022          * 1. Update Config, return (init time STEs aren't live)
1023          * 2. Write everything apart from dword 0, sync, write dword 0, sync
1024          * 3. Update Config, sync
1025          */
1026         u64 val = le64_to_cpu(dst[0]);
1027         bool ste_live = false;
1028         struct arm_smmu_cmdq_ent prefetch_cmd = {
1029                 .opcode         = CMDQ_OP_PREFETCH_CFG,
1030                 .prefetch       = {
1031                         .sid    = sid,
1032                 },
1033         };
1034
1035         if (val & STRTAB_STE_0_V) {
1036                 u64 cfg;
1037
1038                 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1039                 switch (cfg) {
1040                 case STRTAB_STE_0_CFG_BYPASS:
1041                         break;
1042                 case STRTAB_STE_0_CFG_S1_TRANS:
1043                 case STRTAB_STE_0_CFG_S2_TRANS:
1044                         ste_live = true;
1045                         break;
1046                 case STRTAB_STE_0_CFG_ABORT:
1047                         if (disable_bypass)
1048                                 break;
1049                 default:
1050                         BUG(); /* STE corruption */
1051                 }
1052         }
1053
1054         /* Nuke the existing STE_0 value, as we're going to rewrite it */
1055         val = STRTAB_STE_0_V;
1056
1057         /* Bypass/fault */
1058         if (!ste->assigned || !(ste->s1_cfg || ste->s2_cfg)) {
1059                 if (!ste->assigned && disable_bypass)
1060                         val |= STRTAB_STE_0_CFG_ABORT;
1061                 else
1062                         val |= STRTAB_STE_0_CFG_BYPASS;
1063
1064                 dst[0] = cpu_to_le64(val);
1065                 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1066                          << STRTAB_STE_1_SHCFG_SHIFT);
1067                 dst[2] = 0; /* Nuke the VMID */
1068                 if (ste_live)
1069                         arm_smmu_sync_ste_for_sid(smmu, sid);
1070                 return;
1071         }
1072
1073         if (ste->s1_cfg) {
1074                 BUG_ON(ste_live);
1075                 dst[1] = cpu_to_le64(
1076                          STRTAB_STE_1_S1C_CACHE_WBRA
1077                          << STRTAB_STE_1_S1CIR_SHIFT |
1078                          STRTAB_STE_1_S1C_CACHE_WBRA
1079                          << STRTAB_STE_1_S1COR_SHIFT |
1080                          STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1081 #ifdef CONFIG_PCI_ATS
1082                          STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1083 #endif
1084                          STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1085
1086                 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1087                         dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1088
1089                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1090                         << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1091                         STRTAB_STE_0_CFG_S1_TRANS;
1092         }
1093
1094         if (ste->s2_cfg) {
1095                 BUG_ON(ste_live);
1096                 dst[2] = cpu_to_le64(
1097                          ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1098                          (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1099                           << STRTAB_STE_2_VTCR_SHIFT |
1100 #ifdef __BIG_ENDIAN
1101                          STRTAB_STE_2_S2ENDI |
1102 #endif
1103                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1104                          STRTAB_STE_2_S2R);
1105
1106                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1107                          STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1108
1109                 val |= STRTAB_STE_0_CFG_S2_TRANS;
1110         }
1111
1112         arm_smmu_sync_ste_for_sid(smmu, sid);
1113         dst[0] = cpu_to_le64(val);
1114         arm_smmu_sync_ste_for_sid(smmu, sid);
1115
1116         /* It's likely that we'll want to use the new STE soon */
1117         if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1118                 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1119 }
1120
1121 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1122 {
1123         unsigned int i;
1124         struct arm_smmu_strtab_ent ste = { .assigned = false };
1125
1126         for (i = 0; i < nent; ++i) {
1127                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1128                 strtab += STRTAB_STE_DWORDS;
1129         }
1130 }
1131
1132 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1133 {
1134         size_t size;
1135         void *strtab;
1136         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1137         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1138
1139         if (desc->l2ptr)
1140                 return 0;
1141
1142         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1143         strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1144
1145         desc->span = STRTAB_SPLIT + 1;
1146         desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1147                                           GFP_KERNEL | __GFP_ZERO);
1148         if (!desc->l2ptr) {
1149                 dev_err(smmu->dev,
1150                         "failed to allocate l2 stream table for SID %u\n",
1151                         sid);
1152                 return -ENOMEM;
1153         }
1154
1155         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1156         arm_smmu_write_strtab_l1_desc(strtab, desc);
1157         return 0;
1158 }
1159
1160 /* IRQ and event handlers */
1161 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1162 {
1163         int i;
1164         struct arm_smmu_device *smmu = dev;
1165         struct arm_smmu_queue *q = &smmu->evtq.q;
1166         u64 evt[EVTQ_ENT_DWORDS];
1167
1168         do {
1169                 while (!queue_remove_raw(q, evt)) {
1170                         u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1171
1172                         dev_info(smmu->dev, "event 0x%02x received:\n", id);
1173                         for (i = 0; i < ARRAY_SIZE(evt); ++i)
1174                                 dev_info(smmu->dev, "\t0x%016llx\n",
1175                                          (unsigned long long)evt[i]);
1176
1177                 }
1178
1179                 /*
1180                  * Not much we can do on overflow, so scream and pretend we're
1181                  * trying harder.
1182                  */
1183                 if (queue_sync_prod(q) == -EOVERFLOW)
1184                         dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1185         } while (!queue_empty(q));
1186
1187         /* Sync our overflow flag, as we believe we're up to speed */
1188         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1189         return IRQ_HANDLED;
1190 }
1191
1192 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1193 {
1194         u32 sid, ssid;
1195         u16 grpid;
1196         bool ssv, last;
1197
1198         sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1199         ssv = evt[0] & PRIQ_0_SSID_V;
1200         ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1201         last = evt[0] & PRIQ_0_PRG_LAST;
1202         grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1203
1204         dev_info(smmu->dev, "unexpected PRI request received:\n");
1205         dev_info(smmu->dev,
1206                  "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1207                  sid, ssid, grpid, last ? "L" : "",
1208                  evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1209                  evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1210                  evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1211                  evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1212                  evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1213
1214         if (last) {
1215                 struct arm_smmu_cmdq_ent cmd = {
1216                         .opcode                 = CMDQ_OP_PRI_RESP,
1217                         .substream_valid        = ssv,
1218                         .pri                    = {
1219                                 .sid    = sid,
1220                                 .ssid   = ssid,
1221                                 .grpid  = grpid,
1222                                 .resp   = PRI_RESP_DENY,
1223                         },
1224                 };
1225
1226                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1227         }
1228 }
1229
1230 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1231 {
1232         struct arm_smmu_device *smmu = dev;
1233         struct arm_smmu_queue *q = &smmu->priq.q;
1234         u64 evt[PRIQ_ENT_DWORDS];
1235
1236         do {
1237                 while (!queue_remove_raw(q, evt))
1238                         arm_smmu_handle_ppr(smmu, evt);
1239
1240                 if (queue_sync_prod(q) == -EOVERFLOW)
1241                         dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1242         } while (!queue_empty(q));
1243
1244         /* Sync our overflow flag, as we believe we're up to speed */
1245         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1246         return IRQ_HANDLED;
1247 }
1248
1249 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1250 {
1251         /* We don't actually use CMD_SYNC interrupts for anything */
1252         return IRQ_HANDLED;
1253 }
1254
1255 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1256
1257 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1258 {
1259         u32 gerror, gerrorn, active;
1260         struct arm_smmu_device *smmu = dev;
1261
1262         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1263         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1264
1265         active = gerror ^ gerrorn;
1266         if (!(active & GERROR_ERR_MASK))
1267                 return IRQ_NONE; /* No errors pending */
1268
1269         dev_warn(smmu->dev,
1270                  "unexpected global error reported (0x%08x), this could be serious\n",
1271                  active);
1272
1273         if (active & GERROR_SFM_ERR) {
1274                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1275                 arm_smmu_device_disable(smmu);
1276         }
1277
1278         if (active & GERROR_MSI_GERROR_ABT_ERR)
1279                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1280
1281         if (active & GERROR_MSI_PRIQ_ABT_ERR)
1282                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1283
1284         if (active & GERROR_MSI_EVTQ_ABT_ERR)
1285                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1286
1287         if (active & GERROR_MSI_CMDQ_ABT_ERR) {
1288                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1289                 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1290         }
1291
1292         if (active & GERROR_PRIQ_ABT_ERR)
1293                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1294
1295         if (active & GERROR_EVTQ_ABT_ERR)
1296                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1297
1298         if (active & GERROR_CMDQ_ERR)
1299                 arm_smmu_cmdq_skip_err(smmu);
1300
1301         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1302         return IRQ_HANDLED;
1303 }
1304
1305 /* IO_PGTABLE API */
1306 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1307 {
1308         struct arm_smmu_cmdq_ent cmd;
1309
1310         cmd.opcode = CMDQ_OP_CMD_SYNC;
1311         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1312 }
1313
1314 static void arm_smmu_tlb_sync(void *cookie)
1315 {
1316         struct arm_smmu_domain *smmu_domain = cookie;
1317         __arm_smmu_tlb_sync(smmu_domain->smmu);
1318 }
1319
1320 static void arm_smmu_tlb_inv_context(void *cookie)
1321 {
1322         struct arm_smmu_domain *smmu_domain = cookie;
1323         struct arm_smmu_device *smmu = smmu_domain->smmu;
1324         struct arm_smmu_cmdq_ent cmd;
1325
1326         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1327                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1328                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1329                 cmd.tlbi.vmid   = 0;
1330         } else {
1331                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1332                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1333         }
1334
1335         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1336         __arm_smmu_tlb_sync(smmu);
1337 }
1338
1339 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1340                                           size_t granule, bool leaf, void *cookie)
1341 {
1342         struct arm_smmu_domain *smmu_domain = cookie;
1343         struct arm_smmu_device *smmu = smmu_domain->smmu;
1344         struct arm_smmu_cmdq_ent cmd = {
1345                 .tlbi = {
1346                         .leaf   = leaf,
1347                         .addr   = iova,
1348                 },
1349         };
1350
1351         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1352                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1353                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1354         } else {
1355                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1356                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1357         }
1358
1359         do {
1360                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1361                 cmd.tlbi.addr += granule;
1362         } while (size -= granule);
1363 }
1364
1365 static const struct iommu_gather_ops arm_smmu_gather_ops = {
1366         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1367         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1368         .tlb_sync       = arm_smmu_tlb_sync,
1369 };
1370
1371 /* IOMMU API */
1372 static bool arm_smmu_capable(enum iommu_cap cap)
1373 {
1374         switch (cap) {
1375         case IOMMU_CAP_CACHE_COHERENCY:
1376                 return true;
1377         case IOMMU_CAP_NOEXEC:
1378                 return true;
1379         default:
1380                 return false;
1381         }
1382 }
1383
1384 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1385 {
1386         struct arm_smmu_domain *smmu_domain;
1387
1388         if (type != IOMMU_DOMAIN_UNMANAGED &&
1389             type != IOMMU_DOMAIN_DMA &&
1390             type != IOMMU_DOMAIN_IDENTITY)
1391                 return NULL;
1392
1393         /*
1394          * Allocate the domain and initialise some of its data structures.
1395          * We can't really do anything meaningful until we've added a
1396          * master.
1397          */
1398         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1399         if (!smmu_domain)
1400                 return NULL;
1401
1402         if (type == IOMMU_DOMAIN_DMA &&
1403             iommu_get_dma_cookie(&smmu_domain->domain)) {
1404                 kfree(smmu_domain);
1405                 return NULL;
1406         }
1407
1408         mutex_init(&smmu_domain->init_mutex);
1409         spin_lock_init(&smmu_domain->pgtbl_lock);
1410         return &smmu_domain->domain;
1411 }
1412
1413 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1414 {
1415         int idx, size = 1 << span;
1416
1417         do {
1418                 idx = find_first_zero_bit(map, size);
1419                 if (idx == size)
1420                         return -ENOSPC;
1421         } while (test_and_set_bit(idx, map));
1422
1423         return idx;
1424 }
1425
1426 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1427 {
1428         clear_bit(idx, map);
1429 }
1430
1431 static void arm_smmu_domain_free(struct iommu_domain *domain)
1432 {
1433         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1434         struct arm_smmu_device *smmu = smmu_domain->smmu;
1435
1436         iommu_put_dma_cookie(domain);
1437         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1438
1439         /* Free the CD and ASID, if we allocated them */
1440         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1441                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1442
1443                 if (cfg->cdptr) {
1444                         dmam_free_coherent(smmu_domain->smmu->dev,
1445                                            CTXDESC_CD_DWORDS << 3,
1446                                            cfg->cdptr,
1447                                            cfg->cdptr_dma);
1448
1449                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1450                 }
1451         } else {
1452                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1453                 if (cfg->vmid)
1454                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1455         }
1456
1457         kfree(smmu_domain);
1458 }
1459
1460 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1461                                        struct io_pgtable_cfg *pgtbl_cfg)
1462 {
1463         int ret;
1464         int asid;
1465         struct arm_smmu_device *smmu = smmu_domain->smmu;
1466         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1467
1468         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1469         if (asid < 0)
1470                 return asid;
1471
1472         cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1473                                          &cfg->cdptr_dma,
1474                                          GFP_KERNEL | __GFP_ZERO);
1475         if (!cfg->cdptr) {
1476                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1477                 ret = -ENOMEM;
1478                 goto out_free_asid;
1479         }
1480
1481         cfg->cd.asid    = (u16)asid;
1482         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1483         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1484         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1485         return 0;
1486
1487 out_free_asid:
1488         arm_smmu_bitmap_free(smmu->asid_map, asid);
1489         return ret;
1490 }
1491
1492 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1493                                        struct io_pgtable_cfg *pgtbl_cfg)
1494 {
1495         int vmid;
1496         struct arm_smmu_device *smmu = smmu_domain->smmu;
1497         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1498
1499         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1500         if (vmid < 0)
1501                 return vmid;
1502
1503         cfg->vmid       = (u16)vmid;
1504         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1505         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1506         return 0;
1507 }
1508
1509 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1510 {
1511         int ret;
1512         unsigned long ias, oas;
1513         enum io_pgtable_fmt fmt;
1514         struct io_pgtable_cfg pgtbl_cfg;
1515         struct io_pgtable_ops *pgtbl_ops;
1516         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1517                                  struct io_pgtable_cfg *);
1518         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1519         struct arm_smmu_device *smmu = smmu_domain->smmu;
1520
1521         if (domain->type == IOMMU_DOMAIN_IDENTITY) {
1522                 smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
1523                 return 0;
1524         }
1525
1526         /* Restrict the stage to what we can actually support */
1527         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1528                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1529         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1530                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1531
1532         switch (smmu_domain->stage) {
1533         case ARM_SMMU_DOMAIN_S1:
1534                 ias = VA_BITS;
1535                 oas = smmu->ias;
1536                 fmt = ARM_64_LPAE_S1;
1537                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1538                 break;
1539         case ARM_SMMU_DOMAIN_NESTED:
1540         case ARM_SMMU_DOMAIN_S2:
1541                 ias = smmu->ias;
1542                 oas = smmu->oas;
1543                 fmt = ARM_64_LPAE_S2;
1544                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1545                 break;
1546         default:
1547                 return -EINVAL;
1548         }
1549
1550         pgtbl_cfg = (struct io_pgtable_cfg) {
1551                 .pgsize_bitmap  = smmu->pgsize_bitmap,
1552                 .ias            = ias,
1553                 .oas            = oas,
1554                 .tlb            = &arm_smmu_gather_ops,
1555                 .iommu_dev      = smmu->dev,
1556         };
1557
1558         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1559         if (!pgtbl_ops)
1560                 return -ENOMEM;
1561
1562         domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1563         domain->geometry.aperture_end = (1UL << ias) - 1;
1564         domain->geometry.force_aperture = true;
1565         smmu_domain->pgtbl_ops = pgtbl_ops;
1566
1567         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1568         if (ret < 0)
1569                 free_io_pgtable_ops(pgtbl_ops);
1570
1571         return ret;
1572 }
1573
1574 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1575 {
1576         __le64 *step;
1577         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1578
1579         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1580                 struct arm_smmu_strtab_l1_desc *l1_desc;
1581                 int idx;
1582
1583                 /* Two-level walk */
1584                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1585                 l1_desc = &cfg->l1_desc[idx];
1586                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1587                 step = &l1_desc->l2ptr[idx];
1588         } else {
1589                 /* Simple linear lookup */
1590                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1591         }
1592
1593         return step;
1594 }
1595
1596 static void arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
1597 {
1598         int i;
1599         struct arm_smmu_master_data *master = fwspec->iommu_priv;
1600         struct arm_smmu_device *smmu = master->smmu;
1601
1602         for (i = 0; i < fwspec->num_ids; ++i) {
1603                 u32 sid = fwspec->ids[i];
1604                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1605
1606                 arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
1607         }
1608 }
1609
1610 static void arm_smmu_detach_dev(struct device *dev)
1611 {
1612         struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;
1613
1614         master->ste.assigned = false;
1615         arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1616 }
1617
1618 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1619 {
1620         int ret = 0;
1621         struct arm_smmu_device *smmu;
1622         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1623         struct arm_smmu_master_data *master;
1624         struct arm_smmu_strtab_ent *ste;
1625
1626         if (!dev->iommu_fwspec)
1627                 return -ENOENT;
1628
1629         master = dev->iommu_fwspec->iommu_priv;
1630         smmu = master->smmu;
1631         ste = &master->ste;
1632
1633         /* Already attached to a different domain? */
1634         if (ste->assigned)
1635                 arm_smmu_detach_dev(dev);
1636
1637         mutex_lock(&smmu_domain->init_mutex);
1638
1639         if (!smmu_domain->smmu) {
1640                 smmu_domain->smmu = smmu;
1641                 ret = arm_smmu_domain_finalise(domain);
1642                 if (ret) {
1643                         smmu_domain->smmu = NULL;
1644                         goto out_unlock;
1645                 }
1646         } else if (smmu_domain->smmu != smmu) {
1647                 dev_err(dev,
1648                         "cannot attach to SMMU %s (upstream of %s)\n",
1649                         dev_name(smmu_domain->smmu->dev),
1650                         dev_name(smmu->dev));
1651                 ret = -ENXIO;
1652                 goto out_unlock;
1653         }
1654
1655         ste->assigned = true;
1656
1657         if (smmu_domain->stage == ARM_SMMU_DOMAIN_BYPASS) {
1658                 ste->s1_cfg = NULL;
1659                 ste->s2_cfg = NULL;
1660         } else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1661                 ste->s1_cfg = &smmu_domain->s1_cfg;
1662                 ste->s2_cfg = NULL;
1663                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1664         } else {
1665                 ste->s1_cfg = NULL;
1666                 ste->s2_cfg = &smmu_domain->s2_cfg;
1667         }
1668
1669         arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1670 out_unlock:
1671         mutex_unlock(&smmu_domain->init_mutex);
1672         return ret;
1673 }
1674
1675 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1676                         phys_addr_t paddr, size_t size, int prot)
1677 {
1678         int ret;
1679         unsigned long flags;
1680         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1681         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1682
1683         if (!ops)
1684                 return -ENODEV;
1685
1686         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1687         ret = ops->map(ops, iova, paddr, size, prot);
1688         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1689         return ret;
1690 }
1691
1692 static size_t
1693 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1694 {
1695         size_t ret;
1696         unsigned long flags;
1697         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1698         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1699
1700         if (!ops)
1701                 return 0;
1702
1703         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1704         ret = ops->unmap(ops, iova, size);
1705         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1706         return ret;
1707 }
1708
1709 static phys_addr_t
1710 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1711 {
1712         phys_addr_t ret;
1713         unsigned long flags;
1714         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1715         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1716
1717         if (domain->type == IOMMU_DOMAIN_IDENTITY)
1718                 return iova;
1719
1720         if (!ops)
1721                 return 0;
1722
1723         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1724         ret = ops->iova_to_phys(ops, iova);
1725         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1726
1727         return ret;
1728 }
1729
1730 static struct platform_driver arm_smmu_driver;
1731
1732 static int arm_smmu_match_node(struct device *dev, void *data)
1733 {
1734         return dev->fwnode == data;
1735 }
1736
1737 static
1738 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1739 {
1740         struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1741                                                 fwnode, arm_smmu_match_node);
1742         put_device(dev);
1743         return dev ? dev_get_drvdata(dev) : NULL;
1744 }
1745
1746 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1747 {
1748         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1749
1750         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1751                 limit *= 1UL << STRTAB_SPLIT;
1752
1753         return sid < limit;
1754 }
1755
1756 static struct iommu_ops arm_smmu_ops;
1757
1758 static int arm_smmu_add_device(struct device *dev)
1759 {
1760         int i, ret;
1761         struct arm_smmu_device *smmu;
1762         struct arm_smmu_master_data *master;
1763         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1764         struct iommu_group *group;
1765
1766         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1767                 return -ENODEV;
1768         /*
1769          * We _can_ actually withstand dodgy bus code re-calling add_device()
1770          * without an intervening remove_device()/of_xlate() sequence, but
1771          * we're not going to do so quietly...
1772          */
1773         if (WARN_ON_ONCE(fwspec->iommu_priv)) {
1774                 master = fwspec->iommu_priv;
1775                 smmu = master->smmu;
1776         } else {
1777                 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1778                 if (!smmu)
1779                         return -ENODEV;
1780                 master = kzalloc(sizeof(*master), GFP_KERNEL);
1781                 if (!master)
1782                         return -ENOMEM;
1783
1784                 master->smmu = smmu;
1785                 fwspec->iommu_priv = master;
1786         }
1787
1788         /* Check the SIDs are in range of the SMMU and our stream table */
1789         for (i = 0; i < fwspec->num_ids; i++) {
1790                 u32 sid = fwspec->ids[i];
1791
1792                 if (!arm_smmu_sid_in_range(smmu, sid))
1793                         return -ERANGE;
1794
1795                 /* Ensure l2 strtab is initialised */
1796                 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1797                         ret = arm_smmu_init_l2_strtab(smmu, sid);
1798                         if (ret)
1799                                 return ret;
1800                 }
1801         }
1802
1803         group = iommu_group_get_for_dev(dev);
1804         if (!IS_ERR(group)) {
1805                 iommu_group_put(group);
1806                 iommu_device_link(&smmu->iommu, dev);
1807         }
1808
1809         return PTR_ERR_OR_ZERO(group);
1810 }
1811
1812 static void arm_smmu_remove_device(struct device *dev)
1813 {
1814         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1815         struct arm_smmu_master_data *master;
1816         struct arm_smmu_device *smmu;
1817
1818         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1819                 return;
1820
1821         master = fwspec->iommu_priv;
1822         smmu = master->smmu;
1823         if (master && master->ste.assigned)
1824                 arm_smmu_detach_dev(dev);
1825         iommu_group_remove_device(dev);
1826         iommu_device_unlink(&smmu->iommu, dev);
1827         kfree(master);
1828         iommu_fwspec_free(dev);
1829 }
1830
1831 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1832 {
1833         struct iommu_group *group;
1834
1835         /*
1836          * We don't support devices sharing stream IDs other than PCI RID
1837          * aliases, since the necessary ID-to-device lookup becomes rather
1838          * impractical given a potential sparse 32-bit stream ID space.
1839          */
1840         if (dev_is_pci(dev))
1841                 group = pci_device_group(dev);
1842         else
1843                 group = generic_device_group(dev);
1844
1845         return group;
1846 }
1847
1848 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1849                                     enum iommu_attr attr, void *data)
1850 {
1851         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1852
1853         if (domain->type != IOMMU_DOMAIN_UNMANAGED)
1854                 return -EINVAL;
1855
1856         switch (attr) {
1857         case DOMAIN_ATTR_NESTING:
1858                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1859                 return 0;
1860         default:
1861                 return -ENODEV;
1862         }
1863 }
1864
1865 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1866                                     enum iommu_attr attr, void *data)
1867 {
1868         int ret = 0;
1869         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1870
1871         if (domain->type != IOMMU_DOMAIN_UNMANAGED)
1872                 return -EINVAL;
1873
1874         mutex_lock(&smmu_domain->init_mutex);
1875
1876         switch (attr) {
1877         case DOMAIN_ATTR_NESTING:
1878                 if (smmu_domain->smmu) {
1879                         ret = -EPERM;
1880                         goto out_unlock;
1881                 }
1882
1883                 if (*(int *)data)
1884                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1885                 else
1886                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1887
1888                 break;
1889         default:
1890                 ret = -ENODEV;
1891         }
1892
1893 out_unlock:
1894         mutex_unlock(&smmu_domain->init_mutex);
1895         return ret;
1896 }
1897
1898 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1899 {
1900         return iommu_fwspec_add_ids(dev, args->args, 1);
1901 }
1902
1903 static void arm_smmu_get_resv_regions(struct device *dev,
1904                                       struct list_head *head)
1905 {
1906         struct iommu_resv_region *region;
1907         int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1908
1909         region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
1910                                          prot, IOMMU_RESV_SW_MSI);
1911         if (!region)
1912                 return;
1913
1914         list_add_tail(&region->list, head);
1915
1916         iommu_dma_get_resv_regions(dev, head);
1917 }
1918
1919 static void arm_smmu_put_resv_regions(struct device *dev,
1920                                       struct list_head *head)
1921 {
1922         struct iommu_resv_region *entry, *next;
1923
1924         list_for_each_entry_safe(entry, next, head, list)
1925                 kfree(entry);
1926 }
1927
1928 static struct iommu_ops arm_smmu_ops = {
1929         .capable                = arm_smmu_capable,
1930         .domain_alloc           = arm_smmu_domain_alloc,
1931         .domain_free            = arm_smmu_domain_free,
1932         .attach_dev             = arm_smmu_attach_dev,
1933         .map                    = arm_smmu_map,
1934         .unmap                  = arm_smmu_unmap,
1935         .map_sg                 = default_iommu_map_sg,
1936         .iova_to_phys           = arm_smmu_iova_to_phys,
1937         .add_device             = arm_smmu_add_device,
1938         .remove_device          = arm_smmu_remove_device,
1939         .device_group           = arm_smmu_device_group,
1940         .domain_get_attr        = arm_smmu_domain_get_attr,
1941         .domain_set_attr        = arm_smmu_domain_set_attr,
1942         .of_xlate               = arm_smmu_of_xlate,
1943         .get_resv_regions       = arm_smmu_get_resv_regions,
1944         .put_resv_regions       = arm_smmu_put_resv_regions,
1945         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1946 };
1947
1948 /* Probing and initialisation functions */
1949 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1950                                    struct arm_smmu_queue *q,
1951                                    unsigned long prod_off,
1952                                    unsigned long cons_off,
1953                                    size_t dwords)
1954 {
1955         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1956
1957         q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1958         if (!q->base) {
1959                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1960                         qsz);
1961                 return -ENOMEM;
1962         }
1963
1964         q->prod_reg     = smmu->base + prod_off;
1965         q->cons_reg     = smmu->base + cons_off;
1966         q->ent_dwords   = dwords;
1967
1968         q->q_base  = Q_BASE_RWA;
1969         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1970         q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1971                      << Q_BASE_LOG2SIZE_SHIFT;
1972
1973         q->prod = q->cons = 0;
1974         return 0;
1975 }
1976
1977 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1978 {
1979         int ret;
1980
1981         /* cmdq */
1982         spin_lock_init(&smmu->cmdq.lock);
1983         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1984                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1985         if (ret)
1986                 return ret;
1987
1988         /* evtq */
1989         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1990                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1991         if (ret)
1992                 return ret;
1993
1994         /* priq */
1995         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1996                 return 0;
1997
1998         return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1999                                        ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
2000 }
2001
2002 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2003 {
2004         unsigned int i;
2005         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2006         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
2007         void *strtab = smmu->strtab_cfg.strtab;
2008
2009         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
2010         if (!cfg->l1_desc) {
2011                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2012                 return -ENOMEM;
2013         }
2014
2015         for (i = 0; i < cfg->num_l1_ents; ++i) {
2016                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2017                 strtab += STRTAB_L1_DESC_DWORDS << 3;
2018         }
2019
2020         return 0;
2021 }
2022
2023 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2024 {
2025         void *strtab;
2026         u64 reg;
2027         u32 size, l1size;
2028         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2029
2030         /* Calculate the L1 size, capped to the SIDSIZE. */
2031         size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2032         size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2033         cfg->num_l1_ents = 1 << size;
2034
2035         size += STRTAB_SPLIT;
2036         if (size < smmu->sid_bits)
2037                 dev_warn(smmu->dev,
2038                          "2-level strtab only covers %u/%u bits of SID\n",
2039                          size, smmu->sid_bits);
2040
2041         l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2042         strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2043                                      GFP_KERNEL | __GFP_ZERO);
2044         if (!strtab) {
2045                 dev_err(smmu->dev,
2046                         "failed to allocate l1 stream table (%u bytes)\n",
2047                         size);
2048                 return -ENOMEM;
2049         }
2050         cfg->strtab = strtab;
2051
2052         /* Configure strtab_base_cfg for 2 levels */
2053         reg  = STRTAB_BASE_CFG_FMT_2LVL;
2054         reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2055                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2056         reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2057                 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2058         cfg->strtab_base_cfg = reg;
2059
2060         return arm_smmu_init_l1_strtab(smmu);
2061 }
2062
2063 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2064 {
2065         void *strtab;
2066         u64 reg;
2067         u32 size;
2068         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2069
2070         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2071         strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2072                                      GFP_KERNEL | __GFP_ZERO);
2073         if (!strtab) {
2074                 dev_err(smmu->dev,
2075                         "failed to allocate linear stream table (%u bytes)\n",
2076                         size);
2077                 return -ENOMEM;
2078         }
2079         cfg->strtab = strtab;
2080         cfg->num_l1_ents = 1 << smmu->sid_bits;
2081
2082         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2083         reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2084         reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2085                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2086         cfg->strtab_base_cfg = reg;
2087
2088         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2089         return 0;
2090 }
2091
2092 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2093 {
2094         u64 reg;
2095         int ret;
2096
2097         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2098                 ret = arm_smmu_init_strtab_2lvl(smmu);
2099         else
2100                 ret = arm_smmu_init_strtab_linear(smmu);
2101
2102         if (ret)
2103                 return ret;
2104
2105         /* Set the strtab base address */
2106         reg  = smmu->strtab_cfg.strtab_dma &
2107                STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2108         reg |= STRTAB_BASE_RA;
2109         smmu->strtab_cfg.strtab_base = reg;
2110
2111         /* Allocate the first VMID for stage-2 bypass STEs */
2112         set_bit(0, smmu->vmid_map);
2113         return 0;
2114 }
2115
2116 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2117 {
2118         int ret;
2119
2120         ret = arm_smmu_init_queues(smmu);
2121         if (ret)
2122                 return ret;
2123
2124         return arm_smmu_init_strtab(smmu);
2125 }
2126
2127 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2128                                    unsigned int reg_off, unsigned int ack_off)
2129 {
2130         u32 reg;
2131
2132         writel_relaxed(val, smmu->base + reg_off);
2133         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2134                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2135 }
2136
2137 /* GBPA is "special" */
2138 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
2139 {
2140         int ret;
2141         u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
2142
2143         ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2144                                          1, ARM_SMMU_POLL_TIMEOUT_US);
2145         if (ret)
2146                 return ret;
2147
2148         reg &= ~clr;
2149         reg |= set;
2150         writel_relaxed(reg | GBPA_UPDATE, gbpa);
2151         return readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2152                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2153 }
2154
2155 static void arm_smmu_free_msis(void *data)
2156 {
2157         struct device *dev = data;
2158         platform_msi_domain_free_irqs(dev);
2159 }
2160
2161 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2162 {
2163         phys_addr_t doorbell;
2164         struct device *dev = msi_desc_to_dev(desc);
2165         struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2166         phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2167
2168         doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2169         doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2170
2171         writeq_relaxed(doorbell, smmu->base + cfg[0]);
2172         writel_relaxed(msg->data, smmu->base + cfg[1]);
2173         writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2174 }
2175
2176 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2177 {
2178         struct msi_desc *desc;
2179         int ret, nvec = ARM_SMMU_MAX_MSIS;
2180         struct device *dev = smmu->dev;
2181
2182         /* Clear the MSI address regs */
2183         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2184         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2185
2186         if (smmu->features & ARM_SMMU_FEAT_PRI)
2187                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2188         else
2189                 nvec--;
2190
2191         if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2192                 return;
2193
2194         /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2195         ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2196         if (ret) {
2197                 dev_warn(dev, "failed to allocate MSIs\n");
2198                 return;
2199         }
2200
2201         for_each_msi_entry(desc, dev) {
2202                 switch (desc->platform.msi_index) {
2203                 case EVTQ_MSI_INDEX:
2204                         smmu->evtq.q.irq = desc->irq;
2205                         break;
2206                 case GERROR_MSI_INDEX:
2207                         smmu->gerr_irq = desc->irq;
2208                         break;
2209                 case PRIQ_MSI_INDEX:
2210                         smmu->priq.q.irq = desc->irq;
2211                         break;
2212                 default:        /* Unknown */
2213                         continue;
2214                 }
2215         }
2216
2217         /* Add callback to free MSIs on teardown */
2218         devm_add_action(dev, arm_smmu_free_msis, dev);
2219 }
2220
2221 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2222 {
2223         int ret, irq;
2224         u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2225
2226         /* Disable IRQs first */
2227         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2228                                       ARM_SMMU_IRQ_CTRLACK);
2229         if (ret) {
2230                 dev_err(smmu->dev, "failed to disable irqs\n");
2231                 return ret;
2232         }
2233
2234         arm_smmu_setup_msis(smmu);
2235
2236         /* Request interrupt lines */
2237         irq = smmu->evtq.q.irq;
2238         if (irq) {
2239                 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2240                                                 arm_smmu_evtq_thread,
2241                                                 IRQF_ONESHOT,
2242                                                 "arm-smmu-v3-evtq", smmu);
2243                 if (ret < 0)
2244                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2245         }
2246
2247         irq = smmu->cmdq.q.irq;
2248         if (irq) {
2249                 ret = devm_request_irq(smmu->dev, irq,
2250                                        arm_smmu_cmdq_sync_handler, 0,
2251                                        "arm-smmu-v3-cmdq-sync", smmu);
2252                 if (ret < 0)
2253                         dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2254         }
2255
2256         irq = smmu->gerr_irq;
2257         if (irq) {
2258                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2259                                        0, "arm-smmu-v3-gerror", smmu);
2260                 if (ret < 0)
2261                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2262         }
2263
2264         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2265                 irq = smmu->priq.q.irq;
2266                 if (irq) {
2267                         ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2268                                                         arm_smmu_priq_thread,
2269                                                         IRQF_ONESHOT,
2270                                                         "arm-smmu-v3-priq",
2271                                                         smmu);
2272                         if (ret < 0)
2273                                 dev_warn(smmu->dev,
2274                                          "failed to enable priq irq\n");
2275                         else
2276                                 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2277                 }
2278         }
2279
2280         /* Enable interrupt generation on the SMMU */
2281         ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2282                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2283         if (ret)
2284                 dev_warn(smmu->dev, "failed to enable irqs\n");
2285
2286         return 0;
2287 }
2288
2289 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2290 {
2291         int ret;
2292
2293         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2294         if (ret)
2295                 dev_err(smmu->dev, "failed to clear cr0\n");
2296
2297         return ret;
2298 }
2299
2300 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2301 {
2302         int ret;
2303         u32 reg, enables;
2304         struct arm_smmu_cmdq_ent cmd;
2305
2306         /* Clear CR0 and sync (disables SMMU and queue processing) */
2307         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2308         if (reg & CR0_SMMUEN)
2309                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2310
2311         ret = arm_smmu_device_disable(smmu);
2312         if (ret)
2313                 return ret;
2314
2315         /* CR1 (table and queue memory attributes) */
2316         reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2317               (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2318               (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2319               (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2320               (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2321               (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2322         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2323
2324         /* CR2 (random crap) */
2325         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2326         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2327
2328         /* Stream table */
2329         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2330                        smmu->base + ARM_SMMU_STRTAB_BASE);
2331         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2332                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2333
2334         /* Command queue */
2335         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2336         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2337         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2338
2339         enables = CR0_CMDQEN;
2340         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2341                                       ARM_SMMU_CR0ACK);
2342         if (ret) {
2343                 dev_err(smmu->dev, "failed to enable command queue\n");
2344                 return ret;
2345         }
2346
2347         /* Invalidate any cached configuration */
2348         cmd.opcode = CMDQ_OP_CFGI_ALL;
2349         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2350         cmd.opcode = CMDQ_OP_CMD_SYNC;
2351         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2352
2353         /* Invalidate any stale TLB entries */
2354         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2355                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2356                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2357         }
2358
2359         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2360         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2361         cmd.opcode = CMDQ_OP_CMD_SYNC;
2362         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2363
2364         /* Event queue */
2365         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2366         writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2367         writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2368
2369         enables |= CR0_EVTQEN;
2370         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2371                                       ARM_SMMU_CR0ACK);
2372         if (ret) {
2373                 dev_err(smmu->dev, "failed to enable event queue\n");
2374                 return ret;
2375         }
2376
2377         /* PRI queue */
2378         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2379                 writeq_relaxed(smmu->priq.q.q_base,
2380                                smmu->base + ARM_SMMU_PRIQ_BASE);
2381                 writel_relaxed(smmu->priq.q.prod,
2382                                smmu->base + ARM_SMMU_PRIQ_PROD);
2383                 writel_relaxed(smmu->priq.q.cons,
2384                                smmu->base + ARM_SMMU_PRIQ_CONS);
2385
2386                 enables |= CR0_PRIQEN;
2387                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2388                                               ARM_SMMU_CR0ACK);
2389                 if (ret) {
2390                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2391                         return ret;
2392                 }
2393         }
2394
2395         ret = arm_smmu_setup_irqs(smmu);
2396         if (ret) {
2397                 dev_err(smmu->dev, "failed to setup irqs\n");
2398                 return ret;
2399         }
2400
2401
2402         /* Enable the SMMU interface, or ensure bypass */
2403         if (!bypass || disable_bypass) {
2404                 enables |= CR0_SMMUEN;
2405         } else {
2406                 ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
2407                 if (ret) {
2408                         dev_err(smmu->dev, "GBPA not responding to update\n");
2409                         return ret;
2410                 }
2411         }
2412         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2413                                       ARM_SMMU_CR0ACK);
2414         if (ret) {
2415                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2416                 return ret;
2417         }
2418
2419         return 0;
2420 }
2421
2422 static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
2423 {
2424         u32 reg;
2425         bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
2426
2427         /* IDR0 */
2428         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2429
2430         /* 2-level structures */
2431         if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2432                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2433
2434         if (reg & IDR0_CD2L)
2435                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2436
2437         /*
2438          * Translation table endianness.
2439          * We currently require the same endianness as the CPU, but this
2440          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2441          */
2442         switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2443         case IDR0_TTENDIAN_MIXED:
2444                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2445                 break;
2446 #ifdef __BIG_ENDIAN
2447         case IDR0_TTENDIAN_BE:
2448                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2449                 break;
2450 #else
2451         case IDR0_TTENDIAN_LE:
2452                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2453                 break;
2454 #endif
2455         default:
2456                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2457                 return -ENXIO;
2458         }
2459
2460         /* Boolean feature flags */
2461         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2462                 smmu->features |= ARM_SMMU_FEAT_PRI;
2463
2464         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2465                 smmu->features |= ARM_SMMU_FEAT_ATS;
2466
2467         if (reg & IDR0_SEV)
2468                 smmu->features |= ARM_SMMU_FEAT_SEV;
2469
2470         if (reg & IDR0_MSI)
2471                 smmu->features |= ARM_SMMU_FEAT_MSI;
2472
2473         if (reg & IDR0_HYP)
2474                 smmu->features |= ARM_SMMU_FEAT_HYP;
2475
2476         /*
2477          * The coherency feature as set by FW is used in preference to the ID
2478          * register, but warn on mismatch.
2479          */
2480         if (!!(reg & IDR0_COHACC) != coherent)
2481                 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2482                          coherent ? "true" : "false");
2483
2484         switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2485         case IDR0_STALL_MODEL_STALL:
2486                 /* Fallthrough */
2487         case IDR0_STALL_MODEL_FORCE:
2488                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2489         }
2490
2491         if (reg & IDR0_S1P)
2492                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2493
2494         if (reg & IDR0_S2P)
2495                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2496
2497         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2498                 dev_err(smmu->dev, "no translation support!\n");
2499                 return -ENXIO;
2500         }
2501
2502         /* We only support the AArch64 table format at present */
2503         switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2504         case IDR0_TTF_AARCH32_64:
2505                 smmu->ias = 40;
2506                 /* Fallthrough */
2507         case IDR0_TTF_AARCH64:
2508                 break;
2509         default:
2510                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2511                 return -ENXIO;
2512         }
2513
2514         /* ASID/VMID sizes */
2515         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2516         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2517
2518         /* IDR1 */
2519         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2520         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2521                 dev_err(smmu->dev, "embedded implementation not supported\n");
2522                 return -ENXIO;
2523         }
2524
2525         /* Queue sizes, capped at 4k */
2526         smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2527                                        reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2528         if (!smmu->cmdq.q.max_n_shift) {
2529                 /* Odd alignment restrictions on the base, so ignore for now */
2530                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2531                 return -ENXIO;
2532         }
2533
2534         smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2535                                        reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2536         smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2537                                        reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2538
2539         /* SID/SSID sizes */
2540         smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2541         smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2542
2543         /*
2544          * If the SMMU supports fewer bits than would fill a single L2 stream
2545          * table, use a linear table instead.
2546          */
2547         if (smmu->sid_bits <= STRTAB_SPLIT)
2548                 smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;
2549
2550         /* IDR5 */
2551         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2552
2553         /* Maximum number of outstanding stalls */
2554         smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2555                                 & IDR5_STALL_MAX_MASK;
2556
2557         /* Page sizes */
2558         if (reg & IDR5_GRAN64K)
2559                 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2560         if (reg & IDR5_GRAN16K)
2561                 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2562         if (reg & IDR5_GRAN4K)
2563                 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2564
2565         if (arm_smmu_ops.pgsize_bitmap == -1UL)
2566                 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2567         else
2568                 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2569
2570         /* Output address size */
2571         switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2572         case IDR5_OAS_32_BIT:
2573                 smmu->oas = 32;
2574                 break;
2575         case IDR5_OAS_36_BIT:
2576                 smmu->oas = 36;
2577                 break;
2578         case IDR5_OAS_40_BIT:
2579                 smmu->oas = 40;
2580                 break;
2581         case IDR5_OAS_42_BIT:
2582                 smmu->oas = 42;
2583                 break;
2584         case IDR5_OAS_44_BIT:
2585                 smmu->oas = 44;
2586                 break;
2587         default:
2588                 dev_info(smmu->dev,
2589                         "unknown output address size. Truncating to 48-bit\n");
2590                 /* Fallthrough */
2591         case IDR5_OAS_48_BIT:
2592                 smmu->oas = 48;
2593         }
2594
2595         /* Set the DMA mask for our table walker */
2596         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2597                 dev_warn(smmu->dev,
2598                          "failed to set DMA mask for table walker\n");
2599
2600         smmu->ias = max(smmu->ias, smmu->oas);
2601
2602         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2603                  smmu->ias, smmu->oas, smmu->features);
2604         return 0;
2605 }
2606
2607 #ifdef CONFIG_ACPI
2608 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2609                                       struct arm_smmu_device *smmu)
2610 {
2611         struct acpi_iort_smmu_v3 *iort_smmu;
2612         struct device *dev = smmu->dev;
2613         struct acpi_iort_node *node;
2614
2615         node = *(struct acpi_iort_node **)dev_get_platdata(dev);
2616
2617         /* Retrieve SMMUv3 specific data */
2618         iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
2619
2620         if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
2621                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2622
2623         return 0;
2624 }
2625 #else
2626 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2627                                              struct arm_smmu_device *smmu)
2628 {
2629         return -ENODEV;
2630 }
2631 #endif
2632
2633 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
2634                                     struct arm_smmu_device *smmu)
2635 {
2636         struct device *dev = &pdev->dev;
2637         u32 cells;
2638         int ret = -EINVAL;
2639
2640         if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
2641                 dev_err(dev, "missing #iommu-cells property\n");
2642         else if (cells != 1)
2643                 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
2644         else
2645                 ret = 0;
2646
2647         parse_driver_options(smmu);
2648
2649         if (of_dma_is_coherent(dev->of_node))
2650                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2651
2652         return ret;
2653 }
2654
2655 static int arm_smmu_device_probe(struct platform_device *pdev)
2656 {
2657         int irq, ret;
2658         struct resource *res;
2659         resource_size_t ioaddr;
2660         struct arm_smmu_device *smmu;
2661         struct device *dev = &pdev->dev;
2662         bool bypass;
2663
2664         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2665         if (!smmu) {
2666                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2667                 return -ENOMEM;
2668         }
2669         smmu->dev = dev;
2670
2671         /* Base address */
2672         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2673         if (resource_size(res) + 1 < SZ_128K) {
2674                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2675                 return -EINVAL;
2676         }
2677         ioaddr = res->start;
2678
2679         smmu->base = devm_ioremap_resource(dev, res);
2680         if (IS_ERR(smmu->base))
2681                 return PTR_ERR(smmu->base);
2682
2683         /* Interrupt lines */
2684         irq = platform_get_irq_byname(pdev, "eventq");
2685         if (irq > 0)
2686                 smmu->evtq.q.irq = irq;
2687
2688         irq = platform_get_irq_byname(pdev, "priq");
2689         if (irq > 0)
2690                 smmu->priq.q.irq = irq;
2691
2692         irq = platform_get_irq_byname(pdev, "cmdq-sync");
2693         if (irq > 0)
2694                 smmu->cmdq.q.irq = irq;
2695
2696         irq = platform_get_irq_byname(pdev, "gerror");
2697         if (irq > 0)
2698                 smmu->gerr_irq = irq;
2699
2700         if (dev->of_node) {
2701                 ret = arm_smmu_device_dt_probe(pdev, smmu);
2702         } else {
2703                 ret = arm_smmu_device_acpi_probe(pdev, smmu);
2704                 if (ret == -ENODEV)
2705                         return ret;
2706         }
2707
2708         /* Set bypass mode according to firmware probing result */
2709         bypass = !!ret;
2710
2711         /* Probe the h/w */
2712         ret = arm_smmu_device_hw_probe(smmu);
2713         if (ret)
2714                 return ret;
2715
2716         /* Initialise in-memory data structures */
2717         ret = arm_smmu_init_structures(smmu);
2718         if (ret)
2719                 return ret;
2720
2721         /* Record our private device structure */
2722         platform_set_drvdata(pdev, smmu);
2723
2724         /* Reset the device */
2725         ret = arm_smmu_device_reset(smmu, bypass);
2726         if (ret)
2727                 return ret;
2728
2729         /* And we're up. Go go go! */
2730         ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
2731                                      "smmu3.%pa", &ioaddr);
2732         if (ret)
2733                 return ret;
2734
2735         iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
2736         iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);
2737
2738         ret = iommu_device_register(&smmu->iommu);
2739
2740 #ifdef CONFIG_PCI
2741         if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
2742                 pci_request_acs();
2743                 ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2744                 if (ret)
2745                         return ret;
2746         }
2747 #endif
2748 #ifdef CONFIG_ARM_AMBA
2749         if (amba_bustype.iommu_ops != &arm_smmu_ops) {
2750                 ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2751                 if (ret)
2752                         return ret;
2753         }
2754 #endif
2755         if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
2756                 ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2757                 if (ret)
2758                         return ret;
2759         }
2760         return 0;
2761 }
2762
2763 static int arm_smmu_device_remove(struct platform_device *pdev)
2764 {
2765         struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2766
2767         arm_smmu_device_disable(smmu);
2768         return 0;
2769 }
2770
2771 static struct of_device_id arm_smmu_of_match[] = {
2772         { .compatible = "arm,smmu-v3", },
2773         { },
2774 };
2775 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2776
2777 static struct platform_driver arm_smmu_driver = {
2778         .driver = {
2779                 .name           = "arm-smmu-v3",
2780                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2781         },
2782         .probe  = arm_smmu_device_probe,
2783         .remove = arm_smmu_device_remove,
2784 };
2785 module_platform_driver(arm_smmu_driver);
2786
2787 IOMMU_OF_DECLARE(arm_smmuv3, "arm,smmu-v3", NULL);
2788
2789 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2790 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2791 MODULE_LICENSE("GPL v2");