]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/iommu/arm-smmu.c
Merge branches 'intel_pstate' and 'pm-domains'
[karo-tx-linux.git] / drivers / iommu / arm-smmu.c
1 /*
2  * IOMMU API for ARM architected SMMU implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16  *
17  * Copyright (C) 2013 ARM Limited
18  *
19  * Author: Will Deacon <will.deacon@arm.com>
20  *
21  * This driver currently supports:
22  *      - SMMUv1 and v2 implementations
23  *      - Stream-matching and stream-indexing
24  *      - v7/v8 long-descriptor format
25  *      - Non-secure access to the SMMU
26  *      - Context fault reporting
27  *      - Extended Stream ID (16 bit)
28  */
29
30 #define pr_fmt(fmt) "arm-smmu: " fmt
31
32 #include <linux/acpi.h>
33 #include <linux/acpi_iort.h>
34 #include <linux/atomic.h>
35 #include <linux/delay.h>
36 #include <linux/dma-iommu.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/err.h>
39 #include <linux/interrupt.h>
40 #include <linux/io.h>
41 #include <linux/io-64-nonatomic-hi-lo.h>
42 #include <linux/iommu.h>
43 #include <linux/iopoll.h>
44 #include <linux/module.h>
45 #include <linux/of.h>
46 #include <linux/of_address.h>
47 #include <linux/of_device.h>
48 #include <linux/of_iommu.h>
49 #include <linux/pci.h>
50 #include <linux/platform_device.h>
51 #include <linux/slab.h>
52 #include <linux/spinlock.h>
53
54 #include <linux/amba/bus.h>
55
56 #include "io-pgtable.h"
57
58 /* Maximum number of context banks per SMMU */
59 #define ARM_SMMU_MAX_CBS                128
60
61 /* SMMU global address space */
62 #define ARM_SMMU_GR0(smmu)              ((smmu)->base)
63 #define ARM_SMMU_GR1(smmu)              ((smmu)->base + (1 << (smmu)->pgshift))
64
65 /*
66  * SMMU global address space with conditional offset to access secure
67  * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
68  * nsGFSYNR0: 0x450)
69  */
70 #define ARM_SMMU_GR0_NS(smmu)                                           \
71         ((smmu)->base +                                                 \
72                 ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)       \
73                         ? 0x400 : 0))
74
75 /*
76  * Some 64-bit registers only make sense to write atomically, but in such
77  * cases all the data relevant to AArch32 formats lies within the lower word,
78  * therefore this actually makes more sense than it might first appear.
79  */
80 #ifdef CONFIG_64BIT
81 #define smmu_write_atomic_lq            writeq_relaxed
82 #else
83 #define smmu_write_atomic_lq            writel_relaxed
84 #endif
85
86 /* Configuration registers */
87 #define ARM_SMMU_GR0_sCR0               0x0
88 #define sCR0_CLIENTPD                   (1 << 0)
89 #define sCR0_GFRE                       (1 << 1)
90 #define sCR0_GFIE                       (1 << 2)
91 #define sCR0_EXIDENABLE                 (1 << 3)
92 #define sCR0_GCFGFRE                    (1 << 4)
93 #define sCR0_GCFGFIE                    (1 << 5)
94 #define sCR0_USFCFG                     (1 << 10)
95 #define sCR0_VMIDPNE                    (1 << 11)
96 #define sCR0_PTM                        (1 << 12)
97 #define sCR0_FB                         (1 << 13)
98 #define sCR0_VMID16EN                   (1 << 31)
99 #define sCR0_BSU_SHIFT                  14
100 #define sCR0_BSU_MASK                   0x3
101
102 /* Auxiliary Configuration register */
103 #define ARM_SMMU_GR0_sACR               0x10
104
105 /* Identification registers */
106 #define ARM_SMMU_GR0_ID0                0x20
107 #define ARM_SMMU_GR0_ID1                0x24
108 #define ARM_SMMU_GR0_ID2                0x28
109 #define ARM_SMMU_GR0_ID3                0x2c
110 #define ARM_SMMU_GR0_ID4                0x30
111 #define ARM_SMMU_GR0_ID5                0x34
112 #define ARM_SMMU_GR0_ID6                0x38
113 #define ARM_SMMU_GR0_ID7                0x3c
114 #define ARM_SMMU_GR0_sGFSR              0x48
115 #define ARM_SMMU_GR0_sGFSYNR0           0x50
116 #define ARM_SMMU_GR0_sGFSYNR1           0x54
117 #define ARM_SMMU_GR0_sGFSYNR2           0x58
118
119 #define ID0_S1TS                        (1 << 30)
120 #define ID0_S2TS                        (1 << 29)
121 #define ID0_NTS                         (1 << 28)
122 #define ID0_SMS                         (1 << 27)
123 #define ID0_ATOSNS                      (1 << 26)
124 #define ID0_PTFS_NO_AARCH32             (1 << 25)
125 #define ID0_PTFS_NO_AARCH32S            (1 << 24)
126 #define ID0_CTTW                        (1 << 14)
127 #define ID0_NUMIRPT_SHIFT               16
128 #define ID0_NUMIRPT_MASK                0xff
129 #define ID0_NUMSIDB_SHIFT               9
130 #define ID0_NUMSIDB_MASK                0xf
131 #define ID0_EXIDS                       (1 << 8)
132 #define ID0_NUMSMRG_SHIFT               0
133 #define ID0_NUMSMRG_MASK                0xff
134
135 #define ID1_PAGESIZE                    (1 << 31)
136 #define ID1_NUMPAGENDXB_SHIFT           28
137 #define ID1_NUMPAGENDXB_MASK            7
138 #define ID1_NUMS2CB_SHIFT               16
139 #define ID1_NUMS2CB_MASK                0xff
140 #define ID1_NUMCB_SHIFT                 0
141 #define ID1_NUMCB_MASK                  0xff
142
143 #define ID2_OAS_SHIFT                   4
144 #define ID2_OAS_MASK                    0xf
145 #define ID2_IAS_SHIFT                   0
146 #define ID2_IAS_MASK                    0xf
147 #define ID2_UBS_SHIFT                   8
148 #define ID2_UBS_MASK                    0xf
149 #define ID2_PTFS_4K                     (1 << 12)
150 #define ID2_PTFS_16K                    (1 << 13)
151 #define ID2_PTFS_64K                    (1 << 14)
152 #define ID2_VMID16                      (1 << 15)
153
154 #define ID7_MAJOR_SHIFT                 4
155 #define ID7_MAJOR_MASK                  0xf
156
157 /* Global TLB invalidation */
158 #define ARM_SMMU_GR0_TLBIVMID           0x64
159 #define ARM_SMMU_GR0_TLBIALLNSNH        0x68
160 #define ARM_SMMU_GR0_TLBIALLH           0x6c
161 #define ARM_SMMU_GR0_sTLBGSYNC          0x70
162 #define ARM_SMMU_GR0_sTLBGSTATUS        0x74
163 #define sTLBGSTATUS_GSACTIVE            (1 << 0)
164 #define TLB_LOOP_TIMEOUT                1000000 /* 1s! */
165 #define TLB_SPIN_COUNT                  10
166
167 /* Stream mapping registers */
168 #define ARM_SMMU_GR0_SMR(n)             (0x800 + ((n) << 2))
169 #define SMR_VALID                       (1 << 31)
170 #define SMR_MASK_SHIFT                  16
171 #define SMR_ID_SHIFT                    0
172
173 #define ARM_SMMU_GR0_S2CR(n)            (0xc00 + ((n) << 2))
174 #define S2CR_CBNDX_SHIFT                0
175 #define S2CR_CBNDX_MASK                 0xff
176 #define S2CR_EXIDVALID                  (1 << 10)
177 #define S2CR_TYPE_SHIFT                 16
178 #define S2CR_TYPE_MASK                  0x3
179 enum arm_smmu_s2cr_type {
180         S2CR_TYPE_TRANS,
181         S2CR_TYPE_BYPASS,
182         S2CR_TYPE_FAULT,
183 };
184
185 #define S2CR_PRIVCFG_SHIFT              24
186 #define S2CR_PRIVCFG_MASK               0x3
187 enum arm_smmu_s2cr_privcfg {
188         S2CR_PRIVCFG_DEFAULT,
189         S2CR_PRIVCFG_DIPAN,
190         S2CR_PRIVCFG_UNPRIV,
191         S2CR_PRIVCFG_PRIV,
192 };
193
194 /* Context bank attribute registers */
195 #define ARM_SMMU_GR1_CBAR(n)            (0x0 + ((n) << 2))
196 #define CBAR_VMID_SHIFT                 0
197 #define CBAR_VMID_MASK                  0xff
198 #define CBAR_S1_BPSHCFG_SHIFT           8
199 #define CBAR_S1_BPSHCFG_MASK            3
200 #define CBAR_S1_BPSHCFG_NSH             3
201 #define CBAR_S1_MEMATTR_SHIFT           12
202 #define CBAR_S1_MEMATTR_MASK            0xf
203 #define CBAR_S1_MEMATTR_WB              0xf
204 #define CBAR_TYPE_SHIFT                 16
205 #define CBAR_TYPE_MASK                  0x3
206 #define CBAR_TYPE_S2_TRANS              (0 << CBAR_TYPE_SHIFT)
207 #define CBAR_TYPE_S1_TRANS_S2_BYPASS    (1 << CBAR_TYPE_SHIFT)
208 #define CBAR_TYPE_S1_TRANS_S2_FAULT     (2 << CBAR_TYPE_SHIFT)
209 #define CBAR_TYPE_S1_TRANS_S2_TRANS     (3 << CBAR_TYPE_SHIFT)
210 #define CBAR_IRPTNDX_SHIFT              24
211 #define CBAR_IRPTNDX_MASK               0xff
212
213 #define ARM_SMMU_GR1_CBA2R(n)           (0x800 + ((n) << 2))
214 #define CBA2R_RW64_32BIT                (0 << 0)
215 #define CBA2R_RW64_64BIT                (1 << 0)
216 #define CBA2R_VMID_SHIFT                16
217 #define CBA2R_VMID_MASK                 0xffff
218
219 /* Translation context bank */
220 #define ARM_SMMU_CB(smmu, n)    ((smmu)->cb_base + ((n) << (smmu)->pgshift))
221
222 #define ARM_SMMU_CB_SCTLR               0x0
223 #define ARM_SMMU_CB_ACTLR               0x4
224 #define ARM_SMMU_CB_RESUME              0x8
225 #define ARM_SMMU_CB_TTBCR2              0x10
226 #define ARM_SMMU_CB_TTBR0               0x20
227 #define ARM_SMMU_CB_TTBR1               0x28
228 #define ARM_SMMU_CB_TTBCR               0x30
229 #define ARM_SMMU_CB_CONTEXTIDR          0x34
230 #define ARM_SMMU_CB_S1_MAIR0            0x38
231 #define ARM_SMMU_CB_S1_MAIR1            0x3c
232 #define ARM_SMMU_CB_PAR                 0x50
233 #define ARM_SMMU_CB_FSR                 0x58
234 #define ARM_SMMU_CB_FAR                 0x60
235 #define ARM_SMMU_CB_FSYNR0              0x68
236 #define ARM_SMMU_CB_S1_TLBIVA           0x600
237 #define ARM_SMMU_CB_S1_TLBIASID         0x610
238 #define ARM_SMMU_CB_S1_TLBIVAL          0x620
239 #define ARM_SMMU_CB_S2_TLBIIPAS2        0x630
240 #define ARM_SMMU_CB_S2_TLBIIPAS2L       0x638
241 #define ARM_SMMU_CB_TLBSYNC             0x7f0
242 #define ARM_SMMU_CB_TLBSTATUS           0x7f4
243 #define ARM_SMMU_CB_ATS1PR              0x800
244 #define ARM_SMMU_CB_ATSR                0x8f0
245
246 #define SCTLR_S1_ASIDPNE                (1 << 12)
247 #define SCTLR_CFCFG                     (1 << 7)
248 #define SCTLR_CFIE                      (1 << 6)
249 #define SCTLR_CFRE                      (1 << 5)
250 #define SCTLR_E                         (1 << 4)
251 #define SCTLR_AFE                       (1 << 2)
252 #define SCTLR_TRE                       (1 << 1)
253 #define SCTLR_M                         (1 << 0)
254
255 #define ARM_MMU500_ACTLR_CPRE           (1 << 1)
256
257 #define ARM_MMU500_ACR_CACHE_LOCK       (1 << 26)
258 #define ARM_MMU500_ACR_SMTNMB_TLBEN     (1 << 8)
259
260 #define CB_PAR_F                        (1 << 0)
261
262 #define ATSR_ACTIVE                     (1 << 0)
263
264 #define RESUME_RETRY                    (0 << 0)
265 #define RESUME_TERMINATE                (1 << 0)
266
267 #define TTBCR2_SEP_SHIFT                15
268 #define TTBCR2_SEP_UPSTREAM             (0x7 << TTBCR2_SEP_SHIFT)
269 #define TTBCR2_AS                       (1 << 4)
270
271 #define TTBRn_ASID_SHIFT                48
272
273 #define FSR_MULTI                       (1 << 31)
274 #define FSR_SS                          (1 << 30)
275 #define FSR_UUT                         (1 << 8)
276 #define FSR_ASF                         (1 << 7)
277 #define FSR_TLBLKF                      (1 << 6)
278 #define FSR_TLBMCF                      (1 << 5)
279 #define FSR_EF                          (1 << 4)
280 #define FSR_PF                          (1 << 3)
281 #define FSR_AFF                         (1 << 2)
282 #define FSR_TF                          (1 << 1)
283
284 #define FSR_IGN                         (FSR_AFF | FSR_ASF | \
285                                          FSR_TLBMCF | FSR_TLBLKF)
286 #define FSR_FAULT                       (FSR_MULTI | FSR_SS | FSR_UUT | \
287                                          FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
288
289 #define FSYNR0_WNR                      (1 << 4)
290
291 #define MSI_IOVA_BASE                   0x8000000
292 #define MSI_IOVA_LENGTH                 0x100000
293
294 static int force_stage;
295 module_param(force_stage, int, S_IRUGO);
296 MODULE_PARM_DESC(force_stage,
297         "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
298 static bool disable_bypass;
299 module_param(disable_bypass, bool, S_IRUGO);
300 MODULE_PARM_DESC(disable_bypass,
301         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
302
303 enum arm_smmu_arch_version {
304         ARM_SMMU_V1,
305         ARM_SMMU_V1_64K,
306         ARM_SMMU_V2,
307 };
308
309 enum arm_smmu_implementation {
310         GENERIC_SMMU,
311         ARM_MMU500,
312         CAVIUM_SMMUV2,
313 };
314
315 /* Until ACPICA headers cover IORT rev. C */
316 #ifndef ACPI_IORT_SMMU_CORELINK_MMU401
317 #define ACPI_IORT_SMMU_CORELINK_MMU401  0x4
318 #endif
319 #ifndef ACPI_IORT_SMMU_CAVIUM_THUNDERX
320 #define ACPI_IORT_SMMU_CAVIUM_THUNDERX  0x5
321 #endif
322
323 struct arm_smmu_s2cr {
324         struct iommu_group              *group;
325         int                             count;
326         enum arm_smmu_s2cr_type         type;
327         enum arm_smmu_s2cr_privcfg      privcfg;
328         u8                              cbndx;
329 };
330
331 #define s2cr_init_val (struct arm_smmu_s2cr){                           \
332         .type = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS,    \
333 }
334
335 struct arm_smmu_smr {
336         u16                             mask;
337         u16                             id;
338         bool                            valid;
339 };
340
341 struct arm_smmu_master_cfg {
342         struct arm_smmu_device          *smmu;
343         s16                             smendx[];
344 };
345 #define INVALID_SMENDX                  -1
346 #define __fwspec_cfg(fw) ((struct arm_smmu_master_cfg *)fw->iommu_priv)
347 #define fwspec_smmu(fw)  (__fwspec_cfg(fw)->smmu)
348 #define fwspec_smendx(fw, i) \
349         (i >= fw->num_ids ? INVALID_SMENDX : __fwspec_cfg(fw)->smendx[i])
350 #define for_each_cfg_sme(fw, i, idx) \
351         for (i = 0; idx = fwspec_smendx(fw, i), i < fw->num_ids; ++i)
352
353 struct arm_smmu_device {
354         struct device                   *dev;
355
356         void __iomem                    *base;
357         void __iomem                    *cb_base;
358         unsigned long                   pgshift;
359
360 #define ARM_SMMU_FEAT_COHERENT_WALK     (1 << 0)
361 #define ARM_SMMU_FEAT_STREAM_MATCH      (1 << 1)
362 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 2)
363 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 3)
364 #define ARM_SMMU_FEAT_TRANS_NESTED      (1 << 4)
365 #define ARM_SMMU_FEAT_TRANS_OPS         (1 << 5)
366 #define ARM_SMMU_FEAT_VMID16            (1 << 6)
367 #define ARM_SMMU_FEAT_FMT_AARCH64_4K    (1 << 7)
368 #define ARM_SMMU_FEAT_FMT_AARCH64_16K   (1 << 8)
369 #define ARM_SMMU_FEAT_FMT_AARCH64_64K   (1 << 9)
370 #define ARM_SMMU_FEAT_FMT_AARCH32_L     (1 << 10)
371 #define ARM_SMMU_FEAT_FMT_AARCH32_S     (1 << 11)
372 #define ARM_SMMU_FEAT_EXIDS             (1 << 12)
373         u32                             features;
374
375 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
376         u32                             options;
377         enum arm_smmu_arch_version      version;
378         enum arm_smmu_implementation    model;
379
380         u32                             num_context_banks;
381         u32                             num_s2_context_banks;
382         DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
383         atomic_t                        irptndx;
384
385         u32                             num_mapping_groups;
386         u16                             streamid_mask;
387         u16                             smr_mask_mask;
388         struct arm_smmu_smr             *smrs;
389         struct arm_smmu_s2cr            *s2crs;
390         struct mutex                    stream_map_mutex;
391
392         unsigned long                   va_size;
393         unsigned long                   ipa_size;
394         unsigned long                   pa_size;
395         unsigned long                   pgsize_bitmap;
396
397         u32                             num_global_irqs;
398         u32                             num_context_irqs;
399         unsigned int                    *irqs;
400
401         u32                             cavium_id_base; /* Specific to Cavium */
402
403         /* IOMMU core code handle */
404         struct iommu_device             iommu;
405 };
406
407 enum arm_smmu_context_fmt {
408         ARM_SMMU_CTX_FMT_NONE,
409         ARM_SMMU_CTX_FMT_AARCH64,
410         ARM_SMMU_CTX_FMT_AARCH32_L,
411         ARM_SMMU_CTX_FMT_AARCH32_S,
412 };
413
414 struct arm_smmu_cfg {
415         u8                              cbndx;
416         u8                              irptndx;
417         union {
418                 u16                     asid;
419                 u16                     vmid;
420         };
421         u32                             cbar;
422         enum arm_smmu_context_fmt       fmt;
423 };
424 #define INVALID_IRPTNDX                 0xff
425
426 enum arm_smmu_domain_stage {
427         ARM_SMMU_DOMAIN_S1 = 0,
428         ARM_SMMU_DOMAIN_S2,
429         ARM_SMMU_DOMAIN_NESTED,
430         ARM_SMMU_DOMAIN_BYPASS,
431 };
432
433 struct arm_smmu_domain {
434         struct arm_smmu_device          *smmu;
435         struct io_pgtable_ops           *pgtbl_ops;
436         struct arm_smmu_cfg             cfg;
437         enum arm_smmu_domain_stage      stage;
438         struct mutex                    init_mutex; /* Protects smmu pointer */
439         spinlock_t                      cb_lock; /* Serialises ATS1* ops */
440         struct iommu_domain             domain;
441 };
442
443 struct arm_smmu_option_prop {
444         u32 opt;
445         const char *prop;
446 };
447
448 static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);
449
450 static bool using_legacy_binding, using_generic_binding;
451
452 static struct arm_smmu_option_prop arm_smmu_options[] = {
453         { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
454         { 0, NULL},
455 };
456
457 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
458 {
459         return container_of(dom, struct arm_smmu_domain, domain);
460 }
461
462 static void parse_driver_options(struct arm_smmu_device *smmu)
463 {
464         int i = 0;
465
466         do {
467                 if (of_property_read_bool(smmu->dev->of_node,
468                                                 arm_smmu_options[i].prop)) {
469                         smmu->options |= arm_smmu_options[i].opt;
470                         dev_notice(smmu->dev, "option %s\n",
471                                 arm_smmu_options[i].prop);
472                 }
473         } while (arm_smmu_options[++i].opt);
474 }
475
476 static struct device_node *dev_get_dev_node(struct device *dev)
477 {
478         if (dev_is_pci(dev)) {
479                 struct pci_bus *bus = to_pci_dev(dev)->bus;
480
481                 while (!pci_is_root_bus(bus))
482                         bus = bus->parent;
483                 return of_node_get(bus->bridge->parent->of_node);
484         }
485
486         return of_node_get(dev->of_node);
487 }
488
489 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
490 {
491         *((__be32 *)data) = cpu_to_be32(alias);
492         return 0; /* Continue walking */
493 }
494
495 static int __find_legacy_master_phandle(struct device *dev, void *data)
496 {
497         struct of_phandle_iterator *it = *(void **)data;
498         struct device_node *np = it->node;
499         int err;
500
501         of_for_each_phandle(it, err, dev->of_node, "mmu-masters",
502                             "#stream-id-cells", 0)
503                 if (it->node == np) {
504                         *(void **)data = dev;
505                         return 1;
506                 }
507         it->node = np;
508         return err == -ENOENT ? 0 : err;
509 }
510
511 static struct platform_driver arm_smmu_driver;
512 static struct iommu_ops arm_smmu_ops;
513
514 static int arm_smmu_register_legacy_master(struct device *dev,
515                                            struct arm_smmu_device **smmu)
516 {
517         struct device *smmu_dev;
518         struct device_node *np;
519         struct of_phandle_iterator it;
520         void *data = &it;
521         u32 *sids;
522         __be32 pci_sid;
523         int err;
524
525         np = dev_get_dev_node(dev);
526         if (!np || !of_find_property(np, "#stream-id-cells", NULL)) {
527                 of_node_put(np);
528                 return -ENODEV;
529         }
530
531         it.node = np;
532         err = driver_for_each_device(&arm_smmu_driver.driver, NULL, &data,
533                                      __find_legacy_master_phandle);
534         smmu_dev = data;
535         of_node_put(np);
536         if (err == 0)
537                 return -ENODEV;
538         if (err < 0)
539                 return err;
540
541         if (dev_is_pci(dev)) {
542                 /* "mmu-masters" assumes Stream ID == Requester ID */
543                 pci_for_each_dma_alias(to_pci_dev(dev), __arm_smmu_get_pci_sid,
544                                        &pci_sid);
545                 it.cur = &pci_sid;
546                 it.cur_count = 1;
547         }
548
549         err = iommu_fwspec_init(dev, &smmu_dev->of_node->fwnode,
550                                 &arm_smmu_ops);
551         if (err)
552                 return err;
553
554         sids = kcalloc(it.cur_count, sizeof(*sids), GFP_KERNEL);
555         if (!sids)
556                 return -ENOMEM;
557
558         *smmu = dev_get_drvdata(smmu_dev);
559         of_phandle_iterator_args(&it, sids, it.cur_count);
560         err = iommu_fwspec_add_ids(dev, sids, it.cur_count);
561         kfree(sids);
562         return err;
563 }
564
565 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
566 {
567         int idx;
568
569         do {
570                 idx = find_next_zero_bit(map, end, start);
571                 if (idx == end)
572                         return -ENOSPC;
573         } while (test_and_set_bit(idx, map));
574
575         return idx;
576 }
577
578 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
579 {
580         clear_bit(idx, map);
581 }
582
583 /* Wait for any pending TLB invalidations to complete */
584 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu,
585                                 void __iomem *sync, void __iomem *status)
586 {
587         unsigned int spin_cnt, delay;
588
589         writel_relaxed(0, sync);
590         for (delay = 1; delay < TLB_LOOP_TIMEOUT; delay *= 2) {
591                 for (spin_cnt = TLB_SPIN_COUNT; spin_cnt > 0; spin_cnt--) {
592                         if (!(readl_relaxed(status) & sTLBGSTATUS_GSACTIVE))
593                                 return;
594                         cpu_relax();
595                 }
596                 udelay(delay);
597         }
598         dev_err_ratelimited(smmu->dev,
599                             "TLB sync timed out -- SMMU may be deadlocked\n");
600 }
601
602 static void arm_smmu_tlb_sync_global(struct arm_smmu_device *smmu)
603 {
604         void __iomem *base = ARM_SMMU_GR0(smmu);
605
606         __arm_smmu_tlb_sync(smmu, base + ARM_SMMU_GR0_sTLBGSYNC,
607                             base + ARM_SMMU_GR0_sTLBGSTATUS);
608 }
609
610 static void arm_smmu_tlb_sync_context(void *cookie)
611 {
612         struct arm_smmu_domain *smmu_domain = cookie;
613         struct arm_smmu_device *smmu = smmu_domain->smmu;
614         void __iomem *base = ARM_SMMU_CB(smmu, smmu_domain->cfg.cbndx);
615
616         __arm_smmu_tlb_sync(smmu, base + ARM_SMMU_CB_TLBSYNC,
617                             base + ARM_SMMU_CB_TLBSTATUS);
618 }
619
620 static void arm_smmu_tlb_sync_vmid(void *cookie)
621 {
622         struct arm_smmu_domain *smmu_domain = cookie;
623
624         arm_smmu_tlb_sync_global(smmu_domain->smmu);
625 }
626
627 static void arm_smmu_tlb_inv_context_s1(void *cookie)
628 {
629         struct arm_smmu_domain *smmu_domain = cookie;
630         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
631         void __iomem *base = ARM_SMMU_CB(smmu_domain->smmu, cfg->cbndx);
632
633         writel_relaxed(cfg->asid, base + ARM_SMMU_CB_S1_TLBIASID);
634         arm_smmu_tlb_sync_context(cookie);
635 }
636
637 static void arm_smmu_tlb_inv_context_s2(void *cookie)
638 {
639         struct arm_smmu_domain *smmu_domain = cookie;
640         struct arm_smmu_device *smmu = smmu_domain->smmu;
641         void __iomem *base = ARM_SMMU_GR0(smmu);
642
643         writel_relaxed(smmu_domain->cfg.vmid, base + ARM_SMMU_GR0_TLBIVMID);
644         arm_smmu_tlb_sync_global(smmu);
645 }
646
647 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
648                                           size_t granule, bool leaf, void *cookie)
649 {
650         struct arm_smmu_domain *smmu_domain = cookie;
651         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
652         bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
653         void __iomem *reg = ARM_SMMU_CB(smmu_domain->smmu, cfg->cbndx);
654
655         if (stage1) {
656                 reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;
657
658                 if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) {
659                         iova &= ~12UL;
660                         iova |= cfg->asid;
661                         do {
662                                 writel_relaxed(iova, reg);
663                                 iova += granule;
664                         } while (size -= granule);
665                 } else {
666                         iova >>= 12;
667                         iova |= (u64)cfg->asid << 48;
668                         do {
669                                 writeq_relaxed(iova, reg);
670                                 iova += granule >> 12;
671                         } while (size -= granule);
672                 }
673         } else {
674                 reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
675                               ARM_SMMU_CB_S2_TLBIIPAS2;
676                 iova >>= 12;
677                 do {
678                         smmu_write_atomic_lq(iova, reg);
679                         iova += granule >> 12;
680                 } while (size -= granule);
681         }
682 }
683
684 /*
685  * On MMU-401 at least, the cost of firing off multiple TLBIVMIDs appears
686  * almost negligible, but the benefit of getting the first one in as far ahead
687  * of the sync as possible is significant, hence we don't just make this a
688  * no-op and set .tlb_sync to arm_smmu_inv_context_s2() as you might think.
689  */
690 static void arm_smmu_tlb_inv_vmid_nosync(unsigned long iova, size_t size,
691                                          size_t granule, bool leaf, void *cookie)
692 {
693         struct arm_smmu_domain *smmu_domain = cookie;
694         void __iomem *base = ARM_SMMU_GR0(smmu_domain->smmu);
695
696         writel_relaxed(smmu_domain->cfg.vmid, base + ARM_SMMU_GR0_TLBIVMID);
697 }
698
699 static const struct iommu_gather_ops arm_smmu_s1_tlb_ops = {
700         .tlb_flush_all  = arm_smmu_tlb_inv_context_s1,
701         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
702         .tlb_sync       = arm_smmu_tlb_sync_context,
703 };
704
705 static const struct iommu_gather_ops arm_smmu_s2_tlb_ops_v2 = {
706         .tlb_flush_all  = arm_smmu_tlb_inv_context_s2,
707         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
708         .tlb_sync       = arm_smmu_tlb_sync_context,
709 };
710
711 static const struct iommu_gather_ops arm_smmu_s2_tlb_ops_v1 = {
712         .tlb_flush_all  = arm_smmu_tlb_inv_context_s2,
713         .tlb_add_flush  = arm_smmu_tlb_inv_vmid_nosync,
714         .tlb_sync       = arm_smmu_tlb_sync_vmid,
715 };
716
717 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
718 {
719         u32 fsr, fsynr;
720         unsigned long iova;
721         struct iommu_domain *domain = dev;
722         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
723         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
724         struct arm_smmu_device *smmu = smmu_domain->smmu;
725         void __iomem *cb_base;
726
727         cb_base = ARM_SMMU_CB(smmu, cfg->cbndx);
728         fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
729
730         if (!(fsr & FSR_FAULT))
731                 return IRQ_NONE;
732
733         fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
734         iova = readq_relaxed(cb_base + ARM_SMMU_CB_FAR);
735
736         dev_err_ratelimited(smmu->dev,
737         "Unhandled context fault: fsr=0x%x, iova=0x%08lx, fsynr=0x%x, cb=%d\n",
738                             fsr, iova, fsynr, cfg->cbndx);
739
740         writel(fsr, cb_base + ARM_SMMU_CB_FSR);
741         return IRQ_HANDLED;
742 }
743
744 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
745 {
746         u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
747         struct arm_smmu_device *smmu = dev;
748         void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
749
750         gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
751         gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
752         gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
753         gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
754
755         if (!gfsr)
756                 return IRQ_NONE;
757
758         dev_err_ratelimited(smmu->dev,
759                 "Unexpected global fault, this could be serious\n");
760         dev_err_ratelimited(smmu->dev,
761                 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
762                 gfsr, gfsynr0, gfsynr1, gfsynr2);
763
764         writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
765         return IRQ_HANDLED;
766 }
767
768 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
769                                        struct io_pgtable_cfg *pgtbl_cfg)
770 {
771         u32 reg, reg2;
772         u64 reg64;
773         bool stage1;
774         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
775         struct arm_smmu_device *smmu = smmu_domain->smmu;
776         void __iomem *cb_base, *gr1_base;
777
778         gr1_base = ARM_SMMU_GR1(smmu);
779         stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
780         cb_base = ARM_SMMU_CB(smmu, cfg->cbndx);
781
782         if (smmu->version > ARM_SMMU_V1) {
783                 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
784                         reg = CBA2R_RW64_64BIT;
785                 else
786                         reg = CBA2R_RW64_32BIT;
787                 /* 16-bit VMIDs live in CBA2R */
788                 if (smmu->features & ARM_SMMU_FEAT_VMID16)
789                         reg |= cfg->vmid << CBA2R_VMID_SHIFT;
790
791                 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
792         }
793
794         /* CBAR */
795         reg = cfg->cbar;
796         if (smmu->version < ARM_SMMU_V2)
797                 reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
798
799         /*
800          * Use the weakest shareability/memory types, so they are
801          * overridden by the ttbcr/pte.
802          */
803         if (stage1) {
804                 reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
805                         (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
806         } else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
807                 /* 8-bit VMIDs live in CBAR */
808                 reg |= cfg->vmid << CBAR_VMID_SHIFT;
809         }
810         writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
811
812         /*
813          * TTBCR
814          * We must write this before the TTBRs, since it determines the
815          * access behaviour of some fields (in particular, ASID[15:8]).
816          */
817         if (stage1) {
818                 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
819                         reg = pgtbl_cfg->arm_v7s_cfg.tcr;
820                         reg2 = 0;
821                 } else {
822                         reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
823                         reg2 = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
824                         reg2 |= TTBCR2_SEP_UPSTREAM;
825                         if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
826                                 reg2 |= TTBCR2_AS;
827                 }
828                 if (smmu->version > ARM_SMMU_V1)
829                         writel_relaxed(reg2, cb_base + ARM_SMMU_CB_TTBCR2);
830         } else {
831                 reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
832         }
833         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
834
835         /* TTBRs */
836         if (stage1) {
837                 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
838                         reg = pgtbl_cfg->arm_v7s_cfg.ttbr[0];
839                         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0);
840                         reg = pgtbl_cfg->arm_v7s_cfg.ttbr[1];
841                         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1);
842                         writel_relaxed(cfg->asid, cb_base + ARM_SMMU_CB_CONTEXTIDR);
843                 } else {
844                         reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
845                         reg64 |= (u64)cfg->asid << TTBRn_ASID_SHIFT;
846                         writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
847                         reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
848                         reg64 |= (u64)cfg->asid << TTBRn_ASID_SHIFT;
849                         writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR1);
850                 }
851         } else {
852                 reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
853                 writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
854         }
855
856         /* MAIRs (stage-1 only) */
857         if (stage1) {
858                 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
859                         reg = pgtbl_cfg->arm_v7s_cfg.prrr;
860                         reg2 = pgtbl_cfg->arm_v7s_cfg.nmrr;
861                 } else {
862                         reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
863                         reg2 = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
864                 }
865                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
866                 writel_relaxed(reg2, cb_base + ARM_SMMU_CB_S1_MAIR1);
867         }
868
869         /* SCTLR */
870         reg = SCTLR_CFIE | SCTLR_CFRE | SCTLR_AFE | SCTLR_TRE | SCTLR_M;
871         if (stage1)
872                 reg |= SCTLR_S1_ASIDPNE;
873 #ifdef __BIG_ENDIAN
874         reg |= SCTLR_E;
875 #endif
876         writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
877 }
878
879 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
880                                         struct arm_smmu_device *smmu)
881 {
882         int irq, start, ret = 0;
883         unsigned long ias, oas;
884         struct io_pgtable_ops *pgtbl_ops;
885         struct io_pgtable_cfg pgtbl_cfg;
886         enum io_pgtable_fmt fmt;
887         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
888         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
889         const struct iommu_gather_ops *tlb_ops;
890
891         mutex_lock(&smmu_domain->init_mutex);
892         if (smmu_domain->smmu)
893                 goto out_unlock;
894
895         if (domain->type == IOMMU_DOMAIN_IDENTITY) {
896                 smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
897                 smmu_domain->smmu = smmu;
898                 goto out_unlock;
899         }
900
901         /*
902          * Mapping the requested stage onto what we support is surprisingly
903          * complicated, mainly because the spec allows S1+S2 SMMUs without
904          * support for nested translation. That means we end up with the
905          * following table:
906          *
907          * Requested        Supported        Actual
908          *     S1               N              S1
909          *     S1             S1+S2            S1
910          *     S1               S2             S2
911          *     S1               S1             S1
912          *     N                N              N
913          *     N              S1+S2            S2
914          *     N                S2             S2
915          *     N                S1             S1
916          *
917          * Note that you can't actually request stage-2 mappings.
918          */
919         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
920                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
921         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
922                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
923
924         /*
925          * Choosing a suitable context format is even more fiddly. Until we
926          * grow some way for the caller to express a preference, and/or move
927          * the decision into the io-pgtable code where it arguably belongs,
928          * just aim for the closest thing to the rest of the system, and hope
929          * that the hardware isn't esoteric enough that we can't assume AArch64
930          * support to be a superset of AArch32 support...
931          */
932         if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L)
933                 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L;
934         if (IS_ENABLED(CONFIG_IOMMU_IO_PGTABLE_ARMV7S) &&
935             !IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_ARM_LPAE) &&
936             (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S) &&
937             (smmu_domain->stage == ARM_SMMU_DOMAIN_S1))
938                 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_S;
939         if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) &&
940             (smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K |
941                                ARM_SMMU_FEAT_FMT_AARCH64_16K |
942                                ARM_SMMU_FEAT_FMT_AARCH64_4K)))
943                 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64;
944
945         if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) {
946                 ret = -EINVAL;
947                 goto out_unlock;
948         }
949
950         switch (smmu_domain->stage) {
951         case ARM_SMMU_DOMAIN_S1:
952                 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
953                 start = smmu->num_s2_context_banks;
954                 ias = smmu->va_size;
955                 oas = smmu->ipa_size;
956                 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
957                         fmt = ARM_64_LPAE_S1;
958                 } else if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_L) {
959                         fmt = ARM_32_LPAE_S1;
960                         ias = min(ias, 32UL);
961                         oas = min(oas, 40UL);
962                 } else {
963                         fmt = ARM_V7S;
964                         ias = min(ias, 32UL);
965                         oas = min(oas, 32UL);
966                 }
967                 tlb_ops = &arm_smmu_s1_tlb_ops;
968                 break;
969         case ARM_SMMU_DOMAIN_NESTED:
970                 /*
971                  * We will likely want to change this if/when KVM gets
972                  * involved.
973                  */
974         case ARM_SMMU_DOMAIN_S2:
975                 cfg->cbar = CBAR_TYPE_S2_TRANS;
976                 start = 0;
977                 ias = smmu->ipa_size;
978                 oas = smmu->pa_size;
979                 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
980                         fmt = ARM_64_LPAE_S2;
981                 } else {
982                         fmt = ARM_32_LPAE_S2;
983                         ias = min(ias, 40UL);
984                         oas = min(oas, 40UL);
985                 }
986                 if (smmu->version == ARM_SMMU_V2)
987                         tlb_ops = &arm_smmu_s2_tlb_ops_v2;
988                 else
989                         tlb_ops = &arm_smmu_s2_tlb_ops_v1;
990                 break;
991         default:
992                 ret = -EINVAL;
993                 goto out_unlock;
994         }
995         ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
996                                       smmu->num_context_banks);
997         if (ret < 0)
998                 goto out_unlock;
999
1000         cfg->cbndx = ret;
1001         if (smmu->version < ARM_SMMU_V2) {
1002                 cfg->irptndx = atomic_inc_return(&smmu->irptndx);
1003                 cfg->irptndx %= smmu->num_context_irqs;
1004         } else {
1005                 cfg->irptndx = cfg->cbndx;
1006         }
1007
1008         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S2)
1009                 cfg->vmid = cfg->cbndx + 1 + smmu->cavium_id_base;
1010         else
1011                 cfg->asid = cfg->cbndx + smmu->cavium_id_base;
1012
1013         pgtbl_cfg = (struct io_pgtable_cfg) {
1014                 .pgsize_bitmap  = smmu->pgsize_bitmap,
1015                 .ias            = ias,
1016                 .oas            = oas,
1017                 .tlb            = tlb_ops,
1018                 .iommu_dev      = smmu->dev,
1019         };
1020
1021         if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
1022                 pgtbl_cfg.quirks = IO_PGTABLE_QUIRK_NO_DMA;
1023
1024         smmu_domain->smmu = smmu;
1025         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1026         if (!pgtbl_ops) {
1027                 ret = -ENOMEM;
1028                 goto out_clear_smmu;
1029         }
1030
1031         /* Update the domain's page sizes to reflect the page table format */
1032         domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1033         domain->geometry.aperture_end = (1UL << ias) - 1;
1034         domain->geometry.force_aperture = true;
1035
1036         /* Initialise the context bank with our page table cfg */
1037         arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);
1038
1039         /*
1040          * Request context fault interrupt. Do this last to avoid the
1041          * handler seeing a half-initialised domain state.
1042          */
1043         irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
1044         ret = devm_request_irq(smmu->dev, irq, arm_smmu_context_fault,
1045                                IRQF_SHARED, "arm-smmu-context-fault", domain);
1046         if (ret < 0) {
1047                 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
1048                         cfg->irptndx, irq);
1049                 cfg->irptndx = INVALID_IRPTNDX;
1050         }
1051
1052         mutex_unlock(&smmu_domain->init_mutex);
1053
1054         /* Publish page table ops for map/unmap */
1055         smmu_domain->pgtbl_ops = pgtbl_ops;
1056         return 0;
1057
1058 out_clear_smmu:
1059         smmu_domain->smmu = NULL;
1060 out_unlock:
1061         mutex_unlock(&smmu_domain->init_mutex);
1062         return ret;
1063 }
1064
1065 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
1066 {
1067         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1068         struct arm_smmu_device *smmu = smmu_domain->smmu;
1069         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1070         void __iomem *cb_base;
1071         int irq;
1072
1073         if (!smmu || domain->type == IOMMU_DOMAIN_IDENTITY)
1074                 return;
1075
1076         /*
1077          * Disable the context bank and free the page tables before freeing
1078          * it.
1079          */
1080         cb_base = ARM_SMMU_CB(smmu, cfg->cbndx);
1081         writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1082
1083         if (cfg->irptndx != INVALID_IRPTNDX) {
1084                 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
1085                 devm_free_irq(smmu->dev, irq, domain);
1086         }
1087
1088         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1089         __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
1090 }
1091
1092 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1093 {
1094         struct arm_smmu_domain *smmu_domain;
1095
1096         if (type != IOMMU_DOMAIN_UNMANAGED &&
1097             type != IOMMU_DOMAIN_DMA &&
1098             type != IOMMU_DOMAIN_IDENTITY)
1099                 return NULL;
1100         /*
1101          * Allocate the domain and initialise some of its data structures.
1102          * We can't really do anything meaningful until we've added a
1103          * master.
1104          */
1105         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1106         if (!smmu_domain)
1107                 return NULL;
1108
1109         if (type == IOMMU_DOMAIN_DMA && (using_legacy_binding ||
1110             iommu_get_dma_cookie(&smmu_domain->domain))) {
1111                 kfree(smmu_domain);
1112                 return NULL;
1113         }
1114
1115         mutex_init(&smmu_domain->init_mutex);
1116         spin_lock_init(&smmu_domain->cb_lock);
1117
1118         return &smmu_domain->domain;
1119 }
1120
1121 static void arm_smmu_domain_free(struct iommu_domain *domain)
1122 {
1123         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1124
1125         /*
1126          * Free the domain resources. We assume that all devices have
1127          * already been detached.
1128          */
1129         iommu_put_dma_cookie(domain);
1130         arm_smmu_destroy_domain_context(domain);
1131         kfree(smmu_domain);
1132 }
1133
1134 static void arm_smmu_write_smr(struct arm_smmu_device *smmu, int idx)
1135 {
1136         struct arm_smmu_smr *smr = smmu->smrs + idx;
1137         u32 reg = smr->id << SMR_ID_SHIFT | smr->mask << SMR_MASK_SHIFT;
1138
1139         if (!(smmu->features & ARM_SMMU_FEAT_EXIDS) && smr->valid)
1140                 reg |= SMR_VALID;
1141         writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_SMR(idx));
1142 }
1143
1144 static void arm_smmu_write_s2cr(struct arm_smmu_device *smmu, int idx)
1145 {
1146         struct arm_smmu_s2cr *s2cr = smmu->s2crs + idx;
1147         u32 reg = (s2cr->type & S2CR_TYPE_MASK) << S2CR_TYPE_SHIFT |
1148                   (s2cr->cbndx & S2CR_CBNDX_MASK) << S2CR_CBNDX_SHIFT |
1149                   (s2cr->privcfg & S2CR_PRIVCFG_MASK) << S2CR_PRIVCFG_SHIFT;
1150
1151         if (smmu->features & ARM_SMMU_FEAT_EXIDS && smmu->smrs &&
1152             smmu->smrs[idx].valid)
1153                 reg |= S2CR_EXIDVALID;
1154         writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_S2CR(idx));
1155 }
1156
1157 static void arm_smmu_write_sme(struct arm_smmu_device *smmu, int idx)
1158 {
1159         arm_smmu_write_s2cr(smmu, idx);
1160         if (smmu->smrs)
1161                 arm_smmu_write_smr(smmu, idx);
1162 }
1163
1164 /*
1165  * The width of SMR's mask field depends on sCR0_EXIDENABLE, so this function
1166  * should be called after sCR0 is written.
1167  */
1168 static void arm_smmu_test_smr_masks(struct arm_smmu_device *smmu)
1169 {
1170         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1171         u32 smr;
1172
1173         if (!smmu->smrs)
1174                 return;
1175
1176         /*
1177          * SMR.ID bits may not be preserved if the corresponding MASK
1178          * bits are set, so check each one separately. We can reject
1179          * masters later if they try to claim IDs outside these masks.
1180          */
1181         smr = smmu->streamid_mask << SMR_ID_SHIFT;
1182         writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1183         smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1184         smmu->streamid_mask = smr >> SMR_ID_SHIFT;
1185
1186         smr = smmu->streamid_mask << SMR_MASK_SHIFT;
1187         writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1188         smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1189         smmu->smr_mask_mask = smr >> SMR_MASK_SHIFT;
1190 }
1191
1192 static int arm_smmu_find_sme(struct arm_smmu_device *smmu, u16 id, u16 mask)
1193 {
1194         struct arm_smmu_smr *smrs = smmu->smrs;
1195         int i, free_idx = -ENOSPC;
1196
1197         /* Stream indexing is blissfully easy */
1198         if (!smrs)
1199                 return id;
1200
1201         /* Validating SMRs is... less so */
1202         for (i = 0; i < smmu->num_mapping_groups; ++i) {
1203                 if (!smrs[i].valid) {
1204                         /*
1205                          * Note the first free entry we come across, which
1206                          * we'll claim in the end if nothing else matches.
1207                          */
1208                         if (free_idx < 0)
1209                                 free_idx = i;
1210                         continue;
1211                 }
1212                 /*
1213                  * If the new entry is _entirely_ matched by an existing entry,
1214                  * then reuse that, with the guarantee that there also cannot
1215                  * be any subsequent conflicting entries. In normal use we'd
1216                  * expect simply identical entries for this case, but there's
1217                  * no harm in accommodating the generalisation.
1218                  */
1219                 if ((mask & smrs[i].mask) == mask &&
1220                     !((id ^ smrs[i].id) & ~smrs[i].mask))
1221                         return i;
1222                 /*
1223                  * If the new entry has any other overlap with an existing one,
1224                  * though, then there always exists at least one stream ID
1225                  * which would cause a conflict, and we can't allow that risk.
1226                  */
1227                 if (!((id ^ smrs[i].id) & ~(smrs[i].mask | mask)))
1228                         return -EINVAL;
1229         }
1230
1231         return free_idx;
1232 }
1233
1234 static bool arm_smmu_free_sme(struct arm_smmu_device *smmu, int idx)
1235 {
1236         if (--smmu->s2crs[idx].count)
1237                 return false;
1238
1239         smmu->s2crs[idx] = s2cr_init_val;
1240         if (smmu->smrs)
1241                 smmu->smrs[idx].valid = false;
1242
1243         return true;
1244 }
1245
1246 static int arm_smmu_master_alloc_smes(struct device *dev)
1247 {
1248         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1249         struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1250         struct arm_smmu_device *smmu = cfg->smmu;
1251         struct arm_smmu_smr *smrs = smmu->smrs;
1252         struct iommu_group *group;
1253         int i, idx, ret;
1254
1255         mutex_lock(&smmu->stream_map_mutex);
1256         /* Figure out a viable stream map entry allocation */
1257         for_each_cfg_sme(fwspec, i, idx) {
1258                 u16 sid = fwspec->ids[i];
1259                 u16 mask = fwspec->ids[i] >> SMR_MASK_SHIFT;
1260
1261                 if (idx != INVALID_SMENDX) {
1262                         ret = -EEXIST;
1263                         goto out_err;
1264                 }
1265
1266                 ret = arm_smmu_find_sme(smmu, sid, mask);
1267                 if (ret < 0)
1268                         goto out_err;
1269
1270                 idx = ret;
1271                 if (smrs && smmu->s2crs[idx].count == 0) {
1272                         smrs[idx].id = sid;
1273                         smrs[idx].mask = mask;
1274                         smrs[idx].valid = true;
1275                 }
1276                 smmu->s2crs[idx].count++;
1277                 cfg->smendx[i] = (s16)idx;
1278         }
1279
1280         group = iommu_group_get_for_dev(dev);
1281         if (!group)
1282                 group = ERR_PTR(-ENOMEM);
1283         if (IS_ERR(group)) {
1284                 ret = PTR_ERR(group);
1285                 goto out_err;
1286         }
1287         iommu_group_put(group);
1288
1289         /* It worked! Now, poke the actual hardware */
1290         for_each_cfg_sme(fwspec, i, idx) {
1291                 arm_smmu_write_sme(smmu, idx);
1292                 smmu->s2crs[idx].group = group;
1293         }
1294
1295         mutex_unlock(&smmu->stream_map_mutex);
1296         return 0;
1297
1298 out_err:
1299         while (i--) {
1300                 arm_smmu_free_sme(smmu, cfg->smendx[i]);
1301                 cfg->smendx[i] = INVALID_SMENDX;
1302         }
1303         mutex_unlock(&smmu->stream_map_mutex);
1304         return ret;
1305 }
1306
1307 static void arm_smmu_master_free_smes(struct iommu_fwspec *fwspec)
1308 {
1309         struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
1310         struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1311         int i, idx;
1312
1313         mutex_lock(&smmu->stream_map_mutex);
1314         for_each_cfg_sme(fwspec, i, idx) {
1315                 if (arm_smmu_free_sme(smmu, idx))
1316                         arm_smmu_write_sme(smmu, idx);
1317                 cfg->smendx[i] = INVALID_SMENDX;
1318         }
1319         mutex_unlock(&smmu->stream_map_mutex);
1320 }
1321
1322 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1323                                       struct iommu_fwspec *fwspec)
1324 {
1325         struct arm_smmu_device *smmu = smmu_domain->smmu;
1326         struct arm_smmu_s2cr *s2cr = smmu->s2crs;
1327         u8 cbndx = smmu_domain->cfg.cbndx;
1328         enum arm_smmu_s2cr_type type;
1329         int i, idx;
1330
1331         if (smmu_domain->stage == ARM_SMMU_DOMAIN_BYPASS)
1332                 type = S2CR_TYPE_BYPASS;
1333         else
1334                 type = S2CR_TYPE_TRANS;
1335
1336         for_each_cfg_sme(fwspec, i, idx) {
1337                 if (type == s2cr[idx].type && cbndx == s2cr[idx].cbndx)
1338                         continue;
1339
1340                 s2cr[idx].type = type;
1341                 s2cr[idx].privcfg = S2CR_PRIVCFG_DEFAULT;
1342                 s2cr[idx].cbndx = cbndx;
1343                 arm_smmu_write_s2cr(smmu, idx);
1344         }
1345         return 0;
1346 }
1347
1348 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1349 {
1350         int ret;
1351         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1352         struct arm_smmu_device *smmu;
1353         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1354
1355         if (!fwspec || fwspec->ops != &arm_smmu_ops) {
1356                 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1357                 return -ENXIO;
1358         }
1359
1360         /*
1361          * FIXME: The arch/arm DMA API code tries to attach devices to its own
1362          * domains between of_xlate() and add_device() - we have no way to cope
1363          * with that, so until ARM gets converted to rely on groups and default
1364          * domains, just say no (but more politely than by dereferencing NULL).
1365          * This should be at least a WARN_ON once that's sorted.
1366          */
1367         if (!fwspec->iommu_priv)
1368                 return -ENODEV;
1369
1370         smmu = fwspec_smmu(fwspec);
1371         /* Ensure that the domain is finalised */
1372         ret = arm_smmu_init_domain_context(domain, smmu);
1373         if (ret < 0)
1374                 return ret;
1375
1376         /*
1377          * Sanity check the domain. We don't support domains across
1378          * different SMMUs.
1379          */
1380         if (smmu_domain->smmu != smmu) {
1381                 dev_err(dev,
1382                         "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1383                         dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1384                 return -EINVAL;
1385         }
1386
1387         /* Looks ok, so add the device to the domain */
1388         return arm_smmu_domain_add_master(smmu_domain, fwspec);
1389 }
1390
1391 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1392                         phys_addr_t paddr, size_t size, int prot)
1393 {
1394         struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1395
1396         if (!ops)
1397                 return -ENODEV;
1398
1399         return ops->map(ops, iova, paddr, size, prot);
1400 }
1401
1402 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1403                              size_t size)
1404 {
1405         struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1406
1407         if (!ops)
1408                 return 0;
1409
1410         return ops->unmap(ops, iova, size);
1411 }
1412
1413 static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
1414                                               dma_addr_t iova)
1415 {
1416         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1417         struct arm_smmu_device *smmu = smmu_domain->smmu;
1418         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1419         struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1420         struct device *dev = smmu->dev;
1421         void __iomem *cb_base;
1422         u32 tmp;
1423         u64 phys;
1424         unsigned long va, flags;
1425
1426         cb_base = ARM_SMMU_CB(smmu, cfg->cbndx);
1427
1428         spin_lock_irqsave(&smmu_domain->cb_lock, flags);
1429         /* ATS1 registers can only be written atomically */
1430         va = iova & ~0xfffUL;
1431         if (smmu->version == ARM_SMMU_V2)
1432                 smmu_write_atomic_lq(va, cb_base + ARM_SMMU_CB_ATS1PR);
1433         else /* Register is only 32-bit in v1 */
1434                 writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1435
1436         if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
1437                                       !(tmp & ATSR_ACTIVE), 5, 50)) {
1438                 spin_unlock_irqrestore(&smmu_domain->cb_lock, flags);
1439                 dev_err(dev,
1440                         "iova to phys timed out on %pad. Falling back to software table walk.\n",
1441                         &iova);
1442                 return ops->iova_to_phys(ops, iova);
1443         }
1444
1445         phys = readq_relaxed(cb_base + ARM_SMMU_CB_PAR);
1446         spin_unlock_irqrestore(&smmu_domain->cb_lock, flags);
1447         if (phys & CB_PAR_F) {
1448                 dev_err(dev, "translation fault!\n");
1449                 dev_err(dev, "PAR = 0x%llx\n", phys);
1450                 return 0;
1451         }
1452
1453         return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
1454 }
1455
1456 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1457                                         dma_addr_t iova)
1458 {
1459         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1460         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1461
1462         if (domain->type == IOMMU_DOMAIN_IDENTITY)
1463                 return iova;
1464
1465         if (!ops)
1466                 return 0;
1467
1468         if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
1469                         smmu_domain->stage == ARM_SMMU_DOMAIN_S1)
1470                 return arm_smmu_iova_to_phys_hard(domain, iova);
1471
1472         return ops->iova_to_phys(ops, iova);
1473 }
1474
1475 static bool arm_smmu_capable(enum iommu_cap cap)
1476 {
1477         switch (cap) {
1478         case IOMMU_CAP_CACHE_COHERENCY:
1479                 /*
1480                  * Return true here as the SMMU can always send out coherent
1481                  * requests.
1482                  */
1483                 return true;
1484         case IOMMU_CAP_NOEXEC:
1485                 return true;
1486         default:
1487                 return false;
1488         }
1489 }
1490
1491 static int arm_smmu_match_node(struct device *dev, void *data)
1492 {
1493         return dev->fwnode == data;
1494 }
1495
1496 static
1497 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1498 {
1499         struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1500                                                 fwnode, arm_smmu_match_node);
1501         put_device(dev);
1502         return dev ? dev_get_drvdata(dev) : NULL;
1503 }
1504
1505 static int arm_smmu_add_device(struct device *dev)
1506 {
1507         struct arm_smmu_device *smmu;
1508         struct arm_smmu_master_cfg *cfg;
1509         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1510         int i, ret;
1511
1512         if (using_legacy_binding) {
1513                 ret = arm_smmu_register_legacy_master(dev, &smmu);
1514                 fwspec = dev->iommu_fwspec;
1515                 if (ret)
1516                         goto out_free;
1517         } else if (fwspec && fwspec->ops == &arm_smmu_ops) {
1518                 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1519         } else {
1520                 return -ENODEV;
1521         }
1522
1523         ret = -EINVAL;
1524         for (i = 0; i < fwspec->num_ids; i++) {
1525                 u16 sid = fwspec->ids[i];
1526                 u16 mask = fwspec->ids[i] >> SMR_MASK_SHIFT;
1527
1528                 if (sid & ~smmu->streamid_mask) {
1529                         dev_err(dev, "stream ID 0x%x out of range for SMMU (0x%x)\n",
1530                                 sid, smmu->streamid_mask);
1531                         goto out_free;
1532                 }
1533                 if (mask & ~smmu->smr_mask_mask) {
1534                         dev_err(dev, "SMR mask 0x%x out of range for SMMU (0x%x)\n",
1535                                 mask, smmu->smr_mask_mask);
1536                         goto out_free;
1537                 }
1538         }
1539
1540         ret = -ENOMEM;
1541         cfg = kzalloc(offsetof(struct arm_smmu_master_cfg, smendx[i]),
1542                       GFP_KERNEL);
1543         if (!cfg)
1544                 goto out_free;
1545
1546         cfg->smmu = smmu;
1547         fwspec->iommu_priv = cfg;
1548         while (i--)
1549                 cfg->smendx[i] = INVALID_SMENDX;
1550
1551         ret = arm_smmu_master_alloc_smes(dev);
1552         if (ret)
1553                 goto out_free;
1554
1555         iommu_device_link(&smmu->iommu, dev);
1556
1557         return 0;
1558
1559 out_free:
1560         if (fwspec)
1561                 kfree(fwspec->iommu_priv);
1562         iommu_fwspec_free(dev);
1563         return ret;
1564 }
1565
1566 static void arm_smmu_remove_device(struct device *dev)
1567 {
1568         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1569         struct arm_smmu_master_cfg *cfg;
1570         struct arm_smmu_device *smmu;
1571
1572
1573         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1574                 return;
1575
1576         cfg  = fwspec->iommu_priv;
1577         smmu = cfg->smmu;
1578
1579         iommu_device_unlink(&smmu->iommu, dev);
1580         arm_smmu_master_free_smes(fwspec);
1581         iommu_group_remove_device(dev);
1582         kfree(fwspec->iommu_priv);
1583         iommu_fwspec_free(dev);
1584 }
1585
1586 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1587 {
1588         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1589         struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
1590         struct iommu_group *group = NULL;
1591         int i, idx;
1592
1593         for_each_cfg_sme(fwspec, i, idx) {
1594                 if (group && smmu->s2crs[idx].group &&
1595                     group != smmu->s2crs[idx].group)
1596                         return ERR_PTR(-EINVAL);
1597
1598                 group = smmu->s2crs[idx].group;
1599         }
1600
1601         if (group)
1602                 return iommu_group_ref_get(group);
1603
1604         if (dev_is_pci(dev))
1605                 group = pci_device_group(dev);
1606         else
1607                 group = generic_device_group(dev);
1608
1609         return group;
1610 }
1611
1612 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1613                                     enum iommu_attr attr, void *data)
1614 {
1615         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1616
1617         if (domain->type != IOMMU_DOMAIN_UNMANAGED)
1618                 return -EINVAL;
1619
1620         switch (attr) {
1621         case DOMAIN_ATTR_NESTING:
1622                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1623                 return 0;
1624         default:
1625                 return -ENODEV;
1626         }
1627 }
1628
1629 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1630                                     enum iommu_attr attr, void *data)
1631 {
1632         int ret = 0;
1633         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1634
1635         if (domain->type != IOMMU_DOMAIN_UNMANAGED)
1636                 return -EINVAL;
1637
1638         mutex_lock(&smmu_domain->init_mutex);
1639
1640         switch (attr) {
1641         case DOMAIN_ATTR_NESTING:
1642                 if (smmu_domain->smmu) {
1643                         ret = -EPERM;
1644                         goto out_unlock;
1645                 }
1646
1647                 if (*(int *)data)
1648                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1649                 else
1650                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1651
1652                 break;
1653         default:
1654                 ret = -ENODEV;
1655         }
1656
1657 out_unlock:
1658         mutex_unlock(&smmu_domain->init_mutex);
1659         return ret;
1660 }
1661
1662 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1663 {
1664         u32 mask, fwid = 0;
1665
1666         if (args->args_count > 0)
1667                 fwid |= (u16)args->args[0];
1668
1669         if (args->args_count > 1)
1670                 fwid |= (u16)args->args[1] << SMR_MASK_SHIFT;
1671         else if (!of_property_read_u32(args->np, "stream-match-mask", &mask))
1672                 fwid |= (u16)mask << SMR_MASK_SHIFT;
1673
1674         return iommu_fwspec_add_ids(dev, &fwid, 1);
1675 }
1676
1677 static void arm_smmu_get_resv_regions(struct device *dev,
1678                                       struct list_head *head)
1679 {
1680         struct iommu_resv_region *region;
1681         int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1682
1683         region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
1684                                          prot, IOMMU_RESV_SW_MSI);
1685         if (!region)
1686                 return;
1687
1688         list_add_tail(&region->list, head);
1689
1690         iommu_dma_get_resv_regions(dev, head);
1691 }
1692
1693 static void arm_smmu_put_resv_regions(struct device *dev,
1694                                       struct list_head *head)
1695 {
1696         struct iommu_resv_region *entry, *next;
1697
1698         list_for_each_entry_safe(entry, next, head, list)
1699                 kfree(entry);
1700 }
1701
1702 static struct iommu_ops arm_smmu_ops = {
1703         .capable                = arm_smmu_capable,
1704         .domain_alloc           = arm_smmu_domain_alloc,
1705         .domain_free            = arm_smmu_domain_free,
1706         .attach_dev             = arm_smmu_attach_dev,
1707         .map                    = arm_smmu_map,
1708         .unmap                  = arm_smmu_unmap,
1709         .map_sg                 = default_iommu_map_sg,
1710         .iova_to_phys           = arm_smmu_iova_to_phys,
1711         .add_device             = arm_smmu_add_device,
1712         .remove_device          = arm_smmu_remove_device,
1713         .device_group           = arm_smmu_device_group,
1714         .domain_get_attr        = arm_smmu_domain_get_attr,
1715         .domain_set_attr        = arm_smmu_domain_set_attr,
1716         .of_xlate               = arm_smmu_of_xlate,
1717         .get_resv_regions       = arm_smmu_get_resv_regions,
1718         .put_resv_regions       = arm_smmu_put_resv_regions,
1719         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1720 };
1721
1722 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1723 {
1724         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1725         void __iomem *cb_base;
1726         int i;
1727         u32 reg, major;
1728
1729         /* clear global FSR */
1730         reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1731         writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1732
1733         /*
1734          * Reset stream mapping groups: Initial values mark all SMRn as
1735          * invalid and all S2CRn as bypass unless overridden.
1736          */
1737         for (i = 0; i < smmu->num_mapping_groups; ++i)
1738                 arm_smmu_write_sme(smmu, i);
1739
1740         if (smmu->model == ARM_MMU500) {
1741                 /*
1742                  * Before clearing ARM_MMU500_ACTLR_CPRE, need to
1743                  * clear CACHE_LOCK bit of ACR first. And, CACHE_LOCK
1744                  * bit is only present in MMU-500r2 onwards.
1745                  */
1746                 reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID7);
1747                 major = (reg >> ID7_MAJOR_SHIFT) & ID7_MAJOR_MASK;
1748                 reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sACR);
1749                 if (major >= 2)
1750                         reg &= ~ARM_MMU500_ACR_CACHE_LOCK;
1751                 /*
1752                  * Allow unmatched Stream IDs to allocate bypass
1753                  * TLB entries for reduced latency.
1754                  */
1755                 reg |= ARM_MMU500_ACR_SMTNMB_TLBEN;
1756                 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_sACR);
1757         }
1758
1759         /* Make sure all context banks are disabled and clear CB_FSR  */
1760         for (i = 0; i < smmu->num_context_banks; ++i) {
1761                 cb_base = ARM_SMMU_CB(smmu, i);
1762                 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1763                 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1764                 /*
1765                  * Disable MMU-500's not-particularly-beneficial next-page
1766                  * prefetcher for the sake of errata #841119 and #826419.
1767                  */
1768                 if (smmu->model == ARM_MMU500) {
1769                         reg = readl_relaxed(cb_base + ARM_SMMU_CB_ACTLR);
1770                         reg &= ~ARM_MMU500_ACTLR_CPRE;
1771                         writel_relaxed(reg, cb_base + ARM_SMMU_CB_ACTLR);
1772                 }
1773         }
1774
1775         /* Invalidate the TLB, just in case */
1776         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1777         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1778
1779         reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1780
1781         /* Enable fault reporting */
1782         reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1783
1784         /* Disable TLB broadcasting. */
1785         reg |= (sCR0_VMIDPNE | sCR0_PTM);
1786
1787         /* Enable client access, handling unmatched streams as appropriate */
1788         reg &= ~sCR0_CLIENTPD;
1789         if (disable_bypass)
1790                 reg |= sCR0_USFCFG;
1791         else
1792                 reg &= ~sCR0_USFCFG;
1793
1794         /* Disable forced broadcasting */
1795         reg &= ~sCR0_FB;
1796
1797         /* Don't upgrade barriers */
1798         reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1799
1800         if (smmu->features & ARM_SMMU_FEAT_VMID16)
1801                 reg |= sCR0_VMID16EN;
1802
1803         if (smmu->features & ARM_SMMU_FEAT_EXIDS)
1804                 reg |= sCR0_EXIDENABLE;
1805
1806         /* Push the button */
1807         arm_smmu_tlb_sync_global(smmu);
1808         writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1809 }
1810
1811 static int arm_smmu_id_size_to_bits(int size)
1812 {
1813         switch (size) {
1814         case 0:
1815                 return 32;
1816         case 1:
1817                 return 36;
1818         case 2:
1819                 return 40;
1820         case 3:
1821                 return 42;
1822         case 4:
1823                 return 44;
1824         case 5:
1825         default:
1826                 return 48;
1827         }
1828 }
1829
1830 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1831 {
1832         unsigned long size;
1833         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1834         u32 id;
1835         bool cttw_reg, cttw_fw = smmu->features & ARM_SMMU_FEAT_COHERENT_WALK;
1836         int i;
1837
1838         dev_notice(smmu->dev, "probing hardware configuration...\n");
1839         dev_notice(smmu->dev, "SMMUv%d with:\n",
1840                         smmu->version == ARM_SMMU_V2 ? 2 : 1);
1841
1842         /* ID0 */
1843         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1844
1845         /* Restrict available stages based on module parameter */
1846         if (force_stage == 1)
1847                 id &= ~(ID0_S2TS | ID0_NTS);
1848         else if (force_stage == 2)
1849                 id &= ~(ID0_S1TS | ID0_NTS);
1850
1851         if (id & ID0_S1TS) {
1852                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1853                 dev_notice(smmu->dev, "\tstage 1 translation\n");
1854         }
1855
1856         if (id & ID0_S2TS) {
1857                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1858                 dev_notice(smmu->dev, "\tstage 2 translation\n");
1859         }
1860
1861         if (id & ID0_NTS) {
1862                 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1863                 dev_notice(smmu->dev, "\tnested translation\n");
1864         }
1865
1866         if (!(smmu->features &
1867                 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1868                 dev_err(smmu->dev, "\tno translation support!\n");
1869                 return -ENODEV;
1870         }
1871
1872         if ((id & ID0_S1TS) &&
1873                 ((smmu->version < ARM_SMMU_V2) || !(id & ID0_ATOSNS))) {
1874                 smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
1875                 dev_notice(smmu->dev, "\taddress translation ops\n");
1876         }
1877
1878         /*
1879          * In order for DMA API calls to work properly, we must defer to what
1880          * the FW says about coherency, regardless of what the hardware claims.
1881          * Fortunately, this also opens up a workaround for systems where the
1882          * ID register value has ended up configured incorrectly.
1883          */
1884         cttw_reg = !!(id & ID0_CTTW);
1885         if (cttw_fw || cttw_reg)
1886                 dev_notice(smmu->dev, "\t%scoherent table walk\n",
1887                            cttw_fw ? "" : "non-");
1888         if (cttw_fw != cttw_reg)
1889                 dev_notice(smmu->dev,
1890                            "\t(IDR0.CTTW overridden by FW configuration)\n");
1891
1892         /* Max. number of entries we have for stream matching/indexing */
1893         if (smmu->version == ARM_SMMU_V2 && id & ID0_EXIDS) {
1894                 smmu->features |= ARM_SMMU_FEAT_EXIDS;
1895                 size = 1 << 16;
1896         } else {
1897                 size = 1 << ((id >> ID0_NUMSIDB_SHIFT) & ID0_NUMSIDB_MASK);
1898         }
1899         smmu->streamid_mask = size - 1;
1900         if (id & ID0_SMS) {
1901                 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1902                 size = (id >> ID0_NUMSMRG_SHIFT) & ID0_NUMSMRG_MASK;
1903                 if (size == 0) {
1904                         dev_err(smmu->dev,
1905                                 "stream-matching supported, but no SMRs present!\n");
1906                         return -ENODEV;
1907                 }
1908
1909                 /* Zero-initialised to mark as invalid */
1910                 smmu->smrs = devm_kcalloc(smmu->dev, size, sizeof(*smmu->smrs),
1911                                           GFP_KERNEL);
1912                 if (!smmu->smrs)
1913                         return -ENOMEM;
1914
1915                 dev_notice(smmu->dev,
1916                            "\tstream matching with %lu register groups", size);
1917         }
1918         /* s2cr->type == 0 means translation, so initialise explicitly */
1919         smmu->s2crs = devm_kmalloc_array(smmu->dev, size, sizeof(*smmu->s2crs),
1920                                          GFP_KERNEL);
1921         if (!smmu->s2crs)
1922                 return -ENOMEM;
1923         for (i = 0; i < size; i++)
1924                 smmu->s2crs[i] = s2cr_init_val;
1925
1926         smmu->num_mapping_groups = size;
1927         mutex_init(&smmu->stream_map_mutex);
1928
1929         if (smmu->version < ARM_SMMU_V2 || !(id & ID0_PTFS_NO_AARCH32)) {
1930                 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L;
1931                 if (!(id & ID0_PTFS_NO_AARCH32S))
1932                         smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S;
1933         }
1934
1935         /* ID1 */
1936         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1937         smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1938
1939         /* Check for size mismatch of SMMU address space from mapped region */
1940         size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1941         size <<= smmu->pgshift;
1942         if (smmu->cb_base != gr0_base + size)
1943                 dev_warn(smmu->dev,
1944                         "SMMU address space size (0x%lx) differs from mapped region size (0x%tx)!\n",
1945                         size * 2, (smmu->cb_base - gr0_base) * 2);
1946
1947         smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1948         smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1949         if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1950                 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1951                 return -ENODEV;
1952         }
1953         dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1954                    smmu->num_context_banks, smmu->num_s2_context_banks);
1955         /*
1956          * Cavium CN88xx erratum #27704.
1957          * Ensure ASID and VMID allocation is unique across all SMMUs in
1958          * the system.
1959          */
1960         if (smmu->model == CAVIUM_SMMUV2) {
1961                 smmu->cavium_id_base =
1962                         atomic_add_return(smmu->num_context_banks,
1963                                           &cavium_smmu_context_count);
1964                 smmu->cavium_id_base -= smmu->num_context_banks;
1965                 dev_notice(smmu->dev, "\tenabling workaround for Cavium erratum 27704\n");
1966         }
1967
1968         /* ID2 */
1969         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1970         size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1971         smmu->ipa_size = size;
1972
1973         /* The output mask is also applied for bypass */
1974         size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1975         smmu->pa_size = size;
1976
1977         if (id & ID2_VMID16)
1978                 smmu->features |= ARM_SMMU_FEAT_VMID16;
1979
1980         /*
1981          * What the page table walker can address actually depends on which
1982          * descriptor format is in use, but since a) we don't know that yet,
1983          * and b) it can vary per context bank, this will have to do...
1984          */
1985         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
1986                 dev_warn(smmu->dev,
1987                          "failed to set DMA mask for table walker\n");
1988
1989         if (smmu->version < ARM_SMMU_V2) {
1990                 smmu->va_size = smmu->ipa_size;
1991                 if (smmu->version == ARM_SMMU_V1_64K)
1992                         smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1993         } else {
1994                 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1995                 smmu->va_size = arm_smmu_id_size_to_bits(size);
1996                 if (id & ID2_PTFS_4K)
1997                         smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K;
1998                 if (id & ID2_PTFS_16K)
1999                         smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K;
2000                 if (id & ID2_PTFS_64K)
2001                         smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
2002         }
2003
2004         /* Now we've corralled the various formats, what'll it do? */
2005         if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S)
2006                 smmu->pgsize_bitmap |= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
2007         if (smmu->features &
2008             (ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K))
2009                 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2010         if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K)
2011                 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2012         if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K)
2013                 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2014
2015         if (arm_smmu_ops.pgsize_bitmap == -1UL)
2016                 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2017         else
2018                 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2019         dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n",
2020                    smmu->pgsize_bitmap);
2021
2022
2023         if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
2024                 dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
2025                            smmu->va_size, smmu->ipa_size);
2026
2027         if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
2028                 dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
2029                            smmu->ipa_size, smmu->pa_size);
2030
2031         return 0;
2032 }
2033
2034 struct arm_smmu_match_data {
2035         enum arm_smmu_arch_version version;
2036         enum arm_smmu_implementation model;
2037 };
2038
2039 #define ARM_SMMU_MATCH_DATA(name, ver, imp)     \
2040 static struct arm_smmu_match_data name = { .version = ver, .model = imp }
2041
2042 ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
2043 ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
2044 ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU);
2045 ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500);
2046 ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
2047
2048 static const struct of_device_id arm_smmu_of_match[] = {
2049         { .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
2050         { .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
2051         { .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
2052         { .compatible = "arm,mmu-401", .data = &arm_mmu401 },
2053         { .compatible = "arm,mmu-500", .data = &arm_mmu500 },
2054         { .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
2055         { },
2056 };
2057 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2058
2059 #ifdef CONFIG_ACPI
2060 static int acpi_smmu_get_data(u32 model, struct arm_smmu_device *smmu)
2061 {
2062         int ret = 0;
2063
2064         switch (model) {
2065         case ACPI_IORT_SMMU_V1:
2066         case ACPI_IORT_SMMU_CORELINK_MMU400:
2067                 smmu->version = ARM_SMMU_V1;
2068                 smmu->model = GENERIC_SMMU;
2069                 break;
2070         case ACPI_IORT_SMMU_CORELINK_MMU401:
2071                 smmu->version = ARM_SMMU_V1_64K;
2072                 smmu->model = GENERIC_SMMU;
2073                 break;
2074         case ACPI_IORT_SMMU_V2:
2075                 smmu->version = ARM_SMMU_V2;
2076                 smmu->model = GENERIC_SMMU;
2077                 break;
2078         case ACPI_IORT_SMMU_CORELINK_MMU500:
2079                 smmu->version = ARM_SMMU_V2;
2080                 smmu->model = ARM_MMU500;
2081                 break;
2082         case ACPI_IORT_SMMU_CAVIUM_THUNDERX:
2083                 smmu->version = ARM_SMMU_V2;
2084                 smmu->model = CAVIUM_SMMUV2;
2085                 break;
2086         default:
2087                 ret = -ENODEV;
2088         }
2089
2090         return ret;
2091 }
2092
2093 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2094                                       struct arm_smmu_device *smmu)
2095 {
2096         struct device *dev = smmu->dev;
2097         struct acpi_iort_node *node =
2098                 *(struct acpi_iort_node **)dev_get_platdata(dev);
2099         struct acpi_iort_smmu *iort_smmu;
2100         int ret;
2101
2102         /* Retrieve SMMU1/2 specific data */
2103         iort_smmu = (struct acpi_iort_smmu *)node->node_data;
2104
2105         ret = acpi_smmu_get_data(iort_smmu->model, smmu);
2106         if (ret < 0)
2107                 return ret;
2108
2109         /* Ignore the configuration access interrupt */
2110         smmu->num_global_irqs = 1;
2111
2112         if (iort_smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK)
2113                 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
2114
2115         return 0;
2116 }
2117 #else
2118 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2119                                              struct arm_smmu_device *smmu)
2120 {
2121         return -ENODEV;
2122 }
2123 #endif
2124
2125 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
2126                                     struct arm_smmu_device *smmu)
2127 {
2128         const struct arm_smmu_match_data *data;
2129         struct device *dev = &pdev->dev;
2130         bool legacy_binding;
2131
2132         if (of_property_read_u32(dev->of_node, "#global-interrupts",
2133                                  &smmu->num_global_irqs)) {
2134                 dev_err(dev, "missing #global-interrupts property\n");
2135                 return -ENODEV;
2136         }
2137
2138         data = of_device_get_match_data(dev);
2139         smmu->version = data->version;
2140         smmu->model = data->model;
2141
2142         parse_driver_options(smmu);
2143
2144         legacy_binding = of_find_property(dev->of_node, "mmu-masters", NULL);
2145         if (legacy_binding && !using_generic_binding) {
2146                 if (!using_legacy_binding)
2147                         pr_notice("deprecated \"mmu-masters\" DT property in use; DMA API support unavailable\n");
2148                 using_legacy_binding = true;
2149         } else if (!legacy_binding && !using_legacy_binding) {
2150                 using_generic_binding = true;
2151         } else {
2152                 dev_err(dev, "not probing due to mismatched DT properties\n");
2153                 return -ENODEV;
2154         }
2155
2156         if (of_dma_is_coherent(dev->of_node))
2157                 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
2158
2159         return 0;
2160 }
2161
2162 static void arm_smmu_bus_init(void)
2163 {
2164         /* Oh, for a proper bus abstraction */
2165         if (!iommu_present(&platform_bus_type))
2166                 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2167 #ifdef CONFIG_ARM_AMBA
2168         if (!iommu_present(&amba_bustype))
2169                 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2170 #endif
2171 #ifdef CONFIG_PCI
2172         if (!iommu_present(&pci_bus_type)) {
2173                 pci_request_acs();
2174                 bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2175         }
2176 #endif
2177 }
2178
2179 static int arm_smmu_device_probe(struct platform_device *pdev)
2180 {
2181         struct resource *res;
2182         resource_size_t ioaddr;
2183         struct arm_smmu_device *smmu;
2184         struct device *dev = &pdev->dev;
2185         int num_irqs, i, err;
2186
2187         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2188         if (!smmu) {
2189                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2190                 return -ENOMEM;
2191         }
2192         smmu->dev = dev;
2193
2194         if (dev->of_node)
2195                 err = arm_smmu_device_dt_probe(pdev, smmu);
2196         else
2197                 err = arm_smmu_device_acpi_probe(pdev, smmu);
2198
2199         if (err)
2200                 return err;
2201
2202         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2203         ioaddr = res->start;
2204         smmu->base = devm_ioremap_resource(dev, res);
2205         if (IS_ERR(smmu->base))
2206                 return PTR_ERR(smmu->base);
2207         smmu->cb_base = smmu->base + resource_size(res) / 2;
2208
2209         num_irqs = 0;
2210         while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
2211                 num_irqs++;
2212                 if (num_irqs > smmu->num_global_irqs)
2213                         smmu->num_context_irqs++;
2214         }
2215
2216         if (!smmu->num_context_irqs) {
2217                 dev_err(dev, "found %d interrupts but expected at least %d\n",
2218                         num_irqs, smmu->num_global_irqs + 1);
2219                 return -ENODEV;
2220         }
2221
2222         smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
2223                                   GFP_KERNEL);
2224         if (!smmu->irqs) {
2225                 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
2226                 return -ENOMEM;
2227         }
2228
2229         for (i = 0; i < num_irqs; ++i) {
2230                 int irq = platform_get_irq(pdev, i);
2231
2232                 if (irq < 0) {
2233                         dev_err(dev, "failed to get irq index %d\n", i);
2234                         return -ENODEV;
2235                 }
2236                 smmu->irqs[i] = irq;
2237         }
2238
2239         err = arm_smmu_device_cfg_probe(smmu);
2240         if (err)
2241                 return err;
2242
2243         if (smmu->version == ARM_SMMU_V2 &&
2244             smmu->num_context_banks != smmu->num_context_irqs) {
2245                 dev_err(dev,
2246                         "found only %d context interrupt(s) but %d required\n",
2247                         smmu->num_context_irqs, smmu->num_context_banks);
2248                 return -ENODEV;
2249         }
2250
2251         for (i = 0; i < smmu->num_global_irqs; ++i) {
2252                 err = devm_request_irq(smmu->dev, smmu->irqs[i],
2253                                        arm_smmu_global_fault,
2254                                        IRQF_SHARED,
2255                                        "arm-smmu global fault",
2256                                        smmu);
2257                 if (err) {
2258                         dev_err(dev, "failed to request global IRQ %d (%u)\n",
2259                                 i, smmu->irqs[i]);
2260                         return err;
2261                 }
2262         }
2263
2264         err = iommu_device_sysfs_add(&smmu->iommu, smmu->dev, NULL,
2265                                      "smmu.%pa", &ioaddr);
2266         if (err) {
2267                 dev_err(dev, "Failed to register iommu in sysfs\n");
2268                 return err;
2269         }
2270
2271         iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
2272         iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);
2273
2274         err = iommu_device_register(&smmu->iommu);
2275         if (err) {
2276                 dev_err(dev, "Failed to register iommu\n");
2277                 return err;
2278         }
2279
2280         platform_set_drvdata(pdev, smmu);
2281         arm_smmu_device_reset(smmu);
2282         arm_smmu_test_smr_masks(smmu);
2283
2284         /*
2285          * For ACPI and generic DT bindings, an SMMU will be probed before
2286          * any device which might need it, so we want the bus ops in place
2287          * ready to handle default domain setup as soon as any SMMU exists.
2288          */
2289         if (!using_legacy_binding)
2290                 arm_smmu_bus_init();
2291
2292         return 0;
2293 }
2294
2295 /*
2296  * With the legacy DT binding in play, though, we have no guarantees about
2297  * probe order, but then we're also not doing default domains, so we can
2298  * delay setting bus ops until we're sure every possible SMMU is ready,
2299  * and that way ensure that no add_device() calls get missed.
2300  */
2301 static int arm_smmu_legacy_bus_init(void)
2302 {
2303         if (using_legacy_binding)
2304                 arm_smmu_bus_init();
2305         return 0;
2306 }
2307 device_initcall_sync(arm_smmu_legacy_bus_init);
2308
2309 static int arm_smmu_device_remove(struct platform_device *pdev)
2310 {
2311         struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2312
2313         if (!smmu)
2314                 return -ENODEV;
2315
2316         if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2317                 dev_err(&pdev->dev, "removing device with active domains!\n");
2318
2319         /* Turn the thing off */
2320         writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2321         return 0;
2322 }
2323
2324 static struct platform_driver arm_smmu_driver = {
2325         .driver = {
2326                 .name           = "arm-smmu",
2327                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2328         },
2329         .probe  = arm_smmu_device_probe,
2330         .remove = arm_smmu_device_remove,
2331 };
2332 module_platform_driver(arm_smmu_driver);
2333
2334 IOMMU_OF_DECLARE(arm_smmuv1, "arm,smmu-v1", NULL);
2335 IOMMU_OF_DECLARE(arm_smmuv2, "arm,smmu-v2", NULL);
2336 IOMMU_OF_DECLARE(arm_mmu400, "arm,mmu-400", NULL);
2337 IOMMU_OF_DECLARE(arm_mmu401, "arm,mmu-401", NULL);
2338 IOMMU_OF_DECLARE(arm_mmu500, "arm,mmu-500", NULL);
2339 IOMMU_OF_DECLARE(cavium_smmuv2, "cavium,smmu-v2", NULL);
2340
2341 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
2342 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2343 MODULE_LICENSE("GPL v2");