]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/iommu/intel-iommu.c
Merge tag 'iommu-updates-v4.13' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / drivers / iommu / intel-iommu.c
1 /*
2  * Copyright © 2006-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * Authors: David Woodhouse <dwmw2@infradead.org>,
14  *          Ashok Raj <ashok.raj@intel.com>,
15  *          Shaohua Li <shaohua.li@intel.com>,
16  *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17  *          Fenghua Yu <fenghua.yu@intel.com>
18  *          Joerg Roedel <jroedel@suse.de>
19  */
20
21 #define pr_fmt(fmt)     "DMAR: " fmt
22
23 #include <linux/init.h>
24 #include <linux/bitmap.h>
25 #include <linux/debugfs.h>
26 #include <linux/export.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/memory.h>
36 #include <linux/cpu.h>
37 #include <linux/timer.h>
38 #include <linux/io.h>
39 #include <linux/iova.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/tboot.h>
44 #include <linux/dmi.h>
45 #include <linux/pci-ats.h>
46 #include <linux/memblock.h>
47 #include <linux/dma-contiguous.h>
48 #include <linux/crash_dump.h>
49 #include <asm/irq_remapping.h>
50 #include <asm/cacheflush.h>
51 #include <asm/iommu.h>
52
53 #include "irq_remapping.h"
54
55 #define ROOT_SIZE               VTD_PAGE_SIZE
56 #define CONTEXT_SIZE            VTD_PAGE_SIZE
57
58 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
59 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
60 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
61 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
62
63 #define IOAPIC_RANGE_START      (0xfee00000)
64 #define IOAPIC_RANGE_END        (0xfeefffff)
65 #define IOVA_START_ADDR         (0x1000)
66
67 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
68
69 #define MAX_AGAW_WIDTH 64
70 #define MAX_AGAW_PFN_WIDTH      (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
71
72 #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
73 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
74
75 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
76    to match. That way, we can use 'unsigned long' for PFNs with impunity. */
77 #define DOMAIN_MAX_PFN(gaw)     ((unsigned long) min_t(uint64_t, \
78                                 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
79 #define DOMAIN_MAX_ADDR(gaw)    (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
80
81 /* IO virtual address start page frame number */
82 #define IOVA_START_PFN          (1)
83
84 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
85 #define DMA_32BIT_PFN           IOVA_PFN(DMA_BIT_MASK(32))
86 #define DMA_64BIT_PFN           IOVA_PFN(DMA_BIT_MASK(64))
87
88 /* page table handling */
89 #define LEVEL_STRIDE            (9)
90 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
91
92 /*
93  * This bitmap is used to advertise the page sizes our hardware support
94  * to the IOMMU core, which will then use this information to split
95  * physically contiguous memory regions it is mapping into page sizes
96  * that we support.
97  *
98  * Traditionally the IOMMU core just handed us the mappings directly,
99  * after making sure the size is an order of a 4KiB page and that the
100  * mapping has natural alignment.
101  *
102  * To retain this behavior, we currently advertise that we support
103  * all page sizes that are an order of 4KiB.
104  *
105  * If at some point we'd like to utilize the IOMMU core's new behavior,
106  * we could change this to advertise the real page sizes we support.
107  */
108 #define INTEL_IOMMU_PGSIZES     (~0xFFFUL)
109
110 static inline int agaw_to_level(int agaw)
111 {
112         return agaw + 2;
113 }
114
115 static inline int agaw_to_width(int agaw)
116 {
117         return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
118 }
119
120 static inline int width_to_agaw(int width)
121 {
122         return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
123 }
124
125 static inline unsigned int level_to_offset_bits(int level)
126 {
127         return (level - 1) * LEVEL_STRIDE;
128 }
129
130 static inline int pfn_level_offset(unsigned long pfn, int level)
131 {
132         return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
133 }
134
135 static inline unsigned long level_mask(int level)
136 {
137         return -1UL << level_to_offset_bits(level);
138 }
139
140 static inline unsigned long level_size(int level)
141 {
142         return 1UL << level_to_offset_bits(level);
143 }
144
145 static inline unsigned long align_to_level(unsigned long pfn, int level)
146 {
147         return (pfn + level_size(level) - 1) & level_mask(level);
148 }
149
150 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
151 {
152         return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
153 }
154
155 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
156    are never going to work. */
157 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
158 {
159         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
160 }
161
162 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
163 {
164         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
165 }
166 static inline unsigned long page_to_dma_pfn(struct page *pg)
167 {
168         return mm_to_dma_pfn(page_to_pfn(pg));
169 }
170 static inline unsigned long virt_to_dma_pfn(void *p)
171 {
172         return page_to_dma_pfn(virt_to_page(p));
173 }
174
175 /* global iommu list, set NULL for ignored DMAR units */
176 static struct intel_iommu **g_iommus;
177
178 static void __init check_tylersburg_isoch(void);
179 static int rwbf_quirk;
180
181 /*
182  * set to 1 to panic kernel if can't successfully enable VT-d
183  * (used when kernel is launched w/ TXT)
184  */
185 static int force_on = 0;
186 int intel_iommu_tboot_noforce;
187
188 /*
189  * 0: Present
190  * 1-11: Reserved
191  * 12-63: Context Ptr (12 - (haw-1))
192  * 64-127: Reserved
193  */
194 struct root_entry {
195         u64     lo;
196         u64     hi;
197 };
198 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
199
200 /*
201  * Take a root_entry and return the Lower Context Table Pointer (LCTP)
202  * if marked present.
203  */
204 static phys_addr_t root_entry_lctp(struct root_entry *re)
205 {
206         if (!(re->lo & 1))
207                 return 0;
208
209         return re->lo & VTD_PAGE_MASK;
210 }
211
212 /*
213  * Take a root_entry and return the Upper Context Table Pointer (UCTP)
214  * if marked present.
215  */
216 static phys_addr_t root_entry_uctp(struct root_entry *re)
217 {
218         if (!(re->hi & 1))
219                 return 0;
220
221         return re->hi & VTD_PAGE_MASK;
222 }
223 /*
224  * low 64 bits:
225  * 0: present
226  * 1: fault processing disable
227  * 2-3: translation type
228  * 12-63: address space root
229  * high 64 bits:
230  * 0-2: address width
231  * 3-6: aval
232  * 8-23: domain id
233  */
234 struct context_entry {
235         u64 lo;
236         u64 hi;
237 };
238
239 static inline void context_clear_pasid_enable(struct context_entry *context)
240 {
241         context->lo &= ~(1ULL << 11);
242 }
243
244 static inline bool context_pasid_enabled(struct context_entry *context)
245 {
246         return !!(context->lo & (1ULL << 11));
247 }
248
249 static inline void context_set_copied(struct context_entry *context)
250 {
251         context->hi |= (1ull << 3);
252 }
253
254 static inline bool context_copied(struct context_entry *context)
255 {
256         return !!(context->hi & (1ULL << 3));
257 }
258
259 static inline bool __context_present(struct context_entry *context)
260 {
261         return (context->lo & 1);
262 }
263
264 static inline bool context_present(struct context_entry *context)
265 {
266         return context_pasid_enabled(context) ?
267              __context_present(context) :
268              __context_present(context) && !context_copied(context);
269 }
270
271 static inline void context_set_present(struct context_entry *context)
272 {
273         context->lo |= 1;
274 }
275
276 static inline void context_set_fault_enable(struct context_entry *context)
277 {
278         context->lo &= (((u64)-1) << 2) | 1;
279 }
280
281 static inline void context_set_translation_type(struct context_entry *context,
282                                                 unsigned long value)
283 {
284         context->lo &= (((u64)-1) << 4) | 3;
285         context->lo |= (value & 3) << 2;
286 }
287
288 static inline void context_set_address_root(struct context_entry *context,
289                                             unsigned long value)
290 {
291         context->lo &= ~VTD_PAGE_MASK;
292         context->lo |= value & VTD_PAGE_MASK;
293 }
294
295 static inline void context_set_address_width(struct context_entry *context,
296                                              unsigned long value)
297 {
298         context->hi |= value & 7;
299 }
300
301 static inline void context_set_domain_id(struct context_entry *context,
302                                          unsigned long value)
303 {
304         context->hi |= (value & ((1 << 16) - 1)) << 8;
305 }
306
307 static inline int context_domain_id(struct context_entry *c)
308 {
309         return((c->hi >> 8) & 0xffff);
310 }
311
312 static inline void context_clear_entry(struct context_entry *context)
313 {
314         context->lo = 0;
315         context->hi = 0;
316 }
317
318 /*
319  * 0: readable
320  * 1: writable
321  * 2-6: reserved
322  * 7: super page
323  * 8-10: available
324  * 11: snoop behavior
325  * 12-63: Host physcial address
326  */
327 struct dma_pte {
328         u64 val;
329 };
330
331 static inline void dma_clear_pte(struct dma_pte *pte)
332 {
333         pte->val = 0;
334 }
335
336 static inline u64 dma_pte_addr(struct dma_pte *pte)
337 {
338 #ifdef CONFIG_64BIT
339         return pte->val & VTD_PAGE_MASK;
340 #else
341         /* Must have a full atomic 64-bit read */
342         return  __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
343 #endif
344 }
345
346 static inline bool dma_pte_present(struct dma_pte *pte)
347 {
348         return (pte->val & 3) != 0;
349 }
350
351 static inline bool dma_pte_superpage(struct dma_pte *pte)
352 {
353         return (pte->val & DMA_PTE_LARGE_PAGE);
354 }
355
356 static inline int first_pte_in_page(struct dma_pte *pte)
357 {
358         return !((unsigned long)pte & ~VTD_PAGE_MASK);
359 }
360
361 /*
362  * This domain is a statically identity mapping domain.
363  *      1. This domain creats a static 1:1 mapping to all usable memory.
364  *      2. It maps to each iommu if successful.
365  *      3. Each iommu mapps to this domain if successful.
366  */
367 static struct dmar_domain *si_domain;
368 static int hw_pass_through = 1;
369
370 /*
371  * Domain represents a virtual machine, more than one devices
372  * across iommus may be owned in one domain, e.g. kvm guest.
373  */
374 #define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 0)
375
376 /* si_domain contains mulitple devices */
377 #define DOMAIN_FLAG_STATIC_IDENTITY     (1 << 1)
378
379 #define for_each_domain_iommu(idx, domain)                      \
380         for (idx = 0; idx < g_num_of_iommus; idx++)             \
381                 if (domain->iommu_refcnt[idx])
382
383 struct dmar_domain {
384         int     nid;                    /* node id */
385
386         unsigned        iommu_refcnt[DMAR_UNITS_SUPPORTED];
387                                         /* Refcount of devices per iommu */
388
389
390         u16             iommu_did[DMAR_UNITS_SUPPORTED];
391                                         /* Domain ids per IOMMU. Use u16 since
392                                          * domain ids are 16 bit wide according
393                                          * to VT-d spec, section 9.3 */
394
395         bool has_iotlb_device;
396         struct list_head devices;       /* all devices' list */
397         struct iova_domain iovad;       /* iova's that belong to this domain */
398
399         struct dma_pte  *pgd;           /* virtual address */
400         int             gaw;            /* max guest address width */
401
402         /* adjusted guest address width, 0 is level 2 30-bit */
403         int             agaw;
404
405         int             flags;          /* flags to find out type of domain */
406
407         int             iommu_coherency;/* indicate coherency of iommu access */
408         int             iommu_snooping; /* indicate snooping control feature*/
409         int             iommu_count;    /* reference count of iommu */
410         int             iommu_superpage;/* Level of superpages supported:
411                                            0 == 4KiB (no superpages), 1 == 2MiB,
412                                            2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
413         u64             max_addr;       /* maximum mapped address */
414
415         struct iommu_domain domain;     /* generic domain data structure for
416                                            iommu core */
417 };
418
419 /* PCI domain-device relationship */
420 struct device_domain_info {
421         struct list_head link;  /* link to domain siblings */
422         struct list_head global; /* link to global list */
423         u8 bus;                 /* PCI bus number */
424         u8 devfn;               /* PCI devfn number */
425         u8 pasid_supported:3;
426         u8 pasid_enabled:1;
427         u8 pri_supported:1;
428         u8 pri_enabled:1;
429         u8 ats_supported:1;
430         u8 ats_enabled:1;
431         u8 ats_qdep;
432         struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
433         struct intel_iommu *iommu; /* IOMMU used by this device */
434         struct dmar_domain *domain; /* pointer to domain */
435 };
436
437 struct dmar_rmrr_unit {
438         struct list_head list;          /* list of rmrr units   */
439         struct acpi_dmar_header *hdr;   /* ACPI header          */
440         u64     base_address;           /* reserved base address*/
441         u64     end_address;            /* reserved end address */
442         struct dmar_dev_scope *devices; /* target devices */
443         int     devices_cnt;            /* target device count */
444         struct iommu_resv_region *resv; /* reserved region handle */
445 };
446
447 struct dmar_atsr_unit {
448         struct list_head list;          /* list of ATSR units */
449         struct acpi_dmar_header *hdr;   /* ACPI header */
450         struct dmar_dev_scope *devices; /* target devices */
451         int devices_cnt;                /* target device count */
452         u8 include_all:1;               /* include all ports */
453 };
454
455 static LIST_HEAD(dmar_atsr_units);
456 static LIST_HEAD(dmar_rmrr_units);
457
458 #define for_each_rmrr_units(rmrr) \
459         list_for_each_entry(rmrr, &dmar_rmrr_units, list)
460
461 static void flush_unmaps_timeout(unsigned long data);
462
463 struct deferred_flush_entry {
464         unsigned long iova_pfn;
465         unsigned long nrpages;
466         struct dmar_domain *domain;
467         struct page *freelist;
468 };
469
470 #define HIGH_WATER_MARK 250
471 struct deferred_flush_table {
472         int next;
473         struct deferred_flush_entry entries[HIGH_WATER_MARK];
474 };
475
476 struct deferred_flush_data {
477         spinlock_t lock;
478         int timer_on;
479         struct timer_list timer;
480         long size;
481         struct deferred_flush_table *tables;
482 };
483
484 static DEFINE_PER_CPU(struct deferred_flush_data, deferred_flush);
485
486 /* bitmap for indexing intel_iommus */
487 static int g_num_of_iommus;
488
489 static void domain_exit(struct dmar_domain *domain);
490 static void domain_remove_dev_info(struct dmar_domain *domain);
491 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
492                                      struct device *dev);
493 static void __dmar_remove_one_dev_info(struct device_domain_info *info);
494 static void domain_context_clear(struct intel_iommu *iommu,
495                                  struct device *dev);
496 static int domain_detach_iommu(struct dmar_domain *domain,
497                                struct intel_iommu *iommu);
498
499 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
500 int dmar_disabled = 0;
501 #else
502 int dmar_disabled = 1;
503 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
504
505 int intel_iommu_enabled = 0;
506 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
507
508 static int dmar_map_gfx = 1;
509 static int dmar_forcedac;
510 static int intel_iommu_strict;
511 static int intel_iommu_superpage = 1;
512 static int intel_iommu_ecs = 1;
513 static int intel_iommu_pasid28;
514 static int iommu_identity_mapping;
515
516 #define IDENTMAP_ALL            1
517 #define IDENTMAP_GFX            2
518 #define IDENTMAP_AZALIA         4
519
520 /* Broadwell and Skylake have broken ECS support — normal so-called "second
521  * level" translation of DMA requests-without-PASID doesn't actually happen
522  * unless you also set the NESTE bit in an extended context-entry. Which of
523  * course means that SVM doesn't work because it's trying to do nested
524  * translation of the physical addresses it finds in the process page tables,
525  * through the IOVA->phys mapping found in the "second level" page tables.
526  *
527  * The VT-d specification was retroactively changed to change the definition
528  * of the capability bits and pretend that Broadwell/Skylake never happened...
529  * but unfortunately the wrong bit was changed. It's ECS which is broken, but
530  * for some reason it was the PASID capability bit which was redefined (from
531  * bit 28 on BDW/SKL to bit 40 in future).
532  *
533  * So our test for ECS needs to eschew those implementations which set the old
534  * PASID capabiity bit 28, since those are the ones on which ECS is broken.
535  * Unless we are working around the 'pasid28' limitations, that is, by putting
536  * the device into passthrough mode for normal DMA and thus masking the bug.
537  */
538 #define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
539                             (intel_iommu_pasid28 || !ecap_broken_pasid(iommu->ecap)))
540 /* PASID support is thus enabled if ECS is enabled and *either* of the old
541  * or new capability bits are set. */
542 #define pasid_enabled(iommu) (ecs_enabled(iommu) &&                     \
543                               (ecap_pasid(iommu->ecap) || ecap_broken_pasid(iommu->ecap)))
544
545 int intel_iommu_gfx_mapped;
546 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
547
548 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
549 static DEFINE_SPINLOCK(device_domain_lock);
550 static LIST_HEAD(device_domain_list);
551
552 const struct iommu_ops intel_iommu_ops;
553
554 static bool translation_pre_enabled(struct intel_iommu *iommu)
555 {
556         return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
557 }
558
559 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
560 {
561         iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
562 }
563
564 static void init_translation_status(struct intel_iommu *iommu)
565 {
566         u32 gsts;
567
568         gsts = readl(iommu->reg + DMAR_GSTS_REG);
569         if (gsts & DMA_GSTS_TES)
570                 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
571 }
572
573 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
574 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
575 {
576         return container_of(dom, struct dmar_domain, domain);
577 }
578
579 static int __init intel_iommu_setup(char *str)
580 {
581         if (!str)
582                 return -EINVAL;
583         while (*str) {
584                 if (!strncmp(str, "on", 2)) {
585                         dmar_disabled = 0;
586                         pr_info("IOMMU enabled\n");
587                 } else if (!strncmp(str, "off", 3)) {
588                         dmar_disabled = 1;
589                         pr_info("IOMMU disabled\n");
590                 } else if (!strncmp(str, "igfx_off", 8)) {
591                         dmar_map_gfx = 0;
592                         pr_info("Disable GFX device mapping\n");
593                 } else if (!strncmp(str, "forcedac", 8)) {
594                         pr_info("Forcing DAC for PCI devices\n");
595                         dmar_forcedac = 1;
596                 } else if (!strncmp(str, "strict", 6)) {
597                         pr_info("Disable batched IOTLB flush\n");
598                         intel_iommu_strict = 1;
599                 } else if (!strncmp(str, "sp_off", 6)) {
600                         pr_info("Disable supported super page\n");
601                         intel_iommu_superpage = 0;
602                 } else if (!strncmp(str, "ecs_off", 7)) {
603                         printk(KERN_INFO
604                                 "Intel-IOMMU: disable extended context table support\n");
605                         intel_iommu_ecs = 0;
606                 } else if (!strncmp(str, "pasid28", 7)) {
607                         printk(KERN_INFO
608                                 "Intel-IOMMU: enable pre-production PASID support\n");
609                         intel_iommu_pasid28 = 1;
610                         iommu_identity_mapping |= IDENTMAP_GFX;
611                 } else if (!strncmp(str, "tboot_noforce", 13)) {
612                         printk(KERN_INFO
613                                 "Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
614                         intel_iommu_tboot_noforce = 1;
615                 }
616
617                 str += strcspn(str, ",");
618                 while (*str == ',')
619                         str++;
620         }
621         return 0;
622 }
623 __setup("intel_iommu=", intel_iommu_setup);
624
625 static struct kmem_cache *iommu_domain_cache;
626 static struct kmem_cache *iommu_devinfo_cache;
627
628 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
629 {
630         struct dmar_domain **domains;
631         int idx = did >> 8;
632
633         domains = iommu->domains[idx];
634         if (!domains)
635                 return NULL;
636
637         return domains[did & 0xff];
638 }
639
640 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
641                              struct dmar_domain *domain)
642 {
643         struct dmar_domain **domains;
644         int idx = did >> 8;
645
646         if (!iommu->domains[idx]) {
647                 size_t size = 256 * sizeof(struct dmar_domain *);
648                 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
649         }
650
651         domains = iommu->domains[idx];
652         if (WARN_ON(!domains))
653                 return;
654         else
655                 domains[did & 0xff] = domain;
656 }
657
658 static inline void *alloc_pgtable_page(int node)
659 {
660         struct page *page;
661         void *vaddr = NULL;
662
663         page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
664         if (page)
665                 vaddr = page_address(page);
666         return vaddr;
667 }
668
669 static inline void free_pgtable_page(void *vaddr)
670 {
671         free_page((unsigned long)vaddr);
672 }
673
674 static inline void *alloc_domain_mem(void)
675 {
676         return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
677 }
678
679 static void free_domain_mem(void *vaddr)
680 {
681         kmem_cache_free(iommu_domain_cache, vaddr);
682 }
683
684 static inline void * alloc_devinfo_mem(void)
685 {
686         return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
687 }
688
689 static inline void free_devinfo_mem(void *vaddr)
690 {
691         kmem_cache_free(iommu_devinfo_cache, vaddr);
692 }
693
694 static inline int domain_type_is_vm(struct dmar_domain *domain)
695 {
696         return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
697 }
698
699 static inline int domain_type_is_si(struct dmar_domain *domain)
700 {
701         return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
702 }
703
704 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
705 {
706         return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
707                                 DOMAIN_FLAG_STATIC_IDENTITY);
708 }
709
710 static inline int domain_pfn_supported(struct dmar_domain *domain,
711                                        unsigned long pfn)
712 {
713         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
714
715         return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
716 }
717
718 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
719 {
720         unsigned long sagaw;
721         int agaw = -1;
722
723         sagaw = cap_sagaw(iommu->cap);
724         for (agaw = width_to_agaw(max_gaw);
725              agaw >= 0; agaw--) {
726                 if (test_bit(agaw, &sagaw))
727                         break;
728         }
729
730         return agaw;
731 }
732
733 /*
734  * Calculate max SAGAW for each iommu.
735  */
736 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
737 {
738         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
739 }
740
741 /*
742  * calculate agaw for each iommu.
743  * "SAGAW" may be different across iommus, use a default agaw, and
744  * get a supported less agaw for iommus that don't support the default agaw.
745  */
746 int iommu_calculate_agaw(struct intel_iommu *iommu)
747 {
748         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
749 }
750
751 /* This functionin only returns single iommu in a domain */
752 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
753 {
754         int iommu_id;
755
756         /* si_domain and vm domain should not get here. */
757         BUG_ON(domain_type_is_vm_or_si(domain));
758         for_each_domain_iommu(iommu_id, domain)
759                 break;
760
761         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
762                 return NULL;
763
764         return g_iommus[iommu_id];
765 }
766
767 static void domain_update_iommu_coherency(struct dmar_domain *domain)
768 {
769         struct dmar_drhd_unit *drhd;
770         struct intel_iommu *iommu;
771         bool found = false;
772         int i;
773
774         domain->iommu_coherency = 1;
775
776         for_each_domain_iommu(i, domain) {
777                 found = true;
778                 if (!ecap_coherent(g_iommus[i]->ecap)) {
779                         domain->iommu_coherency = 0;
780                         break;
781                 }
782         }
783         if (found)
784                 return;
785
786         /* No hardware attached; use lowest common denominator */
787         rcu_read_lock();
788         for_each_active_iommu(iommu, drhd) {
789                 if (!ecap_coherent(iommu->ecap)) {
790                         domain->iommu_coherency = 0;
791                         break;
792                 }
793         }
794         rcu_read_unlock();
795 }
796
797 static int domain_update_iommu_snooping(struct intel_iommu *skip)
798 {
799         struct dmar_drhd_unit *drhd;
800         struct intel_iommu *iommu;
801         int ret = 1;
802
803         rcu_read_lock();
804         for_each_active_iommu(iommu, drhd) {
805                 if (iommu != skip) {
806                         if (!ecap_sc_support(iommu->ecap)) {
807                                 ret = 0;
808                                 break;
809                         }
810                 }
811         }
812         rcu_read_unlock();
813
814         return ret;
815 }
816
817 static int domain_update_iommu_superpage(struct intel_iommu *skip)
818 {
819         struct dmar_drhd_unit *drhd;
820         struct intel_iommu *iommu;
821         int mask = 0xf;
822
823         if (!intel_iommu_superpage) {
824                 return 0;
825         }
826
827         /* set iommu_superpage to the smallest common denominator */
828         rcu_read_lock();
829         for_each_active_iommu(iommu, drhd) {
830                 if (iommu != skip) {
831                         mask &= cap_super_page_val(iommu->cap);
832                         if (!mask)
833                                 break;
834                 }
835         }
836         rcu_read_unlock();
837
838         return fls(mask);
839 }
840
841 /* Some capabilities may be different across iommus */
842 static void domain_update_iommu_cap(struct dmar_domain *domain)
843 {
844         domain_update_iommu_coherency(domain);
845         domain->iommu_snooping = domain_update_iommu_snooping(NULL);
846         domain->iommu_superpage = domain_update_iommu_superpage(NULL);
847 }
848
849 static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
850                                                        u8 bus, u8 devfn, int alloc)
851 {
852         struct root_entry *root = &iommu->root_entry[bus];
853         struct context_entry *context;
854         u64 *entry;
855
856         entry = &root->lo;
857         if (ecs_enabled(iommu)) {
858                 if (devfn >= 0x80) {
859                         devfn -= 0x80;
860                         entry = &root->hi;
861                 }
862                 devfn *= 2;
863         }
864         if (*entry & 1)
865                 context = phys_to_virt(*entry & VTD_PAGE_MASK);
866         else {
867                 unsigned long phy_addr;
868                 if (!alloc)
869                         return NULL;
870
871                 context = alloc_pgtable_page(iommu->node);
872                 if (!context)
873                         return NULL;
874
875                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
876                 phy_addr = virt_to_phys((void *)context);
877                 *entry = phy_addr | 1;
878                 __iommu_flush_cache(iommu, entry, sizeof(*entry));
879         }
880         return &context[devfn];
881 }
882
883 static int iommu_dummy(struct device *dev)
884 {
885         return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
886 }
887
888 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
889 {
890         struct dmar_drhd_unit *drhd = NULL;
891         struct intel_iommu *iommu;
892         struct device *tmp;
893         struct pci_dev *ptmp, *pdev = NULL;
894         u16 segment = 0;
895         int i;
896
897         if (iommu_dummy(dev))
898                 return NULL;
899
900         if (dev_is_pci(dev)) {
901                 struct pci_dev *pf_pdev;
902
903                 pdev = to_pci_dev(dev);
904                 /* VFs aren't listed in scope tables; we need to look up
905                  * the PF instead to find the IOMMU. */
906                 pf_pdev = pci_physfn(pdev);
907                 dev = &pf_pdev->dev;
908                 segment = pci_domain_nr(pdev->bus);
909         } else if (has_acpi_companion(dev))
910                 dev = &ACPI_COMPANION(dev)->dev;
911
912         rcu_read_lock();
913         for_each_active_iommu(iommu, drhd) {
914                 if (pdev && segment != drhd->segment)
915                         continue;
916
917                 for_each_active_dev_scope(drhd->devices,
918                                           drhd->devices_cnt, i, tmp) {
919                         if (tmp == dev) {
920                                 /* For a VF use its original BDF# not that of the PF
921                                  * which we used for the IOMMU lookup. Strictly speaking
922                                  * we could do this for all PCI devices; we only need to
923                                  * get the BDF# from the scope table for ACPI matches. */
924                                 if (pdev && pdev->is_virtfn)
925                                         goto got_pdev;
926
927                                 *bus = drhd->devices[i].bus;
928                                 *devfn = drhd->devices[i].devfn;
929                                 goto out;
930                         }
931
932                         if (!pdev || !dev_is_pci(tmp))
933                                 continue;
934
935                         ptmp = to_pci_dev(tmp);
936                         if (ptmp->subordinate &&
937                             ptmp->subordinate->number <= pdev->bus->number &&
938                             ptmp->subordinate->busn_res.end >= pdev->bus->number)
939                                 goto got_pdev;
940                 }
941
942                 if (pdev && drhd->include_all) {
943                 got_pdev:
944                         *bus = pdev->bus->number;
945                         *devfn = pdev->devfn;
946                         goto out;
947                 }
948         }
949         iommu = NULL;
950  out:
951         rcu_read_unlock();
952
953         return iommu;
954 }
955
956 static void domain_flush_cache(struct dmar_domain *domain,
957                                void *addr, int size)
958 {
959         if (!domain->iommu_coherency)
960                 clflush_cache_range(addr, size);
961 }
962
963 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
964 {
965         struct context_entry *context;
966         int ret = 0;
967         unsigned long flags;
968
969         spin_lock_irqsave(&iommu->lock, flags);
970         context = iommu_context_addr(iommu, bus, devfn, 0);
971         if (context)
972                 ret = context_present(context);
973         spin_unlock_irqrestore(&iommu->lock, flags);
974         return ret;
975 }
976
977 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
978 {
979         struct context_entry *context;
980         unsigned long flags;
981
982         spin_lock_irqsave(&iommu->lock, flags);
983         context = iommu_context_addr(iommu, bus, devfn, 0);
984         if (context) {
985                 context_clear_entry(context);
986                 __iommu_flush_cache(iommu, context, sizeof(*context));
987         }
988         spin_unlock_irqrestore(&iommu->lock, flags);
989 }
990
991 static void free_context_table(struct intel_iommu *iommu)
992 {
993         int i;
994         unsigned long flags;
995         struct context_entry *context;
996
997         spin_lock_irqsave(&iommu->lock, flags);
998         if (!iommu->root_entry) {
999                 goto out;
1000         }
1001         for (i = 0; i < ROOT_ENTRY_NR; i++) {
1002                 context = iommu_context_addr(iommu, i, 0, 0);
1003                 if (context)
1004                         free_pgtable_page(context);
1005
1006                 if (!ecs_enabled(iommu))
1007                         continue;
1008
1009                 context = iommu_context_addr(iommu, i, 0x80, 0);
1010                 if (context)
1011                         free_pgtable_page(context);
1012
1013         }
1014         free_pgtable_page(iommu->root_entry);
1015         iommu->root_entry = NULL;
1016 out:
1017         spin_unlock_irqrestore(&iommu->lock, flags);
1018 }
1019
1020 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
1021                                       unsigned long pfn, int *target_level)
1022 {
1023         struct dma_pte *parent, *pte = NULL;
1024         int level = agaw_to_level(domain->agaw);
1025         int offset;
1026
1027         BUG_ON(!domain->pgd);
1028
1029         if (!domain_pfn_supported(domain, pfn))
1030                 /* Address beyond IOMMU's addressing capabilities. */
1031                 return NULL;
1032
1033         parent = domain->pgd;
1034
1035         while (1) {
1036                 void *tmp_page;
1037
1038                 offset = pfn_level_offset(pfn, level);
1039                 pte = &parent[offset];
1040                 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
1041                         break;
1042                 if (level == *target_level)
1043                         break;
1044
1045                 if (!dma_pte_present(pte)) {
1046                         uint64_t pteval;
1047
1048                         tmp_page = alloc_pgtable_page(domain->nid);
1049
1050                         if (!tmp_page)
1051                                 return NULL;
1052
1053                         domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
1054                         pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
1055                         if (cmpxchg64(&pte->val, 0ULL, pteval))
1056                                 /* Someone else set it while we were thinking; use theirs. */
1057                                 free_pgtable_page(tmp_page);
1058                         else
1059                                 domain_flush_cache(domain, pte, sizeof(*pte));
1060                 }
1061                 if (level == 1)
1062                         break;
1063
1064                 parent = phys_to_virt(dma_pte_addr(pte));
1065                 level--;
1066         }
1067
1068         if (!*target_level)
1069                 *target_level = level;
1070
1071         return pte;
1072 }
1073
1074
1075 /* return address's pte at specific level */
1076 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
1077                                          unsigned long pfn,
1078                                          int level, int *large_page)
1079 {
1080         struct dma_pte *parent, *pte = NULL;
1081         int total = agaw_to_level(domain->agaw);
1082         int offset;
1083
1084         parent = domain->pgd;
1085         while (level <= total) {
1086                 offset = pfn_level_offset(pfn, total);
1087                 pte = &parent[offset];
1088                 if (level == total)
1089                         return pte;
1090
1091                 if (!dma_pte_present(pte)) {
1092                         *large_page = total;
1093                         break;
1094                 }
1095
1096                 if (dma_pte_superpage(pte)) {
1097                         *large_page = total;
1098                         return pte;
1099                 }
1100
1101                 parent = phys_to_virt(dma_pte_addr(pte));
1102                 total--;
1103         }
1104         return NULL;
1105 }
1106
1107 /* clear last level pte, a tlb flush should be followed */
1108 static void dma_pte_clear_range(struct dmar_domain *domain,
1109                                 unsigned long start_pfn,
1110                                 unsigned long last_pfn)
1111 {
1112         unsigned int large_page = 1;
1113         struct dma_pte *first_pte, *pte;
1114
1115         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1116         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1117         BUG_ON(start_pfn > last_pfn);
1118
1119         /* we don't need lock here; nobody else touches the iova range */
1120         do {
1121                 large_page = 1;
1122                 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1123                 if (!pte) {
1124                         start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1125                         continue;
1126                 }
1127                 do {
1128                         dma_clear_pte(pte);
1129                         start_pfn += lvl_to_nr_pages(large_page);
1130                         pte++;
1131                 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1132
1133                 domain_flush_cache(domain, first_pte,
1134                                    (void *)pte - (void *)first_pte);
1135
1136         } while (start_pfn && start_pfn <= last_pfn);
1137 }
1138
1139 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1140                                struct dma_pte *pte, unsigned long pfn,
1141                                unsigned long start_pfn, unsigned long last_pfn)
1142 {
1143         pfn = max(start_pfn, pfn);
1144         pte = &pte[pfn_level_offset(pfn, level)];
1145
1146         do {
1147                 unsigned long level_pfn;
1148                 struct dma_pte *level_pte;
1149
1150                 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1151                         goto next;
1152
1153                 level_pfn = pfn & level_mask(level);
1154                 level_pte = phys_to_virt(dma_pte_addr(pte));
1155
1156                 if (level > 2)
1157                         dma_pte_free_level(domain, level - 1, level_pte,
1158                                            level_pfn, start_pfn, last_pfn);
1159
1160                 /* If range covers entire pagetable, free it */
1161                 if (!(start_pfn > level_pfn ||
1162                       last_pfn < level_pfn + level_size(level) - 1)) {
1163                         dma_clear_pte(pte);
1164                         domain_flush_cache(domain, pte, sizeof(*pte));
1165                         free_pgtable_page(level_pte);
1166                 }
1167 next:
1168                 pfn += level_size(level);
1169         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1170 }
1171
1172 /* clear last level (leaf) ptes and free page table pages. */
1173 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1174                                    unsigned long start_pfn,
1175                                    unsigned long last_pfn)
1176 {
1177         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1178         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1179         BUG_ON(start_pfn > last_pfn);
1180
1181         dma_pte_clear_range(domain, start_pfn, last_pfn);
1182
1183         /* We don't need lock here; nobody else touches the iova range */
1184         dma_pte_free_level(domain, agaw_to_level(domain->agaw),
1185                            domain->pgd, 0, start_pfn, last_pfn);
1186
1187         /* free pgd */
1188         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1189                 free_pgtable_page(domain->pgd);
1190                 domain->pgd = NULL;
1191         }
1192 }
1193
1194 /* When a page at a given level is being unlinked from its parent, we don't
1195    need to *modify* it at all. All we need to do is make a list of all the
1196    pages which can be freed just as soon as we've flushed the IOTLB and we
1197    know the hardware page-walk will no longer touch them.
1198    The 'pte' argument is the *parent* PTE, pointing to the page that is to
1199    be freed. */
1200 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1201                                             int level, struct dma_pte *pte,
1202                                             struct page *freelist)
1203 {
1204         struct page *pg;
1205
1206         pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1207         pg->freelist = freelist;
1208         freelist = pg;
1209
1210         if (level == 1)
1211                 return freelist;
1212
1213         pte = page_address(pg);
1214         do {
1215                 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1216                         freelist = dma_pte_list_pagetables(domain, level - 1,
1217                                                            pte, freelist);
1218                 pte++;
1219         } while (!first_pte_in_page(pte));
1220
1221         return freelist;
1222 }
1223
1224 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1225                                         struct dma_pte *pte, unsigned long pfn,
1226                                         unsigned long start_pfn,
1227                                         unsigned long last_pfn,
1228                                         struct page *freelist)
1229 {
1230         struct dma_pte *first_pte = NULL, *last_pte = NULL;
1231
1232         pfn = max(start_pfn, pfn);
1233         pte = &pte[pfn_level_offset(pfn, level)];
1234
1235         do {
1236                 unsigned long level_pfn;
1237
1238                 if (!dma_pte_present(pte))
1239                         goto next;
1240
1241                 level_pfn = pfn & level_mask(level);
1242
1243                 /* If range covers entire pagetable, free it */
1244                 if (start_pfn <= level_pfn &&
1245                     last_pfn >= level_pfn + level_size(level) - 1) {
1246                         /* These suborbinate page tables are going away entirely. Don't
1247                            bother to clear them; we're just going to *free* them. */
1248                         if (level > 1 && !dma_pte_superpage(pte))
1249                                 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1250
1251                         dma_clear_pte(pte);
1252                         if (!first_pte)
1253                                 first_pte = pte;
1254                         last_pte = pte;
1255                 } else if (level > 1) {
1256                         /* Recurse down into a level that isn't *entirely* obsolete */
1257                         freelist = dma_pte_clear_level(domain, level - 1,
1258                                                        phys_to_virt(dma_pte_addr(pte)),
1259                                                        level_pfn, start_pfn, last_pfn,
1260                                                        freelist);
1261                 }
1262 next:
1263                 pfn += level_size(level);
1264         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1265
1266         if (first_pte)
1267                 domain_flush_cache(domain, first_pte,
1268                                    (void *)++last_pte - (void *)first_pte);
1269
1270         return freelist;
1271 }
1272
1273 /* We can't just free the pages because the IOMMU may still be walking
1274    the page tables, and may have cached the intermediate levels. The
1275    pages can only be freed after the IOTLB flush has been done. */
1276 static struct page *domain_unmap(struct dmar_domain *domain,
1277                                  unsigned long start_pfn,
1278                                  unsigned long last_pfn)
1279 {
1280         struct page *freelist = NULL;
1281
1282         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1283         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1284         BUG_ON(start_pfn > last_pfn);
1285
1286         /* we don't need lock here; nobody else touches the iova range */
1287         freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1288                                        domain->pgd, 0, start_pfn, last_pfn, NULL);
1289
1290         /* free pgd */
1291         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1292                 struct page *pgd_page = virt_to_page(domain->pgd);
1293                 pgd_page->freelist = freelist;
1294                 freelist = pgd_page;
1295
1296                 domain->pgd = NULL;
1297         }
1298
1299         return freelist;
1300 }
1301
1302 static void dma_free_pagelist(struct page *freelist)
1303 {
1304         struct page *pg;
1305
1306         while ((pg = freelist)) {
1307                 freelist = pg->freelist;
1308                 free_pgtable_page(page_address(pg));
1309         }
1310 }
1311
1312 /* iommu handling */
1313 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1314 {
1315         struct root_entry *root;
1316         unsigned long flags;
1317
1318         root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1319         if (!root) {
1320                 pr_err("Allocating root entry for %s failed\n",
1321                         iommu->name);
1322                 return -ENOMEM;
1323         }
1324
1325         __iommu_flush_cache(iommu, root, ROOT_SIZE);
1326
1327         spin_lock_irqsave(&iommu->lock, flags);
1328         iommu->root_entry = root;
1329         spin_unlock_irqrestore(&iommu->lock, flags);
1330
1331         return 0;
1332 }
1333
1334 static void iommu_set_root_entry(struct intel_iommu *iommu)
1335 {
1336         u64 addr;
1337         u32 sts;
1338         unsigned long flag;
1339
1340         addr = virt_to_phys(iommu->root_entry);
1341         if (ecs_enabled(iommu))
1342                 addr |= DMA_RTADDR_RTT;
1343
1344         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1345         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1346
1347         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1348
1349         /* Make sure hardware complete it */
1350         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1351                       readl, (sts & DMA_GSTS_RTPS), sts);
1352
1353         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1354 }
1355
1356 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1357 {
1358         u32 val;
1359         unsigned long flag;
1360
1361         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1362                 return;
1363
1364         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1365         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1366
1367         /* Make sure hardware complete it */
1368         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1369                       readl, (!(val & DMA_GSTS_WBFS)), val);
1370
1371         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1372 }
1373
1374 /* return value determine if we need a write buffer flush */
1375 static void __iommu_flush_context(struct intel_iommu *iommu,
1376                                   u16 did, u16 source_id, u8 function_mask,
1377                                   u64 type)
1378 {
1379         u64 val = 0;
1380         unsigned long flag;
1381
1382         switch (type) {
1383         case DMA_CCMD_GLOBAL_INVL:
1384                 val = DMA_CCMD_GLOBAL_INVL;
1385                 break;
1386         case DMA_CCMD_DOMAIN_INVL:
1387                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1388                 break;
1389         case DMA_CCMD_DEVICE_INVL:
1390                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1391                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1392                 break;
1393         default:
1394                 BUG();
1395         }
1396         val |= DMA_CCMD_ICC;
1397
1398         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1399         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1400
1401         /* Make sure hardware complete it */
1402         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1403                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1404
1405         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1406 }
1407
1408 /* return value determine if we need a write buffer flush */
1409 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1410                                 u64 addr, unsigned int size_order, u64 type)
1411 {
1412         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1413         u64 val = 0, val_iva = 0;
1414         unsigned long flag;
1415
1416         switch (type) {
1417         case DMA_TLB_GLOBAL_FLUSH:
1418                 /* global flush doesn't need set IVA_REG */
1419                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1420                 break;
1421         case DMA_TLB_DSI_FLUSH:
1422                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1423                 break;
1424         case DMA_TLB_PSI_FLUSH:
1425                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1426                 /* IH bit is passed in as part of address */
1427                 val_iva = size_order | addr;
1428                 break;
1429         default:
1430                 BUG();
1431         }
1432         /* Note: set drain read/write */
1433 #if 0
1434         /*
1435          * This is probably to be super secure.. Looks like we can
1436          * ignore it without any impact.
1437          */
1438         if (cap_read_drain(iommu->cap))
1439                 val |= DMA_TLB_READ_DRAIN;
1440 #endif
1441         if (cap_write_drain(iommu->cap))
1442                 val |= DMA_TLB_WRITE_DRAIN;
1443
1444         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1445         /* Note: Only uses first TLB reg currently */
1446         if (val_iva)
1447                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1448         dmar_writeq(iommu->reg + tlb_offset + 8, val);
1449
1450         /* Make sure hardware complete it */
1451         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1452                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1453
1454         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1455
1456         /* check IOTLB invalidation granularity */
1457         if (DMA_TLB_IAIG(val) == 0)
1458                 pr_err("Flush IOTLB failed\n");
1459         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1460                 pr_debug("TLB flush request %Lx, actual %Lx\n",
1461                         (unsigned long long)DMA_TLB_IIRG(type),
1462                         (unsigned long long)DMA_TLB_IAIG(val));
1463 }
1464
1465 static struct device_domain_info *
1466 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1467                          u8 bus, u8 devfn)
1468 {
1469         struct device_domain_info *info;
1470
1471         assert_spin_locked(&device_domain_lock);
1472
1473         if (!iommu->qi)
1474                 return NULL;
1475
1476         list_for_each_entry(info, &domain->devices, link)
1477                 if (info->iommu == iommu && info->bus == bus &&
1478                     info->devfn == devfn) {
1479                         if (info->ats_supported && info->dev)
1480                                 return info;
1481                         break;
1482                 }
1483
1484         return NULL;
1485 }
1486
1487 static void domain_update_iotlb(struct dmar_domain *domain)
1488 {
1489         struct device_domain_info *info;
1490         bool has_iotlb_device = false;
1491
1492         assert_spin_locked(&device_domain_lock);
1493
1494         list_for_each_entry(info, &domain->devices, link) {
1495                 struct pci_dev *pdev;
1496
1497                 if (!info->dev || !dev_is_pci(info->dev))
1498                         continue;
1499
1500                 pdev = to_pci_dev(info->dev);
1501                 if (pdev->ats_enabled) {
1502                         has_iotlb_device = true;
1503                         break;
1504                 }
1505         }
1506
1507         domain->has_iotlb_device = has_iotlb_device;
1508 }
1509
1510 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1511 {
1512         struct pci_dev *pdev;
1513
1514         assert_spin_locked(&device_domain_lock);
1515
1516         if (!info || !dev_is_pci(info->dev))
1517                 return;
1518
1519         pdev = to_pci_dev(info->dev);
1520
1521 #ifdef CONFIG_INTEL_IOMMU_SVM
1522         /* The PCIe spec, in its wisdom, declares that the behaviour of
1523            the device if you enable PASID support after ATS support is
1524            undefined. So always enable PASID support on devices which
1525            have it, even if we can't yet know if we're ever going to
1526            use it. */
1527         if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1528                 info->pasid_enabled = 1;
1529
1530         if (info->pri_supported && !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1531                 info->pri_enabled = 1;
1532 #endif
1533         if (info->ats_supported && !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1534                 info->ats_enabled = 1;
1535                 domain_update_iotlb(info->domain);
1536                 info->ats_qdep = pci_ats_queue_depth(pdev);
1537         }
1538 }
1539
1540 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1541 {
1542         struct pci_dev *pdev;
1543
1544         assert_spin_locked(&device_domain_lock);
1545
1546         if (!dev_is_pci(info->dev))
1547                 return;
1548
1549         pdev = to_pci_dev(info->dev);
1550
1551         if (info->ats_enabled) {
1552                 pci_disable_ats(pdev);
1553                 info->ats_enabled = 0;
1554                 domain_update_iotlb(info->domain);
1555         }
1556 #ifdef CONFIG_INTEL_IOMMU_SVM
1557         if (info->pri_enabled) {
1558                 pci_disable_pri(pdev);
1559                 info->pri_enabled = 0;
1560         }
1561         if (info->pasid_enabled) {
1562                 pci_disable_pasid(pdev);
1563                 info->pasid_enabled = 0;
1564         }
1565 #endif
1566 }
1567
1568 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1569                                   u64 addr, unsigned mask)
1570 {
1571         u16 sid, qdep;
1572         unsigned long flags;
1573         struct device_domain_info *info;
1574
1575         if (!domain->has_iotlb_device)
1576                 return;
1577
1578         spin_lock_irqsave(&device_domain_lock, flags);
1579         list_for_each_entry(info, &domain->devices, link) {
1580                 if (!info->ats_enabled)
1581                         continue;
1582
1583                 sid = info->bus << 8 | info->devfn;
1584                 qdep = info->ats_qdep;
1585                 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1586         }
1587         spin_unlock_irqrestore(&device_domain_lock, flags);
1588 }
1589
1590 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1591                                   struct dmar_domain *domain,
1592                                   unsigned long pfn, unsigned int pages,
1593                                   int ih, int map)
1594 {
1595         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1596         uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1597         u16 did = domain->iommu_did[iommu->seq_id];
1598
1599         BUG_ON(pages == 0);
1600
1601         if (ih)
1602                 ih = 1 << 6;
1603         /*
1604          * Fallback to domain selective flush if no PSI support or the size is
1605          * too big.
1606          * PSI requires page size to be 2 ^ x, and the base address is naturally
1607          * aligned to the size
1608          */
1609         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1610                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1611                                                 DMA_TLB_DSI_FLUSH);
1612         else
1613                 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1614                                                 DMA_TLB_PSI_FLUSH);
1615
1616         /*
1617          * In caching mode, changes of pages from non-present to present require
1618          * flush. However, device IOTLB doesn't need to be flushed in this case.
1619          */
1620         if (!cap_caching_mode(iommu->cap) || !map)
1621                 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1622                                       addr, mask);
1623 }
1624
1625 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1626 {
1627         u32 pmen;
1628         unsigned long flags;
1629
1630         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1631         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1632         pmen &= ~DMA_PMEN_EPM;
1633         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1634
1635         /* wait for the protected region status bit to clear */
1636         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1637                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1638
1639         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1640 }
1641
1642 static void iommu_enable_translation(struct intel_iommu *iommu)
1643 {
1644         u32 sts;
1645         unsigned long flags;
1646
1647         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1648         iommu->gcmd |= DMA_GCMD_TE;
1649         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1650
1651         /* Make sure hardware complete it */
1652         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1653                       readl, (sts & DMA_GSTS_TES), sts);
1654
1655         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1656 }
1657
1658 static void iommu_disable_translation(struct intel_iommu *iommu)
1659 {
1660         u32 sts;
1661         unsigned long flag;
1662
1663         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1664         iommu->gcmd &= ~DMA_GCMD_TE;
1665         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1666
1667         /* Make sure hardware complete it */
1668         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1669                       readl, (!(sts & DMA_GSTS_TES)), sts);
1670
1671         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1672 }
1673
1674
1675 static int iommu_init_domains(struct intel_iommu *iommu)
1676 {
1677         u32 ndomains, nlongs;
1678         size_t size;
1679
1680         ndomains = cap_ndoms(iommu->cap);
1681         pr_debug("%s: Number of Domains supported <%d>\n",
1682                  iommu->name, ndomains);
1683         nlongs = BITS_TO_LONGS(ndomains);
1684
1685         spin_lock_init(&iommu->lock);
1686
1687         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1688         if (!iommu->domain_ids) {
1689                 pr_err("%s: Allocating domain id array failed\n",
1690                        iommu->name);
1691                 return -ENOMEM;
1692         }
1693
1694         size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1695         iommu->domains = kzalloc(size, GFP_KERNEL);
1696
1697         if (iommu->domains) {
1698                 size = 256 * sizeof(struct dmar_domain *);
1699                 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1700         }
1701
1702         if (!iommu->domains || !iommu->domains[0]) {
1703                 pr_err("%s: Allocating domain array failed\n",
1704                        iommu->name);
1705                 kfree(iommu->domain_ids);
1706                 kfree(iommu->domains);
1707                 iommu->domain_ids = NULL;
1708                 iommu->domains    = NULL;
1709                 return -ENOMEM;
1710         }
1711
1712
1713
1714         /*
1715          * If Caching mode is set, then invalid translations are tagged
1716          * with domain-id 0, hence we need to pre-allocate it. We also
1717          * use domain-id 0 as a marker for non-allocated domain-id, so
1718          * make sure it is not used for a real domain.
1719          */
1720         set_bit(0, iommu->domain_ids);
1721
1722         return 0;
1723 }
1724
1725 static void disable_dmar_iommu(struct intel_iommu *iommu)
1726 {
1727         struct device_domain_info *info, *tmp;
1728         unsigned long flags;
1729
1730         if (!iommu->domains || !iommu->domain_ids)
1731                 return;
1732
1733 again:
1734         spin_lock_irqsave(&device_domain_lock, flags);
1735         list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1736                 struct dmar_domain *domain;
1737
1738                 if (info->iommu != iommu)
1739                         continue;
1740
1741                 if (!info->dev || !info->domain)
1742                         continue;
1743
1744                 domain = info->domain;
1745
1746                 __dmar_remove_one_dev_info(info);
1747
1748                 if (!domain_type_is_vm_or_si(domain)) {
1749                         /*
1750                          * The domain_exit() function  can't be called under
1751                          * device_domain_lock, as it takes this lock itself.
1752                          * So release the lock here and re-run the loop
1753                          * afterwards.
1754                          */
1755                         spin_unlock_irqrestore(&device_domain_lock, flags);
1756                         domain_exit(domain);
1757                         goto again;
1758                 }
1759         }
1760         spin_unlock_irqrestore(&device_domain_lock, flags);
1761
1762         if (iommu->gcmd & DMA_GCMD_TE)
1763                 iommu_disable_translation(iommu);
1764 }
1765
1766 static void free_dmar_iommu(struct intel_iommu *iommu)
1767 {
1768         if ((iommu->domains) && (iommu->domain_ids)) {
1769                 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1770                 int i;
1771
1772                 for (i = 0; i < elems; i++)
1773                         kfree(iommu->domains[i]);
1774                 kfree(iommu->domains);
1775                 kfree(iommu->domain_ids);
1776                 iommu->domains = NULL;
1777                 iommu->domain_ids = NULL;
1778         }
1779
1780         g_iommus[iommu->seq_id] = NULL;
1781
1782         /* free context mapping */
1783         free_context_table(iommu);
1784
1785 #ifdef CONFIG_INTEL_IOMMU_SVM
1786         if (pasid_enabled(iommu)) {
1787                 if (ecap_prs(iommu->ecap))
1788                         intel_svm_finish_prq(iommu);
1789                 intel_svm_free_pasid_tables(iommu);
1790         }
1791 #endif
1792 }
1793
1794 static struct dmar_domain *alloc_domain(int flags)
1795 {
1796         struct dmar_domain *domain;
1797
1798         domain = alloc_domain_mem();
1799         if (!domain)
1800                 return NULL;
1801
1802         memset(domain, 0, sizeof(*domain));
1803         domain->nid = -1;
1804         domain->flags = flags;
1805         domain->has_iotlb_device = false;
1806         INIT_LIST_HEAD(&domain->devices);
1807
1808         return domain;
1809 }
1810
1811 /* Must be called with iommu->lock */
1812 static int domain_attach_iommu(struct dmar_domain *domain,
1813                                struct intel_iommu *iommu)
1814 {
1815         unsigned long ndomains;
1816         int num;
1817
1818         assert_spin_locked(&device_domain_lock);
1819         assert_spin_locked(&iommu->lock);
1820
1821         domain->iommu_refcnt[iommu->seq_id] += 1;
1822         domain->iommu_count += 1;
1823         if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1824                 ndomains = cap_ndoms(iommu->cap);
1825                 num      = find_first_zero_bit(iommu->domain_ids, ndomains);
1826
1827                 if (num >= ndomains) {
1828                         pr_err("%s: No free domain ids\n", iommu->name);
1829                         domain->iommu_refcnt[iommu->seq_id] -= 1;
1830                         domain->iommu_count -= 1;
1831                         return -ENOSPC;
1832                 }
1833
1834                 set_bit(num, iommu->domain_ids);
1835                 set_iommu_domain(iommu, num, domain);
1836
1837                 domain->iommu_did[iommu->seq_id] = num;
1838                 domain->nid                      = iommu->node;
1839
1840                 domain_update_iommu_cap(domain);
1841         }
1842
1843         return 0;
1844 }
1845
1846 static int domain_detach_iommu(struct dmar_domain *domain,
1847                                struct intel_iommu *iommu)
1848 {
1849         int num, count = INT_MAX;
1850
1851         assert_spin_locked(&device_domain_lock);
1852         assert_spin_locked(&iommu->lock);
1853
1854         domain->iommu_refcnt[iommu->seq_id] -= 1;
1855         count = --domain->iommu_count;
1856         if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1857                 num = domain->iommu_did[iommu->seq_id];
1858                 clear_bit(num, iommu->domain_ids);
1859                 set_iommu_domain(iommu, num, NULL);
1860
1861                 domain_update_iommu_cap(domain);
1862                 domain->iommu_did[iommu->seq_id] = 0;
1863         }
1864
1865         return count;
1866 }
1867
1868 static struct iova_domain reserved_iova_list;
1869 static struct lock_class_key reserved_rbtree_key;
1870
1871 static int dmar_init_reserved_ranges(void)
1872 {
1873         struct pci_dev *pdev = NULL;
1874         struct iova *iova;
1875         int i;
1876
1877         init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
1878                         DMA_32BIT_PFN);
1879
1880         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1881                 &reserved_rbtree_key);
1882
1883         /* IOAPIC ranges shouldn't be accessed by DMA */
1884         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1885                 IOVA_PFN(IOAPIC_RANGE_END));
1886         if (!iova) {
1887                 pr_err("Reserve IOAPIC range failed\n");
1888                 return -ENODEV;
1889         }
1890
1891         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1892         for_each_pci_dev(pdev) {
1893                 struct resource *r;
1894
1895                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1896                         r = &pdev->resource[i];
1897                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1898                                 continue;
1899                         iova = reserve_iova(&reserved_iova_list,
1900                                             IOVA_PFN(r->start),
1901                                             IOVA_PFN(r->end));
1902                         if (!iova) {
1903                                 pr_err("Reserve iova failed\n");
1904                                 return -ENODEV;
1905                         }
1906                 }
1907         }
1908         return 0;
1909 }
1910
1911 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1912 {
1913         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1914 }
1915
1916 static inline int guestwidth_to_adjustwidth(int gaw)
1917 {
1918         int agaw;
1919         int r = (gaw - 12) % 9;
1920
1921         if (r == 0)
1922                 agaw = gaw;
1923         else
1924                 agaw = gaw + 9 - r;
1925         if (agaw > 64)
1926                 agaw = 64;
1927         return agaw;
1928 }
1929
1930 static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1931                        int guest_width)
1932 {
1933         int adjust_width, agaw;
1934         unsigned long sagaw;
1935
1936         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
1937                         DMA_32BIT_PFN);
1938         domain_reserve_special_ranges(domain);
1939
1940         /* calculate AGAW */
1941         if (guest_width > cap_mgaw(iommu->cap))
1942                 guest_width = cap_mgaw(iommu->cap);
1943         domain->gaw = guest_width;
1944         adjust_width = guestwidth_to_adjustwidth(guest_width);
1945         agaw = width_to_agaw(adjust_width);
1946         sagaw = cap_sagaw(iommu->cap);
1947         if (!test_bit(agaw, &sagaw)) {
1948                 /* hardware doesn't support it, choose a bigger one */
1949                 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1950                 agaw = find_next_bit(&sagaw, 5, agaw);
1951                 if (agaw >= 5)
1952                         return -ENODEV;
1953         }
1954         domain->agaw = agaw;
1955
1956         if (ecap_coherent(iommu->ecap))
1957                 domain->iommu_coherency = 1;
1958         else
1959                 domain->iommu_coherency = 0;
1960
1961         if (ecap_sc_support(iommu->ecap))
1962                 domain->iommu_snooping = 1;
1963         else
1964                 domain->iommu_snooping = 0;
1965
1966         if (intel_iommu_superpage)
1967                 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1968         else
1969                 domain->iommu_superpage = 0;
1970
1971         domain->nid = iommu->node;
1972
1973         /* always allocate the top pgd */
1974         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1975         if (!domain->pgd)
1976                 return -ENOMEM;
1977         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1978         return 0;
1979 }
1980
1981 static void domain_exit(struct dmar_domain *domain)
1982 {
1983         struct page *freelist = NULL;
1984
1985         /* Domain 0 is reserved, so dont process it */
1986         if (!domain)
1987                 return;
1988
1989         /* Flush any lazy unmaps that may reference this domain */
1990         if (!intel_iommu_strict) {
1991                 int cpu;
1992
1993                 for_each_possible_cpu(cpu)
1994                         flush_unmaps_timeout(cpu);
1995         }
1996
1997         /* Remove associated devices and clear attached or cached domains */
1998         rcu_read_lock();
1999         domain_remove_dev_info(domain);
2000         rcu_read_unlock();
2001
2002         /* destroy iovas */
2003         put_iova_domain(&domain->iovad);
2004
2005         freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
2006
2007         dma_free_pagelist(freelist);
2008
2009         free_domain_mem(domain);
2010 }
2011
2012 static int domain_context_mapping_one(struct dmar_domain *domain,
2013                                       struct intel_iommu *iommu,
2014                                       u8 bus, u8 devfn)
2015 {
2016         u16 did = domain->iommu_did[iommu->seq_id];
2017         int translation = CONTEXT_TT_MULTI_LEVEL;
2018         struct device_domain_info *info = NULL;
2019         struct context_entry *context;
2020         unsigned long flags;
2021         struct dma_pte *pgd;
2022         int ret, agaw;
2023
2024         WARN_ON(did == 0);
2025
2026         if (hw_pass_through && domain_type_is_si(domain))
2027                 translation = CONTEXT_TT_PASS_THROUGH;
2028
2029         pr_debug("Set context mapping for %02x:%02x.%d\n",
2030                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
2031
2032         BUG_ON(!domain->pgd);
2033
2034         spin_lock_irqsave(&device_domain_lock, flags);
2035         spin_lock(&iommu->lock);
2036
2037         ret = -ENOMEM;
2038         context = iommu_context_addr(iommu, bus, devfn, 1);
2039         if (!context)
2040                 goto out_unlock;
2041
2042         ret = 0;
2043         if (context_present(context))
2044                 goto out_unlock;
2045
2046         /*
2047          * For kdump cases, old valid entries may be cached due to the
2048          * in-flight DMA and copied pgtable, but there is no unmapping
2049          * behaviour for them, thus we need an explicit cache flush for
2050          * the newly-mapped device. For kdump, at this point, the device
2051          * is supposed to finish reset at its driver probe stage, so no
2052          * in-flight DMA will exist, and we don't need to worry anymore
2053          * hereafter.
2054          */
2055         if (context_copied(context)) {
2056                 u16 did_old = context_domain_id(context);
2057
2058                 if (did_old >= 0 && did_old < cap_ndoms(iommu->cap)) {
2059                         iommu->flush.flush_context(iommu, did_old,
2060                                                    (((u16)bus) << 8) | devfn,
2061                                                    DMA_CCMD_MASK_NOBIT,
2062                                                    DMA_CCMD_DEVICE_INVL);
2063                         iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
2064                                                  DMA_TLB_DSI_FLUSH);
2065                 }
2066         }
2067
2068         pgd = domain->pgd;
2069
2070         context_clear_entry(context);
2071         context_set_domain_id(context, did);
2072
2073         /*
2074          * Skip top levels of page tables for iommu which has less agaw
2075          * than default.  Unnecessary for PT mode.
2076          */
2077         if (translation != CONTEXT_TT_PASS_THROUGH) {
2078                 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
2079                         ret = -ENOMEM;
2080                         pgd = phys_to_virt(dma_pte_addr(pgd));
2081                         if (!dma_pte_present(pgd))
2082                                 goto out_unlock;
2083                 }
2084
2085                 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2086                 if (info && info->ats_supported)
2087                         translation = CONTEXT_TT_DEV_IOTLB;
2088                 else
2089                         translation = CONTEXT_TT_MULTI_LEVEL;
2090
2091                 context_set_address_root(context, virt_to_phys(pgd));
2092                 context_set_address_width(context, iommu->agaw);
2093         } else {
2094                 /*
2095                  * In pass through mode, AW must be programmed to
2096                  * indicate the largest AGAW value supported by
2097                  * hardware. And ASR is ignored by hardware.
2098                  */
2099                 context_set_address_width(context, iommu->msagaw);
2100         }
2101
2102         context_set_translation_type(context, translation);
2103         context_set_fault_enable(context);
2104         context_set_present(context);
2105         domain_flush_cache(domain, context, sizeof(*context));
2106
2107         /*
2108          * It's a non-present to present mapping. If hardware doesn't cache
2109          * non-present entry we only need to flush the write-buffer. If the
2110          * _does_ cache non-present entries, then it does so in the special
2111          * domain #0, which we have to flush:
2112          */
2113         if (cap_caching_mode(iommu->cap)) {
2114                 iommu->flush.flush_context(iommu, 0,
2115                                            (((u16)bus) << 8) | devfn,
2116                                            DMA_CCMD_MASK_NOBIT,
2117                                            DMA_CCMD_DEVICE_INVL);
2118                 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2119         } else {
2120                 iommu_flush_write_buffer(iommu);
2121         }
2122         iommu_enable_dev_iotlb(info);
2123
2124         ret = 0;
2125
2126 out_unlock:
2127         spin_unlock(&iommu->lock);
2128         spin_unlock_irqrestore(&device_domain_lock, flags);
2129
2130         return ret;
2131 }
2132
2133 struct domain_context_mapping_data {
2134         struct dmar_domain *domain;
2135         struct intel_iommu *iommu;
2136 };
2137
2138 static int domain_context_mapping_cb(struct pci_dev *pdev,
2139                                      u16 alias, void *opaque)
2140 {
2141         struct domain_context_mapping_data *data = opaque;
2142
2143         return domain_context_mapping_one(data->domain, data->iommu,
2144                                           PCI_BUS_NUM(alias), alias & 0xff);
2145 }
2146
2147 static int
2148 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2149 {
2150         struct intel_iommu *iommu;
2151         u8 bus, devfn;
2152         struct domain_context_mapping_data data;
2153
2154         iommu = device_to_iommu(dev, &bus, &devfn);
2155         if (!iommu)
2156                 return -ENODEV;
2157
2158         if (!dev_is_pci(dev))
2159                 return domain_context_mapping_one(domain, iommu, bus, devfn);
2160
2161         data.domain = domain;
2162         data.iommu = iommu;
2163
2164         return pci_for_each_dma_alias(to_pci_dev(dev),
2165                                       &domain_context_mapping_cb, &data);
2166 }
2167
2168 static int domain_context_mapped_cb(struct pci_dev *pdev,
2169                                     u16 alias, void *opaque)
2170 {
2171         struct intel_iommu *iommu = opaque;
2172
2173         return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2174 }
2175
2176 static int domain_context_mapped(struct device *dev)
2177 {
2178         struct intel_iommu *iommu;
2179         u8 bus, devfn;
2180
2181         iommu = device_to_iommu(dev, &bus, &devfn);
2182         if (!iommu)
2183                 return -ENODEV;
2184
2185         if (!dev_is_pci(dev))
2186                 return device_context_mapped(iommu, bus, devfn);
2187
2188         return !pci_for_each_dma_alias(to_pci_dev(dev),
2189                                        domain_context_mapped_cb, iommu);
2190 }
2191
2192 /* Returns a number of VTD pages, but aligned to MM page size */
2193 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2194                                             size_t size)
2195 {
2196         host_addr &= ~PAGE_MASK;
2197         return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2198 }
2199
2200 /* Return largest possible superpage level for a given mapping */
2201 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2202                                           unsigned long iov_pfn,
2203                                           unsigned long phy_pfn,
2204                                           unsigned long pages)
2205 {
2206         int support, level = 1;
2207         unsigned long pfnmerge;
2208
2209         support = domain->iommu_superpage;
2210
2211         /* To use a large page, the virtual *and* physical addresses
2212            must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2213            of them will mean we have to use smaller pages. So just
2214            merge them and check both at once. */
2215         pfnmerge = iov_pfn | phy_pfn;
2216
2217         while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2218                 pages >>= VTD_STRIDE_SHIFT;
2219                 if (!pages)
2220                         break;
2221                 pfnmerge >>= VTD_STRIDE_SHIFT;
2222                 level++;
2223                 support--;
2224         }
2225         return level;
2226 }
2227
2228 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2229                             struct scatterlist *sg, unsigned long phys_pfn,
2230                             unsigned long nr_pages, int prot)
2231 {
2232         struct dma_pte *first_pte = NULL, *pte = NULL;
2233         phys_addr_t uninitialized_var(pteval);
2234         unsigned long sg_res = 0;
2235         unsigned int largepage_lvl = 0;
2236         unsigned long lvl_pages = 0;
2237
2238         BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2239
2240         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2241                 return -EINVAL;
2242
2243         prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2244
2245         if (!sg) {
2246                 sg_res = nr_pages;
2247                 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2248         }
2249
2250         while (nr_pages > 0) {
2251                 uint64_t tmp;
2252
2253                 if (!sg_res) {
2254                         sg_res = aligned_nrpages(sg->offset, sg->length);
2255                         sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2256                         sg->dma_length = sg->length;
2257                         pteval = page_to_phys(sg_page(sg)) | prot;
2258                         phys_pfn = pteval >> VTD_PAGE_SHIFT;
2259                 }
2260
2261                 if (!pte) {
2262                         largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2263
2264                         first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2265                         if (!pte)
2266                                 return -ENOMEM;
2267                         /* It is large page*/
2268                         if (largepage_lvl > 1) {
2269                                 unsigned long nr_superpages, end_pfn;
2270
2271                                 pteval |= DMA_PTE_LARGE_PAGE;
2272                                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2273
2274                                 nr_superpages = sg_res / lvl_pages;
2275                                 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2276
2277                                 /*
2278                                  * Ensure that old small page tables are
2279                                  * removed to make room for superpage(s).
2280                                  */
2281                                 dma_pte_free_pagetable(domain, iov_pfn, end_pfn);
2282                         } else {
2283                                 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2284                         }
2285
2286                 }
2287                 /* We don't need lock here, nobody else
2288                  * touches the iova range
2289                  */
2290                 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2291                 if (tmp) {
2292                         static int dumps = 5;
2293                         pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2294                                 iov_pfn, tmp, (unsigned long long)pteval);
2295                         if (dumps) {
2296                                 dumps--;
2297                                 debug_dma_dump_mappings(NULL);
2298                         }
2299                         WARN_ON(1);
2300                 }
2301
2302                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2303
2304                 BUG_ON(nr_pages < lvl_pages);
2305                 BUG_ON(sg_res < lvl_pages);
2306
2307                 nr_pages -= lvl_pages;
2308                 iov_pfn += lvl_pages;
2309                 phys_pfn += lvl_pages;
2310                 pteval += lvl_pages * VTD_PAGE_SIZE;
2311                 sg_res -= lvl_pages;
2312
2313                 /* If the next PTE would be the first in a new page, then we
2314                    need to flush the cache on the entries we've just written.
2315                    And then we'll need to recalculate 'pte', so clear it and
2316                    let it get set again in the if (!pte) block above.
2317
2318                    If we're done (!nr_pages) we need to flush the cache too.
2319
2320                    Also if we've been setting superpages, we may need to
2321                    recalculate 'pte' and switch back to smaller pages for the
2322                    end of the mapping, if the trailing size is not enough to
2323                    use another superpage (i.e. sg_res < lvl_pages). */
2324                 pte++;
2325                 if (!nr_pages || first_pte_in_page(pte) ||
2326                     (largepage_lvl > 1 && sg_res < lvl_pages)) {
2327                         domain_flush_cache(domain, first_pte,
2328                                            (void *)pte - (void *)first_pte);
2329                         pte = NULL;
2330                 }
2331
2332                 if (!sg_res && nr_pages)
2333                         sg = sg_next(sg);
2334         }
2335         return 0;
2336 }
2337
2338 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2339                                     struct scatterlist *sg, unsigned long nr_pages,
2340                                     int prot)
2341 {
2342         return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2343 }
2344
2345 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2346                                      unsigned long phys_pfn, unsigned long nr_pages,
2347                                      int prot)
2348 {
2349         return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2350 }
2351
2352 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2353 {
2354         if (!iommu)
2355                 return;
2356
2357         clear_context_table(iommu, bus, devfn);
2358         iommu->flush.flush_context(iommu, 0, 0, 0,
2359                                            DMA_CCMD_GLOBAL_INVL);
2360         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2361 }
2362
2363 static inline void unlink_domain_info(struct device_domain_info *info)
2364 {
2365         assert_spin_locked(&device_domain_lock);
2366         list_del(&info->link);
2367         list_del(&info->global);
2368         if (info->dev)
2369                 info->dev->archdata.iommu = NULL;
2370 }
2371
2372 static void domain_remove_dev_info(struct dmar_domain *domain)
2373 {
2374         struct device_domain_info *info, *tmp;
2375         unsigned long flags;
2376
2377         spin_lock_irqsave(&device_domain_lock, flags);
2378         list_for_each_entry_safe(info, tmp, &domain->devices, link)
2379                 __dmar_remove_one_dev_info(info);
2380         spin_unlock_irqrestore(&device_domain_lock, flags);
2381 }
2382
2383 /*
2384  * find_domain
2385  * Note: we use struct device->archdata.iommu stores the info
2386  */
2387 static struct dmar_domain *find_domain(struct device *dev)
2388 {
2389         struct device_domain_info *info;
2390
2391         /* No lock here, assumes no domain exit in normal case */
2392         info = dev->archdata.iommu;
2393         if (likely(info))
2394                 return info->domain;
2395         return NULL;
2396 }
2397
2398 static inline struct device_domain_info *
2399 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2400 {
2401         struct device_domain_info *info;
2402
2403         list_for_each_entry(info, &device_domain_list, global)
2404                 if (info->iommu->segment == segment && info->bus == bus &&
2405                     info->devfn == devfn)
2406                         return info;
2407
2408         return NULL;
2409 }
2410
2411 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2412                                                     int bus, int devfn,
2413                                                     struct device *dev,
2414                                                     struct dmar_domain *domain)
2415 {
2416         struct dmar_domain *found = NULL;
2417         struct device_domain_info *info;
2418         unsigned long flags;
2419         int ret;
2420
2421         info = alloc_devinfo_mem();
2422         if (!info)
2423                 return NULL;
2424
2425         info->bus = bus;
2426         info->devfn = devfn;
2427         info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2428         info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2429         info->ats_qdep = 0;
2430         info->dev = dev;
2431         info->domain = domain;
2432         info->iommu = iommu;
2433
2434         if (dev && dev_is_pci(dev)) {
2435                 struct pci_dev *pdev = to_pci_dev(info->dev);
2436
2437                 if (ecap_dev_iotlb_support(iommu->ecap) &&
2438                     pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2439                     dmar_find_matched_atsr_unit(pdev))
2440                         info->ats_supported = 1;
2441
2442                 if (ecs_enabled(iommu)) {
2443                         if (pasid_enabled(iommu)) {
2444                                 int features = pci_pasid_features(pdev);
2445                                 if (features >= 0)
2446                                         info->pasid_supported = features | 1;
2447                         }
2448
2449                         if (info->ats_supported && ecap_prs(iommu->ecap) &&
2450                             pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2451                                 info->pri_supported = 1;
2452                 }
2453         }
2454
2455         spin_lock_irqsave(&device_domain_lock, flags);
2456         if (dev)
2457                 found = find_domain(dev);
2458
2459         if (!found) {
2460                 struct device_domain_info *info2;
2461                 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2462                 if (info2) {
2463                         found      = info2->domain;
2464                         info2->dev = dev;
2465                 }
2466         }
2467
2468         if (found) {
2469                 spin_unlock_irqrestore(&device_domain_lock, flags);
2470                 free_devinfo_mem(info);
2471                 /* Caller must free the original domain */
2472                 return found;
2473         }
2474
2475         spin_lock(&iommu->lock);
2476         ret = domain_attach_iommu(domain, iommu);
2477         spin_unlock(&iommu->lock);
2478
2479         if (ret) {
2480                 spin_unlock_irqrestore(&device_domain_lock, flags);
2481                 free_devinfo_mem(info);
2482                 return NULL;
2483         }
2484
2485         list_add(&info->link, &domain->devices);
2486         list_add(&info->global, &device_domain_list);
2487         if (dev)
2488                 dev->archdata.iommu = info;
2489         spin_unlock_irqrestore(&device_domain_lock, flags);
2490
2491         if (dev && domain_context_mapping(domain, dev)) {
2492                 pr_err("Domain context map for %s failed\n", dev_name(dev));
2493                 dmar_remove_one_dev_info(domain, dev);
2494                 return NULL;
2495         }
2496
2497         return domain;
2498 }
2499
2500 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2501 {
2502         *(u16 *)opaque = alias;
2503         return 0;
2504 }
2505
2506 static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2507 {
2508         struct device_domain_info *info = NULL;
2509         struct dmar_domain *domain = NULL;
2510         struct intel_iommu *iommu;
2511         u16 req_id, dma_alias;
2512         unsigned long flags;
2513         u8 bus, devfn;
2514
2515         iommu = device_to_iommu(dev, &bus, &devfn);
2516         if (!iommu)
2517                 return NULL;
2518
2519         req_id = ((u16)bus << 8) | devfn;
2520
2521         if (dev_is_pci(dev)) {
2522                 struct pci_dev *pdev = to_pci_dev(dev);
2523
2524                 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2525
2526                 spin_lock_irqsave(&device_domain_lock, flags);
2527                 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2528                                                       PCI_BUS_NUM(dma_alias),
2529                                                       dma_alias & 0xff);
2530                 if (info) {
2531                         iommu = info->iommu;
2532                         domain = info->domain;
2533                 }
2534                 spin_unlock_irqrestore(&device_domain_lock, flags);
2535
2536                 /* DMA alias already has a domain, use it */
2537                 if (info)
2538                         goto out;
2539         }
2540
2541         /* Allocate and initialize new domain for the device */
2542         domain = alloc_domain(0);
2543         if (!domain)
2544                 return NULL;
2545         if (domain_init(domain, iommu, gaw)) {
2546                 domain_exit(domain);
2547                 return NULL;
2548         }
2549
2550 out:
2551
2552         return domain;
2553 }
2554
2555 static struct dmar_domain *set_domain_for_dev(struct device *dev,
2556                                               struct dmar_domain *domain)
2557 {
2558         struct intel_iommu *iommu;
2559         struct dmar_domain *tmp;
2560         u16 req_id, dma_alias;
2561         u8 bus, devfn;
2562
2563         iommu = device_to_iommu(dev, &bus, &devfn);
2564         if (!iommu)
2565                 return NULL;
2566
2567         req_id = ((u16)bus << 8) | devfn;
2568
2569         if (dev_is_pci(dev)) {
2570                 struct pci_dev *pdev = to_pci_dev(dev);
2571
2572                 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2573
2574                 /* register PCI DMA alias device */
2575                 if (req_id != dma_alias) {
2576                         tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2577                                         dma_alias & 0xff, NULL, domain);
2578
2579                         if (!tmp || tmp != domain)
2580                                 return tmp;
2581                 }
2582         }
2583
2584         tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2585         if (!tmp || tmp != domain)
2586                 return tmp;
2587
2588         return domain;
2589 }
2590
2591 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2592 {
2593         struct dmar_domain *domain, *tmp;
2594
2595         domain = find_domain(dev);
2596         if (domain)
2597                 goto out;
2598
2599         domain = find_or_alloc_domain(dev, gaw);
2600         if (!domain)
2601                 goto out;
2602
2603         tmp = set_domain_for_dev(dev, domain);
2604         if (!tmp || domain != tmp) {
2605                 domain_exit(domain);
2606                 domain = tmp;
2607         }
2608
2609 out:
2610
2611         return domain;
2612 }
2613
2614 static int iommu_domain_identity_map(struct dmar_domain *domain,
2615                                      unsigned long long start,
2616                                      unsigned long long end)
2617 {
2618         unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2619         unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2620
2621         if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2622                           dma_to_mm_pfn(last_vpfn))) {
2623                 pr_err("Reserving iova failed\n");
2624                 return -ENOMEM;
2625         }
2626
2627         pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2628         /*
2629          * RMRR range might have overlap with physical memory range,
2630          * clear it first
2631          */
2632         dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2633
2634         return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2635                                   last_vpfn - first_vpfn + 1,
2636                                   DMA_PTE_READ|DMA_PTE_WRITE);
2637 }
2638
2639 static int domain_prepare_identity_map(struct device *dev,
2640                                        struct dmar_domain *domain,
2641                                        unsigned long long start,
2642                                        unsigned long long end)
2643 {
2644         /* For _hardware_ passthrough, don't bother. But for software
2645            passthrough, we do it anyway -- it may indicate a memory
2646            range which is reserved in E820, so which didn't get set
2647            up to start with in si_domain */
2648         if (domain == si_domain && hw_pass_through) {
2649                 pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2650                         dev_name(dev), start, end);
2651                 return 0;
2652         }
2653
2654         pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2655                 dev_name(dev), start, end);
2656
2657         if (end < start) {
2658                 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2659                         "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2660                         dmi_get_system_info(DMI_BIOS_VENDOR),
2661                         dmi_get_system_info(DMI_BIOS_VERSION),
2662                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2663                 return -EIO;
2664         }
2665
2666         if (end >> agaw_to_width(domain->agaw)) {
2667                 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2668                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2669                      agaw_to_width(domain->agaw),
2670                      dmi_get_system_info(DMI_BIOS_VENDOR),
2671                      dmi_get_system_info(DMI_BIOS_VERSION),
2672                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2673                 return -EIO;
2674         }
2675
2676         return iommu_domain_identity_map(domain, start, end);
2677 }
2678
2679 static int iommu_prepare_identity_map(struct device *dev,
2680                                       unsigned long long start,
2681                                       unsigned long long end)
2682 {
2683         struct dmar_domain *domain;
2684         int ret;
2685
2686         domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2687         if (!domain)
2688                 return -ENOMEM;
2689
2690         ret = domain_prepare_identity_map(dev, domain, start, end);
2691         if (ret)
2692                 domain_exit(domain);
2693
2694         return ret;
2695 }
2696
2697 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2698                                          struct device *dev)
2699 {
2700         if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2701                 return 0;
2702         return iommu_prepare_identity_map(dev, rmrr->base_address,
2703                                           rmrr->end_address);
2704 }
2705
2706 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2707 static inline void iommu_prepare_isa(void)
2708 {
2709         struct pci_dev *pdev;
2710         int ret;
2711
2712         pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2713         if (!pdev)
2714                 return;
2715
2716         pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2717         ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2718
2719         if (ret)
2720                 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2721
2722         pci_dev_put(pdev);
2723 }
2724 #else
2725 static inline void iommu_prepare_isa(void)
2726 {
2727         return;
2728 }
2729 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2730
2731 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2732
2733 static int __init si_domain_init(int hw)
2734 {
2735         int nid, ret = 0;
2736
2737         si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2738         if (!si_domain)
2739                 return -EFAULT;
2740
2741         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2742                 domain_exit(si_domain);
2743                 return -EFAULT;
2744         }
2745
2746         pr_debug("Identity mapping domain allocated\n");
2747
2748         if (hw)
2749                 return 0;
2750
2751         for_each_online_node(nid) {
2752                 unsigned long start_pfn, end_pfn;
2753                 int i;
2754
2755                 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2756                         ret = iommu_domain_identity_map(si_domain,
2757                                         PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2758                         if (ret)
2759                                 return ret;
2760                 }
2761         }
2762
2763         return 0;
2764 }
2765
2766 static int identity_mapping(struct device *dev)
2767 {
2768         struct device_domain_info *info;
2769
2770         if (likely(!iommu_identity_mapping))
2771                 return 0;
2772
2773         info = dev->archdata.iommu;
2774         if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2775                 return (info->domain == si_domain);
2776
2777         return 0;
2778 }
2779
2780 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2781 {
2782         struct dmar_domain *ndomain;
2783         struct intel_iommu *iommu;
2784         u8 bus, devfn;
2785
2786         iommu = device_to_iommu(dev, &bus, &devfn);
2787         if (!iommu)
2788                 return -ENODEV;
2789
2790         ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2791         if (ndomain != domain)
2792                 return -EBUSY;
2793
2794         return 0;
2795 }
2796
2797 static bool device_has_rmrr(struct device *dev)
2798 {
2799         struct dmar_rmrr_unit *rmrr;
2800         struct device *tmp;
2801         int i;
2802
2803         rcu_read_lock();
2804         for_each_rmrr_units(rmrr) {
2805                 /*
2806                  * Return TRUE if this RMRR contains the device that
2807                  * is passed in.
2808                  */
2809                 for_each_active_dev_scope(rmrr->devices,
2810                                           rmrr->devices_cnt, i, tmp)
2811                         if (tmp == dev) {
2812                                 rcu_read_unlock();
2813                                 return true;
2814                         }
2815         }
2816         rcu_read_unlock();
2817         return false;
2818 }
2819
2820 /*
2821  * There are a couple cases where we need to restrict the functionality of
2822  * devices associated with RMRRs.  The first is when evaluating a device for
2823  * identity mapping because problems exist when devices are moved in and out
2824  * of domains and their respective RMRR information is lost.  This means that
2825  * a device with associated RMRRs will never be in a "passthrough" domain.
2826  * The second is use of the device through the IOMMU API.  This interface
2827  * expects to have full control of the IOVA space for the device.  We cannot
2828  * satisfy both the requirement that RMRR access is maintained and have an
2829  * unencumbered IOVA space.  We also have no ability to quiesce the device's
2830  * use of the RMRR space or even inform the IOMMU API user of the restriction.
2831  * We therefore prevent devices associated with an RMRR from participating in
2832  * the IOMMU API, which eliminates them from device assignment.
2833  *
2834  * In both cases we assume that PCI USB devices with RMRRs have them largely
2835  * for historical reasons and that the RMRR space is not actively used post
2836  * boot.  This exclusion may change if vendors begin to abuse it.
2837  *
2838  * The same exception is made for graphics devices, with the requirement that
2839  * any use of the RMRR regions will be torn down before assigning the device
2840  * to a guest.
2841  */
2842 static bool device_is_rmrr_locked(struct device *dev)
2843 {
2844         if (!device_has_rmrr(dev))
2845                 return false;
2846
2847         if (dev_is_pci(dev)) {
2848                 struct pci_dev *pdev = to_pci_dev(dev);
2849
2850                 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2851                         return false;
2852         }
2853
2854         return true;
2855 }
2856
2857 static int iommu_should_identity_map(struct device *dev, int startup)
2858 {
2859
2860         if (dev_is_pci(dev)) {
2861                 struct pci_dev *pdev = to_pci_dev(dev);
2862
2863                 if (device_is_rmrr_locked(dev))
2864                         return 0;
2865
2866                 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2867                         return 1;
2868
2869                 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2870                         return 1;
2871
2872                 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2873                         return 0;
2874
2875                 /*
2876                  * We want to start off with all devices in the 1:1 domain, and
2877                  * take them out later if we find they can't access all of memory.
2878                  *
2879                  * However, we can't do this for PCI devices behind bridges,
2880                  * because all PCI devices behind the same bridge will end up
2881                  * with the same source-id on their transactions.
2882                  *
2883                  * Practically speaking, we can't change things around for these
2884                  * devices at run-time, because we can't be sure there'll be no
2885                  * DMA transactions in flight for any of their siblings.
2886                  *
2887                  * So PCI devices (unless they're on the root bus) as well as
2888                  * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2889                  * the 1:1 domain, just in _case_ one of their siblings turns out
2890                  * not to be able to map all of memory.
2891                  */
2892                 if (!pci_is_pcie(pdev)) {
2893                         if (!pci_is_root_bus(pdev->bus))
2894                                 return 0;
2895                         if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2896                                 return 0;
2897                 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2898                         return 0;
2899         } else {
2900                 if (device_has_rmrr(dev))
2901                         return 0;
2902         }
2903
2904         /*
2905          * At boot time, we don't yet know if devices will be 64-bit capable.
2906          * Assume that they will — if they turn out not to be, then we can
2907          * take them out of the 1:1 domain later.
2908          */
2909         if (!startup) {
2910                 /*
2911                  * If the device's dma_mask is less than the system's memory
2912                  * size then this is not a candidate for identity mapping.
2913                  */
2914                 u64 dma_mask = *dev->dma_mask;
2915
2916                 if (dev->coherent_dma_mask &&
2917                     dev->coherent_dma_mask < dma_mask)
2918                         dma_mask = dev->coherent_dma_mask;
2919
2920                 return dma_mask >= dma_get_required_mask(dev);
2921         }
2922
2923         return 1;
2924 }
2925
2926 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2927 {
2928         int ret;
2929
2930         if (!iommu_should_identity_map(dev, 1))
2931                 return 0;
2932
2933         ret = domain_add_dev_info(si_domain, dev);
2934         if (!ret)
2935                 pr_info("%s identity mapping for device %s\n",
2936                         hw ? "Hardware" : "Software", dev_name(dev));
2937         else if (ret == -ENODEV)
2938                 /* device not associated with an iommu */
2939                 ret = 0;
2940
2941         return ret;
2942 }
2943
2944
2945 static int __init iommu_prepare_static_identity_mapping(int hw)
2946 {
2947         struct pci_dev *pdev = NULL;
2948         struct dmar_drhd_unit *drhd;
2949         struct intel_iommu *iommu;
2950         struct device *dev;
2951         int i;
2952         int ret = 0;
2953
2954         for_each_pci_dev(pdev) {
2955                 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2956                 if (ret)
2957                         return ret;
2958         }
2959
2960         for_each_active_iommu(iommu, drhd)
2961                 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2962                         struct acpi_device_physical_node *pn;
2963                         struct acpi_device *adev;
2964
2965                         if (dev->bus != &acpi_bus_type)
2966                                 continue;
2967
2968                         adev= to_acpi_device(dev);
2969                         mutex_lock(&adev->physical_node_lock);
2970                         list_for_each_entry(pn, &adev->physical_node_list, node) {
2971                                 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2972                                 if (ret)
2973                                         break;
2974                         }
2975                         mutex_unlock(&adev->physical_node_lock);
2976                         if (ret)
2977                                 return ret;
2978                 }
2979
2980         return 0;
2981 }
2982
2983 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2984 {
2985         /*
2986          * Start from the sane iommu hardware state.
2987          * If the queued invalidation is already initialized by us
2988          * (for example, while enabling interrupt-remapping) then
2989          * we got the things already rolling from a sane state.
2990          */
2991         if (!iommu->qi) {
2992                 /*
2993                  * Clear any previous faults.
2994                  */
2995                 dmar_fault(-1, iommu);
2996                 /*
2997                  * Disable queued invalidation if supported and already enabled
2998                  * before OS handover.
2999                  */
3000                 dmar_disable_qi(iommu);
3001         }
3002
3003         if (dmar_enable_qi(iommu)) {
3004                 /*
3005                  * Queued Invalidate not enabled, use Register Based Invalidate
3006                  */
3007                 iommu->flush.flush_context = __iommu_flush_context;
3008                 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
3009                 pr_info("%s: Using Register based invalidation\n",
3010                         iommu->name);
3011         } else {
3012                 iommu->flush.flush_context = qi_flush_context;
3013                 iommu->flush.flush_iotlb = qi_flush_iotlb;
3014                 pr_info("%s: Using Queued invalidation\n", iommu->name);
3015         }
3016 }
3017
3018 static int copy_context_table(struct intel_iommu *iommu,
3019                               struct root_entry *old_re,
3020                               struct context_entry **tbl,
3021                               int bus, bool ext)
3022 {
3023         int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
3024         struct context_entry *new_ce = NULL, ce;
3025         struct context_entry *old_ce = NULL;
3026         struct root_entry re;
3027         phys_addr_t old_ce_phys;
3028
3029         tbl_idx = ext ? bus * 2 : bus;
3030         memcpy(&re, old_re, sizeof(re));
3031
3032         for (devfn = 0; devfn < 256; devfn++) {
3033                 /* First calculate the correct index */
3034                 idx = (ext ? devfn * 2 : devfn) % 256;
3035
3036                 if (idx == 0) {
3037                         /* First save what we may have and clean up */
3038                         if (new_ce) {
3039                                 tbl[tbl_idx] = new_ce;
3040                                 __iommu_flush_cache(iommu, new_ce,
3041                                                     VTD_PAGE_SIZE);
3042                                 pos = 1;
3043                         }
3044
3045                         if (old_ce)
3046                                 iounmap(old_ce);
3047
3048                         ret = 0;
3049                         if (devfn < 0x80)
3050                                 old_ce_phys = root_entry_lctp(&re);
3051                         else
3052                                 old_ce_phys = root_entry_uctp(&re);
3053
3054                         if (!old_ce_phys) {
3055                                 if (ext && devfn == 0) {
3056                                         /* No LCTP, try UCTP */
3057                                         devfn = 0x7f;
3058                                         continue;
3059                                 } else {
3060                                         goto out;
3061                                 }
3062                         }
3063
3064                         ret = -ENOMEM;
3065                         old_ce = memremap(old_ce_phys, PAGE_SIZE,
3066                                         MEMREMAP_WB);
3067                         if (!old_ce)
3068                                 goto out;
3069
3070                         new_ce = alloc_pgtable_page(iommu->node);
3071                         if (!new_ce)
3072                                 goto out_unmap;
3073
3074                         ret = 0;
3075                 }
3076
3077                 /* Now copy the context entry */
3078                 memcpy(&ce, old_ce + idx, sizeof(ce));
3079
3080                 if (!__context_present(&ce))
3081                         continue;
3082
3083                 did = context_domain_id(&ce);
3084                 if (did >= 0 && did < cap_ndoms(iommu->cap))
3085                         set_bit(did, iommu->domain_ids);
3086
3087                 /*
3088                  * We need a marker for copied context entries. This
3089                  * marker needs to work for the old format as well as
3090                  * for extended context entries.
3091                  *
3092                  * Bit 67 of the context entry is used. In the old
3093                  * format this bit is available to software, in the
3094                  * extended format it is the PGE bit, but PGE is ignored
3095                  * by HW if PASIDs are disabled (and thus still
3096                  * available).
3097                  *
3098                  * So disable PASIDs first and then mark the entry
3099                  * copied. This means that we don't copy PASID
3100                  * translations from the old kernel, but this is fine as
3101                  * faults there are not fatal.
3102                  */
3103                 context_clear_pasid_enable(&ce);
3104                 context_set_copied(&ce);
3105
3106                 new_ce[idx] = ce;
3107         }
3108
3109         tbl[tbl_idx + pos] = new_ce;
3110
3111         __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3112
3113 out_unmap:
3114         memunmap(old_ce);
3115
3116 out:
3117         return ret;
3118 }
3119
3120 static int copy_translation_tables(struct intel_iommu *iommu)
3121 {
3122         struct context_entry **ctxt_tbls;
3123         struct root_entry *old_rt;
3124         phys_addr_t old_rt_phys;
3125         int ctxt_table_entries;
3126         unsigned long flags;
3127         u64 rtaddr_reg;
3128         int bus, ret;
3129         bool new_ext, ext;
3130
3131         rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3132         ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3133         new_ext    = !!ecap_ecs(iommu->ecap);
3134
3135         /*
3136          * The RTT bit can only be changed when translation is disabled,
3137          * but disabling translation means to open a window for data
3138          * corruption. So bail out and don't copy anything if we would
3139          * have to change the bit.
3140          */
3141         if (new_ext != ext)
3142                 return -EINVAL;
3143
3144         old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3145         if (!old_rt_phys)
3146                 return -EINVAL;
3147
3148         old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3149         if (!old_rt)
3150                 return -ENOMEM;
3151
3152         /* This is too big for the stack - allocate it from slab */
3153         ctxt_table_entries = ext ? 512 : 256;
3154         ret = -ENOMEM;
3155         ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
3156         if (!ctxt_tbls)
3157                 goto out_unmap;
3158
3159         for (bus = 0; bus < 256; bus++) {
3160                 ret = copy_context_table(iommu, &old_rt[bus],
3161                                          ctxt_tbls, bus, ext);
3162                 if (ret) {
3163                         pr_err("%s: Failed to copy context table for bus %d\n",
3164                                 iommu->name, bus);
3165                         continue;
3166                 }
3167         }
3168
3169         spin_lock_irqsave(&iommu->lock, flags);
3170
3171         /* Context tables are copied, now write them to the root_entry table */
3172         for (bus = 0; bus < 256; bus++) {
3173                 int idx = ext ? bus * 2 : bus;
3174                 u64 val;
3175
3176                 if (ctxt_tbls[idx]) {
3177                         val = virt_to_phys(ctxt_tbls[idx]) | 1;
3178                         iommu->root_entry[bus].lo = val;
3179                 }
3180
3181                 if (!ext || !ctxt_tbls[idx + 1])
3182                         continue;
3183
3184                 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3185                 iommu->root_entry[bus].hi = val;
3186         }
3187
3188         spin_unlock_irqrestore(&iommu->lock, flags);
3189
3190         kfree(ctxt_tbls);
3191
3192         __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3193
3194         ret = 0;
3195
3196 out_unmap:
3197         memunmap(old_rt);
3198
3199         return ret;
3200 }
3201
3202 static int __init init_dmars(void)
3203 {
3204         struct dmar_drhd_unit *drhd;
3205         struct dmar_rmrr_unit *rmrr;
3206         bool copied_tables = false;
3207         struct device *dev;
3208         struct intel_iommu *iommu;
3209         int i, ret, cpu;
3210
3211         /*
3212          * for each drhd
3213          *    allocate root
3214          *    initialize and program root entry to not present
3215          * endfor
3216          */
3217         for_each_drhd_unit(drhd) {
3218                 /*
3219                  * lock not needed as this is only incremented in the single
3220                  * threaded kernel __init code path all other access are read
3221                  * only
3222                  */
3223                 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3224                         g_num_of_iommus++;
3225                         continue;
3226                 }
3227                 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3228         }
3229
3230         /* Preallocate enough resources for IOMMU hot-addition */
3231         if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3232                 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3233
3234         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3235                         GFP_KERNEL);
3236         if (!g_iommus) {
3237                 pr_err("Allocating global iommu array failed\n");
3238                 ret = -ENOMEM;
3239                 goto error;
3240         }
3241
3242         for_each_possible_cpu(cpu) {
3243                 struct deferred_flush_data *dfd = per_cpu_ptr(&deferred_flush,
3244                                                               cpu);
3245
3246                 dfd->tables = kzalloc(g_num_of_iommus *
3247                                       sizeof(struct deferred_flush_table),
3248                                       GFP_KERNEL);
3249                 if (!dfd->tables) {
3250                         ret = -ENOMEM;
3251                         goto free_g_iommus;
3252                 }
3253
3254                 spin_lock_init(&dfd->lock);
3255                 setup_timer(&dfd->timer, flush_unmaps_timeout, cpu);
3256         }
3257
3258         for_each_active_iommu(iommu, drhd) {
3259                 g_iommus[iommu->seq_id] = iommu;
3260
3261                 intel_iommu_init_qi(iommu);
3262
3263                 ret = iommu_init_domains(iommu);
3264                 if (ret)
3265                         goto free_iommu;
3266
3267                 init_translation_status(iommu);
3268
3269                 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3270                         iommu_disable_translation(iommu);
3271                         clear_translation_pre_enabled(iommu);
3272                         pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3273                                 iommu->name);
3274                 }
3275
3276                 /*
3277                  * TBD:
3278                  * we could share the same root & context tables
3279                  * among all IOMMU's. Need to Split it later.
3280                  */
3281                 ret = iommu_alloc_root_entry(iommu);
3282                 if (ret)
3283                         goto free_iommu;
3284
3285                 if (translation_pre_enabled(iommu)) {
3286                         pr_info("Translation already enabled - trying to copy translation structures\n");
3287
3288                         ret = copy_translation_tables(iommu);
3289                         if (ret) {
3290                                 /*
3291                                  * We found the IOMMU with translation
3292                                  * enabled - but failed to copy over the
3293                                  * old root-entry table. Try to proceed
3294                                  * by disabling translation now and
3295                                  * allocating a clean root-entry table.
3296                                  * This might cause DMAR faults, but
3297                                  * probably the dump will still succeed.
3298                                  */
3299                                 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3300                                        iommu->name);
3301                                 iommu_disable_translation(iommu);
3302                                 clear_translation_pre_enabled(iommu);
3303                         } else {
3304                                 pr_info("Copied translation tables from previous kernel for %s\n",
3305                                         iommu->name);
3306                                 copied_tables = true;
3307                         }
3308                 }
3309
3310                 if (!ecap_pass_through(iommu->ecap))
3311                         hw_pass_through = 0;
3312 #ifdef CONFIG_INTEL_IOMMU_SVM
3313                 if (pasid_enabled(iommu))
3314                         intel_svm_alloc_pasid_tables(iommu);
3315 #endif
3316         }
3317
3318         /*
3319          * Now that qi is enabled on all iommus, set the root entry and flush
3320          * caches. This is required on some Intel X58 chipsets, otherwise the
3321          * flush_context function will loop forever and the boot hangs.
3322          */
3323         for_each_active_iommu(iommu, drhd) {
3324                 iommu_flush_write_buffer(iommu);
3325                 iommu_set_root_entry(iommu);
3326                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3327                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3328         }
3329
3330         if (iommu_pass_through)
3331                 iommu_identity_mapping |= IDENTMAP_ALL;
3332
3333 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3334         iommu_identity_mapping |= IDENTMAP_GFX;
3335 #endif
3336
3337         check_tylersburg_isoch();
3338
3339         if (iommu_identity_mapping) {
3340                 ret = si_domain_init(hw_pass_through);
3341                 if (ret)
3342                         goto free_iommu;
3343         }
3344
3345
3346         /*
3347          * If we copied translations from a previous kernel in the kdump
3348          * case, we can not assign the devices to domains now, as that
3349          * would eliminate the old mappings. So skip this part and defer
3350          * the assignment to device driver initialization time.
3351          */
3352         if (copied_tables)
3353                 goto domains_done;
3354
3355         /*
3356          * If pass through is not set or not enabled, setup context entries for
3357          * identity mappings for rmrr, gfx, and isa and may fall back to static
3358          * identity mapping if iommu_identity_mapping is set.
3359          */
3360         if (iommu_identity_mapping) {
3361                 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3362                 if (ret) {
3363                         pr_crit("Failed to setup IOMMU pass-through\n");
3364                         goto free_iommu;
3365                 }
3366         }
3367         /*
3368          * For each rmrr
3369          *   for each dev attached to rmrr
3370          *   do
3371          *     locate drhd for dev, alloc domain for dev
3372          *     allocate free domain
3373          *     allocate page table entries for rmrr
3374          *     if context not allocated for bus
3375          *           allocate and init context
3376          *           set present in root table for this bus
3377          *     init context with domain, translation etc
3378          *    endfor
3379          * endfor
3380          */
3381         pr_info("Setting RMRR:\n");
3382         for_each_rmrr_units(rmrr) {
3383                 /* some BIOS lists non-exist devices in DMAR table. */
3384                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3385                                           i, dev) {
3386                         ret = iommu_prepare_rmrr_dev(rmrr, dev);
3387                         if (ret)
3388                                 pr_err("Mapping reserved region failed\n");
3389                 }
3390         }
3391
3392         iommu_prepare_isa();
3393
3394 domains_done:
3395
3396         /*
3397          * for each drhd
3398          *   enable fault log
3399          *   global invalidate context cache
3400          *   global invalidate iotlb
3401          *   enable translation
3402          */
3403         for_each_iommu(iommu, drhd) {
3404                 if (drhd->ignored) {
3405                         /*
3406                          * we always have to disable PMRs or DMA may fail on
3407                          * this device
3408                          */
3409                         if (force_on)
3410                                 iommu_disable_protect_mem_regions(iommu);
3411                         continue;
3412                 }
3413
3414                 iommu_flush_write_buffer(iommu);
3415
3416 #ifdef CONFIG_INTEL_IOMMU_SVM
3417                 if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
3418                         ret = intel_svm_enable_prq(iommu);
3419                         if (ret)
3420                                 goto free_iommu;
3421                 }
3422 #endif
3423                 ret = dmar_set_interrupt(iommu);
3424                 if (ret)
3425                         goto free_iommu;
3426
3427                 if (!translation_pre_enabled(iommu))
3428                         iommu_enable_translation(iommu);
3429
3430                 iommu_disable_protect_mem_regions(iommu);
3431         }
3432
3433         return 0;
3434
3435 free_iommu:
3436         for_each_active_iommu(iommu, drhd) {
3437                 disable_dmar_iommu(iommu);
3438                 free_dmar_iommu(iommu);
3439         }
3440 free_g_iommus:
3441         for_each_possible_cpu(cpu)
3442                 kfree(per_cpu_ptr(&deferred_flush, cpu)->tables);
3443         kfree(g_iommus);
3444 error:
3445         return ret;
3446 }
3447
3448 /* This takes a number of _MM_ pages, not VTD pages */
3449 static unsigned long intel_alloc_iova(struct device *dev,
3450                                      struct dmar_domain *domain,
3451                                      unsigned long nrpages, uint64_t dma_mask)
3452 {
3453         unsigned long iova_pfn = 0;
3454
3455         /* Restrict dma_mask to the width that the iommu can handle */
3456         dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3457         /* Ensure we reserve the whole size-aligned region */
3458         nrpages = __roundup_pow_of_two(nrpages);
3459
3460         if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3461                 /*
3462                  * First try to allocate an io virtual address in
3463                  * DMA_BIT_MASK(32) and if that fails then try allocating
3464                  * from higher range
3465                  */
3466                 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3467                                            IOVA_PFN(DMA_BIT_MASK(32)));
3468                 if (iova_pfn)
3469                         return iova_pfn;
3470         }
3471         iova_pfn = alloc_iova_fast(&domain->iovad, nrpages, IOVA_PFN(dma_mask));
3472         if (unlikely(!iova_pfn)) {
3473                 pr_err("Allocating %ld-page iova for %s failed",
3474                        nrpages, dev_name(dev));
3475                 return 0;
3476         }
3477
3478         return iova_pfn;
3479 }
3480
3481 static struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
3482 {
3483         struct dmar_domain *domain, *tmp;
3484         struct dmar_rmrr_unit *rmrr;
3485         struct device *i_dev;
3486         int i, ret;
3487
3488         domain = find_domain(dev);
3489         if (domain)
3490                 goto out;
3491
3492         domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3493         if (!domain)
3494                 goto out;
3495
3496         /* We have a new domain - setup possible RMRRs for the device */
3497         rcu_read_lock();
3498         for_each_rmrr_units(rmrr) {
3499                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3500                                           i, i_dev) {
3501                         if (i_dev != dev)
3502                                 continue;
3503
3504                         ret = domain_prepare_identity_map(dev, domain,
3505                                                           rmrr->base_address,
3506                                                           rmrr->end_address);
3507                         if (ret)
3508                                 dev_err(dev, "Mapping reserved region failed\n");
3509                 }
3510         }
3511         rcu_read_unlock();
3512
3513         tmp = set_domain_for_dev(dev, domain);
3514         if (!tmp || domain != tmp) {
3515                 domain_exit(domain);
3516                 domain = tmp;
3517         }
3518
3519 out:
3520
3521         if (!domain)
3522                 pr_err("Allocating domain for %s failed\n", dev_name(dev));
3523
3524
3525         return domain;
3526 }
3527
3528 /* Check if the dev needs to go through non-identity map and unmap process.*/
3529 static int iommu_no_mapping(struct device *dev)
3530 {
3531         int found;
3532
3533         if (iommu_dummy(dev))
3534                 return 1;
3535
3536         if (!iommu_identity_mapping)
3537                 return 0;
3538
3539         found = identity_mapping(dev);
3540         if (found) {
3541                 if (iommu_should_identity_map(dev, 0))
3542                         return 1;
3543                 else {
3544                         /*
3545                          * 32 bit DMA is removed from si_domain and fall back
3546                          * to non-identity mapping.
3547                          */
3548                         dmar_remove_one_dev_info(si_domain, dev);
3549                         pr_info("32bit %s uses non-identity mapping\n",
3550                                 dev_name(dev));
3551                         return 0;
3552                 }
3553         } else {
3554                 /*
3555                  * In case of a detached 64 bit DMA device from vm, the device
3556                  * is put into si_domain for identity mapping.
3557                  */
3558                 if (iommu_should_identity_map(dev, 0)) {
3559                         int ret;
3560                         ret = domain_add_dev_info(si_domain, dev);
3561                         if (!ret) {
3562                                 pr_info("64bit %s uses identity mapping\n",
3563                                         dev_name(dev));
3564                                 return 1;
3565                         }
3566                 }
3567         }
3568
3569         return 0;
3570 }
3571
3572 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3573                                      size_t size, int dir, u64 dma_mask)
3574 {
3575         struct dmar_domain *domain;
3576         phys_addr_t start_paddr;
3577         unsigned long iova_pfn;
3578         int prot = 0;
3579         int ret;
3580         struct intel_iommu *iommu;
3581         unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3582
3583         BUG_ON(dir == DMA_NONE);
3584
3585         if (iommu_no_mapping(dev))
3586                 return paddr;
3587
3588         domain = get_valid_domain_for_dev(dev);
3589         if (!domain)
3590                 return 0;
3591
3592         iommu = domain_get_iommu(domain);
3593         size = aligned_nrpages(paddr, size);
3594
3595         iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3596         if (!iova_pfn)
3597                 goto error;
3598
3599         /*
3600          * Check if DMAR supports zero-length reads on write only
3601          * mappings..
3602          */
3603         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3604                         !cap_zlr(iommu->cap))
3605                 prot |= DMA_PTE_READ;
3606         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3607                 prot |= DMA_PTE_WRITE;
3608         /*
3609          * paddr - (paddr + size) might be partial page, we should map the whole
3610          * page.  Note: if two part of one page are separately mapped, we
3611          * might have two guest_addr mapping to the same host paddr, but this
3612          * is not a big problem
3613          */
3614         ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3615                                  mm_to_dma_pfn(paddr_pfn), size, prot);
3616         if (ret)
3617                 goto error;
3618
3619         /* it's a non-present to present mapping. Only flush if caching mode */
3620         if (cap_caching_mode(iommu->cap))
3621                 iommu_flush_iotlb_psi(iommu, domain,
3622                                       mm_to_dma_pfn(iova_pfn),
3623                                       size, 0, 1);
3624         else
3625                 iommu_flush_write_buffer(iommu);
3626
3627         start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3628         start_paddr += paddr & ~PAGE_MASK;
3629         return start_paddr;
3630
3631 error:
3632         if (iova_pfn)
3633                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3634         pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
3635                 dev_name(dev), size, (unsigned long long)paddr, dir);
3636         return 0;
3637 }
3638
3639 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3640                                  unsigned long offset, size_t size,
3641                                  enum dma_data_direction dir,
3642                                  unsigned long attrs)
3643 {
3644         return __intel_map_single(dev, page_to_phys(page) + offset, size,
3645                                   dir, *dev->dma_mask);
3646 }
3647
3648 static void flush_unmaps(struct deferred_flush_data *flush_data)
3649 {
3650         int i, j;
3651
3652         flush_data->timer_on = 0;
3653
3654         /* just flush them all */
3655         for (i = 0; i < g_num_of_iommus; i++) {
3656                 struct intel_iommu *iommu = g_iommus[i];
3657                 struct deferred_flush_table *flush_table =
3658                                 &flush_data->tables[i];
3659                 if (!iommu)
3660                         continue;
3661
3662                 if (!flush_table->next)
3663                         continue;
3664
3665                 /* In caching mode, global flushes turn emulation expensive */
3666                 if (!cap_caching_mode(iommu->cap))
3667                         iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3668                                          DMA_TLB_GLOBAL_FLUSH);
3669                 for (j = 0; j < flush_table->next; j++) {
3670                         unsigned long mask;
3671                         struct deferred_flush_entry *entry =
3672                                                 &flush_table->entries[j];
3673                         unsigned long iova_pfn = entry->iova_pfn;
3674                         unsigned long nrpages = entry->nrpages;
3675                         struct dmar_domain *domain = entry->domain;
3676                         struct page *freelist = entry->freelist;
3677
3678                         /* On real hardware multiple invalidations are expensive */
3679                         if (cap_caching_mode(iommu->cap))
3680                                 iommu_flush_iotlb_psi(iommu, domain,
3681                                         mm_to_dma_pfn(iova_pfn),
3682                                         nrpages, !freelist, 0);
3683                         else {
3684                                 mask = ilog2(nrpages);
3685                                 iommu_flush_dev_iotlb(domain,
3686                                                 (uint64_t)iova_pfn << PAGE_SHIFT, mask);
3687                         }
3688                         free_iova_fast(&domain->iovad, iova_pfn, nrpages);
3689                         if (freelist)
3690                                 dma_free_pagelist(freelist);
3691                 }
3692                 flush_table->next = 0;
3693         }
3694
3695         flush_data->size = 0;
3696 }
3697
3698 static void flush_unmaps_timeout(unsigned long cpuid)
3699 {
3700         struct deferred_flush_data *flush_data = per_cpu_ptr(&deferred_flush, cpuid);
3701         unsigned long flags;
3702
3703         spin_lock_irqsave(&flush_data->lock, flags);
3704         flush_unmaps(flush_data);
3705         spin_unlock_irqrestore(&flush_data->lock, flags);
3706 }
3707
3708 static void add_unmap(struct dmar_domain *dom, unsigned long iova_pfn,
3709                       unsigned long nrpages, struct page *freelist)
3710 {
3711         unsigned long flags;
3712         int entry_id, iommu_id;
3713         struct intel_iommu *iommu;
3714         struct deferred_flush_entry *entry;
3715         struct deferred_flush_data *flush_data;
3716
3717         flush_data = raw_cpu_ptr(&deferred_flush);
3718
3719         /* Flush all CPUs' entries to avoid deferring too much.  If
3720          * this becomes a bottleneck, can just flush us, and rely on
3721          * flush timer for the rest.
3722          */
3723         if (flush_data->size == HIGH_WATER_MARK) {
3724                 int cpu;
3725
3726                 for_each_online_cpu(cpu)
3727                         flush_unmaps_timeout(cpu);
3728         }
3729
3730         spin_lock_irqsave(&flush_data->lock, flags);
3731
3732         iommu = domain_get_iommu(dom);
3733         iommu_id = iommu->seq_id;
3734
3735         entry_id = flush_data->tables[iommu_id].next;
3736         ++(flush_data->tables[iommu_id].next);
3737
3738         entry = &flush_data->tables[iommu_id].entries[entry_id];
3739         entry->domain = dom;
3740         entry->iova_pfn = iova_pfn;
3741         entry->nrpages = nrpages;
3742         entry->freelist = freelist;
3743
3744         if (!flush_data->timer_on) {
3745                 mod_timer(&flush_data->timer, jiffies + msecs_to_jiffies(10));
3746                 flush_data->timer_on = 1;
3747         }
3748         flush_data->size++;
3749         spin_unlock_irqrestore(&flush_data->lock, flags);
3750 }
3751
3752 static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3753 {
3754         struct dmar_domain *domain;
3755         unsigned long start_pfn, last_pfn;
3756         unsigned long nrpages;
3757         unsigned long iova_pfn;
3758         struct intel_iommu *iommu;
3759         struct page *freelist;
3760
3761         if (iommu_no_mapping(dev))
3762                 return;
3763
3764         domain = find_domain(dev);
3765         BUG_ON(!domain);
3766
3767         iommu = domain_get_iommu(domain);
3768
3769         iova_pfn = IOVA_PFN(dev_addr);
3770
3771         nrpages = aligned_nrpages(dev_addr, size);
3772         start_pfn = mm_to_dma_pfn(iova_pfn);
3773         last_pfn = start_pfn + nrpages - 1;
3774
3775         pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3776                  dev_name(dev), start_pfn, last_pfn);
3777
3778         freelist = domain_unmap(domain, start_pfn, last_pfn);
3779
3780         if (intel_iommu_strict) {
3781                 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3782                                       nrpages, !freelist, 0);
3783                 /* free iova */
3784                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3785                 dma_free_pagelist(freelist);
3786         } else {
3787                 add_unmap(domain, iova_pfn, nrpages, freelist);
3788                 /*
3789                  * queue up the release of the unmap to save the 1/6th of the
3790                  * cpu used up by the iotlb flush operation...
3791                  */
3792         }
3793 }
3794
3795 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3796                              size_t size, enum dma_data_direction dir,
3797                              unsigned long attrs)
3798 {
3799         intel_unmap(dev, dev_addr, size);
3800 }
3801
3802 static void *intel_alloc_coherent(struct device *dev, size_t size,
3803                                   dma_addr_t *dma_handle, gfp_t flags,
3804                                   unsigned long attrs)
3805 {
3806         struct page *page = NULL;
3807         int order;
3808
3809         size = PAGE_ALIGN(size);
3810         order = get_order(size);
3811
3812         if (!iommu_no_mapping(dev))
3813                 flags &= ~(GFP_DMA | GFP_DMA32);
3814         else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3815                 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3816                         flags |= GFP_DMA;
3817                 else
3818                         flags |= GFP_DMA32;
3819         }
3820
3821         if (gfpflags_allow_blocking(flags)) {
3822                 unsigned int count = size >> PAGE_SHIFT;
3823
3824                 page = dma_alloc_from_contiguous(dev, count, order, flags);
3825                 if (page && iommu_no_mapping(dev) &&
3826                     page_to_phys(page) + size > dev->coherent_dma_mask) {
3827                         dma_release_from_contiguous(dev, page, count);
3828                         page = NULL;
3829                 }
3830         }
3831
3832         if (!page)
3833                 page = alloc_pages(flags, order);
3834         if (!page)
3835                 return NULL;
3836         memset(page_address(page), 0, size);
3837
3838         *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3839                                          DMA_BIDIRECTIONAL,
3840                                          dev->coherent_dma_mask);
3841         if (*dma_handle)
3842                 return page_address(page);
3843         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3844                 __free_pages(page, order);
3845
3846         return NULL;
3847 }
3848
3849 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3850                                 dma_addr_t dma_handle, unsigned long attrs)
3851 {
3852         int order;
3853         struct page *page = virt_to_page(vaddr);
3854
3855         size = PAGE_ALIGN(size);
3856         order = get_order(size);
3857
3858         intel_unmap(dev, dma_handle, size);
3859         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3860                 __free_pages(page, order);
3861 }
3862
3863 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3864                            int nelems, enum dma_data_direction dir,
3865                            unsigned long attrs)
3866 {
3867         dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3868         unsigned long nrpages = 0;
3869         struct scatterlist *sg;
3870         int i;
3871
3872         for_each_sg(sglist, sg, nelems, i) {
3873                 nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3874         }
3875
3876         intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3877 }
3878
3879 static int intel_nontranslate_map_sg(struct device *hddev,
3880         struct scatterlist *sglist, int nelems, int dir)
3881 {
3882         int i;
3883         struct scatterlist *sg;
3884
3885         for_each_sg(sglist, sg, nelems, i) {
3886                 BUG_ON(!sg_page(sg));
3887                 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3888                 sg->dma_length = sg->length;
3889         }
3890         return nelems;
3891 }
3892
3893 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3894                         enum dma_data_direction dir, unsigned long attrs)
3895 {
3896         int i;
3897         struct dmar_domain *domain;
3898         size_t size = 0;
3899         int prot = 0;
3900         unsigned long iova_pfn;
3901         int ret;
3902         struct scatterlist *sg;
3903         unsigned long start_vpfn;
3904         struct intel_iommu *iommu;
3905
3906         BUG_ON(dir == DMA_NONE);
3907         if (iommu_no_mapping(dev))
3908                 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3909
3910         domain = get_valid_domain_for_dev(dev);
3911         if (!domain)
3912                 return 0;
3913
3914         iommu = domain_get_iommu(domain);
3915
3916         for_each_sg(sglist, sg, nelems, i)
3917                 size += aligned_nrpages(sg->offset, sg->length);
3918
3919         iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3920                                 *dev->dma_mask);
3921         if (!iova_pfn) {
3922                 sglist->dma_length = 0;
3923                 return 0;
3924         }
3925
3926         /*
3927          * Check if DMAR supports zero-length reads on write only
3928          * mappings..
3929          */
3930         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3931                         !cap_zlr(iommu->cap))
3932                 prot |= DMA_PTE_READ;
3933         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3934                 prot |= DMA_PTE_WRITE;
3935
3936         start_vpfn = mm_to_dma_pfn(iova_pfn);
3937
3938         ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3939         if (unlikely(ret)) {
3940                 dma_pte_free_pagetable(domain, start_vpfn,
3941                                        start_vpfn + size - 1);
3942                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3943                 return 0;
3944         }
3945
3946         /* it's a non-present to present mapping. Only flush if caching mode */
3947         if (cap_caching_mode(iommu->cap))
3948                 iommu_flush_iotlb_psi(iommu, domain, start_vpfn, size, 0, 1);
3949         else
3950                 iommu_flush_write_buffer(iommu);
3951
3952         return nelems;
3953 }
3954
3955 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3956 {
3957         return !dma_addr;
3958 }
3959
3960 const struct dma_map_ops intel_dma_ops = {
3961         .alloc = intel_alloc_coherent,
3962         .free = intel_free_coherent,
3963         .map_sg = intel_map_sg,
3964         .unmap_sg = intel_unmap_sg,
3965         .map_page = intel_map_page,
3966         .unmap_page = intel_unmap_page,
3967         .mapping_error = intel_mapping_error,
3968 #ifdef CONFIG_X86
3969         .dma_supported = x86_dma_supported,
3970 #endif
3971 };
3972
3973 static inline int iommu_domain_cache_init(void)
3974 {
3975         int ret = 0;
3976
3977         iommu_domain_cache = kmem_cache_create("iommu_domain",
3978                                          sizeof(struct dmar_domain),
3979                                          0,
3980                                          SLAB_HWCACHE_ALIGN,
3981
3982                                          NULL);
3983         if (!iommu_domain_cache) {
3984                 pr_err("Couldn't create iommu_domain cache\n");
3985                 ret = -ENOMEM;
3986         }
3987
3988         return ret;
3989 }
3990
3991 static inline int iommu_devinfo_cache_init(void)
3992 {
3993         int ret = 0;
3994
3995         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3996                                          sizeof(struct device_domain_info),
3997                                          0,
3998                                          SLAB_HWCACHE_ALIGN,
3999                                          NULL);
4000         if (!iommu_devinfo_cache) {
4001                 pr_err("Couldn't create devinfo cache\n");
4002                 ret = -ENOMEM;
4003         }
4004
4005         return ret;
4006 }
4007
4008 static int __init iommu_init_mempool(void)
4009 {
4010         int ret;
4011         ret = iova_cache_get();
4012         if (ret)
4013                 return ret;
4014
4015         ret = iommu_domain_cache_init();
4016         if (ret)
4017                 goto domain_error;
4018
4019         ret = iommu_devinfo_cache_init();
4020         if (!ret)
4021                 return ret;
4022
4023         kmem_cache_destroy(iommu_domain_cache);
4024 domain_error:
4025         iova_cache_put();
4026
4027         return -ENOMEM;
4028 }
4029
4030 static void __init iommu_exit_mempool(void)
4031 {
4032         kmem_cache_destroy(iommu_devinfo_cache);
4033         kmem_cache_destroy(iommu_domain_cache);
4034         iova_cache_put();
4035 }
4036
4037 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
4038 {
4039         struct dmar_drhd_unit *drhd;
4040         u32 vtbar;
4041         int rc;
4042
4043         /* We know that this device on this chipset has its own IOMMU.
4044          * If we find it under a different IOMMU, then the BIOS is lying
4045          * to us. Hope that the IOMMU for this device is actually
4046          * disabled, and it needs no translation...
4047          */
4048         rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
4049         if (rc) {
4050                 /* "can't" happen */
4051                 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
4052                 return;
4053         }
4054         vtbar &= 0xffff0000;
4055
4056         /* we know that the this iommu should be at offset 0xa000 from vtbar */
4057         drhd = dmar_find_matched_drhd_unit(pdev);
4058         if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
4059                             TAINT_FIRMWARE_WORKAROUND,
4060                             "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
4061                 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4062 }
4063 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
4064
4065 static void __init init_no_remapping_devices(void)
4066 {
4067         struct dmar_drhd_unit *drhd;
4068         struct device *dev;
4069         int i;
4070
4071         for_each_drhd_unit(drhd) {
4072                 if (!drhd->include_all) {
4073                         for_each_active_dev_scope(drhd->devices,
4074                                                   drhd->devices_cnt, i, dev)
4075                                 break;
4076                         /* ignore DMAR unit if no devices exist */
4077                         if (i == drhd->devices_cnt)
4078                                 drhd->ignored = 1;
4079                 }
4080         }
4081
4082         for_each_active_drhd_unit(drhd) {
4083                 if (drhd->include_all)
4084                         continue;
4085
4086                 for_each_active_dev_scope(drhd->devices,
4087                                           drhd->devices_cnt, i, dev)
4088                         if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4089                                 break;
4090                 if (i < drhd->devices_cnt)
4091                         continue;
4092
4093                 /* This IOMMU has *only* gfx devices. Either bypass it or
4094                    set the gfx_mapped flag, as appropriate */
4095                 if (dmar_map_gfx) {
4096                         intel_iommu_gfx_mapped = 1;
4097                 } else {
4098                         drhd->ignored = 1;
4099                         for_each_active_dev_scope(drhd->devices,
4100                                                   drhd->devices_cnt, i, dev)
4101                                 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4102                 }
4103         }
4104 }
4105
4106 #ifdef CONFIG_SUSPEND
4107 static int init_iommu_hw(void)
4108 {
4109         struct dmar_drhd_unit *drhd;
4110         struct intel_iommu *iommu = NULL;
4111
4112         for_each_active_iommu(iommu, drhd)
4113                 if (iommu->qi)
4114                         dmar_reenable_qi(iommu);
4115
4116         for_each_iommu(iommu, drhd) {
4117                 if (drhd->ignored) {
4118                         /*
4119                          * we always have to disable PMRs or DMA may fail on
4120                          * this device
4121                          */
4122                         if (force_on)
4123                                 iommu_disable_protect_mem_regions(iommu);
4124                         continue;
4125                 }
4126         
4127                 iommu_flush_write_buffer(iommu);
4128
4129                 iommu_set_root_entry(iommu);
4130
4131                 iommu->flush.flush_context(iommu, 0, 0, 0,
4132                                            DMA_CCMD_GLOBAL_INVL);
4133                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4134                 iommu_enable_translation(iommu);
4135                 iommu_disable_protect_mem_regions(iommu);
4136         }
4137
4138         return 0;
4139 }
4140
4141 static void iommu_flush_all(void)
4142 {
4143         struct dmar_drhd_unit *drhd;
4144         struct intel_iommu *iommu;
4145
4146         for_each_active_iommu(iommu, drhd) {
4147                 iommu->flush.flush_context(iommu, 0, 0, 0,
4148                                            DMA_CCMD_GLOBAL_INVL);
4149                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4150                                          DMA_TLB_GLOBAL_FLUSH);
4151         }
4152 }
4153
4154 static int iommu_suspend(void)
4155 {
4156         struct dmar_drhd_unit *drhd;
4157         struct intel_iommu *iommu = NULL;
4158         unsigned long flag;
4159
4160         for_each_active_iommu(iommu, drhd) {
4161                 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
4162                                                  GFP_ATOMIC);
4163                 if (!iommu->iommu_state)
4164                         goto nomem;
4165         }
4166
4167         iommu_flush_all();
4168
4169         for_each_active_iommu(iommu, drhd) {
4170                 iommu_disable_translation(iommu);
4171
4172                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4173
4174                 iommu->iommu_state[SR_DMAR_FECTL_REG] =
4175                         readl(iommu->reg + DMAR_FECTL_REG);
4176                 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
4177                         readl(iommu->reg + DMAR_FEDATA_REG);
4178                 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
4179                         readl(iommu->reg + DMAR_FEADDR_REG);
4180                 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
4181                         readl(iommu->reg + DMAR_FEUADDR_REG);
4182
4183                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4184         }
4185         return 0;
4186
4187 nomem:
4188         for_each_active_iommu(iommu, drhd)
4189                 kfree(iommu->iommu_state);
4190
4191         return -ENOMEM;
4192 }
4193
4194 static void iommu_resume(void)
4195 {
4196         struct dmar_drhd_unit *drhd;
4197         struct intel_iommu *iommu = NULL;
4198         unsigned long flag;
4199
4200         if (init_iommu_hw()) {
4201                 if (force_on)
4202                         panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
4203                 else
4204                         WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4205                 return;
4206         }
4207
4208         for_each_active_iommu(iommu, drhd) {
4209
4210                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4211
4212                 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
4213                         iommu->reg + DMAR_FECTL_REG);
4214                 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
4215                         iommu->reg + DMAR_FEDATA_REG);
4216                 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
4217                         iommu->reg + DMAR_FEADDR_REG);
4218                 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
4219                         iommu->reg + DMAR_FEUADDR_REG);
4220
4221                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4222         }
4223
4224         for_each_active_iommu(iommu, drhd)
4225                 kfree(iommu->iommu_state);
4226 }
4227
4228 static struct syscore_ops iommu_syscore_ops = {
4229         .resume         = iommu_resume,
4230         .suspend        = iommu_suspend,
4231 };
4232
4233 static void __init init_iommu_pm_ops(void)
4234 {
4235         register_syscore_ops(&iommu_syscore_ops);
4236 }
4237
4238 #else
4239 static inline void init_iommu_pm_ops(void) {}
4240 #endif  /* CONFIG_PM */
4241
4242
4243 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4244 {
4245         struct acpi_dmar_reserved_memory *rmrr;
4246         int prot = DMA_PTE_READ|DMA_PTE_WRITE;
4247         struct dmar_rmrr_unit *rmrru;
4248         size_t length;
4249
4250         rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4251         if (!rmrru)
4252                 goto out;
4253
4254         rmrru->hdr = header;
4255         rmrr = (struct acpi_dmar_reserved_memory *)header;
4256         rmrru->base_address = rmrr->base_address;
4257         rmrru->end_address = rmrr->end_address;
4258
4259         length = rmrr->end_address - rmrr->base_address + 1;
4260         rmrru->resv = iommu_alloc_resv_region(rmrr->base_address, length, prot,
4261                                               IOMMU_RESV_DIRECT);
4262         if (!rmrru->resv)
4263                 goto free_rmrru;
4264
4265         rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4266                                 ((void *)rmrr) + rmrr->header.length,
4267                                 &rmrru->devices_cnt);
4268         if (rmrru->devices_cnt && rmrru->devices == NULL)
4269                 goto free_all;
4270
4271         list_add(&rmrru->list, &dmar_rmrr_units);
4272
4273         return 0;
4274 free_all:
4275         kfree(rmrru->resv);
4276 free_rmrru:
4277         kfree(rmrru);
4278 out:
4279         return -ENOMEM;
4280 }
4281
4282 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4283 {
4284         struct dmar_atsr_unit *atsru;
4285         struct acpi_dmar_atsr *tmp;
4286
4287         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4288                 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4289                 if (atsr->segment != tmp->segment)
4290                         continue;
4291                 if (atsr->header.length != tmp->header.length)
4292                         continue;
4293                 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4294                         return atsru;
4295         }
4296
4297         return NULL;
4298 }
4299
4300 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4301 {
4302         struct acpi_dmar_atsr *atsr;
4303         struct dmar_atsr_unit *atsru;
4304
4305         if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4306                 return 0;
4307
4308         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4309         atsru = dmar_find_atsr(atsr);
4310         if (atsru)
4311                 return 0;
4312
4313         atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4314         if (!atsru)
4315                 return -ENOMEM;
4316
4317         /*
4318          * If memory is allocated from slab by ACPI _DSM method, we need to
4319          * copy the memory content because the memory buffer will be freed
4320          * on return.
4321          */
4322         atsru->hdr = (void *)(atsru + 1);
4323         memcpy(atsru->hdr, hdr, hdr->length);
4324         atsru->include_all = atsr->flags & 0x1;
4325         if (!atsru->include_all) {
4326                 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4327                                 (void *)atsr + atsr->header.length,
4328                                 &atsru->devices_cnt);
4329                 if (atsru->devices_cnt && atsru->devices == NULL) {
4330                         kfree(atsru);
4331                         return -ENOMEM;
4332                 }
4333         }
4334
4335         list_add_rcu(&atsru->list, &dmar_atsr_units);
4336
4337         return 0;
4338 }
4339
4340 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4341 {
4342         dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4343         kfree(atsru);
4344 }
4345
4346 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4347 {
4348         struct acpi_dmar_atsr *atsr;
4349         struct dmar_atsr_unit *atsru;
4350
4351         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4352         atsru = dmar_find_atsr(atsr);
4353         if (atsru) {
4354                 list_del_rcu(&atsru->list);
4355                 synchronize_rcu();
4356                 intel_iommu_free_atsr(atsru);
4357         }
4358
4359         return 0;
4360 }
4361
4362 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4363 {
4364         int i;
4365         struct device *dev;
4366         struct acpi_dmar_atsr *atsr;
4367         struct dmar_atsr_unit *atsru;
4368
4369         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4370         atsru = dmar_find_atsr(atsr);
4371         if (!atsru)
4372                 return 0;
4373
4374         if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4375                 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4376                                           i, dev)
4377                         return -EBUSY;
4378         }
4379
4380         return 0;
4381 }
4382
4383 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4384 {
4385         int sp, ret = 0;
4386         struct intel_iommu *iommu = dmaru->iommu;
4387
4388         if (g_iommus[iommu->seq_id])
4389                 return 0;
4390
4391         if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4392                 pr_warn("%s: Doesn't support hardware pass through.\n",
4393                         iommu->name);
4394                 return -ENXIO;
4395         }
4396         if (!ecap_sc_support(iommu->ecap) &&
4397             domain_update_iommu_snooping(iommu)) {
4398                 pr_warn("%s: Doesn't support snooping.\n",
4399                         iommu->name);
4400                 return -ENXIO;
4401         }
4402         sp = domain_update_iommu_superpage(iommu) - 1;
4403         if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4404                 pr_warn("%s: Doesn't support large page.\n",
4405                         iommu->name);
4406                 return -ENXIO;
4407         }
4408
4409         /*
4410          * Disable translation if already enabled prior to OS handover.
4411          */
4412         if (iommu->gcmd & DMA_GCMD_TE)
4413                 iommu_disable_translation(iommu);
4414
4415         g_iommus[iommu->seq_id] = iommu;
4416         ret = iommu_init_domains(iommu);
4417         if (ret == 0)
4418                 ret = iommu_alloc_root_entry(iommu);
4419         if (ret)
4420                 goto out;
4421
4422 #ifdef CONFIG_INTEL_IOMMU_SVM
4423         if (pasid_enabled(iommu))
4424                 intel_svm_alloc_pasid_tables(iommu);
4425 #endif
4426
4427         if (dmaru->ignored) {
4428                 /*
4429                  * we always have to disable PMRs or DMA may fail on this device
4430                  */
4431                 if (force_on)
4432                         iommu_disable_protect_mem_regions(iommu);
4433                 return 0;
4434         }
4435
4436         intel_iommu_init_qi(iommu);
4437         iommu_flush_write_buffer(iommu);
4438
4439 #ifdef CONFIG_INTEL_IOMMU_SVM
4440         if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
4441                 ret = intel_svm_enable_prq(iommu);
4442                 if (ret)
4443                         goto disable_iommu;
4444         }
4445 #endif
4446         ret = dmar_set_interrupt(iommu);
4447         if (ret)
4448                 goto disable_iommu;
4449
4450         iommu_set_root_entry(iommu);
4451         iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4452         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4453         iommu_enable_translation(iommu);
4454
4455         iommu_disable_protect_mem_regions(iommu);
4456         return 0;
4457
4458 disable_iommu:
4459         disable_dmar_iommu(iommu);
4460 out:
4461         free_dmar_iommu(iommu);
4462         return ret;
4463 }
4464
4465 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4466 {
4467         int ret = 0;
4468         struct intel_iommu *iommu = dmaru->iommu;
4469
4470         if (!intel_iommu_enabled)
4471                 return 0;
4472         if (iommu == NULL)
4473                 return -EINVAL;
4474
4475         if (insert) {
4476                 ret = intel_iommu_add(dmaru);
4477         } else {
4478                 disable_dmar_iommu(iommu);
4479                 free_dmar_iommu(iommu);
4480         }
4481
4482         return ret;
4483 }
4484
4485 static void intel_iommu_free_dmars(void)
4486 {
4487         struct dmar_rmrr_unit *rmrru, *rmrr_n;
4488         struct dmar_atsr_unit *atsru, *atsr_n;
4489
4490         list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4491                 list_del(&rmrru->list);
4492                 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4493                 kfree(rmrru->resv);
4494                 kfree(rmrru);
4495         }
4496
4497         list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4498                 list_del(&atsru->list);
4499                 intel_iommu_free_atsr(atsru);
4500         }
4501 }
4502
4503 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4504 {
4505         int i, ret = 1;
4506         struct pci_bus *bus;
4507         struct pci_dev *bridge = NULL;
4508         struct device *tmp;
4509         struct acpi_dmar_atsr *atsr;
4510         struct dmar_atsr_unit *atsru;
4511
4512         dev = pci_physfn(dev);
4513         for (bus = dev->bus; bus; bus = bus->parent) {
4514                 bridge = bus->self;
4515                 /* If it's an integrated device, allow ATS */
4516                 if (!bridge)
4517                         return 1;
4518                 /* Connected via non-PCIe: no ATS */
4519                 if (!pci_is_pcie(bridge) ||
4520                     pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4521                         return 0;
4522                 /* If we found the root port, look it up in the ATSR */
4523                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4524                         break;
4525         }
4526
4527         rcu_read_lock();
4528         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4529                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4530                 if (atsr->segment != pci_domain_nr(dev->bus))
4531                         continue;
4532
4533                 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4534                         if (tmp == &bridge->dev)
4535                                 goto out;
4536
4537                 if (atsru->include_all)
4538                         goto out;
4539         }
4540         ret = 0;
4541 out:
4542         rcu_read_unlock();
4543
4544         return ret;
4545 }
4546
4547 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4548 {
4549         int ret = 0;
4550         struct dmar_rmrr_unit *rmrru;
4551         struct dmar_atsr_unit *atsru;
4552         struct acpi_dmar_atsr *atsr;
4553         struct acpi_dmar_reserved_memory *rmrr;
4554
4555         if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4556                 return 0;
4557
4558         list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4559                 rmrr = container_of(rmrru->hdr,
4560                                     struct acpi_dmar_reserved_memory, header);
4561                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4562                         ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4563                                 ((void *)rmrr) + rmrr->header.length,
4564                                 rmrr->segment, rmrru->devices,
4565                                 rmrru->devices_cnt);
4566                         if(ret < 0)
4567                                 return ret;
4568                 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4569                         dmar_remove_dev_scope(info, rmrr->segment,
4570                                 rmrru->devices, rmrru->devices_cnt);
4571                 }
4572         }
4573
4574         list_for_each_entry(atsru, &dmar_atsr_units, list) {
4575                 if (atsru->include_all)
4576                         continue;
4577
4578                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4579                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4580                         ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4581                                         (void *)atsr + atsr->header.length,
4582                                         atsr->segment, atsru->devices,
4583                                         atsru->devices_cnt);
4584                         if (ret > 0)
4585                                 break;
4586                         else if(ret < 0)
4587                                 return ret;
4588                 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4589                         if (dmar_remove_dev_scope(info, atsr->segment,
4590                                         atsru->devices, atsru->devices_cnt))
4591                                 break;
4592                 }
4593         }
4594
4595         return 0;
4596 }
4597
4598 /*
4599  * Here we only respond to action of unbound device from driver.
4600  *
4601  * Added device is not attached to its DMAR domain here yet. That will happen
4602  * when mapping the device to iova.
4603  */
4604 static int device_notifier(struct notifier_block *nb,
4605                                   unsigned long action, void *data)
4606 {
4607         struct device *dev = data;
4608         struct dmar_domain *domain;
4609
4610         if (iommu_dummy(dev))
4611                 return 0;
4612
4613         if (action != BUS_NOTIFY_REMOVED_DEVICE)
4614                 return 0;
4615
4616         domain = find_domain(dev);
4617         if (!domain)
4618                 return 0;
4619
4620         dmar_remove_one_dev_info(domain, dev);
4621         if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4622                 domain_exit(domain);
4623
4624         return 0;
4625 }
4626
4627 static struct notifier_block device_nb = {
4628         .notifier_call = device_notifier,
4629 };
4630
4631 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4632                                        unsigned long val, void *v)
4633 {
4634         struct memory_notify *mhp = v;
4635         unsigned long long start, end;
4636         unsigned long start_vpfn, last_vpfn;
4637
4638         switch (val) {
4639         case MEM_GOING_ONLINE:
4640                 start = mhp->start_pfn << PAGE_SHIFT;
4641                 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4642                 if (iommu_domain_identity_map(si_domain, start, end)) {
4643                         pr_warn("Failed to build identity map for [%llx-%llx]\n",
4644                                 start, end);
4645                         return NOTIFY_BAD;
4646                 }
4647                 break;
4648
4649         case MEM_OFFLINE:
4650         case MEM_CANCEL_ONLINE:
4651                 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4652                 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4653                 while (start_vpfn <= last_vpfn) {
4654                         struct iova *iova;
4655                         struct dmar_drhd_unit *drhd;
4656                         struct intel_iommu *iommu;
4657                         struct page *freelist;
4658
4659                         iova = find_iova(&si_domain->iovad, start_vpfn);
4660                         if (iova == NULL) {
4661                                 pr_debug("Failed get IOVA for PFN %lx\n",
4662                                          start_vpfn);
4663                                 break;
4664                         }
4665
4666                         iova = split_and_remove_iova(&si_domain->iovad, iova,
4667                                                      start_vpfn, last_vpfn);
4668                         if (iova == NULL) {
4669                                 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4670                                         start_vpfn, last_vpfn);
4671                                 return NOTIFY_BAD;
4672                         }
4673
4674                         freelist = domain_unmap(si_domain, iova->pfn_lo,
4675                                                iova->pfn_hi);
4676
4677                         rcu_read_lock();
4678                         for_each_active_iommu(iommu, drhd)
4679                                 iommu_flush_iotlb_psi(iommu, si_domain,
4680                                         iova->pfn_lo, iova_size(iova),
4681                                         !freelist, 0);
4682                         rcu_read_unlock();
4683                         dma_free_pagelist(freelist);
4684
4685                         start_vpfn = iova->pfn_hi + 1;
4686                         free_iova_mem(iova);
4687                 }
4688                 break;
4689         }
4690
4691         return NOTIFY_OK;
4692 }
4693
4694 static struct notifier_block intel_iommu_memory_nb = {
4695         .notifier_call = intel_iommu_memory_notifier,
4696         .priority = 0
4697 };
4698
4699 static void free_all_cpu_cached_iovas(unsigned int cpu)
4700 {
4701         int i;
4702
4703         for (i = 0; i < g_num_of_iommus; i++) {
4704                 struct intel_iommu *iommu = g_iommus[i];
4705                 struct dmar_domain *domain;
4706                 int did;
4707
4708                 if (!iommu)
4709                         continue;
4710
4711                 for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4712                         domain = get_iommu_domain(iommu, (u16)did);
4713
4714                         if (!domain)
4715                                 continue;
4716                         free_cpu_cached_iovas(cpu, &domain->iovad);
4717                 }
4718         }
4719 }
4720
4721 static int intel_iommu_cpu_dead(unsigned int cpu)
4722 {
4723         free_all_cpu_cached_iovas(cpu);
4724         flush_unmaps_timeout(cpu);
4725         return 0;
4726 }
4727
4728 static void intel_disable_iommus(void)
4729 {
4730         struct intel_iommu *iommu = NULL;
4731         struct dmar_drhd_unit *drhd;
4732
4733         for_each_iommu(iommu, drhd)
4734                 iommu_disable_translation(iommu);
4735 }
4736
4737 static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
4738 {
4739         return container_of(dev, struct intel_iommu, iommu.dev);
4740 }
4741
4742 static ssize_t intel_iommu_show_version(struct device *dev,
4743                                         struct device_attribute *attr,
4744                                         char *buf)
4745 {
4746         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4747         u32 ver = readl(iommu->reg + DMAR_VER_REG);
4748         return sprintf(buf, "%d:%d\n",
4749                        DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4750 }
4751 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4752
4753 static ssize_t intel_iommu_show_address(struct device *dev,
4754                                         struct device_attribute *attr,
4755                                         char *buf)
4756 {
4757         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4758         return sprintf(buf, "%llx\n", iommu->reg_phys);
4759 }
4760 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4761
4762 static ssize_t intel_iommu_show_cap(struct device *dev,
4763                                     struct device_attribute *attr,
4764                                     char *buf)
4765 {
4766         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4767         return sprintf(buf, "%llx\n", iommu->cap);
4768 }
4769 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4770
4771 static ssize_t intel_iommu_show_ecap(struct device *dev,
4772                                     struct device_attribute *attr,
4773                                     char *buf)
4774 {
4775         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4776         return sprintf(buf, "%llx\n", iommu->ecap);
4777 }
4778 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4779
4780 static ssize_t intel_iommu_show_ndoms(struct device *dev,
4781                                       struct device_attribute *attr,
4782                                       char *buf)
4783 {
4784         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4785         return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4786 }
4787 static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4788
4789 static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4790                                            struct device_attribute *attr,
4791                                            char *buf)
4792 {
4793         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4794         return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4795                                                   cap_ndoms(iommu->cap)));
4796 }
4797 static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4798
4799 static struct attribute *intel_iommu_attrs[] = {
4800         &dev_attr_version.attr,
4801         &dev_attr_address.attr,
4802         &dev_attr_cap.attr,
4803         &dev_attr_ecap.attr,
4804         &dev_attr_domains_supported.attr,
4805         &dev_attr_domains_used.attr,
4806         NULL,
4807 };
4808
4809 static struct attribute_group intel_iommu_group = {
4810         .name = "intel-iommu",
4811         .attrs = intel_iommu_attrs,
4812 };
4813
4814 const struct attribute_group *intel_iommu_groups[] = {
4815         &intel_iommu_group,
4816         NULL,
4817 };
4818
4819 int __init intel_iommu_init(void)
4820 {
4821         int ret = -ENODEV;
4822         struct dmar_drhd_unit *drhd;
4823         struct intel_iommu *iommu;
4824
4825         /* VT-d is required for a TXT/tboot launch, so enforce that */
4826         force_on = tboot_force_iommu();
4827
4828         if (iommu_init_mempool()) {
4829                 if (force_on)
4830                         panic("tboot: Failed to initialize iommu memory\n");
4831                 return -ENOMEM;
4832         }
4833
4834         down_write(&dmar_global_lock);
4835         if (dmar_table_init()) {
4836                 if (force_on)
4837                         panic("tboot: Failed to initialize DMAR table\n");
4838                 goto out_free_dmar;
4839         }
4840
4841         if (dmar_dev_scope_init() < 0) {
4842                 if (force_on)
4843                         panic("tboot: Failed to initialize DMAR device scope\n");
4844                 goto out_free_dmar;
4845         }
4846
4847         if (no_iommu || dmar_disabled) {
4848                 /*
4849                  * We exit the function here to ensure IOMMU's remapping and
4850                  * mempool aren't setup, which means that the IOMMU's PMRs
4851                  * won't be disabled via the call to init_dmars(). So disable
4852                  * it explicitly here. The PMRs were setup by tboot prior to
4853                  * calling SENTER, but the kernel is expected to reset/tear
4854                  * down the PMRs.
4855                  */
4856                 if (intel_iommu_tboot_noforce) {
4857                         for_each_iommu(iommu, drhd)
4858                                 iommu_disable_protect_mem_regions(iommu);
4859                 }
4860
4861                 /*
4862                  * Make sure the IOMMUs are switched off, even when we
4863                  * boot into a kexec kernel and the previous kernel left
4864                  * them enabled
4865                  */
4866                 intel_disable_iommus();
4867                 goto out_free_dmar;
4868         }
4869
4870         if (list_empty(&dmar_rmrr_units))
4871                 pr_info("No RMRR found\n");
4872
4873         if (list_empty(&dmar_atsr_units))
4874                 pr_info("No ATSR found\n");
4875
4876         if (dmar_init_reserved_ranges()) {
4877                 if (force_on)
4878                         panic("tboot: Failed to reserve iommu ranges\n");
4879                 goto out_free_reserved_range;
4880         }
4881
4882         init_no_remapping_devices();
4883
4884         ret = init_dmars();
4885         if (ret) {
4886                 if (force_on)
4887                         panic("tboot: Failed to initialize DMARs\n");
4888                 pr_err("Initialization failed\n");
4889                 goto out_free_reserved_range;
4890         }
4891         up_write(&dmar_global_lock);
4892         pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4893
4894 #ifdef CONFIG_SWIOTLB
4895         swiotlb = 0;
4896 #endif
4897         dma_ops = &intel_dma_ops;
4898
4899         init_iommu_pm_ops();
4900
4901         for_each_active_iommu(iommu, drhd) {
4902                 iommu_device_sysfs_add(&iommu->iommu, NULL,
4903                                        intel_iommu_groups,
4904                                        "%s", iommu->name);
4905                 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
4906                 iommu_device_register(&iommu->iommu);
4907         }
4908
4909         bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4910         bus_register_notifier(&pci_bus_type, &device_nb);
4911         if (si_domain && !hw_pass_through)
4912                 register_memory_notifier(&intel_iommu_memory_nb);
4913         cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
4914                           intel_iommu_cpu_dead);
4915         intel_iommu_enabled = 1;
4916
4917         return 0;
4918
4919 out_free_reserved_range:
4920         put_iova_domain(&reserved_iova_list);
4921 out_free_dmar:
4922         intel_iommu_free_dmars();
4923         up_write(&dmar_global_lock);
4924         iommu_exit_mempool();
4925         return ret;
4926 }
4927
4928 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4929 {
4930         struct intel_iommu *iommu = opaque;
4931
4932         domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4933         return 0;
4934 }
4935
4936 /*
4937  * NB - intel-iommu lacks any sort of reference counting for the users of
4938  * dependent devices.  If multiple endpoints have intersecting dependent
4939  * devices, unbinding the driver from any one of them will possibly leave
4940  * the others unable to operate.
4941  */
4942 static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
4943 {
4944         if (!iommu || !dev || !dev_is_pci(dev))
4945                 return;
4946
4947         pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
4948 }
4949
4950 static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4951 {
4952         struct intel_iommu *iommu;
4953         unsigned long flags;
4954
4955         assert_spin_locked(&device_domain_lock);
4956
4957         if (WARN_ON(!info))
4958                 return;
4959
4960         iommu = info->iommu;
4961
4962         if (info->dev) {
4963                 iommu_disable_dev_iotlb(info);
4964                 domain_context_clear(iommu, info->dev);
4965         }
4966
4967         unlink_domain_info(info);
4968
4969         spin_lock_irqsave(&iommu->lock, flags);
4970         domain_detach_iommu(info->domain, iommu);
4971         spin_unlock_irqrestore(&iommu->lock, flags);
4972
4973         free_devinfo_mem(info);
4974 }
4975
4976 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
4977                                      struct device *dev)
4978 {
4979         struct device_domain_info *info;
4980         unsigned long flags;
4981
4982         spin_lock_irqsave(&device_domain_lock, flags);
4983         info = dev->archdata.iommu;
4984         __dmar_remove_one_dev_info(info);
4985         spin_unlock_irqrestore(&device_domain_lock, flags);
4986 }
4987
4988 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4989 {
4990         int adjust_width;
4991
4992         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
4993                         DMA_32BIT_PFN);
4994         domain_reserve_special_ranges(domain);
4995
4996         /* calculate AGAW */
4997         domain->gaw = guest_width;
4998         adjust_width = guestwidth_to_adjustwidth(guest_width);
4999         domain->agaw = width_to_agaw(adjust_width);
5000
5001         domain->iommu_coherency = 0;
5002         domain->iommu_snooping = 0;
5003         domain->iommu_superpage = 0;
5004         domain->max_addr = 0;
5005
5006         /* always allocate the top pgd */
5007         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
5008         if (!domain->pgd)
5009                 return -ENOMEM;
5010         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
5011         return 0;
5012 }
5013
5014 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
5015 {
5016         struct dmar_domain *dmar_domain;
5017         struct iommu_domain *domain;
5018
5019         if (type != IOMMU_DOMAIN_UNMANAGED)
5020                 return NULL;
5021
5022         dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
5023         if (!dmar_domain) {
5024                 pr_err("Can't allocate dmar_domain\n");
5025                 return NULL;
5026         }
5027         if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
5028                 pr_err("Domain initialization failed\n");
5029                 domain_exit(dmar_domain);
5030                 return NULL;
5031         }
5032         domain_update_iommu_cap(dmar_domain);
5033
5034         domain = &dmar_domain->domain;
5035         domain->geometry.aperture_start = 0;
5036         domain->geometry.aperture_end   = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
5037         domain->geometry.force_aperture = true;
5038
5039         return domain;
5040 }
5041
5042 static void intel_iommu_domain_free(struct iommu_domain *domain)
5043 {
5044         domain_exit(to_dmar_domain(domain));
5045 }
5046
5047 static int intel_iommu_attach_device(struct iommu_domain *domain,
5048                                      struct device *dev)
5049 {
5050         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5051         struct intel_iommu *iommu;
5052         int addr_width;
5053         u8 bus, devfn;
5054
5055         if (device_is_rmrr_locked(dev)) {
5056                 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
5057                 return -EPERM;
5058         }
5059
5060         /* normally dev is not mapped */
5061         if (unlikely(domain_context_mapped(dev))) {
5062                 struct dmar_domain *old_domain;
5063
5064                 old_domain = find_domain(dev);
5065                 if (old_domain) {
5066                         rcu_read_lock();
5067                         dmar_remove_one_dev_info(old_domain, dev);
5068                         rcu_read_unlock();
5069
5070                         if (!domain_type_is_vm_or_si(old_domain) &&
5071                              list_empty(&old_domain->devices))
5072                                 domain_exit(old_domain);
5073                 }
5074         }
5075
5076         iommu = device_to_iommu(dev, &bus, &devfn);
5077         if (!iommu)
5078                 return -ENODEV;
5079
5080         /* check if this iommu agaw is sufficient for max mapped address */
5081         addr_width = agaw_to_width(iommu->agaw);
5082         if (addr_width > cap_mgaw(iommu->cap))
5083                 addr_width = cap_mgaw(iommu->cap);
5084
5085         if (dmar_domain->max_addr > (1LL << addr_width)) {
5086                 pr_err("%s: iommu width (%d) is not "
5087                        "sufficient for the mapped address (%llx)\n",
5088                        __func__, addr_width, dmar_domain->max_addr);
5089                 return -EFAULT;
5090         }
5091         dmar_domain->gaw = addr_width;
5092
5093         /*
5094          * Knock out extra levels of page tables if necessary
5095          */
5096         while (iommu->agaw < dmar_domain->agaw) {
5097                 struct dma_pte *pte;
5098
5099                 pte = dmar_domain->pgd;
5100                 if (dma_pte_present(pte)) {
5101                         dmar_domain->pgd = (struct dma_pte *)
5102                                 phys_to_virt(dma_pte_addr(pte));
5103                         free_pgtable_page(pte);
5104                 }
5105                 dmar_domain->agaw--;
5106         }
5107
5108         return domain_add_dev_info(dmar_domain, dev);
5109 }
5110
5111 static void intel_iommu_detach_device(struct iommu_domain *domain,
5112                                       struct device *dev)
5113 {
5114         dmar_remove_one_dev_info(to_dmar_domain(domain), dev);
5115 }
5116
5117 static int intel_iommu_map(struct iommu_domain *domain,
5118                            unsigned long iova, phys_addr_t hpa,
5119                            size_t size, int iommu_prot)
5120 {
5121         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5122         u64 max_addr;
5123         int prot = 0;
5124         int ret;
5125
5126         if (iommu_prot & IOMMU_READ)
5127                 prot |= DMA_PTE_READ;
5128         if (iommu_prot & IOMMU_WRITE)
5129                 prot |= DMA_PTE_WRITE;
5130         if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5131                 prot |= DMA_PTE_SNP;
5132
5133         max_addr = iova + size;
5134         if (dmar_domain->max_addr < max_addr) {
5135                 u64 end;
5136
5137                 /* check if minimum agaw is sufficient for mapped address */
5138                 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5139                 if (end < max_addr) {
5140                         pr_err("%s: iommu width (%d) is not "
5141                                "sufficient for the mapped address (%llx)\n",
5142                                __func__, dmar_domain->gaw, max_addr);
5143                         return -EFAULT;
5144                 }
5145                 dmar_domain->max_addr = max_addr;
5146         }
5147         /* Round up size to next multiple of PAGE_SIZE, if it and
5148            the low bits of hpa would take us onto the next page */
5149         size = aligned_nrpages(hpa, size);
5150         ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5151                                  hpa >> VTD_PAGE_SHIFT, size, prot);
5152         return ret;
5153 }
5154
5155 static size_t intel_iommu_unmap(struct iommu_domain *domain,
5156                                 unsigned long iova, size_t size)
5157 {
5158         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5159         struct page *freelist = NULL;
5160         struct intel_iommu *iommu;
5161         unsigned long start_pfn, last_pfn;
5162         unsigned int npages;
5163         int iommu_id, level = 0;
5164
5165         /* Cope with horrid API which requires us to unmap more than the
5166            size argument if it happens to be a large-page mapping. */
5167         BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5168
5169         if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5170                 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5171
5172         start_pfn = iova >> VTD_PAGE_SHIFT;
5173         last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5174
5175         freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5176
5177         npages = last_pfn - start_pfn + 1;
5178
5179         for_each_domain_iommu(iommu_id, dmar_domain) {
5180                 iommu = g_iommus[iommu_id];
5181
5182                 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5183                                       start_pfn, npages, !freelist, 0);
5184         }
5185
5186         dma_free_pagelist(freelist);
5187
5188         if (dmar_domain->max_addr == iova + size)
5189                 dmar_domain->max_addr = iova;
5190
5191         return size;
5192 }
5193
5194 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5195                                             dma_addr_t iova)
5196 {
5197         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5198         struct dma_pte *pte;
5199         int level = 0;
5200         u64 phys = 0;
5201
5202         pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5203         if (pte)
5204                 phys = dma_pte_addr(pte);
5205
5206         return phys;
5207 }
5208
5209 static bool intel_iommu_capable(enum iommu_cap cap)
5210 {
5211         if (cap == IOMMU_CAP_CACHE_COHERENCY)
5212                 return domain_update_iommu_snooping(NULL) == 1;
5213         if (cap == IOMMU_CAP_INTR_REMAP)
5214                 return irq_remapping_enabled == 1;
5215
5216         return false;
5217 }
5218
5219 static int intel_iommu_add_device(struct device *dev)
5220 {
5221         struct intel_iommu *iommu;
5222         struct iommu_group *group;
5223         u8 bus, devfn;
5224
5225         iommu = device_to_iommu(dev, &bus, &devfn);
5226         if (!iommu)
5227                 return -ENODEV;
5228
5229         iommu_device_link(&iommu->iommu, dev);
5230
5231         group = iommu_group_get_for_dev(dev);
5232
5233         if (IS_ERR(group))
5234                 return PTR_ERR(group);
5235
5236         iommu_group_put(group);
5237         return 0;
5238 }
5239
5240 static void intel_iommu_remove_device(struct device *dev)
5241 {
5242         struct intel_iommu *iommu;
5243         u8 bus, devfn;
5244
5245         iommu = device_to_iommu(dev, &bus, &devfn);
5246         if (!iommu)
5247                 return;
5248
5249         iommu_group_remove_device(dev);
5250
5251         iommu_device_unlink(&iommu->iommu, dev);
5252 }
5253
5254 static void intel_iommu_get_resv_regions(struct device *device,
5255                                          struct list_head *head)
5256 {
5257         struct iommu_resv_region *reg;
5258         struct dmar_rmrr_unit *rmrr;
5259         struct device *i_dev;
5260         int i;
5261
5262         rcu_read_lock();
5263         for_each_rmrr_units(rmrr) {
5264                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
5265                                           i, i_dev) {
5266                         if (i_dev != device)
5267                                 continue;
5268
5269                         list_add_tail(&rmrr->resv->list, head);
5270                 }
5271         }
5272         rcu_read_unlock();
5273
5274         reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
5275                                       IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5276                                       0, IOMMU_RESV_MSI);
5277         if (!reg)
5278                 return;
5279         list_add_tail(&reg->list, head);
5280 }
5281
5282 static void intel_iommu_put_resv_regions(struct device *dev,
5283                                          struct list_head *head)
5284 {
5285         struct iommu_resv_region *entry, *next;
5286
5287         list_for_each_entry_safe(entry, next, head, list) {
5288                 if (entry->type == IOMMU_RESV_RESERVED)
5289                         kfree(entry);
5290         }
5291 }
5292
5293 #ifdef CONFIG_INTEL_IOMMU_SVM
5294 #define MAX_NR_PASID_BITS (20)
5295 static inline unsigned long intel_iommu_get_pts(struct intel_iommu *iommu)
5296 {
5297         /*
5298          * Convert ecap_pss to extend context entry pts encoding, also
5299          * respect the soft pasid_max value set by the iommu.
5300          * - number of PASID bits = ecap_pss + 1
5301          * - number of PASID table entries = 2^(pts + 5)
5302          * Therefore, pts = ecap_pss - 4
5303          * e.g. KBL ecap_pss = 0x13, PASID has 20 bits, pts = 15
5304          */
5305         if (ecap_pss(iommu->ecap) < 5)
5306                 return 0;
5307
5308         /* pasid_max is encoded as actual number of entries not the bits */
5309         return find_first_bit((unsigned long *)&iommu->pasid_max,
5310                         MAX_NR_PASID_BITS) - 5;
5311 }
5312
5313 int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct intel_svm_dev *sdev)
5314 {
5315         struct device_domain_info *info;
5316         struct context_entry *context;
5317         struct dmar_domain *domain;
5318         unsigned long flags;
5319         u64 ctx_lo;
5320         int ret;
5321
5322         domain = get_valid_domain_for_dev(sdev->dev);
5323         if (!domain)
5324                 return -EINVAL;
5325
5326         spin_lock_irqsave(&device_domain_lock, flags);
5327         spin_lock(&iommu->lock);
5328
5329         ret = -EINVAL;
5330         info = sdev->dev->archdata.iommu;
5331         if (!info || !info->pasid_supported)
5332                 goto out;
5333
5334         context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5335         if (WARN_ON(!context))
5336                 goto out;
5337
5338         ctx_lo = context[0].lo;
5339
5340         sdev->did = domain->iommu_did[iommu->seq_id];
5341         sdev->sid = PCI_DEVID(info->bus, info->devfn);
5342
5343         if (!(ctx_lo & CONTEXT_PASIDE)) {
5344                 context[1].hi = (u64)virt_to_phys(iommu->pasid_state_table);
5345                 context[1].lo = (u64)virt_to_phys(iommu->pasid_table) |
5346                         intel_iommu_get_pts(iommu);
5347
5348                 wmb();
5349                 /* CONTEXT_TT_MULTI_LEVEL and CONTEXT_TT_DEV_IOTLB are both
5350                  * extended to permit requests-with-PASID if the PASIDE bit
5351                  * is set. which makes sense. For CONTEXT_TT_PASS_THROUGH,
5352                  * however, the PASIDE bit is ignored and requests-with-PASID
5353                  * are unconditionally blocked. Which makes less sense.
5354                  * So convert from CONTEXT_TT_PASS_THROUGH to one of the new
5355                  * "guest mode" translation types depending on whether ATS
5356                  * is available or not. Annoyingly, we can't use the new
5357                  * modes *unless* PASIDE is set. */
5358                 if ((ctx_lo & CONTEXT_TT_MASK) == (CONTEXT_TT_PASS_THROUGH << 2)) {
5359                         ctx_lo &= ~CONTEXT_TT_MASK;
5360                         if (info->ats_supported)
5361                                 ctx_lo |= CONTEXT_TT_PT_PASID_DEV_IOTLB << 2;
5362                         else
5363                                 ctx_lo |= CONTEXT_TT_PT_PASID << 2;
5364                 }
5365                 ctx_lo |= CONTEXT_PASIDE;
5366                 if (iommu->pasid_state_table)
5367                         ctx_lo |= CONTEXT_DINVE;
5368                 if (info->pri_supported)
5369                         ctx_lo |= CONTEXT_PRS;
5370                 context[0].lo = ctx_lo;
5371                 wmb();
5372                 iommu->flush.flush_context(iommu, sdev->did, sdev->sid,
5373                                            DMA_CCMD_MASK_NOBIT,
5374                                            DMA_CCMD_DEVICE_INVL);
5375         }
5376
5377         /* Enable PASID support in the device, if it wasn't already */
5378         if (!info->pasid_enabled)
5379                 iommu_enable_dev_iotlb(info);
5380
5381         if (info->ats_enabled) {
5382                 sdev->dev_iotlb = 1;
5383                 sdev->qdep = info->ats_qdep;
5384                 if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS)
5385                         sdev->qdep = 0;
5386         }
5387         ret = 0;
5388
5389  out:
5390         spin_unlock(&iommu->lock);
5391         spin_unlock_irqrestore(&device_domain_lock, flags);
5392
5393         return ret;
5394 }
5395
5396 struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5397 {
5398         struct intel_iommu *iommu;
5399         u8 bus, devfn;
5400
5401         if (iommu_dummy(dev)) {
5402                 dev_warn(dev,
5403                          "No IOMMU translation for device; cannot enable SVM\n");
5404                 return NULL;
5405         }
5406
5407         iommu = device_to_iommu(dev, &bus, &devfn);
5408         if ((!iommu)) {
5409                 dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5410                 return NULL;
5411         }
5412
5413         if (!iommu->pasid_table) {
5414                 dev_err(dev, "PASID not enabled on IOMMU; cannot enable SVM\n");
5415                 return NULL;
5416         }
5417
5418         return iommu;
5419 }
5420 #endif /* CONFIG_INTEL_IOMMU_SVM */
5421
5422 const struct iommu_ops intel_iommu_ops = {
5423         .capable                = intel_iommu_capable,
5424         .domain_alloc           = intel_iommu_domain_alloc,
5425         .domain_free            = intel_iommu_domain_free,
5426         .attach_dev             = intel_iommu_attach_device,
5427         .detach_dev             = intel_iommu_detach_device,
5428         .map                    = intel_iommu_map,
5429         .unmap                  = intel_iommu_unmap,
5430         .map_sg                 = default_iommu_map_sg,
5431         .iova_to_phys           = intel_iommu_iova_to_phys,
5432         .add_device             = intel_iommu_add_device,
5433         .remove_device          = intel_iommu_remove_device,
5434         .get_resv_regions       = intel_iommu_get_resv_regions,
5435         .put_resv_regions       = intel_iommu_put_resv_regions,
5436         .device_group           = pci_device_group,
5437         .pgsize_bitmap          = INTEL_IOMMU_PGSIZES,
5438 };
5439
5440 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
5441 {
5442         /* G4x/GM45 integrated gfx dmar support is totally busted. */
5443         pr_info("Disabling IOMMU for graphics on this chipset\n");
5444         dmar_map_gfx = 0;
5445 }
5446
5447 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
5448 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
5449 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
5450 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
5451 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
5452 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
5453 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
5454
5455 static void quirk_iommu_rwbf(struct pci_dev *dev)
5456 {
5457         /*
5458          * Mobile 4 Series Chipset neglects to set RWBF capability,
5459          * but needs it. Same seems to hold for the desktop versions.
5460          */
5461         pr_info("Forcing write-buffer flush capability\n");
5462         rwbf_quirk = 1;
5463 }
5464
5465 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5466 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
5467 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
5468 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
5469 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
5470 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
5471 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5472
5473 #define GGC 0x52
5474 #define GGC_MEMORY_SIZE_MASK    (0xf << 8)
5475 #define GGC_MEMORY_SIZE_NONE    (0x0 << 8)
5476 #define GGC_MEMORY_SIZE_1M      (0x1 << 8)
5477 #define GGC_MEMORY_SIZE_2M      (0x3 << 8)
5478 #define GGC_MEMORY_VT_ENABLED   (0x8 << 8)
5479 #define GGC_MEMORY_SIZE_2M_VT   (0x9 << 8)
5480 #define GGC_MEMORY_SIZE_3M_VT   (0xa << 8)
5481 #define GGC_MEMORY_SIZE_4M_VT   (0xb << 8)
5482
5483 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5484 {
5485         unsigned short ggc;
5486
5487         if (pci_read_config_word(dev, GGC, &ggc))
5488                 return;
5489
5490         if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5491                 pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5492                 dmar_map_gfx = 0;
5493         } else if (dmar_map_gfx) {
5494                 /* we have to ensure the gfx device is idle before we flush */
5495                 pr_info("Disabling batched IOTLB flush on Ironlake\n");
5496                 intel_iommu_strict = 1;
5497        }
5498 }
5499 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
5500 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
5501 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
5502 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
5503
5504 /* On Tylersburg chipsets, some BIOSes have been known to enable the
5505    ISOCH DMAR unit for the Azalia sound device, but not give it any
5506    TLB entries, which causes it to deadlock. Check for that.  We do
5507    this in a function called from init_dmars(), instead of in a PCI
5508    quirk, because we don't want to print the obnoxious "BIOS broken"
5509    message if VT-d is actually disabled.
5510 */
5511 static void __init check_tylersburg_isoch(void)
5512 {
5513         struct pci_dev *pdev;
5514         uint32_t vtisochctrl;
5515
5516         /* If there's no Azalia in the system anyway, forget it. */
5517         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
5518         if (!pdev)
5519                 return;
5520         pci_dev_put(pdev);
5521
5522         /* System Management Registers. Might be hidden, in which case
5523            we can't do the sanity check. But that's OK, because the
5524            known-broken BIOSes _don't_ actually hide it, so far. */
5525         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5526         if (!pdev)
5527                 return;
5528
5529         if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5530                 pci_dev_put(pdev);
5531                 return;
5532         }
5533
5534         pci_dev_put(pdev);
5535
5536         /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5537         if (vtisochctrl & 1)
5538                 return;
5539
5540         /* Drop all bits other than the number of TLB entries */
5541         vtisochctrl &= 0x1c;
5542
5543         /* If we have the recommended number of TLB entries (16), fine. */
5544         if (vtisochctrl == 0x10)
5545                 return;
5546
5547         /* Zero TLB entries? You get to ride the short bus to school. */
5548         if (!vtisochctrl) {
5549                 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5550                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5551                      dmi_get_system_info(DMI_BIOS_VENDOR),
5552                      dmi_get_system_info(DMI_BIOS_VERSION),
5553                      dmi_get_system_info(DMI_PRODUCT_VERSION));
5554                 iommu_identity_mapping |= IDENTMAP_AZALIA;
5555                 return;
5556         }
5557
5558         pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5559                vtisochctrl);
5560 }