]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/lightnvm/rrpc.c
Merge branch 'for-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/libata
[karo-tx-linux.git] / drivers / lightnvm / rrpc.c
1 /*
2  * Copyright (C) 2015 IT University of Copenhagen
3  * Initial release: Matias Bjorling <m@bjorling.me>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License version
7  * 2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
15  */
16
17 #include "rrpc.h"
18
19 static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
20 static DECLARE_RWSEM(rrpc_lock);
21
22 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
23                                 struct nvm_rq *rqd, unsigned long flags);
24
25 #define rrpc_for_each_lun(rrpc, rlun, i) \
26                 for ((i) = 0, rlun = &(rrpc)->luns[0]; \
27                         (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
28
29 static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
30 {
31         struct rrpc_block *rblk = a->rblk;
32         unsigned int pg_offset;
33
34         lockdep_assert_held(&rrpc->rev_lock);
35
36         if (a->addr == ADDR_EMPTY || !rblk)
37                 return;
38
39         spin_lock(&rblk->lock);
40
41         div_u64_rem(a->addr, rrpc->dev->sec_per_blk, &pg_offset);
42         WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
43         rblk->nr_invalid_pages++;
44
45         spin_unlock(&rblk->lock);
46
47         rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
48 }
49
50 static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
51                                                                 unsigned len)
52 {
53         sector_t i;
54
55         spin_lock(&rrpc->rev_lock);
56         for (i = slba; i < slba + len; i++) {
57                 struct rrpc_addr *gp = &rrpc->trans_map[i];
58
59                 rrpc_page_invalidate(rrpc, gp);
60                 gp->rblk = NULL;
61         }
62         spin_unlock(&rrpc->rev_lock);
63 }
64
65 static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
66                                         sector_t laddr, unsigned int pages)
67 {
68         struct nvm_rq *rqd;
69         struct rrpc_inflight_rq *inf;
70
71         rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
72         if (!rqd)
73                 return ERR_PTR(-ENOMEM);
74
75         inf = rrpc_get_inflight_rq(rqd);
76         if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
77                 mempool_free(rqd, rrpc->rq_pool);
78                 return NULL;
79         }
80
81         return rqd;
82 }
83
84 static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
85 {
86         struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
87
88         rrpc_unlock_laddr(rrpc, inf);
89
90         mempool_free(rqd, rrpc->rq_pool);
91 }
92
93 static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
94 {
95         sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
96         sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
97         struct nvm_rq *rqd;
98
99         do {
100                 rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
101                 schedule();
102         } while (!rqd);
103
104         if (IS_ERR(rqd)) {
105                 pr_err("rrpc: unable to acquire inflight IO\n");
106                 bio_io_error(bio);
107                 return;
108         }
109
110         rrpc_invalidate_range(rrpc, slba, len);
111         rrpc_inflight_laddr_release(rrpc, rqd);
112 }
113
114 static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
115 {
116         return (rblk->next_page == rrpc->dev->sec_per_blk);
117 }
118
119 /* Calculate relative addr for the given block, considering instantiated LUNs */
120 static u64 block_to_rel_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
121 {
122         struct nvm_block *blk = rblk->parent;
123         int lun_blk = blk->id % (rrpc->dev->blks_per_lun * rrpc->nr_luns);
124
125         return lun_blk * rrpc->dev->sec_per_blk;
126 }
127
128 /* Calculate global addr for the given block */
129 static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
130 {
131         struct nvm_block *blk = rblk->parent;
132
133         return blk->id * rrpc->dev->sec_per_blk;
134 }
135
136 static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev,
137                                                         struct ppa_addr r)
138 {
139         struct ppa_addr l;
140         int secs, pgs, blks, luns;
141         sector_t ppa = r.ppa;
142
143         l.ppa = 0;
144
145         div_u64_rem(ppa, dev->sec_per_pg, &secs);
146         l.g.sec = secs;
147
148         sector_div(ppa, dev->sec_per_pg);
149         div_u64_rem(ppa, dev->pgs_per_blk, &pgs);
150         l.g.pg = pgs;
151
152         sector_div(ppa, dev->pgs_per_blk);
153         div_u64_rem(ppa, dev->blks_per_lun, &blks);
154         l.g.blk = blks;
155
156         sector_div(ppa, dev->blks_per_lun);
157         div_u64_rem(ppa, dev->luns_per_chnl, &luns);
158         l.g.lun = luns;
159
160         sector_div(ppa, dev->luns_per_chnl);
161         l.g.ch = ppa;
162
163         return l;
164 }
165
166 static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr)
167 {
168         struct ppa_addr paddr;
169
170         paddr.ppa = addr;
171         return linear_to_generic_addr(dev, paddr);
172 }
173
174 /* requires lun->lock taken */
175 static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *rblk)
176 {
177         struct rrpc *rrpc = rlun->rrpc;
178
179         BUG_ON(!rblk);
180
181         if (rlun->cur) {
182                 spin_lock(&rlun->cur->lock);
183                 WARN_ON(!block_is_full(rrpc, rlun->cur));
184                 spin_unlock(&rlun->cur->lock);
185         }
186         rlun->cur = rblk;
187 }
188
189 static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
190                                                         unsigned long flags)
191 {
192         struct nvm_lun *lun = rlun->parent;
193         struct nvm_block *blk;
194         struct rrpc_block *rblk;
195
196         spin_lock(&lun->lock);
197         blk = nvm_get_blk_unlocked(rrpc->dev, rlun->parent, flags);
198         if (!blk) {
199                 pr_err("nvm: rrpc: cannot get new block from media manager\n");
200                 spin_unlock(&lun->lock);
201                 return NULL;
202         }
203
204         rblk = rrpc_get_rblk(rlun, blk->id);
205         list_add_tail(&rblk->list, &rlun->open_list);
206         spin_unlock(&lun->lock);
207
208         blk->priv = rblk;
209         bitmap_zero(rblk->invalid_pages, rrpc->dev->sec_per_blk);
210         rblk->next_page = 0;
211         rblk->nr_invalid_pages = 0;
212         atomic_set(&rblk->data_cmnt_size, 0);
213
214         return rblk;
215 }
216
217 static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
218 {
219         struct rrpc_lun *rlun = rblk->rlun;
220         struct nvm_lun *lun = rlun->parent;
221
222         spin_lock(&lun->lock);
223         nvm_put_blk_unlocked(rrpc->dev, rblk->parent);
224         list_del(&rblk->list);
225         spin_unlock(&lun->lock);
226 }
227
228 static void rrpc_put_blks(struct rrpc *rrpc)
229 {
230         struct rrpc_lun *rlun;
231         int i;
232
233         for (i = 0; i < rrpc->nr_luns; i++) {
234                 rlun = &rrpc->luns[i];
235                 if (rlun->cur)
236                         rrpc_put_blk(rrpc, rlun->cur);
237                 if (rlun->gc_cur)
238                         rrpc_put_blk(rrpc, rlun->gc_cur);
239         }
240 }
241
242 static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
243 {
244         int next = atomic_inc_return(&rrpc->next_lun);
245
246         return &rrpc->luns[next % rrpc->nr_luns];
247 }
248
249 static void rrpc_gc_kick(struct rrpc *rrpc)
250 {
251         struct rrpc_lun *rlun;
252         unsigned int i;
253
254         for (i = 0; i < rrpc->nr_luns; i++) {
255                 rlun = &rrpc->luns[i];
256                 queue_work(rrpc->krqd_wq, &rlun->ws_gc);
257         }
258 }
259
260 /*
261  * timed GC every interval.
262  */
263 static void rrpc_gc_timer(unsigned long data)
264 {
265         struct rrpc *rrpc = (struct rrpc *)data;
266
267         rrpc_gc_kick(rrpc);
268         mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
269 }
270
271 static void rrpc_end_sync_bio(struct bio *bio)
272 {
273         struct completion *waiting = bio->bi_private;
274
275         if (bio->bi_error)
276                 pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
277
278         complete(waiting);
279 }
280
281 /*
282  * rrpc_move_valid_pages -- migrate live data off the block
283  * @rrpc: the 'rrpc' structure
284  * @block: the block from which to migrate live pages
285  *
286  * Description:
287  *   GC algorithms may call this function to migrate remaining live
288  *   pages off the block prior to erasing it. This function blocks
289  *   further execution until the operation is complete.
290  */
291 static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
292 {
293         struct request_queue *q = rrpc->dev->q;
294         struct rrpc_rev_addr *rev;
295         struct nvm_rq *rqd;
296         struct bio *bio;
297         struct page *page;
298         int slot;
299         int nr_sec_per_blk = rrpc->dev->sec_per_blk;
300         u64 phys_addr;
301         DECLARE_COMPLETION_ONSTACK(wait);
302
303         if (bitmap_full(rblk->invalid_pages, nr_sec_per_blk))
304                 return 0;
305
306         bio = bio_alloc(GFP_NOIO, 1);
307         if (!bio) {
308                 pr_err("nvm: could not alloc bio to gc\n");
309                 return -ENOMEM;
310         }
311
312         page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
313         if (!page) {
314                 bio_put(bio);
315                 return -ENOMEM;
316         }
317
318         while ((slot = find_first_zero_bit(rblk->invalid_pages,
319                                             nr_sec_per_blk)) < nr_sec_per_blk) {
320
321                 /* Lock laddr */
322                 phys_addr = rblk->parent->id * nr_sec_per_blk + slot;
323
324 try:
325                 spin_lock(&rrpc->rev_lock);
326                 /* Get logical address from physical to logical table */
327                 rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
328                 /* already updated by previous regular write */
329                 if (rev->addr == ADDR_EMPTY) {
330                         spin_unlock(&rrpc->rev_lock);
331                         continue;
332                 }
333
334                 rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
335                 if (IS_ERR_OR_NULL(rqd)) {
336                         spin_unlock(&rrpc->rev_lock);
337                         schedule();
338                         goto try;
339                 }
340
341                 spin_unlock(&rrpc->rev_lock);
342
343                 /* Perform read to do GC */
344                 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
345                 bio->bi_rw = READ;
346                 bio->bi_private = &wait;
347                 bio->bi_end_io = rrpc_end_sync_bio;
348
349                 /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
350                 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
351
352                 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
353                         pr_err("rrpc: gc read failed.\n");
354                         rrpc_inflight_laddr_release(rrpc, rqd);
355                         goto finished;
356                 }
357                 wait_for_completion_io(&wait);
358                 if (bio->bi_error) {
359                         rrpc_inflight_laddr_release(rrpc, rqd);
360                         goto finished;
361                 }
362
363                 bio_reset(bio);
364                 reinit_completion(&wait);
365
366                 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
367                 bio->bi_rw = WRITE;
368                 bio->bi_private = &wait;
369                 bio->bi_end_io = rrpc_end_sync_bio;
370
371                 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
372
373                 /* turn the command around and write the data back to a new
374                  * address
375                  */
376                 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
377                         pr_err("rrpc: gc write failed.\n");
378                         rrpc_inflight_laddr_release(rrpc, rqd);
379                         goto finished;
380                 }
381                 wait_for_completion_io(&wait);
382
383                 rrpc_inflight_laddr_release(rrpc, rqd);
384                 if (bio->bi_error)
385                         goto finished;
386
387                 bio_reset(bio);
388         }
389
390 finished:
391         mempool_free(page, rrpc->page_pool);
392         bio_put(bio);
393
394         if (!bitmap_full(rblk->invalid_pages, nr_sec_per_blk)) {
395                 pr_err("nvm: failed to garbage collect block\n");
396                 return -EIO;
397         }
398
399         return 0;
400 }
401
402 static void rrpc_block_gc(struct work_struct *work)
403 {
404         struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
405                                                                         ws_gc);
406         struct rrpc *rrpc = gcb->rrpc;
407         struct rrpc_block *rblk = gcb->rblk;
408         struct rrpc_lun *rlun = rblk->rlun;
409         struct nvm_dev *dev = rrpc->dev;
410
411         mempool_free(gcb, rrpc->gcb_pool);
412         pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
413
414         if (rrpc_move_valid_pages(rrpc, rblk))
415                 goto put_back;
416
417         if (nvm_erase_blk(dev, rblk->parent))
418                 goto put_back;
419
420         rrpc_put_blk(rrpc, rblk);
421
422         return;
423
424 put_back:
425         spin_lock(&rlun->lock);
426         list_add_tail(&rblk->prio, &rlun->prio_list);
427         spin_unlock(&rlun->lock);
428 }
429
430 /* the block with highest number of invalid pages, will be in the beginning
431  * of the list
432  */
433 static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
434                                                         struct rrpc_block *rb)
435 {
436         if (ra->nr_invalid_pages == rb->nr_invalid_pages)
437                 return ra;
438
439         return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
440 }
441
442 /* linearly find the block with highest number of invalid pages
443  * requires lun->lock
444  */
445 static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
446 {
447         struct list_head *prio_list = &rlun->prio_list;
448         struct rrpc_block *rblock, *max;
449
450         BUG_ON(list_empty(prio_list));
451
452         max = list_first_entry(prio_list, struct rrpc_block, prio);
453         list_for_each_entry(rblock, prio_list, prio)
454                 max = rblock_max_invalid(max, rblock);
455
456         return max;
457 }
458
459 static void rrpc_lun_gc(struct work_struct *work)
460 {
461         struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
462         struct rrpc *rrpc = rlun->rrpc;
463         struct nvm_lun *lun = rlun->parent;
464         struct rrpc_block_gc *gcb;
465         unsigned int nr_blocks_need;
466
467         nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
468
469         if (nr_blocks_need < rrpc->nr_luns)
470                 nr_blocks_need = rrpc->nr_luns;
471
472         spin_lock(&rlun->lock);
473         while (nr_blocks_need > lun->nr_free_blocks &&
474                                         !list_empty(&rlun->prio_list)) {
475                 struct rrpc_block *rblock = block_prio_find_max(rlun);
476                 struct nvm_block *block = rblock->parent;
477
478                 if (!rblock->nr_invalid_pages)
479                         break;
480
481                 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
482                 if (!gcb)
483                         break;
484
485                 list_del_init(&rblock->prio);
486
487                 BUG_ON(!block_is_full(rrpc, rblock));
488
489                 pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
490
491                 gcb->rrpc = rrpc;
492                 gcb->rblk = rblock;
493                 INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
494
495                 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
496
497                 nr_blocks_need--;
498         }
499         spin_unlock(&rlun->lock);
500
501         /* TODO: Hint that request queue can be started again */
502 }
503
504 static void rrpc_gc_queue(struct work_struct *work)
505 {
506         struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
507                                                                         ws_gc);
508         struct rrpc *rrpc = gcb->rrpc;
509         struct rrpc_block *rblk = gcb->rblk;
510         struct rrpc_lun *rlun = rblk->rlun;
511         struct nvm_lun *lun = rblk->parent->lun;
512         struct nvm_block *blk = rblk->parent;
513
514         spin_lock(&rlun->lock);
515         list_add_tail(&rblk->prio, &rlun->prio_list);
516         spin_unlock(&rlun->lock);
517
518         spin_lock(&lun->lock);
519         lun->nr_open_blocks--;
520         lun->nr_closed_blocks++;
521         blk->state &= ~NVM_BLK_ST_OPEN;
522         blk->state |= NVM_BLK_ST_CLOSED;
523         list_move_tail(&rblk->list, &rlun->closed_list);
524         spin_unlock(&lun->lock);
525
526         mempool_free(gcb, rrpc->gcb_pool);
527         pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
528                                                         rblk->parent->id);
529 }
530
531 static const struct block_device_operations rrpc_fops = {
532         .owner          = THIS_MODULE,
533 };
534
535 static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
536 {
537         unsigned int i;
538         struct rrpc_lun *rlun, *max_free;
539
540         if (!is_gc)
541                 return get_next_lun(rrpc);
542
543         /* during GC, we don't care about RR, instead we want to make
544          * sure that we maintain evenness between the block luns.
545          */
546         max_free = &rrpc->luns[0];
547         /* prevent GC-ing lun from devouring pages of a lun with
548          * little free blocks. We don't take the lock as we only need an
549          * estimate.
550          */
551         rrpc_for_each_lun(rrpc, rlun, i) {
552                 if (rlun->parent->nr_free_blocks >
553                                         max_free->parent->nr_free_blocks)
554                         max_free = rlun;
555         }
556
557         return max_free;
558 }
559
560 static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
561                                         struct rrpc_block *rblk, u64 paddr)
562 {
563         struct rrpc_addr *gp;
564         struct rrpc_rev_addr *rev;
565
566         BUG_ON(laddr >= rrpc->nr_sects);
567
568         gp = &rrpc->trans_map[laddr];
569         spin_lock(&rrpc->rev_lock);
570         if (gp->rblk)
571                 rrpc_page_invalidate(rrpc, gp);
572
573         gp->addr = paddr;
574         gp->rblk = rblk;
575
576         rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
577         rev->addr = laddr;
578         spin_unlock(&rrpc->rev_lock);
579
580         return gp;
581 }
582
583 static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
584 {
585         u64 addr = ADDR_EMPTY;
586
587         spin_lock(&rblk->lock);
588         if (block_is_full(rrpc, rblk))
589                 goto out;
590
591         addr = block_to_addr(rrpc, rblk) + rblk->next_page;
592
593         rblk->next_page++;
594 out:
595         spin_unlock(&rblk->lock);
596         return addr;
597 }
598
599 /* Simple round-robin Logical to physical address translation.
600  *
601  * Retrieve the mapping using the active append point. Then update the ap for
602  * the next write to the disk.
603  *
604  * Returns rrpc_addr with the physical address and block. Remember to return to
605  * rrpc->addr_cache when request is finished.
606  */
607 static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
608                                                                 int is_gc)
609 {
610         struct rrpc_lun *rlun;
611         struct rrpc_block *rblk;
612         struct nvm_lun *lun;
613         u64 paddr;
614
615         rlun = rrpc_get_lun_rr(rrpc, is_gc);
616         lun = rlun->parent;
617
618         if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
619                 return NULL;
620
621         spin_lock(&rlun->lock);
622
623         rblk = rlun->cur;
624 retry:
625         paddr = rrpc_alloc_addr(rrpc, rblk);
626
627         if (paddr == ADDR_EMPTY) {
628                 rblk = rrpc_get_blk(rrpc, rlun, 0);
629                 if (rblk) {
630                         rrpc_set_lun_cur(rlun, rblk);
631                         goto retry;
632                 }
633
634                 if (is_gc) {
635                         /* retry from emergency gc block */
636                         paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
637                         if (paddr == ADDR_EMPTY) {
638                                 rblk = rrpc_get_blk(rrpc, rlun, 1);
639                                 if (!rblk) {
640                                         pr_err("rrpc: no more blocks");
641                                         goto err;
642                                 }
643
644                                 rlun->gc_cur = rblk;
645                                 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
646                         }
647                         rblk = rlun->gc_cur;
648                 }
649         }
650
651         spin_unlock(&rlun->lock);
652         return rrpc_update_map(rrpc, laddr, rblk, paddr);
653 err:
654         spin_unlock(&rlun->lock);
655         return NULL;
656 }
657
658 static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
659 {
660         struct rrpc_block_gc *gcb;
661
662         gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
663         if (!gcb) {
664                 pr_err("rrpc: unable to queue block for gc.");
665                 return;
666         }
667
668         gcb->rrpc = rrpc;
669         gcb->rblk = rblk;
670
671         INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
672         queue_work(rrpc->kgc_wq, &gcb->ws_gc);
673 }
674
675 static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
676                                                 sector_t laddr, uint8_t npages)
677 {
678         struct rrpc_addr *p;
679         struct rrpc_block *rblk;
680         struct nvm_lun *lun;
681         int cmnt_size, i;
682
683         for (i = 0; i < npages; i++) {
684                 p = &rrpc->trans_map[laddr + i];
685                 rblk = p->rblk;
686                 lun = rblk->parent->lun;
687
688                 cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
689                 if (unlikely(cmnt_size == rrpc->dev->sec_per_blk))
690                         rrpc_run_gc(rrpc, rblk);
691         }
692 }
693
694 static void rrpc_end_io(struct nvm_rq *rqd)
695 {
696         struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
697         struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
698         uint8_t npages = rqd->nr_ppas;
699         sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
700
701         if (bio_data_dir(rqd->bio) == WRITE)
702                 rrpc_end_io_write(rrpc, rrqd, laddr, npages);
703
704         bio_put(rqd->bio);
705
706         if (rrqd->flags & NVM_IOTYPE_GC)
707                 return;
708
709         rrpc_unlock_rq(rrpc, rqd);
710
711         if (npages > 1)
712                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
713
714         mempool_free(rqd, rrpc->rq_pool);
715 }
716
717 static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
718                         struct nvm_rq *rqd, unsigned long flags, int npages)
719 {
720         struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
721         struct rrpc_addr *gp;
722         sector_t laddr = rrpc_get_laddr(bio);
723         int is_gc = flags & NVM_IOTYPE_GC;
724         int i;
725
726         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
727                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
728                 return NVM_IO_REQUEUE;
729         }
730
731         for (i = 0; i < npages; i++) {
732                 /* We assume that mapping occurs at 4KB granularity */
733                 BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_sects));
734                 gp = &rrpc->trans_map[laddr + i];
735
736                 if (gp->rblk) {
737                         rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
738                                                                 gp->addr);
739                 } else {
740                         BUG_ON(is_gc);
741                         rrpc_unlock_laddr(rrpc, r);
742                         nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
743                                                         rqd->dma_ppa_list);
744                         return NVM_IO_DONE;
745                 }
746         }
747
748         rqd->opcode = NVM_OP_HBREAD;
749
750         return NVM_IO_OK;
751 }
752
753 static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
754                                                         unsigned long flags)
755 {
756         struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
757         int is_gc = flags & NVM_IOTYPE_GC;
758         sector_t laddr = rrpc_get_laddr(bio);
759         struct rrpc_addr *gp;
760
761         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
762                 return NVM_IO_REQUEUE;
763
764         BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_sects));
765         gp = &rrpc->trans_map[laddr];
766
767         if (gp->rblk) {
768                 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
769         } else {
770                 BUG_ON(is_gc);
771                 rrpc_unlock_rq(rrpc, rqd);
772                 return NVM_IO_DONE;
773         }
774
775         rqd->opcode = NVM_OP_HBREAD;
776         rrqd->addr = gp;
777
778         return NVM_IO_OK;
779 }
780
781 static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
782                         struct nvm_rq *rqd, unsigned long flags, int npages)
783 {
784         struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
785         struct rrpc_addr *p;
786         sector_t laddr = rrpc_get_laddr(bio);
787         int is_gc = flags & NVM_IOTYPE_GC;
788         int i;
789
790         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
791                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
792                 return NVM_IO_REQUEUE;
793         }
794
795         for (i = 0; i < npages; i++) {
796                 /* We assume that mapping occurs at 4KB granularity */
797                 p = rrpc_map_page(rrpc, laddr + i, is_gc);
798                 if (!p) {
799                         BUG_ON(is_gc);
800                         rrpc_unlock_laddr(rrpc, r);
801                         nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
802                                                         rqd->dma_ppa_list);
803                         rrpc_gc_kick(rrpc);
804                         return NVM_IO_REQUEUE;
805                 }
806
807                 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
808                                                                 p->addr);
809         }
810
811         rqd->opcode = NVM_OP_HBWRITE;
812
813         return NVM_IO_OK;
814 }
815
816 static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
817                                 struct nvm_rq *rqd, unsigned long flags)
818 {
819         struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
820         struct rrpc_addr *p;
821         int is_gc = flags & NVM_IOTYPE_GC;
822         sector_t laddr = rrpc_get_laddr(bio);
823
824         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
825                 return NVM_IO_REQUEUE;
826
827         p = rrpc_map_page(rrpc, laddr, is_gc);
828         if (!p) {
829                 BUG_ON(is_gc);
830                 rrpc_unlock_rq(rrpc, rqd);
831                 rrpc_gc_kick(rrpc);
832                 return NVM_IO_REQUEUE;
833         }
834
835         rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
836         rqd->opcode = NVM_OP_HBWRITE;
837         rrqd->addr = p;
838
839         return NVM_IO_OK;
840 }
841
842 static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
843                         struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
844 {
845         if (npages > 1) {
846                 rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
847                                                         &rqd->dma_ppa_list);
848                 if (!rqd->ppa_list) {
849                         pr_err("rrpc: not able to allocate ppa list\n");
850                         return NVM_IO_ERR;
851                 }
852
853                 if (bio_rw(bio) == WRITE)
854                         return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
855                                                                         npages);
856
857                 return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
858         }
859
860         if (bio_rw(bio) == WRITE)
861                 return rrpc_write_rq(rrpc, bio, rqd, flags);
862
863         return rrpc_read_rq(rrpc, bio, rqd, flags);
864 }
865
866 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
867                                 struct nvm_rq *rqd, unsigned long flags)
868 {
869         int err;
870         struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
871         uint8_t nr_pages = rrpc_get_pages(bio);
872         int bio_size = bio_sectors(bio) << 9;
873
874         if (bio_size < rrpc->dev->sec_size)
875                 return NVM_IO_ERR;
876         else if (bio_size > rrpc->dev->max_rq_size)
877                 return NVM_IO_ERR;
878
879         err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
880         if (err)
881                 return err;
882
883         bio_get(bio);
884         rqd->bio = bio;
885         rqd->ins = &rrpc->instance;
886         rqd->nr_ppas = nr_pages;
887         rrq->flags = flags;
888
889         err = nvm_submit_io(rrpc->dev, rqd);
890         if (err) {
891                 pr_err("rrpc: I/O submission failed: %d\n", err);
892                 bio_put(bio);
893                 if (!(flags & NVM_IOTYPE_GC)) {
894                         rrpc_unlock_rq(rrpc, rqd);
895                         if (rqd->nr_ppas > 1)
896                                 nvm_dev_dma_free(rrpc->dev,
897                         rqd->ppa_list, rqd->dma_ppa_list);
898                 }
899                 return NVM_IO_ERR;
900         }
901
902         return NVM_IO_OK;
903 }
904
905 static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
906 {
907         struct rrpc *rrpc = q->queuedata;
908         struct nvm_rq *rqd;
909         int err;
910
911         if (bio->bi_rw & REQ_DISCARD) {
912                 rrpc_discard(rrpc, bio);
913                 return BLK_QC_T_NONE;
914         }
915
916         rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
917         if (!rqd) {
918                 pr_err_ratelimited("rrpc: not able to queue bio.");
919                 bio_io_error(bio);
920                 return BLK_QC_T_NONE;
921         }
922         memset(rqd, 0, sizeof(struct nvm_rq));
923
924         err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
925         switch (err) {
926         case NVM_IO_OK:
927                 return BLK_QC_T_NONE;
928         case NVM_IO_ERR:
929                 bio_io_error(bio);
930                 break;
931         case NVM_IO_DONE:
932                 bio_endio(bio);
933                 break;
934         case NVM_IO_REQUEUE:
935                 spin_lock(&rrpc->bio_lock);
936                 bio_list_add(&rrpc->requeue_bios, bio);
937                 spin_unlock(&rrpc->bio_lock);
938                 queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
939                 break;
940         }
941
942         mempool_free(rqd, rrpc->rq_pool);
943         return BLK_QC_T_NONE;
944 }
945
946 static void rrpc_requeue(struct work_struct *work)
947 {
948         struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
949         struct bio_list bios;
950         struct bio *bio;
951
952         bio_list_init(&bios);
953
954         spin_lock(&rrpc->bio_lock);
955         bio_list_merge(&bios, &rrpc->requeue_bios);
956         bio_list_init(&rrpc->requeue_bios);
957         spin_unlock(&rrpc->bio_lock);
958
959         while ((bio = bio_list_pop(&bios)))
960                 rrpc_make_rq(rrpc->disk->queue, bio);
961 }
962
963 static void rrpc_gc_free(struct rrpc *rrpc)
964 {
965         if (rrpc->krqd_wq)
966                 destroy_workqueue(rrpc->krqd_wq);
967
968         if (rrpc->kgc_wq)
969                 destroy_workqueue(rrpc->kgc_wq);
970 }
971
972 static int rrpc_gc_init(struct rrpc *rrpc)
973 {
974         rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
975                                                                 rrpc->nr_luns);
976         if (!rrpc->krqd_wq)
977                 return -ENOMEM;
978
979         rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
980         if (!rrpc->kgc_wq)
981                 return -ENOMEM;
982
983         setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
984
985         return 0;
986 }
987
988 static void rrpc_map_free(struct rrpc *rrpc)
989 {
990         vfree(rrpc->rev_trans_map);
991         vfree(rrpc->trans_map);
992 }
993
994 static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
995 {
996         struct rrpc *rrpc = (struct rrpc *)private;
997         struct nvm_dev *dev = rrpc->dev;
998         struct rrpc_addr *addr = rrpc->trans_map + slba;
999         struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
1000         u64 elba = slba + nlb;
1001         u64 i;
1002
1003         if (unlikely(elba > dev->total_secs)) {
1004                 pr_err("nvm: L2P data from device is out of bounds!\n");
1005                 return -EINVAL;
1006         }
1007
1008         for (i = 0; i < nlb; i++) {
1009                 u64 pba = le64_to_cpu(entries[i]);
1010                 unsigned int mod;
1011                 /* LNVM treats address-spaces as silos, LBA and PBA are
1012                  * equally large and zero-indexed.
1013                  */
1014                 if (unlikely(pba >= dev->total_secs && pba != U64_MAX)) {
1015                         pr_err("nvm: L2P data entry is out of bounds!\n");
1016                         return -EINVAL;
1017                 }
1018
1019                 /* Address zero is a special one. The first page on a disk is
1020                  * protected. As it often holds internal device boot
1021                  * information.
1022                  */
1023                 if (!pba)
1024                         continue;
1025
1026                 div_u64_rem(pba, rrpc->nr_sects, &mod);
1027
1028                 addr[i].addr = pba;
1029                 raddr[mod].addr = slba + i;
1030         }
1031
1032         return 0;
1033 }
1034
1035 static int rrpc_map_init(struct rrpc *rrpc)
1036 {
1037         struct nvm_dev *dev = rrpc->dev;
1038         sector_t i;
1039         int ret;
1040
1041         rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_sects);
1042         if (!rrpc->trans_map)
1043                 return -ENOMEM;
1044
1045         rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
1046                                                         * rrpc->nr_sects);
1047         if (!rrpc->rev_trans_map)
1048                 return -ENOMEM;
1049
1050         for (i = 0; i < rrpc->nr_sects; i++) {
1051                 struct rrpc_addr *p = &rrpc->trans_map[i];
1052                 struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
1053
1054                 p->addr = ADDR_EMPTY;
1055                 r->addr = ADDR_EMPTY;
1056         }
1057
1058         if (!dev->ops->get_l2p_tbl)
1059                 return 0;
1060
1061         /* Bring up the mapping table from device */
1062         ret = dev->ops->get_l2p_tbl(dev, rrpc->soffset, rrpc->nr_sects,
1063                                         rrpc_l2p_update, rrpc);
1064         if (ret) {
1065                 pr_err("nvm: rrpc: could not read L2P table.\n");
1066                 return -EINVAL;
1067         }
1068
1069         return 0;
1070 }
1071
1072 /* Minimum pages needed within a lun */
1073 #define PAGE_POOL_SIZE 16
1074 #define ADDR_POOL_SIZE 64
1075
1076 static int rrpc_core_init(struct rrpc *rrpc)
1077 {
1078         down_write(&rrpc_lock);
1079         if (!rrpc_gcb_cache) {
1080                 rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
1081                                 sizeof(struct rrpc_block_gc), 0, 0, NULL);
1082                 if (!rrpc_gcb_cache) {
1083                         up_write(&rrpc_lock);
1084                         return -ENOMEM;
1085                 }
1086
1087                 rrpc_rq_cache = kmem_cache_create("rrpc_rq",
1088                                 sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
1089                                 0, 0, NULL);
1090                 if (!rrpc_rq_cache) {
1091                         kmem_cache_destroy(rrpc_gcb_cache);
1092                         up_write(&rrpc_lock);
1093                         return -ENOMEM;
1094                 }
1095         }
1096         up_write(&rrpc_lock);
1097
1098         rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
1099         if (!rrpc->page_pool)
1100                 return -ENOMEM;
1101
1102         rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
1103                                                                 rrpc_gcb_cache);
1104         if (!rrpc->gcb_pool)
1105                 return -ENOMEM;
1106
1107         rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
1108         if (!rrpc->rq_pool)
1109                 return -ENOMEM;
1110
1111         spin_lock_init(&rrpc->inflights.lock);
1112         INIT_LIST_HEAD(&rrpc->inflights.reqs);
1113
1114         return 0;
1115 }
1116
1117 static void rrpc_core_free(struct rrpc *rrpc)
1118 {
1119         mempool_destroy(rrpc->page_pool);
1120         mempool_destroy(rrpc->gcb_pool);
1121         mempool_destroy(rrpc->rq_pool);
1122 }
1123
1124 static void rrpc_luns_free(struct rrpc *rrpc)
1125 {
1126         struct nvm_dev *dev = rrpc->dev;
1127         struct nvm_lun *lun;
1128         struct rrpc_lun *rlun;
1129         int i;
1130
1131         if (!rrpc->luns)
1132                 return;
1133
1134         for (i = 0; i < rrpc->nr_luns; i++) {
1135                 rlun = &rrpc->luns[i];
1136                 lun = rlun->parent;
1137                 if (!lun)
1138                         break;
1139                 dev->mt->release_lun(dev, lun->id);
1140                 vfree(rlun->blocks);
1141         }
1142
1143         kfree(rrpc->luns);
1144 }
1145
1146 static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
1147 {
1148         struct nvm_dev *dev = rrpc->dev;
1149         struct rrpc_lun *rlun;
1150         int i, j, ret = -EINVAL;
1151
1152         if (dev->sec_per_blk > MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
1153                 pr_err("rrpc: number of pages per block too high.");
1154                 return -EINVAL;
1155         }
1156
1157         spin_lock_init(&rrpc->rev_lock);
1158
1159         rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
1160                                                                 GFP_KERNEL);
1161         if (!rrpc->luns)
1162                 return -ENOMEM;
1163
1164         /* 1:1 mapping */
1165         for (i = 0; i < rrpc->nr_luns; i++) {
1166                 int lunid = lun_begin + i;
1167                 struct nvm_lun *lun;
1168
1169                 if (dev->mt->reserve_lun(dev, lunid)) {
1170                         pr_err("rrpc: lun %u is already allocated\n", lunid);
1171                         goto err;
1172                 }
1173
1174                 lun = dev->mt->get_lun(dev, lunid);
1175                 if (!lun)
1176                         goto err;
1177
1178                 rlun = &rrpc->luns[i];
1179                 rlun->parent = lun;
1180                 rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
1181                                                 rrpc->dev->blks_per_lun);
1182                 if (!rlun->blocks) {
1183                         ret = -ENOMEM;
1184                         goto err;
1185                 }
1186
1187                 for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
1188                         struct rrpc_block *rblk = &rlun->blocks[j];
1189                         struct nvm_block *blk = &lun->blocks[j];
1190
1191                         rblk->parent = blk;
1192                         rblk->rlun = rlun;
1193                         INIT_LIST_HEAD(&rblk->prio);
1194                         spin_lock_init(&rblk->lock);
1195                 }
1196
1197                 rlun->rrpc = rrpc;
1198                 INIT_LIST_HEAD(&rlun->prio_list);
1199                 INIT_LIST_HEAD(&rlun->open_list);
1200                 INIT_LIST_HEAD(&rlun->closed_list);
1201
1202                 INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
1203                 spin_lock_init(&rlun->lock);
1204         }
1205
1206         return 0;
1207 err:
1208         return ret;
1209 }
1210
1211 /* returns 0 on success and stores the beginning address in *begin */
1212 static int rrpc_area_init(struct rrpc *rrpc, sector_t *begin)
1213 {
1214         struct nvm_dev *dev = rrpc->dev;
1215         struct nvmm_type *mt = dev->mt;
1216         sector_t size = rrpc->nr_sects * dev->sec_size;
1217         int ret;
1218
1219         size >>= 9;
1220
1221         ret = mt->get_area(dev, begin, size);
1222         if (!ret)
1223                 *begin >>= (ilog2(dev->sec_size) - 9);
1224
1225         return ret;
1226 }
1227
1228 static void rrpc_area_free(struct rrpc *rrpc)
1229 {
1230         struct nvm_dev *dev = rrpc->dev;
1231         struct nvmm_type *mt = dev->mt;
1232         sector_t begin = rrpc->soffset << (ilog2(dev->sec_size) - 9);
1233
1234         mt->put_area(dev, begin);
1235 }
1236
1237 static void rrpc_free(struct rrpc *rrpc)
1238 {
1239         rrpc_gc_free(rrpc);
1240         rrpc_map_free(rrpc);
1241         rrpc_core_free(rrpc);
1242         rrpc_luns_free(rrpc);
1243         rrpc_area_free(rrpc);
1244
1245         kfree(rrpc);
1246 }
1247
1248 static void rrpc_exit(void *private)
1249 {
1250         struct rrpc *rrpc = private;
1251
1252         del_timer(&rrpc->gc_timer);
1253
1254         flush_workqueue(rrpc->krqd_wq);
1255         flush_workqueue(rrpc->kgc_wq);
1256
1257         rrpc_free(rrpc);
1258 }
1259
1260 static sector_t rrpc_capacity(void *private)
1261 {
1262         struct rrpc *rrpc = private;
1263         struct nvm_dev *dev = rrpc->dev;
1264         sector_t reserved, provisioned;
1265
1266         /* cur, gc, and two emergency blocks for each lun */
1267         reserved = rrpc->nr_luns * dev->sec_per_blk * 4;
1268         provisioned = rrpc->nr_sects - reserved;
1269
1270         if (reserved > rrpc->nr_sects) {
1271                 pr_err("rrpc: not enough space available to expose storage.\n");
1272                 return 0;
1273         }
1274
1275         sector_div(provisioned, 10);
1276         return provisioned * 9 * NR_PHY_IN_LOG;
1277 }
1278
1279 /*
1280  * Looks up the logical address from reverse trans map and check if its valid by
1281  * comparing the logical to physical address with the physical address.
1282  * Returns 0 on free, otherwise 1 if in use
1283  */
1284 static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
1285 {
1286         struct nvm_dev *dev = rrpc->dev;
1287         int offset;
1288         struct rrpc_addr *laddr;
1289         u64 bpaddr, paddr, pladdr;
1290
1291         bpaddr = block_to_rel_addr(rrpc, rblk);
1292         for (offset = 0; offset < dev->sec_per_blk; offset++) {
1293                 paddr = bpaddr + offset;
1294
1295                 pladdr = rrpc->rev_trans_map[paddr].addr;
1296                 if (pladdr == ADDR_EMPTY)
1297                         continue;
1298
1299                 laddr = &rrpc->trans_map[pladdr];
1300
1301                 if (paddr == laddr->addr) {
1302                         laddr->rblk = rblk;
1303                 } else {
1304                         set_bit(offset, rblk->invalid_pages);
1305                         rblk->nr_invalid_pages++;
1306                 }
1307         }
1308 }
1309
1310 static int rrpc_blocks_init(struct rrpc *rrpc)
1311 {
1312         struct rrpc_lun *rlun;
1313         struct rrpc_block *rblk;
1314         int lun_iter, blk_iter;
1315
1316         for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
1317                 rlun = &rrpc->luns[lun_iter];
1318
1319                 for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
1320                                                                 blk_iter++) {
1321                         rblk = &rlun->blocks[blk_iter];
1322                         rrpc_block_map_update(rrpc, rblk);
1323                 }
1324         }
1325
1326         return 0;
1327 }
1328
1329 static int rrpc_luns_configure(struct rrpc *rrpc)
1330 {
1331         struct rrpc_lun *rlun;
1332         struct rrpc_block *rblk;
1333         int i;
1334
1335         for (i = 0; i < rrpc->nr_luns; i++) {
1336                 rlun = &rrpc->luns[i];
1337
1338                 rblk = rrpc_get_blk(rrpc, rlun, 0);
1339                 if (!rblk)
1340                         goto err;
1341
1342                 rrpc_set_lun_cur(rlun, rblk);
1343
1344                 /* Emergency gc block */
1345                 rblk = rrpc_get_blk(rrpc, rlun, 1);
1346                 if (!rblk)
1347                         goto err;
1348                 rlun->gc_cur = rblk;
1349         }
1350
1351         return 0;
1352 err:
1353         rrpc_put_blks(rrpc);
1354         return -EINVAL;
1355 }
1356
1357 static struct nvm_tgt_type tt_rrpc;
1358
1359 static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
1360                                                 int lun_begin, int lun_end)
1361 {
1362         struct request_queue *bqueue = dev->q;
1363         struct request_queue *tqueue = tdisk->queue;
1364         struct rrpc *rrpc;
1365         sector_t soffset;
1366         int ret;
1367
1368         if (!(dev->identity.dom & NVM_RSP_L2P)) {
1369                 pr_err("nvm: rrpc: device does not support l2p (%x)\n",
1370                                                         dev->identity.dom);
1371                 return ERR_PTR(-EINVAL);
1372         }
1373
1374         rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
1375         if (!rrpc)
1376                 return ERR_PTR(-ENOMEM);
1377
1378         rrpc->instance.tt = &tt_rrpc;
1379         rrpc->dev = dev;
1380         rrpc->disk = tdisk;
1381
1382         bio_list_init(&rrpc->requeue_bios);
1383         spin_lock_init(&rrpc->bio_lock);
1384         INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
1385
1386         rrpc->nr_luns = lun_end - lun_begin + 1;
1387         rrpc->total_blocks = (unsigned long)dev->blks_per_lun * rrpc->nr_luns;
1388         rrpc->nr_sects = (unsigned long long)dev->sec_per_lun * rrpc->nr_luns;
1389
1390         /* simple round-robin strategy */
1391         atomic_set(&rrpc->next_lun, -1);
1392
1393         ret = rrpc_area_init(rrpc, &soffset);
1394         if (ret < 0) {
1395                 pr_err("nvm: rrpc: could not initialize area\n");
1396                 return ERR_PTR(ret);
1397         }
1398         rrpc->soffset = soffset;
1399
1400         ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
1401         if (ret) {
1402                 pr_err("nvm: rrpc: could not initialize luns\n");
1403                 goto err;
1404         }
1405
1406         rrpc->poffset = dev->sec_per_lun * lun_begin;
1407         rrpc->lun_offset = lun_begin;
1408
1409         ret = rrpc_core_init(rrpc);
1410         if (ret) {
1411                 pr_err("nvm: rrpc: could not initialize core\n");
1412                 goto err;
1413         }
1414
1415         ret = rrpc_map_init(rrpc);
1416         if (ret) {
1417                 pr_err("nvm: rrpc: could not initialize maps\n");
1418                 goto err;
1419         }
1420
1421         ret = rrpc_blocks_init(rrpc);
1422         if (ret) {
1423                 pr_err("nvm: rrpc: could not initialize state for blocks\n");
1424                 goto err;
1425         }
1426
1427         ret = rrpc_luns_configure(rrpc);
1428         if (ret) {
1429                 pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
1430                 goto err;
1431         }
1432
1433         ret = rrpc_gc_init(rrpc);
1434         if (ret) {
1435                 pr_err("nvm: rrpc: could not initialize gc\n");
1436                 goto err;
1437         }
1438
1439         /* inherit the size from the underlying device */
1440         blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
1441         blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
1442
1443         pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
1444                         rrpc->nr_luns, (unsigned long long)rrpc->nr_sects);
1445
1446         mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
1447
1448         return rrpc;
1449 err:
1450         rrpc_free(rrpc);
1451         return ERR_PTR(ret);
1452 }
1453
1454 /* round robin, page-based FTL, and cost-based GC */
1455 static struct nvm_tgt_type tt_rrpc = {
1456         .name           = "rrpc",
1457         .version        = {1, 0, 0},
1458
1459         .make_rq        = rrpc_make_rq,
1460         .capacity       = rrpc_capacity,
1461         .end_io         = rrpc_end_io,
1462
1463         .init           = rrpc_init,
1464         .exit           = rrpc_exit,
1465 };
1466
1467 static int __init rrpc_module_init(void)
1468 {
1469         return nvm_register_tgt_type(&tt_rrpc);
1470 }
1471
1472 static void rrpc_module_exit(void)
1473 {
1474         nvm_unregister_tgt_type(&tt_rrpc);
1475 }
1476
1477 module_init(rrpc_module_init);
1478 module_exit(rrpc_module_exit);
1479 MODULE_LICENSE("GPL v2");
1480 MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");