]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/dm-table.c
dm: optimize dm_mq_queue_rq()
[karo-tx-linux.git] / drivers / md / dm-table.c
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include "dm.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23
24 #define DM_MSG_PREFIX "table"
25
26 #define MAX_DEPTH 16
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30
31 struct dm_table {
32         struct mapped_device *md;
33         unsigned type;
34
35         /* btree table */
36         unsigned int depth;
37         unsigned int counts[MAX_DEPTH]; /* in nodes */
38         sector_t *index[MAX_DEPTH];
39
40         unsigned int num_targets;
41         unsigned int num_allocated;
42         sector_t *highs;
43         struct dm_target *targets;
44
45         struct target_type *immutable_target_type;
46         unsigned integrity_supported:1;
47         unsigned singleton:1;
48
49         /*
50          * Indicates the rw permissions for the new logical
51          * device.  This should be a combination of FMODE_READ
52          * and FMODE_WRITE.
53          */
54         fmode_t mode;
55
56         /* a list of devices used by this table */
57         struct list_head devices;
58
59         /* events get handed up using this callback */
60         void (*event_fn)(void *);
61         void *event_context;
62
63         struct dm_md_mempools *mempools;
64
65         struct list_head target_callbacks;
66 };
67
68 /*
69  * Similar to ceiling(log_size(n))
70  */
71 static unsigned int int_log(unsigned int n, unsigned int base)
72 {
73         int result = 0;
74
75         while (n > 1) {
76                 n = dm_div_up(n, base);
77                 result++;
78         }
79
80         return result;
81 }
82
83 /*
84  * Calculate the index of the child node of the n'th node k'th key.
85  */
86 static inline unsigned int get_child(unsigned int n, unsigned int k)
87 {
88         return (n * CHILDREN_PER_NODE) + k;
89 }
90
91 /*
92  * Return the n'th node of level l from table t.
93  */
94 static inline sector_t *get_node(struct dm_table *t,
95                                  unsigned int l, unsigned int n)
96 {
97         return t->index[l] + (n * KEYS_PER_NODE);
98 }
99
100 /*
101  * Return the highest key that you could lookup from the n'th
102  * node on level l of the btree.
103  */
104 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
105 {
106         for (; l < t->depth - 1; l++)
107                 n = get_child(n, CHILDREN_PER_NODE - 1);
108
109         if (n >= t->counts[l])
110                 return (sector_t) - 1;
111
112         return get_node(t, l, n)[KEYS_PER_NODE - 1];
113 }
114
115 /*
116  * Fills in a level of the btree based on the highs of the level
117  * below it.
118  */
119 static int setup_btree_index(unsigned int l, struct dm_table *t)
120 {
121         unsigned int n, k;
122         sector_t *node;
123
124         for (n = 0U; n < t->counts[l]; n++) {
125                 node = get_node(t, l, n);
126
127                 for (k = 0U; k < KEYS_PER_NODE; k++)
128                         node[k] = high(t, l + 1, get_child(n, k));
129         }
130
131         return 0;
132 }
133
134 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
135 {
136         unsigned long size;
137         void *addr;
138
139         /*
140          * Check that we're not going to overflow.
141          */
142         if (nmemb > (ULONG_MAX / elem_size))
143                 return NULL;
144
145         size = nmemb * elem_size;
146         addr = vzalloc(size);
147
148         return addr;
149 }
150 EXPORT_SYMBOL(dm_vcalloc);
151
152 /*
153  * highs, and targets are managed as dynamic arrays during a
154  * table load.
155  */
156 static int alloc_targets(struct dm_table *t, unsigned int num)
157 {
158         sector_t *n_highs;
159         struct dm_target *n_targets;
160
161         /*
162          * Allocate both the target array and offset array at once.
163          * Append an empty entry to catch sectors beyond the end of
164          * the device.
165          */
166         n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
167                                           sizeof(sector_t));
168         if (!n_highs)
169                 return -ENOMEM;
170
171         n_targets = (struct dm_target *) (n_highs + num);
172
173         memset(n_highs, -1, sizeof(*n_highs) * num);
174         vfree(t->highs);
175
176         t->num_allocated = num;
177         t->highs = n_highs;
178         t->targets = n_targets;
179
180         return 0;
181 }
182
183 int dm_table_create(struct dm_table **result, fmode_t mode,
184                     unsigned num_targets, struct mapped_device *md)
185 {
186         struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
187
188         if (!t)
189                 return -ENOMEM;
190
191         INIT_LIST_HEAD(&t->devices);
192         INIT_LIST_HEAD(&t->target_callbacks);
193
194         if (!num_targets)
195                 num_targets = KEYS_PER_NODE;
196
197         num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
198
199         if (!num_targets) {
200                 kfree(t);
201                 return -ENOMEM;
202         }
203
204         if (alloc_targets(t, num_targets)) {
205                 kfree(t);
206                 return -ENOMEM;
207         }
208
209         t->mode = mode;
210         t->md = md;
211         *result = t;
212         return 0;
213 }
214
215 static void free_devices(struct list_head *devices, struct mapped_device *md)
216 {
217         struct list_head *tmp, *next;
218
219         list_for_each_safe(tmp, next, devices) {
220                 struct dm_dev_internal *dd =
221                     list_entry(tmp, struct dm_dev_internal, list);
222                 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
223                        dm_device_name(md), dd->dm_dev->name);
224                 dm_put_table_device(md, dd->dm_dev);
225                 kfree(dd);
226         }
227 }
228
229 void dm_table_destroy(struct dm_table *t)
230 {
231         unsigned int i;
232
233         if (!t)
234                 return;
235
236         /* free the indexes */
237         if (t->depth >= 2)
238                 vfree(t->index[t->depth - 2]);
239
240         /* free the targets */
241         for (i = 0; i < t->num_targets; i++) {
242                 struct dm_target *tgt = t->targets + i;
243
244                 if (tgt->type->dtr)
245                         tgt->type->dtr(tgt);
246
247                 dm_put_target_type(tgt->type);
248         }
249
250         vfree(t->highs);
251
252         /* free the device list */
253         free_devices(&t->devices, t->md);
254
255         dm_free_md_mempools(t->mempools);
256
257         kfree(t);
258 }
259
260 /*
261  * See if we've already got a device in the list.
262  */
263 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
264 {
265         struct dm_dev_internal *dd;
266
267         list_for_each_entry (dd, l, list)
268                 if (dd->dm_dev->bdev->bd_dev == dev)
269                         return dd;
270
271         return NULL;
272 }
273
274 /*
275  * If possible, this checks an area of a destination device is invalid.
276  */
277 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
278                                   sector_t start, sector_t len, void *data)
279 {
280         struct request_queue *q;
281         struct queue_limits *limits = data;
282         struct block_device *bdev = dev->bdev;
283         sector_t dev_size =
284                 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
285         unsigned short logical_block_size_sectors =
286                 limits->logical_block_size >> SECTOR_SHIFT;
287         char b[BDEVNAME_SIZE];
288
289         /*
290          * Some devices exist without request functions,
291          * such as loop devices not yet bound to backing files.
292          * Forbid the use of such devices.
293          */
294         q = bdev_get_queue(bdev);
295         if (!q || !q->make_request_fn) {
296                 DMWARN("%s: %s is not yet initialised: "
297                        "start=%llu, len=%llu, dev_size=%llu",
298                        dm_device_name(ti->table->md), bdevname(bdev, b),
299                        (unsigned long long)start,
300                        (unsigned long long)len,
301                        (unsigned long long)dev_size);
302                 return 1;
303         }
304
305         if (!dev_size)
306                 return 0;
307
308         if ((start >= dev_size) || (start + len > dev_size)) {
309                 DMWARN("%s: %s too small for target: "
310                        "start=%llu, len=%llu, dev_size=%llu",
311                        dm_device_name(ti->table->md), bdevname(bdev, b),
312                        (unsigned long long)start,
313                        (unsigned long long)len,
314                        (unsigned long long)dev_size);
315                 return 1;
316         }
317
318         if (logical_block_size_sectors <= 1)
319                 return 0;
320
321         if (start & (logical_block_size_sectors - 1)) {
322                 DMWARN("%s: start=%llu not aligned to h/w "
323                        "logical block size %u of %s",
324                        dm_device_name(ti->table->md),
325                        (unsigned long long)start,
326                        limits->logical_block_size, bdevname(bdev, b));
327                 return 1;
328         }
329
330         if (len & (logical_block_size_sectors - 1)) {
331                 DMWARN("%s: len=%llu not aligned to h/w "
332                        "logical block size %u of %s",
333                        dm_device_name(ti->table->md),
334                        (unsigned long long)len,
335                        limits->logical_block_size, bdevname(bdev, b));
336                 return 1;
337         }
338
339         return 0;
340 }
341
342 /*
343  * This upgrades the mode on an already open dm_dev, being
344  * careful to leave things as they were if we fail to reopen the
345  * device and not to touch the existing bdev field in case
346  * it is accessed concurrently inside dm_table_any_congested().
347  */
348 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
349                         struct mapped_device *md)
350 {
351         int r;
352         struct dm_dev *old_dev, *new_dev;
353
354         old_dev = dd->dm_dev;
355
356         r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
357                                 dd->dm_dev->mode | new_mode, &new_dev);
358         if (r)
359                 return r;
360
361         dd->dm_dev = new_dev;
362         dm_put_table_device(md, old_dev);
363
364         return 0;
365 }
366
367 /*
368  * Add a device to the list, or just increment the usage count if
369  * it's already present.
370  */
371 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
372                   struct dm_dev **result)
373 {
374         int r;
375         dev_t uninitialized_var(dev);
376         struct dm_dev_internal *dd;
377         struct dm_table *t = ti->table;
378         struct block_device *bdev;
379
380         BUG_ON(!t);
381
382         /* convert the path to a device */
383         bdev = lookup_bdev(path);
384         if (IS_ERR(bdev)) {
385                 dev = name_to_dev_t(path);
386                 if (!dev)
387                         return -ENODEV;
388         } else {
389                 dev = bdev->bd_dev;
390                 bdput(bdev);
391         }
392
393         dd = find_device(&t->devices, dev);
394         if (!dd) {
395                 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
396                 if (!dd)
397                         return -ENOMEM;
398
399                 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
400                         kfree(dd);
401                         return r;
402                 }
403
404                 atomic_set(&dd->count, 0);
405                 list_add(&dd->list, &t->devices);
406
407         } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
408                 r = upgrade_mode(dd, mode, t->md);
409                 if (r)
410                         return r;
411         }
412         atomic_inc(&dd->count);
413
414         *result = dd->dm_dev;
415         return 0;
416 }
417 EXPORT_SYMBOL(dm_get_device);
418
419 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
420                                 sector_t start, sector_t len, void *data)
421 {
422         struct queue_limits *limits = data;
423         struct block_device *bdev = dev->bdev;
424         struct request_queue *q = bdev_get_queue(bdev);
425         char b[BDEVNAME_SIZE];
426
427         if (unlikely(!q)) {
428                 DMWARN("%s: Cannot set limits for nonexistent device %s",
429                        dm_device_name(ti->table->md), bdevname(bdev, b));
430                 return 0;
431         }
432
433         if (bdev_stack_limits(limits, bdev, start) < 0)
434                 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
435                        "physical_block_size=%u, logical_block_size=%u, "
436                        "alignment_offset=%u, start=%llu",
437                        dm_device_name(ti->table->md), bdevname(bdev, b),
438                        q->limits.physical_block_size,
439                        q->limits.logical_block_size,
440                        q->limits.alignment_offset,
441                        (unsigned long long) start << SECTOR_SHIFT);
442
443         return 0;
444 }
445
446 /*
447  * Decrement a device's use count and remove it if necessary.
448  */
449 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
450 {
451         int found = 0;
452         struct list_head *devices = &ti->table->devices;
453         struct dm_dev_internal *dd;
454
455         list_for_each_entry(dd, devices, list) {
456                 if (dd->dm_dev == d) {
457                         found = 1;
458                         break;
459                 }
460         }
461         if (!found) {
462                 DMWARN("%s: device %s not in table devices list",
463                        dm_device_name(ti->table->md), d->name);
464                 return;
465         }
466         if (atomic_dec_and_test(&dd->count)) {
467                 dm_put_table_device(ti->table->md, d);
468                 list_del(&dd->list);
469                 kfree(dd);
470         }
471 }
472 EXPORT_SYMBOL(dm_put_device);
473
474 /*
475  * Checks to see if the target joins onto the end of the table.
476  */
477 static int adjoin(struct dm_table *table, struct dm_target *ti)
478 {
479         struct dm_target *prev;
480
481         if (!table->num_targets)
482                 return !ti->begin;
483
484         prev = &table->targets[table->num_targets - 1];
485         return (ti->begin == (prev->begin + prev->len));
486 }
487
488 /*
489  * Used to dynamically allocate the arg array.
490  *
491  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
492  * process messages even if some device is suspended. These messages have a
493  * small fixed number of arguments.
494  *
495  * On the other hand, dm-switch needs to process bulk data using messages and
496  * excessive use of GFP_NOIO could cause trouble.
497  */
498 static char **realloc_argv(unsigned *array_size, char **old_argv)
499 {
500         char **argv;
501         unsigned new_size;
502         gfp_t gfp;
503
504         if (*array_size) {
505                 new_size = *array_size * 2;
506                 gfp = GFP_KERNEL;
507         } else {
508                 new_size = 8;
509                 gfp = GFP_NOIO;
510         }
511         argv = kmalloc(new_size * sizeof(*argv), gfp);
512         if (argv) {
513                 memcpy(argv, old_argv, *array_size * sizeof(*argv));
514                 *array_size = new_size;
515         }
516
517         kfree(old_argv);
518         return argv;
519 }
520
521 /*
522  * Destructively splits up the argument list to pass to ctr.
523  */
524 int dm_split_args(int *argc, char ***argvp, char *input)
525 {
526         char *start, *end = input, *out, **argv = NULL;
527         unsigned array_size = 0;
528
529         *argc = 0;
530
531         if (!input) {
532                 *argvp = NULL;
533                 return 0;
534         }
535
536         argv = realloc_argv(&array_size, argv);
537         if (!argv)
538                 return -ENOMEM;
539
540         while (1) {
541                 /* Skip whitespace */
542                 start = skip_spaces(end);
543
544                 if (!*start)
545                         break;  /* success, we hit the end */
546
547                 /* 'out' is used to remove any back-quotes */
548                 end = out = start;
549                 while (*end) {
550                         /* Everything apart from '\0' can be quoted */
551                         if (*end == '\\' && *(end + 1)) {
552                                 *out++ = *(end + 1);
553                                 end += 2;
554                                 continue;
555                         }
556
557                         if (isspace(*end))
558                                 break;  /* end of token */
559
560                         *out++ = *end++;
561                 }
562
563                 /* have we already filled the array ? */
564                 if ((*argc + 1) > array_size) {
565                         argv = realloc_argv(&array_size, argv);
566                         if (!argv)
567                                 return -ENOMEM;
568                 }
569
570                 /* we know this is whitespace */
571                 if (*end)
572                         end++;
573
574                 /* terminate the string and put it in the array */
575                 *out = '\0';
576                 argv[*argc] = start;
577                 (*argc)++;
578         }
579
580         *argvp = argv;
581         return 0;
582 }
583
584 /*
585  * Impose necessary and sufficient conditions on a devices's table such
586  * that any incoming bio which respects its logical_block_size can be
587  * processed successfully.  If it falls across the boundary between
588  * two or more targets, the size of each piece it gets split into must
589  * be compatible with the logical_block_size of the target processing it.
590  */
591 static int validate_hardware_logical_block_alignment(struct dm_table *table,
592                                                  struct queue_limits *limits)
593 {
594         /*
595          * This function uses arithmetic modulo the logical_block_size
596          * (in units of 512-byte sectors).
597          */
598         unsigned short device_logical_block_size_sects =
599                 limits->logical_block_size >> SECTOR_SHIFT;
600
601         /*
602          * Offset of the start of the next table entry, mod logical_block_size.
603          */
604         unsigned short next_target_start = 0;
605
606         /*
607          * Given an aligned bio that extends beyond the end of a
608          * target, how many sectors must the next target handle?
609          */
610         unsigned short remaining = 0;
611
612         struct dm_target *uninitialized_var(ti);
613         struct queue_limits ti_limits;
614         unsigned i = 0;
615
616         /*
617          * Check each entry in the table in turn.
618          */
619         while (i < dm_table_get_num_targets(table)) {
620                 ti = dm_table_get_target(table, i++);
621
622                 blk_set_stacking_limits(&ti_limits);
623
624                 /* combine all target devices' limits */
625                 if (ti->type->iterate_devices)
626                         ti->type->iterate_devices(ti, dm_set_device_limits,
627                                                   &ti_limits);
628
629                 /*
630                  * If the remaining sectors fall entirely within this
631                  * table entry are they compatible with its logical_block_size?
632                  */
633                 if (remaining < ti->len &&
634                     remaining & ((ti_limits.logical_block_size >>
635                                   SECTOR_SHIFT) - 1))
636                         break;  /* Error */
637
638                 next_target_start =
639                     (unsigned short) ((next_target_start + ti->len) &
640                                       (device_logical_block_size_sects - 1));
641                 remaining = next_target_start ?
642                     device_logical_block_size_sects - next_target_start : 0;
643         }
644
645         if (remaining) {
646                 DMWARN("%s: table line %u (start sect %llu len %llu) "
647                        "not aligned to h/w logical block size %u",
648                        dm_device_name(table->md), i,
649                        (unsigned long long) ti->begin,
650                        (unsigned long long) ti->len,
651                        limits->logical_block_size);
652                 return -EINVAL;
653         }
654
655         return 0;
656 }
657
658 int dm_table_add_target(struct dm_table *t, const char *type,
659                         sector_t start, sector_t len, char *params)
660 {
661         int r = -EINVAL, argc;
662         char **argv;
663         struct dm_target *tgt;
664
665         if (t->singleton) {
666                 DMERR("%s: target type %s must appear alone in table",
667                       dm_device_name(t->md), t->targets->type->name);
668                 return -EINVAL;
669         }
670
671         BUG_ON(t->num_targets >= t->num_allocated);
672
673         tgt = t->targets + t->num_targets;
674         memset(tgt, 0, sizeof(*tgt));
675
676         if (!len) {
677                 DMERR("%s: zero-length target", dm_device_name(t->md));
678                 return -EINVAL;
679         }
680
681         tgt->type = dm_get_target_type(type);
682         if (!tgt->type) {
683                 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
684                       type);
685                 return -EINVAL;
686         }
687
688         if (dm_target_needs_singleton(tgt->type)) {
689                 if (t->num_targets) {
690                         DMERR("%s: target type %s must appear alone in table",
691                               dm_device_name(t->md), type);
692                         return -EINVAL;
693                 }
694                 t->singleton = 1;
695         }
696
697         if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
698                 DMERR("%s: target type %s may not be included in read-only tables",
699                       dm_device_name(t->md), type);
700                 return -EINVAL;
701         }
702
703         if (t->immutable_target_type) {
704                 if (t->immutable_target_type != tgt->type) {
705                         DMERR("%s: immutable target type %s cannot be mixed with other target types",
706                               dm_device_name(t->md), t->immutable_target_type->name);
707                         return -EINVAL;
708                 }
709         } else if (dm_target_is_immutable(tgt->type)) {
710                 if (t->num_targets) {
711                         DMERR("%s: immutable target type %s cannot be mixed with other target types",
712                               dm_device_name(t->md), tgt->type->name);
713                         return -EINVAL;
714                 }
715                 t->immutable_target_type = tgt->type;
716         }
717
718         tgt->table = t;
719         tgt->begin = start;
720         tgt->len = len;
721         tgt->error = "Unknown error";
722
723         /*
724          * Does this target adjoin the previous one ?
725          */
726         if (!adjoin(t, tgt)) {
727                 tgt->error = "Gap in table";
728                 r = -EINVAL;
729                 goto bad;
730         }
731
732         r = dm_split_args(&argc, &argv, params);
733         if (r) {
734                 tgt->error = "couldn't split parameters (insufficient memory)";
735                 goto bad;
736         }
737
738         r = tgt->type->ctr(tgt, argc, argv);
739         kfree(argv);
740         if (r)
741                 goto bad;
742
743         t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
744
745         if (!tgt->num_discard_bios && tgt->discards_supported)
746                 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
747                        dm_device_name(t->md), type);
748
749         return 0;
750
751  bad:
752         DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
753         dm_put_target_type(tgt->type);
754         return r;
755 }
756
757 /*
758  * Target argument parsing helpers.
759  */
760 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
761                              unsigned *value, char **error, unsigned grouped)
762 {
763         const char *arg_str = dm_shift_arg(arg_set);
764         char dummy;
765
766         if (!arg_str ||
767             (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
768             (*value < arg->min) ||
769             (*value > arg->max) ||
770             (grouped && arg_set->argc < *value)) {
771                 *error = arg->error;
772                 return -EINVAL;
773         }
774
775         return 0;
776 }
777
778 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
779                 unsigned *value, char **error)
780 {
781         return validate_next_arg(arg, arg_set, value, error, 0);
782 }
783 EXPORT_SYMBOL(dm_read_arg);
784
785 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
786                       unsigned *value, char **error)
787 {
788         return validate_next_arg(arg, arg_set, value, error, 1);
789 }
790 EXPORT_SYMBOL(dm_read_arg_group);
791
792 const char *dm_shift_arg(struct dm_arg_set *as)
793 {
794         char *r;
795
796         if (as->argc) {
797                 as->argc--;
798                 r = *as->argv;
799                 as->argv++;
800                 return r;
801         }
802
803         return NULL;
804 }
805 EXPORT_SYMBOL(dm_shift_arg);
806
807 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
808 {
809         BUG_ON(as->argc < num_args);
810         as->argc -= num_args;
811         as->argv += num_args;
812 }
813 EXPORT_SYMBOL(dm_consume_args);
814
815 static bool __table_type_request_based(unsigned table_type)
816 {
817         return (table_type == DM_TYPE_REQUEST_BASED ||
818                 table_type == DM_TYPE_MQ_REQUEST_BASED);
819 }
820
821 static int dm_table_set_type(struct dm_table *t)
822 {
823         unsigned i;
824         unsigned bio_based = 0, request_based = 0, hybrid = 0;
825         bool use_blk_mq = false;
826         struct dm_target *tgt;
827         struct dm_dev_internal *dd;
828         struct list_head *devices;
829         unsigned live_md_type = dm_get_md_type(t->md);
830
831         for (i = 0; i < t->num_targets; i++) {
832                 tgt = t->targets + i;
833                 if (dm_target_hybrid(tgt))
834                         hybrid = 1;
835                 else if (dm_target_request_based(tgt))
836                         request_based = 1;
837                 else
838                         bio_based = 1;
839
840                 if (bio_based && request_based) {
841                         DMWARN("Inconsistent table: different target types"
842                                " can't be mixed up");
843                         return -EINVAL;
844                 }
845         }
846
847         if (hybrid && !bio_based && !request_based) {
848                 /*
849                  * The targets can work either way.
850                  * Determine the type from the live device.
851                  * Default to bio-based if device is new.
852                  */
853                 if (__table_type_request_based(live_md_type))
854                         request_based = 1;
855                 else
856                         bio_based = 1;
857         }
858
859         if (bio_based) {
860                 /* We must use this table as bio-based */
861                 t->type = DM_TYPE_BIO_BASED;
862                 return 0;
863         }
864
865         BUG_ON(!request_based); /* No targets in this table */
866
867         /*
868          * Request-based dm supports only tables that have a single target now.
869          * To support multiple targets, request splitting support is needed,
870          * and that needs lots of changes in the block-layer.
871          * (e.g. request completion process for partial completion.)
872          */
873         if (t->num_targets > 1) {
874                 DMWARN("Request-based dm doesn't support multiple targets yet");
875                 return -EINVAL;
876         }
877
878         /* Non-request-stackable devices can't be used for request-based dm */
879         devices = dm_table_get_devices(t);
880         list_for_each_entry(dd, devices, list) {
881                 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
882
883                 if (!blk_queue_stackable(q)) {
884                         DMERR("table load rejected: including"
885                               " non-request-stackable devices");
886                         return -EINVAL;
887                 }
888
889                 if (q->mq_ops)
890                         use_blk_mq = true;
891         }
892
893         if (use_blk_mq) {
894                 /* verify _all_ devices in the table are blk-mq devices */
895                 list_for_each_entry(dd, devices, list)
896                         if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
897                                 DMERR("table load rejected: not all devices"
898                                       " are blk-mq request-stackable");
899                                 return -EINVAL;
900                         }
901                 t->type = DM_TYPE_MQ_REQUEST_BASED;
902
903         } else if (list_empty(devices) && __table_type_request_based(live_md_type)) {
904                 /* inherit live MD type */
905                 t->type = live_md_type;
906
907         } else
908                 t->type = DM_TYPE_REQUEST_BASED;
909
910         return 0;
911 }
912
913 unsigned dm_table_get_type(struct dm_table *t)
914 {
915         return t->type;
916 }
917
918 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
919 {
920         return t->immutable_target_type;
921 }
922
923 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
924 {
925         /* Immutable target is implicitly a singleton */
926         if (t->num_targets > 1 ||
927             !dm_target_is_immutable(t->targets[0].type))
928                 return NULL;
929
930         return t->targets;
931 }
932
933 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
934 {
935         struct dm_target *uninitialized_var(ti);
936         unsigned i = 0;
937
938         while (i < dm_table_get_num_targets(t)) {
939                 ti = dm_table_get_target(t, i++);
940                 if (dm_target_is_wildcard(ti->type))
941                         return ti;
942         }
943
944         return NULL;
945 }
946
947 bool dm_table_request_based(struct dm_table *t)
948 {
949         return __table_type_request_based(dm_table_get_type(t));
950 }
951
952 bool dm_table_mq_request_based(struct dm_table *t)
953 {
954         return dm_table_get_type(t) == DM_TYPE_MQ_REQUEST_BASED;
955 }
956
957 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
958 {
959         unsigned type = dm_table_get_type(t);
960         unsigned per_bio_data_size = 0;
961         struct dm_target *tgt;
962         unsigned i;
963
964         if (unlikely(type == DM_TYPE_NONE)) {
965                 DMWARN("no table type is set, can't allocate mempools");
966                 return -EINVAL;
967         }
968
969         if (type == DM_TYPE_BIO_BASED)
970                 for (i = 0; i < t->num_targets; i++) {
971                         tgt = t->targets + i;
972                         per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
973                 }
974
975         t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_bio_data_size);
976         if (!t->mempools)
977                 return -ENOMEM;
978
979         return 0;
980 }
981
982 void dm_table_free_md_mempools(struct dm_table *t)
983 {
984         dm_free_md_mempools(t->mempools);
985         t->mempools = NULL;
986 }
987
988 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
989 {
990         return t->mempools;
991 }
992
993 static int setup_indexes(struct dm_table *t)
994 {
995         int i;
996         unsigned int total = 0;
997         sector_t *indexes;
998
999         /* allocate the space for *all* the indexes */
1000         for (i = t->depth - 2; i >= 0; i--) {
1001                 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1002                 total += t->counts[i];
1003         }
1004
1005         indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1006         if (!indexes)
1007                 return -ENOMEM;
1008
1009         /* set up internal nodes, bottom-up */
1010         for (i = t->depth - 2; i >= 0; i--) {
1011                 t->index[i] = indexes;
1012                 indexes += (KEYS_PER_NODE * t->counts[i]);
1013                 setup_btree_index(i, t);
1014         }
1015
1016         return 0;
1017 }
1018
1019 /*
1020  * Builds the btree to index the map.
1021  */
1022 static int dm_table_build_index(struct dm_table *t)
1023 {
1024         int r = 0;
1025         unsigned int leaf_nodes;
1026
1027         /* how many indexes will the btree have ? */
1028         leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1029         t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1030
1031         /* leaf layer has already been set up */
1032         t->counts[t->depth - 1] = leaf_nodes;
1033         t->index[t->depth - 1] = t->highs;
1034
1035         if (t->depth >= 2)
1036                 r = setup_indexes(t);
1037
1038         return r;
1039 }
1040
1041 static bool integrity_profile_exists(struct gendisk *disk)
1042 {
1043         return !!blk_get_integrity(disk);
1044 }
1045
1046 /*
1047  * Get a disk whose integrity profile reflects the table's profile.
1048  * Returns NULL if integrity support was inconsistent or unavailable.
1049  */
1050 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1051 {
1052         struct list_head *devices = dm_table_get_devices(t);
1053         struct dm_dev_internal *dd = NULL;
1054         struct gendisk *prev_disk = NULL, *template_disk = NULL;
1055
1056         list_for_each_entry(dd, devices, list) {
1057                 template_disk = dd->dm_dev->bdev->bd_disk;
1058                 if (!integrity_profile_exists(template_disk))
1059                         goto no_integrity;
1060                 else if (prev_disk &&
1061                          blk_integrity_compare(prev_disk, template_disk) < 0)
1062                         goto no_integrity;
1063                 prev_disk = template_disk;
1064         }
1065
1066         return template_disk;
1067
1068 no_integrity:
1069         if (prev_disk)
1070                 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1071                        dm_device_name(t->md),
1072                        prev_disk->disk_name,
1073                        template_disk->disk_name);
1074         return NULL;
1075 }
1076
1077 /*
1078  * Register the mapped device for blk_integrity support if the
1079  * underlying devices have an integrity profile.  But all devices may
1080  * not have matching profiles (checking all devices isn't reliable
1081  * during table load because this table may use other DM device(s) which
1082  * must be resumed before they will have an initialized integity
1083  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1084  * profile validation: First pass during table load, final pass during
1085  * resume.
1086  */
1087 static int dm_table_register_integrity(struct dm_table *t)
1088 {
1089         struct mapped_device *md = t->md;
1090         struct gendisk *template_disk = NULL;
1091
1092         template_disk = dm_table_get_integrity_disk(t);
1093         if (!template_disk)
1094                 return 0;
1095
1096         if (!integrity_profile_exists(dm_disk(md))) {
1097                 t->integrity_supported = 1;
1098                 /*
1099                  * Register integrity profile during table load; we can do
1100                  * this because the final profile must match during resume.
1101                  */
1102                 blk_integrity_register(dm_disk(md),
1103                                        blk_get_integrity(template_disk));
1104                 return 0;
1105         }
1106
1107         /*
1108          * If DM device already has an initialized integrity
1109          * profile the new profile should not conflict.
1110          */
1111         if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1112                 DMWARN("%s: conflict with existing integrity profile: "
1113                        "%s profile mismatch",
1114                        dm_device_name(t->md),
1115                        template_disk->disk_name);
1116                 return 1;
1117         }
1118
1119         /* Preserve existing integrity profile */
1120         t->integrity_supported = 1;
1121         return 0;
1122 }
1123
1124 /*
1125  * Prepares the table for use by building the indices,
1126  * setting the type, and allocating mempools.
1127  */
1128 int dm_table_complete(struct dm_table *t)
1129 {
1130         int r;
1131
1132         r = dm_table_set_type(t);
1133         if (r) {
1134                 DMERR("unable to set table type");
1135                 return r;
1136         }
1137
1138         r = dm_table_build_index(t);
1139         if (r) {
1140                 DMERR("unable to build btrees");
1141                 return r;
1142         }
1143
1144         r = dm_table_register_integrity(t);
1145         if (r) {
1146                 DMERR("could not register integrity profile.");
1147                 return r;
1148         }
1149
1150         r = dm_table_alloc_md_mempools(t, t->md);
1151         if (r)
1152                 DMERR("unable to allocate mempools");
1153
1154         return r;
1155 }
1156
1157 static DEFINE_MUTEX(_event_lock);
1158 void dm_table_event_callback(struct dm_table *t,
1159                              void (*fn)(void *), void *context)
1160 {
1161         mutex_lock(&_event_lock);
1162         t->event_fn = fn;
1163         t->event_context = context;
1164         mutex_unlock(&_event_lock);
1165 }
1166
1167 void dm_table_event(struct dm_table *t)
1168 {
1169         /*
1170          * You can no longer call dm_table_event() from interrupt
1171          * context, use a bottom half instead.
1172          */
1173         BUG_ON(in_interrupt());
1174
1175         mutex_lock(&_event_lock);
1176         if (t->event_fn)
1177                 t->event_fn(t->event_context);
1178         mutex_unlock(&_event_lock);
1179 }
1180 EXPORT_SYMBOL(dm_table_event);
1181
1182 sector_t dm_table_get_size(struct dm_table *t)
1183 {
1184         return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1185 }
1186 EXPORT_SYMBOL(dm_table_get_size);
1187
1188 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1189 {
1190         if (index >= t->num_targets)
1191                 return NULL;
1192
1193         return t->targets + index;
1194 }
1195
1196 /*
1197  * Search the btree for the correct target.
1198  *
1199  * Caller should check returned pointer with dm_target_is_valid()
1200  * to trap I/O beyond end of device.
1201  */
1202 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1203 {
1204         unsigned int l, n = 0, k = 0;
1205         sector_t *node;
1206
1207         for (l = 0; l < t->depth; l++) {
1208                 n = get_child(n, k);
1209                 node = get_node(t, l, n);
1210
1211                 for (k = 0; k < KEYS_PER_NODE; k++)
1212                         if (node[k] >= sector)
1213                                 break;
1214         }
1215
1216         return &t->targets[(KEYS_PER_NODE * n) + k];
1217 }
1218
1219 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1220                         sector_t start, sector_t len, void *data)
1221 {
1222         unsigned *num_devices = data;
1223
1224         (*num_devices)++;
1225
1226         return 0;
1227 }
1228
1229 /*
1230  * Check whether a table has no data devices attached using each
1231  * target's iterate_devices method.
1232  * Returns false if the result is unknown because a target doesn't
1233  * support iterate_devices.
1234  */
1235 bool dm_table_has_no_data_devices(struct dm_table *table)
1236 {
1237         struct dm_target *uninitialized_var(ti);
1238         unsigned i = 0, num_devices = 0;
1239
1240         while (i < dm_table_get_num_targets(table)) {
1241                 ti = dm_table_get_target(table, i++);
1242
1243                 if (!ti->type->iterate_devices)
1244                         return false;
1245
1246                 ti->type->iterate_devices(ti, count_device, &num_devices);
1247                 if (num_devices)
1248                         return false;
1249         }
1250
1251         return true;
1252 }
1253
1254 /*
1255  * Establish the new table's queue_limits and validate them.
1256  */
1257 int dm_calculate_queue_limits(struct dm_table *table,
1258                               struct queue_limits *limits)
1259 {
1260         struct dm_target *uninitialized_var(ti);
1261         struct queue_limits ti_limits;
1262         unsigned i = 0;
1263
1264         blk_set_stacking_limits(limits);
1265
1266         while (i < dm_table_get_num_targets(table)) {
1267                 blk_set_stacking_limits(&ti_limits);
1268
1269                 ti = dm_table_get_target(table, i++);
1270
1271                 if (!ti->type->iterate_devices)
1272                         goto combine_limits;
1273
1274                 /*
1275                  * Combine queue limits of all the devices this target uses.
1276                  */
1277                 ti->type->iterate_devices(ti, dm_set_device_limits,
1278                                           &ti_limits);
1279
1280                 /* Set I/O hints portion of queue limits */
1281                 if (ti->type->io_hints)
1282                         ti->type->io_hints(ti, &ti_limits);
1283
1284                 /*
1285                  * Check each device area is consistent with the target's
1286                  * overall queue limits.
1287                  */
1288                 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1289                                               &ti_limits))
1290                         return -EINVAL;
1291
1292 combine_limits:
1293                 /*
1294                  * Merge this target's queue limits into the overall limits
1295                  * for the table.
1296                  */
1297                 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1298                         DMWARN("%s: adding target device "
1299                                "(start sect %llu len %llu) "
1300                                "caused an alignment inconsistency",
1301                                dm_device_name(table->md),
1302                                (unsigned long long) ti->begin,
1303                                (unsigned long long) ti->len);
1304         }
1305
1306         return validate_hardware_logical_block_alignment(table, limits);
1307 }
1308
1309 /*
1310  * Verify that all devices have an integrity profile that matches the
1311  * DM device's registered integrity profile.  If the profiles don't
1312  * match then unregister the DM device's integrity profile.
1313  */
1314 static void dm_table_verify_integrity(struct dm_table *t)
1315 {
1316         struct gendisk *template_disk = NULL;
1317
1318         if (t->integrity_supported) {
1319                 /*
1320                  * Verify that the original integrity profile
1321                  * matches all the devices in this table.
1322                  */
1323                 template_disk = dm_table_get_integrity_disk(t);
1324                 if (template_disk &&
1325                     blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1326                         return;
1327         }
1328
1329         if (integrity_profile_exists(dm_disk(t->md))) {
1330                 DMWARN("%s: unable to establish an integrity profile",
1331                        dm_device_name(t->md));
1332                 blk_integrity_unregister(dm_disk(t->md));
1333         }
1334 }
1335
1336 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1337                                 sector_t start, sector_t len, void *data)
1338 {
1339         unsigned flush = (*(unsigned *)data);
1340         struct request_queue *q = bdev_get_queue(dev->bdev);
1341
1342         return q && (q->flush_flags & flush);
1343 }
1344
1345 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1346 {
1347         struct dm_target *ti;
1348         unsigned i = 0;
1349
1350         /*
1351          * Require at least one underlying device to support flushes.
1352          * t->devices includes internal dm devices such as mirror logs
1353          * so we need to use iterate_devices here, which targets
1354          * supporting flushes must provide.
1355          */
1356         while (i < dm_table_get_num_targets(t)) {
1357                 ti = dm_table_get_target(t, i++);
1358
1359                 if (!ti->num_flush_bios)
1360                         continue;
1361
1362                 if (ti->flush_supported)
1363                         return true;
1364
1365                 if (ti->type->iterate_devices &&
1366                     ti->type->iterate_devices(ti, device_flush_capable, &flush))
1367                         return true;
1368         }
1369
1370         return false;
1371 }
1372
1373 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1374 {
1375         struct dm_target *ti;
1376         unsigned i = 0;
1377
1378         /* Ensure that all targets supports discard_zeroes_data. */
1379         while (i < dm_table_get_num_targets(t)) {
1380                 ti = dm_table_get_target(t, i++);
1381
1382                 if (ti->discard_zeroes_data_unsupported)
1383                         return false;
1384         }
1385
1386         return true;
1387 }
1388
1389 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1390                             sector_t start, sector_t len, void *data)
1391 {
1392         struct request_queue *q = bdev_get_queue(dev->bdev);
1393
1394         return q && blk_queue_nonrot(q);
1395 }
1396
1397 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1398                              sector_t start, sector_t len, void *data)
1399 {
1400         struct request_queue *q = bdev_get_queue(dev->bdev);
1401
1402         return q && !blk_queue_add_random(q);
1403 }
1404
1405 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1406                                    sector_t start, sector_t len, void *data)
1407 {
1408         struct request_queue *q = bdev_get_queue(dev->bdev);
1409
1410         return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1411 }
1412
1413 static bool dm_table_all_devices_attribute(struct dm_table *t,
1414                                            iterate_devices_callout_fn func)
1415 {
1416         struct dm_target *ti;
1417         unsigned i = 0;
1418
1419         while (i < dm_table_get_num_targets(t)) {
1420                 ti = dm_table_get_target(t, i++);
1421
1422                 if (!ti->type->iterate_devices ||
1423                     !ti->type->iterate_devices(ti, func, NULL))
1424                         return false;
1425         }
1426
1427         return true;
1428 }
1429
1430 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1431                                          sector_t start, sector_t len, void *data)
1432 {
1433         struct request_queue *q = bdev_get_queue(dev->bdev);
1434
1435         return q && !q->limits.max_write_same_sectors;
1436 }
1437
1438 static bool dm_table_supports_write_same(struct dm_table *t)
1439 {
1440         struct dm_target *ti;
1441         unsigned i = 0;
1442
1443         while (i < dm_table_get_num_targets(t)) {
1444                 ti = dm_table_get_target(t, i++);
1445
1446                 if (!ti->num_write_same_bios)
1447                         return false;
1448
1449                 if (!ti->type->iterate_devices ||
1450                     ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1451                         return false;
1452         }
1453
1454         return true;
1455 }
1456
1457 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1458                                   sector_t start, sector_t len, void *data)
1459 {
1460         struct request_queue *q = bdev_get_queue(dev->bdev);
1461
1462         return q && blk_queue_discard(q);
1463 }
1464
1465 static bool dm_table_supports_discards(struct dm_table *t)
1466 {
1467         struct dm_target *ti;
1468         unsigned i = 0;
1469
1470         /*
1471          * Unless any target used by the table set discards_supported,
1472          * require at least one underlying device to support discards.
1473          * t->devices includes internal dm devices such as mirror logs
1474          * so we need to use iterate_devices here, which targets
1475          * supporting discard selectively must provide.
1476          */
1477         while (i < dm_table_get_num_targets(t)) {
1478                 ti = dm_table_get_target(t, i++);
1479
1480                 if (!ti->num_discard_bios)
1481                         continue;
1482
1483                 if (ti->discards_supported)
1484                         return true;
1485
1486                 if (ti->type->iterate_devices &&
1487                     ti->type->iterate_devices(ti, device_discard_capable, NULL))
1488                         return true;
1489         }
1490
1491         return false;
1492 }
1493
1494 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1495                                struct queue_limits *limits)
1496 {
1497         unsigned flush = 0;
1498
1499         /*
1500          * Copy table's limits to the DM device's request_queue
1501          */
1502         q->limits = *limits;
1503
1504         if (!dm_table_supports_discards(t))
1505                 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1506         else
1507                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1508
1509         if (dm_table_supports_flush(t, REQ_FLUSH)) {
1510                 flush |= REQ_FLUSH;
1511                 if (dm_table_supports_flush(t, REQ_FUA))
1512                         flush |= REQ_FUA;
1513         }
1514         blk_queue_flush(q, flush);
1515
1516         if (!dm_table_discard_zeroes_data(t))
1517                 q->limits.discard_zeroes_data = 0;
1518
1519         /* Ensure that all underlying devices are non-rotational. */
1520         if (dm_table_all_devices_attribute(t, device_is_nonrot))
1521                 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1522         else
1523                 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1524
1525         if (!dm_table_supports_write_same(t))
1526                 q->limits.max_write_same_sectors = 0;
1527
1528         if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1529                 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1530         else
1531                 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1532
1533         dm_table_verify_integrity(t);
1534
1535         /*
1536          * Determine whether or not this queue's I/O timings contribute
1537          * to the entropy pool, Only request-based targets use this.
1538          * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1539          * have it set.
1540          */
1541         if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1542                 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1543
1544         /*
1545          * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1546          * visible to other CPUs because, once the flag is set, incoming bios
1547          * are processed by request-based dm, which refers to the queue
1548          * settings.
1549          * Until the flag set, bios are passed to bio-based dm and queued to
1550          * md->deferred where queue settings are not needed yet.
1551          * Those bios are passed to request-based dm at the resume time.
1552          */
1553         smp_mb();
1554         if (dm_table_request_based(t))
1555                 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1556 }
1557
1558 unsigned int dm_table_get_num_targets(struct dm_table *t)
1559 {
1560         return t->num_targets;
1561 }
1562
1563 struct list_head *dm_table_get_devices(struct dm_table *t)
1564 {
1565         return &t->devices;
1566 }
1567
1568 fmode_t dm_table_get_mode(struct dm_table *t)
1569 {
1570         return t->mode;
1571 }
1572 EXPORT_SYMBOL(dm_table_get_mode);
1573
1574 enum suspend_mode {
1575         PRESUSPEND,
1576         PRESUSPEND_UNDO,
1577         POSTSUSPEND,
1578 };
1579
1580 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1581 {
1582         int i = t->num_targets;
1583         struct dm_target *ti = t->targets;
1584
1585         while (i--) {
1586                 switch (mode) {
1587                 case PRESUSPEND:
1588                         if (ti->type->presuspend)
1589                                 ti->type->presuspend(ti);
1590                         break;
1591                 case PRESUSPEND_UNDO:
1592                         if (ti->type->presuspend_undo)
1593                                 ti->type->presuspend_undo(ti);
1594                         break;
1595                 case POSTSUSPEND:
1596                         if (ti->type->postsuspend)
1597                                 ti->type->postsuspend(ti);
1598                         break;
1599                 }
1600                 ti++;
1601         }
1602 }
1603
1604 void dm_table_presuspend_targets(struct dm_table *t)
1605 {
1606         if (!t)
1607                 return;
1608
1609         suspend_targets(t, PRESUSPEND);
1610 }
1611
1612 void dm_table_presuspend_undo_targets(struct dm_table *t)
1613 {
1614         if (!t)
1615                 return;
1616
1617         suspend_targets(t, PRESUSPEND_UNDO);
1618 }
1619
1620 void dm_table_postsuspend_targets(struct dm_table *t)
1621 {
1622         if (!t)
1623                 return;
1624
1625         suspend_targets(t, POSTSUSPEND);
1626 }
1627
1628 int dm_table_resume_targets(struct dm_table *t)
1629 {
1630         int i, r = 0;
1631
1632         for (i = 0; i < t->num_targets; i++) {
1633                 struct dm_target *ti = t->targets + i;
1634
1635                 if (!ti->type->preresume)
1636                         continue;
1637
1638                 r = ti->type->preresume(ti);
1639                 if (r) {
1640                         DMERR("%s: %s: preresume failed, error = %d",
1641                               dm_device_name(t->md), ti->type->name, r);
1642                         return r;
1643                 }
1644         }
1645
1646         for (i = 0; i < t->num_targets; i++) {
1647                 struct dm_target *ti = t->targets + i;
1648
1649                 if (ti->type->resume)
1650                         ti->type->resume(ti);
1651         }
1652
1653         return 0;
1654 }
1655
1656 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1657 {
1658         list_add(&cb->list, &t->target_callbacks);
1659 }
1660 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1661
1662 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1663 {
1664         struct dm_dev_internal *dd;
1665         struct list_head *devices = dm_table_get_devices(t);
1666         struct dm_target_callbacks *cb;
1667         int r = 0;
1668
1669         list_for_each_entry(dd, devices, list) {
1670                 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1671                 char b[BDEVNAME_SIZE];
1672
1673                 if (likely(q))
1674                         r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1675                 else
1676                         DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1677                                      dm_device_name(t->md),
1678                                      bdevname(dd->dm_dev->bdev, b));
1679         }
1680
1681         list_for_each_entry(cb, &t->target_callbacks, list)
1682                 if (cb->congested_fn)
1683                         r |= cb->congested_fn(cb, bdi_bits);
1684
1685         return r;
1686 }
1687
1688 struct mapped_device *dm_table_get_md(struct dm_table *t)
1689 {
1690         return t->md;
1691 }
1692 EXPORT_SYMBOL(dm_table_get_md);
1693
1694 void dm_table_run_md_queue_async(struct dm_table *t)
1695 {
1696         struct mapped_device *md;
1697         struct request_queue *queue;
1698         unsigned long flags;
1699
1700         if (!dm_table_request_based(t))
1701                 return;
1702
1703         md = dm_table_get_md(t);
1704         queue = dm_get_md_queue(md);
1705         if (queue) {
1706                 if (queue->mq_ops)
1707                         blk_mq_run_hw_queues(queue, true);
1708                 else {
1709                         spin_lock_irqsave(queue->queue_lock, flags);
1710                         blk_run_queue_async(queue);
1711                         spin_unlock_irqrestore(queue->queue_lock, flags);
1712                 }
1713         }
1714 }
1715 EXPORT_SYMBOL(dm_table_run_md_queue_async);
1716