]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/dm-thin.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX   "thin"
26
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38                 "A percentage of time allocated for copy on write");
39
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113  * Key building.
114  */
115 enum lock_space {
116         VIRTUAL,
117         PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123         key->virtual = (ls == VIRTUAL);
124         key->dev = dm_thin_dev_id(td);
125         key->block_begin = b;
126         key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130                            struct dm_cell_key *key)
131 {
132         build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136                               struct dm_cell_key *key)
137 {
138         build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146         struct rw_semaphore lock;
147         unsigned long threshold;
148         bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153         init_rwsem(&t->lock);
154         t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159         t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164         if (!t->throttle_applied && jiffies > t->threshold) {
165                 down_write(&t->lock);
166                 t->throttle_applied = true;
167         }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172         if (t->throttle_applied) {
173                 t->throttle_applied = false;
174                 up_write(&t->lock);
175         }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180         down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185         up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201         PM_WRITE,               /* metadata may be changed */
202         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
203         PM_READ_ONLY,           /* metadata may not be changed */
204         PM_FAIL,                /* all I/O fails */
205 };
206
207 struct pool_features {
208         enum pool_mode mode;
209
210         bool zero_new_blocks:1;
211         bool discard_enabled:1;
212         bool discard_passdown:1;
213         bool error_if_no_space:1;
214 };
215
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220
221 #define CELL_SORT_ARRAY_SIZE 8192
222
223 struct pool {
224         struct list_head list;
225         struct dm_target *ti;   /* Only set if a pool target is bound */
226
227         struct mapped_device *pool_md;
228         struct block_device *md_dev;
229         struct dm_pool_metadata *pmd;
230
231         dm_block_t low_water_blocks;
232         uint32_t sectors_per_block;
233         int sectors_per_block_shift;
234
235         struct pool_features pf;
236         bool low_water_triggered:1;     /* A dm event has been sent */
237         bool suspended:1;
238         bool out_of_data_space:1;
239
240         struct dm_bio_prison *prison;
241         struct dm_kcopyd_client *copier;
242
243         struct workqueue_struct *wq;
244         struct throttle throttle;
245         struct work_struct worker;
246         struct delayed_work waker;
247         struct delayed_work no_space_timeout;
248
249         unsigned long last_commit_jiffies;
250         unsigned ref_count;
251
252         spinlock_t lock;
253         struct bio_list deferred_flush_bios;
254         struct list_head prepared_mappings;
255         struct list_head prepared_discards;
256         struct list_head active_thins;
257
258         struct dm_deferred_set *shared_read_ds;
259         struct dm_deferred_set *all_io_ds;
260
261         struct dm_thin_new_mapping *next_mapping;
262         mempool_t *mapping_pool;
263
264         process_bio_fn process_bio;
265         process_bio_fn process_discard;
266
267         process_cell_fn process_cell;
268         process_cell_fn process_discard_cell;
269
270         process_mapping_fn process_prepared_mapping;
271         process_mapping_fn process_prepared_discard;
272
273         struct dm_bio_prison_cell **cell_sort_array;
274 };
275
276 static enum pool_mode get_pool_mode(struct pool *pool);
277 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
278
279 /*
280  * Target context for a pool.
281  */
282 struct pool_c {
283         struct dm_target *ti;
284         struct pool *pool;
285         struct dm_dev *data_dev;
286         struct dm_dev *metadata_dev;
287         struct dm_target_callbacks callbacks;
288
289         dm_block_t low_water_blocks;
290         struct pool_features requested_pf; /* Features requested during table load */
291         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
292 };
293
294 /*
295  * Target context for a thin.
296  */
297 struct thin_c {
298         struct list_head list;
299         struct dm_dev *pool_dev;
300         struct dm_dev *origin_dev;
301         sector_t origin_size;
302         dm_thin_id dev_id;
303
304         struct pool *pool;
305         struct dm_thin_device *td;
306         struct mapped_device *thin_md;
307
308         bool requeue_mode:1;
309         spinlock_t lock;
310         struct list_head deferred_cells;
311         struct bio_list deferred_bio_list;
312         struct bio_list retry_on_resume_list;
313         struct rb_root sort_bio_list; /* sorted list of deferred bios */
314
315         /*
316          * Ensures the thin is not destroyed until the worker has finished
317          * iterating the active_thins list.
318          */
319         atomic_t refcount;
320         struct completion can_destroy;
321 };
322
323 /*----------------------------------------------------------------*/
324
325 static bool block_size_is_power_of_two(struct pool *pool)
326 {
327         return pool->sectors_per_block_shift >= 0;
328 }
329
330 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
331 {
332         return block_size_is_power_of_two(pool) ?
333                 (b << pool->sectors_per_block_shift) :
334                 (b * pool->sectors_per_block);
335 }
336
337 /*----------------------------------------------------------------*/
338
339 struct discard_op {
340         struct thin_c *tc;
341         struct blk_plug plug;
342         struct bio *parent_bio;
343         struct bio *bio;
344 };
345
346 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
347 {
348         BUG_ON(!parent);
349
350         op->tc = tc;
351         blk_start_plug(&op->plug);
352         op->parent_bio = parent;
353         op->bio = NULL;
354 }
355
356 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
357 {
358         struct thin_c *tc = op->tc;
359         sector_t s = block_to_sectors(tc->pool, data_b);
360         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
361
362         return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
363                                       GFP_NOWAIT, 0, &op->bio);
364 }
365
366 static void end_discard(struct discard_op *op, int r)
367 {
368         if (op->bio) {
369                 /*
370                  * Even if one of the calls to issue_discard failed, we
371                  * need to wait for the chain to complete.
372                  */
373                 bio_chain(op->bio, op->parent_bio);
374                 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
375                 submit_bio(op->bio);
376         }
377
378         blk_finish_plug(&op->plug);
379
380         /*
381          * Even if r is set, there could be sub discards in flight that we
382          * need to wait for.
383          */
384         if (r && !op->parent_bio->bi_error)
385                 op->parent_bio->bi_error = r;
386         bio_endio(op->parent_bio);
387 }
388
389 /*----------------------------------------------------------------*/
390
391 /*
392  * wake_worker() is used when new work is queued and when pool_resume is
393  * ready to continue deferred IO processing.
394  */
395 static void wake_worker(struct pool *pool)
396 {
397         queue_work(pool->wq, &pool->worker);
398 }
399
400 /*----------------------------------------------------------------*/
401
402 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
403                       struct dm_bio_prison_cell **cell_result)
404 {
405         int r;
406         struct dm_bio_prison_cell *cell_prealloc;
407
408         /*
409          * Allocate a cell from the prison's mempool.
410          * This might block but it can't fail.
411          */
412         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
413
414         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
415         if (r)
416                 /*
417                  * We reused an old cell; we can get rid of
418                  * the new one.
419                  */
420                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
421
422         return r;
423 }
424
425 static void cell_release(struct pool *pool,
426                          struct dm_bio_prison_cell *cell,
427                          struct bio_list *bios)
428 {
429         dm_cell_release(pool->prison, cell, bios);
430         dm_bio_prison_free_cell(pool->prison, cell);
431 }
432
433 static void cell_visit_release(struct pool *pool,
434                                void (*fn)(void *, struct dm_bio_prison_cell *),
435                                void *context,
436                                struct dm_bio_prison_cell *cell)
437 {
438         dm_cell_visit_release(pool->prison, fn, context, cell);
439         dm_bio_prison_free_cell(pool->prison, cell);
440 }
441
442 static void cell_release_no_holder(struct pool *pool,
443                                    struct dm_bio_prison_cell *cell,
444                                    struct bio_list *bios)
445 {
446         dm_cell_release_no_holder(pool->prison, cell, bios);
447         dm_bio_prison_free_cell(pool->prison, cell);
448 }
449
450 static void cell_error_with_code(struct pool *pool,
451                                  struct dm_bio_prison_cell *cell, int error_code)
452 {
453         dm_cell_error(pool->prison, cell, error_code);
454         dm_bio_prison_free_cell(pool->prison, cell);
455 }
456
457 static int get_pool_io_error_code(struct pool *pool)
458 {
459         return pool->out_of_data_space ? -ENOSPC : -EIO;
460 }
461
462 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
463 {
464         int error = get_pool_io_error_code(pool);
465
466         cell_error_with_code(pool, cell, error);
467 }
468
469 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
470 {
471         cell_error_with_code(pool, cell, 0);
472 }
473
474 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
475 {
476         cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
477 }
478
479 /*----------------------------------------------------------------*/
480
481 /*
482  * A global list of pools that uses a struct mapped_device as a key.
483  */
484 static struct dm_thin_pool_table {
485         struct mutex mutex;
486         struct list_head pools;
487 } dm_thin_pool_table;
488
489 static void pool_table_init(void)
490 {
491         mutex_init(&dm_thin_pool_table.mutex);
492         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
493 }
494
495 static void __pool_table_insert(struct pool *pool)
496 {
497         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
498         list_add(&pool->list, &dm_thin_pool_table.pools);
499 }
500
501 static void __pool_table_remove(struct pool *pool)
502 {
503         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
504         list_del(&pool->list);
505 }
506
507 static struct pool *__pool_table_lookup(struct mapped_device *md)
508 {
509         struct pool *pool = NULL, *tmp;
510
511         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
512
513         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
514                 if (tmp->pool_md == md) {
515                         pool = tmp;
516                         break;
517                 }
518         }
519
520         return pool;
521 }
522
523 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
524 {
525         struct pool *pool = NULL, *tmp;
526
527         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
528
529         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
530                 if (tmp->md_dev == md_dev) {
531                         pool = tmp;
532                         break;
533                 }
534         }
535
536         return pool;
537 }
538
539 /*----------------------------------------------------------------*/
540
541 struct dm_thin_endio_hook {
542         struct thin_c *tc;
543         struct dm_deferred_entry *shared_read_entry;
544         struct dm_deferred_entry *all_io_entry;
545         struct dm_thin_new_mapping *overwrite_mapping;
546         struct rb_node rb_node;
547         struct dm_bio_prison_cell *cell;
548 };
549
550 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
551 {
552         bio_list_merge(bios, master);
553         bio_list_init(master);
554 }
555
556 static void error_bio_list(struct bio_list *bios, int error)
557 {
558         struct bio *bio;
559
560         while ((bio = bio_list_pop(bios))) {
561                 bio->bi_error = error;
562                 bio_endio(bio);
563         }
564 }
565
566 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
567 {
568         struct bio_list bios;
569         unsigned long flags;
570
571         bio_list_init(&bios);
572
573         spin_lock_irqsave(&tc->lock, flags);
574         __merge_bio_list(&bios, master);
575         spin_unlock_irqrestore(&tc->lock, flags);
576
577         error_bio_list(&bios, error);
578 }
579
580 static void requeue_deferred_cells(struct thin_c *tc)
581 {
582         struct pool *pool = tc->pool;
583         unsigned long flags;
584         struct list_head cells;
585         struct dm_bio_prison_cell *cell, *tmp;
586
587         INIT_LIST_HEAD(&cells);
588
589         spin_lock_irqsave(&tc->lock, flags);
590         list_splice_init(&tc->deferred_cells, &cells);
591         spin_unlock_irqrestore(&tc->lock, flags);
592
593         list_for_each_entry_safe(cell, tmp, &cells, user_list)
594                 cell_requeue(pool, cell);
595 }
596
597 static void requeue_io(struct thin_c *tc)
598 {
599         struct bio_list bios;
600         unsigned long flags;
601
602         bio_list_init(&bios);
603
604         spin_lock_irqsave(&tc->lock, flags);
605         __merge_bio_list(&bios, &tc->deferred_bio_list);
606         __merge_bio_list(&bios, &tc->retry_on_resume_list);
607         spin_unlock_irqrestore(&tc->lock, flags);
608
609         error_bio_list(&bios, DM_ENDIO_REQUEUE);
610         requeue_deferred_cells(tc);
611 }
612
613 static void error_retry_list_with_code(struct pool *pool, int error)
614 {
615         struct thin_c *tc;
616
617         rcu_read_lock();
618         list_for_each_entry_rcu(tc, &pool->active_thins, list)
619                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
620         rcu_read_unlock();
621 }
622
623 static void error_retry_list(struct pool *pool)
624 {
625         int error = get_pool_io_error_code(pool);
626
627         error_retry_list_with_code(pool, error);
628 }
629
630 /*
631  * This section of code contains the logic for processing a thin device's IO.
632  * Much of the code depends on pool object resources (lists, workqueues, etc)
633  * but most is exclusively called from the thin target rather than the thin-pool
634  * target.
635  */
636
637 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
638 {
639         struct pool *pool = tc->pool;
640         sector_t block_nr = bio->bi_iter.bi_sector;
641
642         if (block_size_is_power_of_two(pool))
643                 block_nr >>= pool->sectors_per_block_shift;
644         else
645                 (void) sector_div(block_nr, pool->sectors_per_block);
646
647         return block_nr;
648 }
649
650 /*
651  * Returns the _complete_ blocks that this bio covers.
652  */
653 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
654                                 dm_block_t *begin, dm_block_t *end)
655 {
656         struct pool *pool = tc->pool;
657         sector_t b = bio->bi_iter.bi_sector;
658         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
659
660         b += pool->sectors_per_block - 1ull; /* so we round up */
661
662         if (block_size_is_power_of_two(pool)) {
663                 b >>= pool->sectors_per_block_shift;
664                 e >>= pool->sectors_per_block_shift;
665         } else {
666                 (void) sector_div(b, pool->sectors_per_block);
667                 (void) sector_div(e, pool->sectors_per_block);
668         }
669
670         if (e < b)
671                 /* Can happen if the bio is within a single block. */
672                 e = b;
673
674         *begin = b;
675         *end = e;
676 }
677
678 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
679 {
680         struct pool *pool = tc->pool;
681         sector_t bi_sector = bio->bi_iter.bi_sector;
682
683         bio->bi_bdev = tc->pool_dev->bdev;
684         if (block_size_is_power_of_two(pool))
685                 bio->bi_iter.bi_sector =
686                         (block << pool->sectors_per_block_shift) |
687                         (bi_sector & (pool->sectors_per_block - 1));
688         else
689                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
690                                  sector_div(bi_sector, pool->sectors_per_block);
691 }
692
693 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
694 {
695         bio->bi_bdev = tc->origin_dev->bdev;
696 }
697
698 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
699 {
700         return (bio->bi_rw & (REQ_PREFLUSH | REQ_FUA)) &&
701                 dm_thin_changed_this_transaction(tc->td);
702 }
703
704 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
705 {
706         struct dm_thin_endio_hook *h;
707
708         if (bio_op(bio) == REQ_OP_DISCARD)
709                 return;
710
711         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
712         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
713 }
714
715 static void issue(struct thin_c *tc, struct bio *bio)
716 {
717         struct pool *pool = tc->pool;
718         unsigned long flags;
719
720         if (!bio_triggers_commit(tc, bio)) {
721                 generic_make_request(bio);
722                 return;
723         }
724
725         /*
726          * Complete bio with an error if earlier I/O caused changes to
727          * the metadata that can't be committed e.g, due to I/O errors
728          * on the metadata device.
729          */
730         if (dm_thin_aborted_changes(tc->td)) {
731                 bio_io_error(bio);
732                 return;
733         }
734
735         /*
736          * Batch together any bios that trigger commits and then issue a
737          * single commit for them in process_deferred_bios().
738          */
739         spin_lock_irqsave(&pool->lock, flags);
740         bio_list_add(&pool->deferred_flush_bios, bio);
741         spin_unlock_irqrestore(&pool->lock, flags);
742 }
743
744 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
745 {
746         remap_to_origin(tc, bio);
747         issue(tc, bio);
748 }
749
750 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
751                             dm_block_t block)
752 {
753         remap(tc, bio, block);
754         issue(tc, bio);
755 }
756
757 /*----------------------------------------------------------------*/
758
759 /*
760  * Bio endio functions.
761  */
762 struct dm_thin_new_mapping {
763         struct list_head list;
764
765         bool pass_discard:1;
766         bool maybe_shared:1;
767
768         /*
769          * Track quiescing, copying and zeroing preparation actions.  When this
770          * counter hits zero the block is prepared and can be inserted into the
771          * btree.
772          */
773         atomic_t prepare_actions;
774
775         int err;
776         struct thin_c *tc;
777         dm_block_t virt_begin, virt_end;
778         dm_block_t data_block;
779         struct dm_bio_prison_cell *cell;
780
781         /*
782          * If the bio covers the whole area of a block then we can avoid
783          * zeroing or copying.  Instead this bio is hooked.  The bio will
784          * still be in the cell, so care has to be taken to avoid issuing
785          * the bio twice.
786          */
787         struct bio *bio;
788         bio_end_io_t *saved_bi_end_io;
789 };
790
791 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
792 {
793         struct pool *pool = m->tc->pool;
794
795         if (atomic_dec_and_test(&m->prepare_actions)) {
796                 list_add_tail(&m->list, &pool->prepared_mappings);
797                 wake_worker(pool);
798         }
799 }
800
801 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
802 {
803         unsigned long flags;
804         struct pool *pool = m->tc->pool;
805
806         spin_lock_irqsave(&pool->lock, flags);
807         __complete_mapping_preparation(m);
808         spin_unlock_irqrestore(&pool->lock, flags);
809 }
810
811 static void copy_complete(int read_err, unsigned long write_err, void *context)
812 {
813         struct dm_thin_new_mapping *m = context;
814
815         m->err = read_err || write_err ? -EIO : 0;
816         complete_mapping_preparation(m);
817 }
818
819 static void overwrite_endio(struct bio *bio)
820 {
821         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
822         struct dm_thin_new_mapping *m = h->overwrite_mapping;
823
824         bio->bi_end_io = m->saved_bi_end_io;
825
826         m->err = bio->bi_error;
827         complete_mapping_preparation(m);
828 }
829
830 /*----------------------------------------------------------------*/
831
832 /*
833  * Workqueue.
834  */
835
836 /*
837  * Prepared mapping jobs.
838  */
839
840 /*
841  * This sends the bios in the cell, except the original holder, back
842  * to the deferred_bios list.
843  */
844 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
845 {
846         struct pool *pool = tc->pool;
847         unsigned long flags;
848
849         spin_lock_irqsave(&tc->lock, flags);
850         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
851         spin_unlock_irqrestore(&tc->lock, flags);
852
853         wake_worker(pool);
854 }
855
856 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
857
858 struct remap_info {
859         struct thin_c *tc;
860         struct bio_list defer_bios;
861         struct bio_list issue_bios;
862 };
863
864 static void __inc_remap_and_issue_cell(void *context,
865                                        struct dm_bio_prison_cell *cell)
866 {
867         struct remap_info *info = context;
868         struct bio *bio;
869
870         while ((bio = bio_list_pop(&cell->bios))) {
871                 if (bio->bi_rw & (REQ_PREFLUSH | REQ_FUA) ||
872                     bio_op(bio) == REQ_OP_DISCARD)
873                         bio_list_add(&info->defer_bios, bio);
874                 else {
875                         inc_all_io_entry(info->tc->pool, bio);
876
877                         /*
878                          * We can't issue the bios with the bio prison lock
879                          * held, so we add them to a list to issue on
880                          * return from this function.
881                          */
882                         bio_list_add(&info->issue_bios, bio);
883                 }
884         }
885 }
886
887 static void inc_remap_and_issue_cell(struct thin_c *tc,
888                                      struct dm_bio_prison_cell *cell,
889                                      dm_block_t block)
890 {
891         struct bio *bio;
892         struct remap_info info;
893
894         info.tc = tc;
895         bio_list_init(&info.defer_bios);
896         bio_list_init(&info.issue_bios);
897
898         /*
899          * We have to be careful to inc any bios we're about to issue
900          * before the cell is released, and avoid a race with new bios
901          * being added to the cell.
902          */
903         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
904                            &info, cell);
905
906         while ((bio = bio_list_pop(&info.defer_bios)))
907                 thin_defer_bio(tc, bio);
908
909         while ((bio = bio_list_pop(&info.issue_bios)))
910                 remap_and_issue(info.tc, bio, block);
911 }
912
913 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
914 {
915         cell_error(m->tc->pool, m->cell);
916         list_del(&m->list);
917         mempool_free(m, m->tc->pool->mapping_pool);
918 }
919
920 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
921 {
922         struct thin_c *tc = m->tc;
923         struct pool *pool = tc->pool;
924         struct bio *bio = m->bio;
925         int r;
926
927         if (m->err) {
928                 cell_error(pool, m->cell);
929                 goto out;
930         }
931
932         /*
933          * Commit the prepared block into the mapping btree.
934          * Any I/O for this block arriving after this point will get
935          * remapped to it directly.
936          */
937         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
938         if (r) {
939                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
940                 cell_error(pool, m->cell);
941                 goto out;
942         }
943
944         /*
945          * Release any bios held while the block was being provisioned.
946          * If we are processing a write bio that completely covers the block,
947          * we already processed it so can ignore it now when processing
948          * the bios in the cell.
949          */
950         if (bio) {
951                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
952                 bio_endio(bio);
953         } else {
954                 inc_all_io_entry(tc->pool, m->cell->holder);
955                 remap_and_issue(tc, m->cell->holder, m->data_block);
956                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
957         }
958
959 out:
960         list_del(&m->list);
961         mempool_free(m, pool->mapping_pool);
962 }
963
964 /*----------------------------------------------------------------*/
965
966 static void free_discard_mapping(struct dm_thin_new_mapping *m)
967 {
968         struct thin_c *tc = m->tc;
969         if (m->cell)
970                 cell_defer_no_holder(tc, m->cell);
971         mempool_free(m, tc->pool->mapping_pool);
972 }
973
974 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
975 {
976         bio_io_error(m->bio);
977         free_discard_mapping(m);
978 }
979
980 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
981 {
982         bio_endio(m->bio);
983         free_discard_mapping(m);
984 }
985
986 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
987 {
988         int r;
989         struct thin_c *tc = m->tc;
990
991         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
992         if (r) {
993                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
994                 bio_io_error(m->bio);
995         } else
996                 bio_endio(m->bio);
997
998         cell_defer_no_holder(tc, m->cell);
999         mempool_free(m, tc->pool->mapping_pool);
1000 }
1001
1002 /*----------------------------------------------------------------*/
1003
1004 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m)
1005 {
1006         /*
1007          * We've already unmapped this range of blocks, but before we
1008          * passdown we have to check that these blocks are now unused.
1009          */
1010         int r = 0;
1011         bool used = true;
1012         struct thin_c *tc = m->tc;
1013         struct pool *pool = tc->pool;
1014         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1015         struct discard_op op;
1016
1017         begin_discard(&op, tc, m->bio);
1018         while (b != end) {
1019                 /* find start of unmapped run */
1020                 for (; b < end; b++) {
1021                         r = dm_pool_block_is_used(pool->pmd, b, &used);
1022                         if (r)
1023                                 goto out;
1024
1025                         if (!used)
1026                                 break;
1027                 }
1028
1029                 if (b == end)
1030                         break;
1031
1032                 /* find end of run */
1033                 for (e = b + 1; e != end; e++) {
1034                         r = dm_pool_block_is_used(pool->pmd, e, &used);
1035                         if (r)
1036                                 goto out;
1037
1038                         if (used)
1039                                 break;
1040                 }
1041
1042                 r = issue_discard(&op, b, e);
1043                 if (r)
1044                         goto out;
1045
1046                 b = e;
1047         }
1048 out:
1049         end_discard(&op, r);
1050 }
1051
1052 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
1053 {
1054         int r;
1055         struct thin_c *tc = m->tc;
1056         struct pool *pool = tc->pool;
1057
1058         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1059         if (r) {
1060                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1061                 bio_io_error(m->bio);
1062
1063         } else if (m->maybe_shared) {
1064                 passdown_double_checking_shared_status(m);
1065
1066         } else {
1067                 struct discard_op op;
1068                 begin_discard(&op, tc, m->bio);
1069                 r = issue_discard(&op, m->data_block,
1070                                   m->data_block + (m->virt_end - m->virt_begin));
1071                 end_discard(&op, r);
1072         }
1073
1074         cell_defer_no_holder(tc, m->cell);
1075         mempool_free(m, pool->mapping_pool);
1076 }
1077
1078 static void process_prepared(struct pool *pool, struct list_head *head,
1079                              process_mapping_fn *fn)
1080 {
1081         unsigned long flags;
1082         struct list_head maps;
1083         struct dm_thin_new_mapping *m, *tmp;
1084
1085         INIT_LIST_HEAD(&maps);
1086         spin_lock_irqsave(&pool->lock, flags);
1087         list_splice_init(head, &maps);
1088         spin_unlock_irqrestore(&pool->lock, flags);
1089
1090         list_for_each_entry_safe(m, tmp, &maps, list)
1091                 (*fn)(m);
1092 }
1093
1094 /*
1095  * Deferred bio jobs.
1096  */
1097 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1098 {
1099         return bio->bi_iter.bi_size ==
1100                 (pool->sectors_per_block << SECTOR_SHIFT);
1101 }
1102
1103 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1104 {
1105         return (bio_data_dir(bio) == WRITE) &&
1106                 io_overlaps_block(pool, bio);
1107 }
1108
1109 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1110                                bio_end_io_t *fn)
1111 {
1112         *save = bio->bi_end_io;
1113         bio->bi_end_io = fn;
1114 }
1115
1116 static int ensure_next_mapping(struct pool *pool)
1117 {
1118         if (pool->next_mapping)
1119                 return 0;
1120
1121         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1122
1123         return pool->next_mapping ? 0 : -ENOMEM;
1124 }
1125
1126 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1127 {
1128         struct dm_thin_new_mapping *m = pool->next_mapping;
1129
1130         BUG_ON(!pool->next_mapping);
1131
1132         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1133         INIT_LIST_HEAD(&m->list);
1134         m->bio = NULL;
1135
1136         pool->next_mapping = NULL;
1137
1138         return m;
1139 }
1140
1141 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1142                     sector_t begin, sector_t end)
1143 {
1144         int r;
1145         struct dm_io_region to;
1146
1147         to.bdev = tc->pool_dev->bdev;
1148         to.sector = begin;
1149         to.count = end - begin;
1150
1151         r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1152         if (r < 0) {
1153                 DMERR_LIMIT("dm_kcopyd_zero() failed");
1154                 copy_complete(1, 1, m);
1155         }
1156 }
1157
1158 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1159                                       dm_block_t data_begin,
1160                                       struct dm_thin_new_mapping *m)
1161 {
1162         struct pool *pool = tc->pool;
1163         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1164
1165         h->overwrite_mapping = m;
1166         m->bio = bio;
1167         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1168         inc_all_io_entry(pool, bio);
1169         remap_and_issue(tc, bio, data_begin);
1170 }
1171
1172 /*
1173  * A partial copy also needs to zero the uncopied region.
1174  */
1175 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1176                           struct dm_dev *origin, dm_block_t data_origin,
1177                           dm_block_t data_dest,
1178                           struct dm_bio_prison_cell *cell, struct bio *bio,
1179                           sector_t len)
1180 {
1181         int r;
1182         struct pool *pool = tc->pool;
1183         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1184
1185         m->tc = tc;
1186         m->virt_begin = virt_block;
1187         m->virt_end = virt_block + 1u;
1188         m->data_block = data_dest;
1189         m->cell = cell;
1190
1191         /*
1192          * quiesce action + copy action + an extra reference held for the
1193          * duration of this function (we may need to inc later for a
1194          * partial zero).
1195          */
1196         atomic_set(&m->prepare_actions, 3);
1197
1198         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1199                 complete_mapping_preparation(m); /* already quiesced */
1200
1201         /*
1202          * IO to pool_dev remaps to the pool target's data_dev.
1203          *
1204          * If the whole block of data is being overwritten, we can issue the
1205          * bio immediately. Otherwise we use kcopyd to clone the data first.
1206          */
1207         if (io_overwrites_block(pool, bio))
1208                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1209         else {
1210                 struct dm_io_region from, to;
1211
1212                 from.bdev = origin->bdev;
1213                 from.sector = data_origin * pool->sectors_per_block;
1214                 from.count = len;
1215
1216                 to.bdev = tc->pool_dev->bdev;
1217                 to.sector = data_dest * pool->sectors_per_block;
1218                 to.count = len;
1219
1220                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1221                                    0, copy_complete, m);
1222                 if (r < 0) {
1223                         DMERR_LIMIT("dm_kcopyd_copy() failed");
1224                         copy_complete(1, 1, m);
1225
1226                         /*
1227                          * We allow the zero to be issued, to simplify the
1228                          * error path.  Otherwise we'd need to start
1229                          * worrying about decrementing the prepare_actions
1230                          * counter.
1231                          */
1232                 }
1233
1234                 /*
1235                  * Do we need to zero a tail region?
1236                  */
1237                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1238                         atomic_inc(&m->prepare_actions);
1239                         ll_zero(tc, m,
1240                                 data_dest * pool->sectors_per_block + len,
1241                                 (data_dest + 1) * pool->sectors_per_block);
1242                 }
1243         }
1244
1245         complete_mapping_preparation(m); /* drop our ref */
1246 }
1247
1248 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1249                                    dm_block_t data_origin, dm_block_t data_dest,
1250                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1251 {
1252         schedule_copy(tc, virt_block, tc->pool_dev,
1253                       data_origin, data_dest, cell, bio,
1254                       tc->pool->sectors_per_block);
1255 }
1256
1257 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1258                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1259                           struct bio *bio)
1260 {
1261         struct pool *pool = tc->pool;
1262         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1263
1264         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1265         m->tc = tc;
1266         m->virt_begin = virt_block;
1267         m->virt_end = virt_block + 1u;
1268         m->data_block = data_block;
1269         m->cell = cell;
1270
1271         /*
1272          * If the whole block of data is being overwritten or we are not
1273          * zeroing pre-existing data, we can issue the bio immediately.
1274          * Otherwise we use kcopyd to zero the data first.
1275          */
1276         if (pool->pf.zero_new_blocks) {
1277                 if (io_overwrites_block(pool, bio))
1278                         remap_and_issue_overwrite(tc, bio, data_block, m);
1279                 else
1280                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1281                                 (data_block + 1) * pool->sectors_per_block);
1282         } else
1283                 process_prepared_mapping(m);
1284 }
1285
1286 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1287                                    dm_block_t data_dest,
1288                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1289 {
1290         struct pool *pool = tc->pool;
1291         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1292         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1293
1294         if (virt_block_end <= tc->origin_size)
1295                 schedule_copy(tc, virt_block, tc->origin_dev,
1296                               virt_block, data_dest, cell, bio,
1297                               pool->sectors_per_block);
1298
1299         else if (virt_block_begin < tc->origin_size)
1300                 schedule_copy(tc, virt_block, tc->origin_dev,
1301                               virt_block, data_dest, cell, bio,
1302                               tc->origin_size - virt_block_begin);
1303
1304         else
1305                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1306 }
1307
1308 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1309
1310 static void check_for_space(struct pool *pool)
1311 {
1312         int r;
1313         dm_block_t nr_free;
1314
1315         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1316                 return;
1317
1318         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1319         if (r)
1320                 return;
1321
1322         if (nr_free)
1323                 set_pool_mode(pool, PM_WRITE);
1324 }
1325
1326 /*
1327  * A non-zero return indicates read_only or fail_io mode.
1328  * Many callers don't care about the return value.
1329  */
1330 static int commit(struct pool *pool)
1331 {
1332         int r;
1333
1334         if (get_pool_mode(pool) >= PM_READ_ONLY)
1335                 return -EINVAL;
1336
1337         r = dm_pool_commit_metadata(pool->pmd);
1338         if (r)
1339                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1340         else
1341                 check_for_space(pool);
1342
1343         return r;
1344 }
1345
1346 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1347 {
1348         unsigned long flags;
1349
1350         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1351                 DMWARN("%s: reached low water mark for data device: sending event.",
1352                        dm_device_name(pool->pool_md));
1353                 spin_lock_irqsave(&pool->lock, flags);
1354                 pool->low_water_triggered = true;
1355                 spin_unlock_irqrestore(&pool->lock, flags);
1356                 dm_table_event(pool->ti->table);
1357         }
1358 }
1359
1360 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1361 {
1362         int r;
1363         dm_block_t free_blocks;
1364         struct pool *pool = tc->pool;
1365
1366         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1367                 return -EINVAL;
1368
1369         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1370         if (r) {
1371                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1372                 return r;
1373         }
1374
1375         check_low_water_mark(pool, free_blocks);
1376
1377         if (!free_blocks) {
1378                 /*
1379                  * Try to commit to see if that will free up some
1380                  * more space.
1381                  */
1382                 r = commit(pool);
1383                 if (r)
1384                         return r;
1385
1386                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1387                 if (r) {
1388                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1389                         return r;
1390                 }
1391
1392                 if (!free_blocks) {
1393                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1394                         return -ENOSPC;
1395                 }
1396         }
1397
1398         r = dm_pool_alloc_data_block(pool->pmd, result);
1399         if (r) {
1400                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1401                 return r;
1402         }
1403
1404         return 0;
1405 }
1406
1407 /*
1408  * If we have run out of space, queue bios until the device is
1409  * resumed, presumably after having been reloaded with more space.
1410  */
1411 static void retry_on_resume(struct bio *bio)
1412 {
1413         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1414         struct thin_c *tc = h->tc;
1415         unsigned long flags;
1416
1417         spin_lock_irqsave(&tc->lock, flags);
1418         bio_list_add(&tc->retry_on_resume_list, bio);
1419         spin_unlock_irqrestore(&tc->lock, flags);
1420 }
1421
1422 static int should_error_unserviceable_bio(struct pool *pool)
1423 {
1424         enum pool_mode m = get_pool_mode(pool);
1425
1426         switch (m) {
1427         case PM_WRITE:
1428                 /* Shouldn't get here */
1429                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1430                 return -EIO;
1431
1432         case PM_OUT_OF_DATA_SPACE:
1433                 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1434
1435         case PM_READ_ONLY:
1436         case PM_FAIL:
1437                 return -EIO;
1438         default:
1439                 /* Shouldn't get here */
1440                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1441                 return -EIO;
1442         }
1443 }
1444
1445 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1446 {
1447         int error = should_error_unserviceable_bio(pool);
1448
1449         if (error) {
1450                 bio->bi_error = error;
1451                 bio_endio(bio);
1452         } else
1453                 retry_on_resume(bio);
1454 }
1455
1456 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1457 {
1458         struct bio *bio;
1459         struct bio_list bios;
1460         int error;
1461
1462         error = should_error_unserviceable_bio(pool);
1463         if (error) {
1464                 cell_error_with_code(pool, cell, error);
1465                 return;
1466         }
1467
1468         bio_list_init(&bios);
1469         cell_release(pool, cell, &bios);
1470
1471         while ((bio = bio_list_pop(&bios)))
1472                 retry_on_resume(bio);
1473 }
1474
1475 static void process_discard_cell_no_passdown(struct thin_c *tc,
1476                                              struct dm_bio_prison_cell *virt_cell)
1477 {
1478         struct pool *pool = tc->pool;
1479         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1480
1481         /*
1482          * We don't need to lock the data blocks, since there's no
1483          * passdown.  We only lock data blocks for allocation and breaking sharing.
1484          */
1485         m->tc = tc;
1486         m->virt_begin = virt_cell->key.block_begin;
1487         m->virt_end = virt_cell->key.block_end;
1488         m->cell = virt_cell;
1489         m->bio = virt_cell->holder;
1490
1491         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1492                 pool->process_prepared_discard(m);
1493 }
1494
1495 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1496                                  struct bio *bio)
1497 {
1498         struct pool *pool = tc->pool;
1499
1500         int r;
1501         bool maybe_shared;
1502         struct dm_cell_key data_key;
1503         struct dm_bio_prison_cell *data_cell;
1504         struct dm_thin_new_mapping *m;
1505         dm_block_t virt_begin, virt_end, data_begin;
1506
1507         while (begin != end) {
1508                 r = ensure_next_mapping(pool);
1509                 if (r)
1510                         /* we did our best */
1511                         return;
1512
1513                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1514                                               &data_begin, &maybe_shared);
1515                 if (r)
1516                         /*
1517                          * Silently fail, letting any mappings we've
1518                          * created complete.
1519                          */
1520                         break;
1521
1522                 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1523                 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1524                         /* contention, we'll give up with this range */
1525                         begin = virt_end;
1526                         continue;
1527                 }
1528
1529                 /*
1530                  * IO may still be going to the destination block.  We must
1531                  * quiesce before we can do the removal.
1532                  */
1533                 m = get_next_mapping(pool);
1534                 m->tc = tc;
1535                 m->maybe_shared = maybe_shared;
1536                 m->virt_begin = virt_begin;
1537                 m->virt_end = virt_end;
1538                 m->data_block = data_begin;
1539                 m->cell = data_cell;
1540                 m->bio = bio;
1541
1542                 /*
1543                  * The parent bio must not complete before sub discard bios are
1544                  * chained to it (see end_discard's bio_chain)!
1545                  *
1546                  * This per-mapping bi_remaining increment is paired with
1547                  * the implicit decrement that occurs via bio_endio() in
1548                  * end_discard().
1549                  */
1550                 bio_inc_remaining(bio);
1551                 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1552                         pool->process_prepared_discard(m);
1553
1554                 begin = virt_end;
1555         }
1556 }
1557
1558 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1559 {
1560         struct bio *bio = virt_cell->holder;
1561         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1562
1563         /*
1564          * The virt_cell will only get freed once the origin bio completes.
1565          * This means it will remain locked while all the individual
1566          * passdown bios are in flight.
1567          */
1568         h->cell = virt_cell;
1569         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1570
1571         /*
1572          * We complete the bio now, knowing that the bi_remaining field
1573          * will prevent completion until the sub range discards have
1574          * completed.
1575          */
1576         bio_endio(bio);
1577 }
1578
1579 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1580 {
1581         dm_block_t begin, end;
1582         struct dm_cell_key virt_key;
1583         struct dm_bio_prison_cell *virt_cell;
1584
1585         get_bio_block_range(tc, bio, &begin, &end);
1586         if (begin == end) {
1587                 /*
1588                  * The discard covers less than a block.
1589                  */
1590                 bio_endio(bio);
1591                 return;
1592         }
1593
1594         build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1595         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1596                 /*
1597                  * Potential starvation issue: We're relying on the
1598                  * fs/application being well behaved, and not trying to
1599                  * send IO to a region at the same time as discarding it.
1600                  * If they do this persistently then it's possible this
1601                  * cell will never be granted.
1602                  */
1603                 return;
1604
1605         tc->pool->process_discard_cell(tc, virt_cell);
1606 }
1607
1608 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1609                           struct dm_cell_key *key,
1610                           struct dm_thin_lookup_result *lookup_result,
1611                           struct dm_bio_prison_cell *cell)
1612 {
1613         int r;
1614         dm_block_t data_block;
1615         struct pool *pool = tc->pool;
1616
1617         r = alloc_data_block(tc, &data_block);
1618         switch (r) {
1619         case 0:
1620                 schedule_internal_copy(tc, block, lookup_result->block,
1621                                        data_block, cell, bio);
1622                 break;
1623
1624         case -ENOSPC:
1625                 retry_bios_on_resume(pool, cell);
1626                 break;
1627
1628         default:
1629                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1630                             __func__, r);
1631                 cell_error(pool, cell);
1632                 break;
1633         }
1634 }
1635
1636 static void __remap_and_issue_shared_cell(void *context,
1637                                           struct dm_bio_prison_cell *cell)
1638 {
1639         struct remap_info *info = context;
1640         struct bio *bio;
1641
1642         while ((bio = bio_list_pop(&cell->bios))) {
1643                 if ((bio_data_dir(bio) == WRITE) ||
1644                     (bio->bi_rw & (REQ_PREFLUSH | REQ_FUA) ||
1645                      bio_op(bio) == REQ_OP_DISCARD))
1646                         bio_list_add(&info->defer_bios, bio);
1647                 else {
1648                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1649
1650                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1651                         inc_all_io_entry(info->tc->pool, bio);
1652                         bio_list_add(&info->issue_bios, bio);
1653                 }
1654         }
1655 }
1656
1657 static void remap_and_issue_shared_cell(struct thin_c *tc,
1658                                         struct dm_bio_prison_cell *cell,
1659                                         dm_block_t block)
1660 {
1661         struct bio *bio;
1662         struct remap_info info;
1663
1664         info.tc = tc;
1665         bio_list_init(&info.defer_bios);
1666         bio_list_init(&info.issue_bios);
1667
1668         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1669                            &info, cell);
1670
1671         while ((bio = bio_list_pop(&info.defer_bios)))
1672                 thin_defer_bio(tc, bio);
1673
1674         while ((bio = bio_list_pop(&info.issue_bios)))
1675                 remap_and_issue(tc, bio, block);
1676 }
1677
1678 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1679                                dm_block_t block,
1680                                struct dm_thin_lookup_result *lookup_result,
1681                                struct dm_bio_prison_cell *virt_cell)
1682 {
1683         struct dm_bio_prison_cell *data_cell;
1684         struct pool *pool = tc->pool;
1685         struct dm_cell_key key;
1686
1687         /*
1688          * If cell is already occupied, then sharing is already in the process
1689          * of being broken so we have nothing further to do here.
1690          */
1691         build_data_key(tc->td, lookup_result->block, &key);
1692         if (bio_detain(pool, &key, bio, &data_cell)) {
1693                 cell_defer_no_holder(tc, virt_cell);
1694                 return;
1695         }
1696
1697         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1698                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1699                 cell_defer_no_holder(tc, virt_cell);
1700         } else {
1701                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1702
1703                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1704                 inc_all_io_entry(pool, bio);
1705                 remap_and_issue(tc, bio, lookup_result->block);
1706
1707                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1708                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1709         }
1710 }
1711
1712 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1713                             struct dm_bio_prison_cell *cell)
1714 {
1715         int r;
1716         dm_block_t data_block;
1717         struct pool *pool = tc->pool;
1718
1719         /*
1720          * Remap empty bios (flushes) immediately, without provisioning.
1721          */
1722         if (!bio->bi_iter.bi_size) {
1723                 inc_all_io_entry(pool, bio);
1724                 cell_defer_no_holder(tc, cell);
1725
1726                 remap_and_issue(tc, bio, 0);
1727                 return;
1728         }
1729
1730         /*
1731          * Fill read bios with zeroes and complete them immediately.
1732          */
1733         if (bio_data_dir(bio) == READ) {
1734                 zero_fill_bio(bio);
1735                 cell_defer_no_holder(tc, cell);
1736                 bio_endio(bio);
1737                 return;
1738         }
1739
1740         r = alloc_data_block(tc, &data_block);
1741         switch (r) {
1742         case 0:
1743                 if (tc->origin_dev)
1744                         schedule_external_copy(tc, block, data_block, cell, bio);
1745                 else
1746                         schedule_zero(tc, block, data_block, cell, bio);
1747                 break;
1748
1749         case -ENOSPC:
1750                 retry_bios_on_resume(pool, cell);
1751                 break;
1752
1753         default:
1754                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1755                             __func__, r);
1756                 cell_error(pool, cell);
1757                 break;
1758         }
1759 }
1760
1761 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1762 {
1763         int r;
1764         struct pool *pool = tc->pool;
1765         struct bio *bio = cell->holder;
1766         dm_block_t block = get_bio_block(tc, bio);
1767         struct dm_thin_lookup_result lookup_result;
1768
1769         if (tc->requeue_mode) {
1770                 cell_requeue(pool, cell);
1771                 return;
1772         }
1773
1774         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1775         switch (r) {
1776         case 0:
1777                 if (lookup_result.shared)
1778                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1779                 else {
1780                         inc_all_io_entry(pool, bio);
1781                         remap_and_issue(tc, bio, lookup_result.block);
1782                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1783                 }
1784                 break;
1785
1786         case -ENODATA:
1787                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1788                         inc_all_io_entry(pool, bio);
1789                         cell_defer_no_holder(tc, cell);
1790
1791                         if (bio_end_sector(bio) <= tc->origin_size)
1792                                 remap_to_origin_and_issue(tc, bio);
1793
1794                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1795                                 zero_fill_bio(bio);
1796                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1797                                 remap_to_origin_and_issue(tc, bio);
1798
1799                         } else {
1800                                 zero_fill_bio(bio);
1801                                 bio_endio(bio);
1802                         }
1803                 } else
1804                         provision_block(tc, bio, block, cell);
1805                 break;
1806
1807         default:
1808                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1809                             __func__, r);
1810                 cell_defer_no_holder(tc, cell);
1811                 bio_io_error(bio);
1812                 break;
1813         }
1814 }
1815
1816 static void process_bio(struct thin_c *tc, struct bio *bio)
1817 {
1818         struct pool *pool = tc->pool;
1819         dm_block_t block = get_bio_block(tc, bio);
1820         struct dm_bio_prison_cell *cell;
1821         struct dm_cell_key key;
1822
1823         /*
1824          * If cell is already occupied, then the block is already
1825          * being provisioned so we have nothing further to do here.
1826          */
1827         build_virtual_key(tc->td, block, &key);
1828         if (bio_detain(pool, &key, bio, &cell))
1829                 return;
1830
1831         process_cell(tc, cell);
1832 }
1833
1834 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1835                                     struct dm_bio_prison_cell *cell)
1836 {
1837         int r;
1838         int rw = bio_data_dir(bio);
1839         dm_block_t block = get_bio_block(tc, bio);
1840         struct dm_thin_lookup_result lookup_result;
1841
1842         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1843         switch (r) {
1844         case 0:
1845                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1846                         handle_unserviceable_bio(tc->pool, bio);
1847                         if (cell)
1848                                 cell_defer_no_holder(tc, cell);
1849                 } else {
1850                         inc_all_io_entry(tc->pool, bio);
1851                         remap_and_issue(tc, bio, lookup_result.block);
1852                         if (cell)
1853                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1854                 }
1855                 break;
1856
1857         case -ENODATA:
1858                 if (cell)
1859                         cell_defer_no_holder(tc, cell);
1860                 if (rw != READ) {
1861                         handle_unserviceable_bio(tc->pool, bio);
1862                         break;
1863                 }
1864
1865                 if (tc->origin_dev) {
1866                         inc_all_io_entry(tc->pool, bio);
1867                         remap_to_origin_and_issue(tc, bio);
1868                         break;
1869                 }
1870
1871                 zero_fill_bio(bio);
1872                 bio_endio(bio);
1873                 break;
1874
1875         default:
1876                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1877                             __func__, r);
1878                 if (cell)
1879                         cell_defer_no_holder(tc, cell);
1880                 bio_io_error(bio);
1881                 break;
1882         }
1883 }
1884
1885 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1886 {
1887         __process_bio_read_only(tc, bio, NULL);
1888 }
1889
1890 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1891 {
1892         __process_bio_read_only(tc, cell->holder, cell);
1893 }
1894
1895 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1896 {
1897         bio_endio(bio);
1898 }
1899
1900 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1901 {
1902         bio_io_error(bio);
1903 }
1904
1905 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1906 {
1907         cell_success(tc->pool, cell);
1908 }
1909
1910 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1911 {
1912         cell_error(tc->pool, cell);
1913 }
1914
1915 /*
1916  * FIXME: should we also commit due to size of transaction, measured in
1917  * metadata blocks?
1918  */
1919 static int need_commit_due_to_time(struct pool *pool)
1920 {
1921         return !time_in_range(jiffies, pool->last_commit_jiffies,
1922                               pool->last_commit_jiffies + COMMIT_PERIOD);
1923 }
1924
1925 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1926 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1927
1928 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1929 {
1930         struct rb_node **rbp, *parent;
1931         struct dm_thin_endio_hook *pbd;
1932         sector_t bi_sector = bio->bi_iter.bi_sector;
1933
1934         rbp = &tc->sort_bio_list.rb_node;
1935         parent = NULL;
1936         while (*rbp) {
1937                 parent = *rbp;
1938                 pbd = thin_pbd(parent);
1939
1940                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1941                         rbp = &(*rbp)->rb_left;
1942                 else
1943                         rbp = &(*rbp)->rb_right;
1944         }
1945
1946         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1947         rb_link_node(&pbd->rb_node, parent, rbp);
1948         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1949 }
1950
1951 static void __extract_sorted_bios(struct thin_c *tc)
1952 {
1953         struct rb_node *node;
1954         struct dm_thin_endio_hook *pbd;
1955         struct bio *bio;
1956
1957         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1958                 pbd = thin_pbd(node);
1959                 bio = thin_bio(pbd);
1960
1961                 bio_list_add(&tc->deferred_bio_list, bio);
1962                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1963         }
1964
1965         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1966 }
1967
1968 static void __sort_thin_deferred_bios(struct thin_c *tc)
1969 {
1970         struct bio *bio;
1971         struct bio_list bios;
1972
1973         bio_list_init(&bios);
1974         bio_list_merge(&bios, &tc->deferred_bio_list);
1975         bio_list_init(&tc->deferred_bio_list);
1976
1977         /* Sort deferred_bio_list using rb-tree */
1978         while ((bio = bio_list_pop(&bios)))
1979                 __thin_bio_rb_add(tc, bio);
1980
1981         /*
1982          * Transfer the sorted bios in sort_bio_list back to
1983          * deferred_bio_list to allow lockless submission of
1984          * all bios.
1985          */
1986         __extract_sorted_bios(tc);
1987 }
1988
1989 static void process_thin_deferred_bios(struct thin_c *tc)
1990 {
1991         struct pool *pool = tc->pool;
1992         unsigned long flags;
1993         struct bio *bio;
1994         struct bio_list bios;
1995         struct blk_plug plug;
1996         unsigned count = 0;
1997
1998         if (tc->requeue_mode) {
1999                 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
2000                 return;
2001         }
2002
2003         bio_list_init(&bios);
2004
2005         spin_lock_irqsave(&tc->lock, flags);
2006
2007         if (bio_list_empty(&tc->deferred_bio_list)) {
2008                 spin_unlock_irqrestore(&tc->lock, flags);
2009                 return;
2010         }
2011
2012         __sort_thin_deferred_bios(tc);
2013
2014         bio_list_merge(&bios, &tc->deferred_bio_list);
2015         bio_list_init(&tc->deferred_bio_list);
2016
2017         spin_unlock_irqrestore(&tc->lock, flags);
2018
2019         blk_start_plug(&plug);
2020         while ((bio = bio_list_pop(&bios))) {
2021                 /*
2022                  * If we've got no free new_mapping structs, and processing
2023                  * this bio might require one, we pause until there are some
2024                  * prepared mappings to process.
2025                  */
2026                 if (ensure_next_mapping(pool)) {
2027                         spin_lock_irqsave(&tc->lock, flags);
2028                         bio_list_add(&tc->deferred_bio_list, bio);
2029                         bio_list_merge(&tc->deferred_bio_list, &bios);
2030                         spin_unlock_irqrestore(&tc->lock, flags);
2031                         break;
2032                 }
2033
2034                 if (bio_op(bio) == REQ_OP_DISCARD)
2035                         pool->process_discard(tc, bio);
2036                 else
2037                         pool->process_bio(tc, bio);
2038
2039                 if ((count++ & 127) == 0) {
2040                         throttle_work_update(&pool->throttle);
2041                         dm_pool_issue_prefetches(pool->pmd);
2042                 }
2043         }
2044         blk_finish_plug(&plug);
2045 }
2046
2047 static int cmp_cells(const void *lhs, const void *rhs)
2048 {
2049         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2050         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2051
2052         BUG_ON(!lhs_cell->holder);
2053         BUG_ON(!rhs_cell->holder);
2054
2055         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2056                 return -1;
2057
2058         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2059                 return 1;
2060
2061         return 0;
2062 }
2063
2064 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2065 {
2066         unsigned count = 0;
2067         struct dm_bio_prison_cell *cell, *tmp;
2068
2069         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2070                 if (count >= CELL_SORT_ARRAY_SIZE)
2071                         break;
2072
2073                 pool->cell_sort_array[count++] = cell;
2074                 list_del(&cell->user_list);
2075         }
2076
2077         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2078
2079         return count;
2080 }
2081
2082 static void process_thin_deferred_cells(struct thin_c *tc)
2083 {
2084         struct pool *pool = tc->pool;
2085         unsigned long flags;
2086         struct list_head cells;
2087         struct dm_bio_prison_cell *cell;
2088         unsigned i, j, count;
2089
2090         INIT_LIST_HEAD(&cells);
2091
2092         spin_lock_irqsave(&tc->lock, flags);
2093         list_splice_init(&tc->deferred_cells, &cells);
2094         spin_unlock_irqrestore(&tc->lock, flags);
2095
2096         if (list_empty(&cells))
2097                 return;
2098
2099         do {
2100                 count = sort_cells(tc->pool, &cells);
2101
2102                 for (i = 0; i < count; i++) {
2103                         cell = pool->cell_sort_array[i];
2104                         BUG_ON(!cell->holder);
2105
2106                         /*
2107                          * If we've got no free new_mapping structs, and processing
2108                          * this bio might require one, we pause until there are some
2109                          * prepared mappings to process.
2110                          */
2111                         if (ensure_next_mapping(pool)) {
2112                                 for (j = i; j < count; j++)
2113                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2114
2115                                 spin_lock_irqsave(&tc->lock, flags);
2116                                 list_splice(&cells, &tc->deferred_cells);
2117                                 spin_unlock_irqrestore(&tc->lock, flags);
2118                                 return;
2119                         }
2120
2121                         if (bio_op(cell->holder) == REQ_OP_DISCARD)
2122                                 pool->process_discard_cell(tc, cell);
2123                         else
2124                                 pool->process_cell(tc, cell);
2125                 }
2126         } while (!list_empty(&cells));
2127 }
2128
2129 static void thin_get(struct thin_c *tc);
2130 static void thin_put(struct thin_c *tc);
2131
2132 /*
2133  * We can't hold rcu_read_lock() around code that can block.  So we
2134  * find a thin with the rcu lock held; bump a refcount; then drop
2135  * the lock.
2136  */
2137 static struct thin_c *get_first_thin(struct pool *pool)
2138 {
2139         struct thin_c *tc = NULL;
2140
2141         rcu_read_lock();
2142         if (!list_empty(&pool->active_thins)) {
2143                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2144                 thin_get(tc);
2145         }
2146         rcu_read_unlock();
2147
2148         return tc;
2149 }
2150
2151 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2152 {
2153         struct thin_c *old_tc = tc;
2154
2155         rcu_read_lock();
2156         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2157                 thin_get(tc);
2158                 thin_put(old_tc);
2159                 rcu_read_unlock();
2160                 return tc;
2161         }
2162         thin_put(old_tc);
2163         rcu_read_unlock();
2164
2165         return NULL;
2166 }
2167
2168 static void process_deferred_bios(struct pool *pool)
2169 {
2170         unsigned long flags;
2171         struct bio *bio;
2172         struct bio_list bios;
2173         struct thin_c *tc;
2174
2175         tc = get_first_thin(pool);
2176         while (tc) {
2177                 process_thin_deferred_cells(tc);
2178                 process_thin_deferred_bios(tc);
2179                 tc = get_next_thin(pool, tc);
2180         }
2181
2182         /*
2183          * If there are any deferred flush bios, we must commit
2184          * the metadata before issuing them.
2185          */
2186         bio_list_init(&bios);
2187         spin_lock_irqsave(&pool->lock, flags);
2188         bio_list_merge(&bios, &pool->deferred_flush_bios);
2189         bio_list_init(&pool->deferred_flush_bios);
2190         spin_unlock_irqrestore(&pool->lock, flags);
2191
2192         if (bio_list_empty(&bios) &&
2193             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2194                 return;
2195
2196         if (commit(pool)) {
2197                 while ((bio = bio_list_pop(&bios)))
2198                         bio_io_error(bio);
2199                 return;
2200         }
2201         pool->last_commit_jiffies = jiffies;
2202
2203         while ((bio = bio_list_pop(&bios)))
2204                 generic_make_request(bio);
2205 }
2206
2207 static void do_worker(struct work_struct *ws)
2208 {
2209         struct pool *pool = container_of(ws, struct pool, worker);
2210
2211         throttle_work_start(&pool->throttle);
2212         dm_pool_issue_prefetches(pool->pmd);
2213         throttle_work_update(&pool->throttle);
2214         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2215         throttle_work_update(&pool->throttle);
2216         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2217         throttle_work_update(&pool->throttle);
2218         process_deferred_bios(pool);
2219         throttle_work_complete(&pool->throttle);
2220 }
2221
2222 /*
2223  * We want to commit periodically so that not too much
2224  * unwritten data builds up.
2225  */
2226 static void do_waker(struct work_struct *ws)
2227 {
2228         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2229         wake_worker(pool);
2230         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2231 }
2232
2233 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2234
2235 /*
2236  * We're holding onto IO to allow userland time to react.  After the
2237  * timeout either the pool will have been resized (and thus back in
2238  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2239  */
2240 static void do_no_space_timeout(struct work_struct *ws)
2241 {
2242         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2243                                          no_space_timeout);
2244
2245         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2246                 pool->pf.error_if_no_space = true;
2247                 notify_of_pool_mode_change_to_oods(pool);
2248                 error_retry_list_with_code(pool, -ENOSPC);
2249         }
2250 }
2251
2252 /*----------------------------------------------------------------*/
2253
2254 struct pool_work {
2255         struct work_struct worker;
2256         struct completion complete;
2257 };
2258
2259 static struct pool_work *to_pool_work(struct work_struct *ws)
2260 {
2261         return container_of(ws, struct pool_work, worker);
2262 }
2263
2264 static void pool_work_complete(struct pool_work *pw)
2265 {
2266         complete(&pw->complete);
2267 }
2268
2269 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2270                            void (*fn)(struct work_struct *))
2271 {
2272         INIT_WORK_ONSTACK(&pw->worker, fn);
2273         init_completion(&pw->complete);
2274         queue_work(pool->wq, &pw->worker);
2275         wait_for_completion(&pw->complete);
2276 }
2277
2278 /*----------------------------------------------------------------*/
2279
2280 struct noflush_work {
2281         struct pool_work pw;
2282         struct thin_c *tc;
2283 };
2284
2285 static struct noflush_work *to_noflush(struct work_struct *ws)
2286 {
2287         return container_of(to_pool_work(ws), struct noflush_work, pw);
2288 }
2289
2290 static void do_noflush_start(struct work_struct *ws)
2291 {
2292         struct noflush_work *w = to_noflush(ws);
2293         w->tc->requeue_mode = true;
2294         requeue_io(w->tc);
2295         pool_work_complete(&w->pw);
2296 }
2297
2298 static void do_noflush_stop(struct work_struct *ws)
2299 {
2300         struct noflush_work *w = to_noflush(ws);
2301         w->tc->requeue_mode = false;
2302         pool_work_complete(&w->pw);
2303 }
2304
2305 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2306 {
2307         struct noflush_work w;
2308
2309         w.tc = tc;
2310         pool_work_wait(&w.pw, tc->pool, fn);
2311 }
2312
2313 /*----------------------------------------------------------------*/
2314
2315 static enum pool_mode get_pool_mode(struct pool *pool)
2316 {
2317         return pool->pf.mode;
2318 }
2319
2320 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2321 {
2322         dm_table_event(pool->ti->table);
2323         DMINFO("%s: switching pool to %s mode",
2324                dm_device_name(pool->pool_md), new_mode);
2325 }
2326
2327 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2328 {
2329         if (!pool->pf.error_if_no_space)
2330                 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2331         else
2332                 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2333 }
2334
2335 static bool passdown_enabled(struct pool_c *pt)
2336 {
2337         return pt->adjusted_pf.discard_passdown;
2338 }
2339
2340 static void set_discard_callbacks(struct pool *pool)
2341 {
2342         struct pool_c *pt = pool->ti->private;
2343
2344         if (passdown_enabled(pt)) {
2345                 pool->process_discard_cell = process_discard_cell_passdown;
2346                 pool->process_prepared_discard = process_prepared_discard_passdown;
2347         } else {
2348                 pool->process_discard_cell = process_discard_cell_no_passdown;
2349                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2350         }
2351 }
2352
2353 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2354 {
2355         struct pool_c *pt = pool->ti->private;
2356         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2357         enum pool_mode old_mode = get_pool_mode(pool);
2358         unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2359
2360         /*
2361          * Never allow the pool to transition to PM_WRITE mode if user
2362          * intervention is required to verify metadata and data consistency.
2363          */
2364         if (new_mode == PM_WRITE && needs_check) {
2365                 DMERR("%s: unable to switch pool to write mode until repaired.",
2366                       dm_device_name(pool->pool_md));
2367                 if (old_mode != new_mode)
2368                         new_mode = old_mode;
2369                 else
2370                         new_mode = PM_READ_ONLY;
2371         }
2372         /*
2373          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2374          * not going to recover without a thin_repair.  So we never let the
2375          * pool move out of the old mode.
2376          */
2377         if (old_mode == PM_FAIL)
2378                 new_mode = old_mode;
2379
2380         switch (new_mode) {
2381         case PM_FAIL:
2382                 if (old_mode != new_mode)
2383                         notify_of_pool_mode_change(pool, "failure");
2384                 dm_pool_metadata_read_only(pool->pmd);
2385                 pool->process_bio = process_bio_fail;
2386                 pool->process_discard = process_bio_fail;
2387                 pool->process_cell = process_cell_fail;
2388                 pool->process_discard_cell = process_cell_fail;
2389                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2390                 pool->process_prepared_discard = process_prepared_discard_fail;
2391
2392                 error_retry_list(pool);
2393                 break;
2394
2395         case PM_READ_ONLY:
2396                 if (old_mode != new_mode)
2397                         notify_of_pool_mode_change(pool, "read-only");
2398                 dm_pool_metadata_read_only(pool->pmd);
2399                 pool->process_bio = process_bio_read_only;
2400                 pool->process_discard = process_bio_success;
2401                 pool->process_cell = process_cell_read_only;
2402                 pool->process_discard_cell = process_cell_success;
2403                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2404                 pool->process_prepared_discard = process_prepared_discard_success;
2405
2406                 error_retry_list(pool);
2407                 break;
2408
2409         case PM_OUT_OF_DATA_SPACE:
2410                 /*
2411                  * Ideally we'd never hit this state; the low water mark
2412                  * would trigger userland to extend the pool before we
2413                  * completely run out of data space.  However, many small
2414                  * IOs to unprovisioned space can consume data space at an
2415                  * alarming rate.  Adjust your low water mark if you're
2416                  * frequently seeing this mode.
2417                  */
2418                 if (old_mode != new_mode)
2419                         notify_of_pool_mode_change_to_oods(pool);
2420                 pool->out_of_data_space = true;
2421                 pool->process_bio = process_bio_read_only;
2422                 pool->process_discard = process_discard_bio;
2423                 pool->process_cell = process_cell_read_only;
2424                 pool->process_prepared_mapping = process_prepared_mapping;
2425                 set_discard_callbacks(pool);
2426
2427                 if (!pool->pf.error_if_no_space && no_space_timeout)
2428                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2429                 break;
2430
2431         case PM_WRITE:
2432                 if (old_mode != new_mode)
2433                         notify_of_pool_mode_change(pool, "write");
2434                 pool->out_of_data_space = false;
2435                 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2436                 dm_pool_metadata_read_write(pool->pmd);
2437                 pool->process_bio = process_bio;
2438                 pool->process_discard = process_discard_bio;
2439                 pool->process_cell = process_cell;
2440                 pool->process_prepared_mapping = process_prepared_mapping;
2441                 set_discard_callbacks(pool);
2442                 break;
2443         }
2444
2445         pool->pf.mode = new_mode;
2446         /*
2447          * The pool mode may have changed, sync it so bind_control_target()
2448          * doesn't cause an unexpected mode transition on resume.
2449          */
2450         pt->adjusted_pf.mode = new_mode;
2451 }
2452
2453 static void abort_transaction(struct pool *pool)
2454 {
2455         const char *dev_name = dm_device_name(pool->pool_md);
2456
2457         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2458         if (dm_pool_abort_metadata(pool->pmd)) {
2459                 DMERR("%s: failed to abort metadata transaction", dev_name);
2460                 set_pool_mode(pool, PM_FAIL);
2461         }
2462
2463         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2464                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2465                 set_pool_mode(pool, PM_FAIL);
2466         }
2467 }
2468
2469 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2470 {
2471         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2472                     dm_device_name(pool->pool_md), op, r);
2473
2474         abort_transaction(pool);
2475         set_pool_mode(pool, PM_READ_ONLY);
2476 }
2477
2478 /*----------------------------------------------------------------*/
2479
2480 /*
2481  * Mapping functions.
2482  */
2483
2484 /*
2485  * Called only while mapping a thin bio to hand it over to the workqueue.
2486  */
2487 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2488 {
2489         unsigned long flags;
2490         struct pool *pool = tc->pool;
2491
2492         spin_lock_irqsave(&tc->lock, flags);
2493         bio_list_add(&tc->deferred_bio_list, bio);
2494         spin_unlock_irqrestore(&tc->lock, flags);
2495
2496         wake_worker(pool);
2497 }
2498
2499 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2500 {
2501         struct pool *pool = tc->pool;
2502
2503         throttle_lock(&pool->throttle);
2504         thin_defer_bio(tc, bio);
2505         throttle_unlock(&pool->throttle);
2506 }
2507
2508 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2509 {
2510         unsigned long flags;
2511         struct pool *pool = tc->pool;
2512
2513         throttle_lock(&pool->throttle);
2514         spin_lock_irqsave(&tc->lock, flags);
2515         list_add_tail(&cell->user_list, &tc->deferred_cells);
2516         spin_unlock_irqrestore(&tc->lock, flags);
2517         throttle_unlock(&pool->throttle);
2518
2519         wake_worker(pool);
2520 }
2521
2522 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2523 {
2524         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2525
2526         h->tc = tc;
2527         h->shared_read_entry = NULL;
2528         h->all_io_entry = NULL;
2529         h->overwrite_mapping = NULL;
2530         h->cell = NULL;
2531 }
2532
2533 /*
2534  * Non-blocking function called from the thin target's map function.
2535  */
2536 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2537 {
2538         int r;
2539         struct thin_c *tc = ti->private;
2540         dm_block_t block = get_bio_block(tc, bio);
2541         struct dm_thin_device *td = tc->td;
2542         struct dm_thin_lookup_result result;
2543         struct dm_bio_prison_cell *virt_cell, *data_cell;
2544         struct dm_cell_key key;
2545
2546         thin_hook_bio(tc, bio);
2547
2548         if (tc->requeue_mode) {
2549                 bio->bi_error = DM_ENDIO_REQUEUE;
2550                 bio_endio(bio);
2551                 return DM_MAPIO_SUBMITTED;
2552         }
2553
2554         if (get_pool_mode(tc->pool) == PM_FAIL) {
2555                 bio_io_error(bio);
2556                 return DM_MAPIO_SUBMITTED;
2557         }
2558
2559         if (bio->bi_rw & (REQ_PREFLUSH | REQ_FUA) ||
2560             bio_op(bio) == REQ_OP_DISCARD) {
2561                 thin_defer_bio_with_throttle(tc, bio);
2562                 return DM_MAPIO_SUBMITTED;
2563         }
2564
2565         /*
2566          * We must hold the virtual cell before doing the lookup, otherwise
2567          * there's a race with discard.
2568          */
2569         build_virtual_key(tc->td, block, &key);
2570         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2571                 return DM_MAPIO_SUBMITTED;
2572
2573         r = dm_thin_find_block(td, block, 0, &result);
2574
2575         /*
2576          * Note that we defer readahead too.
2577          */
2578         switch (r) {
2579         case 0:
2580                 if (unlikely(result.shared)) {
2581                         /*
2582                          * We have a race condition here between the
2583                          * result.shared value returned by the lookup and
2584                          * snapshot creation, which may cause new
2585                          * sharing.
2586                          *
2587                          * To avoid this always quiesce the origin before
2588                          * taking the snap.  You want to do this anyway to
2589                          * ensure a consistent application view
2590                          * (i.e. lockfs).
2591                          *
2592                          * More distant ancestors are irrelevant. The
2593                          * shared flag will be set in their case.
2594                          */
2595                         thin_defer_cell(tc, virt_cell);
2596                         return DM_MAPIO_SUBMITTED;
2597                 }
2598
2599                 build_data_key(tc->td, result.block, &key);
2600                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2601                         cell_defer_no_holder(tc, virt_cell);
2602                         return DM_MAPIO_SUBMITTED;
2603                 }
2604
2605                 inc_all_io_entry(tc->pool, bio);
2606                 cell_defer_no_holder(tc, data_cell);
2607                 cell_defer_no_holder(tc, virt_cell);
2608
2609                 remap(tc, bio, result.block);
2610                 return DM_MAPIO_REMAPPED;
2611
2612         case -ENODATA:
2613         case -EWOULDBLOCK:
2614                 thin_defer_cell(tc, virt_cell);
2615                 return DM_MAPIO_SUBMITTED;
2616
2617         default:
2618                 /*
2619                  * Must always call bio_io_error on failure.
2620                  * dm_thin_find_block can fail with -EINVAL if the
2621                  * pool is switched to fail-io mode.
2622                  */
2623                 bio_io_error(bio);
2624                 cell_defer_no_holder(tc, virt_cell);
2625                 return DM_MAPIO_SUBMITTED;
2626         }
2627 }
2628
2629 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2630 {
2631         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2632         struct request_queue *q;
2633
2634         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2635                 return 1;
2636
2637         q = bdev_get_queue(pt->data_dev->bdev);
2638         return bdi_congested(&q->backing_dev_info, bdi_bits);
2639 }
2640
2641 static void requeue_bios(struct pool *pool)
2642 {
2643         unsigned long flags;
2644         struct thin_c *tc;
2645
2646         rcu_read_lock();
2647         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2648                 spin_lock_irqsave(&tc->lock, flags);
2649                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2650                 bio_list_init(&tc->retry_on_resume_list);
2651                 spin_unlock_irqrestore(&tc->lock, flags);
2652         }
2653         rcu_read_unlock();
2654 }
2655
2656 /*----------------------------------------------------------------
2657  * Binding of control targets to a pool object
2658  *--------------------------------------------------------------*/
2659 static bool data_dev_supports_discard(struct pool_c *pt)
2660 {
2661         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2662
2663         return q && blk_queue_discard(q);
2664 }
2665
2666 static bool is_factor(sector_t block_size, uint32_t n)
2667 {
2668         return !sector_div(block_size, n);
2669 }
2670
2671 /*
2672  * If discard_passdown was enabled verify that the data device
2673  * supports discards.  Disable discard_passdown if not.
2674  */
2675 static void disable_passdown_if_not_supported(struct pool_c *pt)
2676 {
2677         struct pool *pool = pt->pool;
2678         struct block_device *data_bdev = pt->data_dev->bdev;
2679         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2680         const char *reason = NULL;
2681         char buf[BDEVNAME_SIZE];
2682
2683         if (!pt->adjusted_pf.discard_passdown)
2684                 return;
2685
2686         if (!data_dev_supports_discard(pt))
2687                 reason = "discard unsupported";
2688
2689         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2690                 reason = "max discard sectors smaller than a block";
2691
2692         if (reason) {
2693                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2694                 pt->adjusted_pf.discard_passdown = false;
2695         }
2696 }
2697
2698 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2699 {
2700         struct pool_c *pt = ti->private;
2701
2702         /*
2703          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2704          */
2705         enum pool_mode old_mode = get_pool_mode(pool);
2706         enum pool_mode new_mode = pt->adjusted_pf.mode;
2707
2708         /*
2709          * Don't change the pool's mode until set_pool_mode() below.
2710          * Otherwise the pool's process_* function pointers may
2711          * not match the desired pool mode.
2712          */
2713         pt->adjusted_pf.mode = old_mode;
2714
2715         pool->ti = ti;
2716         pool->pf = pt->adjusted_pf;
2717         pool->low_water_blocks = pt->low_water_blocks;
2718
2719         set_pool_mode(pool, new_mode);
2720
2721         return 0;
2722 }
2723
2724 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2725 {
2726         if (pool->ti == ti)
2727                 pool->ti = NULL;
2728 }
2729
2730 /*----------------------------------------------------------------
2731  * Pool creation
2732  *--------------------------------------------------------------*/
2733 /* Initialize pool features. */
2734 static void pool_features_init(struct pool_features *pf)
2735 {
2736         pf->mode = PM_WRITE;
2737         pf->zero_new_blocks = true;
2738         pf->discard_enabled = true;
2739         pf->discard_passdown = true;
2740         pf->error_if_no_space = false;
2741 }
2742
2743 static void __pool_destroy(struct pool *pool)
2744 {
2745         __pool_table_remove(pool);
2746
2747         vfree(pool->cell_sort_array);
2748         if (dm_pool_metadata_close(pool->pmd) < 0)
2749                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2750
2751         dm_bio_prison_destroy(pool->prison);
2752         dm_kcopyd_client_destroy(pool->copier);
2753
2754         if (pool->wq)
2755                 destroy_workqueue(pool->wq);
2756
2757         if (pool->next_mapping)
2758                 mempool_free(pool->next_mapping, pool->mapping_pool);
2759         mempool_destroy(pool->mapping_pool);
2760         dm_deferred_set_destroy(pool->shared_read_ds);
2761         dm_deferred_set_destroy(pool->all_io_ds);
2762         kfree(pool);
2763 }
2764
2765 static struct kmem_cache *_new_mapping_cache;
2766
2767 static struct pool *pool_create(struct mapped_device *pool_md,
2768                                 struct block_device *metadata_dev,
2769                                 unsigned long block_size,
2770                                 int read_only, char **error)
2771 {
2772         int r;
2773         void *err_p;
2774         struct pool *pool;
2775         struct dm_pool_metadata *pmd;
2776         bool format_device = read_only ? false : true;
2777
2778         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2779         if (IS_ERR(pmd)) {
2780                 *error = "Error creating metadata object";
2781                 return (struct pool *)pmd;
2782         }
2783
2784         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2785         if (!pool) {
2786                 *error = "Error allocating memory for pool";
2787                 err_p = ERR_PTR(-ENOMEM);
2788                 goto bad_pool;
2789         }
2790
2791         pool->pmd = pmd;
2792         pool->sectors_per_block = block_size;
2793         if (block_size & (block_size - 1))
2794                 pool->sectors_per_block_shift = -1;
2795         else
2796                 pool->sectors_per_block_shift = __ffs(block_size);
2797         pool->low_water_blocks = 0;
2798         pool_features_init(&pool->pf);
2799         pool->prison = dm_bio_prison_create();
2800         if (!pool->prison) {
2801                 *error = "Error creating pool's bio prison";
2802                 err_p = ERR_PTR(-ENOMEM);
2803                 goto bad_prison;
2804         }
2805
2806         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2807         if (IS_ERR(pool->copier)) {
2808                 r = PTR_ERR(pool->copier);
2809                 *error = "Error creating pool's kcopyd client";
2810                 err_p = ERR_PTR(r);
2811                 goto bad_kcopyd_client;
2812         }
2813
2814         /*
2815          * Create singlethreaded workqueue that will service all devices
2816          * that use this metadata.
2817          */
2818         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2819         if (!pool->wq) {
2820                 *error = "Error creating pool's workqueue";
2821                 err_p = ERR_PTR(-ENOMEM);
2822                 goto bad_wq;
2823         }
2824
2825         throttle_init(&pool->throttle);
2826         INIT_WORK(&pool->worker, do_worker);
2827         INIT_DELAYED_WORK(&pool->waker, do_waker);
2828         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2829         spin_lock_init(&pool->lock);
2830         bio_list_init(&pool->deferred_flush_bios);
2831         INIT_LIST_HEAD(&pool->prepared_mappings);
2832         INIT_LIST_HEAD(&pool->prepared_discards);
2833         INIT_LIST_HEAD(&pool->active_thins);
2834         pool->low_water_triggered = false;
2835         pool->suspended = true;
2836         pool->out_of_data_space = false;
2837
2838         pool->shared_read_ds = dm_deferred_set_create();
2839         if (!pool->shared_read_ds) {
2840                 *error = "Error creating pool's shared read deferred set";
2841                 err_p = ERR_PTR(-ENOMEM);
2842                 goto bad_shared_read_ds;
2843         }
2844
2845         pool->all_io_ds = dm_deferred_set_create();
2846         if (!pool->all_io_ds) {
2847                 *error = "Error creating pool's all io deferred set";
2848                 err_p = ERR_PTR(-ENOMEM);
2849                 goto bad_all_io_ds;
2850         }
2851
2852         pool->next_mapping = NULL;
2853         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2854                                                       _new_mapping_cache);
2855         if (!pool->mapping_pool) {
2856                 *error = "Error creating pool's mapping mempool";
2857                 err_p = ERR_PTR(-ENOMEM);
2858                 goto bad_mapping_pool;
2859         }
2860
2861         pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2862         if (!pool->cell_sort_array) {
2863                 *error = "Error allocating cell sort array";
2864                 err_p = ERR_PTR(-ENOMEM);
2865                 goto bad_sort_array;
2866         }
2867
2868         pool->ref_count = 1;
2869         pool->last_commit_jiffies = jiffies;
2870         pool->pool_md = pool_md;
2871         pool->md_dev = metadata_dev;
2872         __pool_table_insert(pool);
2873
2874         return pool;
2875
2876 bad_sort_array:
2877         mempool_destroy(pool->mapping_pool);
2878 bad_mapping_pool:
2879         dm_deferred_set_destroy(pool->all_io_ds);
2880 bad_all_io_ds:
2881         dm_deferred_set_destroy(pool->shared_read_ds);
2882 bad_shared_read_ds:
2883         destroy_workqueue(pool->wq);
2884 bad_wq:
2885         dm_kcopyd_client_destroy(pool->copier);
2886 bad_kcopyd_client:
2887         dm_bio_prison_destroy(pool->prison);
2888 bad_prison:
2889         kfree(pool);
2890 bad_pool:
2891         if (dm_pool_metadata_close(pmd))
2892                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2893
2894         return err_p;
2895 }
2896
2897 static void __pool_inc(struct pool *pool)
2898 {
2899         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2900         pool->ref_count++;
2901 }
2902
2903 static void __pool_dec(struct pool *pool)
2904 {
2905         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2906         BUG_ON(!pool->ref_count);
2907         if (!--pool->ref_count)
2908                 __pool_destroy(pool);
2909 }
2910
2911 static struct pool *__pool_find(struct mapped_device *pool_md,
2912                                 struct block_device *metadata_dev,
2913                                 unsigned long block_size, int read_only,
2914                                 char **error, int *created)
2915 {
2916         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2917
2918         if (pool) {
2919                 if (pool->pool_md != pool_md) {
2920                         *error = "metadata device already in use by a pool";
2921                         return ERR_PTR(-EBUSY);
2922                 }
2923                 __pool_inc(pool);
2924
2925         } else {
2926                 pool = __pool_table_lookup(pool_md);
2927                 if (pool) {
2928                         if (pool->md_dev != metadata_dev) {
2929                                 *error = "different pool cannot replace a pool";
2930                                 return ERR_PTR(-EINVAL);
2931                         }
2932                         __pool_inc(pool);
2933
2934                 } else {
2935                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2936                         *created = 1;
2937                 }
2938         }
2939
2940         return pool;
2941 }
2942
2943 /*----------------------------------------------------------------
2944  * Pool target methods
2945  *--------------------------------------------------------------*/
2946 static void pool_dtr(struct dm_target *ti)
2947 {
2948         struct pool_c *pt = ti->private;
2949
2950         mutex_lock(&dm_thin_pool_table.mutex);
2951
2952         unbind_control_target(pt->pool, ti);
2953         __pool_dec(pt->pool);
2954         dm_put_device(ti, pt->metadata_dev);
2955         dm_put_device(ti, pt->data_dev);
2956         kfree(pt);
2957
2958         mutex_unlock(&dm_thin_pool_table.mutex);
2959 }
2960
2961 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2962                                struct dm_target *ti)
2963 {
2964         int r;
2965         unsigned argc;
2966         const char *arg_name;
2967
2968         static struct dm_arg _args[] = {
2969                 {0, 4, "Invalid number of pool feature arguments"},
2970         };
2971
2972         /*
2973          * No feature arguments supplied.
2974          */
2975         if (!as->argc)
2976                 return 0;
2977
2978         r = dm_read_arg_group(_args, as, &argc, &ti->error);
2979         if (r)
2980                 return -EINVAL;
2981
2982         while (argc && !r) {
2983                 arg_name = dm_shift_arg(as);
2984                 argc--;
2985
2986                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2987                         pf->zero_new_blocks = false;
2988
2989                 else if (!strcasecmp(arg_name, "ignore_discard"))
2990                         pf->discard_enabled = false;
2991
2992                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2993                         pf->discard_passdown = false;
2994
2995                 else if (!strcasecmp(arg_name, "read_only"))
2996                         pf->mode = PM_READ_ONLY;
2997
2998                 else if (!strcasecmp(arg_name, "error_if_no_space"))
2999                         pf->error_if_no_space = true;
3000
3001                 else {
3002                         ti->error = "Unrecognised pool feature requested";
3003                         r = -EINVAL;
3004                         break;
3005                 }
3006         }
3007
3008         return r;
3009 }
3010
3011 static void metadata_low_callback(void *context)
3012 {
3013         struct pool *pool = context;
3014
3015         DMWARN("%s: reached low water mark for metadata device: sending event.",
3016                dm_device_name(pool->pool_md));
3017
3018         dm_table_event(pool->ti->table);
3019 }
3020
3021 static sector_t get_dev_size(struct block_device *bdev)
3022 {
3023         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3024 }
3025
3026 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3027 {
3028         sector_t metadata_dev_size = get_dev_size(bdev);
3029         char buffer[BDEVNAME_SIZE];
3030
3031         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3032                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3033                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3034 }
3035
3036 static sector_t get_metadata_dev_size(struct block_device *bdev)
3037 {
3038         sector_t metadata_dev_size = get_dev_size(bdev);
3039
3040         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3041                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3042
3043         return metadata_dev_size;
3044 }
3045
3046 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3047 {
3048         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3049
3050         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3051
3052         return metadata_dev_size;
3053 }
3054
3055 /*
3056  * When a metadata threshold is crossed a dm event is triggered, and
3057  * userland should respond by growing the metadata device.  We could let
3058  * userland set the threshold, like we do with the data threshold, but I'm
3059  * not sure they know enough to do this well.
3060  */
3061 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3062 {
3063         /*
3064          * 4M is ample for all ops with the possible exception of thin
3065          * device deletion which is harmless if it fails (just retry the
3066          * delete after you've grown the device).
3067          */
3068         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3069         return min((dm_block_t)1024ULL /* 4M */, quarter);
3070 }
3071
3072 /*
3073  * thin-pool <metadata dev> <data dev>
3074  *           <data block size (sectors)>
3075  *           <low water mark (blocks)>
3076  *           [<#feature args> [<arg>]*]
3077  *
3078  * Optional feature arguments are:
3079  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3080  *           ignore_discard: disable discard
3081  *           no_discard_passdown: don't pass discards down to the data device
3082  *           read_only: Don't allow any changes to be made to the pool metadata.
3083  *           error_if_no_space: error IOs, instead of queueing, if no space.
3084  */
3085 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3086 {
3087         int r, pool_created = 0;
3088         struct pool_c *pt;
3089         struct pool *pool;
3090         struct pool_features pf;
3091         struct dm_arg_set as;
3092         struct dm_dev *data_dev;
3093         unsigned long block_size;
3094         dm_block_t low_water_blocks;
3095         struct dm_dev *metadata_dev;
3096         fmode_t metadata_mode;
3097
3098         /*
3099          * FIXME Remove validation from scope of lock.
3100          */
3101         mutex_lock(&dm_thin_pool_table.mutex);
3102
3103         if (argc < 4) {
3104                 ti->error = "Invalid argument count";
3105                 r = -EINVAL;
3106                 goto out_unlock;
3107         }
3108
3109         as.argc = argc;
3110         as.argv = argv;
3111
3112         /*
3113          * Set default pool features.
3114          */
3115         pool_features_init(&pf);
3116
3117         dm_consume_args(&as, 4);
3118         r = parse_pool_features(&as, &pf, ti);
3119         if (r)
3120                 goto out_unlock;
3121
3122         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3123         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3124         if (r) {
3125                 ti->error = "Error opening metadata block device";
3126                 goto out_unlock;
3127         }
3128         warn_if_metadata_device_too_big(metadata_dev->bdev);
3129
3130         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3131         if (r) {
3132                 ti->error = "Error getting data device";
3133                 goto out_metadata;
3134         }
3135
3136         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3137             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3138             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3139             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3140                 ti->error = "Invalid block size";
3141                 r = -EINVAL;
3142                 goto out;
3143         }
3144
3145         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3146                 ti->error = "Invalid low water mark";
3147                 r = -EINVAL;
3148                 goto out;
3149         }
3150
3151         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3152         if (!pt) {
3153                 r = -ENOMEM;
3154                 goto out;
3155         }
3156
3157         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3158                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3159         if (IS_ERR(pool)) {
3160                 r = PTR_ERR(pool);
3161                 goto out_free_pt;
3162         }
3163
3164         /*
3165          * 'pool_created' reflects whether this is the first table load.
3166          * Top level discard support is not allowed to be changed after
3167          * initial load.  This would require a pool reload to trigger thin
3168          * device changes.
3169          */
3170         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3171                 ti->error = "Discard support cannot be disabled once enabled";
3172                 r = -EINVAL;
3173                 goto out_flags_changed;
3174         }
3175
3176         pt->pool = pool;
3177         pt->ti = ti;
3178         pt->metadata_dev = metadata_dev;
3179         pt->data_dev = data_dev;
3180         pt->low_water_blocks = low_water_blocks;
3181         pt->adjusted_pf = pt->requested_pf = pf;
3182         ti->num_flush_bios = 1;
3183
3184         /*
3185          * Only need to enable discards if the pool should pass
3186          * them down to the data device.  The thin device's discard
3187          * processing will cause mappings to be removed from the btree.
3188          */
3189         ti->discard_zeroes_data_unsupported = true;
3190         if (pf.discard_enabled && pf.discard_passdown) {
3191                 ti->num_discard_bios = 1;
3192
3193                 /*
3194                  * Setting 'discards_supported' circumvents the normal
3195                  * stacking of discard limits (this keeps the pool and
3196                  * thin devices' discard limits consistent).
3197                  */
3198                 ti->discards_supported = true;
3199         }
3200         ti->private = pt;
3201
3202         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3203                                                 calc_metadata_threshold(pt),
3204                                                 metadata_low_callback,
3205                                                 pool);
3206         if (r)
3207                 goto out_flags_changed;
3208
3209         pt->callbacks.congested_fn = pool_is_congested;
3210         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3211
3212         mutex_unlock(&dm_thin_pool_table.mutex);
3213
3214         return 0;
3215
3216 out_flags_changed:
3217         __pool_dec(pool);
3218 out_free_pt:
3219         kfree(pt);
3220 out:
3221         dm_put_device(ti, data_dev);
3222 out_metadata:
3223         dm_put_device(ti, metadata_dev);
3224 out_unlock:
3225         mutex_unlock(&dm_thin_pool_table.mutex);
3226
3227         return r;
3228 }
3229
3230 static int pool_map(struct dm_target *ti, struct bio *bio)
3231 {
3232         int r;
3233         struct pool_c *pt = ti->private;
3234         struct pool *pool = pt->pool;
3235         unsigned long flags;
3236
3237         /*
3238          * As this is a singleton target, ti->begin is always zero.
3239          */
3240         spin_lock_irqsave(&pool->lock, flags);
3241         bio->bi_bdev = pt->data_dev->bdev;
3242         r = DM_MAPIO_REMAPPED;
3243         spin_unlock_irqrestore(&pool->lock, flags);
3244
3245         return r;
3246 }
3247
3248 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3249 {
3250         int r;
3251         struct pool_c *pt = ti->private;
3252         struct pool *pool = pt->pool;
3253         sector_t data_size = ti->len;
3254         dm_block_t sb_data_size;
3255
3256         *need_commit = false;
3257
3258         (void) sector_div(data_size, pool->sectors_per_block);
3259
3260         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3261         if (r) {
3262                 DMERR("%s: failed to retrieve data device size",
3263                       dm_device_name(pool->pool_md));
3264                 return r;
3265         }
3266
3267         if (data_size < sb_data_size) {
3268                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3269                       dm_device_name(pool->pool_md),
3270                       (unsigned long long)data_size, sb_data_size);
3271                 return -EINVAL;
3272
3273         } else if (data_size > sb_data_size) {
3274                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3275                         DMERR("%s: unable to grow the data device until repaired.",
3276                               dm_device_name(pool->pool_md));
3277                         return 0;
3278                 }
3279
3280                 if (sb_data_size)
3281                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3282                                dm_device_name(pool->pool_md),
3283                                sb_data_size, (unsigned long long)data_size);
3284                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3285                 if (r) {
3286                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3287                         return r;
3288                 }
3289
3290                 *need_commit = true;
3291         }
3292
3293         return 0;
3294 }
3295
3296 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3297 {
3298         int r;
3299         struct pool_c *pt = ti->private;
3300         struct pool *pool = pt->pool;
3301         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3302
3303         *need_commit = false;
3304
3305         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3306
3307         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3308         if (r) {
3309                 DMERR("%s: failed to retrieve metadata device size",
3310                       dm_device_name(pool->pool_md));
3311                 return r;
3312         }
3313
3314         if (metadata_dev_size < sb_metadata_dev_size) {
3315                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3316                       dm_device_name(pool->pool_md),
3317                       metadata_dev_size, sb_metadata_dev_size);
3318                 return -EINVAL;
3319
3320         } else if (metadata_dev_size > sb_metadata_dev_size) {
3321                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3322                         DMERR("%s: unable to grow the metadata device until repaired.",
3323                               dm_device_name(pool->pool_md));
3324                         return 0;
3325                 }
3326
3327                 warn_if_metadata_device_too_big(pool->md_dev);
3328                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3329                        dm_device_name(pool->pool_md),
3330                        sb_metadata_dev_size, metadata_dev_size);
3331                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3332                 if (r) {
3333                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3334                         return r;
3335                 }
3336
3337                 *need_commit = true;
3338         }
3339
3340         return 0;
3341 }
3342
3343 /*
3344  * Retrieves the number of blocks of the data device from
3345  * the superblock and compares it to the actual device size,
3346  * thus resizing the data device in case it has grown.
3347  *
3348  * This both copes with opening preallocated data devices in the ctr
3349  * being followed by a resume
3350  * -and-
3351  * calling the resume method individually after userspace has
3352  * grown the data device in reaction to a table event.
3353  */
3354 static int pool_preresume(struct dm_target *ti)
3355 {
3356         int r;
3357         bool need_commit1, need_commit2;
3358         struct pool_c *pt = ti->private;
3359         struct pool *pool = pt->pool;
3360
3361         /*
3362          * Take control of the pool object.
3363          */
3364         r = bind_control_target(pool, ti);
3365         if (r)
3366                 return r;
3367
3368         r = maybe_resize_data_dev(ti, &need_commit1);
3369         if (r)
3370                 return r;
3371
3372         r = maybe_resize_metadata_dev(ti, &need_commit2);
3373         if (r)
3374                 return r;
3375
3376         if (need_commit1 || need_commit2)
3377                 (void) commit(pool);
3378
3379         return 0;
3380 }
3381
3382 static void pool_suspend_active_thins(struct pool *pool)
3383 {
3384         struct thin_c *tc;
3385
3386         /* Suspend all active thin devices */
3387         tc = get_first_thin(pool);
3388         while (tc) {
3389                 dm_internal_suspend_noflush(tc->thin_md);
3390                 tc = get_next_thin(pool, tc);
3391         }
3392 }
3393
3394 static void pool_resume_active_thins(struct pool *pool)
3395 {
3396         struct thin_c *tc;
3397
3398         /* Resume all active thin devices */
3399         tc = get_first_thin(pool);
3400         while (tc) {
3401                 dm_internal_resume(tc->thin_md);
3402                 tc = get_next_thin(pool, tc);
3403         }
3404 }
3405
3406 static void pool_resume(struct dm_target *ti)
3407 {
3408         struct pool_c *pt = ti->private;
3409         struct pool *pool = pt->pool;
3410         unsigned long flags;
3411
3412         /*
3413          * Must requeue active_thins' bios and then resume
3414          * active_thins _before_ clearing 'suspend' flag.
3415          */
3416         requeue_bios(pool);
3417         pool_resume_active_thins(pool);
3418
3419         spin_lock_irqsave(&pool->lock, flags);
3420         pool->low_water_triggered = false;
3421         pool->suspended = false;
3422         spin_unlock_irqrestore(&pool->lock, flags);
3423
3424         do_waker(&pool->waker.work);
3425 }
3426
3427 static void pool_presuspend(struct dm_target *ti)
3428 {
3429         struct pool_c *pt = ti->private;
3430         struct pool *pool = pt->pool;
3431         unsigned long flags;
3432
3433         spin_lock_irqsave(&pool->lock, flags);
3434         pool->suspended = true;
3435         spin_unlock_irqrestore(&pool->lock, flags);
3436
3437         pool_suspend_active_thins(pool);
3438 }
3439
3440 static void pool_presuspend_undo(struct dm_target *ti)
3441 {
3442         struct pool_c *pt = ti->private;
3443         struct pool *pool = pt->pool;
3444         unsigned long flags;
3445
3446         pool_resume_active_thins(pool);
3447
3448         spin_lock_irqsave(&pool->lock, flags);
3449         pool->suspended = false;
3450         spin_unlock_irqrestore(&pool->lock, flags);
3451 }
3452
3453 static void pool_postsuspend(struct dm_target *ti)
3454 {
3455         struct pool_c *pt = ti->private;
3456         struct pool *pool = pt->pool;
3457
3458         cancel_delayed_work_sync(&pool->waker);
3459         cancel_delayed_work_sync(&pool->no_space_timeout);
3460         flush_workqueue(pool->wq);
3461         (void) commit(pool);
3462 }
3463
3464 static int check_arg_count(unsigned argc, unsigned args_required)
3465 {
3466         if (argc != args_required) {
3467                 DMWARN("Message received with %u arguments instead of %u.",
3468                        argc, args_required);
3469                 return -EINVAL;
3470         }
3471
3472         return 0;
3473 }
3474
3475 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3476 {
3477         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3478             *dev_id <= MAX_DEV_ID)
3479                 return 0;
3480
3481         if (warning)
3482                 DMWARN("Message received with invalid device id: %s", arg);
3483
3484         return -EINVAL;
3485 }
3486
3487 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3488 {
3489         dm_thin_id dev_id;
3490         int r;
3491
3492         r = check_arg_count(argc, 2);
3493         if (r)
3494                 return r;
3495
3496         r = read_dev_id(argv[1], &dev_id, 1);
3497         if (r)
3498                 return r;
3499
3500         r = dm_pool_create_thin(pool->pmd, dev_id);
3501         if (r) {
3502                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3503                        argv[1]);
3504                 return r;
3505         }
3506
3507         return 0;
3508 }
3509
3510 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3511 {
3512         dm_thin_id dev_id;
3513         dm_thin_id origin_dev_id;
3514         int r;
3515
3516         r = check_arg_count(argc, 3);
3517         if (r)
3518                 return r;
3519
3520         r = read_dev_id(argv[1], &dev_id, 1);
3521         if (r)
3522                 return r;
3523
3524         r = read_dev_id(argv[2], &origin_dev_id, 1);
3525         if (r)
3526                 return r;
3527
3528         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3529         if (r) {
3530                 DMWARN("Creation of new snapshot %s of device %s failed.",
3531                        argv[1], argv[2]);
3532                 return r;
3533         }
3534
3535         return 0;
3536 }
3537
3538 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3539 {
3540         dm_thin_id dev_id;
3541         int r;
3542
3543         r = check_arg_count(argc, 2);
3544         if (r)
3545                 return r;
3546
3547         r = read_dev_id(argv[1], &dev_id, 1);
3548         if (r)
3549                 return r;
3550
3551         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3552         if (r)
3553                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3554
3555         return r;
3556 }
3557
3558 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3559 {
3560         dm_thin_id old_id, new_id;
3561         int r;
3562
3563         r = check_arg_count(argc, 3);
3564         if (r)
3565                 return r;
3566
3567         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3568                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3569                 return -EINVAL;
3570         }
3571
3572         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3573                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3574                 return -EINVAL;
3575         }
3576
3577         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3578         if (r) {
3579                 DMWARN("Failed to change transaction id from %s to %s.",
3580                        argv[1], argv[2]);
3581                 return r;
3582         }
3583
3584         return 0;
3585 }
3586
3587 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3588 {
3589         int r;
3590
3591         r = check_arg_count(argc, 1);
3592         if (r)
3593                 return r;
3594
3595         (void) commit(pool);
3596
3597         r = dm_pool_reserve_metadata_snap(pool->pmd);
3598         if (r)
3599                 DMWARN("reserve_metadata_snap message failed.");
3600
3601         return r;
3602 }
3603
3604 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3605 {
3606         int r;
3607
3608         r = check_arg_count(argc, 1);
3609         if (r)
3610                 return r;
3611
3612         r = dm_pool_release_metadata_snap(pool->pmd);
3613         if (r)
3614                 DMWARN("release_metadata_snap message failed.");
3615
3616         return r;
3617 }
3618
3619 /*
3620  * Messages supported:
3621  *   create_thin        <dev_id>
3622  *   create_snap        <dev_id> <origin_id>
3623  *   delete             <dev_id>
3624  *   set_transaction_id <current_trans_id> <new_trans_id>
3625  *   reserve_metadata_snap
3626  *   release_metadata_snap
3627  */
3628 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3629 {
3630         int r = -EINVAL;
3631         struct pool_c *pt = ti->private;
3632         struct pool *pool = pt->pool;
3633
3634         if (get_pool_mode(pool) >= PM_READ_ONLY) {
3635                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3636                       dm_device_name(pool->pool_md));
3637                 return -EOPNOTSUPP;
3638         }
3639
3640         if (!strcasecmp(argv[0], "create_thin"))
3641                 r = process_create_thin_mesg(argc, argv, pool);
3642
3643         else if (!strcasecmp(argv[0], "create_snap"))
3644                 r = process_create_snap_mesg(argc, argv, pool);
3645
3646         else if (!strcasecmp(argv[0], "delete"))
3647                 r = process_delete_mesg(argc, argv, pool);
3648
3649         else if (!strcasecmp(argv[0], "set_transaction_id"))
3650                 r = process_set_transaction_id_mesg(argc, argv, pool);
3651
3652         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3653                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3654
3655         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3656                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3657
3658         else
3659                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3660
3661         if (!r)
3662                 (void) commit(pool);
3663
3664         return r;
3665 }
3666
3667 static void emit_flags(struct pool_features *pf, char *result,
3668                        unsigned sz, unsigned maxlen)
3669 {
3670         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3671                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3672                 pf->error_if_no_space;
3673         DMEMIT("%u ", count);
3674
3675         if (!pf->zero_new_blocks)
3676                 DMEMIT("skip_block_zeroing ");
3677
3678         if (!pf->discard_enabled)
3679                 DMEMIT("ignore_discard ");
3680
3681         if (!pf->discard_passdown)
3682                 DMEMIT("no_discard_passdown ");
3683
3684         if (pf->mode == PM_READ_ONLY)
3685                 DMEMIT("read_only ");
3686
3687         if (pf->error_if_no_space)
3688                 DMEMIT("error_if_no_space ");
3689 }
3690
3691 /*
3692  * Status line is:
3693  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3694  *    <used data sectors>/<total data sectors> <held metadata root>
3695  *    <pool mode> <discard config> <no space config> <needs_check>
3696  */
3697 static void pool_status(struct dm_target *ti, status_type_t type,
3698                         unsigned status_flags, char *result, unsigned maxlen)
3699 {
3700         int r;
3701         unsigned sz = 0;
3702         uint64_t transaction_id;
3703         dm_block_t nr_free_blocks_data;
3704         dm_block_t nr_free_blocks_metadata;
3705         dm_block_t nr_blocks_data;
3706         dm_block_t nr_blocks_metadata;
3707         dm_block_t held_root;
3708         char buf[BDEVNAME_SIZE];
3709         char buf2[BDEVNAME_SIZE];
3710         struct pool_c *pt = ti->private;
3711         struct pool *pool = pt->pool;
3712
3713         switch (type) {
3714         case STATUSTYPE_INFO:
3715                 if (get_pool_mode(pool) == PM_FAIL) {
3716                         DMEMIT("Fail");
3717                         break;
3718                 }
3719
3720                 /* Commit to ensure statistics aren't out-of-date */
3721                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3722                         (void) commit(pool);
3723
3724                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3725                 if (r) {
3726                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3727                               dm_device_name(pool->pool_md), r);
3728                         goto err;
3729                 }
3730
3731                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3732                 if (r) {
3733                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3734                               dm_device_name(pool->pool_md), r);
3735                         goto err;
3736                 }
3737
3738                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3739                 if (r) {
3740                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3741                               dm_device_name(pool->pool_md), r);
3742                         goto err;
3743                 }
3744
3745                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3746                 if (r) {
3747                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3748                               dm_device_name(pool->pool_md), r);
3749                         goto err;
3750                 }
3751
3752                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3753                 if (r) {
3754                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3755                               dm_device_name(pool->pool_md), r);
3756                         goto err;
3757                 }
3758
3759                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3760                 if (r) {
3761                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3762                               dm_device_name(pool->pool_md), r);
3763                         goto err;
3764                 }
3765
3766                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3767                        (unsigned long long)transaction_id,
3768                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3769                        (unsigned long long)nr_blocks_metadata,
3770                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3771                        (unsigned long long)nr_blocks_data);
3772
3773                 if (held_root)
3774                         DMEMIT("%llu ", held_root);
3775                 else
3776                         DMEMIT("- ");
3777
3778                 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3779                         DMEMIT("out_of_data_space ");
3780                 else if (pool->pf.mode == PM_READ_ONLY)
3781                         DMEMIT("ro ");
3782                 else
3783                         DMEMIT("rw ");
3784
3785                 if (!pool->pf.discard_enabled)
3786                         DMEMIT("ignore_discard ");
3787                 else if (pool->pf.discard_passdown)
3788                         DMEMIT("discard_passdown ");
3789                 else
3790                         DMEMIT("no_discard_passdown ");
3791
3792                 if (pool->pf.error_if_no_space)
3793                         DMEMIT("error_if_no_space ");
3794                 else
3795                         DMEMIT("queue_if_no_space ");
3796
3797                 if (dm_pool_metadata_needs_check(pool->pmd))
3798                         DMEMIT("needs_check ");
3799                 else
3800                         DMEMIT("- ");
3801
3802                 break;
3803
3804         case STATUSTYPE_TABLE:
3805                 DMEMIT("%s %s %lu %llu ",
3806                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3807                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3808                        (unsigned long)pool->sectors_per_block,
3809                        (unsigned long long)pt->low_water_blocks);
3810                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3811                 break;
3812         }
3813         return;
3814
3815 err:
3816         DMEMIT("Error");
3817 }
3818
3819 static int pool_iterate_devices(struct dm_target *ti,
3820                                 iterate_devices_callout_fn fn, void *data)
3821 {
3822         struct pool_c *pt = ti->private;
3823
3824         return fn(ti, pt->data_dev, 0, ti->len, data);
3825 }
3826
3827 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3828 {
3829         struct pool_c *pt = ti->private;
3830         struct pool *pool = pt->pool;
3831         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3832
3833         /*
3834          * If max_sectors is smaller than pool->sectors_per_block adjust it
3835          * to the highest possible power-of-2 factor of pool->sectors_per_block.
3836          * This is especially beneficial when the pool's data device is a RAID
3837          * device that has a full stripe width that matches pool->sectors_per_block
3838          * -- because even though partial RAID stripe-sized IOs will be issued to a
3839          *    single RAID stripe; when aggregated they will end on a full RAID stripe
3840          *    boundary.. which avoids additional partial RAID stripe writes cascading
3841          */
3842         if (limits->max_sectors < pool->sectors_per_block) {
3843                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3844                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3845                                 limits->max_sectors--;
3846                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3847                 }
3848         }
3849
3850         /*
3851          * If the system-determined stacked limits are compatible with the
3852          * pool's blocksize (io_opt is a factor) do not override them.
3853          */
3854         if (io_opt_sectors < pool->sectors_per_block ||
3855             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3856                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3857                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3858                 else
3859                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3860                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3861         }
3862
3863         /*
3864          * pt->adjusted_pf is a staging area for the actual features to use.
3865          * They get transferred to the live pool in bind_control_target()
3866          * called from pool_preresume().
3867          */
3868         if (!pt->adjusted_pf.discard_enabled) {
3869                 /*
3870                  * Must explicitly disallow stacking discard limits otherwise the
3871                  * block layer will stack them if pool's data device has support.
3872                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3873                  * user to see that, so make sure to set all discard limits to 0.
3874                  */
3875                 limits->discard_granularity = 0;
3876                 return;
3877         }
3878
3879         disable_passdown_if_not_supported(pt);
3880
3881         /*
3882          * The pool uses the same discard limits as the underlying data
3883          * device.  DM core has already set this up.
3884          */
3885 }
3886
3887 static struct target_type pool_target = {
3888         .name = "thin-pool",
3889         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3890                     DM_TARGET_IMMUTABLE,
3891         .version = {1, 19, 0},
3892         .module = THIS_MODULE,
3893         .ctr = pool_ctr,
3894         .dtr = pool_dtr,
3895         .map = pool_map,
3896         .presuspend = pool_presuspend,
3897         .presuspend_undo = pool_presuspend_undo,
3898         .postsuspend = pool_postsuspend,
3899         .preresume = pool_preresume,
3900         .resume = pool_resume,
3901         .message = pool_message,
3902         .status = pool_status,
3903         .iterate_devices = pool_iterate_devices,
3904         .io_hints = pool_io_hints,
3905 };
3906
3907 /*----------------------------------------------------------------
3908  * Thin target methods
3909  *--------------------------------------------------------------*/
3910 static void thin_get(struct thin_c *tc)
3911 {
3912         atomic_inc(&tc->refcount);
3913 }
3914
3915 static void thin_put(struct thin_c *tc)
3916 {
3917         if (atomic_dec_and_test(&tc->refcount))
3918                 complete(&tc->can_destroy);
3919 }
3920
3921 static void thin_dtr(struct dm_target *ti)
3922 {
3923         struct thin_c *tc = ti->private;
3924         unsigned long flags;
3925
3926         spin_lock_irqsave(&tc->pool->lock, flags);
3927         list_del_rcu(&tc->list);
3928         spin_unlock_irqrestore(&tc->pool->lock, flags);
3929         synchronize_rcu();
3930
3931         thin_put(tc);
3932         wait_for_completion(&tc->can_destroy);
3933
3934         mutex_lock(&dm_thin_pool_table.mutex);
3935
3936         __pool_dec(tc->pool);
3937         dm_pool_close_thin_device(tc->td);
3938         dm_put_device(ti, tc->pool_dev);
3939         if (tc->origin_dev)
3940                 dm_put_device(ti, tc->origin_dev);
3941         kfree(tc);
3942
3943         mutex_unlock(&dm_thin_pool_table.mutex);
3944 }
3945
3946 /*
3947  * Thin target parameters:
3948  *
3949  * <pool_dev> <dev_id> [origin_dev]
3950  *
3951  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3952  * dev_id: the internal device identifier
3953  * origin_dev: a device external to the pool that should act as the origin
3954  *
3955  * If the pool device has discards disabled, they get disabled for the thin
3956  * device as well.
3957  */
3958 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3959 {
3960         int r;
3961         struct thin_c *tc;
3962         struct dm_dev *pool_dev, *origin_dev;
3963         struct mapped_device *pool_md;
3964         unsigned long flags;
3965
3966         mutex_lock(&dm_thin_pool_table.mutex);
3967
3968         if (argc != 2 && argc != 3) {
3969                 ti->error = "Invalid argument count";
3970                 r = -EINVAL;
3971                 goto out_unlock;
3972         }
3973
3974         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3975         if (!tc) {
3976                 ti->error = "Out of memory";
3977                 r = -ENOMEM;
3978                 goto out_unlock;
3979         }
3980         tc->thin_md = dm_table_get_md(ti->table);
3981         spin_lock_init(&tc->lock);
3982         INIT_LIST_HEAD(&tc->deferred_cells);
3983         bio_list_init(&tc->deferred_bio_list);
3984         bio_list_init(&tc->retry_on_resume_list);
3985         tc->sort_bio_list = RB_ROOT;
3986
3987         if (argc == 3) {
3988                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3989                 if (r) {
3990                         ti->error = "Error opening origin device";
3991                         goto bad_origin_dev;
3992                 }
3993                 tc->origin_dev = origin_dev;
3994         }
3995
3996         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3997         if (r) {
3998                 ti->error = "Error opening pool device";
3999                 goto bad_pool_dev;
4000         }
4001         tc->pool_dev = pool_dev;
4002
4003         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4004                 ti->error = "Invalid device id";
4005                 r = -EINVAL;
4006                 goto bad_common;
4007         }
4008
4009         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4010         if (!pool_md) {
4011                 ti->error = "Couldn't get pool mapped device";
4012                 r = -EINVAL;
4013                 goto bad_common;
4014         }
4015
4016         tc->pool = __pool_table_lookup(pool_md);
4017         if (!tc->pool) {
4018                 ti->error = "Couldn't find pool object";
4019                 r = -EINVAL;
4020                 goto bad_pool_lookup;
4021         }
4022         __pool_inc(tc->pool);
4023
4024         if (get_pool_mode(tc->pool) == PM_FAIL) {
4025                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4026                 r = -EINVAL;
4027                 goto bad_pool;
4028         }
4029
4030         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4031         if (r) {
4032                 ti->error = "Couldn't open thin internal device";
4033                 goto bad_pool;
4034         }
4035
4036         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4037         if (r)
4038                 goto bad;
4039
4040         ti->num_flush_bios = 1;
4041         ti->flush_supported = true;
4042         ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4043
4044         /* In case the pool supports discards, pass them on. */
4045         ti->discard_zeroes_data_unsupported = true;
4046         if (tc->pool->pf.discard_enabled) {
4047                 ti->discards_supported = true;
4048                 ti->num_discard_bios = 1;
4049                 ti->split_discard_bios = false;
4050         }
4051
4052         mutex_unlock(&dm_thin_pool_table.mutex);
4053
4054         spin_lock_irqsave(&tc->pool->lock, flags);
4055         if (tc->pool->suspended) {
4056                 spin_unlock_irqrestore(&tc->pool->lock, flags);
4057                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4058                 ti->error = "Unable to activate thin device while pool is suspended";
4059                 r = -EINVAL;
4060                 goto bad;
4061         }
4062         atomic_set(&tc->refcount, 1);
4063         init_completion(&tc->can_destroy);
4064         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4065         spin_unlock_irqrestore(&tc->pool->lock, flags);
4066         /*
4067          * This synchronize_rcu() call is needed here otherwise we risk a
4068          * wake_worker() call finding no bios to process (because the newly
4069          * added tc isn't yet visible).  So this reduces latency since we
4070          * aren't then dependent on the periodic commit to wake_worker().
4071          */
4072         synchronize_rcu();
4073
4074         dm_put(pool_md);
4075
4076         return 0;
4077
4078 bad:
4079         dm_pool_close_thin_device(tc->td);
4080 bad_pool:
4081         __pool_dec(tc->pool);
4082 bad_pool_lookup:
4083         dm_put(pool_md);
4084 bad_common:
4085         dm_put_device(ti, tc->pool_dev);
4086 bad_pool_dev:
4087         if (tc->origin_dev)
4088                 dm_put_device(ti, tc->origin_dev);
4089 bad_origin_dev:
4090         kfree(tc);
4091 out_unlock:
4092         mutex_unlock(&dm_thin_pool_table.mutex);
4093
4094         return r;
4095 }
4096
4097 static int thin_map(struct dm_target *ti, struct bio *bio)
4098 {
4099         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4100
4101         return thin_bio_map(ti, bio);
4102 }
4103
4104 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4105 {
4106         unsigned long flags;
4107         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4108         struct list_head work;
4109         struct dm_thin_new_mapping *m, *tmp;
4110         struct pool *pool = h->tc->pool;
4111
4112         if (h->shared_read_entry) {
4113                 INIT_LIST_HEAD(&work);
4114                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4115
4116                 spin_lock_irqsave(&pool->lock, flags);
4117                 list_for_each_entry_safe(m, tmp, &work, list) {
4118                         list_del(&m->list);
4119                         __complete_mapping_preparation(m);
4120                 }
4121                 spin_unlock_irqrestore(&pool->lock, flags);
4122         }
4123
4124         if (h->all_io_entry) {
4125                 INIT_LIST_HEAD(&work);
4126                 dm_deferred_entry_dec(h->all_io_entry, &work);
4127                 if (!list_empty(&work)) {
4128                         spin_lock_irqsave(&pool->lock, flags);
4129                         list_for_each_entry_safe(m, tmp, &work, list)
4130                                 list_add_tail(&m->list, &pool->prepared_discards);
4131                         spin_unlock_irqrestore(&pool->lock, flags);
4132                         wake_worker(pool);
4133                 }
4134         }
4135
4136         if (h->cell)
4137                 cell_defer_no_holder(h->tc, h->cell);
4138
4139         return 0;
4140 }
4141
4142 static void thin_presuspend(struct dm_target *ti)
4143 {
4144         struct thin_c *tc = ti->private;
4145
4146         if (dm_noflush_suspending(ti))
4147                 noflush_work(tc, do_noflush_start);
4148 }
4149
4150 static void thin_postsuspend(struct dm_target *ti)
4151 {
4152         struct thin_c *tc = ti->private;
4153
4154         /*
4155          * The dm_noflush_suspending flag has been cleared by now, so
4156          * unfortunately we must always run this.
4157          */
4158         noflush_work(tc, do_noflush_stop);
4159 }
4160
4161 static int thin_preresume(struct dm_target *ti)
4162 {
4163         struct thin_c *tc = ti->private;
4164
4165         if (tc->origin_dev)
4166                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4167
4168         return 0;
4169 }
4170
4171 /*
4172  * <nr mapped sectors> <highest mapped sector>
4173  */
4174 static void thin_status(struct dm_target *ti, status_type_t type,
4175                         unsigned status_flags, char *result, unsigned maxlen)
4176 {
4177         int r;
4178         ssize_t sz = 0;
4179         dm_block_t mapped, highest;
4180         char buf[BDEVNAME_SIZE];
4181         struct thin_c *tc = ti->private;
4182
4183         if (get_pool_mode(tc->pool) == PM_FAIL) {
4184                 DMEMIT("Fail");
4185                 return;
4186         }
4187
4188         if (!tc->td)
4189                 DMEMIT("-");
4190         else {
4191                 switch (type) {
4192                 case STATUSTYPE_INFO:
4193                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4194                         if (r) {
4195                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4196                                 goto err;
4197                         }
4198
4199                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4200                         if (r < 0) {
4201                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4202                                 goto err;
4203                         }
4204
4205                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4206                         if (r)
4207                                 DMEMIT("%llu", ((highest + 1) *
4208                                                 tc->pool->sectors_per_block) - 1);
4209                         else
4210                                 DMEMIT("-");
4211                         break;
4212
4213                 case STATUSTYPE_TABLE:
4214                         DMEMIT("%s %lu",
4215                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4216                                (unsigned long) tc->dev_id);
4217                         if (tc->origin_dev)
4218                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4219                         break;
4220                 }
4221         }
4222
4223         return;
4224
4225 err:
4226         DMEMIT("Error");
4227 }
4228
4229 static int thin_iterate_devices(struct dm_target *ti,
4230                                 iterate_devices_callout_fn fn, void *data)
4231 {
4232         sector_t blocks;
4233         struct thin_c *tc = ti->private;
4234         struct pool *pool = tc->pool;
4235
4236         /*
4237          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4238          * we follow a more convoluted path through to the pool's target.
4239          */
4240         if (!pool->ti)
4241                 return 0;       /* nothing is bound */
4242
4243         blocks = pool->ti->len;
4244         (void) sector_div(blocks, pool->sectors_per_block);
4245         if (blocks)
4246                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4247
4248         return 0;
4249 }
4250
4251 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4252 {
4253         struct thin_c *tc = ti->private;
4254         struct pool *pool = tc->pool;
4255
4256         if (!pool->pf.discard_enabled)
4257                 return;
4258
4259         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4260         limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4261 }
4262
4263 static struct target_type thin_target = {
4264         .name = "thin",
4265         .version = {1, 19, 0},
4266         .module = THIS_MODULE,
4267         .ctr = thin_ctr,
4268         .dtr = thin_dtr,
4269         .map = thin_map,
4270         .end_io = thin_endio,
4271         .preresume = thin_preresume,
4272         .presuspend = thin_presuspend,
4273         .postsuspend = thin_postsuspend,
4274         .status = thin_status,
4275         .iterate_devices = thin_iterate_devices,
4276         .io_hints = thin_io_hints,
4277 };
4278
4279 /*----------------------------------------------------------------*/
4280
4281 static int __init dm_thin_init(void)
4282 {
4283         int r;
4284
4285         pool_table_init();
4286
4287         r = dm_register_target(&thin_target);
4288         if (r)
4289                 return r;
4290
4291         r = dm_register_target(&pool_target);
4292         if (r)
4293                 goto bad_pool_target;
4294
4295         r = -ENOMEM;
4296
4297         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4298         if (!_new_mapping_cache)
4299                 goto bad_new_mapping_cache;
4300
4301         return 0;
4302
4303 bad_new_mapping_cache:
4304         dm_unregister_target(&pool_target);
4305 bad_pool_target:
4306         dm_unregister_target(&thin_target);
4307
4308         return r;
4309 }
4310
4311 static void dm_thin_exit(void)
4312 {
4313         dm_unregister_target(&thin_target);
4314         dm_unregister_target(&pool_target);
4315
4316         kmem_cache_destroy(_new_mapping_cache);
4317 }
4318
4319 module_init(dm_thin_init);
4320 module_exit(dm_thin_exit);
4321
4322 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4323 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4324
4325 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4326 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4327 MODULE_LICENSE("GPL");