]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/dm-thin.c
dm thin: do not set discard_zeroes_data
[karo-tx-linux.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm.h"
9
10 #include <linux/device-mapper.h>
11 #include <linux/dm-io.h>
12 #include <linux/dm-kcopyd.h>
13 #include <linux/list.h>
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17
18 #define DM_MSG_PREFIX   "thin"
19
20 /*
21  * Tunable constants
22  */
23 #define ENDIO_HOOK_POOL_SIZE 1024
24 #define DEFERRED_SET_SIZE 64
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 /*
30  * The block size of the device holding pool data must be
31  * between 64KB and 1GB.
32  */
33 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
34 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
35
36 /*
37  * Device id is restricted to 24 bits.
38  */
39 #define MAX_DEV_ID ((1 << 24) - 1)
40
41 /*
42  * How do we handle breaking sharing of data blocks?
43  * =================================================
44  *
45  * We use a standard copy-on-write btree to store the mappings for the
46  * devices (note I'm talking about copy-on-write of the metadata here, not
47  * the data).  When you take an internal snapshot you clone the root node
48  * of the origin btree.  After this there is no concept of an origin or a
49  * snapshot.  They are just two device trees that happen to point to the
50  * same data blocks.
51  *
52  * When we get a write in we decide if it's to a shared data block using
53  * some timestamp magic.  If it is, we have to break sharing.
54  *
55  * Let's say we write to a shared block in what was the origin.  The
56  * steps are:
57  *
58  * i) plug io further to this physical block. (see bio_prison code).
59  *
60  * ii) quiesce any read io to that shared data block.  Obviously
61  * including all devices that share this block.  (see deferred_set code)
62  *
63  * iii) copy the data block to a newly allocate block.  This step can be
64  * missed out if the io covers the block. (schedule_copy).
65  *
66  * iv) insert the new mapping into the origin's btree
67  * (process_prepared_mapping).  This act of inserting breaks some
68  * sharing of btree nodes between the two devices.  Breaking sharing only
69  * effects the btree of that specific device.  Btrees for the other
70  * devices that share the block never change.  The btree for the origin
71  * device as it was after the last commit is untouched, ie. we're using
72  * persistent data structures in the functional programming sense.
73  *
74  * v) unplug io to this physical block, including the io that triggered
75  * the breaking of sharing.
76  *
77  * Steps (ii) and (iii) occur in parallel.
78  *
79  * The metadata _doesn't_ need to be committed before the io continues.  We
80  * get away with this because the io is always written to a _new_ block.
81  * If there's a crash, then:
82  *
83  * - The origin mapping will point to the old origin block (the shared
84  * one).  This will contain the data as it was before the io that triggered
85  * the breaking of sharing came in.
86  *
87  * - The snap mapping still points to the old block.  As it would after
88  * the commit.
89  *
90  * The downside of this scheme is the timestamp magic isn't perfect, and
91  * will continue to think that data block in the snapshot device is shared
92  * even after the write to the origin has broken sharing.  I suspect data
93  * blocks will typically be shared by many different devices, so we're
94  * breaking sharing n + 1 times, rather than n, where n is the number of
95  * devices that reference this data block.  At the moment I think the
96  * benefits far, far outweigh the disadvantages.
97  */
98
99 /*----------------------------------------------------------------*/
100
101 /*
102  * Sometimes we can't deal with a bio straight away.  We put them in prison
103  * where they can't cause any mischief.  Bios are put in a cell identified
104  * by a key, multiple bios can be in the same cell.  When the cell is
105  * subsequently unlocked the bios become available.
106  */
107 struct bio_prison;
108
109 struct cell_key {
110         int virtual;
111         dm_thin_id dev;
112         dm_block_t block;
113 };
114
115 struct dm_bio_prison_cell {
116         struct hlist_node list;
117         struct bio_prison *prison;
118         struct cell_key key;
119         struct bio *holder;
120         struct bio_list bios;
121 };
122
123 struct bio_prison {
124         spinlock_t lock;
125         mempool_t *cell_pool;
126
127         unsigned nr_buckets;
128         unsigned hash_mask;
129         struct hlist_head *cells;
130 };
131
132 static uint32_t calc_nr_buckets(unsigned nr_cells)
133 {
134         uint32_t n = 128;
135
136         nr_cells /= 4;
137         nr_cells = min(nr_cells, 8192u);
138
139         while (n < nr_cells)
140                 n <<= 1;
141
142         return n;
143 }
144
145 static struct kmem_cache *_cell_cache;
146
147 /*
148  * @nr_cells should be the number of cells you want in use _concurrently_.
149  * Don't confuse it with the number of distinct keys.
150  */
151 static struct bio_prison *prison_create(unsigned nr_cells)
152 {
153         unsigned i;
154         uint32_t nr_buckets = calc_nr_buckets(nr_cells);
155         size_t len = sizeof(struct bio_prison) +
156                 (sizeof(struct hlist_head) * nr_buckets);
157         struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
158
159         if (!prison)
160                 return NULL;
161
162         spin_lock_init(&prison->lock);
163         prison->cell_pool = mempool_create_slab_pool(nr_cells, _cell_cache);
164         if (!prison->cell_pool) {
165                 kfree(prison);
166                 return NULL;
167         }
168
169         prison->nr_buckets = nr_buckets;
170         prison->hash_mask = nr_buckets - 1;
171         prison->cells = (struct hlist_head *) (prison + 1);
172         for (i = 0; i < nr_buckets; i++)
173                 INIT_HLIST_HEAD(prison->cells + i);
174
175         return prison;
176 }
177
178 static void prison_destroy(struct bio_prison *prison)
179 {
180         mempool_destroy(prison->cell_pool);
181         kfree(prison);
182 }
183
184 static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
185 {
186         const unsigned long BIG_PRIME = 4294967291UL;
187         uint64_t hash = key->block * BIG_PRIME;
188
189         return (uint32_t) (hash & prison->hash_mask);
190 }
191
192 static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
193 {
194                return (lhs->virtual == rhs->virtual) &&
195                        (lhs->dev == rhs->dev) &&
196                        (lhs->block == rhs->block);
197 }
198
199 static struct dm_bio_prison_cell *__search_bucket(struct hlist_head *bucket,
200                                                   struct cell_key *key)
201 {
202         struct dm_bio_prison_cell *cell;
203         struct hlist_node *tmp;
204
205         hlist_for_each_entry(cell, tmp, bucket, list)
206                 if (keys_equal(&cell->key, key))
207                         return cell;
208
209         return NULL;
210 }
211
212 /*
213  * This may block if a new cell needs allocating.  You must ensure that
214  * cells will be unlocked even if the calling thread is blocked.
215  *
216  * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
217  */
218 static int bio_detain(struct bio_prison *prison, struct cell_key *key,
219                       struct bio *inmate, struct dm_bio_prison_cell **ref)
220 {
221         int r = 1;
222         unsigned long flags;
223         uint32_t hash = hash_key(prison, key);
224         struct dm_bio_prison_cell *cell, *cell2;
225
226         BUG_ON(hash > prison->nr_buckets);
227
228         spin_lock_irqsave(&prison->lock, flags);
229
230         cell = __search_bucket(prison->cells + hash, key);
231         if (cell) {
232                 bio_list_add(&cell->bios, inmate);
233                 goto out;
234         }
235
236         /*
237          * Allocate a new cell
238          */
239         spin_unlock_irqrestore(&prison->lock, flags);
240         cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
241         spin_lock_irqsave(&prison->lock, flags);
242
243         /*
244          * We've been unlocked, so we have to double check that
245          * nobody else has inserted this cell in the meantime.
246          */
247         cell = __search_bucket(prison->cells + hash, key);
248         if (cell) {
249                 mempool_free(cell2, prison->cell_pool);
250                 bio_list_add(&cell->bios, inmate);
251                 goto out;
252         }
253
254         /*
255          * Use new cell.
256          */
257         cell = cell2;
258
259         cell->prison = prison;
260         memcpy(&cell->key, key, sizeof(cell->key));
261         cell->holder = inmate;
262         bio_list_init(&cell->bios);
263         hlist_add_head(&cell->list, prison->cells + hash);
264
265         r = 0;
266
267 out:
268         spin_unlock_irqrestore(&prison->lock, flags);
269
270         *ref = cell;
271
272         return r;
273 }
274
275 /*
276  * @inmates must have been initialised prior to this call
277  */
278 static void __cell_release(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
279 {
280         struct bio_prison *prison = cell->prison;
281
282         hlist_del(&cell->list);
283
284         if (inmates) {
285                 bio_list_add(inmates, cell->holder);
286                 bio_list_merge(inmates, &cell->bios);
287         }
288
289         mempool_free(cell, prison->cell_pool);
290 }
291
292 static void cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios)
293 {
294         unsigned long flags;
295         struct bio_prison *prison = cell->prison;
296
297         spin_lock_irqsave(&prison->lock, flags);
298         __cell_release(cell, bios);
299         spin_unlock_irqrestore(&prison->lock, flags);
300 }
301
302 /*
303  * There are a couple of places where we put a bio into a cell briefly
304  * before taking it out again.  In these situations we know that no other
305  * bio may be in the cell.  This function releases the cell, and also does
306  * a sanity check.
307  */
308 static void __cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
309 {
310         BUG_ON(cell->holder != bio);
311         BUG_ON(!bio_list_empty(&cell->bios));
312
313         __cell_release(cell, NULL);
314 }
315
316 static void cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
317 {
318         unsigned long flags;
319         struct bio_prison *prison = cell->prison;
320
321         spin_lock_irqsave(&prison->lock, flags);
322         __cell_release_singleton(cell, bio);
323         spin_unlock_irqrestore(&prison->lock, flags);
324 }
325
326 /*
327  * Sometimes we don't want the holder, just the additional bios.
328  */
329 static void __cell_release_no_holder(struct dm_bio_prison_cell *cell,
330                                      struct bio_list *inmates)
331 {
332         struct bio_prison *prison = cell->prison;
333
334         hlist_del(&cell->list);
335         bio_list_merge(inmates, &cell->bios);
336
337         mempool_free(cell, prison->cell_pool);
338 }
339
340 static void cell_release_no_holder(struct dm_bio_prison_cell *cell,
341                                    struct bio_list *inmates)
342 {
343         unsigned long flags;
344         struct bio_prison *prison = cell->prison;
345
346         spin_lock_irqsave(&prison->lock, flags);
347         __cell_release_no_holder(cell, inmates);
348         spin_unlock_irqrestore(&prison->lock, flags);
349 }
350
351 static void cell_error(struct dm_bio_prison_cell *cell)
352 {
353         struct bio_prison *prison = cell->prison;
354         struct bio_list bios;
355         struct bio *bio;
356         unsigned long flags;
357
358         bio_list_init(&bios);
359
360         spin_lock_irqsave(&prison->lock, flags);
361         __cell_release(cell, &bios);
362         spin_unlock_irqrestore(&prison->lock, flags);
363
364         while ((bio = bio_list_pop(&bios)))
365                 bio_io_error(bio);
366 }
367
368 /*----------------------------------------------------------------*/
369
370 /*
371  * We use the deferred set to keep track of pending reads to shared blocks.
372  * We do this to ensure the new mapping caused by a write isn't performed
373  * until these prior reads have completed.  Otherwise the insertion of the
374  * new mapping could free the old block that the read bios are mapped to.
375  */
376
377 struct deferred_set;
378 struct deferred_entry {
379         struct deferred_set *ds;
380         unsigned count;
381         struct list_head work_items;
382 };
383
384 struct deferred_set {
385         spinlock_t lock;
386         unsigned current_entry;
387         unsigned sweeper;
388         struct deferred_entry entries[DEFERRED_SET_SIZE];
389 };
390
391 static void ds_init(struct deferred_set *ds)
392 {
393         int i;
394
395         spin_lock_init(&ds->lock);
396         ds->current_entry = 0;
397         ds->sweeper = 0;
398         for (i = 0; i < DEFERRED_SET_SIZE; i++) {
399                 ds->entries[i].ds = ds;
400                 ds->entries[i].count = 0;
401                 INIT_LIST_HEAD(&ds->entries[i].work_items);
402         }
403 }
404
405 static struct deferred_entry *ds_inc(struct deferred_set *ds)
406 {
407         unsigned long flags;
408         struct deferred_entry *entry;
409
410         spin_lock_irqsave(&ds->lock, flags);
411         entry = ds->entries + ds->current_entry;
412         entry->count++;
413         spin_unlock_irqrestore(&ds->lock, flags);
414
415         return entry;
416 }
417
418 static unsigned ds_next(unsigned index)
419 {
420         return (index + 1) % DEFERRED_SET_SIZE;
421 }
422
423 static void __sweep(struct deferred_set *ds, struct list_head *head)
424 {
425         while ((ds->sweeper != ds->current_entry) &&
426                !ds->entries[ds->sweeper].count) {
427                 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
428                 ds->sweeper = ds_next(ds->sweeper);
429         }
430
431         if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
432                 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
433 }
434
435 static void ds_dec(struct deferred_entry *entry, struct list_head *head)
436 {
437         unsigned long flags;
438
439         spin_lock_irqsave(&entry->ds->lock, flags);
440         BUG_ON(!entry->count);
441         --entry->count;
442         __sweep(entry->ds, head);
443         spin_unlock_irqrestore(&entry->ds->lock, flags);
444 }
445
446 /*
447  * Returns 1 if deferred or 0 if no pending items to delay job.
448  */
449 static int ds_add_work(struct deferred_set *ds, struct list_head *work)
450 {
451         int r = 1;
452         unsigned long flags;
453         unsigned next_entry;
454
455         spin_lock_irqsave(&ds->lock, flags);
456         if ((ds->sweeper == ds->current_entry) &&
457             !ds->entries[ds->current_entry].count)
458                 r = 0;
459         else {
460                 list_add(work, &ds->entries[ds->current_entry].work_items);
461                 next_entry = ds_next(ds->current_entry);
462                 if (!ds->entries[next_entry].count)
463                         ds->current_entry = next_entry;
464         }
465         spin_unlock_irqrestore(&ds->lock, flags);
466
467         return r;
468 }
469
470 /*----------------------------------------------------------------*/
471
472 /*
473  * Key building.
474  */
475 static void build_data_key(struct dm_thin_device *td,
476                            dm_block_t b, struct cell_key *key)
477 {
478         key->virtual = 0;
479         key->dev = dm_thin_dev_id(td);
480         key->block = b;
481 }
482
483 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
484                               struct cell_key *key)
485 {
486         key->virtual = 1;
487         key->dev = dm_thin_dev_id(td);
488         key->block = b;
489 }
490
491 /*----------------------------------------------------------------*/
492
493 /*
494  * A pool device ties together a metadata device and a data device.  It
495  * also provides the interface for creating and destroying internal
496  * devices.
497  */
498 struct dm_thin_new_mapping;
499
500 /*
501  * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
502  */
503 enum pool_mode {
504         PM_WRITE,               /* metadata may be changed */
505         PM_READ_ONLY,           /* metadata may not be changed */
506         PM_FAIL,                /* all I/O fails */
507 };
508
509 struct pool_features {
510         enum pool_mode mode;
511
512         unsigned zero_new_blocks:1;
513         unsigned discard_enabled:1;
514         unsigned discard_passdown:1;
515 };
516
517 struct thin_c;
518 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
519 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
520
521 struct pool {
522         struct list_head list;
523         struct dm_target *ti;   /* Only set if a pool target is bound */
524
525         struct mapped_device *pool_md;
526         struct block_device *md_dev;
527         struct dm_pool_metadata *pmd;
528
529         dm_block_t low_water_blocks;
530         uint32_t sectors_per_block;
531         int sectors_per_block_shift;
532
533         struct pool_features pf;
534         unsigned low_water_triggered:1; /* A dm event has been sent */
535         unsigned no_free_space:1;       /* A -ENOSPC warning has been issued */
536
537         struct bio_prison *prison;
538         struct dm_kcopyd_client *copier;
539
540         struct workqueue_struct *wq;
541         struct work_struct worker;
542         struct delayed_work waker;
543
544         unsigned long last_commit_jiffies;
545         unsigned ref_count;
546
547         spinlock_t lock;
548         struct bio_list deferred_bios;
549         struct bio_list deferred_flush_bios;
550         struct list_head prepared_mappings;
551         struct list_head prepared_discards;
552
553         struct bio_list retry_on_resume_list;
554
555         struct deferred_set shared_read_ds;
556         struct deferred_set all_io_ds;
557
558         struct dm_thin_new_mapping *next_mapping;
559         mempool_t *mapping_pool;
560         mempool_t *endio_hook_pool;
561
562         process_bio_fn process_bio;
563         process_bio_fn process_discard;
564
565         process_mapping_fn process_prepared_mapping;
566         process_mapping_fn process_prepared_discard;
567 };
568
569 static enum pool_mode get_pool_mode(struct pool *pool);
570 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
571
572 /*
573  * Target context for a pool.
574  */
575 struct pool_c {
576         struct dm_target *ti;
577         struct pool *pool;
578         struct dm_dev *data_dev;
579         struct dm_dev *metadata_dev;
580         struct dm_target_callbacks callbacks;
581
582         dm_block_t low_water_blocks;
583         struct pool_features pf;
584 };
585
586 /*
587  * Target context for a thin.
588  */
589 struct thin_c {
590         struct dm_dev *pool_dev;
591         struct dm_dev *origin_dev;
592         dm_thin_id dev_id;
593
594         struct pool *pool;
595         struct dm_thin_device *td;
596 };
597
598 /*----------------------------------------------------------------*/
599
600 /*
601  * A global list of pools that uses a struct mapped_device as a key.
602  */
603 static struct dm_thin_pool_table {
604         struct mutex mutex;
605         struct list_head pools;
606 } dm_thin_pool_table;
607
608 static void pool_table_init(void)
609 {
610         mutex_init(&dm_thin_pool_table.mutex);
611         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
612 }
613
614 static void __pool_table_insert(struct pool *pool)
615 {
616         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
617         list_add(&pool->list, &dm_thin_pool_table.pools);
618 }
619
620 static void __pool_table_remove(struct pool *pool)
621 {
622         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
623         list_del(&pool->list);
624 }
625
626 static struct pool *__pool_table_lookup(struct mapped_device *md)
627 {
628         struct pool *pool = NULL, *tmp;
629
630         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
631
632         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
633                 if (tmp->pool_md == md) {
634                         pool = tmp;
635                         break;
636                 }
637         }
638
639         return pool;
640 }
641
642 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
643 {
644         struct pool *pool = NULL, *tmp;
645
646         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
647
648         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
649                 if (tmp->md_dev == md_dev) {
650                         pool = tmp;
651                         break;
652                 }
653         }
654
655         return pool;
656 }
657
658 /*----------------------------------------------------------------*/
659
660 struct dm_thin_endio_hook {
661         struct thin_c *tc;
662         struct deferred_entry *shared_read_entry;
663         struct deferred_entry *all_io_entry;
664         struct dm_thin_new_mapping *overwrite_mapping;
665 };
666
667 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
668 {
669         struct bio *bio;
670         struct bio_list bios;
671
672         bio_list_init(&bios);
673         bio_list_merge(&bios, master);
674         bio_list_init(master);
675
676         while ((bio = bio_list_pop(&bios))) {
677                 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
678
679                 if (h->tc == tc)
680                         bio_endio(bio, DM_ENDIO_REQUEUE);
681                 else
682                         bio_list_add(master, bio);
683         }
684 }
685
686 static void requeue_io(struct thin_c *tc)
687 {
688         struct pool *pool = tc->pool;
689         unsigned long flags;
690
691         spin_lock_irqsave(&pool->lock, flags);
692         __requeue_bio_list(tc, &pool->deferred_bios);
693         __requeue_bio_list(tc, &pool->retry_on_resume_list);
694         spin_unlock_irqrestore(&pool->lock, flags);
695 }
696
697 /*
698  * This section of code contains the logic for processing a thin device's IO.
699  * Much of the code depends on pool object resources (lists, workqueues, etc)
700  * but most is exclusively called from the thin target rather than the thin-pool
701  * target.
702  */
703
704 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
705 {
706         sector_t block_nr = bio->bi_sector;
707
708         if (tc->pool->sectors_per_block_shift < 0)
709                 (void) sector_div(block_nr, tc->pool->sectors_per_block);
710         else
711                 block_nr >>= tc->pool->sectors_per_block_shift;
712
713         return block_nr;
714 }
715
716 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
717 {
718         struct pool *pool = tc->pool;
719         sector_t bi_sector = bio->bi_sector;
720
721         bio->bi_bdev = tc->pool_dev->bdev;
722         if (tc->pool->sectors_per_block_shift < 0)
723                 bio->bi_sector = (block * pool->sectors_per_block) +
724                                  sector_div(bi_sector, pool->sectors_per_block);
725         else
726                 bio->bi_sector = (block << pool->sectors_per_block_shift) |
727                                 (bi_sector & (pool->sectors_per_block - 1));
728 }
729
730 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
731 {
732         bio->bi_bdev = tc->origin_dev->bdev;
733 }
734
735 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
736 {
737         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
738                 dm_thin_changed_this_transaction(tc->td);
739 }
740
741 static void issue(struct thin_c *tc, struct bio *bio)
742 {
743         struct pool *pool = tc->pool;
744         unsigned long flags;
745
746         if (!bio_triggers_commit(tc, bio)) {
747                 generic_make_request(bio);
748                 return;
749         }
750
751         /*
752          * Complete bio with an error if earlier I/O caused changes to
753          * the metadata that can't be committed e.g, due to I/O errors
754          * on the metadata device.
755          */
756         if (dm_thin_aborted_changes(tc->td)) {
757                 bio_io_error(bio);
758                 return;
759         }
760
761         /*
762          * Batch together any bios that trigger commits and then issue a
763          * single commit for them in process_deferred_bios().
764          */
765         spin_lock_irqsave(&pool->lock, flags);
766         bio_list_add(&pool->deferred_flush_bios, bio);
767         spin_unlock_irqrestore(&pool->lock, flags);
768 }
769
770 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
771 {
772         remap_to_origin(tc, bio);
773         issue(tc, bio);
774 }
775
776 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
777                             dm_block_t block)
778 {
779         remap(tc, bio, block);
780         issue(tc, bio);
781 }
782
783 /*
784  * wake_worker() is used when new work is queued and when pool_resume is
785  * ready to continue deferred IO processing.
786  */
787 static void wake_worker(struct pool *pool)
788 {
789         queue_work(pool->wq, &pool->worker);
790 }
791
792 /*----------------------------------------------------------------*/
793
794 /*
795  * Bio endio functions.
796  */
797 struct dm_thin_new_mapping {
798         struct list_head list;
799
800         unsigned quiesced:1;
801         unsigned prepared:1;
802         unsigned pass_discard:1;
803
804         struct thin_c *tc;
805         dm_block_t virt_block;
806         dm_block_t data_block;
807         struct dm_bio_prison_cell *cell, *cell2;
808         int err;
809
810         /*
811          * If the bio covers the whole area of a block then we can avoid
812          * zeroing or copying.  Instead this bio is hooked.  The bio will
813          * still be in the cell, so care has to be taken to avoid issuing
814          * the bio twice.
815          */
816         struct bio *bio;
817         bio_end_io_t *saved_bi_end_io;
818 };
819
820 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
821 {
822         struct pool *pool = m->tc->pool;
823
824         if (m->quiesced && m->prepared) {
825                 list_add(&m->list, &pool->prepared_mappings);
826                 wake_worker(pool);
827         }
828 }
829
830 static void copy_complete(int read_err, unsigned long write_err, void *context)
831 {
832         unsigned long flags;
833         struct dm_thin_new_mapping *m = context;
834         struct pool *pool = m->tc->pool;
835
836         m->err = read_err || write_err ? -EIO : 0;
837
838         spin_lock_irqsave(&pool->lock, flags);
839         m->prepared = 1;
840         __maybe_add_mapping(m);
841         spin_unlock_irqrestore(&pool->lock, flags);
842 }
843
844 static void overwrite_endio(struct bio *bio, int err)
845 {
846         unsigned long flags;
847         struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
848         struct dm_thin_new_mapping *m = h->overwrite_mapping;
849         struct pool *pool = m->tc->pool;
850
851         m->err = err;
852
853         spin_lock_irqsave(&pool->lock, flags);
854         m->prepared = 1;
855         __maybe_add_mapping(m);
856         spin_unlock_irqrestore(&pool->lock, flags);
857 }
858
859 /*----------------------------------------------------------------*/
860
861 /*
862  * Workqueue.
863  */
864
865 /*
866  * Prepared mapping jobs.
867  */
868
869 /*
870  * This sends the bios in the cell back to the deferred_bios list.
871  */
872 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell,
873                        dm_block_t data_block)
874 {
875         struct pool *pool = tc->pool;
876         unsigned long flags;
877
878         spin_lock_irqsave(&pool->lock, flags);
879         cell_release(cell, &pool->deferred_bios);
880         spin_unlock_irqrestore(&tc->pool->lock, flags);
881
882         wake_worker(pool);
883 }
884
885 /*
886  * Same as cell_defer above, except it omits one particular detainee,
887  * a write bio that covers the block and has already been processed.
888  */
889 static void cell_defer_except(struct thin_c *tc, struct dm_bio_prison_cell *cell)
890 {
891         struct bio_list bios;
892         struct pool *pool = tc->pool;
893         unsigned long flags;
894
895         bio_list_init(&bios);
896
897         spin_lock_irqsave(&pool->lock, flags);
898         cell_release_no_holder(cell, &pool->deferred_bios);
899         spin_unlock_irqrestore(&pool->lock, flags);
900
901         wake_worker(pool);
902 }
903
904 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
905 {
906         if (m->bio)
907                 m->bio->bi_end_io = m->saved_bi_end_io;
908         cell_error(m->cell);
909         list_del(&m->list);
910         mempool_free(m, m->tc->pool->mapping_pool);
911 }
912 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
913 {
914         struct thin_c *tc = m->tc;
915         struct bio *bio;
916         int r;
917
918         bio = m->bio;
919         if (bio)
920                 bio->bi_end_io = m->saved_bi_end_io;
921
922         if (m->err) {
923                 cell_error(m->cell);
924                 goto out;
925         }
926
927         /*
928          * Commit the prepared block into the mapping btree.
929          * Any I/O for this block arriving after this point will get
930          * remapped to it directly.
931          */
932         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
933         if (r) {
934                 DMERR("dm_thin_insert_block() failed");
935                 cell_error(m->cell);
936                 goto out;
937         }
938
939         /*
940          * Release any bios held while the block was being provisioned.
941          * If we are processing a write bio that completely covers the block,
942          * we already processed it so can ignore it now when processing
943          * the bios in the cell.
944          */
945         if (bio) {
946                 cell_defer_except(tc, m->cell);
947                 bio_endio(bio, 0);
948         } else
949                 cell_defer(tc, m->cell, m->data_block);
950
951 out:
952         list_del(&m->list);
953         mempool_free(m, tc->pool->mapping_pool);
954 }
955
956 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
957 {
958         struct thin_c *tc = m->tc;
959
960         bio_io_error(m->bio);
961         cell_defer_except(tc, m->cell);
962         cell_defer_except(tc, m->cell2);
963         mempool_free(m, tc->pool->mapping_pool);
964 }
965
966 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
967 {
968         struct thin_c *tc = m->tc;
969
970         if (m->pass_discard)
971                 remap_and_issue(tc, m->bio, m->data_block);
972         else
973                 bio_endio(m->bio, 0);
974
975         cell_defer_except(tc, m->cell);
976         cell_defer_except(tc, m->cell2);
977         mempool_free(m, tc->pool->mapping_pool);
978 }
979
980 static void process_prepared_discard(struct dm_thin_new_mapping *m)
981 {
982         int r;
983         struct thin_c *tc = m->tc;
984
985         r = dm_thin_remove_block(tc->td, m->virt_block);
986         if (r)
987                 DMERR("dm_thin_remove_block() failed");
988
989         process_prepared_discard_passdown(m);
990 }
991
992 static void process_prepared(struct pool *pool, struct list_head *head,
993                              process_mapping_fn *fn)
994 {
995         unsigned long flags;
996         struct list_head maps;
997         struct dm_thin_new_mapping *m, *tmp;
998
999         INIT_LIST_HEAD(&maps);
1000         spin_lock_irqsave(&pool->lock, flags);
1001         list_splice_init(head, &maps);
1002         spin_unlock_irqrestore(&pool->lock, flags);
1003
1004         list_for_each_entry_safe(m, tmp, &maps, list)
1005                 (*fn)(m);
1006 }
1007
1008 /*
1009  * Deferred bio jobs.
1010  */
1011 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1012 {
1013         return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
1014 }
1015
1016 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1017 {
1018         return (bio_data_dir(bio) == WRITE) &&
1019                 io_overlaps_block(pool, bio);
1020 }
1021
1022 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1023                                bio_end_io_t *fn)
1024 {
1025         *save = bio->bi_end_io;
1026         bio->bi_end_io = fn;
1027 }
1028
1029 static int ensure_next_mapping(struct pool *pool)
1030 {
1031         if (pool->next_mapping)
1032                 return 0;
1033
1034         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1035
1036         return pool->next_mapping ? 0 : -ENOMEM;
1037 }
1038
1039 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1040 {
1041         struct dm_thin_new_mapping *r = pool->next_mapping;
1042
1043         BUG_ON(!pool->next_mapping);
1044
1045         pool->next_mapping = NULL;
1046
1047         return r;
1048 }
1049
1050 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1051                           struct dm_dev *origin, dm_block_t data_origin,
1052                           dm_block_t data_dest,
1053                           struct dm_bio_prison_cell *cell, struct bio *bio)
1054 {
1055         int r;
1056         struct pool *pool = tc->pool;
1057         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1058
1059         INIT_LIST_HEAD(&m->list);
1060         m->quiesced = 0;
1061         m->prepared = 0;
1062         m->tc = tc;
1063         m->virt_block = virt_block;
1064         m->data_block = data_dest;
1065         m->cell = cell;
1066         m->err = 0;
1067         m->bio = NULL;
1068
1069         if (!ds_add_work(&pool->shared_read_ds, &m->list))
1070                 m->quiesced = 1;
1071
1072         /*
1073          * IO to pool_dev remaps to the pool target's data_dev.
1074          *
1075          * If the whole block of data is being overwritten, we can issue the
1076          * bio immediately. Otherwise we use kcopyd to clone the data first.
1077          */
1078         if (io_overwrites_block(pool, bio)) {
1079                 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1080
1081                 h->overwrite_mapping = m;
1082                 m->bio = bio;
1083                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1084                 remap_and_issue(tc, bio, data_dest);
1085         } else {
1086                 struct dm_io_region from, to;
1087
1088                 from.bdev = origin->bdev;
1089                 from.sector = data_origin * pool->sectors_per_block;
1090                 from.count = pool->sectors_per_block;
1091
1092                 to.bdev = tc->pool_dev->bdev;
1093                 to.sector = data_dest * pool->sectors_per_block;
1094                 to.count = pool->sectors_per_block;
1095
1096                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1097                                    0, copy_complete, m);
1098                 if (r < 0) {
1099                         mempool_free(m, pool->mapping_pool);
1100                         DMERR("dm_kcopyd_copy() failed");
1101                         cell_error(cell);
1102                 }
1103         }
1104 }
1105
1106 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1107                                    dm_block_t data_origin, dm_block_t data_dest,
1108                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1109 {
1110         schedule_copy(tc, virt_block, tc->pool_dev,
1111                       data_origin, data_dest, cell, bio);
1112 }
1113
1114 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1115                                    dm_block_t data_dest,
1116                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1117 {
1118         schedule_copy(tc, virt_block, tc->origin_dev,
1119                       virt_block, data_dest, cell, bio);
1120 }
1121
1122 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1123                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1124                           struct bio *bio)
1125 {
1126         struct pool *pool = tc->pool;
1127         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1128
1129         INIT_LIST_HEAD(&m->list);
1130         m->quiesced = 1;
1131         m->prepared = 0;
1132         m->tc = tc;
1133         m->virt_block = virt_block;
1134         m->data_block = data_block;
1135         m->cell = cell;
1136         m->err = 0;
1137         m->bio = NULL;
1138
1139         /*
1140          * If the whole block of data is being overwritten or we are not
1141          * zeroing pre-existing data, we can issue the bio immediately.
1142          * Otherwise we use kcopyd to zero the data first.
1143          */
1144         if (!pool->pf.zero_new_blocks)
1145                 process_prepared_mapping(m);
1146
1147         else if (io_overwrites_block(pool, bio)) {
1148                 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1149
1150                 h->overwrite_mapping = m;
1151                 m->bio = bio;
1152                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1153                 remap_and_issue(tc, bio, data_block);
1154         } else {
1155                 int r;
1156                 struct dm_io_region to;
1157
1158                 to.bdev = tc->pool_dev->bdev;
1159                 to.sector = data_block * pool->sectors_per_block;
1160                 to.count = pool->sectors_per_block;
1161
1162                 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1163                 if (r < 0) {
1164                         mempool_free(m, pool->mapping_pool);
1165                         DMERR("dm_kcopyd_zero() failed");
1166                         cell_error(cell);
1167                 }
1168         }
1169 }
1170
1171 static int commit(struct pool *pool)
1172 {
1173         int r;
1174
1175         r = dm_pool_commit_metadata(pool->pmd);
1176         if (r)
1177                 DMERR("commit failed, error = %d", r);
1178
1179         return r;
1180 }
1181
1182 /*
1183  * A non-zero return indicates read_only or fail_io mode.
1184  * Many callers don't care about the return value.
1185  */
1186 static int commit_or_fallback(struct pool *pool)
1187 {
1188         int r;
1189
1190         if (get_pool_mode(pool) != PM_WRITE)
1191                 return -EINVAL;
1192
1193         r = commit(pool);
1194         if (r)
1195                 set_pool_mode(pool, PM_READ_ONLY);
1196
1197         return r;
1198 }
1199
1200 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1201 {
1202         int r;
1203         dm_block_t free_blocks;
1204         unsigned long flags;
1205         struct pool *pool = tc->pool;
1206
1207         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1208         if (r)
1209                 return r;
1210
1211         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1212                 DMWARN("%s: reached low water mark, sending event.",
1213                        dm_device_name(pool->pool_md));
1214                 spin_lock_irqsave(&pool->lock, flags);
1215                 pool->low_water_triggered = 1;
1216                 spin_unlock_irqrestore(&pool->lock, flags);
1217                 dm_table_event(pool->ti->table);
1218         }
1219
1220         if (!free_blocks) {
1221                 if (pool->no_free_space)
1222                         return -ENOSPC;
1223                 else {
1224                         /*
1225                          * Try to commit to see if that will free up some
1226                          * more space.
1227                          */
1228                         (void) commit_or_fallback(pool);
1229
1230                         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1231                         if (r)
1232                                 return r;
1233
1234                         /*
1235                          * If we still have no space we set a flag to avoid
1236                          * doing all this checking and return -ENOSPC.
1237                          */
1238                         if (!free_blocks) {
1239                                 DMWARN("%s: no free space available.",
1240                                        dm_device_name(pool->pool_md));
1241                                 spin_lock_irqsave(&pool->lock, flags);
1242                                 pool->no_free_space = 1;
1243                                 spin_unlock_irqrestore(&pool->lock, flags);
1244                                 return -ENOSPC;
1245                         }
1246                 }
1247         }
1248
1249         r = dm_pool_alloc_data_block(pool->pmd, result);
1250         if (r)
1251                 return r;
1252
1253         return 0;
1254 }
1255
1256 /*
1257  * If we have run out of space, queue bios until the device is
1258  * resumed, presumably after having been reloaded with more space.
1259  */
1260 static void retry_on_resume(struct bio *bio)
1261 {
1262         struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1263         struct thin_c *tc = h->tc;
1264         struct pool *pool = tc->pool;
1265         unsigned long flags;
1266
1267         spin_lock_irqsave(&pool->lock, flags);
1268         bio_list_add(&pool->retry_on_resume_list, bio);
1269         spin_unlock_irqrestore(&pool->lock, flags);
1270 }
1271
1272 static void no_space(struct dm_bio_prison_cell *cell)
1273 {
1274         struct bio *bio;
1275         struct bio_list bios;
1276
1277         bio_list_init(&bios);
1278         cell_release(cell, &bios);
1279
1280         while ((bio = bio_list_pop(&bios)))
1281                 retry_on_resume(bio);
1282 }
1283
1284 static void process_discard(struct thin_c *tc, struct bio *bio)
1285 {
1286         int r;
1287         unsigned long flags;
1288         struct pool *pool = tc->pool;
1289         struct dm_bio_prison_cell *cell, *cell2;
1290         struct cell_key key, key2;
1291         dm_block_t block = get_bio_block(tc, bio);
1292         struct dm_thin_lookup_result lookup_result;
1293         struct dm_thin_new_mapping *m;
1294
1295         build_virtual_key(tc->td, block, &key);
1296         if (bio_detain(tc->pool->prison, &key, bio, &cell))
1297                 return;
1298
1299         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1300         switch (r) {
1301         case 0:
1302                 /*
1303                  * Check nobody is fiddling with this pool block.  This can
1304                  * happen if someone's in the process of breaking sharing
1305                  * on this block.
1306                  */
1307                 build_data_key(tc->td, lookup_result.block, &key2);
1308                 if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1309                         cell_release_singleton(cell, bio);
1310                         break;
1311                 }
1312
1313                 if (io_overlaps_block(pool, bio)) {
1314                         /*
1315                          * IO may still be going to the destination block.  We must
1316                          * quiesce before we can do the removal.
1317                          */
1318                         m = get_next_mapping(pool);
1319                         m->tc = tc;
1320                         m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1321                         m->virt_block = block;
1322                         m->data_block = lookup_result.block;
1323                         m->cell = cell;
1324                         m->cell2 = cell2;
1325                         m->err = 0;
1326                         m->bio = bio;
1327
1328                         if (!ds_add_work(&pool->all_io_ds, &m->list)) {
1329                                 spin_lock_irqsave(&pool->lock, flags);
1330                                 list_add(&m->list, &pool->prepared_discards);
1331                                 spin_unlock_irqrestore(&pool->lock, flags);
1332                                 wake_worker(pool);
1333                         }
1334                 } else {
1335                         /*
1336                          * The DM core makes sure that the discard doesn't span
1337                          * a block boundary.  So we submit the discard of a
1338                          * partial block appropriately.
1339                          */
1340                         cell_release_singleton(cell, bio);
1341                         cell_release_singleton(cell2, bio);
1342                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1343                                 remap_and_issue(tc, bio, lookup_result.block);
1344                         else
1345                                 bio_endio(bio, 0);
1346                 }
1347                 break;
1348
1349         case -ENODATA:
1350                 /*
1351                  * It isn't provisioned, just forget it.
1352                  */
1353                 cell_release_singleton(cell, bio);
1354                 bio_endio(bio, 0);
1355                 break;
1356
1357         default:
1358                 DMERR("discard: find block unexpectedly returned %d", r);
1359                 cell_release_singleton(cell, bio);
1360                 bio_io_error(bio);
1361                 break;
1362         }
1363 }
1364
1365 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1366                           struct cell_key *key,
1367                           struct dm_thin_lookup_result *lookup_result,
1368                           struct dm_bio_prison_cell *cell)
1369 {
1370         int r;
1371         dm_block_t data_block;
1372
1373         r = alloc_data_block(tc, &data_block);
1374         switch (r) {
1375         case 0:
1376                 schedule_internal_copy(tc, block, lookup_result->block,
1377                                        data_block, cell, bio);
1378                 break;
1379
1380         case -ENOSPC:
1381                 no_space(cell);
1382                 break;
1383
1384         default:
1385                 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1386                 cell_error(cell);
1387                 break;
1388         }
1389 }
1390
1391 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1392                                dm_block_t block,
1393                                struct dm_thin_lookup_result *lookup_result)
1394 {
1395         struct dm_bio_prison_cell *cell;
1396         struct pool *pool = tc->pool;
1397         struct cell_key key;
1398
1399         /*
1400          * If cell is already occupied, then sharing is already in the process
1401          * of being broken so we have nothing further to do here.
1402          */
1403         build_data_key(tc->td, lookup_result->block, &key);
1404         if (bio_detain(pool->prison, &key, bio, &cell))
1405                 return;
1406
1407         if (bio_data_dir(bio) == WRITE && bio->bi_size)
1408                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1409         else {
1410                 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1411
1412                 h->shared_read_entry = ds_inc(&pool->shared_read_ds);
1413
1414                 cell_release_singleton(cell, bio);
1415                 remap_and_issue(tc, bio, lookup_result->block);
1416         }
1417 }
1418
1419 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1420                             struct dm_bio_prison_cell *cell)
1421 {
1422         int r;
1423         dm_block_t data_block;
1424
1425         /*
1426          * Remap empty bios (flushes) immediately, without provisioning.
1427          */
1428         if (!bio->bi_size) {
1429                 cell_release_singleton(cell, bio);
1430                 remap_and_issue(tc, bio, 0);
1431                 return;
1432         }
1433
1434         /*
1435          * Fill read bios with zeroes and complete them immediately.
1436          */
1437         if (bio_data_dir(bio) == READ) {
1438                 zero_fill_bio(bio);
1439                 cell_release_singleton(cell, bio);
1440                 bio_endio(bio, 0);
1441                 return;
1442         }
1443
1444         r = alloc_data_block(tc, &data_block);
1445         switch (r) {
1446         case 0:
1447                 if (tc->origin_dev)
1448                         schedule_external_copy(tc, block, data_block, cell, bio);
1449                 else
1450                         schedule_zero(tc, block, data_block, cell, bio);
1451                 break;
1452
1453         case -ENOSPC:
1454                 no_space(cell);
1455                 break;
1456
1457         default:
1458                 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1459                 set_pool_mode(tc->pool, PM_READ_ONLY);
1460                 cell_error(cell);
1461                 break;
1462         }
1463 }
1464
1465 static void process_bio(struct thin_c *tc, struct bio *bio)
1466 {
1467         int r;
1468         dm_block_t block = get_bio_block(tc, bio);
1469         struct dm_bio_prison_cell *cell;
1470         struct cell_key key;
1471         struct dm_thin_lookup_result lookup_result;
1472
1473         /*
1474          * If cell is already occupied, then the block is already
1475          * being provisioned so we have nothing further to do here.
1476          */
1477         build_virtual_key(tc->td, block, &key);
1478         if (bio_detain(tc->pool->prison, &key, bio, &cell))
1479                 return;
1480
1481         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1482         switch (r) {
1483         case 0:
1484                 /*
1485                  * We can release this cell now.  This thread is the only
1486                  * one that puts bios into a cell, and we know there were
1487                  * no preceding bios.
1488                  */
1489                 /*
1490                  * TODO: this will probably have to change when discard goes
1491                  * back in.
1492                  */
1493                 cell_release_singleton(cell, bio);
1494
1495                 if (lookup_result.shared)
1496                         process_shared_bio(tc, bio, block, &lookup_result);
1497                 else
1498                         remap_and_issue(tc, bio, lookup_result.block);
1499                 break;
1500
1501         case -ENODATA:
1502                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1503                         cell_release_singleton(cell, bio);
1504                         remap_to_origin_and_issue(tc, bio);
1505                 } else
1506                         provision_block(tc, bio, block, cell);
1507                 break;
1508
1509         default:
1510                 DMERR("dm_thin_find_block() failed, error = %d", r);
1511                 cell_release_singleton(cell, bio);
1512                 bio_io_error(bio);
1513                 break;
1514         }
1515 }
1516
1517 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1518 {
1519         int r;
1520         int rw = bio_data_dir(bio);
1521         dm_block_t block = get_bio_block(tc, bio);
1522         struct dm_thin_lookup_result lookup_result;
1523
1524         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1525         switch (r) {
1526         case 0:
1527                 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1528                         bio_io_error(bio);
1529                 else
1530                         remap_and_issue(tc, bio, lookup_result.block);
1531                 break;
1532
1533         case -ENODATA:
1534                 if (rw != READ) {
1535                         bio_io_error(bio);
1536                         break;
1537                 }
1538
1539                 if (tc->origin_dev) {
1540                         remap_to_origin_and_issue(tc, bio);
1541                         break;
1542                 }
1543
1544                 zero_fill_bio(bio);
1545                 bio_endio(bio, 0);
1546                 break;
1547
1548         default:
1549                 DMERR("dm_thin_find_block() failed, error = %d", r);
1550                 bio_io_error(bio);
1551                 break;
1552         }
1553 }
1554
1555 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1556 {
1557         bio_io_error(bio);
1558 }
1559
1560 static int need_commit_due_to_time(struct pool *pool)
1561 {
1562         return jiffies < pool->last_commit_jiffies ||
1563                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1564 }
1565
1566 static void process_deferred_bios(struct pool *pool)
1567 {
1568         unsigned long flags;
1569         struct bio *bio;
1570         struct bio_list bios;
1571
1572         bio_list_init(&bios);
1573
1574         spin_lock_irqsave(&pool->lock, flags);
1575         bio_list_merge(&bios, &pool->deferred_bios);
1576         bio_list_init(&pool->deferred_bios);
1577         spin_unlock_irqrestore(&pool->lock, flags);
1578
1579         while ((bio = bio_list_pop(&bios))) {
1580                 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1581                 struct thin_c *tc = h->tc;
1582
1583                 /*
1584                  * If we've got no free new_mapping structs, and processing
1585                  * this bio might require one, we pause until there are some
1586                  * prepared mappings to process.
1587                  */
1588                 if (ensure_next_mapping(pool)) {
1589                         spin_lock_irqsave(&pool->lock, flags);
1590                         bio_list_merge(&pool->deferred_bios, &bios);
1591                         spin_unlock_irqrestore(&pool->lock, flags);
1592
1593                         break;
1594                 }
1595
1596                 if (bio->bi_rw & REQ_DISCARD)
1597                         pool->process_discard(tc, bio);
1598                 else
1599                         pool->process_bio(tc, bio);
1600         }
1601
1602         /*
1603          * If there are any deferred flush bios, we must commit
1604          * the metadata before issuing them.
1605          */
1606         bio_list_init(&bios);
1607         spin_lock_irqsave(&pool->lock, flags);
1608         bio_list_merge(&bios, &pool->deferred_flush_bios);
1609         bio_list_init(&pool->deferred_flush_bios);
1610         spin_unlock_irqrestore(&pool->lock, flags);
1611
1612         if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1613                 return;
1614
1615         if (commit_or_fallback(pool)) {
1616                 while ((bio = bio_list_pop(&bios)))
1617                         bio_io_error(bio);
1618                 return;
1619         }
1620         pool->last_commit_jiffies = jiffies;
1621
1622         while ((bio = bio_list_pop(&bios)))
1623                 generic_make_request(bio);
1624 }
1625
1626 static void do_worker(struct work_struct *ws)
1627 {
1628         struct pool *pool = container_of(ws, struct pool, worker);
1629
1630         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1631         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1632         process_deferred_bios(pool);
1633 }
1634
1635 /*
1636  * We want to commit periodically so that not too much
1637  * unwritten data builds up.
1638  */
1639 static void do_waker(struct work_struct *ws)
1640 {
1641         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1642         wake_worker(pool);
1643         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1644 }
1645
1646 /*----------------------------------------------------------------*/
1647
1648 static enum pool_mode get_pool_mode(struct pool *pool)
1649 {
1650         return pool->pf.mode;
1651 }
1652
1653 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1654 {
1655         int r;
1656
1657         pool->pf.mode = mode;
1658
1659         switch (mode) {
1660         case PM_FAIL:
1661                 DMERR("switching pool to failure mode");
1662                 pool->process_bio = process_bio_fail;
1663                 pool->process_discard = process_bio_fail;
1664                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1665                 pool->process_prepared_discard = process_prepared_discard_fail;
1666                 break;
1667
1668         case PM_READ_ONLY:
1669                 DMERR("switching pool to read-only mode");
1670                 r = dm_pool_abort_metadata(pool->pmd);
1671                 if (r) {
1672                         DMERR("aborting transaction failed");
1673                         set_pool_mode(pool, PM_FAIL);
1674                 } else {
1675                         dm_pool_metadata_read_only(pool->pmd);
1676                         pool->process_bio = process_bio_read_only;
1677                         pool->process_discard = process_discard;
1678                         pool->process_prepared_mapping = process_prepared_mapping_fail;
1679                         pool->process_prepared_discard = process_prepared_discard_passdown;
1680                 }
1681                 break;
1682
1683         case PM_WRITE:
1684                 pool->process_bio = process_bio;
1685                 pool->process_discard = process_discard;
1686                 pool->process_prepared_mapping = process_prepared_mapping;
1687                 pool->process_prepared_discard = process_prepared_discard;
1688                 break;
1689         }
1690 }
1691
1692 /*----------------------------------------------------------------*/
1693
1694 /*
1695  * Mapping functions.
1696  */
1697
1698 /*
1699  * Called only while mapping a thin bio to hand it over to the workqueue.
1700  */
1701 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1702 {
1703         unsigned long flags;
1704         struct pool *pool = tc->pool;
1705
1706         spin_lock_irqsave(&pool->lock, flags);
1707         bio_list_add(&pool->deferred_bios, bio);
1708         spin_unlock_irqrestore(&pool->lock, flags);
1709
1710         wake_worker(pool);
1711 }
1712
1713 static struct dm_thin_endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
1714 {
1715         struct pool *pool = tc->pool;
1716         struct dm_thin_endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
1717
1718         h->tc = tc;
1719         h->shared_read_entry = NULL;
1720         h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
1721         h->overwrite_mapping = NULL;
1722
1723         return h;
1724 }
1725
1726 /*
1727  * Non-blocking function called from the thin target's map function.
1728  */
1729 static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1730                         union map_info *map_context)
1731 {
1732         int r;
1733         struct thin_c *tc = ti->private;
1734         dm_block_t block = get_bio_block(tc, bio);
1735         struct dm_thin_device *td = tc->td;
1736         struct dm_thin_lookup_result result;
1737
1738         map_context->ptr = thin_hook_bio(tc, bio);
1739
1740         if (get_pool_mode(tc->pool) == PM_FAIL) {
1741                 bio_io_error(bio);
1742                 return DM_MAPIO_SUBMITTED;
1743         }
1744
1745         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1746                 thin_defer_bio(tc, bio);
1747                 return DM_MAPIO_SUBMITTED;
1748         }
1749
1750         r = dm_thin_find_block(td, block, 0, &result);
1751
1752         /*
1753          * Note that we defer readahead too.
1754          */
1755         switch (r) {
1756         case 0:
1757                 if (unlikely(result.shared)) {
1758                         /*
1759                          * We have a race condition here between the
1760                          * result.shared value returned by the lookup and
1761                          * snapshot creation, which may cause new
1762                          * sharing.
1763                          *
1764                          * To avoid this always quiesce the origin before
1765                          * taking the snap.  You want to do this anyway to
1766                          * ensure a consistent application view
1767                          * (i.e. lockfs).
1768                          *
1769                          * More distant ancestors are irrelevant. The
1770                          * shared flag will be set in their case.
1771                          */
1772                         thin_defer_bio(tc, bio);
1773                         r = DM_MAPIO_SUBMITTED;
1774                 } else {
1775                         remap(tc, bio, result.block);
1776                         r = DM_MAPIO_REMAPPED;
1777                 }
1778                 break;
1779
1780         case -ENODATA:
1781                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1782                         /*
1783                          * This block isn't provisioned, and we have no way
1784                          * of doing so.  Just error it.
1785                          */
1786                         bio_io_error(bio);
1787                         r = DM_MAPIO_SUBMITTED;
1788                         break;
1789                 }
1790                 /* fall through */
1791
1792         case -EWOULDBLOCK:
1793                 /*
1794                  * In future, the failed dm_thin_find_block above could
1795                  * provide the hint to load the metadata into cache.
1796                  */
1797                 thin_defer_bio(tc, bio);
1798                 r = DM_MAPIO_SUBMITTED;
1799                 break;
1800
1801         default:
1802                 /*
1803                  * Must always call bio_io_error on failure.
1804                  * dm_thin_find_block can fail with -EINVAL if the
1805                  * pool is switched to fail-io mode.
1806                  */
1807                 bio_io_error(bio);
1808                 r = DM_MAPIO_SUBMITTED;
1809                 break;
1810         }
1811
1812         return r;
1813 }
1814
1815 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1816 {
1817         int r;
1818         unsigned long flags;
1819         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1820
1821         spin_lock_irqsave(&pt->pool->lock, flags);
1822         r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1823         spin_unlock_irqrestore(&pt->pool->lock, flags);
1824
1825         if (!r) {
1826                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1827                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1828         }
1829
1830         return r;
1831 }
1832
1833 static void __requeue_bios(struct pool *pool)
1834 {
1835         bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1836         bio_list_init(&pool->retry_on_resume_list);
1837 }
1838
1839 /*----------------------------------------------------------------
1840  * Binding of control targets to a pool object
1841  *--------------------------------------------------------------*/
1842 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1843 {
1844         struct pool_c *pt = ti->private;
1845
1846         /*
1847          * We want to make sure that degraded pools are never upgraded.
1848          */
1849         enum pool_mode old_mode = pool->pf.mode;
1850         enum pool_mode new_mode = pt->pf.mode;
1851
1852         if (old_mode > new_mode)
1853                 new_mode = old_mode;
1854
1855         pool->ti = ti;
1856         pool->low_water_blocks = pt->low_water_blocks;
1857         pool->pf = pt->pf;
1858         set_pool_mode(pool, new_mode);
1859
1860         /*
1861          * If discard_passdown was enabled verify that the data device
1862          * supports discards.  Disable discard_passdown if not; otherwise
1863          * -EOPNOTSUPP will be returned.
1864          */
1865         /* FIXME: pull this out into a sep fn. */
1866         if (pt->pf.discard_passdown) {
1867                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1868                 if (!q || !blk_queue_discard(q)) {
1869                         char buf[BDEVNAME_SIZE];
1870                         DMWARN("Discard unsupported by data device (%s): Disabling discard passdown.",
1871                                bdevname(pt->data_dev->bdev, buf));
1872                         pool->pf.discard_passdown = 0;
1873                 }
1874         }
1875
1876         return 0;
1877 }
1878
1879 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1880 {
1881         if (pool->ti == ti)
1882                 pool->ti = NULL;
1883 }
1884
1885 /*----------------------------------------------------------------
1886  * Pool creation
1887  *--------------------------------------------------------------*/
1888 /* Initialize pool features. */
1889 static void pool_features_init(struct pool_features *pf)
1890 {
1891         pf->mode = PM_WRITE;
1892         pf->zero_new_blocks = 1;
1893         pf->discard_enabled = 1;
1894         pf->discard_passdown = 1;
1895 }
1896
1897 static void __pool_destroy(struct pool *pool)
1898 {
1899         __pool_table_remove(pool);
1900
1901         if (dm_pool_metadata_close(pool->pmd) < 0)
1902                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1903
1904         prison_destroy(pool->prison);
1905         dm_kcopyd_client_destroy(pool->copier);
1906
1907         if (pool->wq)
1908                 destroy_workqueue(pool->wq);
1909
1910         if (pool->next_mapping)
1911                 mempool_free(pool->next_mapping, pool->mapping_pool);
1912         mempool_destroy(pool->mapping_pool);
1913         mempool_destroy(pool->endio_hook_pool);
1914         kfree(pool);
1915 }
1916
1917 static struct kmem_cache *_new_mapping_cache;
1918 static struct kmem_cache *_endio_hook_cache;
1919
1920 static struct pool *pool_create(struct mapped_device *pool_md,
1921                                 struct block_device *metadata_dev,
1922                                 unsigned long block_size,
1923                                 int read_only, char **error)
1924 {
1925         int r;
1926         void *err_p;
1927         struct pool *pool;
1928         struct dm_pool_metadata *pmd;
1929         bool format_device = read_only ? false : true;
1930
1931         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1932         if (IS_ERR(pmd)) {
1933                 *error = "Error creating metadata object";
1934                 return (struct pool *)pmd;
1935         }
1936
1937         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1938         if (!pool) {
1939                 *error = "Error allocating memory for pool";
1940                 err_p = ERR_PTR(-ENOMEM);
1941                 goto bad_pool;
1942         }
1943
1944         pool->pmd = pmd;
1945         pool->sectors_per_block = block_size;
1946         if (block_size & (block_size - 1))
1947                 pool->sectors_per_block_shift = -1;
1948         else
1949                 pool->sectors_per_block_shift = __ffs(block_size);
1950         pool->low_water_blocks = 0;
1951         pool_features_init(&pool->pf);
1952         pool->prison = prison_create(PRISON_CELLS);
1953         if (!pool->prison) {
1954                 *error = "Error creating pool's bio prison";
1955                 err_p = ERR_PTR(-ENOMEM);
1956                 goto bad_prison;
1957         }
1958
1959         pool->copier = dm_kcopyd_client_create();
1960         if (IS_ERR(pool->copier)) {
1961                 r = PTR_ERR(pool->copier);
1962                 *error = "Error creating pool's kcopyd client";
1963                 err_p = ERR_PTR(r);
1964                 goto bad_kcopyd_client;
1965         }
1966
1967         /*
1968          * Create singlethreaded workqueue that will service all devices
1969          * that use this metadata.
1970          */
1971         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1972         if (!pool->wq) {
1973                 *error = "Error creating pool's workqueue";
1974                 err_p = ERR_PTR(-ENOMEM);
1975                 goto bad_wq;
1976         }
1977
1978         INIT_WORK(&pool->worker, do_worker);
1979         INIT_DELAYED_WORK(&pool->waker, do_waker);
1980         spin_lock_init(&pool->lock);
1981         bio_list_init(&pool->deferred_bios);
1982         bio_list_init(&pool->deferred_flush_bios);
1983         INIT_LIST_HEAD(&pool->prepared_mappings);
1984         INIT_LIST_HEAD(&pool->prepared_discards);
1985         pool->low_water_triggered = 0;
1986         pool->no_free_space = 0;
1987         bio_list_init(&pool->retry_on_resume_list);
1988         ds_init(&pool->shared_read_ds);
1989         ds_init(&pool->all_io_ds);
1990
1991         pool->next_mapping = NULL;
1992         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1993                                                       _new_mapping_cache);
1994         if (!pool->mapping_pool) {
1995                 *error = "Error creating pool's mapping mempool";
1996                 err_p = ERR_PTR(-ENOMEM);
1997                 goto bad_mapping_pool;
1998         }
1999
2000         pool->endio_hook_pool = mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE,
2001                                                          _endio_hook_cache);
2002         if (!pool->endio_hook_pool) {
2003                 *error = "Error creating pool's endio_hook mempool";
2004                 err_p = ERR_PTR(-ENOMEM);
2005                 goto bad_endio_hook_pool;
2006         }
2007         pool->ref_count = 1;
2008         pool->last_commit_jiffies = jiffies;
2009         pool->pool_md = pool_md;
2010         pool->md_dev = metadata_dev;
2011         __pool_table_insert(pool);
2012
2013         return pool;
2014
2015 bad_endio_hook_pool:
2016         mempool_destroy(pool->mapping_pool);
2017 bad_mapping_pool:
2018         destroy_workqueue(pool->wq);
2019 bad_wq:
2020         dm_kcopyd_client_destroy(pool->copier);
2021 bad_kcopyd_client:
2022         prison_destroy(pool->prison);
2023 bad_prison:
2024         kfree(pool);
2025 bad_pool:
2026         if (dm_pool_metadata_close(pmd))
2027                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2028
2029         return err_p;
2030 }
2031
2032 static void __pool_inc(struct pool *pool)
2033 {
2034         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2035         pool->ref_count++;
2036 }
2037
2038 static void __pool_dec(struct pool *pool)
2039 {
2040         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2041         BUG_ON(!pool->ref_count);
2042         if (!--pool->ref_count)
2043                 __pool_destroy(pool);
2044 }
2045
2046 static struct pool *__pool_find(struct mapped_device *pool_md,
2047                                 struct block_device *metadata_dev,
2048                                 unsigned long block_size, int read_only,
2049                                 char **error, int *created)
2050 {
2051         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2052
2053         if (pool) {
2054                 if (pool->pool_md != pool_md) {
2055                         *error = "metadata device already in use by a pool";
2056                         return ERR_PTR(-EBUSY);
2057                 }
2058                 __pool_inc(pool);
2059
2060         } else {
2061                 pool = __pool_table_lookup(pool_md);
2062                 if (pool) {
2063                         if (pool->md_dev != metadata_dev) {
2064                                 *error = "different pool cannot replace a pool";
2065                                 return ERR_PTR(-EINVAL);
2066                         }
2067                         __pool_inc(pool);
2068
2069                 } else {
2070                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2071                         *created = 1;
2072                 }
2073         }
2074
2075         return pool;
2076 }
2077
2078 /*----------------------------------------------------------------
2079  * Pool target methods
2080  *--------------------------------------------------------------*/
2081 static void pool_dtr(struct dm_target *ti)
2082 {
2083         struct pool_c *pt = ti->private;
2084
2085         mutex_lock(&dm_thin_pool_table.mutex);
2086
2087         unbind_control_target(pt->pool, ti);
2088         __pool_dec(pt->pool);
2089         dm_put_device(ti, pt->metadata_dev);
2090         dm_put_device(ti, pt->data_dev);
2091         kfree(pt);
2092
2093         mutex_unlock(&dm_thin_pool_table.mutex);
2094 }
2095
2096 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2097                                struct dm_target *ti)
2098 {
2099         int r;
2100         unsigned argc;
2101         const char *arg_name;
2102
2103         static struct dm_arg _args[] = {
2104                 {0, 3, "Invalid number of pool feature arguments"},
2105         };
2106
2107         /*
2108          * No feature arguments supplied.
2109          */
2110         if (!as->argc)
2111                 return 0;
2112
2113         r = dm_read_arg_group(_args, as, &argc, &ti->error);
2114         if (r)
2115                 return -EINVAL;
2116
2117         while (argc && !r) {
2118                 arg_name = dm_shift_arg(as);
2119                 argc--;
2120
2121                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2122                         pf->zero_new_blocks = 0;
2123
2124                 else if (!strcasecmp(arg_name, "ignore_discard"))
2125                         pf->discard_enabled = 0;
2126
2127                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2128                         pf->discard_passdown = 0;
2129
2130                 else if (!strcasecmp(arg_name, "read_only"))
2131                         pf->mode = PM_READ_ONLY;
2132
2133                 else {
2134                         ti->error = "Unrecognised pool feature requested";
2135                         r = -EINVAL;
2136                         break;
2137                 }
2138         }
2139
2140         return r;
2141 }
2142
2143 /*
2144  * thin-pool <metadata dev> <data dev>
2145  *           <data block size (sectors)>
2146  *           <low water mark (blocks)>
2147  *           [<#feature args> [<arg>]*]
2148  *
2149  * Optional feature arguments are:
2150  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2151  *           ignore_discard: disable discard
2152  *           no_discard_passdown: don't pass discards down to the data device
2153  */
2154 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2155 {
2156         int r, pool_created = 0;
2157         struct pool_c *pt;
2158         struct pool *pool;
2159         struct pool_features pf;
2160         struct dm_arg_set as;
2161         struct dm_dev *data_dev;
2162         unsigned long block_size;
2163         dm_block_t low_water_blocks;
2164         struct dm_dev *metadata_dev;
2165         sector_t metadata_dev_size;
2166         char b[BDEVNAME_SIZE];
2167
2168         /*
2169          * FIXME Remove validation from scope of lock.
2170          */
2171         mutex_lock(&dm_thin_pool_table.mutex);
2172
2173         if (argc < 4) {
2174                 ti->error = "Invalid argument count";
2175                 r = -EINVAL;
2176                 goto out_unlock;
2177         }
2178         as.argc = argc;
2179         as.argv = argv;
2180
2181         r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
2182         if (r) {
2183                 ti->error = "Error opening metadata block device";
2184                 goto out_unlock;
2185         }
2186
2187         metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
2188         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2189                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2190                        bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2191
2192         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2193         if (r) {
2194                 ti->error = "Error getting data device";
2195                 goto out_metadata;
2196         }
2197
2198         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2199             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2200             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2201             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2202                 ti->error = "Invalid block size";
2203                 r = -EINVAL;
2204                 goto out;
2205         }
2206
2207         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2208                 ti->error = "Invalid low water mark";
2209                 r = -EINVAL;
2210                 goto out;
2211         }
2212
2213         /*
2214          * Set default pool features.
2215          */
2216         pool_features_init(&pf);
2217
2218         dm_consume_args(&as, 4);
2219         r = parse_pool_features(&as, &pf, ti);
2220         if (r)
2221                 goto out;
2222
2223         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2224         if (!pt) {
2225                 r = -ENOMEM;
2226                 goto out;
2227         }
2228
2229         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2230                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2231         if (IS_ERR(pool)) {
2232                 r = PTR_ERR(pool);
2233                 goto out_free_pt;
2234         }
2235
2236         /*
2237          * 'pool_created' reflects whether this is the first table load.
2238          * Top level discard support is not allowed to be changed after
2239          * initial load.  This would require a pool reload to trigger thin
2240          * device changes.
2241          */
2242         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2243                 ti->error = "Discard support cannot be disabled once enabled";
2244                 r = -EINVAL;
2245                 goto out_flags_changed;
2246         }
2247
2248         /*
2249          * The block layer requires discard_granularity to be a power of 2.
2250          */
2251         if (pf.discard_enabled && !is_power_of_2(block_size)) {
2252                 ti->error = "Discard support must be disabled when the block size is not a power of 2";
2253                 r = -EINVAL;
2254                 goto out_flags_changed;
2255         }
2256
2257         pt->pool = pool;
2258         pt->ti = ti;
2259         pt->metadata_dev = metadata_dev;
2260         pt->data_dev = data_dev;
2261         pt->low_water_blocks = low_water_blocks;
2262         pt->pf = pf;
2263         ti->num_flush_requests = 1;
2264         /*
2265          * Only need to enable discards if the pool should pass
2266          * them down to the data device.  The thin device's discard
2267          * processing will cause mappings to be removed from the btree.
2268          */
2269         if (pf.discard_enabled && pf.discard_passdown) {
2270                 ti->num_discard_requests = 1;
2271                 /*
2272                  * Setting 'discards_supported' circumvents the normal
2273                  * stacking of discard limits (this keeps the pool and
2274                  * thin devices' discard limits consistent).
2275                  */
2276                 ti->discards_supported = true;
2277                 ti->discard_zeroes_data_unsupported = true;
2278         }
2279         ti->private = pt;
2280
2281         pt->callbacks.congested_fn = pool_is_congested;
2282         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2283
2284         mutex_unlock(&dm_thin_pool_table.mutex);
2285
2286         return 0;
2287
2288 out_flags_changed:
2289         __pool_dec(pool);
2290 out_free_pt:
2291         kfree(pt);
2292 out:
2293         dm_put_device(ti, data_dev);
2294 out_metadata:
2295         dm_put_device(ti, metadata_dev);
2296 out_unlock:
2297         mutex_unlock(&dm_thin_pool_table.mutex);
2298
2299         return r;
2300 }
2301
2302 static int pool_map(struct dm_target *ti, struct bio *bio,
2303                     union map_info *map_context)
2304 {
2305         int r;
2306         struct pool_c *pt = ti->private;
2307         struct pool *pool = pt->pool;
2308         unsigned long flags;
2309
2310         /*
2311          * As this is a singleton target, ti->begin is always zero.
2312          */
2313         spin_lock_irqsave(&pool->lock, flags);
2314         bio->bi_bdev = pt->data_dev->bdev;
2315         r = DM_MAPIO_REMAPPED;
2316         spin_unlock_irqrestore(&pool->lock, flags);
2317
2318         return r;
2319 }
2320
2321 /*
2322  * Retrieves the number of blocks of the data device from
2323  * the superblock and compares it to the actual device size,
2324  * thus resizing the data device in case it has grown.
2325  *
2326  * This both copes with opening preallocated data devices in the ctr
2327  * being followed by a resume
2328  * -and-
2329  * calling the resume method individually after userspace has
2330  * grown the data device in reaction to a table event.
2331  */
2332 static int pool_preresume(struct dm_target *ti)
2333 {
2334         int r;
2335         struct pool_c *pt = ti->private;
2336         struct pool *pool = pt->pool;
2337         sector_t data_size = ti->len;
2338         dm_block_t sb_data_size;
2339
2340         /*
2341          * Take control of the pool object.
2342          */
2343         r = bind_control_target(pool, ti);
2344         if (r)
2345                 return r;
2346
2347         (void) sector_div(data_size, pool->sectors_per_block);
2348
2349         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2350         if (r) {
2351                 DMERR("failed to retrieve data device size");
2352                 return r;
2353         }
2354
2355         if (data_size < sb_data_size) {
2356                 DMERR("pool target too small, is %llu blocks (expected %llu)",
2357                       (unsigned long long)data_size, sb_data_size);
2358                 return -EINVAL;
2359
2360         } else if (data_size > sb_data_size) {
2361                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2362                 if (r) {
2363                         DMERR("failed to resize data device");
2364                         /* FIXME Stricter than necessary: Rollback transaction instead here */
2365                         set_pool_mode(pool, PM_READ_ONLY);
2366                         return r;
2367                 }
2368
2369                 (void) commit_or_fallback(pool);
2370         }
2371
2372         return 0;
2373 }
2374
2375 static void pool_resume(struct dm_target *ti)
2376 {
2377         struct pool_c *pt = ti->private;
2378         struct pool *pool = pt->pool;
2379         unsigned long flags;
2380
2381         spin_lock_irqsave(&pool->lock, flags);
2382         pool->low_water_triggered = 0;
2383         pool->no_free_space = 0;
2384         __requeue_bios(pool);
2385         spin_unlock_irqrestore(&pool->lock, flags);
2386
2387         do_waker(&pool->waker.work);
2388 }
2389
2390 static void pool_postsuspend(struct dm_target *ti)
2391 {
2392         struct pool_c *pt = ti->private;
2393         struct pool *pool = pt->pool;
2394
2395         cancel_delayed_work(&pool->waker);
2396         flush_workqueue(pool->wq);
2397         (void) commit_or_fallback(pool);
2398 }
2399
2400 static int check_arg_count(unsigned argc, unsigned args_required)
2401 {
2402         if (argc != args_required) {
2403                 DMWARN("Message received with %u arguments instead of %u.",
2404                        argc, args_required);
2405                 return -EINVAL;
2406         }
2407
2408         return 0;
2409 }
2410
2411 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2412 {
2413         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2414             *dev_id <= MAX_DEV_ID)
2415                 return 0;
2416
2417         if (warning)
2418                 DMWARN("Message received with invalid device id: %s", arg);
2419
2420         return -EINVAL;
2421 }
2422
2423 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2424 {
2425         dm_thin_id dev_id;
2426         int r;
2427
2428         r = check_arg_count(argc, 2);
2429         if (r)
2430                 return r;
2431
2432         r = read_dev_id(argv[1], &dev_id, 1);
2433         if (r)
2434                 return r;
2435
2436         r = dm_pool_create_thin(pool->pmd, dev_id);
2437         if (r) {
2438                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2439                        argv[1]);
2440                 return r;
2441         }
2442
2443         return 0;
2444 }
2445
2446 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2447 {
2448         dm_thin_id dev_id;
2449         dm_thin_id origin_dev_id;
2450         int r;
2451
2452         r = check_arg_count(argc, 3);
2453         if (r)
2454                 return r;
2455
2456         r = read_dev_id(argv[1], &dev_id, 1);
2457         if (r)
2458                 return r;
2459
2460         r = read_dev_id(argv[2], &origin_dev_id, 1);
2461         if (r)
2462                 return r;
2463
2464         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2465         if (r) {
2466                 DMWARN("Creation of new snapshot %s of device %s failed.",
2467                        argv[1], argv[2]);
2468                 return r;
2469         }
2470
2471         return 0;
2472 }
2473
2474 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2475 {
2476         dm_thin_id dev_id;
2477         int r;
2478
2479         r = check_arg_count(argc, 2);
2480         if (r)
2481                 return r;
2482
2483         r = read_dev_id(argv[1], &dev_id, 1);
2484         if (r)
2485                 return r;
2486
2487         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2488         if (r)
2489                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2490
2491         return r;
2492 }
2493
2494 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2495 {
2496         dm_thin_id old_id, new_id;
2497         int r;
2498
2499         r = check_arg_count(argc, 3);
2500         if (r)
2501                 return r;
2502
2503         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2504                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2505                 return -EINVAL;
2506         }
2507
2508         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2509                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2510                 return -EINVAL;
2511         }
2512
2513         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2514         if (r) {
2515                 DMWARN("Failed to change transaction id from %s to %s.",
2516                        argv[1], argv[2]);
2517                 return r;
2518         }
2519
2520         return 0;
2521 }
2522
2523 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2524 {
2525         int r;
2526
2527         r = check_arg_count(argc, 1);
2528         if (r)
2529                 return r;
2530
2531         (void) commit_or_fallback(pool);
2532
2533         r = dm_pool_reserve_metadata_snap(pool->pmd);
2534         if (r)
2535                 DMWARN("reserve_metadata_snap message failed.");
2536
2537         return r;
2538 }
2539
2540 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2541 {
2542         int r;
2543
2544         r = check_arg_count(argc, 1);
2545         if (r)
2546                 return r;
2547
2548         r = dm_pool_release_metadata_snap(pool->pmd);
2549         if (r)
2550                 DMWARN("release_metadata_snap message failed.");
2551
2552         return r;
2553 }
2554
2555 /*
2556  * Messages supported:
2557  *   create_thin        <dev_id>
2558  *   create_snap        <dev_id> <origin_id>
2559  *   delete             <dev_id>
2560  *   trim               <dev_id> <new_size_in_sectors>
2561  *   set_transaction_id <current_trans_id> <new_trans_id>
2562  *   reserve_metadata_snap
2563  *   release_metadata_snap
2564  */
2565 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2566 {
2567         int r = -EINVAL;
2568         struct pool_c *pt = ti->private;
2569         struct pool *pool = pt->pool;
2570
2571         if (!strcasecmp(argv[0], "create_thin"))
2572                 r = process_create_thin_mesg(argc, argv, pool);
2573
2574         else if (!strcasecmp(argv[0], "create_snap"))
2575                 r = process_create_snap_mesg(argc, argv, pool);
2576
2577         else if (!strcasecmp(argv[0], "delete"))
2578                 r = process_delete_mesg(argc, argv, pool);
2579
2580         else if (!strcasecmp(argv[0], "set_transaction_id"))
2581                 r = process_set_transaction_id_mesg(argc, argv, pool);
2582
2583         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2584                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2585
2586         else if (!strcasecmp(argv[0], "release_metadata_snap"))
2587                 r = process_release_metadata_snap_mesg(argc, argv, pool);
2588
2589         else
2590                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2591
2592         if (!r)
2593                 (void) commit_or_fallback(pool);
2594
2595         return r;
2596 }
2597
2598 static void emit_flags(struct pool_features *pf, char *result,
2599                        unsigned sz, unsigned maxlen)
2600 {
2601         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2602                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2603         DMEMIT("%u ", count);
2604
2605         if (!pf->zero_new_blocks)
2606                 DMEMIT("skip_block_zeroing ");
2607
2608         if (!pf->discard_enabled)
2609                 DMEMIT("ignore_discard ");
2610
2611         if (!pf->discard_passdown)
2612                 DMEMIT("no_discard_passdown ");
2613
2614         if (pf->mode == PM_READ_ONLY)
2615                 DMEMIT("read_only ");
2616 }
2617
2618 /*
2619  * Status line is:
2620  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2621  *    <used data sectors>/<total data sectors> <held metadata root>
2622  */
2623 static int pool_status(struct dm_target *ti, status_type_t type,
2624                        unsigned status_flags, char *result, unsigned maxlen)
2625 {
2626         int r;
2627         unsigned sz = 0;
2628         uint64_t transaction_id;
2629         dm_block_t nr_free_blocks_data;
2630         dm_block_t nr_free_blocks_metadata;
2631         dm_block_t nr_blocks_data;
2632         dm_block_t nr_blocks_metadata;
2633         dm_block_t held_root;
2634         char buf[BDEVNAME_SIZE];
2635         char buf2[BDEVNAME_SIZE];
2636         struct pool_c *pt = ti->private;
2637         struct pool *pool = pt->pool;
2638
2639         switch (type) {
2640         case STATUSTYPE_INFO:
2641                 if (get_pool_mode(pool) == PM_FAIL) {
2642                         DMEMIT("Fail");
2643                         break;
2644                 }
2645
2646                 /* Commit to ensure statistics aren't out-of-date */
2647                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2648                         (void) commit_or_fallback(pool);
2649
2650                 r = dm_pool_get_metadata_transaction_id(pool->pmd,
2651                                                         &transaction_id);
2652                 if (r)
2653                         return r;
2654
2655                 r = dm_pool_get_free_metadata_block_count(pool->pmd,
2656                                                           &nr_free_blocks_metadata);
2657                 if (r)
2658                         return r;
2659
2660                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2661                 if (r)
2662                         return r;
2663
2664                 r = dm_pool_get_free_block_count(pool->pmd,
2665                                                  &nr_free_blocks_data);
2666                 if (r)
2667                         return r;
2668
2669                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2670                 if (r)
2671                         return r;
2672
2673                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2674                 if (r)
2675                         return r;
2676
2677                 DMEMIT("%llu %llu/%llu %llu/%llu ",
2678                        (unsigned long long)transaction_id,
2679                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2680                        (unsigned long long)nr_blocks_metadata,
2681                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2682                        (unsigned long long)nr_blocks_data);
2683
2684                 if (held_root)
2685                         DMEMIT("%llu ", held_root);
2686                 else
2687                         DMEMIT("- ");
2688
2689                 if (pool->pf.mode == PM_READ_ONLY)
2690                         DMEMIT("ro ");
2691                 else
2692                         DMEMIT("rw ");
2693
2694                 if (pool->pf.discard_enabled && pool->pf.discard_passdown)
2695                         DMEMIT("discard_passdown");
2696                 else
2697                         DMEMIT("no_discard_passdown");
2698
2699                 break;
2700
2701         case STATUSTYPE_TABLE:
2702                 DMEMIT("%s %s %lu %llu ",
2703                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2704                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2705                        (unsigned long)pool->sectors_per_block,
2706                        (unsigned long long)pt->low_water_blocks);
2707                 emit_flags(&pt->pf, result, sz, maxlen);
2708                 break;
2709         }
2710
2711         return 0;
2712 }
2713
2714 static int pool_iterate_devices(struct dm_target *ti,
2715                                 iterate_devices_callout_fn fn, void *data)
2716 {
2717         struct pool_c *pt = ti->private;
2718
2719         return fn(ti, pt->data_dev, 0, ti->len, data);
2720 }
2721
2722 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2723                       struct bio_vec *biovec, int max_size)
2724 {
2725         struct pool_c *pt = ti->private;
2726         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2727
2728         if (!q->merge_bvec_fn)
2729                 return max_size;
2730
2731         bvm->bi_bdev = pt->data_dev->bdev;
2732
2733         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2734 }
2735
2736 static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
2737 {
2738         /*
2739          * FIXME: these limits may be incompatible with the pool's data device
2740          */
2741         limits->max_discard_sectors = pool->sectors_per_block;
2742
2743         /*
2744          * This is just a hint, and not enforced.  We have to cope with
2745          * bios that cover a block partially.  A discard that spans a block
2746          * boundary is not sent to this target.
2747          */
2748         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2749 }
2750
2751 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2752 {
2753         struct pool_c *pt = ti->private;
2754         struct pool *pool = pt->pool;
2755
2756         blk_limits_io_min(limits, 0);
2757         blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2758         if (pool->pf.discard_enabled)
2759                 set_discard_limits(pool, limits);
2760 }
2761
2762 static struct target_type pool_target = {
2763         .name = "thin-pool",
2764         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2765                     DM_TARGET_IMMUTABLE,
2766         .version = {1, 3, 0},
2767         .module = THIS_MODULE,
2768         .ctr = pool_ctr,
2769         .dtr = pool_dtr,
2770         .map = pool_map,
2771         .postsuspend = pool_postsuspend,
2772         .preresume = pool_preresume,
2773         .resume = pool_resume,
2774         .message = pool_message,
2775         .status = pool_status,
2776         .merge = pool_merge,
2777         .iterate_devices = pool_iterate_devices,
2778         .io_hints = pool_io_hints,
2779 };
2780
2781 /*----------------------------------------------------------------
2782  * Thin target methods
2783  *--------------------------------------------------------------*/
2784 static void thin_dtr(struct dm_target *ti)
2785 {
2786         struct thin_c *tc = ti->private;
2787
2788         mutex_lock(&dm_thin_pool_table.mutex);
2789
2790         __pool_dec(tc->pool);
2791         dm_pool_close_thin_device(tc->td);
2792         dm_put_device(ti, tc->pool_dev);
2793         if (tc->origin_dev)
2794                 dm_put_device(ti, tc->origin_dev);
2795         kfree(tc);
2796
2797         mutex_unlock(&dm_thin_pool_table.mutex);
2798 }
2799
2800 /*
2801  * Thin target parameters:
2802  *
2803  * <pool_dev> <dev_id> [origin_dev]
2804  *
2805  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2806  * dev_id: the internal device identifier
2807  * origin_dev: a device external to the pool that should act as the origin
2808  *
2809  * If the pool device has discards disabled, they get disabled for the thin
2810  * device as well.
2811  */
2812 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2813 {
2814         int r;
2815         struct thin_c *tc;
2816         struct dm_dev *pool_dev, *origin_dev;
2817         struct mapped_device *pool_md;
2818
2819         mutex_lock(&dm_thin_pool_table.mutex);
2820
2821         if (argc != 2 && argc != 3) {
2822                 ti->error = "Invalid argument count";
2823                 r = -EINVAL;
2824                 goto out_unlock;
2825         }
2826
2827         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2828         if (!tc) {
2829                 ti->error = "Out of memory";
2830                 r = -ENOMEM;
2831                 goto out_unlock;
2832         }
2833
2834         if (argc == 3) {
2835                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2836                 if (r) {
2837                         ti->error = "Error opening origin device";
2838                         goto bad_origin_dev;
2839                 }
2840                 tc->origin_dev = origin_dev;
2841         }
2842
2843         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2844         if (r) {
2845                 ti->error = "Error opening pool device";
2846                 goto bad_pool_dev;
2847         }
2848         tc->pool_dev = pool_dev;
2849
2850         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2851                 ti->error = "Invalid device id";
2852                 r = -EINVAL;
2853                 goto bad_common;
2854         }
2855
2856         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2857         if (!pool_md) {
2858                 ti->error = "Couldn't get pool mapped device";
2859                 r = -EINVAL;
2860                 goto bad_common;
2861         }
2862
2863         tc->pool = __pool_table_lookup(pool_md);
2864         if (!tc->pool) {
2865                 ti->error = "Couldn't find pool object";
2866                 r = -EINVAL;
2867                 goto bad_pool_lookup;
2868         }
2869         __pool_inc(tc->pool);
2870
2871         if (get_pool_mode(tc->pool) == PM_FAIL) {
2872                 ti->error = "Couldn't open thin device, Pool is in fail mode";
2873                 goto bad_thin_open;
2874         }
2875
2876         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2877         if (r) {
2878                 ti->error = "Couldn't open thin internal device";
2879                 goto bad_thin_open;
2880         }
2881
2882         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2883         if (r)
2884                 goto bad_thin_open;
2885
2886         ti->num_flush_requests = 1;
2887         ti->flush_supported = true;
2888
2889         /* In case the pool supports discards, pass them on. */
2890         if (tc->pool->pf.discard_enabled) {
2891                 ti->discards_supported = true;
2892                 ti->num_discard_requests = 1;
2893                 ti->discard_zeroes_data_unsupported = true;
2894                 /* Discard requests must be split on a block boundary */
2895                 ti->split_discard_requests = true;
2896         }
2897
2898         dm_put(pool_md);
2899
2900         mutex_unlock(&dm_thin_pool_table.mutex);
2901
2902         return 0;
2903
2904 bad_thin_open:
2905         __pool_dec(tc->pool);
2906 bad_pool_lookup:
2907         dm_put(pool_md);
2908 bad_common:
2909         dm_put_device(ti, tc->pool_dev);
2910 bad_pool_dev:
2911         if (tc->origin_dev)
2912                 dm_put_device(ti, tc->origin_dev);
2913 bad_origin_dev:
2914         kfree(tc);
2915 out_unlock:
2916         mutex_unlock(&dm_thin_pool_table.mutex);
2917
2918         return r;
2919 }
2920
2921 static int thin_map(struct dm_target *ti, struct bio *bio,
2922                     union map_info *map_context)
2923 {
2924         bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2925
2926         return thin_bio_map(ti, bio, map_context);
2927 }
2928
2929 static int thin_endio(struct dm_target *ti,
2930                       struct bio *bio, int err,
2931                       union map_info *map_context)
2932 {
2933         unsigned long flags;
2934         struct dm_thin_endio_hook *h = map_context->ptr;
2935         struct list_head work;
2936         struct dm_thin_new_mapping *m, *tmp;
2937         struct pool *pool = h->tc->pool;
2938
2939         if (h->shared_read_entry) {
2940                 INIT_LIST_HEAD(&work);
2941                 ds_dec(h->shared_read_entry, &work);
2942
2943                 spin_lock_irqsave(&pool->lock, flags);
2944                 list_for_each_entry_safe(m, tmp, &work, list) {
2945                         list_del(&m->list);
2946                         m->quiesced = 1;
2947                         __maybe_add_mapping(m);
2948                 }
2949                 spin_unlock_irqrestore(&pool->lock, flags);
2950         }
2951
2952         if (h->all_io_entry) {
2953                 INIT_LIST_HEAD(&work);
2954                 ds_dec(h->all_io_entry, &work);
2955                 spin_lock_irqsave(&pool->lock, flags);
2956                 list_for_each_entry_safe(m, tmp, &work, list)
2957                         list_add(&m->list, &pool->prepared_discards);
2958                 spin_unlock_irqrestore(&pool->lock, flags);
2959         }
2960
2961         mempool_free(h, pool->endio_hook_pool);
2962
2963         return 0;
2964 }
2965
2966 static void thin_postsuspend(struct dm_target *ti)
2967 {
2968         if (dm_noflush_suspending(ti))
2969                 requeue_io((struct thin_c *)ti->private);
2970 }
2971
2972 /*
2973  * <nr mapped sectors> <highest mapped sector>
2974  */
2975 static int thin_status(struct dm_target *ti, status_type_t type,
2976                        unsigned status_flags, char *result, unsigned maxlen)
2977 {
2978         int r;
2979         ssize_t sz = 0;
2980         dm_block_t mapped, highest;
2981         char buf[BDEVNAME_SIZE];
2982         struct thin_c *tc = ti->private;
2983
2984         if (get_pool_mode(tc->pool) == PM_FAIL) {
2985                 DMEMIT("Fail");
2986                 return 0;
2987         }
2988
2989         if (!tc->td)
2990                 DMEMIT("-");
2991         else {
2992                 switch (type) {
2993                 case STATUSTYPE_INFO:
2994                         r = dm_thin_get_mapped_count(tc->td, &mapped);
2995                         if (r)
2996                                 return r;
2997
2998                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2999                         if (r < 0)
3000                                 return r;
3001
3002                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3003                         if (r)
3004                                 DMEMIT("%llu", ((highest + 1) *
3005                                                 tc->pool->sectors_per_block) - 1);
3006                         else
3007                                 DMEMIT("-");
3008                         break;
3009
3010                 case STATUSTYPE_TABLE:
3011                         DMEMIT("%s %lu",
3012                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3013                                (unsigned long) tc->dev_id);
3014                         if (tc->origin_dev)
3015                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3016                         break;
3017                 }
3018         }
3019
3020         return 0;
3021 }
3022
3023 static int thin_iterate_devices(struct dm_target *ti,
3024                                 iterate_devices_callout_fn fn, void *data)
3025 {
3026         sector_t blocks;
3027         struct thin_c *tc = ti->private;
3028         struct pool *pool = tc->pool;
3029
3030         /*
3031          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3032          * we follow a more convoluted path through to the pool's target.
3033          */
3034         if (!pool->ti)
3035                 return 0;       /* nothing is bound */
3036
3037         blocks = pool->ti->len;
3038         (void) sector_div(blocks, pool->sectors_per_block);
3039         if (blocks)
3040                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3041
3042         return 0;
3043 }
3044
3045 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
3046 {
3047         struct thin_c *tc = ti->private;
3048         struct pool *pool = tc->pool;
3049
3050         blk_limits_io_min(limits, 0);
3051         blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3052         set_discard_limits(pool, limits);
3053 }
3054
3055 static struct target_type thin_target = {
3056         .name = "thin",
3057         .version = {1, 3, 0},
3058         .module = THIS_MODULE,
3059         .ctr = thin_ctr,
3060         .dtr = thin_dtr,
3061         .map = thin_map,
3062         .end_io = thin_endio,
3063         .postsuspend = thin_postsuspend,
3064         .status = thin_status,
3065         .iterate_devices = thin_iterate_devices,
3066         .io_hints = thin_io_hints,
3067 };
3068
3069 /*----------------------------------------------------------------*/
3070
3071 static int __init dm_thin_init(void)
3072 {
3073         int r;
3074
3075         pool_table_init();
3076
3077         r = dm_register_target(&thin_target);
3078         if (r)
3079                 return r;
3080
3081         r = dm_register_target(&pool_target);
3082         if (r)
3083                 goto bad_pool_target;
3084
3085         r = -ENOMEM;
3086
3087         _cell_cache = KMEM_CACHE(dm_bio_prison_cell, 0);
3088         if (!_cell_cache)
3089                 goto bad_cell_cache;
3090
3091         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3092         if (!_new_mapping_cache)
3093                 goto bad_new_mapping_cache;
3094
3095         _endio_hook_cache = KMEM_CACHE(dm_thin_endio_hook, 0);
3096         if (!_endio_hook_cache)
3097                 goto bad_endio_hook_cache;
3098
3099         return 0;
3100
3101 bad_endio_hook_cache:
3102         kmem_cache_destroy(_new_mapping_cache);
3103 bad_new_mapping_cache:
3104         kmem_cache_destroy(_cell_cache);
3105 bad_cell_cache:
3106         dm_unregister_target(&pool_target);
3107 bad_pool_target:
3108         dm_unregister_target(&thin_target);
3109
3110         return r;
3111 }
3112
3113 static void dm_thin_exit(void)
3114 {
3115         dm_unregister_target(&thin_target);
3116         dm_unregister_target(&pool_target);
3117
3118         kmem_cache_destroy(_cell_cache);
3119         kmem_cache_destroy(_new_mapping_cache);
3120         kmem_cache_destroy(_endio_hook_cache);
3121 }
3122
3123 module_init(dm_thin_init);
3124 module_exit(dm_thin_exit);
3125
3126 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3127 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3128 MODULE_LICENSE("GPL");