]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/raid1.c
Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
41
42 #include <trace/events/block.h>
43
44 #include "md.h"
45 #include "raid1.h"
46 #include "bitmap.h"
47
48 #define UNSUPPORTED_MDDEV_FLAGS         \
49         ((1L << MD_HAS_JOURNAL) |       \
50          (1L << MD_JOURNAL_CLEAN) |     \
51          (1L << MD_HAS_PPL))
52
53 /*
54  * Number of guaranteed r1bios in case of extreme VM load:
55  */
56 #define NR_RAID1_BIOS 256
57
58 /* when we get a read error on a read-only array, we redirect to another
59  * device without failing the first device, or trying to over-write to
60  * correct the read error.  To keep track of bad blocks on a per-bio
61  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62  */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65  * bad-block marking which must be done from process context.  So we record
66  * the success by setting devs[n].bio to IO_MADE_GOOD
67  */
68 #define IO_MADE_GOOD ((struct bio *)2)
69
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
72 /* When there are this many requests queue to be written by
73  * the raid1 thread, we become 'congested' to provide back-pressure
74  * for writeback.
75  */
76 static int max_queued_requests = 1024;
77
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80
81 #define raid1_log(md, fmt, args...)                             \
82         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
84 /*
85  * 'strct resync_pages' stores actual pages used for doing the resync
86  *  IO, and it is per-bio, so make .bi_private points to it.
87  */
88 static inline struct resync_pages *get_resync_pages(struct bio *bio)
89 {
90         return bio->bi_private;
91 }
92
93 /*
94  * for resync bio, r1bio pointer can be retrieved from the per-bio
95  * 'struct resync_pages'.
96  */
97 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
98 {
99         return get_resync_pages(bio)->raid_bio;
100 }
101
102 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
103 {
104         struct pool_info *pi = data;
105         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
106
107         /* allocate a r1bio with room for raid_disks entries in the bios array */
108         return kzalloc(size, gfp_flags);
109 }
110
111 static void r1bio_pool_free(void *r1_bio, void *data)
112 {
113         kfree(r1_bio);
114 }
115
116 #define RESYNC_DEPTH 32
117 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
118 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
119 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
120 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
122
123 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
124 {
125         struct pool_info *pi = data;
126         struct r1bio *r1_bio;
127         struct bio *bio;
128         int need_pages;
129         int j;
130         struct resync_pages *rps;
131
132         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
133         if (!r1_bio)
134                 return NULL;
135
136         rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
137                       gfp_flags);
138         if (!rps)
139                 goto out_free_r1bio;
140
141         /*
142          * Allocate bios : 1 for reading, n-1 for writing
143          */
144         for (j = pi->raid_disks ; j-- ; ) {
145                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146                 if (!bio)
147                         goto out_free_bio;
148                 r1_bio->bios[j] = bio;
149         }
150         /*
151          * Allocate RESYNC_PAGES data pages and attach them to
152          * the first bio.
153          * If this is a user-requested check/repair, allocate
154          * RESYNC_PAGES for each bio.
155          */
156         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
157                 need_pages = pi->raid_disks;
158         else
159                 need_pages = 1;
160         for (j = 0; j < pi->raid_disks; j++) {
161                 struct resync_pages *rp = &rps[j];
162
163                 bio = r1_bio->bios[j];
164
165                 if (j < need_pages) {
166                         if (resync_alloc_pages(rp, gfp_flags))
167                                 goto out_free_pages;
168                 } else {
169                         memcpy(rp, &rps[0], sizeof(*rp));
170                         resync_get_all_pages(rp);
171                 }
172
173                 rp->idx = 0;
174                 rp->raid_bio = r1_bio;
175                 bio->bi_private = rp;
176         }
177
178         r1_bio->master_bio = NULL;
179
180         return r1_bio;
181
182 out_free_pages:
183         while (--j >= 0)
184                 resync_free_pages(&rps[j]);
185
186 out_free_bio:
187         while (++j < pi->raid_disks)
188                 bio_put(r1_bio->bios[j]);
189         kfree(rps);
190
191 out_free_r1bio:
192         r1bio_pool_free(r1_bio, data);
193         return NULL;
194 }
195
196 static void r1buf_pool_free(void *__r1_bio, void *data)
197 {
198         struct pool_info *pi = data;
199         int i;
200         struct r1bio *r1bio = __r1_bio;
201         struct resync_pages *rp = NULL;
202
203         for (i = pi->raid_disks; i--; ) {
204                 rp = get_resync_pages(r1bio->bios[i]);
205                 resync_free_pages(rp);
206                 bio_put(r1bio->bios[i]);
207         }
208
209         /* resync pages array stored in the 1st bio's .bi_private */
210         kfree(rp);
211
212         r1bio_pool_free(r1bio, data);
213 }
214
215 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
216 {
217         int i;
218
219         for (i = 0; i < conf->raid_disks * 2; i++) {
220                 struct bio **bio = r1_bio->bios + i;
221                 if (!BIO_SPECIAL(*bio))
222                         bio_put(*bio);
223                 *bio = NULL;
224         }
225 }
226
227 static void free_r1bio(struct r1bio *r1_bio)
228 {
229         struct r1conf *conf = r1_bio->mddev->private;
230
231         put_all_bios(conf, r1_bio);
232         mempool_free(r1_bio, conf->r1bio_pool);
233 }
234
235 static void put_buf(struct r1bio *r1_bio)
236 {
237         struct r1conf *conf = r1_bio->mddev->private;
238         sector_t sect = r1_bio->sector;
239         int i;
240
241         for (i = 0; i < conf->raid_disks * 2; i++) {
242                 struct bio *bio = r1_bio->bios[i];
243                 if (bio->bi_end_io)
244                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
245         }
246
247         mempool_free(r1_bio, conf->r1buf_pool);
248
249         lower_barrier(conf, sect);
250 }
251
252 static void reschedule_retry(struct r1bio *r1_bio)
253 {
254         unsigned long flags;
255         struct mddev *mddev = r1_bio->mddev;
256         struct r1conf *conf = mddev->private;
257         int idx;
258
259         idx = sector_to_idx(r1_bio->sector);
260         spin_lock_irqsave(&conf->device_lock, flags);
261         list_add(&r1_bio->retry_list, &conf->retry_list);
262         atomic_inc(&conf->nr_queued[idx]);
263         spin_unlock_irqrestore(&conf->device_lock, flags);
264
265         wake_up(&conf->wait_barrier);
266         md_wakeup_thread(mddev->thread);
267 }
268
269 /*
270  * raid_end_bio_io() is called when we have finished servicing a mirrored
271  * operation and are ready to return a success/failure code to the buffer
272  * cache layer.
273  */
274 static void call_bio_endio(struct r1bio *r1_bio)
275 {
276         struct bio *bio = r1_bio->master_bio;
277         struct r1conf *conf = r1_bio->mddev->private;
278
279         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
280                 bio->bi_status = BLK_STS_IOERR;
281
282         bio_endio(bio);
283         /*
284          * Wake up any possible resync thread that waits for the device
285          * to go idle.
286          */
287         allow_barrier(conf, r1_bio->sector);
288 }
289
290 static void raid_end_bio_io(struct r1bio *r1_bio)
291 {
292         struct bio *bio = r1_bio->master_bio;
293
294         /* if nobody has done the final endio yet, do it now */
295         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
296                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
297                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
298                          (unsigned long long) bio->bi_iter.bi_sector,
299                          (unsigned long long) bio_end_sector(bio) - 1);
300
301                 call_bio_endio(r1_bio);
302         }
303         free_r1bio(r1_bio);
304 }
305
306 /*
307  * Update disk head position estimator based on IRQ completion info.
308  */
309 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
310 {
311         struct r1conf *conf = r1_bio->mddev->private;
312
313         conf->mirrors[disk].head_position =
314                 r1_bio->sector + (r1_bio->sectors);
315 }
316
317 /*
318  * Find the disk number which triggered given bio
319  */
320 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
321 {
322         int mirror;
323         struct r1conf *conf = r1_bio->mddev->private;
324         int raid_disks = conf->raid_disks;
325
326         for (mirror = 0; mirror < raid_disks * 2; mirror++)
327                 if (r1_bio->bios[mirror] == bio)
328                         break;
329
330         BUG_ON(mirror == raid_disks * 2);
331         update_head_pos(mirror, r1_bio);
332
333         return mirror;
334 }
335
336 static void raid1_end_read_request(struct bio *bio)
337 {
338         int uptodate = !bio->bi_status;
339         struct r1bio *r1_bio = bio->bi_private;
340         struct r1conf *conf = r1_bio->mddev->private;
341         struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
342
343         /*
344          * this branch is our 'one mirror IO has finished' event handler:
345          */
346         update_head_pos(r1_bio->read_disk, r1_bio);
347
348         if (uptodate)
349                 set_bit(R1BIO_Uptodate, &r1_bio->state);
350         else if (test_bit(FailFast, &rdev->flags) &&
351                  test_bit(R1BIO_FailFast, &r1_bio->state))
352                 /* This was a fail-fast read so we definitely
353                  * want to retry */
354                 ;
355         else {
356                 /* If all other devices have failed, we want to return
357                  * the error upwards rather than fail the last device.
358                  * Here we redefine "uptodate" to mean "Don't want to retry"
359                  */
360                 unsigned long flags;
361                 spin_lock_irqsave(&conf->device_lock, flags);
362                 if (r1_bio->mddev->degraded == conf->raid_disks ||
363                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
364                      test_bit(In_sync, &rdev->flags)))
365                         uptodate = 1;
366                 spin_unlock_irqrestore(&conf->device_lock, flags);
367         }
368
369         if (uptodate) {
370                 raid_end_bio_io(r1_bio);
371                 rdev_dec_pending(rdev, conf->mddev);
372         } else {
373                 /*
374                  * oops, read error:
375                  */
376                 char b[BDEVNAME_SIZE];
377                 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
378                                    mdname(conf->mddev),
379                                    bdevname(rdev->bdev, b),
380                                    (unsigned long long)r1_bio->sector);
381                 set_bit(R1BIO_ReadError, &r1_bio->state);
382                 reschedule_retry(r1_bio);
383                 /* don't drop the reference on read_disk yet */
384         }
385 }
386
387 static void close_write(struct r1bio *r1_bio)
388 {
389         /* it really is the end of this request */
390         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
391                 bio_free_pages(r1_bio->behind_master_bio);
392                 bio_put(r1_bio->behind_master_bio);
393                 r1_bio->behind_master_bio = NULL;
394         }
395         /* clear the bitmap if all writes complete successfully */
396         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
397                         r1_bio->sectors,
398                         !test_bit(R1BIO_Degraded, &r1_bio->state),
399                         test_bit(R1BIO_BehindIO, &r1_bio->state));
400         md_write_end(r1_bio->mddev);
401 }
402
403 static void r1_bio_write_done(struct r1bio *r1_bio)
404 {
405         if (!atomic_dec_and_test(&r1_bio->remaining))
406                 return;
407
408         if (test_bit(R1BIO_WriteError, &r1_bio->state))
409                 reschedule_retry(r1_bio);
410         else {
411                 close_write(r1_bio);
412                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
413                         reschedule_retry(r1_bio);
414                 else
415                         raid_end_bio_io(r1_bio);
416         }
417 }
418
419 static void raid1_end_write_request(struct bio *bio)
420 {
421         struct r1bio *r1_bio = bio->bi_private;
422         int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
423         struct r1conf *conf = r1_bio->mddev->private;
424         struct bio *to_put = NULL;
425         int mirror = find_bio_disk(r1_bio, bio);
426         struct md_rdev *rdev = conf->mirrors[mirror].rdev;
427         bool discard_error;
428
429         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
430
431         /*
432          * 'one mirror IO has finished' event handler:
433          */
434         if (bio->bi_status && !discard_error) {
435                 set_bit(WriteErrorSeen, &rdev->flags);
436                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
437                         set_bit(MD_RECOVERY_NEEDED, &
438                                 conf->mddev->recovery);
439
440                 if (test_bit(FailFast, &rdev->flags) &&
441                     (bio->bi_opf & MD_FAILFAST) &&
442                     /* We never try FailFast to WriteMostly devices */
443                     !test_bit(WriteMostly, &rdev->flags)) {
444                         md_error(r1_bio->mddev, rdev);
445                         if (!test_bit(Faulty, &rdev->flags))
446                                 /* This is the only remaining device,
447                                  * We need to retry the write without
448                                  * FailFast
449                                  */
450                                 set_bit(R1BIO_WriteError, &r1_bio->state);
451                         else {
452                                 /* Finished with this branch */
453                                 r1_bio->bios[mirror] = NULL;
454                                 to_put = bio;
455                         }
456                 } else
457                         set_bit(R1BIO_WriteError, &r1_bio->state);
458         } else {
459                 /*
460                  * Set R1BIO_Uptodate in our master bio, so that we
461                  * will return a good error code for to the higher
462                  * levels even if IO on some other mirrored buffer
463                  * fails.
464                  *
465                  * The 'master' represents the composite IO operation
466                  * to user-side. So if something waits for IO, then it
467                  * will wait for the 'master' bio.
468                  */
469                 sector_t first_bad;
470                 int bad_sectors;
471
472                 r1_bio->bios[mirror] = NULL;
473                 to_put = bio;
474                 /*
475                  * Do not set R1BIO_Uptodate if the current device is
476                  * rebuilding or Faulty. This is because we cannot use
477                  * such device for properly reading the data back (we could
478                  * potentially use it, if the current write would have felt
479                  * before rdev->recovery_offset, but for simplicity we don't
480                  * check this here.
481                  */
482                 if (test_bit(In_sync, &rdev->flags) &&
483                     !test_bit(Faulty, &rdev->flags))
484                         set_bit(R1BIO_Uptodate, &r1_bio->state);
485
486                 /* Maybe we can clear some bad blocks. */
487                 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
488                                 &first_bad, &bad_sectors) && !discard_error) {
489                         r1_bio->bios[mirror] = IO_MADE_GOOD;
490                         set_bit(R1BIO_MadeGood, &r1_bio->state);
491                 }
492         }
493
494         if (behind) {
495                 /* we release behind master bio when all write are done */
496                 if (r1_bio->behind_master_bio == bio)
497                         to_put = NULL;
498
499                 if (test_bit(WriteMostly, &rdev->flags))
500                         atomic_dec(&r1_bio->behind_remaining);
501
502                 /*
503                  * In behind mode, we ACK the master bio once the I/O
504                  * has safely reached all non-writemostly
505                  * disks. Setting the Returned bit ensures that this
506                  * gets done only once -- we don't ever want to return
507                  * -EIO here, instead we'll wait
508                  */
509                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
510                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
511                         /* Maybe we can return now */
512                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
513                                 struct bio *mbio = r1_bio->master_bio;
514                                 pr_debug("raid1: behind end write sectors"
515                                          " %llu-%llu\n",
516                                          (unsigned long long) mbio->bi_iter.bi_sector,
517                                          (unsigned long long) bio_end_sector(mbio) - 1);
518                                 call_bio_endio(r1_bio);
519                         }
520                 }
521         }
522         if (r1_bio->bios[mirror] == NULL)
523                 rdev_dec_pending(rdev, conf->mddev);
524
525         /*
526          * Let's see if all mirrored write operations have finished
527          * already.
528          */
529         r1_bio_write_done(r1_bio);
530
531         if (to_put)
532                 bio_put(to_put);
533 }
534
535 static sector_t align_to_barrier_unit_end(sector_t start_sector,
536                                           sector_t sectors)
537 {
538         sector_t len;
539
540         WARN_ON(sectors == 0);
541         /*
542          * len is the number of sectors from start_sector to end of the
543          * barrier unit which start_sector belongs to.
544          */
545         len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
546               start_sector;
547
548         if (len > sectors)
549                 len = sectors;
550
551         return len;
552 }
553
554 /*
555  * This routine returns the disk from which the requested read should
556  * be done. There is a per-array 'next expected sequential IO' sector
557  * number - if this matches on the next IO then we use the last disk.
558  * There is also a per-disk 'last know head position' sector that is
559  * maintained from IRQ contexts, both the normal and the resync IO
560  * completion handlers update this position correctly. If there is no
561  * perfect sequential match then we pick the disk whose head is closest.
562  *
563  * If there are 2 mirrors in the same 2 devices, performance degrades
564  * because position is mirror, not device based.
565  *
566  * The rdev for the device selected will have nr_pending incremented.
567  */
568 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
569 {
570         const sector_t this_sector = r1_bio->sector;
571         int sectors;
572         int best_good_sectors;
573         int best_disk, best_dist_disk, best_pending_disk;
574         int has_nonrot_disk;
575         int disk;
576         sector_t best_dist;
577         unsigned int min_pending;
578         struct md_rdev *rdev;
579         int choose_first;
580         int choose_next_idle;
581
582         rcu_read_lock();
583         /*
584          * Check if we can balance. We can balance on the whole
585          * device if no resync is going on, or below the resync window.
586          * We take the first readable disk when above the resync window.
587          */
588  retry:
589         sectors = r1_bio->sectors;
590         best_disk = -1;
591         best_dist_disk = -1;
592         best_dist = MaxSector;
593         best_pending_disk = -1;
594         min_pending = UINT_MAX;
595         best_good_sectors = 0;
596         has_nonrot_disk = 0;
597         choose_next_idle = 0;
598         clear_bit(R1BIO_FailFast, &r1_bio->state);
599
600         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
601             (mddev_is_clustered(conf->mddev) &&
602             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
603                     this_sector + sectors)))
604                 choose_first = 1;
605         else
606                 choose_first = 0;
607
608         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
609                 sector_t dist;
610                 sector_t first_bad;
611                 int bad_sectors;
612                 unsigned int pending;
613                 bool nonrot;
614
615                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
616                 if (r1_bio->bios[disk] == IO_BLOCKED
617                     || rdev == NULL
618                     || test_bit(Faulty, &rdev->flags))
619                         continue;
620                 if (!test_bit(In_sync, &rdev->flags) &&
621                     rdev->recovery_offset < this_sector + sectors)
622                         continue;
623                 if (test_bit(WriteMostly, &rdev->flags)) {
624                         /* Don't balance among write-mostly, just
625                          * use the first as a last resort */
626                         if (best_dist_disk < 0) {
627                                 if (is_badblock(rdev, this_sector, sectors,
628                                                 &first_bad, &bad_sectors)) {
629                                         if (first_bad <= this_sector)
630                                                 /* Cannot use this */
631                                                 continue;
632                                         best_good_sectors = first_bad - this_sector;
633                                 } else
634                                         best_good_sectors = sectors;
635                                 best_dist_disk = disk;
636                                 best_pending_disk = disk;
637                         }
638                         continue;
639                 }
640                 /* This is a reasonable device to use.  It might
641                  * even be best.
642                  */
643                 if (is_badblock(rdev, this_sector, sectors,
644                                 &first_bad, &bad_sectors)) {
645                         if (best_dist < MaxSector)
646                                 /* already have a better device */
647                                 continue;
648                         if (first_bad <= this_sector) {
649                                 /* cannot read here. If this is the 'primary'
650                                  * device, then we must not read beyond
651                                  * bad_sectors from another device..
652                                  */
653                                 bad_sectors -= (this_sector - first_bad);
654                                 if (choose_first && sectors > bad_sectors)
655                                         sectors = bad_sectors;
656                                 if (best_good_sectors > sectors)
657                                         best_good_sectors = sectors;
658
659                         } else {
660                                 sector_t good_sectors = first_bad - this_sector;
661                                 if (good_sectors > best_good_sectors) {
662                                         best_good_sectors = good_sectors;
663                                         best_disk = disk;
664                                 }
665                                 if (choose_first)
666                                         break;
667                         }
668                         continue;
669                 } else {
670                         if ((sectors > best_good_sectors) && (best_disk >= 0))
671                                 best_disk = -1;
672                         best_good_sectors = sectors;
673                 }
674
675                 if (best_disk >= 0)
676                         /* At least two disks to choose from so failfast is OK */
677                         set_bit(R1BIO_FailFast, &r1_bio->state);
678
679                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
680                 has_nonrot_disk |= nonrot;
681                 pending = atomic_read(&rdev->nr_pending);
682                 dist = abs(this_sector - conf->mirrors[disk].head_position);
683                 if (choose_first) {
684                         best_disk = disk;
685                         break;
686                 }
687                 /* Don't change to another disk for sequential reads */
688                 if (conf->mirrors[disk].next_seq_sect == this_sector
689                     || dist == 0) {
690                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
691                         struct raid1_info *mirror = &conf->mirrors[disk];
692
693                         best_disk = disk;
694                         /*
695                          * If buffered sequential IO size exceeds optimal
696                          * iosize, check if there is idle disk. If yes, choose
697                          * the idle disk. read_balance could already choose an
698                          * idle disk before noticing it's a sequential IO in
699                          * this disk. This doesn't matter because this disk
700                          * will idle, next time it will be utilized after the
701                          * first disk has IO size exceeds optimal iosize. In
702                          * this way, iosize of the first disk will be optimal
703                          * iosize at least. iosize of the second disk might be
704                          * small, but not a big deal since when the second disk
705                          * starts IO, the first disk is likely still busy.
706                          */
707                         if (nonrot && opt_iosize > 0 &&
708                             mirror->seq_start != MaxSector &&
709                             mirror->next_seq_sect > opt_iosize &&
710                             mirror->next_seq_sect - opt_iosize >=
711                             mirror->seq_start) {
712                                 choose_next_idle = 1;
713                                 continue;
714                         }
715                         break;
716                 }
717
718                 if (choose_next_idle)
719                         continue;
720
721                 if (min_pending > pending) {
722                         min_pending = pending;
723                         best_pending_disk = disk;
724                 }
725
726                 if (dist < best_dist) {
727                         best_dist = dist;
728                         best_dist_disk = disk;
729                 }
730         }
731
732         /*
733          * If all disks are rotational, choose the closest disk. If any disk is
734          * non-rotational, choose the disk with less pending request even the
735          * disk is rotational, which might/might not be optimal for raids with
736          * mixed ratation/non-rotational disks depending on workload.
737          */
738         if (best_disk == -1) {
739                 if (has_nonrot_disk || min_pending == 0)
740                         best_disk = best_pending_disk;
741                 else
742                         best_disk = best_dist_disk;
743         }
744
745         if (best_disk >= 0) {
746                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
747                 if (!rdev)
748                         goto retry;
749                 atomic_inc(&rdev->nr_pending);
750                 sectors = best_good_sectors;
751
752                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
753                         conf->mirrors[best_disk].seq_start = this_sector;
754
755                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
756         }
757         rcu_read_unlock();
758         *max_sectors = sectors;
759
760         return best_disk;
761 }
762
763 static int raid1_congested(struct mddev *mddev, int bits)
764 {
765         struct r1conf *conf = mddev->private;
766         int i, ret = 0;
767
768         if ((bits & (1 << WB_async_congested)) &&
769             conf->pending_count >= max_queued_requests)
770                 return 1;
771
772         rcu_read_lock();
773         for (i = 0; i < conf->raid_disks * 2; i++) {
774                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
775                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
776                         struct request_queue *q = bdev_get_queue(rdev->bdev);
777
778                         BUG_ON(!q);
779
780                         /* Note the '|| 1' - when read_balance prefers
781                          * non-congested targets, it can be removed
782                          */
783                         if ((bits & (1 << WB_async_congested)) || 1)
784                                 ret |= bdi_congested(q->backing_dev_info, bits);
785                         else
786                                 ret &= bdi_congested(q->backing_dev_info, bits);
787                 }
788         }
789         rcu_read_unlock();
790         return ret;
791 }
792
793 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
794 {
795         /* flush any pending bitmap writes to disk before proceeding w/ I/O */
796         bitmap_unplug(conf->mddev->bitmap);
797         wake_up(&conf->wait_barrier);
798
799         while (bio) { /* submit pending writes */
800                 struct bio *next = bio->bi_next;
801                 struct md_rdev *rdev = (void*)bio->bi_bdev;
802                 bio->bi_next = NULL;
803                 bio->bi_bdev = rdev->bdev;
804                 if (test_bit(Faulty, &rdev->flags)) {
805                         bio->bi_status = BLK_STS_IOERR;
806                         bio_endio(bio);
807                 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
808                                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
809                         /* Just ignore it */
810                         bio_endio(bio);
811                 else
812                         generic_make_request(bio);
813                 bio = next;
814         }
815 }
816
817 static void flush_pending_writes(struct r1conf *conf)
818 {
819         /* Any writes that have been queued but are awaiting
820          * bitmap updates get flushed here.
821          */
822         spin_lock_irq(&conf->device_lock);
823
824         if (conf->pending_bio_list.head) {
825                 struct bio *bio;
826                 bio = bio_list_get(&conf->pending_bio_list);
827                 conf->pending_count = 0;
828                 spin_unlock_irq(&conf->device_lock);
829                 flush_bio_list(conf, bio);
830         } else
831                 spin_unlock_irq(&conf->device_lock);
832 }
833
834 /* Barriers....
835  * Sometimes we need to suspend IO while we do something else,
836  * either some resync/recovery, or reconfigure the array.
837  * To do this we raise a 'barrier'.
838  * The 'barrier' is a counter that can be raised multiple times
839  * to count how many activities are happening which preclude
840  * normal IO.
841  * We can only raise the barrier if there is no pending IO.
842  * i.e. if nr_pending == 0.
843  * We choose only to raise the barrier if no-one is waiting for the
844  * barrier to go down.  This means that as soon as an IO request
845  * is ready, no other operations which require a barrier will start
846  * until the IO request has had a chance.
847  *
848  * So: regular IO calls 'wait_barrier'.  When that returns there
849  *    is no backgroup IO happening,  It must arrange to call
850  *    allow_barrier when it has finished its IO.
851  * backgroup IO calls must call raise_barrier.  Once that returns
852  *    there is no normal IO happeing.  It must arrange to call
853  *    lower_barrier when the particular background IO completes.
854  */
855 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
856 {
857         int idx = sector_to_idx(sector_nr);
858
859         spin_lock_irq(&conf->resync_lock);
860
861         /* Wait until no block IO is waiting */
862         wait_event_lock_irq(conf->wait_barrier,
863                             !atomic_read(&conf->nr_waiting[idx]),
864                             conf->resync_lock);
865
866         /* block any new IO from starting */
867         atomic_inc(&conf->barrier[idx]);
868         /*
869          * In raise_barrier() we firstly increase conf->barrier[idx] then
870          * check conf->nr_pending[idx]. In _wait_barrier() we firstly
871          * increase conf->nr_pending[idx] then check conf->barrier[idx].
872          * A memory barrier here to make sure conf->nr_pending[idx] won't
873          * be fetched before conf->barrier[idx] is increased. Otherwise
874          * there will be a race between raise_barrier() and _wait_barrier().
875          */
876         smp_mb__after_atomic();
877
878         /* For these conditions we must wait:
879          * A: while the array is in frozen state
880          * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
881          *    existing in corresponding I/O barrier bucket.
882          * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
883          *    max resync count which allowed on current I/O barrier bucket.
884          */
885         wait_event_lock_irq(conf->wait_barrier,
886                             !conf->array_frozen &&
887                              !atomic_read(&conf->nr_pending[idx]) &&
888                              atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
889                             conf->resync_lock);
890
891         atomic_inc(&conf->nr_sync_pending);
892         spin_unlock_irq(&conf->resync_lock);
893 }
894
895 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
896 {
897         int idx = sector_to_idx(sector_nr);
898
899         BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
900
901         atomic_dec(&conf->barrier[idx]);
902         atomic_dec(&conf->nr_sync_pending);
903         wake_up(&conf->wait_barrier);
904 }
905
906 static void _wait_barrier(struct r1conf *conf, int idx)
907 {
908         /*
909          * We need to increase conf->nr_pending[idx] very early here,
910          * then raise_barrier() can be blocked when it waits for
911          * conf->nr_pending[idx] to be 0. Then we can avoid holding
912          * conf->resync_lock when there is no barrier raised in same
913          * barrier unit bucket. Also if the array is frozen, I/O
914          * should be blocked until array is unfrozen.
915          */
916         atomic_inc(&conf->nr_pending[idx]);
917         /*
918          * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
919          * check conf->barrier[idx]. In raise_barrier() we firstly increase
920          * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
921          * barrier is necessary here to make sure conf->barrier[idx] won't be
922          * fetched before conf->nr_pending[idx] is increased. Otherwise there
923          * will be a race between _wait_barrier() and raise_barrier().
924          */
925         smp_mb__after_atomic();
926
927         /*
928          * Don't worry about checking two atomic_t variables at same time
929          * here. If during we check conf->barrier[idx], the array is
930          * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
931          * 0, it is safe to return and make the I/O continue. Because the
932          * array is frozen, all I/O returned here will eventually complete
933          * or be queued, no race will happen. See code comment in
934          * frozen_array().
935          */
936         if (!READ_ONCE(conf->array_frozen) &&
937             !atomic_read(&conf->barrier[idx]))
938                 return;
939
940         /*
941          * After holding conf->resync_lock, conf->nr_pending[idx]
942          * should be decreased before waiting for barrier to drop.
943          * Otherwise, we may encounter a race condition because
944          * raise_barrer() might be waiting for conf->nr_pending[idx]
945          * to be 0 at same time.
946          */
947         spin_lock_irq(&conf->resync_lock);
948         atomic_inc(&conf->nr_waiting[idx]);
949         atomic_dec(&conf->nr_pending[idx]);
950         /*
951          * In case freeze_array() is waiting for
952          * get_unqueued_pending() == extra
953          */
954         wake_up(&conf->wait_barrier);
955         /* Wait for the barrier in same barrier unit bucket to drop. */
956         wait_event_lock_irq(conf->wait_barrier,
957                             !conf->array_frozen &&
958                              !atomic_read(&conf->barrier[idx]),
959                             conf->resync_lock);
960         atomic_inc(&conf->nr_pending[idx]);
961         atomic_dec(&conf->nr_waiting[idx]);
962         spin_unlock_irq(&conf->resync_lock);
963 }
964
965 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
966 {
967         int idx = sector_to_idx(sector_nr);
968
969         /*
970          * Very similar to _wait_barrier(). The difference is, for read
971          * I/O we don't need wait for sync I/O, but if the whole array
972          * is frozen, the read I/O still has to wait until the array is
973          * unfrozen. Since there is no ordering requirement with
974          * conf->barrier[idx] here, memory barrier is unnecessary as well.
975          */
976         atomic_inc(&conf->nr_pending[idx]);
977
978         if (!READ_ONCE(conf->array_frozen))
979                 return;
980
981         spin_lock_irq(&conf->resync_lock);
982         atomic_inc(&conf->nr_waiting[idx]);
983         atomic_dec(&conf->nr_pending[idx]);
984         /*
985          * In case freeze_array() is waiting for
986          * get_unqueued_pending() == extra
987          */
988         wake_up(&conf->wait_barrier);
989         /* Wait for array to be unfrozen */
990         wait_event_lock_irq(conf->wait_barrier,
991                             !conf->array_frozen,
992                             conf->resync_lock);
993         atomic_inc(&conf->nr_pending[idx]);
994         atomic_dec(&conf->nr_waiting[idx]);
995         spin_unlock_irq(&conf->resync_lock);
996 }
997
998 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
999 {
1000         int idx = sector_to_idx(sector_nr);
1001
1002         _wait_barrier(conf, idx);
1003 }
1004
1005 static void wait_all_barriers(struct r1conf *conf)
1006 {
1007         int idx;
1008
1009         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1010                 _wait_barrier(conf, idx);
1011 }
1012
1013 static void _allow_barrier(struct r1conf *conf, int idx)
1014 {
1015         atomic_dec(&conf->nr_pending[idx]);
1016         wake_up(&conf->wait_barrier);
1017 }
1018
1019 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1020 {
1021         int idx = sector_to_idx(sector_nr);
1022
1023         _allow_barrier(conf, idx);
1024 }
1025
1026 static void allow_all_barriers(struct r1conf *conf)
1027 {
1028         int idx;
1029
1030         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1031                 _allow_barrier(conf, idx);
1032 }
1033
1034 /* conf->resync_lock should be held */
1035 static int get_unqueued_pending(struct r1conf *conf)
1036 {
1037         int idx, ret;
1038
1039         ret = atomic_read(&conf->nr_sync_pending);
1040         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1041                 ret += atomic_read(&conf->nr_pending[idx]) -
1042                         atomic_read(&conf->nr_queued[idx]);
1043
1044         return ret;
1045 }
1046
1047 static void freeze_array(struct r1conf *conf, int extra)
1048 {
1049         /* Stop sync I/O and normal I/O and wait for everything to
1050          * go quiet.
1051          * This is called in two situations:
1052          * 1) management command handlers (reshape, remove disk, quiesce).
1053          * 2) one normal I/O request failed.
1054
1055          * After array_frozen is set to 1, new sync IO will be blocked at
1056          * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1057          * or wait_read_barrier(). The flying I/Os will either complete or be
1058          * queued. When everything goes quite, there are only queued I/Os left.
1059
1060          * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1061          * barrier bucket index which this I/O request hits. When all sync and
1062          * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1063          * of all conf->nr_queued[]. But normal I/O failure is an exception,
1064          * in handle_read_error(), we may call freeze_array() before trying to
1065          * fix the read error. In this case, the error read I/O is not queued,
1066          * so get_unqueued_pending() == 1.
1067          *
1068          * Therefore before this function returns, we need to wait until
1069          * get_unqueued_pendings(conf) gets equal to extra. For
1070          * normal I/O context, extra is 1, in rested situations extra is 0.
1071          */
1072         spin_lock_irq(&conf->resync_lock);
1073         conf->array_frozen = 1;
1074         raid1_log(conf->mddev, "wait freeze");
1075         wait_event_lock_irq_cmd(
1076                 conf->wait_barrier,
1077                 get_unqueued_pending(conf) == extra,
1078                 conf->resync_lock,
1079                 flush_pending_writes(conf));
1080         spin_unlock_irq(&conf->resync_lock);
1081 }
1082 static void unfreeze_array(struct r1conf *conf)
1083 {
1084         /* reverse the effect of the freeze */
1085         spin_lock_irq(&conf->resync_lock);
1086         conf->array_frozen = 0;
1087         spin_unlock_irq(&conf->resync_lock);
1088         wake_up(&conf->wait_barrier);
1089 }
1090
1091 static struct bio *alloc_behind_master_bio(struct r1bio *r1_bio,
1092                                            struct bio *bio)
1093 {
1094         int size = bio->bi_iter.bi_size;
1095         unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1096         int i = 0;
1097         struct bio *behind_bio = NULL;
1098
1099         behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1100         if (!behind_bio)
1101                 goto fail;
1102
1103         /* discard op, we don't support writezero/writesame yet */
1104         if (!bio_has_data(bio))
1105                 goto skip_copy;
1106
1107         while (i < vcnt && size) {
1108                 struct page *page;
1109                 int len = min_t(int, PAGE_SIZE, size);
1110
1111                 page = alloc_page(GFP_NOIO);
1112                 if (unlikely(!page))
1113                         goto free_pages;
1114
1115                 bio_add_page(behind_bio, page, len, 0);
1116
1117                 size -= len;
1118                 i++;
1119         }
1120
1121         bio_copy_data(behind_bio, bio);
1122 skip_copy:
1123         r1_bio->behind_master_bio = behind_bio;;
1124         set_bit(R1BIO_BehindIO, &r1_bio->state);
1125
1126         return behind_bio;
1127
1128 free_pages:
1129         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1130                  bio->bi_iter.bi_size);
1131         bio_free_pages(behind_bio);
1132 fail:
1133         return behind_bio;
1134 }
1135
1136 struct raid1_plug_cb {
1137         struct blk_plug_cb      cb;
1138         struct bio_list         pending;
1139         int                     pending_cnt;
1140 };
1141
1142 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1143 {
1144         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1145                                                   cb);
1146         struct mddev *mddev = plug->cb.data;
1147         struct r1conf *conf = mddev->private;
1148         struct bio *bio;
1149
1150         if (from_schedule || current->bio_list) {
1151                 spin_lock_irq(&conf->device_lock);
1152                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1153                 conf->pending_count += plug->pending_cnt;
1154                 spin_unlock_irq(&conf->device_lock);
1155                 wake_up(&conf->wait_barrier);
1156                 md_wakeup_thread(mddev->thread);
1157                 kfree(plug);
1158                 return;
1159         }
1160
1161         /* we aren't scheduling, so we can do the write-out directly. */
1162         bio = bio_list_get(&plug->pending);
1163         flush_bio_list(conf, bio);
1164         kfree(plug);
1165 }
1166
1167 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1168 {
1169         r1_bio->master_bio = bio;
1170         r1_bio->sectors = bio_sectors(bio);
1171         r1_bio->state = 0;
1172         r1_bio->mddev = mddev;
1173         r1_bio->sector = bio->bi_iter.bi_sector;
1174 }
1175
1176 static inline struct r1bio *
1177 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1178 {
1179         struct r1conf *conf = mddev->private;
1180         struct r1bio *r1_bio;
1181
1182         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1183         /* Ensure no bio records IO_BLOCKED */
1184         memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1185         init_r1bio(r1_bio, mddev, bio);
1186         return r1_bio;
1187 }
1188
1189 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1190                                int max_read_sectors, struct r1bio *r1_bio)
1191 {
1192         struct r1conf *conf = mddev->private;
1193         struct raid1_info *mirror;
1194         struct bio *read_bio;
1195         struct bitmap *bitmap = mddev->bitmap;
1196         const int op = bio_op(bio);
1197         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1198         int max_sectors;
1199         int rdisk;
1200         bool print_msg = !!r1_bio;
1201         char b[BDEVNAME_SIZE];
1202
1203         /*
1204          * If r1_bio is set, we are blocking the raid1d thread
1205          * so there is a tiny risk of deadlock.  So ask for
1206          * emergency memory if needed.
1207          */
1208         gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1209
1210         if (print_msg) {
1211                 /* Need to get the block device name carefully */
1212                 struct md_rdev *rdev;
1213                 rcu_read_lock();
1214                 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1215                 if (rdev)
1216                         bdevname(rdev->bdev, b);
1217                 else
1218                         strcpy(b, "???");
1219                 rcu_read_unlock();
1220         }
1221
1222         /*
1223          * Still need barrier for READ in case that whole
1224          * array is frozen.
1225          */
1226         wait_read_barrier(conf, bio->bi_iter.bi_sector);
1227
1228         if (!r1_bio)
1229                 r1_bio = alloc_r1bio(mddev, bio);
1230         else
1231                 init_r1bio(r1_bio, mddev, bio);
1232         r1_bio->sectors = max_read_sectors;
1233
1234         /*
1235          * make_request() can abort the operation when read-ahead is being
1236          * used and no empty request is available.
1237          */
1238         rdisk = read_balance(conf, r1_bio, &max_sectors);
1239
1240         if (rdisk < 0) {
1241                 /* couldn't find anywhere to read from */
1242                 if (print_msg) {
1243                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1244                                             mdname(mddev),
1245                                             b,
1246                                             (unsigned long long)r1_bio->sector);
1247                 }
1248                 raid_end_bio_io(r1_bio);
1249                 return;
1250         }
1251         mirror = conf->mirrors + rdisk;
1252
1253         if (print_msg)
1254                 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1255                                     mdname(mddev),
1256                                     (unsigned long long)r1_bio->sector,
1257                                     bdevname(mirror->rdev->bdev, b));
1258
1259         if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1260             bitmap) {
1261                 /*
1262                  * Reading from a write-mostly device must take care not to
1263                  * over-take any writes that are 'behind'
1264                  */
1265                 raid1_log(mddev, "wait behind writes");
1266                 wait_event(bitmap->behind_wait,
1267                            atomic_read(&bitmap->behind_writes) == 0);
1268         }
1269
1270         if (max_sectors < bio_sectors(bio)) {
1271                 struct bio *split = bio_split(bio, max_sectors,
1272                                               gfp, conf->bio_split);
1273                 bio_chain(split, bio);
1274                 generic_make_request(bio);
1275                 bio = split;
1276                 r1_bio->master_bio = bio;
1277                 r1_bio->sectors = max_sectors;
1278         }
1279
1280         r1_bio->read_disk = rdisk;
1281
1282         read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1283
1284         r1_bio->bios[rdisk] = read_bio;
1285
1286         read_bio->bi_iter.bi_sector = r1_bio->sector +
1287                 mirror->rdev->data_offset;
1288         read_bio->bi_bdev = mirror->rdev->bdev;
1289         read_bio->bi_end_io = raid1_end_read_request;
1290         bio_set_op_attrs(read_bio, op, do_sync);
1291         if (test_bit(FailFast, &mirror->rdev->flags) &&
1292             test_bit(R1BIO_FailFast, &r1_bio->state))
1293                 read_bio->bi_opf |= MD_FAILFAST;
1294         read_bio->bi_private = r1_bio;
1295
1296         if (mddev->gendisk)
1297                 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1298                                       read_bio, disk_devt(mddev->gendisk),
1299                                       r1_bio->sector);
1300
1301         generic_make_request(read_bio);
1302 }
1303
1304 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1305                                 int max_write_sectors)
1306 {
1307         struct r1conf *conf = mddev->private;
1308         struct r1bio *r1_bio;
1309         int i, disks;
1310         struct bitmap *bitmap = mddev->bitmap;
1311         unsigned long flags;
1312         struct md_rdev *blocked_rdev;
1313         struct blk_plug_cb *cb;
1314         struct raid1_plug_cb *plug = NULL;
1315         int first_clone;
1316         int max_sectors;
1317
1318         /*
1319          * Register the new request and wait if the reconstruction
1320          * thread has put up a bar for new requests.
1321          * Continue immediately if no resync is active currently.
1322          */
1323
1324
1325         if ((bio_end_sector(bio) > mddev->suspend_lo &&
1326             bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1327             (mddev_is_clustered(mddev) &&
1328              md_cluster_ops->area_resyncing(mddev, WRITE,
1329                      bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1330
1331                 /*
1332                  * As the suspend_* range is controlled by userspace, we want
1333                  * an interruptible wait.
1334                  */
1335                 DEFINE_WAIT(w);
1336                 for (;;) {
1337                         sigset_t full, old;
1338                         prepare_to_wait(&conf->wait_barrier,
1339                                         &w, TASK_INTERRUPTIBLE);
1340                         if (bio_end_sector(bio) <= mddev->suspend_lo ||
1341                             bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1342                             (mddev_is_clustered(mddev) &&
1343                              !md_cluster_ops->area_resyncing(mddev, WRITE,
1344                                      bio->bi_iter.bi_sector,
1345                                      bio_end_sector(bio))))
1346                                 break;
1347                         sigfillset(&full);
1348                         sigprocmask(SIG_BLOCK, &full, &old);
1349                         schedule();
1350                         sigprocmask(SIG_SETMASK, &old, NULL);
1351                 }
1352                 finish_wait(&conf->wait_barrier, &w);
1353         }
1354         wait_barrier(conf, bio->bi_iter.bi_sector);
1355
1356         r1_bio = alloc_r1bio(mddev, bio);
1357         r1_bio->sectors = max_write_sectors;
1358
1359         if (conf->pending_count >= max_queued_requests) {
1360                 md_wakeup_thread(mddev->thread);
1361                 raid1_log(mddev, "wait queued");
1362                 wait_event(conf->wait_barrier,
1363                            conf->pending_count < max_queued_requests);
1364         }
1365         /* first select target devices under rcu_lock and
1366          * inc refcount on their rdev.  Record them by setting
1367          * bios[x] to bio
1368          * If there are known/acknowledged bad blocks on any device on
1369          * which we have seen a write error, we want to avoid writing those
1370          * blocks.
1371          * This potentially requires several writes to write around
1372          * the bad blocks.  Each set of writes gets it's own r1bio
1373          * with a set of bios attached.
1374          */
1375
1376         disks = conf->raid_disks * 2;
1377  retry_write:
1378         blocked_rdev = NULL;
1379         rcu_read_lock();
1380         max_sectors = r1_bio->sectors;
1381         for (i = 0;  i < disks; i++) {
1382                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1383                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1384                         atomic_inc(&rdev->nr_pending);
1385                         blocked_rdev = rdev;
1386                         break;
1387                 }
1388                 r1_bio->bios[i] = NULL;
1389                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1390                         if (i < conf->raid_disks)
1391                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1392                         continue;
1393                 }
1394
1395                 atomic_inc(&rdev->nr_pending);
1396                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1397                         sector_t first_bad;
1398                         int bad_sectors;
1399                         int is_bad;
1400
1401                         is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1402                                              &first_bad, &bad_sectors);
1403                         if (is_bad < 0) {
1404                                 /* mustn't write here until the bad block is
1405                                  * acknowledged*/
1406                                 set_bit(BlockedBadBlocks, &rdev->flags);
1407                                 blocked_rdev = rdev;
1408                                 break;
1409                         }
1410                         if (is_bad && first_bad <= r1_bio->sector) {
1411                                 /* Cannot write here at all */
1412                                 bad_sectors -= (r1_bio->sector - first_bad);
1413                                 if (bad_sectors < max_sectors)
1414                                         /* mustn't write more than bad_sectors
1415                                          * to other devices yet
1416                                          */
1417                                         max_sectors = bad_sectors;
1418                                 rdev_dec_pending(rdev, mddev);
1419                                 /* We don't set R1BIO_Degraded as that
1420                                  * only applies if the disk is
1421                                  * missing, so it might be re-added,
1422                                  * and we want to know to recover this
1423                                  * chunk.
1424                                  * In this case the device is here,
1425                                  * and the fact that this chunk is not
1426                                  * in-sync is recorded in the bad
1427                                  * block log
1428                                  */
1429                                 continue;
1430                         }
1431                         if (is_bad) {
1432                                 int good_sectors = first_bad - r1_bio->sector;
1433                                 if (good_sectors < max_sectors)
1434                                         max_sectors = good_sectors;
1435                         }
1436                 }
1437                 r1_bio->bios[i] = bio;
1438         }
1439         rcu_read_unlock();
1440
1441         if (unlikely(blocked_rdev)) {
1442                 /* Wait for this device to become unblocked */
1443                 int j;
1444
1445                 for (j = 0; j < i; j++)
1446                         if (r1_bio->bios[j])
1447                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1448                 r1_bio->state = 0;
1449                 allow_barrier(conf, bio->bi_iter.bi_sector);
1450                 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1451                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1452                 wait_barrier(conf, bio->bi_iter.bi_sector);
1453                 goto retry_write;
1454         }
1455
1456         if (max_sectors < bio_sectors(bio)) {
1457                 struct bio *split = bio_split(bio, max_sectors,
1458                                               GFP_NOIO, conf->bio_split);
1459                 bio_chain(split, bio);
1460                 generic_make_request(bio);
1461                 bio = split;
1462                 r1_bio->master_bio = bio;
1463                 r1_bio->sectors = max_sectors;
1464         }
1465
1466         atomic_set(&r1_bio->remaining, 1);
1467         atomic_set(&r1_bio->behind_remaining, 0);
1468
1469         first_clone = 1;
1470
1471         for (i = 0; i < disks; i++) {
1472                 struct bio *mbio = NULL;
1473                 if (!r1_bio->bios[i])
1474                         continue;
1475
1476
1477                 if (first_clone) {
1478                         /* do behind I/O ?
1479                          * Not if there are too many, or cannot
1480                          * allocate memory, or a reader on WriteMostly
1481                          * is waiting for behind writes to flush */
1482                         if (bitmap &&
1483                             (atomic_read(&bitmap->behind_writes)
1484                              < mddev->bitmap_info.max_write_behind) &&
1485                             !waitqueue_active(&bitmap->behind_wait)) {
1486                                 mbio = alloc_behind_master_bio(r1_bio, bio);
1487                         }
1488
1489                         bitmap_startwrite(bitmap, r1_bio->sector,
1490                                           r1_bio->sectors,
1491                                           test_bit(R1BIO_BehindIO,
1492                                                    &r1_bio->state));
1493                         first_clone = 0;
1494                 }
1495
1496                 if (!mbio) {
1497                         if (r1_bio->behind_master_bio)
1498                                 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1499                                                       GFP_NOIO,
1500                                                       mddev->bio_set);
1501                         else
1502                                 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1503                 }
1504
1505                 if (r1_bio->behind_master_bio) {
1506                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1507                                 atomic_inc(&r1_bio->behind_remaining);
1508                 }
1509
1510                 r1_bio->bios[i] = mbio;
1511
1512                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1513                                    conf->mirrors[i].rdev->data_offset);
1514                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1515                 mbio->bi_end_io = raid1_end_write_request;
1516                 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1517                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1518                     !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1519                     conf->raid_disks - mddev->degraded > 1)
1520                         mbio->bi_opf |= MD_FAILFAST;
1521                 mbio->bi_private = r1_bio;
1522
1523                 atomic_inc(&r1_bio->remaining);
1524
1525                 if (mddev->gendisk)
1526                         trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1527                                               mbio, disk_devt(mddev->gendisk),
1528                                               r1_bio->sector);
1529                 /* flush_pending_writes() needs access to the rdev so...*/
1530                 mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1531
1532                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1533                 if (cb)
1534                         plug = container_of(cb, struct raid1_plug_cb, cb);
1535                 else
1536                         plug = NULL;
1537                 if (plug) {
1538                         bio_list_add(&plug->pending, mbio);
1539                         plug->pending_cnt++;
1540                 } else {
1541                         spin_lock_irqsave(&conf->device_lock, flags);
1542                         bio_list_add(&conf->pending_bio_list, mbio);
1543                         conf->pending_count++;
1544                         spin_unlock_irqrestore(&conf->device_lock, flags);
1545                         md_wakeup_thread(mddev->thread);
1546                 }
1547         }
1548
1549         r1_bio_write_done(r1_bio);
1550
1551         /* In case raid1d snuck in to freeze_array */
1552         wake_up(&conf->wait_barrier);
1553 }
1554
1555 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1556 {
1557         sector_t sectors;
1558
1559         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1560                 md_flush_request(mddev, bio);
1561                 return true;
1562         }
1563
1564         /*
1565          * There is a limit to the maximum size, but
1566          * the read/write handler might find a lower limit
1567          * due to bad blocks.  To avoid multiple splits,
1568          * we pass the maximum number of sectors down
1569          * and let the lower level perform the split.
1570          */
1571         sectors = align_to_barrier_unit_end(
1572                 bio->bi_iter.bi_sector, bio_sectors(bio));
1573
1574         if (bio_data_dir(bio) == READ)
1575                 raid1_read_request(mddev, bio, sectors, NULL);
1576         else {
1577                 if (!md_write_start(mddev,bio))
1578                         return false;
1579                 raid1_write_request(mddev, bio, sectors);
1580         }
1581         return true;
1582 }
1583
1584 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1585 {
1586         struct r1conf *conf = mddev->private;
1587         int i;
1588
1589         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1590                    conf->raid_disks - mddev->degraded);
1591         rcu_read_lock();
1592         for (i = 0; i < conf->raid_disks; i++) {
1593                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1594                 seq_printf(seq, "%s",
1595                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1596         }
1597         rcu_read_unlock();
1598         seq_printf(seq, "]");
1599 }
1600
1601 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1602 {
1603         char b[BDEVNAME_SIZE];
1604         struct r1conf *conf = mddev->private;
1605         unsigned long flags;
1606
1607         /*
1608          * If it is not operational, then we have already marked it as dead
1609          * else if it is the last working disks, ignore the error, let the
1610          * next level up know.
1611          * else mark the drive as failed
1612          */
1613         spin_lock_irqsave(&conf->device_lock, flags);
1614         if (test_bit(In_sync, &rdev->flags)
1615             && (conf->raid_disks - mddev->degraded) == 1) {
1616                 /*
1617                  * Don't fail the drive, act as though we were just a
1618                  * normal single drive.
1619                  * However don't try a recovery from this drive as
1620                  * it is very likely to fail.
1621                  */
1622                 conf->recovery_disabled = mddev->recovery_disabled;
1623                 spin_unlock_irqrestore(&conf->device_lock, flags);
1624                 return;
1625         }
1626         set_bit(Blocked, &rdev->flags);
1627         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1628                 mddev->degraded++;
1629                 set_bit(Faulty, &rdev->flags);
1630         } else
1631                 set_bit(Faulty, &rdev->flags);
1632         spin_unlock_irqrestore(&conf->device_lock, flags);
1633         /*
1634          * if recovery is running, make sure it aborts.
1635          */
1636         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1637         set_mask_bits(&mddev->sb_flags, 0,
1638                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1639         pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1640                 "md/raid1:%s: Operation continuing on %d devices.\n",
1641                 mdname(mddev), bdevname(rdev->bdev, b),
1642                 mdname(mddev), conf->raid_disks - mddev->degraded);
1643 }
1644
1645 static void print_conf(struct r1conf *conf)
1646 {
1647         int i;
1648
1649         pr_debug("RAID1 conf printout:\n");
1650         if (!conf) {
1651                 pr_debug("(!conf)\n");
1652                 return;
1653         }
1654         pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1655                  conf->raid_disks);
1656
1657         rcu_read_lock();
1658         for (i = 0; i < conf->raid_disks; i++) {
1659                 char b[BDEVNAME_SIZE];
1660                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1661                 if (rdev)
1662                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1663                                  i, !test_bit(In_sync, &rdev->flags),
1664                                  !test_bit(Faulty, &rdev->flags),
1665                                  bdevname(rdev->bdev,b));
1666         }
1667         rcu_read_unlock();
1668 }
1669
1670 static void close_sync(struct r1conf *conf)
1671 {
1672         wait_all_barriers(conf);
1673         allow_all_barriers(conf);
1674
1675         mempool_destroy(conf->r1buf_pool);
1676         conf->r1buf_pool = NULL;
1677 }
1678
1679 static int raid1_spare_active(struct mddev *mddev)
1680 {
1681         int i;
1682         struct r1conf *conf = mddev->private;
1683         int count = 0;
1684         unsigned long flags;
1685
1686         /*
1687          * Find all failed disks within the RAID1 configuration
1688          * and mark them readable.
1689          * Called under mddev lock, so rcu protection not needed.
1690          * device_lock used to avoid races with raid1_end_read_request
1691          * which expects 'In_sync' flags and ->degraded to be consistent.
1692          */
1693         spin_lock_irqsave(&conf->device_lock, flags);
1694         for (i = 0; i < conf->raid_disks; i++) {
1695                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1696                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1697                 if (repl
1698                     && !test_bit(Candidate, &repl->flags)
1699                     && repl->recovery_offset == MaxSector
1700                     && !test_bit(Faulty, &repl->flags)
1701                     && !test_and_set_bit(In_sync, &repl->flags)) {
1702                         /* replacement has just become active */
1703                         if (!rdev ||
1704                             !test_and_clear_bit(In_sync, &rdev->flags))
1705                                 count++;
1706                         if (rdev) {
1707                                 /* Replaced device not technically
1708                                  * faulty, but we need to be sure
1709                                  * it gets removed and never re-added
1710                                  */
1711                                 set_bit(Faulty, &rdev->flags);
1712                                 sysfs_notify_dirent_safe(
1713                                         rdev->sysfs_state);
1714                         }
1715                 }
1716                 if (rdev
1717                     && rdev->recovery_offset == MaxSector
1718                     && !test_bit(Faulty, &rdev->flags)
1719                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1720                         count++;
1721                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1722                 }
1723         }
1724         mddev->degraded -= count;
1725         spin_unlock_irqrestore(&conf->device_lock, flags);
1726
1727         print_conf(conf);
1728         return count;
1729 }
1730
1731 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1732 {
1733         struct r1conf *conf = mddev->private;
1734         int err = -EEXIST;
1735         int mirror = 0;
1736         struct raid1_info *p;
1737         int first = 0;
1738         int last = conf->raid_disks - 1;
1739
1740         if (mddev->recovery_disabled == conf->recovery_disabled)
1741                 return -EBUSY;
1742
1743         if (md_integrity_add_rdev(rdev, mddev))
1744                 return -ENXIO;
1745
1746         if (rdev->raid_disk >= 0)
1747                 first = last = rdev->raid_disk;
1748
1749         /*
1750          * find the disk ... but prefer rdev->saved_raid_disk
1751          * if possible.
1752          */
1753         if (rdev->saved_raid_disk >= 0 &&
1754             rdev->saved_raid_disk >= first &&
1755             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1756                 first = last = rdev->saved_raid_disk;
1757
1758         for (mirror = first; mirror <= last; mirror++) {
1759                 p = conf->mirrors+mirror;
1760                 if (!p->rdev) {
1761
1762                         if (mddev->gendisk)
1763                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1764                                                   rdev->data_offset << 9);
1765
1766                         p->head_position = 0;
1767                         rdev->raid_disk = mirror;
1768                         err = 0;
1769                         /* As all devices are equivalent, we don't need a full recovery
1770                          * if this was recently any drive of the array
1771                          */
1772                         if (rdev->saved_raid_disk < 0)
1773                                 conf->fullsync = 1;
1774                         rcu_assign_pointer(p->rdev, rdev);
1775                         break;
1776                 }
1777                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1778                     p[conf->raid_disks].rdev == NULL) {
1779                         /* Add this device as a replacement */
1780                         clear_bit(In_sync, &rdev->flags);
1781                         set_bit(Replacement, &rdev->flags);
1782                         rdev->raid_disk = mirror;
1783                         err = 0;
1784                         conf->fullsync = 1;
1785                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1786                         break;
1787                 }
1788         }
1789         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1790                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1791         print_conf(conf);
1792         return err;
1793 }
1794
1795 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1796 {
1797         struct r1conf *conf = mddev->private;
1798         int err = 0;
1799         int number = rdev->raid_disk;
1800         struct raid1_info *p = conf->mirrors + number;
1801
1802         if (rdev != p->rdev)
1803                 p = conf->mirrors + conf->raid_disks + number;
1804
1805         print_conf(conf);
1806         if (rdev == p->rdev) {
1807                 if (test_bit(In_sync, &rdev->flags) ||
1808                     atomic_read(&rdev->nr_pending)) {
1809                         err = -EBUSY;
1810                         goto abort;
1811                 }
1812                 /* Only remove non-faulty devices if recovery
1813                  * is not possible.
1814                  */
1815                 if (!test_bit(Faulty, &rdev->flags) &&
1816                     mddev->recovery_disabled != conf->recovery_disabled &&
1817                     mddev->degraded < conf->raid_disks) {
1818                         err = -EBUSY;
1819                         goto abort;
1820                 }
1821                 p->rdev = NULL;
1822                 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1823                         synchronize_rcu();
1824                         if (atomic_read(&rdev->nr_pending)) {
1825                                 /* lost the race, try later */
1826                                 err = -EBUSY;
1827                                 p->rdev = rdev;
1828                                 goto abort;
1829                         }
1830                 }
1831                 if (conf->mirrors[conf->raid_disks + number].rdev) {
1832                         /* We just removed a device that is being replaced.
1833                          * Move down the replacement.  We drain all IO before
1834                          * doing this to avoid confusion.
1835                          */
1836                         struct md_rdev *repl =
1837                                 conf->mirrors[conf->raid_disks + number].rdev;
1838                         freeze_array(conf, 0);
1839                         clear_bit(Replacement, &repl->flags);
1840                         p->rdev = repl;
1841                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1842                         unfreeze_array(conf);
1843                 }
1844
1845                 clear_bit(WantReplacement, &rdev->flags);
1846                 err = md_integrity_register(mddev);
1847         }
1848 abort:
1849
1850         print_conf(conf);
1851         return err;
1852 }
1853
1854 static void end_sync_read(struct bio *bio)
1855 {
1856         struct r1bio *r1_bio = get_resync_r1bio(bio);
1857
1858         update_head_pos(r1_bio->read_disk, r1_bio);
1859
1860         /*
1861          * we have read a block, now it needs to be re-written,
1862          * or re-read if the read failed.
1863          * We don't do much here, just schedule handling by raid1d
1864          */
1865         if (!bio->bi_status)
1866                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1867
1868         if (atomic_dec_and_test(&r1_bio->remaining))
1869                 reschedule_retry(r1_bio);
1870 }
1871
1872 static void end_sync_write(struct bio *bio)
1873 {
1874         int uptodate = !bio->bi_status;
1875         struct r1bio *r1_bio = get_resync_r1bio(bio);
1876         struct mddev *mddev = r1_bio->mddev;
1877         struct r1conf *conf = mddev->private;
1878         sector_t first_bad;
1879         int bad_sectors;
1880         struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1881
1882         if (!uptodate) {
1883                 sector_t sync_blocks = 0;
1884                 sector_t s = r1_bio->sector;
1885                 long sectors_to_go = r1_bio->sectors;
1886                 /* make sure these bits doesn't get cleared. */
1887                 do {
1888                         bitmap_end_sync(mddev->bitmap, s,
1889                                         &sync_blocks, 1);
1890                         s += sync_blocks;
1891                         sectors_to_go -= sync_blocks;
1892                 } while (sectors_to_go > 0);
1893                 set_bit(WriteErrorSeen, &rdev->flags);
1894                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1895                         set_bit(MD_RECOVERY_NEEDED, &
1896                                 mddev->recovery);
1897                 set_bit(R1BIO_WriteError, &r1_bio->state);
1898         } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1899                                &first_bad, &bad_sectors) &&
1900                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1901                                 r1_bio->sector,
1902                                 r1_bio->sectors,
1903                                 &first_bad, &bad_sectors)
1904                 )
1905                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1906
1907         if (atomic_dec_and_test(&r1_bio->remaining)) {
1908                 int s = r1_bio->sectors;
1909                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1910                     test_bit(R1BIO_WriteError, &r1_bio->state))
1911                         reschedule_retry(r1_bio);
1912                 else {
1913                         put_buf(r1_bio);
1914                         md_done_sync(mddev, s, uptodate);
1915                 }
1916         }
1917 }
1918
1919 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1920                             int sectors, struct page *page, int rw)
1921 {
1922         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1923                 /* success */
1924                 return 1;
1925         if (rw == WRITE) {
1926                 set_bit(WriteErrorSeen, &rdev->flags);
1927                 if (!test_and_set_bit(WantReplacement,
1928                                       &rdev->flags))
1929                         set_bit(MD_RECOVERY_NEEDED, &
1930                                 rdev->mddev->recovery);
1931         }
1932         /* need to record an error - either for the block or the device */
1933         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1934                 md_error(rdev->mddev, rdev);
1935         return 0;
1936 }
1937
1938 static int fix_sync_read_error(struct r1bio *r1_bio)
1939 {
1940         /* Try some synchronous reads of other devices to get
1941          * good data, much like with normal read errors.  Only
1942          * read into the pages we already have so we don't
1943          * need to re-issue the read request.
1944          * We don't need to freeze the array, because being in an
1945          * active sync request, there is no normal IO, and
1946          * no overlapping syncs.
1947          * We don't need to check is_badblock() again as we
1948          * made sure that anything with a bad block in range
1949          * will have bi_end_io clear.
1950          */
1951         struct mddev *mddev = r1_bio->mddev;
1952         struct r1conf *conf = mddev->private;
1953         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1954         struct page **pages = get_resync_pages(bio)->pages;
1955         sector_t sect = r1_bio->sector;
1956         int sectors = r1_bio->sectors;
1957         int idx = 0;
1958         struct md_rdev *rdev;
1959
1960         rdev = conf->mirrors[r1_bio->read_disk].rdev;
1961         if (test_bit(FailFast, &rdev->flags)) {
1962                 /* Don't try recovering from here - just fail it
1963                  * ... unless it is the last working device of course */
1964                 md_error(mddev, rdev);
1965                 if (test_bit(Faulty, &rdev->flags))
1966                         /* Don't try to read from here, but make sure
1967                          * put_buf does it's thing
1968                          */
1969                         bio->bi_end_io = end_sync_write;
1970         }
1971
1972         while(sectors) {
1973                 int s = sectors;
1974                 int d = r1_bio->read_disk;
1975                 int success = 0;
1976                 int start;
1977
1978                 if (s > (PAGE_SIZE>>9))
1979                         s = PAGE_SIZE >> 9;
1980                 do {
1981                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1982                                 /* No rcu protection needed here devices
1983                                  * can only be removed when no resync is
1984                                  * active, and resync is currently active
1985                                  */
1986                                 rdev = conf->mirrors[d].rdev;
1987                                 if (sync_page_io(rdev, sect, s<<9,
1988                                                  pages[idx],
1989                                                  REQ_OP_READ, 0, false)) {
1990                                         success = 1;
1991                                         break;
1992                                 }
1993                         }
1994                         d++;
1995                         if (d == conf->raid_disks * 2)
1996                                 d = 0;
1997                 } while (!success && d != r1_bio->read_disk);
1998
1999                 if (!success) {
2000                         char b[BDEVNAME_SIZE];
2001                         int abort = 0;
2002                         /* Cannot read from anywhere, this block is lost.
2003                          * Record a bad block on each device.  If that doesn't
2004                          * work just disable and interrupt the recovery.
2005                          * Don't fail devices as that won't really help.
2006                          */
2007                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2008                                             mdname(mddev),
2009                                             bdevname(bio->bi_bdev, b),
2010                                             (unsigned long long)r1_bio->sector);
2011                         for (d = 0; d < conf->raid_disks * 2; d++) {
2012                                 rdev = conf->mirrors[d].rdev;
2013                                 if (!rdev || test_bit(Faulty, &rdev->flags))
2014                                         continue;
2015                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
2016                                         abort = 1;
2017                         }
2018                         if (abort) {
2019                                 conf->recovery_disabled =
2020                                         mddev->recovery_disabled;
2021                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2022                                 md_done_sync(mddev, r1_bio->sectors, 0);
2023                                 put_buf(r1_bio);
2024                                 return 0;
2025                         }
2026                         /* Try next page */
2027                         sectors -= s;
2028                         sect += s;
2029                         idx++;
2030                         continue;
2031                 }
2032
2033                 start = d;
2034                 /* write it back and re-read */
2035                 while (d != r1_bio->read_disk) {
2036                         if (d == 0)
2037                                 d = conf->raid_disks * 2;
2038                         d--;
2039                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2040                                 continue;
2041                         rdev = conf->mirrors[d].rdev;
2042                         if (r1_sync_page_io(rdev, sect, s,
2043                                             pages[idx],
2044                                             WRITE) == 0) {
2045                                 r1_bio->bios[d]->bi_end_io = NULL;
2046                                 rdev_dec_pending(rdev, mddev);
2047                         }
2048                 }
2049                 d = start;
2050                 while (d != r1_bio->read_disk) {
2051                         if (d == 0)
2052                                 d = conf->raid_disks * 2;
2053                         d--;
2054                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2055                                 continue;
2056                         rdev = conf->mirrors[d].rdev;
2057                         if (r1_sync_page_io(rdev, sect, s,
2058                                             pages[idx],
2059                                             READ) != 0)
2060                                 atomic_add(s, &rdev->corrected_errors);
2061                 }
2062                 sectors -= s;
2063                 sect += s;
2064                 idx ++;
2065         }
2066         set_bit(R1BIO_Uptodate, &r1_bio->state);
2067         bio->bi_status = 0;
2068         return 1;
2069 }
2070
2071 static void process_checks(struct r1bio *r1_bio)
2072 {
2073         /* We have read all readable devices.  If we haven't
2074          * got the block, then there is no hope left.
2075          * If we have, then we want to do a comparison
2076          * and skip the write if everything is the same.
2077          * If any blocks failed to read, then we need to
2078          * attempt an over-write
2079          */
2080         struct mddev *mddev = r1_bio->mddev;
2081         struct r1conf *conf = mddev->private;
2082         int primary;
2083         int i;
2084         int vcnt;
2085
2086         /* Fix variable parts of all bios */
2087         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2088         for (i = 0; i < conf->raid_disks * 2; i++) {
2089                 int j;
2090                 int size;
2091                 blk_status_t status;
2092                 struct bio_vec *bi;
2093                 struct bio *b = r1_bio->bios[i];
2094                 struct resync_pages *rp = get_resync_pages(b);
2095                 if (b->bi_end_io != end_sync_read)
2096                         continue;
2097                 /* fixup the bio for reuse, but preserve errno */
2098                 status = b->bi_status;
2099                 bio_reset(b);
2100                 b->bi_status = status;
2101                 b->bi_vcnt = vcnt;
2102                 b->bi_iter.bi_size = r1_bio->sectors << 9;
2103                 b->bi_iter.bi_sector = r1_bio->sector +
2104                         conf->mirrors[i].rdev->data_offset;
2105                 b->bi_bdev = conf->mirrors[i].rdev->bdev;
2106                 b->bi_end_io = end_sync_read;
2107                 rp->raid_bio = r1_bio;
2108                 b->bi_private = rp;
2109
2110                 size = b->bi_iter.bi_size;
2111                 bio_for_each_segment_all(bi, b, j) {
2112                         bi->bv_offset = 0;
2113                         if (size > PAGE_SIZE)
2114                                 bi->bv_len = PAGE_SIZE;
2115                         else
2116                                 bi->bv_len = size;
2117                         size -= PAGE_SIZE;
2118                 }
2119         }
2120         for (primary = 0; primary < conf->raid_disks * 2; primary++)
2121                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2122                     !r1_bio->bios[primary]->bi_status) {
2123                         r1_bio->bios[primary]->bi_end_io = NULL;
2124                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2125                         break;
2126                 }
2127         r1_bio->read_disk = primary;
2128         for (i = 0; i < conf->raid_disks * 2; i++) {
2129                 int j;
2130                 struct bio *pbio = r1_bio->bios[primary];
2131                 struct bio *sbio = r1_bio->bios[i];
2132                 blk_status_t status = sbio->bi_status;
2133                 struct page **ppages = get_resync_pages(pbio)->pages;
2134                 struct page **spages = get_resync_pages(sbio)->pages;
2135                 struct bio_vec *bi;
2136                 int page_len[RESYNC_PAGES] = { 0 };
2137
2138                 if (sbio->bi_end_io != end_sync_read)
2139                         continue;
2140                 /* Now we can 'fixup' the error value */
2141                 sbio->bi_status = 0;
2142
2143                 bio_for_each_segment_all(bi, sbio, j)
2144                         page_len[j] = bi->bv_len;
2145
2146                 if (!status) {
2147                         for (j = vcnt; j-- ; ) {
2148                                 if (memcmp(page_address(ppages[j]),
2149                                            page_address(spages[j]),
2150                                            page_len[j]))
2151                                         break;
2152                         }
2153                 } else
2154                         j = 0;
2155                 if (j >= 0)
2156                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2157                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2158                               && !status)) {
2159                         /* No need to write to this device. */
2160                         sbio->bi_end_io = NULL;
2161                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2162                         continue;
2163                 }
2164
2165                 bio_copy_data(sbio, pbio);
2166         }
2167 }
2168
2169 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2170 {
2171         struct r1conf *conf = mddev->private;
2172         int i;
2173         int disks = conf->raid_disks * 2;
2174         struct bio *wbio;
2175
2176         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2177                 /* ouch - failed to read all of that. */
2178                 if (!fix_sync_read_error(r1_bio))
2179                         return;
2180
2181         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2182                 process_checks(r1_bio);
2183
2184         /*
2185          * schedule writes
2186          */
2187         atomic_set(&r1_bio->remaining, 1);
2188         for (i = 0; i < disks ; i++) {
2189                 wbio = r1_bio->bios[i];
2190                 if (wbio->bi_end_io == NULL ||
2191                     (wbio->bi_end_io == end_sync_read &&
2192                      (i == r1_bio->read_disk ||
2193                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2194                         continue;
2195                 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2196                         continue;
2197
2198                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2199                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2200                         wbio->bi_opf |= MD_FAILFAST;
2201
2202                 wbio->bi_end_io = end_sync_write;
2203                 atomic_inc(&r1_bio->remaining);
2204                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2205
2206                 generic_make_request(wbio);
2207         }
2208
2209         if (atomic_dec_and_test(&r1_bio->remaining)) {
2210                 /* if we're here, all write(s) have completed, so clean up */
2211                 int s = r1_bio->sectors;
2212                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2213                     test_bit(R1BIO_WriteError, &r1_bio->state))
2214                         reschedule_retry(r1_bio);
2215                 else {
2216                         put_buf(r1_bio);
2217                         md_done_sync(mddev, s, 1);
2218                 }
2219         }
2220 }
2221
2222 /*
2223  * This is a kernel thread which:
2224  *
2225  *      1.      Retries failed read operations on working mirrors.
2226  *      2.      Updates the raid superblock when problems encounter.
2227  *      3.      Performs writes following reads for array synchronising.
2228  */
2229
2230 static void fix_read_error(struct r1conf *conf, int read_disk,
2231                            sector_t sect, int sectors)
2232 {
2233         struct mddev *mddev = conf->mddev;
2234         while(sectors) {
2235                 int s = sectors;
2236                 int d = read_disk;
2237                 int success = 0;
2238                 int start;
2239                 struct md_rdev *rdev;
2240
2241                 if (s > (PAGE_SIZE>>9))
2242                         s = PAGE_SIZE >> 9;
2243
2244                 do {
2245                         sector_t first_bad;
2246                         int bad_sectors;
2247
2248                         rcu_read_lock();
2249                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2250                         if (rdev &&
2251                             (test_bit(In_sync, &rdev->flags) ||
2252                              (!test_bit(Faulty, &rdev->flags) &&
2253                               rdev->recovery_offset >= sect + s)) &&
2254                             is_badblock(rdev, sect, s,
2255                                         &first_bad, &bad_sectors) == 0) {
2256                                 atomic_inc(&rdev->nr_pending);
2257                                 rcu_read_unlock();
2258                                 if (sync_page_io(rdev, sect, s<<9,
2259                                          conf->tmppage, REQ_OP_READ, 0, false))
2260                                         success = 1;
2261                                 rdev_dec_pending(rdev, mddev);
2262                                 if (success)
2263                                         break;
2264                         } else
2265                                 rcu_read_unlock();
2266                         d++;
2267                         if (d == conf->raid_disks * 2)
2268                                 d = 0;
2269                 } while (!success && d != read_disk);
2270
2271                 if (!success) {
2272                         /* Cannot read from anywhere - mark it bad */
2273                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2274                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2275                                 md_error(mddev, rdev);
2276                         break;
2277                 }
2278                 /* write it back and re-read */
2279                 start = d;
2280                 while (d != read_disk) {
2281                         if (d==0)
2282                                 d = conf->raid_disks * 2;
2283                         d--;
2284                         rcu_read_lock();
2285                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2286                         if (rdev &&
2287                             !test_bit(Faulty, &rdev->flags)) {
2288                                 atomic_inc(&rdev->nr_pending);
2289                                 rcu_read_unlock();
2290                                 r1_sync_page_io(rdev, sect, s,
2291                                                 conf->tmppage, WRITE);
2292                                 rdev_dec_pending(rdev, mddev);
2293                         } else
2294                                 rcu_read_unlock();
2295                 }
2296                 d = start;
2297                 while (d != read_disk) {
2298                         char b[BDEVNAME_SIZE];
2299                         if (d==0)
2300                                 d = conf->raid_disks * 2;
2301                         d--;
2302                         rcu_read_lock();
2303                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2304                         if (rdev &&
2305                             !test_bit(Faulty, &rdev->flags)) {
2306                                 atomic_inc(&rdev->nr_pending);
2307                                 rcu_read_unlock();
2308                                 if (r1_sync_page_io(rdev, sect, s,
2309                                                     conf->tmppage, READ)) {
2310                                         atomic_add(s, &rdev->corrected_errors);
2311                                         pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2312                                                 mdname(mddev), s,
2313                                                 (unsigned long long)(sect +
2314                                                                      rdev->data_offset),
2315                                                 bdevname(rdev->bdev, b));
2316                                 }
2317                                 rdev_dec_pending(rdev, mddev);
2318                         } else
2319                                 rcu_read_unlock();
2320                 }
2321                 sectors -= s;
2322                 sect += s;
2323         }
2324 }
2325
2326 static int narrow_write_error(struct r1bio *r1_bio, int i)
2327 {
2328         struct mddev *mddev = r1_bio->mddev;
2329         struct r1conf *conf = mddev->private;
2330         struct md_rdev *rdev = conf->mirrors[i].rdev;
2331
2332         /* bio has the data to be written to device 'i' where
2333          * we just recently had a write error.
2334          * We repeatedly clone the bio and trim down to one block,
2335          * then try the write.  Where the write fails we record
2336          * a bad block.
2337          * It is conceivable that the bio doesn't exactly align with
2338          * blocks.  We must handle this somehow.
2339          *
2340          * We currently own a reference on the rdev.
2341          */
2342
2343         int block_sectors;
2344         sector_t sector;
2345         int sectors;
2346         int sect_to_write = r1_bio->sectors;
2347         int ok = 1;
2348
2349         if (rdev->badblocks.shift < 0)
2350                 return 0;
2351
2352         block_sectors = roundup(1 << rdev->badblocks.shift,
2353                                 bdev_logical_block_size(rdev->bdev) >> 9);
2354         sector = r1_bio->sector;
2355         sectors = ((sector + block_sectors)
2356                    & ~(sector_t)(block_sectors - 1))
2357                 - sector;
2358
2359         while (sect_to_write) {
2360                 struct bio *wbio;
2361                 if (sectors > sect_to_write)
2362                         sectors = sect_to_write;
2363                 /* Write at 'sector' for 'sectors'*/
2364
2365                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2366                         wbio = bio_clone_fast(r1_bio->behind_master_bio,
2367                                               GFP_NOIO,
2368                                               mddev->bio_set);
2369                         /* We really need a _all clone */
2370                         wbio->bi_iter = (struct bvec_iter){ 0 };
2371                 } else {
2372                         wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2373                                               mddev->bio_set);
2374                 }
2375
2376                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2377                 wbio->bi_iter.bi_sector = r1_bio->sector;
2378                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2379
2380                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2381                 wbio->bi_iter.bi_sector += rdev->data_offset;
2382                 wbio->bi_bdev = rdev->bdev;
2383
2384                 if (submit_bio_wait(wbio) < 0)
2385                         /* failure! */
2386                         ok = rdev_set_badblocks(rdev, sector,
2387                                                 sectors, 0)
2388                                 && ok;
2389
2390                 bio_put(wbio);
2391                 sect_to_write -= sectors;
2392                 sector += sectors;
2393                 sectors = block_sectors;
2394         }
2395         return ok;
2396 }
2397
2398 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2399 {
2400         int m;
2401         int s = r1_bio->sectors;
2402         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2403                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2404                 struct bio *bio = r1_bio->bios[m];
2405                 if (bio->bi_end_io == NULL)
2406                         continue;
2407                 if (!bio->bi_status &&
2408                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2409                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2410                 }
2411                 if (bio->bi_status &&
2412                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2413                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2414                                 md_error(conf->mddev, rdev);
2415                 }
2416         }
2417         put_buf(r1_bio);
2418         md_done_sync(conf->mddev, s, 1);
2419 }
2420
2421 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2422 {
2423         int m, idx;
2424         bool fail = false;
2425
2426         for (m = 0; m < conf->raid_disks * 2 ; m++)
2427                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2428                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2429                         rdev_clear_badblocks(rdev,
2430                                              r1_bio->sector,
2431                                              r1_bio->sectors, 0);
2432                         rdev_dec_pending(rdev, conf->mddev);
2433                 } else if (r1_bio->bios[m] != NULL) {
2434                         /* This drive got a write error.  We need to
2435                          * narrow down and record precise write
2436                          * errors.
2437                          */
2438                         fail = true;
2439                         if (!narrow_write_error(r1_bio, m)) {
2440                                 md_error(conf->mddev,
2441                                          conf->mirrors[m].rdev);
2442                                 /* an I/O failed, we can't clear the bitmap */
2443                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2444                         }
2445                         rdev_dec_pending(conf->mirrors[m].rdev,
2446                                          conf->mddev);
2447                 }
2448         if (fail) {
2449                 spin_lock_irq(&conf->device_lock);
2450                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2451                 idx = sector_to_idx(r1_bio->sector);
2452                 atomic_inc(&conf->nr_queued[idx]);
2453                 spin_unlock_irq(&conf->device_lock);
2454                 /*
2455                  * In case freeze_array() is waiting for condition
2456                  * get_unqueued_pending() == extra to be true.
2457                  */
2458                 wake_up(&conf->wait_barrier);
2459                 md_wakeup_thread(conf->mddev->thread);
2460         } else {
2461                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2462                         close_write(r1_bio);
2463                 raid_end_bio_io(r1_bio);
2464         }
2465 }
2466
2467 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2468 {
2469         struct mddev *mddev = conf->mddev;
2470         struct bio *bio;
2471         struct md_rdev *rdev;
2472         dev_t bio_dev;
2473         sector_t bio_sector;
2474
2475         clear_bit(R1BIO_ReadError, &r1_bio->state);
2476         /* we got a read error. Maybe the drive is bad.  Maybe just
2477          * the block and we can fix it.
2478          * We freeze all other IO, and try reading the block from
2479          * other devices.  When we find one, we re-write
2480          * and check it that fixes the read error.
2481          * This is all done synchronously while the array is
2482          * frozen
2483          */
2484
2485         bio = r1_bio->bios[r1_bio->read_disk];
2486         bio_dev = bio->bi_bdev->bd_dev;
2487         bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2488         bio_put(bio);
2489         r1_bio->bios[r1_bio->read_disk] = NULL;
2490
2491         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2492         if (mddev->ro == 0
2493             && !test_bit(FailFast, &rdev->flags)) {
2494                 freeze_array(conf, 1);
2495                 fix_read_error(conf, r1_bio->read_disk,
2496                                r1_bio->sector, r1_bio->sectors);
2497                 unfreeze_array(conf);
2498         } else {
2499                 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2500         }
2501
2502         rdev_dec_pending(rdev, conf->mddev);
2503         allow_barrier(conf, r1_bio->sector);
2504         bio = r1_bio->master_bio;
2505
2506         /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2507         r1_bio->state = 0;
2508         raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2509 }
2510
2511 static void raid1d(struct md_thread *thread)
2512 {
2513         struct mddev *mddev = thread->mddev;
2514         struct r1bio *r1_bio;
2515         unsigned long flags;
2516         struct r1conf *conf = mddev->private;
2517         struct list_head *head = &conf->retry_list;
2518         struct blk_plug plug;
2519         int idx;
2520
2521         md_check_recovery(mddev);
2522
2523         if (!list_empty_careful(&conf->bio_end_io_list) &&
2524             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2525                 LIST_HEAD(tmp);
2526                 spin_lock_irqsave(&conf->device_lock, flags);
2527                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2528                         list_splice_init(&conf->bio_end_io_list, &tmp);
2529                 spin_unlock_irqrestore(&conf->device_lock, flags);
2530                 while (!list_empty(&tmp)) {
2531                         r1_bio = list_first_entry(&tmp, struct r1bio,
2532                                                   retry_list);
2533                         list_del(&r1_bio->retry_list);
2534                         idx = sector_to_idx(r1_bio->sector);
2535                         atomic_dec(&conf->nr_queued[idx]);
2536                         if (mddev->degraded)
2537                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2538                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2539                                 close_write(r1_bio);
2540                         raid_end_bio_io(r1_bio);
2541                 }
2542         }
2543
2544         blk_start_plug(&plug);
2545         for (;;) {
2546
2547                 flush_pending_writes(conf);
2548
2549                 spin_lock_irqsave(&conf->device_lock, flags);
2550                 if (list_empty(head)) {
2551                         spin_unlock_irqrestore(&conf->device_lock, flags);
2552                         break;
2553                 }
2554                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2555                 list_del(head->prev);
2556                 idx = sector_to_idx(r1_bio->sector);
2557                 atomic_dec(&conf->nr_queued[idx]);
2558                 spin_unlock_irqrestore(&conf->device_lock, flags);
2559
2560                 mddev = r1_bio->mddev;
2561                 conf = mddev->private;
2562                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2563                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2564                             test_bit(R1BIO_WriteError, &r1_bio->state))
2565                                 handle_sync_write_finished(conf, r1_bio);
2566                         else
2567                                 sync_request_write(mddev, r1_bio);
2568                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2569                            test_bit(R1BIO_WriteError, &r1_bio->state))
2570                         handle_write_finished(conf, r1_bio);
2571                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2572                         handle_read_error(conf, r1_bio);
2573                 else
2574                         WARN_ON_ONCE(1);
2575
2576                 cond_resched();
2577                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2578                         md_check_recovery(mddev);
2579         }
2580         blk_finish_plug(&plug);
2581 }
2582
2583 static int init_resync(struct r1conf *conf)
2584 {
2585         int buffs;
2586
2587         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2588         BUG_ON(conf->r1buf_pool);
2589         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2590                                           conf->poolinfo);
2591         if (!conf->r1buf_pool)
2592                 return -ENOMEM;
2593         return 0;
2594 }
2595
2596 /*
2597  * perform a "sync" on one "block"
2598  *
2599  * We need to make sure that no normal I/O request - particularly write
2600  * requests - conflict with active sync requests.
2601  *
2602  * This is achieved by tracking pending requests and a 'barrier' concept
2603  * that can be installed to exclude normal IO requests.
2604  */
2605
2606 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2607                                    int *skipped)
2608 {
2609         struct r1conf *conf = mddev->private;
2610         struct r1bio *r1_bio;
2611         struct bio *bio;
2612         sector_t max_sector, nr_sectors;
2613         int disk = -1;
2614         int i;
2615         int wonly = -1;
2616         int write_targets = 0, read_targets = 0;
2617         sector_t sync_blocks;
2618         int still_degraded = 0;
2619         int good_sectors = RESYNC_SECTORS;
2620         int min_bad = 0; /* number of sectors that are bad in all devices */
2621         int idx = sector_to_idx(sector_nr);
2622
2623         if (!conf->r1buf_pool)
2624                 if (init_resync(conf))
2625                         return 0;
2626
2627         max_sector = mddev->dev_sectors;
2628         if (sector_nr >= max_sector) {
2629                 /* If we aborted, we need to abort the
2630                  * sync on the 'current' bitmap chunk (there will
2631                  * only be one in raid1 resync.
2632                  * We can find the current addess in mddev->curr_resync
2633                  */
2634                 if (mddev->curr_resync < max_sector) /* aborted */
2635                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2636                                                 &sync_blocks, 1);
2637                 else /* completed sync */
2638                         conf->fullsync = 0;
2639
2640                 bitmap_close_sync(mddev->bitmap);
2641                 close_sync(conf);
2642
2643                 if (mddev_is_clustered(mddev)) {
2644                         conf->cluster_sync_low = 0;
2645                         conf->cluster_sync_high = 0;
2646                 }
2647                 return 0;
2648         }
2649
2650         if (mddev->bitmap == NULL &&
2651             mddev->recovery_cp == MaxSector &&
2652             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2653             conf->fullsync == 0) {
2654                 *skipped = 1;
2655                 return max_sector - sector_nr;
2656         }
2657         /* before building a request, check if we can skip these blocks..
2658          * This call the bitmap_start_sync doesn't actually record anything
2659          */
2660         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2661             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2662                 /* We can skip this block, and probably several more */
2663                 *skipped = 1;
2664                 return sync_blocks;
2665         }
2666
2667         /*
2668          * If there is non-resync activity waiting for a turn, then let it
2669          * though before starting on this new sync request.
2670          */
2671         if (atomic_read(&conf->nr_waiting[idx]))
2672                 schedule_timeout_uninterruptible(1);
2673
2674         /* we are incrementing sector_nr below. To be safe, we check against
2675          * sector_nr + two times RESYNC_SECTORS
2676          */
2677
2678         bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2679                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2680         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2681
2682         raise_barrier(conf, sector_nr);
2683
2684         rcu_read_lock();
2685         /*
2686          * If we get a correctably read error during resync or recovery,
2687          * we might want to read from a different device.  So we
2688          * flag all drives that could conceivably be read from for READ,
2689          * and any others (which will be non-In_sync devices) for WRITE.
2690          * If a read fails, we try reading from something else for which READ
2691          * is OK.
2692          */
2693
2694         r1_bio->mddev = mddev;
2695         r1_bio->sector = sector_nr;
2696         r1_bio->state = 0;
2697         set_bit(R1BIO_IsSync, &r1_bio->state);
2698         /* make sure good_sectors won't go across barrier unit boundary */
2699         good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2700
2701         for (i = 0; i < conf->raid_disks * 2; i++) {
2702                 struct md_rdev *rdev;
2703                 bio = r1_bio->bios[i];
2704
2705                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2706                 if (rdev == NULL ||
2707                     test_bit(Faulty, &rdev->flags)) {
2708                         if (i < conf->raid_disks)
2709                                 still_degraded = 1;
2710                 } else if (!test_bit(In_sync, &rdev->flags)) {
2711                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2712                         bio->bi_end_io = end_sync_write;
2713                         write_targets ++;
2714                 } else {
2715                         /* may need to read from here */
2716                         sector_t first_bad = MaxSector;
2717                         int bad_sectors;
2718
2719                         if (is_badblock(rdev, sector_nr, good_sectors,
2720                                         &first_bad, &bad_sectors)) {
2721                                 if (first_bad > sector_nr)
2722                                         good_sectors = first_bad - sector_nr;
2723                                 else {
2724                                         bad_sectors -= (sector_nr - first_bad);
2725                                         if (min_bad == 0 ||
2726                                             min_bad > bad_sectors)
2727                                                 min_bad = bad_sectors;
2728                                 }
2729                         }
2730                         if (sector_nr < first_bad) {
2731                                 if (test_bit(WriteMostly, &rdev->flags)) {
2732                                         if (wonly < 0)
2733                                                 wonly = i;
2734                                 } else {
2735                                         if (disk < 0)
2736                                                 disk = i;
2737                                 }
2738                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2739                                 bio->bi_end_io = end_sync_read;
2740                                 read_targets++;
2741                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2742                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2743                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2744                                 /*
2745                                  * The device is suitable for reading (InSync),
2746                                  * but has bad block(s) here. Let's try to correct them,
2747                                  * if we are doing resync or repair. Otherwise, leave
2748                                  * this device alone for this sync request.
2749                                  */
2750                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2751                                 bio->bi_end_io = end_sync_write;
2752                                 write_targets++;
2753                         }
2754                 }
2755                 if (bio->bi_end_io) {
2756                         atomic_inc(&rdev->nr_pending);
2757                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2758                         bio->bi_bdev = rdev->bdev;
2759                         if (test_bit(FailFast, &rdev->flags))
2760                                 bio->bi_opf |= MD_FAILFAST;
2761                 }
2762         }
2763         rcu_read_unlock();
2764         if (disk < 0)
2765                 disk = wonly;
2766         r1_bio->read_disk = disk;
2767
2768         if (read_targets == 0 && min_bad > 0) {
2769                 /* These sectors are bad on all InSync devices, so we
2770                  * need to mark them bad on all write targets
2771                  */
2772                 int ok = 1;
2773                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2774                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2775                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2776                                 ok = rdev_set_badblocks(rdev, sector_nr,
2777                                                         min_bad, 0
2778                                         ) && ok;
2779                         }
2780                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2781                 *skipped = 1;
2782                 put_buf(r1_bio);
2783
2784                 if (!ok) {
2785                         /* Cannot record the badblocks, so need to
2786                          * abort the resync.
2787                          * If there are multiple read targets, could just
2788                          * fail the really bad ones ???
2789                          */
2790                         conf->recovery_disabled = mddev->recovery_disabled;
2791                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2792                         return 0;
2793                 } else
2794                         return min_bad;
2795
2796         }
2797         if (min_bad > 0 && min_bad < good_sectors) {
2798                 /* only resync enough to reach the next bad->good
2799                  * transition */
2800                 good_sectors = min_bad;
2801         }
2802
2803         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2804                 /* extra read targets are also write targets */
2805                 write_targets += read_targets-1;
2806
2807         if (write_targets == 0 || read_targets == 0) {
2808                 /* There is nowhere to write, so all non-sync
2809                  * drives must be failed - so we are finished
2810                  */
2811                 sector_t rv;
2812                 if (min_bad > 0)
2813                         max_sector = sector_nr + min_bad;
2814                 rv = max_sector - sector_nr;
2815                 *skipped = 1;
2816                 put_buf(r1_bio);
2817                 return rv;
2818         }
2819
2820         if (max_sector > mddev->resync_max)
2821                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2822         if (max_sector > sector_nr + good_sectors)
2823                 max_sector = sector_nr + good_sectors;
2824         nr_sectors = 0;
2825         sync_blocks = 0;
2826         do {
2827                 struct page *page;
2828                 int len = PAGE_SIZE;
2829                 if (sector_nr + (len>>9) > max_sector)
2830                         len = (max_sector - sector_nr) << 9;
2831                 if (len == 0)
2832                         break;
2833                 if (sync_blocks == 0) {
2834                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2835                                                &sync_blocks, still_degraded) &&
2836                             !conf->fullsync &&
2837                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2838                                 break;
2839                         if ((len >> 9) > sync_blocks)
2840                                 len = sync_blocks<<9;
2841                 }
2842
2843                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2844                         struct resync_pages *rp;
2845
2846                         bio = r1_bio->bios[i];
2847                         rp = get_resync_pages(bio);
2848                         if (bio->bi_end_io) {
2849                                 page = resync_fetch_page(rp, rp->idx++);
2850
2851                                 /*
2852                                  * won't fail because the vec table is big
2853                                  * enough to hold all these pages
2854                                  */
2855                                 bio_add_page(bio, page, len, 0);
2856                         }
2857                 }
2858                 nr_sectors += len>>9;
2859                 sector_nr += len>>9;
2860                 sync_blocks -= (len>>9);
2861         } while (get_resync_pages(r1_bio->bios[disk]->bi_private)->idx < RESYNC_PAGES);
2862
2863         r1_bio->sectors = nr_sectors;
2864
2865         if (mddev_is_clustered(mddev) &&
2866                         conf->cluster_sync_high < sector_nr + nr_sectors) {
2867                 conf->cluster_sync_low = mddev->curr_resync_completed;
2868                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2869                 /* Send resync message */
2870                 md_cluster_ops->resync_info_update(mddev,
2871                                 conf->cluster_sync_low,
2872                                 conf->cluster_sync_high);
2873         }
2874
2875         /* For a user-requested sync, we read all readable devices and do a
2876          * compare
2877          */
2878         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2879                 atomic_set(&r1_bio->remaining, read_targets);
2880                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2881                         bio = r1_bio->bios[i];
2882                         if (bio->bi_end_io == end_sync_read) {
2883                                 read_targets--;
2884                                 md_sync_acct(bio->bi_bdev, nr_sectors);
2885                                 if (read_targets == 1)
2886                                         bio->bi_opf &= ~MD_FAILFAST;
2887                                 generic_make_request(bio);
2888                         }
2889                 }
2890         } else {
2891                 atomic_set(&r1_bio->remaining, 1);
2892                 bio = r1_bio->bios[r1_bio->read_disk];
2893                 md_sync_acct(bio->bi_bdev, nr_sectors);
2894                 if (read_targets == 1)
2895                         bio->bi_opf &= ~MD_FAILFAST;
2896                 generic_make_request(bio);
2897
2898         }
2899         return nr_sectors;
2900 }
2901
2902 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2903 {
2904         if (sectors)
2905                 return sectors;
2906
2907         return mddev->dev_sectors;
2908 }
2909
2910 static struct r1conf *setup_conf(struct mddev *mddev)
2911 {
2912         struct r1conf *conf;
2913         int i;
2914         struct raid1_info *disk;
2915         struct md_rdev *rdev;
2916         int err = -ENOMEM;
2917
2918         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2919         if (!conf)
2920                 goto abort;
2921
2922         conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2923                                    sizeof(atomic_t), GFP_KERNEL);
2924         if (!conf->nr_pending)
2925                 goto abort;
2926
2927         conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2928                                    sizeof(atomic_t), GFP_KERNEL);
2929         if (!conf->nr_waiting)
2930                 goto abort;
2931
2932         conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2933                                   sizeof(atomic_t), GFP_KERNEL);
2934         if (!conf->nr_queued)
2935                 goto abort;
2936
2937         conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2938                                 sizeof(atomic_t), GFP_KERNEL);
2939         if (!conf->barrier)
2940                 goto abort;
2941
2942         conf->mirrors = kzalloc(sizeof(struct raid1_info)
2943                                 * mddev->raid_disks * 2,
2944                                  GFP_KERNEL);
2945         if (!conf->mirrors)
2946                 goto abort;
2947
2948         conf->tmppage = alloc_page(GFP_KERNEL);
2949         if (!conf->tmppage)
2950                 goto abort;
2951
2952         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2953         if (!conf->poolinfo)
2954                 goto abort;
2955         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2956         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2957                                           r1bio_pool_free,
2958                                           conf->poolinfo);
2959         if (!conf->r1bio_pool)
2960                 goto abort;
2961
2962         conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
2963         if (!conf->bio_split)
2964                 goto abort;
2965
2966         conf->poolinfo->mddev = mddev;
2967
2968         err = -EINVAL;
2969         spin_lock_init(&conf->device_lock);
2970         rdev_for_each(rdev, mddev) {
2971                 int disk_idx = rdev->raid_disk;
2972                 if (disk_idx >= mddev->raid_disks
2973                     || disk_idx < 0)
2974                         continue;
2975                 if (test_bit(Replacement, &rdev->flags))
2976                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2977                 else
2978                         disk = conf->mirrors + disk_idx;
2979
2980                 if (disk->rdev)
2981                         goto abort;
2982                 disk->rdev = rdev;
2983                 disk->head_position = 0;
2984                 disk->seq_start = MaxSector;
2985         }
2986         conf->raid_disks = mddev->raid_disks;
2987         conf->mddev = mddev;
2988         INIT_LIST_HEAD(&conf->retry_list);
2989         INIT_LIST_HEAD(&conf->bio_end_io_list);
2990
2991         spin_lock_init(&conf->resync_lock);
2992         init_waitqueue_head(&conf->wait_barrier);
2993
2994         bio_list_init(&conf->pending_bio_list);
2995         conf->pending_count = 0;
2996         conf->recovery_disabled = mddev->recovery_disabled - 1;
2997
2998         err = -EIO;
2999         for (i = 0; i < conf->raid_disks * 2; i++) {
3000
3001                 disk = conf->mirrors + i;
3002
3003                 if (i < conf->raid_disks &&
3004                     disk[conf->raid_disks].rdev) {
3005                         /* This slot has a replacement. */
3006                         if (!disk->rdev) {
3007                                 /* No original, just make the replacement
3008                                  * a recovering spare
3009                                  */
3010                                 disk->rdev =
3011                                         disk[conf->raid_disks].rdev;
3012                                 disk[conf->raid_disks].rdev = NULL;
3013                         } else if (!test_bit(In_sync, &disk->rdev->flags))
3014                                 /* Original is not in_sync - bad */
3015                                 goto abort;
3016                 }
3017
3018                 if (!disk->rdev ||
3019                     !test_bit(In_sync, &disk->rdev->flags)) {
3020                         disk->head_position = 0;
3021                         if (disk->rdev &&
3022                             (disk->rdev->saved_raid_disk < 0))
3023                                 conf->fullsync = 1;
3024                 }
3025         }
3026
3027         err = -ENOMEM;
3028         conf->thread = md_register_thread(raid1d, mddev, "raid1");
3029         if (!conf->thread)
3030                 goto abort;
3031
3032         return conf;
3033
3034  abort:
3035         if (conf) {
3036                 mempool_destroy(conf->r1bio_pool);
3037                 kfree(conf->mirrors);
3038                 safe_put_page(conf->tmppage);
3039                 kfree(conf->poolinfo);
3040                 kfree(conf->nr_pending);
3041                 kfree(conf->nr_waiting);
3042                 kfree(conf->nr_queued);
3043                 kfree(conf->barrier);
3044                 if (conf->bio_split)
3045                         bioset_free(conf->bio_split);
3046                 kfree(conf);
3047         }
3048         return ERR_PTR(err);
3049 }
3050
3051 static void raid1_free(struct mddev *mddev, void *priv);
3052 static int raid1_run(struct mddev *mddev)
3053 {
3054         struct r1conf *conf;
3055         int i;
3056         struct md_rdev *rdev;
3057         int ret;
3058         bool discard_supported = false;
3059
3060         if (mddev->level != 1) {
3061                 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3062                         mdname(mddev), mddev->level);
3063                 return -EIO;
3064         }
3065         if (mddev->reshape_position != MaxSector) {
3066                 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3067                         mdname(mddev));
3068                 return -EIO;
3069         }
3070         if (mddev_init_writes_pending(mddev) < 0)
3071                 return -ENOMEM;
3072         /*
3073          * copy the already verified devices into our private RAID1
3074          * bookkeeping area. [whatever we allocate in run(),
3075          * should be freed in raid1_free()]
3076          */
3077         if (mddev->private == NULL)
3078                 conf = setup_conf(mddev);
3079         else
3080                 conf = mddev->private;
3081
3082         if (IS_ERR(conf))
3083                 return PTR_ERR(conf);
3084
3085         if (mddev->queue) {
3086                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3087                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3088         }
3089
3090         rdev_for_each(rdev, mddev) {
3091                 if (!mddev->gendisk)
3092                         continue;
3093                 disk_stack_limits(mddev->gendisk, rdev->bdev,
3094                                   rdev->data_offset << 9);
3095                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3096                         discard_supported = true;
3097         }
3098
3099         mddev->degraded = 0;
3100         for (i=0; i < conf->raid_disks; i++)
3101                 if (conf->mirrors[i].rdev == NULL ||
3102                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3103                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3104                         mddev->degraded++;
3105
3106         if (conf->raid_disks - mddev->degraded == 1)
3107                 mddev->recovery_cp = MaxSector;
3108
3109         if (mddev->recovery_cp != MaxSector)
3110                 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3111                         mdname(mddev));
3112         pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3113                 mdname(mddev), mddev->raid_disks - mddev->degraded,
3114                 mddev->raid_disks);
3115
3116         /*
3117          * Ok, everything is just fine now
3118          */
3119         mddev->thread = conf->thread;
3120         conf->thread = NULL;
3121         mddev->private = conf;
3122         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3123
3124         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3125
3126         if (mddev->queue) {
3127                 if (discard_supported)
3128                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3129                                                 mddev->queue);
3130                 else
3131                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3132                                                   mddev->queue);
3133         }
3134
3135         ret =  md_integrity_register(mddev);
3136         if (ret) {
3137                 md_unregister_thread(&mddev->thread);
3138                 raid1_free(mddev, conf);
3139         }
3140         return ret;
3141 }
3142
3143 static void raid1_free(struct mddev *mddev, void *priv)
3144 {
3145         struct r1conf *conf = priv;
3146
3147         mempool_destroy(conf->r1bio_pool);
3148         kfree(conf->mirrors);
3149         safe_put_page(conf->tmppage);
3150         kfree(conf->poolinfo);
3151         kfree(conf->nr_pending);
3152         kfree(conf->nr_waiting);
3153         kfree(conf->nr_queued);
3154         kfree(conf->barrier);
3155         if (conf->bio_split)
3156                 bioset_free(conf->bio_split);
3157         kfree(conf);
3158 }
3159
3160 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3161 {
3162         /* no resync is happening, and there is enough space
3163          * on all devices, so we can resize.
3164          * We need to make sure resync covers any new space.
3165          * If the array is shrinking we should possibly wait until
3166          * any io in the removed space completes, but it hardly seems
3167          * worth it.
3168          */
3169         sector_t newsize = raid1_size(mddev, sectors, 0);
3170         if (mddev->external_size &&
3171             mddev->array_sectors > newsize)
3172                 return -EINVAL;
3173         if (mddev->bitmap) {
3174                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3175                 if (ret)
3176                         return ret;
3177         }
3178         md_set_array_sectors(mddev, newsize);
3179         if (sectors > mddev->dev_sectors &&
3180             mddev->recovery_cp > mddev->dev_sectors) {
3181                 mddev->recovery_cp = mddev->dev_sectors;
3182                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3183         }
3184         mddev->dev_sectors = sectors;
3185         mddev->resync_max_sectors = sectors;
3186         return 0;
3187 }
3188
3189 static int raid1_reshape(struct mddev *mddev)
3190 {
3191         /* We need to:
3192          * 1/ resize the r1bio_pool
3193          * 2/ resize conf->mirrors
3194          *
3195          * We allocate a new r1bio_pool if we can.
3196          * Then raise a device barrier and wait until all IO stops.
3197          * Then resize conf->mirrors and swap in the new r1bio pool.
3198          *
3199          * At the same time, we "pack" the devices so that all the missing
3200          * devices have the higher raid_disk numbers.
3201          */
3202         mempool_t *newpool, *oldpool;
3203         struct pool_info *newpoolinfo;
3204         struct raid1_info *newmirrors;
3205         struct r1conf *conf = mddev->private;
3206         int cnt, raid_disks;
3207         unsigned long flags;
3208         int d, d2;
3209
3210         /* Cannot change chunk_size, layout, or level */
3211         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3212             mddev->layout != mddev->new_layout ||
3213             mddev->level != mddev->new_level) {
3214                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3215                 mddev->new_layout = mddev->layout;
3216                 mddev->new_level = mddev->level;
3217                 return -EINVAL;
3218         }
3219
3220         if (!mddev_is_clustered(mddev))
3221                 md_allow_write(mddev);
3222
3223         raid_disks = mddev->raid_disks + mddev->delta_disks;
3224
3225         if (raid_disks < conf->raid_disks) {
3226                 cnt=0;
3227                 for (d= 0; d < conf->raid_disks; d++)
3228                         if (conf->mirrors[d].rdev)
3229                                 cnt++;
3230                 if (cnt > raid_disks)
3231                         return -EBUSY;
3232         }
3233
3234         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3235         if (!newpoolinfo)
3236                 return -ENOMEM;
3237         newpoolinfo->mddev = mddev;
3238         newpoolinfo->raid_disks = raid_disks * 2;
3239
3240         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3241                                  r1bio_pool_free, newpoolinfo);
3242         if (!newpool) {
3243                 kfree(newpoolinfo);
3244                 return -ENOMEM;
3245         }
3246         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3247                              GFP_KERNEL);
3248         if (!newmirrors) {
3249                 kfree(newpoolinfo);
3250                 mempool_destroy(newpool);
3251                 return -ENOMEM;
3252         }
3253
3254         freeze_array(conf, 0);
3255
3256         /* ok, everything is stopped */
3257         oldpool = conf->r1bio_pool;
3258         conf->r1bio_pool = newpool;
3259
3260         for (d = d2 = 0; d < conf->raid_disks; d++) {
3261                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3262                 if (rdev && rdev->raid_disk != d2) {
3263                         sysfs_unlink_rdev(mddev, rdev);
3264                         rdev->raid_disk = d2;
3265                         sysfs_unlink_rdev(mddev, rdev);
3266                         if (sysfs_link_rdev(mddev, rdev))
3267                                 pr_warn("md/raid1:%s: cannot register rd%d\n",
3268                                         mdname(mddev), rdev->raid_disk);
3269                 }
3270                 if (rdev)
3271                         newmirrors[d2++].rdev = rdev;
3272         }
3273         kfree(conf->mirrors);
3274         conf->mirrors = newmirrors;
3275         kfree(conf->poolinfo);
3276         conf->poolinfo = newpoolinfo;
3277
3278         spin_lock_irqsave(&conf->device_lock, flags);
3279         mddev->degraded += (raid_disks - conf->raid_disks);
3280         spin_unlock_irqrestore(&conf->device_lock, flags);
3281         conf->raid_disks = mddev->raid_disks = raid_disks;
3282         mddev->delta_disks = 0;
3283
3284         unfreeze_array(conf);
3285
3286         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3287         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3288         md_wakeup_thread(mddev->thread);
3289
3290         mempool_destroy(oldpool);
3291         return 0;
3292 }
3293
3294 static void raid1_quiesce(struct mddev *mddev, int state)
3295 {
3296         struct r1conf *conf = mddev->private;
3297
3298         switch(state) {
3299         case 2: /* wake for suspend */
3300                 wake_up(&conf->wait_barrier);
3301                 break;
3302         case 1:
3303                 freeze_array(conf, 0);
3304                 break;
3305         case 0:
3306                 unfreeze_array(conf);
3307                 break;
3308         }
3309 }
3310
3311 static void *raid1_takeover(struct mddev *mddev)
3312 {
3313         /* raid1 can take over:
3314          *  raid5 with 2 devices, any layout or chunk size
3315          */
3316         if (mddev->level == 5 && mddev->raid_disks == 2) {
3317                 struct r1conf *conf;
3318                 mddev->new_level = 1;
3319                 mddev->new_layout = 0;
3320                 mddev->new_chunk_sectors = 0;
3321                 conf = setup_conf(mddev);
3322                 if (!IS_ERR(conf)) {
3323                         /* Array must appear to be quiesced */
3324                         conf->array_frozen = 1;
3325                         mddev_clear_unsupported_flags(mddev,
3326                                 UNSUPPORTED_MDDEV_FLAGS);
3327                 }
3328                 return conf;
3329         }
3330         return ERR_PTR(-EINVAL);
3331 }
3332
3333 static struct md_personality raid1_personality =
3334 {
3335         .name           = "raid1",
3336         .level          = 1,
3337         .owner          = THIS_MODULE,
3338         .make_request   = raid1_make_request,
3339         .run            = raid1_run,
3340         .free           = raid1_free,
3341         .status         = raid1_status,
3342         .error_handler  = raid1_error,
3343         .hot_add_disk   = raid1_add_disk,
3344         .hot_remove_disk= raid1_remove_disk,
3345         .spare_active   = raid1_spare_active,
3346         .sync_request   = raid1_sync_request,
3347         .resize         = raid1_resize,
3348         .size           = raid1_size,
3349         .check_reshape  = raid1_reshape,
3350         .quiesce        = raid1_quiesce,
3351         .takeover       = raid1_takeover,
3352         .congested      = raid1_congested,
3353 };
3354
3355 static int __init raid_init(void)
3356 {
3357         return register_md_personality(&raid1_personality);
3358 }
3359
3360 static void raid_exit(void)
3361 {
3362         unregister_md_personality(&raid1_personality);
3363 }
3364
3365 module_init(raid_init);
3366 module_exit(raid_exit);
3367 MODULE_LICENSE("GPL");
3368 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3369 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3370 MODULE_ALIAS("md-raid1");
3371 MODULE_ALIAS("md-level-1");
3372
3373 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);