]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/raid1.c
Merge branch 'drm-misc-next-fixes' into drm-misc-fixes
[karo-tx-linux.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
41
42 #include <trace/events/block.h>
43
44 #include "md.h"
45 #include "raid1.h"
46 #include "bitmap.h"
47
48 #define UNSUPPORTED_MDDEV_FLAGS         \
49         ((1L << MD_HAS_JOURNAL) |       \
50          (1L << MD_JOURNAL_CLEAN) |     \
51          (1L << MD_HAS_PPL))
52
53 /*
54  * Number of guaranteed r1bios in case of extreme VM load:
55  */
56 #define NR_RAID1_BIOS 256
57
58 /* when we get a read error on a read-only array, we redirect to another
59  * device without failing the first device, or trying to over-write to
60  * correct the read error.  To keep track of bad blocks on a per-bio
61  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62  */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65  * bad-block marking which must be done from process context.  So we record
66  * the success by setting devs[n].bio to IO_MADE_GOOD
67  */
68 #define IO_MADE_GOOD ((struct bio *)2)
69
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
72 /* When there are this many requests queue to be written by
73  * the raid1 thread, we become 'congested' to provide back-pressure
74  * for writeback.
75  */
76 static int max_queued_requests = 1024;
77
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80
81 #define raid1_log(md, fmt, args...)                             \
82         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
84 /*
85  * 'strct resync_pages' stores actual pages used for doing the resync
86  *  IO, and it is per-bio, so make .bi_private points to it.
87  */
88 static inline struct resync_pages *get_resync_pages(struct bio *bio)
89 {
90         return bio->bi_private;
91 }
92
93 /*
94  * for resync bio, r1bio pointer can be retrieved from the per-bio
95  * 'struct resync_pages'.
96  */
97 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
98 {
99         return get_resync_pages(bio)->raid_bio;
100 }
101
102 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
103 {
104         struct pool_info *pi = data;
105         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
106
107         /* allocate a r1bio with room for raid_disks entries in the bios array */
108         return kzalloc(size, gfp_flags);
109 }
110
111 static void r1bio_pool_free(void *r1_bio, void *data)
112 {
113         kfree(r1_bio);
114 }
115
116 #define RESYNC_DEPTH 32
117 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
118 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
119 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
120 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
122
123 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
124 {
125         struct pool_info *pi = data;
126         struct r1bio *r1_bio;
127         struct bio *bio;
128         int need_pages;
129         int j;
130         struct resync_pages *rps;
131
132         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
133         if (!r1_bio)
134                 return NULL;
135
136         rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
137                       gfp_flags);
138         if (!rps)
139                 goto out_free_r1bio;
140
141         /*
142          * Allocate bios : 1 for reading, n-1 for writing
143          */
144         for (j = pi->raid_disks ; j-- ; ) {
145                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146                 if (!bio)
147                         goto out_free_bio;
148                 r1_bio->bios[j] = bio;
149         }
150         /*
151          * Allocate RESYNC_PAGES data pages and attach them to
152          * the first bio.
153          * If this is a user-requested check/repair, allocate
154          * RESYNC_PAGES for each bio.
155          */
156         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
157                 need_pages = pi->raid_disks;
158         else
159                 need_pages = 1;
160         for (j = 0; j < pi->raid_disks; j++) {
161                 struct resync_pages *rp = &rps[j];
162
163                 bio = r1_bio->bios[j];
164
165                 if (j < need_pages) {
166                         if (resync_alloc_pages(rp, gfp_flags))
167                                 goto out_free_pages;
168                 } else {
169                         memcpy(rp, &rps[0], sizeof(*rp));
170                         resync_get_all_pages(rp);
171                 }
172
173                 rp->idx = 0;
174                 rp->raid_bio = r1_bio;
175                 bio->bi_private = rp;
176         }
177
178         r1_bio->master_bio = NULL;
179
180         return r1_bio;
181
182 out_free_pages:
183         while (--j >= 0)
184                 resync_free_pages(&rps[j]);
185
186 out_free_bio:
187         while (++j < pi->raid_disks)
188                 bio_put(r1_bio->bios[j]);
189         kfree(rps);
190
191 out_free_r1bio:
192         r1bio_pool_free(r1_bio, data);
193         return NULL;
194 }
195
196 static void r1buf_pool_free(void *__r1_bio, void *data)
197 {
198         struct pool_info *pi = data;
199         int i;
200         struct r1bio *r1bio = __r1_bio;
201         struct resync_pages *rp = NULL;
202
203         for (i = pi->raid_disks; i--; ) {
204                 rp = get_resync_pages(r1bio->bios[i]);
205                 resync_free_pages(rp);
206                 bio_put(r1bio->bios[i]);
207         }
208
209         /* resync pages array stored in the 1st bio's .bi_private */
210         kfree(rp);
211
212         r1bio_pool_free(r1bio, data);
213 }
214
215 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
216 {
217         int i;
218
219         for (i = 0; i < conf->raid_disks * 2; i++) {
220                 struct bio **bio = r1_bio->bios + i;
221                 if (!BIO_SPECIAL(*bio))
222                         bio_put(*bio);
223                 *bio = NULL;
224         }
225 }
226
227 static void free_r1bio(struct r1bio *r1_bio)
228 {
229         struct r1conf *conf = r1_bio->mddev->private;
230
231         put_all_bios(conf, r1_bio);
232         mempool_free(r1_bio, conf->r1bio_pool);
233 }
234
235 static void put_buf(struct r1bio *r1_bio)
236 {
237         struct r1conf *conf = r1_bio->mddev->private;
238         sector_t sect = r1_bio->sector;
239         int i;
240
241         for (i = 0; i < conf->raid_disks * 2; i++) {
242                 struct bio *bio = r1_bio->bios[i];
243                 if (bio->bi_end_io)
244                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
245         }
246
247         mempool_free(r1_bio, conf->r1buf_pool);
248
249         lower_barrier(conf, sect);
250 }
251
252 static void reschedule_retry(struct r1bio *r1_bio)
253 {
254         unsigned long flags;
255         struct mddev *mddev = r1_bio->mddev;
256         struct r1conf *conf = mddev->private;
257         int idx;
258
259         idx = sector_to_idx(r1_bio->sector);
260         spin_lock_irqsave(&conf->device_lock, flags);
261         list_add(&r1_bio->retry_list, &conf->retry_list);
262         atomic_inc(&conf->nr_queued[idx]);
263         spin_unlock_irqrestore(&conf->device_lock, flags);
264
265         wake_up(&conf->wait_barrier);
266         md_wakeup_thread(mddev->thread);
267 }
268
269 /*
270  * raid_end_bio_io() is called when we have finished servicing a mirrored
271  * operation and are ready to return a success/failure code to the buffer
272  * cache layer.
273  */
274 static void call_bio_endio(struct r1bio *r1_bio)
275 {
276         struct bio *bio = r1_bio->master_bio;
277         struct r1conf *conf = r1_bio->mddev->private;
278
279         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
280                 bio->bi_error = -EIO;
281
282         bio_endio(bio);
283         /*
284          * Wake up any possible resync thread that waits for the device
285          * to go idle.
286          */
287         allow_barrier(conf, r1_bio->sector);
288 }
289
290 static void raid_end_bio_io(struct r1bio *r1_bio)
291 {
292         struct bio *bio = r1_bio->master_bio;
293
294         /* if nobody has done the final endio yet, do it now */
295         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
296                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
297                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
298                          (unsigned long long) bio->bi_iter.bi_sector,
299                          (unsigned long long) bio_end_sector(bio) - 1);
300
301                 call_bio_endio(r1_bio);
302         }
303         free_r1bio(r1_bio);
304 }
305
306 /*
307  * Update disk head position estimator based on IRQ completion info.
308  */
309 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
310 {
311         struct r1conf *conf = r1_bio->mddev->private;
312
313         conf->mirrors[disk].head_position =
314                 r1_bio->sector + (r1_bio->sectors);
315 }
316
317 /*
318  * Find the disk number which triggered given bio
319  */
320 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
321 {
322         int mirror;
323         struct r1conf *conf = r1_bio->mddev->private;
324         int raid_disks = conf->raid_disks;
325
326         for (mirror = 0; mirror < raid_disks * 2; mirror++)
327                 if (r1_bio->bios[mirror] == bio)
328                         break;
329
330         BUG_ON(mirror == raid_disks * 2);
331         update_head_pos(mirror, r1_bio);
332
333         return mirror;
334 }
335
336 static void raid1_end_read_request(struct bio *bio)
337 {
338         int uptodate = !bio->bi_error;
339         struct r1bio *r1_bio = bio->bi_private;
340         struct r1conf *conf = r1_bio->mddev->private;
341         struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
342
343         /*
344          * this branch is our 'one mirror IO has finished' event handler:
345          */
346         update_head_pos(r1_bio->read_disk, r1_bio);
347
348         if (uptodate)
349                 set_bit(R1BIO_Uptodate, &r1_bio->state);
350         else if (test_bit(FailFast, &rdev->flags) &&
351                  test_bit(R1BIO_FailFast, &r1_bio->state))
352                 /* This was a fail-fast read so we definitely
353                  * want to retry */
354                 ;
355         else {
356                 /* If all other devices have failed, we want to return
357                  * the error upwards rather than fail the last device.
358                  * Here we redefine "uptodate" to mean "Don't want to retry"
359                  */
360                 unsigned long flags;
361                 spin_lock_irqsave(&conf->device_lock, flags);
362                 if (r1_bio->mddev->degraded == conf->raid_disks ||
363                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
364                      test_bit(In_sync, &rdev->flags)))
365                         uptodate = 1;
366                 spin_unlock_irqrestore(&conf->device_lock, flags);
367         }
368
369         if (uptodate) {
370                 raid_end_bio_io(r1_bio);
371                 rdev_dec_pending(rdev, conf->mddev);
372         } else {
373                 /*
374                  * oops, read error:
375                  */
376                 char b[BDEVNAME_SIZE];
377                 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
378                                    mdname(conf->mddev),
379                                    bdevname(rdev->bdev, b),
380                                    (unsigned long long)r1_bio->sector);
381                 set_bit(R1BIO_ReadError, &r1_bio->state);
382                 reschedule_retry(r1_bio);
383                 /* don't drop the reference on read_disk yet */
384         }
385 }
386
387 static void close_write(struct r1bio *r1_bio)
388 {
389         /* it really is the end of this request */
390         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
391                 bio_free_pages(r1_bio->behind_master_bio);
392                 bio_put(r1_bio->behind_master_bio);
393                 r1_bio->behind_master_bio = NULL;
394         }
395         /* clear the bitmap if all writes complete successfully */
396         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
397                         r1_bio->sectors,
398                         !test_bit(R1BIO_Degraded, &r1_bio->state),
399                         test_bit(R1BIO_BehindIO, &r1_bio->state));
400         md_write_end(r1_bio->mddev);
401 }
402
403 static void r1_bio_write_done(struct r1bio *r1_bio)
404 {
405         if (!atomic_dec_and_test(&r1_bio->remaining))
406                 return;
407
408         if (test_bit(R1BIO_WriteError, &r1_bio->state))
409                 reschedule_retry(r1_bio);
410         else {
411                 close_write(r1_bio);
412                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
413                         reschedule_retry(r1_bio);
414                 else
415                         raid_end_bio_io(r1_bio);
416         }
417 }
418
419 static void raid1_end_write_request(struct bio *bio)
420 {
421         struct r1bio *r1_bio = bio->bi_private;
422         int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
423         struct r1conf *conf = r1_bio->mddev->private;
424         struct bio *to_put = NULL;
425         int mirror = find_bio_disk(r1_bio, bio);
426         struct md_rdev *rdev = conf->mirrors[mirror].rdev;
427         bool discard_error;
428
429         discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
430
431         /*
432          * 'one mirror IO has finished' event handler:
433          */
434         if (bio->bi_error && !discard_error) {
435                 set_bit(WriteErrorSeen, &rdev->flags);
436                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
437                         set_bit(MD_RECOVERY_NEEDED, &
438                                 conf->mddev->recovery);
439
440                 if (test_bit(FailFast, &rdev->flags) &&
441                     (bio->bi_opf & MD_FAILFAST) &&
442                     /* We never try FailFast to WriteMostly devices */
443                     !test_bit(WriteMostly, &rdev->flags)) {
444                         md_error(r1_bio->mddev, rdev);
445                         if (!test_bit(Faulty, &rdev->flags))
446                                 /* This is the only remaining device,
447                                  * We need to retry the write without
448                                  * FailFast
449                                  */
450                                 set_bit(R1BIO_WriteError, &r1_bio->state);
451                         else {
452                                 /* Finished with this branch */
453                                 r1_bio->bios[mirror] = NULL;
454                                 to_put = bio;
455                         }
456                 } else
457                         set_bit(R1BIO_WriteError, &r1_bio->state);
458         } else {
459                 /*
460                  * Set R1BIO_Uptodate in our master bio, so that we
461                  * will return a good error code for to the higher
462                  * levels even if IO on some other mirrored buffer
463                  * fails.
464                  *
465                  * The 'master' represents the composite IO operation
466                  * to user-side. So if something waits for IO, then it
467                  * will wait for the 'master' bio.
468                  */
469                 sector_t first_bad;
470                 int bad_sectors;
471
472                 r1_bio->bios[mirror] = NULL;
473                 to_put = bio;
474                 /*
475                  * Do not set R1BIO_Uptodate if the current device is
476                  * rebuilding or Faulty. This is because we cannot use
477                  * such device for properly reading the data back (we could
478                  * potentially use it, if the current write would have felt
479                  * before rdev->recovery_offset, but for simplicity we don't
480                  * check this here.
481                  */
482                 if (test_bit(In_sync, &rdev->flags) &&
483                     !test_bit(Faulty, &rdev->flags))
484                         set_bit(R1BIO_Uptodate, &r1_bio->state);
485
486                 /* Maybe we can clear some bad blocks. */
487                 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
488                                 &first_bad, &bad_sectors) && !discard_error) {
489                         r1_bio->bios[mirror] = IO_MADE_GOOD;
490                         set_bit(R1BIO_MadeGood, &r1_bio->state);
491                 }
492         }
493
494         if (behind) {
495                 /* we release behind master bio when all write are done */
496                 if (r1_bio->behind_master_bio == bio)
497                         to_put = NULL;
498
499                 if (test_bit(WriteMostly, &rdev->flags))
500                         atomic_dec(&r1_bio->behind_remaining);
501
502                 /*
503                  * In behind mode, we ACK the master bio once the I/O
504                  * has safely reached all non-writemostly
505                  * disks. Setting the Returned bit ensures that this
506                  * gets done only once -- we don't ever want to return
507                  * -EIO here, instead we'll wait
508                  */
509                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
510                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
511                         /* Maybe we can return now */
512                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
513                                 struct bio *mbio = r1_bio->master_bio;
514                                 pr_debug("raid1: behind end write sectors"
515                                          " %llu-%llu\n",
516                                          (unsigned long long) mbio->bi_iter.bi_sector,
517                                          (unsigned long long) bio_end_sector(mbio) - 1);
518                                 call_bio_endio(r1_bio);
519                         }
520                 }
521         }
522         if (r1_bio->bios[mirror] == NULL)
523                 rdev_dec_pending(rdev, conf->mddev);
524
525         /*
526          * Let's see if all mirrored write operations have finished
527          * already.
528          */
529         r1_bio_write_done(r1_bio);
530
531         if (to_put)
532                 bio_put(to_put);
533 }
534
535 static sector_t align_to_barrier_unit_end(sector_t start_sector,
536                                           sector_t sectors)
537 {
538         sector_t len;
539
540         WARN_ON(sectors == 0);
541         /*
542          * len is the number of sectors from start_sector to end of the
543          * barrier unit which start_sector belongs to.
544          */
545         len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
546               start_sector;
547
548         if (len > sectors)
549                 len = sectors;
550
551         return len;
552 }
553
554 /*
555  * This routine returns the disk from which the requested read should
556  * be done. There is a per-array 'next expected sequential IO' sector
557  * number - if this matches on the next IO then we use the last disk.
558  * There is also a per-disk 'last know head position' sector that is
559  * maintained from IRQ contexts, both the normal and the resync IO
560  * completion handlers update this position correctly. If there is no
561  * perfect sequential match then we pick the disk whose head is closest.
562  *
563  * If there are 2 mirrors in the same 2 devices, performance degrades
564  * because position is mirror, not device based.
565  *
566  * The rdev for the device selected will have nr_pending incremented.
567  */
568 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
569 {
570         const sector_t this_sector = r1_bio->sector;
571         int sectors;
572         int best_good_sectors;
573         int best_disk, best_dist_disk, best_pending_disk;
574         int has_nonrot_disk;
575         int disk;
576         sector_t best_dist;
577         unsigned int min_pending;
578         struct md_rdev *rdev;
579         int choose_first;
580         int choose_next_idle;
581
582         rcu_read_lock();
583         /*
584          * Check if we can balance. We can balance on the whole
585          * device if no resync is going on, or below the resync window.
586          * We take the first readable disk when above the resync window.
587          */
588  retry:
589         sectors = r1_bio->sectors;
590         best_disk = -1;
591         best_dist_disk = -1;
592         best_dist = MaxSector;
593         best_pending_disk = -1;
594         min_pending = UINT_MAX;
595         best_good_sectors = 0;
596         has_nonrot_disk = 0;
597         choose_next_idle = 0;
598         clear_bit(R1BIO_FailFast, &r1_bio->state);
599
600         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
601             (mddev_is_clustered(conf->mddev) &&
602             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
603                     this_sector + sectors)))
604                 choose_first = 1;
605         else
606                 choose_first = 0;
607
608         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
609                 sector_t dist;
610                 sector_t first_bad;
611                 int bad_sectors;
612                 unsigned int pending;
613                 bool nonrot;
614
615                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
616                 if (r1_bio->bios[disk] == IO_BLOCKED
617                     || rdev == NULL
618                     || test_bit(Faulty, &rdev->flags))
619                         continue;
620                 if (!test_bit(In_sync, &rdev->flags) &&
621                     rdev->recovery_offset < this_sector + sectors)
622                         continue;
623                 if (test_bit(WriteMostly, &rdev->flags)) {
624                         /* Don't balance among write-mostly, just
625                          * use the first as a last resort */
626                         if (best_dist_disk < 0) {
627                                 if (is_badblock(rdev, this_sector, sectors,
628                                                 &first_bad, &bad_sectors)) {
629                                         if (first_bad <= this_sector)
630                                                 /* Cannot use this */
631                                                 continue;
632                                         best_good_sectors = first_bad - this_sector;
633                                 } else
634                                         best_good_sectors = sectors;
635                                 best_dist_disk = disk;
636                                 best_pending_disk = disk;
637                         }
638                         continue;
639                 }
640                 /* This is a reasonable device to use.  It might
641                  * even be best.
642                  */
643                 if (is_badblock(rdev, this_sector, sectors,
644                                 &first_bad, &bad_sectors)) {
645                         if (best_dist < MaxSector)
646                                 /* already have a better device */
647                                 continue;
648                         if (first_bad <= this_sector) {
649                                 /* cannot read here. If this is the 'primary'
650                                  * device, then we must not read beyond
651                                  * bad_sectors from another device..
652                                  */
653                                 bad_sectors -= (this_sector - first_bad);
654                                 if (choose_first && sectors > bad_sectors)
655                                         sectors = bad_sectors;
656                                 if (best_good_sectors > sectors)
657                                         best_good_sectors = sectors;
658
659                         } else {
660                                 sector_t good_sectors = first_bad - this_sector;
661                                 if (good_sectors > best_good_sectors) {
662                                         best_good_sectors = good_sectors;
663                                         best_disk = disk;
664                                 }
665                                 if (choose_first)
666                                         break;
667                         }
668                         continue;
669                 } else {
670                         if ((sectors > best_good_sectors) && (best_disk >= 0))
671                                 best_disk = -1;
672                         best_good_sectors = sectors;
673                 }
674
675                 if (best_disk >= 0)
676                         /* At least two disks to choose from so failfast is OK */
677                         set_bit(R1BIO_FailFast, &r1_bio->state);
678
679                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
680                 has_nonrot_disk |= nonrot;
681                 pending = atomic_read(&rdev->nr_pending);
682                 dist = abs(this_sector - conf->mirrors[disk].head_position);
683                 if (choose_first) {
684                         best_disk = disk;
685                         break;
686                 }
687                 /* Don't change to another disk for sequential reads */
688                 if (conf->mirrors[disk].next_seq_sect == this_sector
689                     || dist == 0) {
690                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
691                         struct raid1_info *mirror = &conf->mirrors[disk];
692
693                         best_disk = disk;
694                         /*
695                          * If buffered sequential IO size exceeds optimal
696                          * iosize, check if there is idle disk. If yes, choose
697                          * the idle disk. read_balance could already choose an
698                          * idle disk before noticing it's a sequential IO in
699                          * this disk. This doesn't matter because this disk
700                          * will idle, next time it will be utilized after the
701                          * first disk has IO size exceeds optimal iosize. In
702                          * this way, iosize of the first disk will be optimal
703                          * iosize at least. iosize of the second disk might be
704                          * small, but not a big deal since when the second disk
705                          * starts IO, the first disk is likely still busy.
706                          */
707                         if (nonrot && opt_iosize > 0 &&
708                             mirror->seq_start != MaxSector &&
709                             mirror->next_seq_sect > opt_iosize &&
710                             mirror->next_seq_sect - opt_iosize >=
711                             mirror->seq_start) {
712                                 choose_next_idle = 1;
713                                 continue;
714                         }
715                         break;
716                 }
717
718                 if (choose_next_idle)
719                         continue;
720
721                 if (min_pending > pending) {
722                         min_pending = pending;
723                         best_pending_disk = disk;
724                 }
725
726                 if (dist < best_dist) {
727                         best_dist = dist;
728                         best_dist_disk = disk;
729                 }
730         }
731
732         /*
733          * If all disks are rotational, choose the closest disk. If any disk is
734          * non-rotational, choose the disk with less pending request even the
735          * disk is rotational, which might/might not be optimal for raids with
736          * mixed ratation/non-rotational disks depending on workload.
737          */
738         if (best_disk == -1) {
739                 if (has_nonrot_disk || min_pending == 0)
740                         best_disk = best_pending_disk;
741                 else
742                         best_disk = best_dist_disk;
743         }
744
745         if (best_disk >= 0) {
746                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
747                 if (!rdev)
748                         goto retry;
749                 atomic_inc(&rdev->nr_pending);
750                 sectors = best_good_sectors;
751
752                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
753                         conf->mirrors[best_disk].seq_start = this_sector;
754
755                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
756         }
757         rcu_read_unlock();
758         *max_sectors = sectors;
759
760         return best_disk;
761 }
762
763 static int raid1_congested(struct mddev *mddev, int bits)
764 {
765         struct r1conf *conf = mddev->private;
766         int i, ret = 0;
767
768         if ((bits & (1 << WB_async_congested)) &&
769             conf->pending_count >= max_queued_requests)
770                 return 1;
771
772         rcu_read_lock();
773         for (i = 0; i < conf->raid_disks * 2; i++) {
774                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
775                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
776                         struct request_queue *q = bdev_get_queue(rdev->bdev);
777
778                         BUG_ON(!q);
779
780                         /* Note the '|| 1' - when read_balance prefers
781                          * non-congested targets, it can be removed
782                          */
783                         if ((bits & (1 << WB_async_congested)) || 1)
784                                 ret |= bdi_congested(q->backing_dev_info, bits);
785                         else
786                                 ret &= bdi_congested(q->backing_dev_info, bits);
787                 }
788         }
789         rcu_read_unlock();
790         return ret;
791 }
792
793 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
794 {
795         /* flush any pending bitmap writes to disk before proceeding w/ I/O */
796         bitmap_unplug(conf->mddev->bitmap);
797         wake_up(&conf->wait_barrier);
798
799         while (bio) { /* submit pending writes */
800                 struct bio *next = bio->bi_next;
801                 struct md_rdev *rdev = (void*)bio->bi_bdev;
802                 bio->bi_next = NULL;
803                 bio->bi_bdev = rdev->bdev;
804                 if (test_bit(Faulty, &rdev->flags)) {
805                         bio->bi_error = -EIO;
806                         bio_endio(bio);
807                 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
808                                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
809                         /* Just ignore it */
810                         bio_endio(bio);
811                 else
812                         generic_make_request(bio);
813                 bio = next;
814         }
815 }
816
817 static void flush_pending_writes(struct r1conf *conf)
818 {
819         /* Any writes that have been queued but are awaiting
820          * bitmap updates get flushed here.
821          */
822         spin_lock_irq(&conf->device_lock);
823
824         if (conf->pending_bio_list.head) {
825                 struct bio *bio;
826                 bio = bio_list_get(&conf->pending_bio_list);
827                 conf->pending_count = 0;
828                 spin_unlock_irq(&conf->device_lock);
829                 flush_bio_list(conf, bio);
830         } else
831                 spin_unlock_irq(&conf->device_lock);
832 }
833
834 /* Barriers....
835  * Sometimes we need to suspend IO while we do something else,
836  * either some resync/recovery, or reconfigure the array.
837  * To do this we raise a 'barrier'.
838  * The 'barrier' is a counter that can be raised multiple times
839  * to count how many activities are happening which preclude
840  * normal IO.
841  * We can only raise the barrier if there is no pending IO.
842  * i.e. if nr_pending == 0.
843  * We choose only to raise the barrier if no-one is waiting for the
844  * barrier to go down.  This means that as soon as an IO request
845  * is ready, no other operations which require a barrier will start
846  * until the IO request has had a chance.
847  *
848  * So: regular IO calls 'wait_barrier'.  When that returns there
849  *    is no backgroup IO happening,  It must arrange to call
850  *    allow_barrier when it has finished its IO.
851  * backgroup IO calls must call raise_barrier.  Once that returns
852  *    there is no normal IO happeing.  It must arrange to call
853  *    lower_barrier when the particular background IO completes.
854  */
855 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
856 {
857         int idx = sector_to_idx(sector_nr);
858
859         spin_lock_irq(&conf->resync_lock);
860
861         /* Wait until no block IO is waiting */
862         wait_event_lock_irq(conf->wait_barrier,
863                             !atomic_read(&conf->nr_waiting[idx]),
864                             conf->resync_lock);
865
866         /* block any new IO from starting */
867         atomic_inc(&conf->barrier[idx]);
868         /*
869          * In raise_barrier() we firstly increase conf->barrier[idx] then
870          * check conf->nr_pending[idx]. In _wait_barrier() we firstly
871          * increase conf->nr_pending[idx] then check conf->barrier[idx].
872          * A memory barrier here to make sure conf->nr_pending[idx] won't
873          * be fetched before conf->barrier[idx] is increased. Otherwise
874          * there will be a race between raise_barrier() and _wait_barrier().
875          */
876         smp_mb__after_atomic();
877
878         /* For these conditions we must wait:
879          * A: while the array is in frozen state
880          * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
881          *    existing in corresponding I/O barrier bucket.
882          * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
883          *    max resync count which allowed on current I/O barrier bucket.
884          */
885         wait_event_lock_irq(conf->wait_barrier,
886                             !conf->array_frozen &&
887                              !atomic_read(&conf->nr_pending[idx]) &&
888                              atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
889                             conf->resync_lock);
890
891         atomic_inc(&conf->nr_sync_pending);
892         spin_unlock_irq(&conf->resync_lock);
893 }
894
895 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
896 {
897         int idx = sector_to_idx(sector_nr);
898
899         BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
900
901         atomic_dec(&conf->barrier[idx]);
902         atomic_dec(&conf->nr_sync_pending);
903         wake_up(&conf->wait_barrier);
904 }
905
906 static void _wait_barrier(struct r1conf *conf, int idx)
907 {
908         /*
909          * We need to increase conf->nr_pending[idx] very early here,
910          * then raise_barrier() can be blocked when it waits for
911          * conf->nr_pending[idx] to be 0. Then we can avoid holding
912          * conf->resync_lock when there is no barrier raised in same
913          * barrier unit bucket. Also if the array is frozen, I/O
914          * should be blocked until array is unfrozen.
915          */
916         atomic_inc(&conf->nr_pending[idx]);
917         /*
918          * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
919          * check conf->barrier[idx]. In raise_barrier() we firstly increase
920          * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
921          * barrier is necessary here to make sure conf->barrier[idx] won't be
922          * fetched before conf->nr_pending[idx] is increased. Otherwise there
923          * will be a race between _wait_barrier() and raise_barrier().
924          */
925         smp_mb__after_atomic();
926
927         /*
928          * Don't worry about checking two atomic_t variables at same time
929          * here. If during we check conf->barrier[idx], the array is
930          * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
931          * 0, it is safe to return and make the I/O continue. Because the
932          * array is frozen, all I/O returned here will eventually complete
933          * or be queued, no race will happen. See code comment in
934          * frozen_array().
935          */
936         if (!READ_ONCE(conf->array_frozen) &&
937             !atomic_read(&conf->barrier[idx]))
938                 return;
939
940         /*
941          * After holding conf->resync_lock, conf->nr_pending[idx]
942          * should be decreased before waiting for barrier to drop.
943          * Otherwise, we may encounter a race condition because
944          * raise_barrer() might be waiting for conf->nr_pending[idx]
945          * to be 0 at same time.
946          */
947         spin_lock_irq(&conf->resync_lock);
948         atomic_inc(&conf->nr_waiting[idx]);
949         atomic_dec(&conf->nr_pending[idx]);
950         /*
951          * In case freeze_array() is waiting for
952          * get_unqueued_pending() == extra
953          */
954         wake_up(&conf->wait_barrier);
955         /* Wait for the barrier in same barrier unit bucket to drop. */
956         wait_event_lock_irq(conf->wait_barrier,
957                             !conf->array_frozen &&
958                              !atomic_read(&conf->barrier[idx]),
959                             conf->resync_lock);
960         atomic_inc(&conf->nr_pending[idx]);
961         atomic_dec(&conf->nr_waiting[idx]);
962         spin_unlock_irq(&conf->resync_lock);
963 }
964
965 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
966 {
967         int idx = sector_to_idx(sector_nr);
968
969         /*
970          * Very similar to _wait_barrier(). The difference is, for read
971          * I/O we don't need wait for sync I/O, but if the whole array
972          * is frozen, the read I/O still has to wait until the array is
973          * unfrozen. Since there is no ordering requirement with
974          * conf->barrier[idx] here, memory barrier is unnecessary as well.
975          */
976         atomic_inc(&conf->nr_pending[idx]);
977
978         if (!READ_ONCE(conf->array_frozen))
979                 return;
980
981         spin_lock_irq(&conf->resync_lock);
982         atomic_inc(&conf->nr_waiting[idx]);
983         atomic_dec(&conf->nr_pending[idx]);
984         /*
985          * In case freeze_array() is waiting for
986          * get_unqueued_pending() == extra
987          */
988         wake_up(&conf->wait_barrier);
989         /* Wait for array to be unfrozen */
990         wait_event_lock_irq(conf->wait_barrier,
991                             !conf->array_frozen,
992                             conf->resync_lock);
993         atomic_inc(&conf->nr_pending[idx]);
994         atomic_dec(&conf->nr_waiting[idx]);
995         spin_unlock_irq(&conf->resync_lock);
996 }
997
998 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
999 {
1000         int idx = sector_to_idx(sector_nr);
1001
1002         _wait_barrier(conf, idx);
1003 }
1004
1005 static void wait_all_barriers(struct r1conf *conf)
1006 {
1007         int idx;
1008
1009         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1010                 _wait_barrier(conf, idx);
1011 }
1012
1013 static void _allow_barrier(struct r1conf *conf, int idx)
1014 {
1015         atomic_dec(&conf->nr_pending[idx]);
1016         wake_up(&conf->wait_barrier);
1017 }
1018
1019 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1020 {
1021         int idx = sector_to_idx(sector_nr);
1022
1023         _allow_barrier(conf, idx);
1024 }
1025
1026 static void allow_all_barriers(struct r1conf *conf)
1027 {
1028         int idx;
1029
1030         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1031                 _allow_barrier(conf, idx);
1032 }
1033
1034 /* conf->resync_lock should be held */
1035 static int get_unqueued_pending(struct r1conf *conf)
1036 {
1037         int idx, ret;
1038
1039         ret = atomic_read(&conf->nr_sync_pending);
1040         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1041                 ret += atomic_read(&conf->nr_pending[idx]) -
1042                         atomic_read(&conf->nr_queued[idx]);
1043
1044         return ret;
1045 }
1046
1047 static void freeze_array(struct r1conf *conf, int extra)
1048 {
1049         /* Stop sync I/O and normal I/O and wait for everything to
1050          * go quiet.
1051          * This is called in two situations:
1052          * 1) management command handlers (reshape, remove disk, quiesce).
1053          * 2) one normal I/O request failed.
1054
1055          * After array_frozen is set to 1, new sync IO will be blocked at
1056          * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1057          * or wait_read_barrier(). The flying I/Os will either complete or be
1058          * queued. When everything goes quite, there are only queued I/Os left.
1059
1060          * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1061          * barrier bucket index which this I/O request hits. When all sync and
1062          * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1063          * of all conf->nr_queued[]. But normal I/O failure is an exception,
1064          * in handle_read_error(), we may call freeze_array() before trying to
1065          * fix the read error. In this case, the error read I/O is not queued,
1066          * so get_unqueued_pending() == 1.
1067          *
1068          * Therefore before this function returns, we need to wait until
1069          * get_unqueued_pendings(conf) gets equal to extra. For
1070          * normal I/O context, extra is 1, in rested situations extra is 0.
1071          */
1072         spin_lock_irq(&conf->resync_lock);
1073         conf->array_frozen = 1;
1074         raid1_log(conf->mddev, "wait freeze");
1075         wait_event_lock_irq_cmd(
1076                 conf->wait_barrier,
1077                 get_unqueued_pending(conf) == extra,
1078                 conf->resync_lock,
1079                 flush_pending_writes(conf));
1080         spin_unlock_irq(&conf->resync_lock);
1081 }
1082 static void unfreeze_array(struct r1conf *conf)
1083 {
1084         /* reverse the effect of the freeze */
1085         spin_lock_irq(&conf->resync_lock);
1086         conf->array_frozen = 0;
1087         spin_unlock_irq(&conf->resync_lock);
1088         wake_up(&conf->wait_barrier);
1089 }
1090
1091 static struct bio *alloc_behind_master_bio(struct r1bio *r1_bio,
1092                                            struct bio *bio)
1093 {
1094         int size = bio->bi_iter.bi_size;
1095         unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1096         int i = 0;
1097         struct bio *behind_bio = NULL;
1098
1099         behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1100         if (!behind_bio)
1101                 goto fail;
1102
1103         /* discard op, we don't support writezero/writesame yet */
1104         if (!bio_has_data(bio))
1105                 goto skip_copy;
1106
1107         while (i < vcnt && size) {
1108                 struct page *page;
1109                 int len = min_t(int, PAGE_SIZE, size);
1110
1111                 page = alloc_page(GFP_NOIO);
1112                 if (unlikely(!page))
1113                         goto free_pages;
1114
1115                 bio_add_page(behind_bio, page, len, 0);
1116
1117                 size -= len;
1118                 i++;
1119         }
1120
1121         bio_copy_data(behind_bio, bio);
1122 skip_copy:
1123         r1_bio->behind_master_bio = behind_bio;;
1124         set_bit(R1BIO_BehindIO, &r1_bio->state);
1125
1126         return behind_bio;
1127
1128 free_pages:
1129         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1130                  bio->bi_iter.bi_size);
1131         bio_free_pages(behind_bio);
1132 fail:
1133         return behind_bio;
1134 }
1135
1136 struct raid1_plug_cb {
1137         struct blk_plug_cb      cb;
1138         struct bio_list         pending;
1139         int                     pending_cnt;
1140 };
1141
1142 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1143 {
1144         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1145                                                   cb);
1146         struct mddev *mddev = plug->cb.data;
1147         struct r1conf *conf = mddev->private;
1148         struct bio *bio;
1149
1150         if (from_schedule || current->bio_list) {
1151                 spin_lock_irq(&conf->device_lock);
1152                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1153                 conf->pending_count += plug->pending_cnt;
1154                 spin_unlock_irq(&conf->device_lock);
1155                 wake_up(&conf->wait_barrier);
1156                 md_wakeup_thread(mddev->thread);
1157                 kfree(plug);
1158                 return;
1159         }
1160
1161         /* we aren't scheduling, so we can do the write-out directly. */
1162         bio = bio_list_get(&plug->pending);
1163         flush_bio_list(conf, bio);
1164         kfree(plug);
1165 }
1166
1167 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1168 {
1169         r1_bio->master_bio = bio;
1170         r1_bio->sectors = bio_sectors(bio);
1171         r1_bio->state = 0;
1172         r1_bio->mddev = mddev;
1173         r1_bio->sector = bio->bi_iter.bi_sector;
1174 }
1175
1176 static inline struct r1bio *
1177 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1178 {
1179         struct r1conf *conf = mddev->private;
1180         struct r1bio *r1_bio;
1181
1182         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1183         /* Ensure no bio records IO_BLOCKED */
1184         memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1185         init_r1bio(r1_bio, mddev, bio);
1186         return r1_bio;
1187 }
1188
1189 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1190                                int max_read_sectors, struct r1bio *r1_bio)
1191 {
1192         struct r1conf *conf = mddev->private;
1193         struct raid1_info *mirror;
1194         struct bio *read_bio;
1195         struct bitmap *bitmap = mddev->bitmap;
1196         const int op = bio_op(bio);
1197         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1198         int max_sectors;
1199         int rdisk;
1200         bool print_msg = !!r1_bio;
1201         char b[BDEVNAME_SIZE];
1202
1203         /*
1204          * If r1_bio is set, we are blocking the raid1d thread
1205          * so there is a tiny risk of deadlock.  So ask for
1206          * emergency memory if needed.
1207          */
1208         gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1209
1210         if (print_msg) {
1211                 /* Need to get the block device name carefully */
1212                 struct md_rdev *rdev;
1213                 rcu_read_lock();
1214                 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1215                 if (rdev)
1216                         bdevname(rdev->bdev, b);
1217                 else
1218                         strcpy(b, "???");
1219                 rcu_read_unlock();
1220         }
1221
1222         /*
1223          * Still need barrier for READ in case that whole
1224          * array is frozen.
1225          */
1226         wait_read_barrier(conf, bio->bi_iter.bi_sector);
1227
1228         if (!r1_bio)
1229                 r1_bio = alloc_r1bio(mddev, bio);
1230         else
1231                 init_r1bio(r1_bio, mddev, bio);
1232         r1_bio->sectors = max_read_sectors;
1233
1234         /*
1235          * make_request() can abort the operation when read-ahead is being
1236          * used and no empty request is available.
1237          */
1238         rdisk = read_balance(conf, r1_bio, &max_sectors);
1239
1240         if (rdisk < 0) {
1241                 /* couldn't find anywhere to read from */
1242                 if (print_msg) {
1243                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1244                                             mdname(mddev),
1245                                             b,
1246                                             (unsigned long long)r1_bio->sector);
1247                 }
1248                 raid_end_bio_io(r1_bio);
1249                 return;
1250         }
1251         mirror = conf->mirrors + rdisk;
1252
1253         if (print_msg)
1254                 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1255                                     mdname(mddev),
1256                                     (unsigned long long)r1_bio->sector,
1257                                     bdevname(mirror->rdev->bdev, b));
1258
1259         if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1260             bitmap) {
1261                 /*
1262                  * Reading from a write-mostly device must take care not to
1263                  * over-take any writes that are 'behind'
1264                  */
1265                 raid1_log(mddev, "wait behind writes");
1266                 wait_event(bitmap->behind_wait,
1267                            atomic_read(&bitmap->behind_writes) == 0);
1268         }
1269
1270         if (max_sectors < bio_sectors(bio)) {
1271                 struct bio *split = bio_split(bio, max_sectors,
1272                                               gfp, conf->bio_split);
1273                 bio_chain(split, bio);
1274                 generic_make_request(bio);
1275                 bio = split;
1276                 r1_bio->master_bio = bio;
1277                 r1_bio->sectors = max_sectors;
1278         }
1279
1280         r1_bio->read_disk = rdisk;
1281
1282         read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1283
1284         r1_bio->bios[rdisk] = read_bio;
1285
1286         read_bio->bi_iter.bi_sector = r1_bio->sector +
1287                 mirror->rdev->data_offset;
1288         read_bio->bi_bdev = mirror->rdev->bdev;
1289         read_bio->bi_end_io = raid1_end_read_request;
1290         bio_set_op_attrs(read_bio, op, do_sync);
1291         if (test_bit(FailFast, &mirror->rdev->flags) &&
1292             test_bit(R1BIO_FailFast, &r1_bio->state))
1293                 read_bio->bi_opf |= MD_FAILFAST;
1294         read_bio->bi_private = r1_bio;
1295
1296         if (mddev->gendisk)
1297                 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1298                                       read_bio, disk_devt(mddev->gendisk),
1299                                       r1_bio->sector);
1300
1301         generic_make_request(read_bio);
1302 }
1303
1304 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1305                                 int max_write_sectors)
1306 {
1307         struct r1conf *conf = mddev->private;
1308         struct r1bio *r1_bio;
1309         int i, disks;
1310         struct bitmap *bitmap = mddev->bitmap;
1311         unsigned long flags;
1312         struct md_rdev *blocked_rdev;
1313         struct blk_plug_cb *cb;
1314         struct raid1_plug_cb *plug = NULL;
1315         int first_clone;
1316         int max_sectors;
1317
1318         /*
1319          * Register the new request and wait if the reconstruction
1320          * thread has put up a bar for new requests.
1321          * Continue immediately if no resync is active currently.
1322          */
1323
1324         md_write_start(mddev, bio); /* wait on superblock update early */
1325
1326         if ((bio_end_sector(bio) > mddev->suspend_lo &&
1327             bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1328             (mddev_is_clustered(mddev) &&
1329              md_cluster_ops->area_resyncing(mddev, WRITE,
1330                      bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1331
1332                 /*
1333                  * As the suspend_* range is controlled by userspace, we want
1334                  * an interruptible wait.
1335                  */
1336                 DEFINE_WAIT(w);
1337                 for (;;) {
1338                         flush_signals(current);
1339                         prepare_to_wait(&conf->wait_barrier,
1340                                         &w, TASK_INTERRUPTIBLE);
1341                         if (bio_end_sector(bio) <= mddev->suspend_lo ||
1342                             bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1343                             (mddev_is_clustered(mddev) &&
1344                              !md_cluster_ops->area_resyncing(mddev, WRITE,
1345                                      bio->bi_iter.bi_sector,
1346                                      bio_end_sector(bio))))
1347                                 break;
1348                         schedule();
1349                 }
1350                 finish_wait(&conf->wait_barrier, &w);
1351         }
1352         wait_barrier(conf, bio->bi_iter.bi_sector);
1353
1354         r1_bio = alloc_r1bio(mddev, bio);
1355         r1_bio->sectors = max_write_sectors;
1356
1357         if (conf->pending_count >= max_queued_requests) {
1358                 md_wakeup_thread(mddev->thread);
1359                 raid1_log(mddev, "wait queued");
1360                 wait_event(conf->wait_barrier,
1361                            conf->pending_count < max_queued_requests);
1362         }
1363         /* first select target devices under rcu_lock and
1364          * inc refcount on their rdev.  Record them by setting
1365          * bios[x] to bio
1366          * If there are known/acknowledged bad blocks on any device on
1367          * which we have seen a write error, we want to avoid writing those
1368          * blocks.
1369          * This potentially requires several writes to write around
1370          * the bad blocks.  Each set of writes gets it's own r1bio
1371          * with a set of bios attached.
1372          */
1373
1374         disks = conf->raid_disks * 2;
1375  retry_write:
1376         blocked_rdev = NULL;
1377         rcu_read_lock();
1378         max_sectors = r1_bio->sectors;
1379         for (i = 0;  i < disks; i++) {
1380                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1381                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1382                         atomic_inc(&rdev->nr_pending);
1383                         blocked_rdev = rdev;
1384                         break;
1385                 }
1386                 r1_bio->bios[i] = NULL;
1387                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1388                         if (i < conf->raid_disks)
1389                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1390                         continue;
1391                 }
1392
1393                 atomic_inc(&rdev->nr_pending);
1394                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1395                         sector_t first_bad;
1396                         int bad_sectors;
1397                         int is_bad;
1398
1399                         is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1400                                              &first_bad, &bad_sectors);
1401                         if (is_bad < 0) {
1402                                 /* mustn't write here until the bad block is
1403                                  * acknowledged*/
1404                                 set_bit(BlockedBadBlocks, &rdev->flags);
1405                                 blocked_rdev = rdev;
1406                                 break;
1407                         }
1408                         if (is_bad && first_bad <= r1_bio->sector) {
1409                                 /* Cannot write here at all */
1410                                 bad_sectors -= (r1_bio->sector - first_bad);
1411                                 if (bad_sectors < max_sectors)
1412                                         /* mustn't write more than bad_sectors
1413                                          * to other devices yet
1414                                          */
1415                                         max_sectors = bad_sectors;
1416                                 rdev_dec_pending(rdev, mddev);
1417                                 /* We don't set R1BIO_Degraded as that
1418                                  * only applies if the disk is
1419                                  * missing, so it might be re-added,
1420                                  * and we want to know to recover this
1421                                  * chunk.
1422                                  * In this case the device is here,
1423                                  * and the fact that this chunk is not
1424                                  * in-sync is recorded in the bad
1425                                  * block log
1426                                  */
1427                                 continue;
1428                         }
1429                         if (is_bad) {
1430                                 int good_sectors = first_bad - r1_bio->sector;
1431                                 if (good_sectors < max_sectors)
1432                                         max_sectors = good_sectors;
1433                         }
1434                 }
1435                 r1_bio->bios[i] = bio;
1436         }
1437         rcu_read_unlock();
1438
1439         if (unlikely(blocked_rdev)) {
1440                 /* Wait for this device to become unblocked */
1441                 int j;
1442
1443                 for (j = 0; j < i; j++)
1444                         if (r1_bio->bios[j])
1445                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1446                 r1_bio->state = 0;
1447                 allow_barrier(conf, bio->bi_iter.bi_sector);
1448                 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1449                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1450                 wait_barrier(conf, bio->bi_iter.bi_sector);
1451                 goto retry_write;
1452         }
1453
1454         if (max_sectors < bio_sectors(bio)) {
1455                 struct bio *split = bio_split(bio, max_sectors,
1456                                               GFP_NOIO, conf->bio_split);
1457                 bio_chain(split, bio);
1458                 generic_make_request(bio);
1459                 bio = split;
1460                 r1_bio->master_bio = bio;
1461                 r1_bio->sectors = max_sectors;
1462         }
1463
1464         atomic_set(&r1_bio->remaining, 1);
1465         atomic_set(&r1_bio->behind_remaining, 0);
1466
1467         first_clone = 1;
1468
1469         for (i = 0; i < disks; i++) {
1470                 struct bio *mbio = NULL;
1471                 if (!r1_bio->bios[i])
1472                         continue;
1473
1474
1475                 if (first_clone) {
1476                         /* do behind I/O ?
1477                          * Not if there are too many, or cannot
1478                          * allocate memory, or a reader on WriteMostly
1479                          * is waiting for behind writes to flush */
1480                         if (bitmap &&
1481                             (atomic_read(&bitmap->behind_writes)
1482                              < mddev->bitmap_info.max_write_behind) &&
1483                             !waitqueue_active(&bitmap->behind_wait)) {
1484                                 mbio = alloc_behind_master_bio(r1_bio, bio);
1485                         }
1486
1487                         bitmap_startwrite(bitmap, r1_bio->sector,
1488                                           r1_bio->sectors,
1489                                           test_bit(R1BIO_BehindIO,
1490                                                    &r1_bio->state));
1491                         first_clone = 0;
1492                 }
1493
1494                 if (!mbio) {
1495                         if (r1_bio->behind_master_bio)
1496                                 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1497                                                       GFP_NOIO,
1498                                                       mddev->bio_set);
1499                         else
1500                                 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1501                 }
1502
1503                 if (r1_bio->behind_master_bio) {
1504                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1505                                 atomic_inc(&r1_bio->behind_remaining);
1506                 }
1507
1508                 r1_bio->bios[i] = mbio;
1509
1510                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1511                                    conf->mirrors[i].rdev->data_offset);
1512                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1513                 mbio->bi_end_io = raid1_end_write_request;
1514                 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1515                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1516                     !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1517                     conf->raid_disks - mddev->degraded > 1)
1518                         mbio->bi_opf |= MD_FAILFAST;
1519                 mbio->bi_private = r1_bio;
1520
1521                 atomic_inc(&r1_bio->remaining);
1522
1523                 if (mddev->gendisk)
1524                         trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1525                                               mbio, disk_devt(mddev->gendisk),
1526                                               r1_bio->sector);
1527                 /* flush_pending_writes() needs access to the rdev so...*/
1528                 mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1529
1530                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1531                 if (cb)
1532                         plug = container_of(cb, struct raid1_plug_cb, cb);
1533                 else
1534                         plug = NULL;
1535                 if (plug) {
1536                         bio_list_add(&plug->pending, mbio);
1537                         plug->pending_cnt++;
1538                 } else {
1539                         spin_lock_irqsave(&conf->device_lock, flags);
1540                         bio_list_add(&conf->pending_bio_list, mbio);
1541                         conf->pending_count++;
1542                         spin_unlock_irqrestore(&conf->device_lock, flags);
1543                         md_wakeup_thread(mddev->thread);
1544                 }
1545         }
1546
1547         r1_bio_write_done(r1_bio);
1548
1549         /* In case raid1d snuck in to freeze_array */
1550         wake_up(&conf->wait_barrier);
1551 }
1552
1553 static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1554 {
1555         sector_t sectors;
1556
1557         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1558                 md_flush_request(mddev, bio);
1559                 return;
1560         }
1561
1562         /*
1563          * There is a limit to the maximum size, but
1564          * the read/write handler might find a lower limit
1565          * due to bad blocks.  To avoid multiple splits,
1566          * we pass the maximum number of sectors down
1567          * and let the lower level perform the split.
1568          */
1569         sectors = align_to_barrier_unit_end(
1570                 bio->bi_iter.bi_sector, bio_sectors(bio));
1571
1572         if (bio_data_dir(bio) == READ)
1573                 raid1_read_request(mddev, bio, sectors, NULL);
1574         else
1575                 raid1_write_request(mddev, bio, sectors);
1576 }
1577
1578 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1579 {
1580         struct r1conf *conf = mddev->private;
1581         int i;
1582
1583         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1584                    conf->raid_disks - mddev->degraded);
1585         rcu_read_lock();
1586         for (i = 0; i < conf->raid_disks; i++) {
1587                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1588                 seq_printf(seq, "%s",
1589                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1590         }
1591         rcu_read_unlock();
1592         seq_printf(seq, "]");
1593 }
1594
1595 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1596 {
1597         char b[BDEVNAME_SIZE];
1598         struct r1conf *conf = mddev->private;
1599         unsigned long flags;
1600
1601         /*
1602          * If it is not operational, then we have already marked it as dead
1603          * else if it is the last working disks, ignore the error, let the
1604          * next level up know.
1605          * else mark the drive as failed
1606          */
1607         spin_lock_irqsave(&conf->device_lock, flags);
1608         if (test_bit(In_sync, &rdev->flags)
1609             && (conf->raid_disks - mddev->degraded) == 1) {
1610                 /*
1611                  * Don't fail the drive, act as though we were just a
1612                  * normal single drive.
1613                  * However don't try a recovery from this drive as
1614                  * it is very likely to fail.
1615                  */
1616                 conf->recovery_disabled = mddev->recovery_disabled;
1617                 spin_unlock_irqrestore(&conf->device_lock, flags);
1618                 return;
1619         }
1620         set_bit(Blocked, &rdev->flags);
1621         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1622                 mddev->degraded++;
1623                 set_bit(Faulty, &rdev->flags);
1624         } else
1625                 set_bit(Faulty, &rdev->flags);
1626         spin_unlock_irqrestore(&conf->device_lock, flags);
1627         /*
1628          * if recovery is running, make sure it aborts.
1629          */
1630         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1631         set_mask_bits(&mddev->sb_flags, 0,
1632                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1633         pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1634                 "md/raid1:%s: Operation continuing on %d devices.\n",
1635                 mdname(mddev), bdevname(rdev->bdev, b),
1636                 mdname(mddev), conf->raid_disks - mddev->degraded);
1637 }
1638
1639 static void print_conf(struct r1conf *conf)
1640 {
1641         int i;
1642
1643         pr_debug("RAID1 conf printout:\n");
1644         if (!conf) {
1645                 pr_debug("(!conf)\n");
1646                 return;
1647         }
1648         pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1649                  conf->raid_disks);
1650
1651         rcu_read_lock();
1652         for (i = 0; i < conf->raid_disks; i++) {
1653                 char b[BDEVNAME_SIZE];
1654                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1655                 if (rdev)
1656                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1657                                  i, !test_bit(In_sync, &rdev->flags),
1658                                  !test_bit(Faulty, &rdev->flags),
1659                                  bdevname(rdev->bdev,b));
1660         }
1661         rcu_read_unlock();
1662 }
1663
1664 static void close_sync(struct r1conf *conf)
1665 {
1666         wait_all_barriers(conf);
1667         allow_all_barriers(conf);
1668
1669         mempool_destroy(conf->r1buf_pool);
1670         conf->r1buf_pool = NULL;
1671 }
1672
1673 static int raid1_spare_active(struct mddev *mddev)
1674 {
1675         int i;
1676         struct r1conf *conf = mddev->private;
1677         int count = 0;
1678         unsigned long flags;
1679
1680         /*
1681          * Find all failed disks within the RAID1 configuration
1682          * and mark them readable.
1683          * Called under mddev lock, so rcu protection not needed.
1684          * device_lock used to avoid races with raid1_end_read_request
1685          * which expects 'In_sync' flags and ->degraded to be consistent.
1686          */
1687         spin_lock_irqsave(&conf->device_lock, flags);
1688         for (i = 0; i < conf->raid_disks; i++) {
1689                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1690                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1691                 if (repl
1692                     && !test_bit(Candidate, &repl->flags)
1693                     && repl->recovery_offset == MaxSector
1694                     && !test_bit(Faulty, &repl->flags)
1695                     && !test_and_set_bit(In_sync, &repl->flags)) {
1696                         /* replacement has just become active */
1697                         if (!rdev ||
1698                             !test_and_clear_bit(In_sync, &rdev->flags))
1699                                 count++;
1700                         if (rdev) {
1701                                 /* Replaced device not technically
1702                                  * faulty, but we need to be sure
1703                                  * it gets removed and never re-added
1704                                  */
1705                                 set_bit(Faulty, &rdev->flags);
1706                                 sysfs_notify_dirent_safe(
1707                                         rdev->sysfs_state);
1708                         }
1709                 }
1710                 if (rdev
1711                     && rdev->recovery_offset == MaxSector
1712                     && !test_bit(Faulty, &rdev->flags)
1713                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1714                         count++;
1715                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1716                 }
1717         }
1718         mddev->degraded -= count;
1719         spin_unlock_irqrestore(&conf->device_lock, flags);
1720
1721         print_conf(conf);
1722         return count;
1723 }
1724
1725 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1726 {
1727         struct r1conf *conf = mddev->private;
1728         int err = -EEXIST;
1729         int mirror = 0;
1730         struct raid1_info *p;
1731         int first = 0;
1732         int last = conf->raid_disks - 1;
1733
1734         if (mddev->recovery_disabled == conf->recovery_disabled)
1735                 return -EBUSY;
1736
1737         if (md_integrity_add_rdev(rdev, mddev))
1738                 return -ENXIO;
1739
1740         if (rdev->raid_disk >= 0)
1741                 first = last = rdev->raid_disk;
1742
1743         /*
1744          * find the disk ... but prefer rdev->saved_raid_disk
1745          * if possible.
1746          */
1747         if (rdev->saved_raid_disk >= 0 &&
1748             rdev->saved_raid_disk >= first &&
1749             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1750                 first = last = rdev->saved_raid_disk;
1751
1752         for (mirror = first; mirror <= last; mirror++) {
1753                 p = conf->mirrors+mirror;
1754                 if (!p->rdev) {
1755
1756                         if (mddev->gendisk)
1757                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1758                                                   rdev->data_offset << 9);
1759
1760                         p->head_position = 0;
1761                         rdev->raid_disk = mirror;
1762                         err = 0;
1763                         /* As all devices are equivalent, we don't need a full recovery
1764                          * if this was recently any drive of the array
1765                          */
1766                         if (rdev->saved_raid_disk < 0)
1767                                 conf->fullsync = 1;
1768                         rcu_assign_pointer(p->rdev, rdev);
1769                         break;
1770                 }
1771                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1772                     p[conf->raid_disks].rdev == NULL) {
1773                         /* Add this device as a replacement */
1774                         clear_bit(In_sync, &rdev->flags);
1775                         set_bit(Replacement, &rdev->flags);
1776                         rdev->raid_disk = mirror;
1777                         err = 0;
1778                         conf->fullsync = 1;
1779                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1780                         break;
1781                 }
1782         }
1783         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1784                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1785         print_conf(conf);
1786         return err;
1787 }
1788
1789 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1790 {
1791         struct r1conf *conf = mddev->private;
1792         int err = 0;
1793         int number = rdev->raid_disk;
1794         struct raid1_info *p = conf->mirrors + number;
1795
1796         if (rdev != p->rdev)
1797                 p = conf->mirrors + conf->raid_disks + number;
1798
1799         print_conf(conf);
1800         if (rdev == p->rdev) {
1801                 if (test_bit(In_sync, &rdev->flags) ||
1802                     atomic_read(&rdev->nr_pending)) {
1803                         err = -EBUSY;
1804                         goto abort;
1805                 }
1806                 /* Only remove non-faulty devices if recovery
1807                  * is not possible.
1808                  */
1809                 if (!test_bit(Faulty, &rdev->flags) &&
1810                     mddev->recovery_disabled != conf->recovery_disabled &&
1811                     mddev->degraded < conf->raid_disks) {
1812                         err = -EBUSY;
1813                         goto abort;
1814                 }
1815                 p->rdev = NULL;
1816                 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1817                         synchronize_rcu();
1818                         if (atomic_read(&rdev->nr_pending)) {
1819                                 /* lost the race, try later */
1820                                 err = -EBUSY;
1821                                 p->rdev = rdev;
1822                                 goto abort;
1823                         }
1824                 }
1825                 if (conf->mirrors[conf->raid_disks + number].rdev) {
1826                         /* We just removed a device that is being replaced.
1827                          * Move down the replacement.  We drain all IO before
1828                          * doing this to avoid confusion.
1829                          */
1830                         struct md_rdev *repl =
1831                                 conf->mirrors[conf->raid_disks + number].rdev;
1832                         freeze_array(conf, 0);
1833                         clear_bit(Replacement, &repl->flags);
1834                         p->rdev = repl;
1835                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1836                         unfreeze_array(conf);
1837                 }
1838
1839                 clear_bit(WantReplacement, &rdev->flags);
1840                 err = md_integrity_register(mddev);
1841         }
1842 abort:
1843
1844         print_conf(conf);
1845         return err;
1846 }
1847
1848 static void end_sync_read(struct bio *bio)
1849 {
1850         struct r1bio *r1_bio = get_resync_r1bio(bio);
1851
1852         update_head_pos(r1_bio->read_disk, r1_bio);
1853
1854         /*
1855          * we have read a block, now it needs to be re-written,
1856          * or re-read if the read failed.
1857          * We don't do much here, just schedule handling by raid1d
1858          */
1859         if (!bio->bi_error)
1860                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1861
1862         if (atomic_dec_and_test(&r1_bio->remaining))
1863                 reschedule_retry(r1_bio);
1864 }
1865
1866 static void end_sync_write(struct bio *bio)
1867 {
1868         int uptodate = !bio->bi_error;
1869         struct r1bio *r1_bio = get_resync_r1bio(bio);
1870         struct mddev *mddev = r1_bio->mddev;
1871         struct r1conf *conf = mddev->private;
1872         sector_t first_bad;
1873         int bad_sectors;
1874         struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1875
1876         if (!uptodate) {
1877                 sector_t sync_blocks = 0;
1878                 sector_t s = r1_bio->sector;
1879                 long sectors_to_go = r1_bio->sectors;
1880                 /* make sure these bits doesn't get cleared. */
1881                 do {
1882                         bitmap_end_sync(mddev->bitmap, s,
1883                                         &sync_blocks, 1);
1884                         s += sync_blocks;
1885                         sectors_to_go -= sync_blocks;
1886                 } while (sectors_to_go > 0);
1887                 set_bit(WriteErrorSeen, &rdev->flags);
1888                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1889                         set_bit(MD_RECOVERY_NEEDED, &
1890                                 mddev->recovery);
1891                 set_bit(R1BIO_WriteError, &r1_bio->state);
1892         } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1893                                &first_bad, &bad_sectors) &&
1894                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1895                                 r1_bio->sector,
1896                                 r1_bio->sectors,
1897                                 &first_bad, &bad_sectors)
1898                 )
1899                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1900
1901         if (atomic_dec_and_test(&r1_bio->remaining)) {
1902                 int s = r1_bio->sectors;
1903                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1904                     test_bit(R1BIO_WriteError, &r1_bio->state))
1905                         reschedule_retry(r1_bio);
1906                 else {
1907                         put_buf(r1_bio);
1908                         md_done_sync(mddev, s, uptodate);
1909                 }
1910         }
1911 }
1912
1913 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1914                             int sectors, struct page *page, int rw)
1915 {
1916         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1917                 /* success */
1918                 return 1;
1919         if (rw == WRITE) {
1920                 set_bit(WriteErrorSeen, &rdev->flags);
1921                 if (!test_and_set_bit(WantReplacement,
1922                                       &rdev->flags))
1923                         set_bit(MD_RECOVERY_NEEDED, &
1924                                 rdev->mddev->recovery);
1925         }
1926         /* need to record an error - either for the block or the device */
1927         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1928                 md_error(rdev->mddev, rdev);
1929         return 0;
1930 }
1931
1932 static int fix_sync_read_error(struct r1bio *r1_bio)
1933 {
1934         /* Try some synchronous reads of other devices to get
1935          * good data, much like with normal read errors.  Only
1936          * read into the pages we already have so we don't
1937          * need to re-issue the read request.
1938          * We don't need to freeze the array, because being in an
1939          * active sync request, there is no normal IO, and
1940          * no overlapping syncs.
1941          * We don't need to check is_badblock() again as we
1942          * made sure that anything with a bad block in range
1943          * will have bi_end_io clear.
1944          */
1945         struct mddev *mddev = r1_bio->mddev;
1946         struct r1conf *conf = mddev->private;
1947         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1948         struct page **pages = get_resync_pages(bio)->pages;
1949         sector_t sect = r1_bio->sector;
1950         int sectors = r1_bio->sectors;
1951         int idx = 0;
1952         struct md_rdev *rdev;
1953
1954         rdev = conf->mirrors[r1_bio->read_disk].rdev;
1955         if (test_bit(FailFast, &rdev->flags)) {
1956                 /* Don't try recovering from here - just fail it
1957                  * ... unless it is the last working device of course */
1958                 md_error(mddev, rdev);
1959                 if (test_bit(Faulty, &rdev->flags))
1960                         /* Don't try to read from here, but make sure
1961                          * put_buf does it's thing
1962                          */
1963                         bio->bi_end_io = end_sync_write;
1964         }
1965
1966         while(sectors) {
1967                 int s = sectors;
1968                 int d = r1_bio->read_disk;
1969                 int success = 0;
1970                 int start;
1971
1972                 if (s > (PAGE_SIZE>>9))
1973                         s = PAGE_SIZE >> 9;
1974                 do {
1975                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1976                                 /* No rcu protection needed here devices
1977                                  * can only be removed when no resync is
1978                                  * active, and resync is currently active
1979                                  */
1980                                 rdev = conf->mirrors[d].rdev;
1981                                 if (sync_page_io(rdev, sect, s<<9,
1982                                                  pages[idx],
1983                                                  REQ_OP_READ, 0, false)) {
1984                                         success = 1;
1985                                         break;
1986                                 }
1987                         }
1988                         d++;
1989                         if (d == conf->raid_disks * 2)
1990                                 d = 0;
1991                 } while (!success && d != r1_bio->read_disk);
1992
1993                 if (!success) {
1994                         char b[BDEVNAME_SIZE];
1995                         int abort = 0;
1996                         /* Cannot read from anywhere, this block is lost.
1997                          * Record a bad block on each device.  If that doesn't
1998                          * work just disable and interrupt the recovery.
1999                          * Don't fail devices as that won't really help.
2000                          */
2001                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2002                                             mdname(mddev),
2003                                             bdevname(bio->bi_bdev, b),
2004                                             (unsigned long long)r1_bio->sector);
2005                         for (d = 0; d < conf->raid_disks * 2; d++) {
2006                                 rdev = conf->mirrors[d].rdev;
2007                                 if (!rdev || test_bit(Faulty, &rdev->flags))
2008                                         continue;
2009                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
2010                                         abort = 1;
2011                         }
2012                         if (abort) {
2013                                 conf->recovery_disabled =
2014                                         mddev->recovery_disabled;
2015                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2016                                 md_done_sync(mddev, r1_bio->sectors, 0);
2017                                 put_buf(r1_bio);
2018                                 return 0;
2019                         }
2020                         /* Try next page */
2021                         sectors -= s;
2022                         sect += s;
2023                         idx++;
2024                         continue;
2025                 }
2026
2027                 start = d;
2028                 /* write it back and re-read */
2029                 while (d != r1_bio->read_disk) {
2030                         if (d == 0)
2031                                 d = conf->raid_disks * 2;
2032                         d--;
2033                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2034                                 continue;
2035                         rdev = conf->mirrors[d].rdev;
2036                         if (r1_sync_page_io(rdev, sect, s,
2037                                             pages[idx],
2038                                             WRITE) == 0) {
2039                                 r1_bio->bios[d]->bi_end_io = NULL;
2040                                 rdev_dec_pending(rdev, mddev);
2041                         }
2042                 }
2043                 d = start;
2044                 while (d != r1_bio->read_disk) {
2045                         if (d == 0)
2046                                 d = conf->raid_disks * 2;
2047                         d--;
2048                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2049                                 continue;
2050                         rdev = conf->mirrors[d].rdev;
2051                         if (r1_sync_page_io(rdev, sect, s,
2052                                             pages[idx],
2053                                             READ) != 0)
2054                                 atomic_add(s, &rdev->corrected_errors);
2055                 }
2056                 sectors -= s;
2057                 sect += s;
2058                 idx ++;
2059         }
2060         set_bit(R1BIO_Uptodate, &r1_bio->state);
2061         bio->bi_error = 0;
2062         return 1;
2063 }
2064
2065 static void process_checks(struct r1bio *r1_bio)
2066 {
2067         /* We have read all readable devices.  If we haven't
2068          * got the block, then there is no hope left.
2069          * If we have, then we want to do a comparison
2070          * and skip the write if everything is the same.
2071          * If any blocks failed to read, then we need to
2072          * attempt an over-write
2073          */
2074         struct mddev *mddev = r1_bio->mddev;
2075         struct r1conf *conf = mddev->private;
2076         int primary;
2077         int i;
2078         int vcnt;
2079
2080         /* Fix variable parts of all bios */
2081         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2082         for (i = 0; i < conf->raid_disks * 2; i++) {
2083                 int j;
2084                 int size;
2085                 int error;
2086                 struct bio_vec *bi;
2087                 struct bio *b = r1_bio->bios[i];
2088                 struct resync_pages *rp = get_resync_pages(b);
2089                 if (b->bi_end_io != end_sync_read)
2090                         continue;
2091                 /* fixup the bio for reuse, but preserve errno */
2092                 error = b->bi_error;
2093                 bio_reset(b);
2094                 b->bi_error = error;
2095                 b->bi_vcnt = vcnt;
2096                 b->bi_iter.bi_size = r1_bio->sectors << 9;
2097                 b->bi_iter.bi_sector = r1_bio->sector +
2098                         conf->mirrors[i].rdev->data_offset;
2099                 b->bi_bdev = conf->mirrors[i].rdev->bdev;
2100                 b->bi_end_io = end_sync_read;
2101                 rp->raid_bio = r1_bio;
2102                 b->bi_private = rp;
2103
2104                 size = b->bi_iter.bi_size;
2105                 bio_for_each_segment_all(bi, b, j) {
2106                         bi->bv_offset = 0;
2107                         if (size > PAGE_SIZE)
2108                                 bi->bv_len = PAGE_SIZE;
2109                         else
2110                                 bi->bv_len = size;
2111                         size -= PAGE_SIZE;
2112                 }
2113         }
2114         for (primary = 0; primary < conf->raid_disks * 2; primary++)
2115                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2116                     !r1_bio->bios[primary]->bi_error) {
2117                         r1_bio->bios[primary]->bi_end_io = NULL;
2118                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2119                         break;
2120                 }
2121         r1_bio->read_disk = primary;
2122         for (i = 0; i < conf->raid_disks * 2; i++) {
2123                 int j;
2124                 struct bio *pbio = r1_bio->bios[primary];
2125                 struct bio *sbio = r1_bio->bios[i];
2126                 int error = sbio->bi_error;
2127                 struct page **ppages = get_resync_pages(pbio)->pages;
2128                 struct page **spages = get_resync_pages(sbio)->pages;
2129                 struct bio_vec *bi;
2130                 int page_len[RESYNC_PAGES] = { 0 };
2131
2132                 if (sbio->bi_end_io != end_sync_read)
2133                         continue;
2134                 /* Now we can 'fixup' the error value */
2135                 sbio->bi_error = 0;
2136
2137                 bio_for_each_segment_all(bi, sbio, j)
2138                         page_len[j] = bi->bv_len;
2139
2140                 if (!error) {
2141                         for (j = vcnt; j-- ; ) {
2142                                 if (memcmp(page_address(ppages[j]),
2143                                            page_address(spages[j]),
2144                                            page_len[j]))
2145                                         break;
2146                         }
2147                 } else
2148                         j = 0;
2149                 if (j >= 0)
2150                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2151                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2152                               && !error)) {
2153                         /* No need to write to this device. */
2154                         sbio->bi_end_io = NULL;
2155                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2156                         continue;
2157                 }
2158
2159                 bio_copy_data(sbio, pbio);
2160         }
2161 }
2162
2163 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2164 {
2165         struct r1conf *conf = mddev->private;
2166         int i;
2167         int disks = conf->raid_disks * 2;
2168         struct bio *bio, *wbio;
2169
2170         bio = r1_bio->bios[r1_bio->read_disk];
2171
2172         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2173                 /* ouch - failed to read all of that. */
2174                 if (!fix_sync_read_error(r1_bio))
2175                         return;
2176
2177         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2178                 process_checks(r1_bio);
2179
2180         /*
2181          * schedule writes
2182          */
2183         atomic_set(&r1_bio->remaining, 1);
2184         for (i = 0; i < disks ; i++) {
2185                 wbio = r1_bio->bios[i];
2186                 if (wbio->bi_end_io == NULL ||
2187                     (wbio->bi_end_io == end_sync_read &&
2188                      (i == r1_bio->read_disk ||
2189                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2190                         continue;
2191                 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2192                         continue;
2193
2194                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2195                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2196                         wbio->bi_opf |= MD_FAILFAST;
2197
2198                 wbio->bi_end_io = end_sync_write;
2199                 atomic_inc(&r1_bio->remaining);
2200                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2201
2202                 generic_make_request(wbio);
2203         }
2204
2205         if (atomic_dec_and_test(&r1_bio->remaining)) {
2206                 /* if we're here, all write(s) have completed, so clean up */
2207                 int s = r1_bio->sectors;
2208                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2209                     test_bit(R1BIO_WriteError, &r1_bio->state))
2210                         reschedule_retry(r1_bio);
2211                 else {
2212                         put_buf(r1_bio);
2213                         md_done_sync(mddev, s, 1);
2214                 }
2215         }
2216 }
2217
2218 /*
2219  * This is a kernel thread which:
2220  *
2221  *      1.      Retries failed read operations on working mirrors.
2222  *      2.      Updates the raid superblock when problems encounter.
2223  *      3.      Performs writes following reads for array synchronising.
2224  */
2225
2226 static void fix_read_error(struct r1conf *conf, int read_disk,
2227                            sector_t sect, int sectors)
2228 {
2229         struct mddev *mddev = conf->mddev;
2230         while(sectors) {
2231                 int s = sectors;
2232                 int d = read_disk;
2233                 int success = 0;
2234                 int start;
2235                 struct md_rdev *rdev;
2236
2237                 if (s > (PAGE_SIZE>>9))
2238                         s = PAGE_SIZE >> 9;
2239
2240                 do {
2241                         sector_t first_bad;
2242                         int bad_sectors;
2243
2244                         rcu_read_lock();
2245                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2246                         if (rdev &&
2247                             (test_bit(In_sync, &rdev->flags) ||
2248                              (!test_bit(Faulty, &rdev->flags) &&
2249                               rdev->recovery_offset >= sect + s)) &&
2250                             is_badblock(rdev, sect, s,
2251                                         &first_bad, &bad_sectors) == 0) {
2252                                 atomic_inc(&rdev->nr_pending);
2253                                 rcu_read_unlock();
2254                                 if (sync_page_io(rdev, sect, s<<9,
2255                                          conf->tmppage, REQ_OP_READ, 0, false))
2256                                         success = 1;
2257                                 rdev_dec_pending(rdev, mddev);
2258                                 if (success)
2259                                         break;
2260                         } else
2261                                 rcu_read_unlock();
2262                         d++;
2263                         if (d == conf->raid_disks * 2)
2264                                 d = 0;
2265                 } while (!success && d != read_disk);
2266
2267                 if (!success) {
2268                         /* Cannot read from anywhere - mark it bad */
2269                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2270                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2271                                 md_error(mddev, rdev);
2272                         break;
2273                 }
2274                 /* write it back and re-read */
2275                 start = d;
2276                 while (d != read_disk) {
2277                         if (d==0)
2278                                 d = conf->raid_disks * 2;
2279                         d--;
2280                         rcu_read_lock();
2281                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2282                         if (rdev &&
2283                             !test_bit(Faulty, &rdev->flags)) {
2284                                 atomic_inc(&rdev->nr_pending);
2285                                 rcu_read_unlock();
2286                                 r1_sync_page_io(rdev, sect, s,
2287                                                 conf->tmppage, WRITE);
2288                                 rdev_dec_pending(rdev, mddev);
2289                         } else
2290                                 rcu_read_unlock();
2291                 }
2292                 d = start;
2293                 while (d != read_disk) {
2294                         char b[BDEVNAME_SIZE];
2295                         if (d==0)
2296                                 d = conf->raid_disks * 2;
2297                         d--;
2298                         rcu_read_lock();
2299                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2300                         if (rdev &&
2301                             !test_bit(Faulty, &rdev->flags)) {
2302                                 atomic_inc(&rdev->nr_pending);
2303                                 rcu_read_unlock();
2304                                 if (r1_sync_page_io(rdev, sect, s,
2305                                                     conf->tmppage, READ)) {
2306                                         atomic_add(s, &rdev->corrected_errors);
2307                                         pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2308                                                 mdname(mddev), s,
2309                                                 (unsigned long long)(sect +
2310                                                                      rdev->data_offset),
2311                                                 bdevname(rdev->bdev, b));
2312                                 }
2313                                 rdev_dec_pending(rdev, mddev);
2314                         } else
2315                                 rcu_read_unlock();
2316                 }
2317                 sectors -= s;
2318                 sect += s;
2319         }
2320 }
2321
2322 static int narrow_write_error(struct r1bio *r1_bio, int i)
2323 {
2324         struct mddev *mddev = r1_bio->mddev;
2325         struct r1conf *conf = mddev->private;
2326         struct md_rdev *rdev = conf->mirrors[i].rdev;
2327
2328         /* bio has the data to be written to device 'i' where
2329          * we just recently had a write error.
2330          * We repeatedly clone the bio and trim down to one block,
2331          * then try the write.  Where the write fails we record
2332          * a bad block.
2333          * It is conceivable that the bio doesn't exactly align with
2334          * blocks.  We must handle this somehow.
2335          *
2336          * We currently own a reference on the rdev.
2337          */
2338
2339         int block_sectors;
2340         sector_t sector;
2341         int sectors;
2342         int sect_to_write = r1_bio->sectors;
2343         int ok = 1;
2344
2345         if (rdev->badblocks.shift < 0)
2346                 return 0;
2347
2348         block_sectors = roundup(1 << rdev->badblocks.shift,
2349                                 bdev_logical_block_size(rdev->bdev) >> 9);
2350         sector = r1_bio->sector;
2351         sectors = ((sector + block_sectors)
2352                    & ~(sector_t)(block_sectors - 1))
2353                 - sector;
2354
2355         while (sect_to_write) {
2356                 struct bio *wbio;
2357                 if (sectors > sect_to_write)
2358                         sectors = sect_to_write;
2359                 /* Write at 'sector' for 'sectors'*/
2360
2361                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2362                         wbio = bio_clone_fast(r1_bio->behind_master_bio,
2363                                               GFP_NOIO,
2364                                               mddev->bio_set);
2365                         /* We really need a _all clone */
2366                         wbio->bi_iter = (struct bvec_iter){ 0 };
2367                 } else {
2368                         wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2369                                               mddev->bio_set);
2370                 }
2371
2372                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2373                 wbio->bi_iter.bi_sector = r1_bio->sector;
2374                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2375
2376                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2377                 wbio->bi_iter.bi_sector += rdev->data_offset;
2378                 wbio->bi_bdev = rdev->bdev;
2379
2380                 if (submit_bio_wait(wbio) < 0)
2381                         /* failure! */
2382                         ok = rdev_set_badblocks(rdev, sector,
2383                                                 sectors, 0)
2384                                 && ok;
2385
2386                 bio_put(wbio);
2387                 sect_to_write -= sectors;
2388                 sector += sectors;
2389                 sectors = block_sectors;
2390         }
2391         return ok;
2392 }
2393
2394 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2395 {
2396         int m;
2397         int s = r1_bio->sectors;
2398         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2399                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2400                 struct bio *bio = r1_bio->bios[m];
2401                 if (bio->bi_end_io == NULL)
2402                         continue;
2403                 if (!bio->bi_error &&
2404                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2405                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2406                 }
2407                 if (bio->bi_error &&
2408                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2409                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2410                                 md_error(conf->mddev, rdev);
2411                 }
2412         }
2413         put_buf(r1_bio);
2414         md_done_sync(conf->mddev, s, 1);
2415 }
2416
2417 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2418 {
2419         int m, idx;
2420         bool fail = false;
2421
2422         for (m = 0; m < conf->raid_disks * 2 ; m++)
2423                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2424                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2425                         rdev_clear_badblocks(rdev,
2426                                              r1_bio->sector,
2427                                              r1_bio->sectors, 0);
2428                         rdev_dec_pending(rdev, conf->mddev);
2429                 } else if (r1_bio->bios[m] != NULL) {
2430                         /* This drive got a write error.  We need to
2431                          * narrow down and record precise write
2432                          * errors.
2433                          */
2434                         fail = true;
2435                         if (!narrow_write_error(r1_bio, m)) {
2436                                 md_error(conf->mddev,
2437                                          conf->mirrors[m].rdev);
2438                                 /* an I/O failed, we can't clear the bitmap */
2439                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2440                         }
2441                         rdev_dec_pending(conf->mirrors[m].rdev,
2442                                          conf->mddev);
2443                 }
2444         if (fail) {
2445                 spin_lock_irq(&conf->device_lock);
2446                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2447                 idx = sector_to_idx(r1_bio->sector);
2448                 atomic_inc(&conf->nr_queued[idx]);
2449                 spin_unlock_irq(&conf->device_lock);
2450                 /*
2451                  * In case freeze_array() is waiting for condition
2452                  * get_unqueued_pending() == extra to be true.
2453                  */
2454                 wake_up(&conf->wait_barrier);
2455                 md_wakeup_thread(conf->mddev->thread);
2456         } else {
2457                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2458                         close_write(r1_bio);
2459                 raid_end_bio_io(r1_bio);
2460         }
2461 }
2462
2463 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2464 {
2465         struct mddev *mddev = conf->mddev;
2466         struct bio *bio;
2467         struct md_rdev *rdev;
2468         dev_t bio_dev;
2469         sector_t bio_sector;
2470
2471         clear_bit(R1BIO_ReadError, &r1_bio->state);
2472         /* we got a read error. Maybe the drive is bad.  Maybe just
2473          * the block and we can fix it.
2474          * We freeze all other IO, and try reading the block from
2475          * other devices.  When we find one, we re-write
2476          * and check it that fixes the read error.
2477          * This is all done synchronously while the array is
2478          * frozen
2479          */
2480
2481         bio = r1_bio->bios[r1_bio->read_disk];
2482         bio_dev = bio->bi_bdev->bd_dev;
2483         bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2484         bio_put(bio);
2485         r1_bio->bios[r1_bio->read_disk] = NULL;
2486
2487         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2488         if (mddev->ro == 0
2489             && !test_bit(FailFast, &rdev->flags)) {
2490                 freeze_array(conf, 1);
2491                 fix_read_error(conf, r1_bio->read_disk,
2492                                r1_bio->sector, r1_bio->sectors);
2493                 unfreeze_array(conf);
2494         } else {
2495                 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2496         }
2497
2498         rdev_dec_pending(rdev, conf->mddev);
2499         allow_barrier(conf, r1_bio->sector);
2500         bio = r1_bio->master_bio;
2501
2502         /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2503         r1_bio->state = 0;
2504         raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2505 }
2506
2507 static void raid1d(struct md_thread *thread)
2508 {
2509         struct mddev *mddev = thread->mddev;
2510         struct r1bio *r1_bio;
2511         unsigned long flags;
2512         struct r1conf *conf = mddev->private;
2513         struct list_head *head = &conf->retry_list;
2514         struct blk_plug plug;
2515         int idx;
2516
2517         md_check_recovery(mddev);
2518
2519         if (!list_empty_careful(&conf->bio_end_io_list) &&
2520             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2521                 LIST_HEAD(tmp);
2522                 spin_lock_irqsave(&conf->device_lock, flags);
2523                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2524                         list_splice_init(&conf->bio_end_io_list, &tmp);
2525                 spin_unlock_irqrestore(&conf->device_lock, flags);
2526                 while (!list_empty(&tmp)) {
2527                         r1_bio = list_first_entry(&tmp, struct r1bio,
2528                                                   retry_list);
2529                         list_del(&r1_bio->retry_list);
2530                         idx = sector_to_idx(r1_bio->sector);
2531                         atomic_dec(&conf->nr_queued[idx]);
2532                         if (mddev->degraded)
2533                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2534                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2535                                 close_write(r1_bio);
2536                         raid_end_bio_io(r1_bio);
2537                 }
2538         }
2539
2540         blk_start_plug(&plug);
2541         for (;;) {
2542
2543                 flush_pending_writes(conf);
2544
2545                 spin_lock_irqsave(&conf->device_lock, flags);
2546                 if (list_empty(head)) {
2547                         spin_unlock_irqrestore(&conf->device_lock, flags);
2548                         break;
2549                 }
2550                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2551                 list_del(head->prev);
2552                 idx = sector_to_idx(r1_bio->sector);
2553                 atomic_dec(&conf->nr_queued[idx]);
2554                 spin_unlock_irqrestore(&conf->device_lock, flags);
2555
2556                 mddev = r1_bio->mddev;
2557                 conf = mddev->private;
2558                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2559                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2560                             test_bit(R1BIO_WriteError, &r1_bio->state))
2561                                 handle_sync_write_finished(conf, r1_bio);
2562                         else
2563                                 sync_request_write(mddev, r1_bio);
2564                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2565                            test_bit(R1BIO_WriteError, &r1_bio->state))
2566                         handle_write_finished(conf, r1_bio);
2567                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2568                         handle_read_error(conf, r1_bio);
2569                 else
2570                         WARN_ON_ONCE(1);
2571
2572                 cond_resched();
2573                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2574                         md_check_recovery(mddev);
2575         }
2576         blk_finish_plug(&plug);
2577 }
2578
2579 static int init_resync(struct r1conf *conf)
2580 {
2581         int buffs;
2582
2583         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2584         BUG_ON(conf->r1buf_pool);
2585         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2586                                           conf->poolinfo);
2587         if (!conf->r1buf_pool)
2588                 return -ENOMEM;
2589         return 0;
2590 }
2591
2592 /*
2593  * perform a "sync" on one "block"
2594  *
2595  * We need to make sure that no normal I/O request - particularly write
2596  * requests - conflict with active sync requests.
2597  *
2598  * This is achieved by tracking pending requests and a 'barrier' concept
2599  * that can be installed to exclude normal IO requests.
2600  */
2601
2602 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2603                                    int *skipped)
2604 {
2605         struct r1conf *conf = mddev->private;
2606         struct r1bio *r1_bio;
2607         struct bio *bio;
2608         sector_t max_sector, nr_sectors;
2609         int disk = -1;
2610         int i;
2611         int wonly = -1;
2612         int write_targets = 0, read_targets = 0;
2613         sector_t sync_blocks;
2614         int still_degraded = 0;
2615         int good_sectors = RESYNC_SECTORS;
2616         int min_bad = 0; /* number of sectors that are bad in all devices */
2617         int idx = sector_to_idx(sector_nr);
2618
2619         if (!conf->r1buf_pool)
2620                 if (init_resync(conf))
2621                         return 0;
2622
2623         max_sector = mddev->dev_sectors;
2624         if (sector_nr >= max_sector) {
2625                 /* If we aborted, we need to abort the
2626                  * sync on the 'current' bitmap chunk (there will
2627                  * only be one in raid1 resync.
2628                  * We can find the current addess in mddev->curr_resync
2629                  */
2630                 if (mddev->curr_resync < max_sector) /* aborted */
2631                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2632                                                 &sync_blocks, 1);
2633                 else /* completed sync */
2634                         conf->fullsync = 0;
2635
2636                 bitmap_close_sync(mddev->bitmap);
2637                 close_sync(conf);
2638
2639                 if (mddev_is_clustered(mddev)) {
2640                         conf->cluster_sync_low = 0;
2641                         conf->cluster_sync_high = 0;
2642                 }
2643                 return 0;
2644         }
2645
2646         if (mddev->bitmap == NULL &&
2647             mddev->recovery_cp == MaxSector &&
2648             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2649             conf->fullsync == 0) {
2650                 *skipped = 1;
2651                 return max_sector - sector_nr;
2652         }
2653         /* before building a request, check if we can skip these blocks..
2654          * This call the bitmap_start_sync doesn't actually record anything
2655          */
2656         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2657             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2658                 /* We can skip this block, and probably several more */
2659                 *skipped = 1;
2660                 return sync_blocks;
2661         }
2662
2663         /*
2664          * If there is non-resync activity waiting for a turn, then let it
2665          * though before starting on this new sync request.
2666          */
2667         if (atomic_read(&conf->nr_waiting[idx]))
2668                 schedule_timeout_uninterruptible(1);
2669
2670         /* we are incrementing sector_nr below. To be safe, we check against
2671          * sector_nr + two times RESYNC_SECTORS
2672          */
2673
2674         bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2675                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2676         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2677
2678         raise_barrier(conf, sector_nr);
2679
2680         rcu_read_lock();
2681         /*
2682          * If we get a correctably read error during resync or recovery,
2683          * we might want to read from a different device.  So we
2684          * flag all drives that could conceivably be read from for READ,
2685          * and any others (which will be non-In_sync devices) for WRITE.
2686          * If a read fails, we try reading from something else for which READ
2687          * is OK.
2688          */
2689
2690         r1_bio->mddev = mddev;
2691         r1_bio->sector = sector_nr;
2692         r1_bio->state = 0;
2693         set_bit(R1BIO_IsSync, &r1_bio->state);
2694         /* make sure good_sectors won't go across barrier unit boundary */
2695         good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2696
2697         for (i = 0; i < conf->raid_disks * 2; i++) {
2698                 struct md_rdev *rdev;
2699                 bio = r1_bio->bios[i];
2700
2701                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2702                 if (rdev == NULL ||
2703                     test_bit(Faulty, &rdev->flags)) {
2704                         if (i < conf->raid_disks)
2705                                 still_degraded = 1;
2706                 } else if (!test_bit(In_sync, &rdev->flags)) {
2707                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2708                         bio->bi_end_io = end_sync_write;
2709                         write_targets ++;
2710                 } else {
2711                         /* may need to read from here */
2712                         sector_t first_bad = MaxSector;
2713                         int bad_sectors;
2714
2715                         if (is_badblock(rdev, sector_nr, good_sectors,
2716                                         &first_bad, &bad_sectors)) {
2717                                 if (first_bad > sector_nr)
2718                                         good_sectors = first_bad - sector_nr;
2719                                 else {
2720                                         bad_sectors -= (sector_nr - first_bad);
2721                                         if (min_bad == 0 ||
2722                                             min_bad > bad_sectors)
2723                                                 min_bad = bad_sectors;
2724                                 }
2725                         }
2726                         if (sector_nr < first_bad) {
2727                                 if (test_bit(WriteMostly, &rdev->flags)) {
2728                                         if (wonly < 0)
2729                                                 wonly = i;
2730                                 } else {
2731                                         if (disk < 0)
2732                                                 disk = i;
2733                                 }
2734                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2735                                 bio->bi_end_io = end_sync_read;
2736                                 read_targets++;
2737                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2738                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2739                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2740                                 /*
2741                                  * The device is suitable for reading (InSync),
2742                                  * but has bad block(s) here. Let's try to correct them,
2743                                  * if we are doing resync or repair. Otherwise, leave
2744                                  * this device alone for this sync request.
2745                                  */
2746                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2747                                 bio->bi_end_io = end_sync_write;
2748                                 write_targets++;
2749                         }
2750                 }
2751                 if (bio->bi_end_io) {
2752                         atomic_inc(&rdev->nr_pending);
2753                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2754                         bio->bi_bdev = rdev->bdev;
2755                         if (test_bit(FailFast, &rdev->flags))
2756                                 bio->bi_opf |= MD_FAILFAST;
2757                 }
2758         }
2759         rcu_read_unlock();
2760         if (disk < 0)
2761                 disk = wonly;
2762         r1_bio->read_disk = disk;
2763
2764         if (read_targets == 0 && min_bad > 0) {
2765                 /* These sectors are bad on all InSync devices, so we
2766                  * need to mark them bad on all write targets
2767                  */
2768                 int ok = 1;
2769                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2770                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2771                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2772                                 ok = rdev_set_badblocks(rdev, sector_nr,
2773                                                         min_bad, 0
2774                                         ) && ok;
2775                         }
2776                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2777                 *skipped = 1;
2778                 put_buf(r1_bio);
2779
2780                 if (!ok) {
2781                         /* Cannot record the badblocks, so need to
2782                          * abort the resync.
2783                          * If there are multiple read targets, could just
2784                          * fail the really bad ones ???
2785                          */
2786                         conf->recovery_disabled = mddev->recovery_disabled;
2787                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2788                         return 0;
2789                 } else
2790                         return min_bad;
2791
2792         }
2793         if (min_bad > 0 && min_bad < good_sectors) {
2794                 /* only resync enough to reach the next bad->good
2795                  * transition */
2796                 good_sectors = min_bad;
2797         }
2798
2799         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2800                 /* extra read targets are also write targets */
2801                 write_targets += read_targets-1;
2802
2803         if (write_targets == 0 || read_targets == 0) {
2804                 /* There is nowhere to write, so all non-sync
2805                  * drives must be failed - so we are finished
2806                  */
2807                 sector_t rv;
2808                 if (min_bad > 0)
2809                         max_sector = sector_nr + min_bad;
2810                 rv = max_sector - sector_nr;
2811                 *skipped = 1;
2812                 put_buf(r1_bio);
2813                 return rv;
2814         }
2815
2816         if (max_sector > mddev->resync_max)
2817                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2818         if (max_sector > sector_nr + good_sectors)
2819                 max_sector = sector_nr + good_sectors;
2820         nr_sectors = 0;
2821         sync_blocks = 0;
2822         do {
2823                 struct page *page;
2824                 int len = PAGE_SIZE;
2825                 if (sector_nr + (len>>9) > max_sector)
2826                         len = (max_sector - sector_nr) << 9;
2827                 if (len == 0)
2828                         break;
2829                 if (sync_blocks == 0) {
2830                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2831                                                &sync_blocks, still_degraded) &&
2832                             !conf->fullsync &&
2833                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2834                                 break;
2835                         if ((len >> 9) > sync_blocks)
2836                                 len = sync_blocks<<9;
2837                 }
2838
2839                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2840                         struct resync_pages *rp;
2841
2842                         bio = r1_bio->bios[i];
2843                         rp = get_resync_pages(bio);
2844                         if (bio->bi_end_io) {
2845                                 page = resync_fetch_page(rp, rp->idx++);
2846
2847                                 /*
2848                                  * won't fail because the vec table is big
2849                                  * enough to hold all these pages
2850                                  */
2851                                 bio_add_page(bio, page, len, 0);
2852                         }
2853                 }
2854                 nr_sectors += len>>9;
2855                 sector_nr += len>>9;
2856                 sync_blocks -= (len>>9);
2857         } while (get_resync_pages(r1_bio->bios[disk]->bi_private)->idx < RESYNC_PAGES);
2858
2859         r1_bio->sectors = nr_sectors;
2860
2861         if (mddev_is_clustered(mddev) &&
2862                         conf->cluster_sync_high < sector_nr + nr_sectors) {
2863                 conf->cluster_sync_low = mddev->curr_resync_completed;
2864                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2865                 /* Send resync message */
2866                 md_cluster_ops->resync_info_update(mddev,
2867                                 conf->cluster_sync_low,
2868                                 conf->cluster_sync_high);
2869         }
2870
2871         /* For a user-requested sync, we read all readable devices and do a
2872          * compare
2873          */
2874         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2875                 atomic_set(&r1_bio->remaining, read_targets);
2876                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2877                         bio = r1_bio->bios[i];
2878                         if (bio->bi_end_io == end_sync_read) {
2879                                 read_targets--;
2880                                 md_sync_acct(bio->bi_bdev, nr_sectors);
2881                                 if (read_targets == 1)
2882                                         bio->bi_opf &= ~MD_FAILFAST;
2883                                 generic_make_request(bio);
2884                         }
2885                 }
2886         } else {
2887                 atomic_set(&r1_bio->remaining, 1);
2888                 bio = r1_bio->bios[r1_bio->read_disk];
2889                 md_sync_acct(bio->bi_bdev, nr_sectors);
2890                 if (read_targets == 1)
2891                         bio->bi_opf &= ~MD_FAILFAST;
2892                 generic_make_request(bio);
2893
2894         }
2895         return nr_sectors;
2896 }
2897
2898 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2899 {
2900         if (sectors)
2901                 return sectors;
2902
2903         return mddev->dev_sectors;
2904 }
2905
2906 static struct r1conf *setup_conf(struct mddev *mddev)
2907 {
2908         struct r1conf *conf;
2909         int i;
2910         struct raid1_info *disk;
2911         struct md_rdev *rdev;
2912         int err = -ENOMEM;
2913
2914         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2915         if (!conf)
2916                 goto abort;
2917
2918         conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2919                                    sizeof(atomic_t), GFP_KERNEL);
2920         if (!conf->nr_pending)
2921                 goto abort;
2922
2923         conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2924                                    sizeof(atomic_t), GFP_KERNEL);
2925         if (!conf->nr_waiting)
2926                 goto abort;
2927
2928         conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2929                                   sizeof(atomic_t), GFP_KERNEL);
2930         if (!conf->nr_queued)
2931                 goto abort;
2932
2933         conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2934                                 sizeof(atomic_t), GFP_KERNEL);
2935         if (!conf->barrier)
2936                 goto abort;
2937
2938         conf->mirrors = kzalloc(sizeof(struct raid1_info)
2939                                 * mddev->raid_disks * 2,
2940                                  GFP_KERNEL);
2941         if (!conf->mirrors)
2942                 goto abort;
2943
2944         conf->tmppage = alloc_page(GFP_KERNEL);
2945         if (!conf->tmppage)
2946                 goto abort;
2947
2948         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2949         if (!conf->poolinfo)
2950                 goto abort;
2951         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2952         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2953                                           r1bio_pool_free,
2954                                           conf->poolinfo);
2955         if (!conf->r1bio_pool)
2956                 goto abort;
2957
2958         conf->bio_split = bioset_create(BIO_POOL_SIZE, 0);
2959         if (!conf->bio_split)
2960                 goto abort;
2961
2962         conf->poolinfo->mddev = mddev;
2963
2964         err = -EINVAL;
2965         spin_lock_init(&conf->device_lock);
2966         rdev_for_each(rdev, mddev) {
2967                 int disk_idx = rdev->raid_disk;
2968                 if (disk_idx >= mddev->raid_disks
2969                     || disk_idx < 0)
2970                         continue;
2971                 if (test_bit(Replacement, &rdev->flags))
2972                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2973                 else
2974                         disk = conf->mirrors + disk_idx;
2975
2976                 if (disk->rdev)
2977                         goto abort;
2978                 disk->rdev = rdev;
2979                 disk->head_position = 0;
2980                 disk->seq_start = MaxSector;
2981         }
2982         conf->raid_disks = mddev->raid_disks;
2983         conf->mddev = mddev;
2984         INIT_LIST_HEAD(&conf->retry_list);
2985         INIT_LIST_HEAD(&conf->bio_end_io_list);
2986
2987         spin_lock_init(&conf->resync_lock);
2988         init_waitqueue_head(&conf->wait_barrier);
2989
2990         bio_list_init(&conf->pending_bio_list);
2991         conf->pending_count = 0;
2992         conf->recovery_disabled = mddev->recovery_disabled - 1;
2993
2994         err = -EIO;
2995         for (i = 0; i < conf->raid_disks * 2; i++) {
2996
2997                 disk = conf->mirrors + i;
2998
2999                 if (i < conf->raid_disks &&
3000                     disk[conf->raid_disks].rdev) {
3001                         /* This slot has a replacement. */
3002                         if (!disk->rdev) {
3003                                 /* No original, just make the replacement
3004                                  * a recovering spare
3005                                  */
3006                                 disk->rdev =
3007                                         disk[conf->raid_disks].rdev;
3008                                 disk[conf->raid_disks].rdev = NULL;
3009                         } else if (!test_bit(In_sync, &disk->rdev->flags))
3010                                 /* Original is not in_sync - bad */
3011                                 goto abort;
3012                 }
3013
3014                 if (!disk->rdev ||
3015                     !test_bit(In_sync, &disk->rdev->flags)) {
3016                         disk->head_position = 0;
3017                         if (disk->rdev &&
3018                             (disk->rdev->saved_raid_disk < 0))
3019                                 conf->fullsync = 1;
3020                 }
3021         }
3022
3023         err = -ENOMEM;
3024         conf->thread = md_register_thread(raid1d, mddev, "raid1");
3025         if (!conf->thread)
3026                 goto abort;
3027
3028         return conf;
3029
3030  abort:
3031         if (conf) {
3032                 mempool_destroy(conf->r1bio_pool);
3033                 kfree(conf->mirrors);
3034                 safe_put_page(conf->tmppage);
3035                 kfree(conf->poolinfo);
3036                 kfree(conf->nr_pending);
3037                 kfree(conf->nr_waiting);
3038                 kfree(conf->nr_queued);
3039                 kfree(conf->barrier);
3040                 if (conf->bio_split)
3041                         bioset_free(conf->bio_split);
3042                 kfree(conf);
3043         }
3044         return ERR_PTR(err);
3045 }
3046
3047 static void raid1_free(struct mddev *mddev, void *priv);
3048 static int raid1_run(struct mddev *mddev)
3049 {
3050         struct r1conf *conf;
3051         int i;
3052         struct md_rdev *rdev;
3053         int ret;
3054         bool discard_supported = false;
3055
3056         if (mddev->level != 1) {
3057                 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3058                         mdname(mddev), mddev->level);
3059                 return -EIO;
3060         }
3061         if (mddev->reshape_position != MaxSector) {
3062                 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3063                         mdname(mddev));
3064                 return -EIO;
3065         }
3066         if (mddev_init_writes_pending(mddev) < 0)
3067                 return -ENOMEM;
3068         /*
3069          * copy the already verified devices into our private RAID1
3070          * bookkeeping area. [whatever we allocate in run(),
3071          * should be freed in raid1_free()]
3072          */
3073         if (mddev->private == NULL)
3074                 conf = setup_conf(mddev);
3075         else
3076                 conf = mddev->private;
3077
3078         if (IS_ERR(conf))
3079                 return PTR_ERR(conf);
3080
3081         if (mddev->queue) {
3082                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3083                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3084         }
3085
3086         rdev_for_each(rdev, mddev) {
3087                 if (!mddev->gendisk)
3088                         continue;
3089                 disk_stack_limits(mddev->gendisk, rdev->bdev,
3090                                   rdev->data_offset << 9);
3091                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3092                         discard_supported = true;
3093         }
3094
3095         mddev->degraded = 0;
3096         for (i=0; i < conf->raid_disks; i++)
3097                 if (conf->mirrors[i].rdev == NULL ||
3098                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3099                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3100                         mddev->degraded++;
3101
3102         if (conf->raid_disks - mddev->degraded == 1)
3103                 mddev->recovery_cp = MaxSector;
3104
3105         if (mddev->recovery_cp != MaxSector)
3106                 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3107                         mdname(mddev));
3108         pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3109                 mdname(mddev), mddev->raid_disks - mddev->degraded,
3110                 mddev->raid_disks);
3111
3112         /*
3113          * Ok, everything is just fine now
3114          */
3115         mddev->thread = conf->thread;
3116         conf->thread = NULL;
3117         mddev->private = conf;
3118         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3119
3120         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3121
3122         if (mddev->queue) {
3123                 if (discard_supported)
3124                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3125                                                 mddev->queue);
3126                 else
3127                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3128                                                   mddev->queue);
3129         }
3130
3131         ret =  md_integrity_register(mddev);
3132         if (ret) {
3133                 md_unregister_thread(&mddev->thread);
3134                 raid1_free(mddev, conf);
3135         }
3136         return ret;
3137 }
3138
3139 static void raid1_free(struct mddev *mddev, void *priv)
3140 {
3141         struct r1conf *conf = priv;
3142
3143         mempool_destroy(conf->r1bio_pool);
3144         kfree(conf->mirrors);
3145         safe_put_page(conf->tmppage);
3146         kfree(conf->poolinfo);
3147         kfree(conf->nr_pending);
3148         kfree(conf->nr_waiting);
3149         kfree(conf->nr_queued);
3150         kfree(conf->barrier);
3151         if (conf->bio_split)
3152                 bioset_free(conf->bio_split);
3153         kfree(conf);
3154 }
3155
3156 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3157 {
3158         /* no resync is happening, and there is enough space
3159          * on all devices, so we can resize.
3160          * We need to make sure resync covers any new space.
3161          * If the array is shrinking we should possibly wait until
3162          * any io in the removed space completes, but it hardly seems
3163          * worth it.
3164          */
3165         sector_t newsize = raid1_size(mddev, sectors, 0);
3166         if (mddev->external_size &&
3167             mddev->array_sectors > newsize)
3168                 return -EINVAL;
3169         if (mddev->bitmap) {
3170                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3171                 if (ret)
3172                         return ret;
3173         }
3174         md_set_array_sectors(mddev, newsize);
3175         if (sectors > mddev->dev_sectors &&
3176             mddev->recovery_cp > mddev->dev_sectors) {
3177                 mddev->recovery_cp = mddev->dev_sectors;
3178                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3179         }
3180         mddev->dev_sectors = sectors;
3181         mddev->resync_max_sectors = sectors;
3182         return 0;
3183 }
3184
3185 static int raid1_reshape(struct mddev *mddev)
3186 {
3187         /* We need to:
3188          * 1/ resize the r1bio_pool
3189          * 2/ resize conf->mirrors
3190          *
3191          * We allocate a new r1bio_pool if we can.
3192          * Then raise a device barrier and wait until all IO stops.
3193          * Then resize conf->mirrors and swap in the new r1bio pool.
3194          *
3195          * At the same time, we "pack" the devices so that all the missing
3196          * devices have the higher raid_disk numbers.
3197          */
3198         mempool_t *newpool, *oldpool;
3199         struct pool_info *newpoolinfo;
3200         struct raid1_info *newmirrors;
3201         struct r1conf *conf = mddev->private;
3202         int cnt, raid_disks;
3203         unsigned long flags;
3204         int d, d2;
3205
3206         /* Cannot change chunk_size, layout, or level */
3207         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3208             mddev->layout != mddev->new_layout ||
3209             mddev->level != mddev->new_level) {
3210                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3211                 mddev->new_layout = mddev->layout;
3212                 mddev->new_level = mddev->level;
3213                 return -EINVAL;
3214         }
3215
3216         if (!mddev_is_clustered(mddev))
3217                 md_allow_write(mddev);
3218
3219         raid_disks = mddev->raid_disks + mddev->delta_disks;
3220
3221         if (raid_disks < conf->raid_disks) {
3222                 cnt=0;
3223                 for (d= 0; d < conf->raid_disks; d++)
3224                         if (conf->mirrors[d].rdev)
3225                                 cnt++;
3226                 if (cnt > raid_disks)
3227                         return -EBUSY;
3228         }
3229
3230         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3231         if (!newpoolinfo)
3232                 return -ENOMEM;
3233         newpoolinfo->mddev = mddev;
3234         newpoolinfo->raid_disks = raid_disks * 2;
3235
3236         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3237                                  r1bio_pool_free, newpoolinfo);
3238         if (!newpool) {
3239                 kfree(newpoolinfo);
3240                 return -ENOMEM;
3241         }
3242         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3243                              GFP_KERNEL);
3244         if (!newmirrors) {
3245                 kfree(newpoolinfo);
3246                 mempool_destroy(newpool);
3247                 return -ENOMEM;
3248         }
3249
3250         freeze_array(conf, 0);
3251
3252         /* ok, everything is stopped */
3253         oldpool = conf->r1bio_pool;
3254         conf->r1bio_pool = newpool;
3255
3256         for (d = d2 = 0; d < conf->raid_disks; d++) {
3257                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3258                 if (rdev && rdev->raid_disk != d2) {
3259                         sysfs_unlink_rdev(mddev, rdev);
3260                         rdev->raid_disk = d2;
3261                         sysfs_unlink_rdev(mddev, rdev);
3262                         if (sysfs_link_rdev(mddev, rdev))
3263                                 pr_warn("md/raid1:%s: cannot register rd%d\n",
3264                                         mdname(mddev), rdev->raid_disk);
3265                 }
3266                 if (rdev)
3267                         newmirrors[d2++].rdev = rdev;
3268         }
3269         kfree(conf->mirrors);
3270         conf->mirrors = newmirrors;
3271         kfree(conf->poolinfo);
3272         conf->poolinfo = newpoolinfo;
3273
3274         spin_lock_irqsave(&conf->device_lock, flags);
3275         mddev->degraded += (raid_disks - conf->raid_disks);
3276         spin_unlock_irqrestore(&conf->device_lock, flags);
3277         conf->raid_disks = mddev->raid_disks = raid_disks;
3278         mddev->delta_disks = 0;
3279
3280         unfreeze_array(conf);
3281
3282         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3283         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3284         md_wakeup_thread(mddev->thread);
3285
3286         mempool_destroy(oldpool);
3287         return 0;
3288 }
3289
3290 static void raid1_quiesce(struct mddev *mddev, int state)
3291 {
3292         struct r1conf *conf = mddev->private;
3293
3294         switch(state) {
3295         case 2: /* wake for suspend */
3296                 wake_up(&conf->wait_barrier);
3297                 break;
3298         case 1:
3299                 freeze_array(conf, 0);
3300                 break;
3301         case 0:
3302                 unfreeze_array(conf);
3303                 break;
3304         }
3305 }
3306
3307 static void *raid1_takeover(struct mddev *mddev)
3308 {
3309         /* raid1 can take over:
3310          *  raid5 with 2 devices, any layout or chunk size
3311          */
3312         if (mddev->level == 5 && mddev->raid_disks == 2) {
3313                 struct r1conf *conf;
3314                 mddev->new_level = 1;
3315                 mddev->new_layout = 0;
3316                 mddev->new_chunk_sectors = 0;
3317                 conf = setup_conf(mddev);
3318                 if (!IS_ERR(conf)) {
3319                         /* Array must appear to be quiesced */
3320                         conf->array_frozen = 1;
3321                         mddev_clear_unsupported_flags(mddev,
3322                                 UNSUPPORTED_MDDEV_FLAGS);
3323                 }
3324                 return conf;
3325         }
3326         return ERR_PTR(-EINVAL);
3327 }
3328
3329 static struct md_personality raid1_personality =
3330 {
3331         .name           = "raid1",
3332         .level          = 1,
3333         .owner          = THIS_MODULE,
3334         .make_request   = raid1_make_request,
3335         .run            = raid1_run,
3336         .free           = raid1_free,
3337         .status         = raid1_status,
3338         .error_handler  = raid1_error,
3339         .hot_add_disk   = raid1_add_disk,
3340         .hot_remove_disk= raid1_remove_disk,
3341         .spare_active   = raid1_spare_active,
3342         .sync_request   = raid1_sync_request,
3343         .resize         = raid1_resize,
3344         .size           = raid1_size,
3345         .check_reshape  = raid1_reshape,
3346         .quiesce        = raid1_quiesce,
3347         .takeover       = raid1_takeover,
3348         .congested      = raid1_congested,
3349 };
3350
3351 static int __init raid_init(void)
3352 {
3353         return register_md_personality(&raid1_personality);
3354 }
3355
3356 static void raid_exit(void)
3357 {
3358         unregister_md_personality(&raid1_personality);
3359 }
3360
3361 module_init(raid_init);
3362 module_exit(raid_exit);
3363 MODULE_LICENSE("GPL");
3364 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3365 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3366 MODULE_ALIAS("md-raid1");
3367 MODULE_ALIAS("md-level-1");
3368
3369 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);