]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/raid10.c
Merge branch 'for-3.10/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *
43  * The data to be stored is divided into chunks using chunksize.  Each device
44  * is divided into far_copies sections.   In each section, chunks are laid out
45  * in a style similar to raid0, but near_copies copies of each chunk is stored
46  * (each on a different drive).  The starting device for each section is offset
47  * near_copies from the starting device of the previous section.  Thus there
48  * are (near_copies * far_copies) of each chunk, and each is on a different
49  * drive.  near_copies and far_copies must be at least one, and their product
50  * is at most raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of being very far
54  * apart on disk, there are adjacent stripes.
55  *
56  * The far and offset algorithms are handled slightly differently if
57  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
58  * sets that are (near_copies * far_copies) in size.  The far copied stripes
59  * are still shifted by 'near_copies' devices, but this shifting stays confined
60  * to the set rather than the entire array.  This is done to improve the number
61  * of device combinations that can fail without causing the array to fail.
62  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63  * on a device):
64  *    A B C D    A B C D E
65  *      ...         ...
66  *    D A B C    E A B C D
67  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68  *    [A B] [C D]    [A B] [C D E]
69  *    |...| |...|    |...| | ... |
70  *    [B A] [D C]    [B A] [E C D]
71  */
72
73 /*
74  * Number of guaranteed r10bios in case of extreme VM load:
75  */
76 #define NR_RAID10_BIOS 256
77
78 /* when we get a read error on a read-only array, we redirect to another
79  * device without failing the first device, or trying to over-write to
80  * correct the read error.  To keep track of bad blocks on a per-bio
81  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82  */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85  * bad-block marking which must be done from process context.  So we record
86  * the success by setting devs[n].bio to IO_MADE_GOOD
87  */
88 #define IO_MADE_GOOD ((struct bio *)2)
89
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92 /* When there are this many requests queued to be written by
93  * the raid10 thread, we become 'congested' to provide back-pressure
94  * for writeback.
95  */
96 static int max_queued_requests = 1024;
97
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int enough(struct r10conf *conf, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102                                 int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109         struct r10conf *conf = data;
110         int size = offsetof(struct r10bio, devs[conf->copies]);
111
112         /* allocate a r10bio with room for raid_disks entries in the
113          * bios array */
114         return kzalloc(size, gfp_flags);
115 }
116
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119         kfree(r10_bio);
120 }
121
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129
130 /*
131  * When performing a resync, we need to read and compare, so
132  * we need as many pages are there are copies.
133  * When performing a recovery, we need 2 bios, one for read,
134  * one for write (we recover only one drive per r10buf)
135  *
136  */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139         struct r10conf *conf = data;
140         struct page *page;
141         struct r10bio *r10_bio;
142         struct bio *bio;
143         int i, j;
144         int nalloc;
145
146         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147         if (!r10_bio)
148                 return NULL;
149
150         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152                 nalloc = conf->copies; /* resync */
153         else
154                 nalloc = 2; /* recovery */
155
156         /*
157          * Allocate bios.
158          */
159         for (j = nalloc ; j-- ; ) {
160                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161                 if (!bio)
162                         goto out_free_bio;
163                 r10_bio->devs[j].bio = bio;
164                 if (!conf->have_replacement)
165                         continue;
166                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167                 if (!bio)
168                         goto out_free_bio;
169                 r10_bio->devs[j].repl_bio = bio;
170         }
171         /*
172          * Allocate RESYNC_PAGES data pages and attach them
173          * where needed.
174          */
175         for (j = 0 ; j < nalloc; j++) {
176                 struct bio *rbio = r10_bio->devs[j].repl_bio;
177                 bio = r10_bio->devs[j].bio;
178                 for (i = 0; i < RESYNC_PAGES; i++) {
179                         if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180                                                &conf->mddev->recovery)) {
181                                 /* we can share bv_page's during recovery
182                                  * and reshape */
183                                 struct bio *rbio = r10_bio->devs[0].bio;
184                                 page = rbio->bi_io_vec[i].bv_page;
185                                 get_page(page);
186                         } else
187                                 page = alloc_page(gfp_flags);
188                         if (unlikely(!page))
189                                 goto out_free_pages;
190
191                         bio->bi_io_vec[i].bv_page = page;
192                         if (rbio)
193                                 rbio->bi_io_vec[i].bv_page = page;
194                 }
195         }
196
197         return r10_bio;
198
199 out_free_pages:
200         for ( ; i > 0 ; i--)
201                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
202         while (j--)
203                 for (i = 0; i < RESYNC_PAGES ; i++)
204                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205         j = 0;
206 out_free_bio:
207         for ( ; j < nalloc; j++) {
208                 if (r10_bio->devs[j].bio)
209                         bio_put(r10_bio->devs[j].bio);
210                 if (r10_bio->devs[j].repl_bio)
211                         bio_put(r10_bio->devs[j].repl_bio);
212         }
213         r10bio_pool_free(r10_bio, conf);
214         return NULL;
215 }
216
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219         int i;
220         struct r10conf *conf = data;
221         struct r10bio *r10bio = __r10_bio;
222         int j;
223
224         for (j=0; j < conf->copies; j++) {
225                 struct bio *bio = r10bio->devs[j].bio;
226                 if (bio) {
227                         for (i = 0; i < RESYNC_PAGES; i++) {
228                                 safe_put_page(bio->bi_io_vec[i].bv_page);
229                                 bio->bi_io_vec[i].bv_page = NULL;
230                         }
231                         bio_put(bio);
232                 }
233                 bio = r10bio->devs[j].repl_bio;
234                 if (bio)
235                         bio_put(bio);
236         }
237         r10bio_pool_free(r10bio, conf);
238 }
239
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242         int i;
243
244         for (i = 0; i < conf->copies; i++) {
245                 struct bio **bio = & r10_bio->devs[i].bio;
246                 if (!BIO_SPECIAL(*bio))
247                         bio_put(*bio);
248                 *bio = NULL;
249                 bio = &r10_bio->devs[i].repl_bio;
250                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251                         bio_put(*bio);
252                 *bio = NULL;
253         }
254 }
255
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258         struct r10conf *conf = r10_bio->mddev->private;
259
260         put_all_bios(conf, r10_bio);
261         mempool_free(r10_bio, conf->r10bio_pool);
262 }
263
264 static void put_buf(struct r10bio *r10_bio)
265 {
266         struct r10conf *conf = r10_bio->mddev->private;
267
268         mempool_free(r10_bio, conf->r10buf_pool);
269
270         lower_barrier(conf);
271 }
272
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275         unsigned long flags;
276         struct mddev *mddev = r10_bio->mddev;
277         struct r10conf *conf = mddev->private;
278
279         spin_lock_irqsave(&conf->device_lock, flags);
280         list_add(&r10_bio->retry_list, &conf->retry_list);
281         conf->nr_queued ++;
282         spin_unlock_irqrestore(&conf->device_lock, flags);
283
284         /* wake up frozen array... */
285         wake_up(&conf->wait_barrier);
286
287         md_wakeup_thread(mddev->thread);
288 }
289
290 /*
291  * raid_end_bio_io() is called when we have finished servicing a mirrored
292  * operation and are ready to return a success/failure code to the buffer
293  * cache layer.
294  */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297         struct bio *bio = r10_bio->master_bio;
298         int done;
299         struct r10conf *conf = r10_bio->mddev->private;
300
301         if (bio->bi_phys_segments) {
302                 unsigned long flags;
303                 spin_lock_irqsave(&conf->device_lock, flags);
304                 bio->bi_phys_segments--;
305                 done = (bio->bi_phys_segments == 0);
306                 spin_unlock_irqrestore(&conf->device_lock, flags);
307         } else
308                 done = 1;
309         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311         if (done) {
312                 bio_endio(bio, 0);
313                 /*
314                  * Wake up any possible resync thread that waits for the device
315                  * to go idle.
316                  */
317                 allow_barrier(conf);
318         }
319         free_r10bio(r10_bio);
320 }
321
322 /*
323  * Update disk head position estimator based on IRQ completion info.
324  */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327         struct r10conf *conf = r10_bio->mddev->private;
328
329         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330                 r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332
333 /*
334  * Find the disk number which triggered given bio
335  */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337                          struct bio *bio, int *slotp, int *replp)
338 {
339         int slot;
340         int repl = 0;
341
342         for (slot = 0; slot < conf->copies; slot++) {
343                 if (r10_bio->devs[slot].bio == bio)
344                         break;
345                 if (r10_bio->devs[slot].repl_bio == bio) {
346                         repl = 1;
347                         break;
348                 }
349         }
350
351         BUG_ON(slot == conf->copies);
352         update_head_pos(slot, r10_bio);
353
354         if (slotp)
355                 *slotp = slot;
356         if (replp)
357                 *replp = repl;
358         return r10_bio->devs[slot].devnum;
359 }
360
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364         struct r10bio *r10_bio = bio->bi_private;
365         int slot, dev;
366         struct md_rdev *rdev;
367         struct r10conf *conf = r10_bio->mddev->private;
368
369
370         slot = r10_bio->read_slot;
371         dev = r10_bio->devs[slot].devnum;
372         rdev = r10_bio->devs[slot].rdev;
373         /*
374          * this branch is our 'one mirror IO has finished' event handler:
375          */
376         update_head_pos(slot, r10_bio);
377
378         if (uptodate) {
379                 /*
380                  * Set R10BIO_Uptodate in our master bio, so that
381                  * we will return a good error code to the higher
382                  * levels even if IO on some other mirrored buffer fails.
383                  *
384                  * The 'master' represents the composite IO operation to
385                  * user-side. So if something waits for IO, then it will
386                  * wait for the 'master' bio.
387                  */
388                 set_bit(R10BIO_Uptodate, &r10_bio->state);
389         } else {
390                 /* If all other devices that store this block have
391                  * failed, we want to return the error upwards rather
392                  * than fail the last device.  Here we redefine
393                  * "uptodate" to mean "Don't want to retry"
394                  */
395                 unsigned long flags;
396                 spin_lock_irqsave(&conf->device_lock, flags);
397                 if (!enough(conf, rdev->raid_disk))
398                         uptodate = 1;
399                 spin_unlock_irqrestore(&conf->device_lock, flags);
400         }
401         if (uptodate) {
402                 raid_end_bio_io(r10_bio);
403                 rdev_dec_pending(rdev, conf->mddev);
404         } else {
405                 /*
406                  * oops, read error - keep the refcount on the rdev
407                  */
408                 char b[BDEVNAME_SIZE];
409                 printk_ratelimited(KERN_ERR
410                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
411                                    mdname(conf->mddev),
412                                    bdevname(rdev->bdev, b),
413                                    (unsigned long long)r10_bio->sector);
414                 set_bit(R10BIO_ReadError, &r10_bio->state);
415                 reschedule_retry(r10_bio);
416         }
417 }
418
419 static void close_write(struct r10bio *r10_bio)
420 {
421         /* clear the bitmap if all writes complete successfully */
422         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
423                         r10_bio->sectors,
424                         !test_bit(R10BIO_Degraded, &r10_bio->state),
425                         0);
426         md_write_end(r10_bio->mddev);
427 }
428
429 static void one_write_done(struct r10bio *r10_bio)
430 {
431         if (atomic_dec_and_test(&r10_bio->remaining)) {
432                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
433                         reschedule_retry(r10_bio);
434                 else {
435                         close_write(r10_bio);
436                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
437                                 reschedule_retry(r10_bio);
438                         else
439                                 raid_end_bio_io(r10_bio);
440                 }
441         }
442 }
443
444 static void raid10_end_write_request(struct bio *bio, int error)
445 {
446         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
447         struct r10bio *r10_bio = bio->bi_private;
448         int dev;
449         int dec_rdev = 1;
450         struct r10conf *conf = r10_bio->mddev->private;
451         int slot, repl;
452         struct md_rdev *rdev = NULL;
453
454         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
455
456         if (repl)
457                 rdev = conf->mirrors[dev].replacement;
458         if (!rdev) {
459                 smp_rmb();
460                 repl = 0;
461                 rdev = conf->mirrors[dev].rdev;
462         }
463         /*
464          * this branch is our 'one mirror IO has finished' event handler:
465          */
466         if (!uptodate) {
467                 if (repl)
468                         /* Never record new bad blocks to replacement,
469                          * just fail it.
470                          */
471                         md_error(rdev->mddev, rdev);
472                 else {
473                         set_bit(WriteErrorSeen, &rdev->flags);
474                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
475                                 set_bit(MD_RECOVERY_NEEDED,
476                                         &rdev->mddev->recovery);
477                         set_bit(R10BIO_WriteError, &r10_bio->state);
478                         dec_rdev = 0;
479                 }
480         } else {
481                 /*
482                  * Set R10BIO_Uptodate in our master bio, so that
483                  * we will return a good error code for to the higher
484                  * levels even if IO on some other mirrored buffer fails.
485                  *
486                  * The 'master' represents the composite IO operation to
487                  * user-side. So if something waits for IO, then it will
488                  * wait for the 'master' bio.
489                  */
490                 sector_t first_bad;
491                 int bad_sectors;
492
493                 set_bit(R10BIO_Uptodate, &r10_bio->state);
494
495                 /* Maybe we can clear some bad blocks. */
496                 if (is_badblock(rdev,
497                                 r10_bio->devs[slot].addr,
498                                 r10_bio->sectors,
499                                 &first_bad, &bad_sectors)) {
500                         bio_put(bio);
501                         if (repl)
502                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
503                         else
504                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
505                         dec_rdev = 0;
506                         set_bit(R10BIO_MadeGood, &r10_bio->state);
507                 }
508         }
509
510         /*
511          *
512          * Let's see if all mirrored write operations have finished
513          * already.
514          */
515         one_write_done(r10_bio);
516         if (dec_rdev)
517                 rdev_dec_pending(rdev, conf->mddev);
518 }
519
520 /*
521  * RAID10 layout manager
522  * As well as the chunksize and raid_disks count, there are two
523  * parameters: near_copies and far_copies.
524  * near_copies * far_copies must be <= raid_disks.
525  * Normally one of these will be 1.
526  * If both are 1, we get raid0.
527  * If near_copies == raid_disks, we get raid1.
528  *
529  * Chunks are laid out in raid0 style with near_copies copies of the
530  * first chunk, followed by near_copies copies of the next chunk and
531  * so on.
532  * If far_copies > 1, then after 1/far_copies of the array has been assigned
533  * as described above, we start again with a device offset of near_copies.
534  * So we effectively have another copy of the whole array further down all
535  * the drives, but with blocks on different drives.
536  * With this layout, and block is never stored twice on the one device.
537  *
538  * raid10_find_phys finds the sector offset of a given virtual sector
539  * on each device that it is on.
540  *
541  * raid10_find_virt does the reverse mapping, from a device and a
542  * sector offset to a virtual address
543  */
544
545 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
546 {
547         int n,f;
548         sector_t sector;
549         sector_t chunk;
550         sector_t stripe;
551         int dev;
552         int slot = 0;
553         int last_far_set_start, last_far_set_size;
554
555         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
556         last_far_set_start *= geo->far_set_size;
557
558         last_far_set_size = geo->far_set_size;
559         last_far_set_size += (geo->raid_disks % geo->far_set_size);
560
561         /* now calculate first sector/dev */
562         chunk = r10bio->sector >> geo->chunk_shift;
563         sector = r10bio->sector & geo->chunk_mask;
564
565         chunk *= geo->near_copies;
566         stripe = chunk;
567         dev = sector_div(stripe, geo->raid_disks);
568         if (geo->far_offset)
569                 stripe *= geo->far_copies;
570
571         sector += stripe << geo->chunk_shift;
572
573         /* and calculate all the others */
574         for (n = 0; n < geo->near_copies; n++) {
575                 int d = dev;
576                 int set;
577                 sector_t s = sector;
578                 r10bio->devs[slot].devnum = d;
579                 r10bio->devs[slot].addr = s;
580                 slot++;
581
582                 for (f = 1; f < geo->far_copies; f++) {
583                         set = d / geo->far_set_size;
584                         d += geo->near_copies;
585
586                         if ((geo->raid_disks % geo->far_set_size) &&
587                             (d > last_far_set_start)) {
588                                 d -= last_far_set_start;
589                                 d %= last_far_set_size;
590                                 d += last_far_set_start;
591                         } else {
592                                 d %= geo->far_set_size;
593                                 d += geo->far_set_size * set;
594                         }
595                         s += geo->stride;
596                         r10bio->devs[slot].devnum = d;
597                         r10bio->devs[slot].addr = s;
598                         slot++;
599                 }
600                 dev++;
601                 if (dev >= geo->raid_disks) {
602                         dev = 0;
603                         sector += (geo->chunk_mask + 1);
604                 }
605         }
606 }
607
608 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
609 {
610         struct geom *geo = &conf->geo;
611
612         if (conf->reshape_progress != MaxSector &&
613             ((r10bio->sector >= conf->reshape_progress) !=
614              conf->mddev->reshape_backwards)) {
615                 set_bit(R10BIO_Previous, &r10bio->state);
616                 geo = &conf->prev;
617         } else
618                 clear_bit(R10BIO_Previous, &r10bio->state);
619
620         __raid10_find_phys(geo, r10bio);
621 }
622
623 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
624 {
625         sector_t offset, chunk, vchunk;
626         /* Never use conf->prev as this is only called during resync
627          * or recovery, so reshape isn't happening
628          */
629         struct geom *geo = &conf->geo;
630         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
631         int far_set_size = geo->far_set_size;
632         int last_far_set_start;
633
634         if (geo->raid_disks % geo->far_set_size) {
635                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
636                 last_far_set_start *= geo->far_set_size;
637
638                 if (dev >= last_far_set_start) {
639                         far_set_size = geo->far_set_size;
640                         far_set_size += (geo->raid_disks % geo->far_set_size);
641                         far_set_start = last_far_set_start;
642                 }
643         }
644
645         offset = sector & geo->chunk_mask;
646         if (geo->far_offset) {
647                 int fc;
648                 chunk = sector >> geo->chunk_shift;
649                 fc = sector_div(chunk, geo->far_copies);
650                 dev -= fc * geo->near_copies;
651                 if (dev < far_set_start)
652                         dev += far_set_size;
653         } else {
654                 while (sector >= geo->stride) {
655                         sector -= geo->stride;
656                         if (dev < (geo->near_copies + far_set_start))
657                                 dev += far_set_size - geo->near_copies;
658                         else
659                                 dev -= geo->near_copies;
660                 }
661                 chunk = sector >> geo->chunk_shift;
662         }
663         vchunk = chunk * geo->raid_disks + dev;
664         sector_div(vchunk, geo->near_copies);
665         return (vchunk << geo->chunk_shift) + offset;
666 }
667
668 /**
669  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
670  *      @q: request queue
671  *      @bvm: properties of new bio
672  *      @biovec: the request that could be merged to it.
673  *
674  *      Return amount of bytes we can accept at this offset
675  *      This requires checking for end-of-chunk if near_copies != raid_disks,
676  *      and for subordinate merge_bvec_fns if merge_check_needed.
677  */
678 static int raid10_mergeable_bvec(struct request_queue *q,
679                                  struct bvec_merge_data *bvm,
680                                  struct bio_vec *biovec)
681 {
682         struct mddev *mddev = q->queuedata;
683         struct r10conf *conf = mddev->private;
684         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
685         int max;
686         unsigned int chunk_sectors;
687         unsigned int bio_sectors = bvm->bi_size >> 9;
688         struct geom *geo = &conf->geo;
689
690         chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
691         if (conf->reshape_progress != MaxSector &&
692             ((sector >= conf->reshape_progress) !=
693              conf->mddev->reshape_backwards))
694                 geo = &conf->prev;
695
696         if (geo->near_copies < geo->raid_disks) {
697                 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
698                                         + bio_sectors)) << 9;
699                 if (max < 0)
700                         /* bio_add cannot handle a negative return */
701                         max = 0;
702                 if (max <= biovec->bv_len && bio_sectors == 0)
703                         return biovec->bv_len;
704         } else
705                 max = biovec->bv_len;
706
707         if (mddev->merge_check_needed) {
708                 struct {
709                         struct r10bio r10_bio;
710                         struct r10dev devs[conf->copies];
711                 } on_stack;
712                 struct r10bio *r10_bio = &on_stack.r10_bio;
713                 int s;
714                 if (conf->reshape_progress != MaxSector) {
715                         /* Cannot give any guidance during reshape */
716                         if (max <= biovec->bv_len && bio_sectors == 0)
717                                 return biovec->bv_len;
718                         return 0;
719                 }
720                 r10_bio->sector = sector;
721                 raid10_find_phys(conf, r10_bio);
722                 rcu_read_lock();
723                 for (s = 0; s < conf->copies; s++) {
724                         int disk = r10_bio->devs[s].devnum;
725                         struct md_rdev *rdev = rcu_dereference(
726                                 conf->mirrors[disk].rdev);
727                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
728                                 struct request_queue *q =
729                                         bdev_get_queue(rdev->bdev);
730                                 if (q->merge_bvec_fn) {
731                                         bvm->bi_sector = r10_bio->devs[s].addr
732                                                 + rdev->data_offset;
733                                         bvm->bi_bdev = rdev->bdev;
734                                         max = min(max, q->merge_bvec_fn(
735                                                           q, bvm, biovec));
736                                 }
737                         }
738                         rdev = rcu_dereference(conf->mirrors[disk].replacement);
739                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
740                                 struct request_queue *q =
741                                         bdev_get_queue(rdev->bdev);
742                                 if (q->merge_bvec_fn) {
743                                         bvm->bi_sector = r10_bio->devs[s].addr
744                                                 + rdev->data_offset;
745                                         bvm->bi_bdev = rdev->bdev;
746                                         max = min(max, q->merge_bvec_fn(
747                                                           q, bvm, biovec));
748                                 }
749                         }
750                 }
751                 rcu_read_unlock();
752         }
753         return max;
754 }
755
756 /*
757  * This routine returns the disk from which the requested read should
758  * be done. There is a per-array 'next expected sequential IO' sector
759  * number - if this matches on the next IO then we use the last disk.
760  * There is also a per-disk 'last know head position' sector that is
761  * maintained from IRQ contexts, both the normal and the resync IO
762  * completion handlers update this position correctly. If there is no
763  * perfect sequential match then we pick the disk whose head is closest.
764  *
765  * If there are 2 mirrors in the same 2 devices, performance degrades
766  * because position is mirror, not device based.
767  *
768  * The rdev for the device selected will have nr_pending incremented.
769  */
770
771 /*
772  * FIXME: possibly should rethink readbalancing and do it differently
773  * depending on near_copies / far_copies geometry.
774  */
775 static struct md_rdev *read_balance(struct r10conf *conf,
776                                     struct r10bio *r10_bio,
777                                     int *max_sectors)
778 {
779         const sector_t this_sector = r10_bio->sector;
780         int disk, slot;
781         int sectors = r10_bio->sectors;
782         int best_good_sectors;
783         sector_t new_distance, best_dist;
784         struct md_rdev *best_rdev, *rdev = NULL;
785         int do_balance;
786         int best_slot;
787         struct geom *geo = &conf->geo;
788
789         raid10_find_phys(conf, r10_bio);
790         rcu_read_lock();
791 retry:
792         sectors = r10_bio->sectors;
793         best_slot = -1;
794         best_rdev = NULL;
795         best_dist = MaxSector;
796         best_good_sectors = 0;
797         do_balance = 1;
798         /*
799          * Check if we can balance. We can balance on the whole
800          * device if no resync is going on (recovery is ok), or below
801          * the resync window. We take the first readable disk when
802          * above the resync window.
803          */
804         if (conf->mddev->recovery_cp < MaxSector
805             && (this_sector + sectors >= conf->next_resync))
806                 do_balance = 0;
807
808         for (slot = 0; slot < conf->copies ; slot++) {
809                 sector_t first_bad;
810                 int bad_sectors;
811                 sector_t dev_sector;
812
813                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
814                         continue;
815                 disk = r10_bio->devs[slot].devnum;
816                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
817                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
818                     test_bit(Unmerged, &rdev->flags) ||
819                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
820                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
821                 if (rdev == NULL ||
822                     test_bit(Faulty, &rdev->flags) ||
823                     test_bit(Unmerged, &rdev->flags))
824                         continue;
825                 if (!test_bit(In_sync, &rdev->flags) &&
826                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
827                         continue;
828
829                 dev_sector = r10_bio->devs[slot].addr;
830                 if (is_badblock(rdev, dev_sector, sectors,
831                                 &first_bad, &bad_sectors)) {
832                         if (best_dist < MaxSector)
833                                 /* Already have a better slot */
834                                 continue;
835                         if (first_bad <= dev_sector) {
836                                 /* Cannot read here.  If this is the
837                                  * 'primary' device, then we must not read
838                                  * beyond 'bad_sectors' from another device.
839                                  */
840                                 bad_sectors -= (dev_sector - first_bad);
841                                 if (!do_balance && sectors > bad_sectors)
842                                         sectors = bad_sectors;
843                                 if (best_good_sectors > sectors)
844                                         best_good_sectors = sectors;
845                         } else {
846                                 sector_t good_sectors =
847                                         first_bad - dev_sector;
848                                 if (good_sectors > best_good_sectors) {
849                                         best_good_sectors = good_sectors;
850                                         best_slot = slot;
851                                         best_rdev = rdev;
852                                 }
853                                 if (!do_balance)
854                                         /* Must read from here */
855                                         break;
856                         }
857                         continue;
858                 } else
859                         best_good_sectors = sectors;
860
861                 if (!do_balance)
862                         break;
863
864                 /* This optimisation is debatable, and completely destroys
865                  * sequential read speed for 'far copies' arrays.  So only
866                  * keep it for 'near' arrays, and review those later.
867                  */
868                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
869                         break;
870
871                 /* for far > 1 always use the lowest address */
872                 if (geo->far_copies > 1)
873                         new_distance = r10_bio->devs[slot].addr;
874                 else
875                         new_distance = abs(r10_bio->devs[slot].addr -
876                                            conf->mirrors[disk].head_position);
877                 if (new_distance < best_dist) {
878                         best_dist = new_distance;
879                         best_slot = slot;
880                         best_rdev = rdev;
881                 }
882         }
883         if (slot >= conf->copies) {
884                 slot = best_slot;
885                 rdev = best_rdev;
886         }
887
888         if (slot >= 0) {
889                 atomic_inc(&rdev->nr_pending);
890                 if (test_bit(Faulty, &rdev->flags)) {
891                         /* Cannot risk returning a device that failed
892                          * before we inc'ed nr_pending
893                          */
894                         rdev_dec_pending(rdev, conf->mddev);
895                         goto retry;
896                 }
897                 r10_bio->read_slot = slot;
898         } else
899                 rdev = NULL;
900         rcu_read_unlock();
901         *max_sectors = best_good_sectors;
902
903         return rdev;
904 }
905
906 int md_raid10_congested(struct mddev *mddev, int bits)
907 {
908         struct r10conf *conf = mddev->private;
909         int i, ret = 0;
910
911         if ((bits & (1 << BDI_async_congested)) &&
912             conf->pending_count >= max_queued_requests)
913                 return 1;
914
915         rcu_read_lock();
916         for (i = 0;
917              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
918                      && ret == 0;
919              i++) {
920                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
921                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
922                         struct request_queue *q = bdev_get_queue(rdev->bdev);
923
924                         ret |= bdi_congested(&q->backing_dev_info, bits);
925                 }
926         }
927         rcu_read_unlock();
928         return ret;
929 }
930 EXPORT_SYMBOL_GPL(md_raid10_congested);
931
932 static int raid10_congested(void *data, int bits)
933 {
934         struct mddev *mddev = data;
935
936         return mddev_congested(mddev, bits) ||
937                 md_raid10_congested(mddev, bits);
938 }
939
940 static void flush_pending_writes(struct r10conf *conf)
941 {
942         /* Any writes that have been queued but are awaiting
943          * bitmap updates get flushed here.
944          */
945         spin_lock_irq(&conf->device_lock);
946
947         if (conf->pending_bio_list.head) {
948                 struct bio *bio;
949                 bio = bio_list_get(&conf->pending_bio_list);
950                 conf->pending_count = 0;
951                 spin_unlock_irq(&conf->device_lock);
952                 /* flush any pending bitmap writes to disk
953                  * before proceeding w/ I/O */
954                 bitmap_unplug(conf->mddev->bitmap);
955                 wake_up(&conf->wait_barrier);
956
957                 while (bio) { /* submit pending writes */
958                         struct bio *next = bio->bi_next;
959                         bio->bi_next = NULL;
960                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
961                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
962                                 /* Just ignore it */
963                                 bio_endio(bio, 0);
964                         else
965                                 generic_make_request(bio);
966                         bio = next;
967                 }
968         } else
969                 spin_unlock_irq(&conf->device_lock);
970 }
971
972 /* Barriers....
973  * Sometimes we need to suspend IO while we do something else,
974  * either some resync/recovery, or reconfigure the array.
975  * To do this we raise a 'barrier'.
976  * The 'barrier' is a counter that can be raised multiple times
977  * to count how many activities are happening which preclude
978  * normal IO.
979  * We can only raise the barrier if there is no pending IO.
980  * i.e. if nr_pending == 0.
981  * We choose only to raise the barrier if no-one is waiting for the
982  * barrier to go down.  This means that as soon as an IO request
983  * is ready, no other operations which require a barrier will start
984  * until the IO request has had a chance.
985  *
986  * So: regular IO calls 'wait_barrier'.  When that returns there
987  *    is no backgroup IO happening,  It must arrange to call
988  *    allow_barrier when it has finished its IO.
989  * backgroup IO calls must call raise_barrier.  Once that returns
990  *    there is no normal IO happeing.  It must arrange to call
991  *    lower_barrier when the particular background IO completes.
992  */
993
994 static void raise_barrier(struct r10conf *conf, int force)
995 {
996         BUG_ON(force && !conf->barrier);
997         spin_lock_irq(&conf->resync_lock);
998
999         /* Wait until no block IO is waiting (unless 'force') */
1000         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1001                             conf->resync_lock);
1002
1003         /* block any new IO from starting */
1004         conf->barrier++;
1005
1006         /* Now wait for all pending IO to complete */
1007         wait_event_lock_irq(conf->wait_barrier,
1008                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1009                             conf->resync_lock);
1010
1011         spin_unlock_irq(&conf->resync_lock);
1012 }
1013
1014 static void lower_barrier(struct r10conf *conf)
1015 {
1016         unsigned long flags;
1017         spin_lock_irqsave(&conf->resync_lock, flags);
1018         conf->barrier--;
1019         spin_unlock_irqrestore(&conf->resync_lock, flags);
1020         wake_up(&conf->wait_barrier);
1021 }
1022
1023 static void wait_barrier(struct r10conf *conf)
1024 {
1025         spin_lock_irq(&conf->resync_lock);
1026         if (conf->barrier) {
1027                 conf->nr_waiting++;
1028                 /* Wait for the barrier to drop.
1029                  * However if there are already pending
1030                  * requests (preventing the barrier from
1031                  * rising completely), and the
1032                  * pre-process bio queue isn't empty,
1033                  * then don't wait, as we need to empty
1034                  * that queue to get the nr_pending
1035                  * count down.
1036                  */
1037                 wait_event_lock_irq(conf->wait_barrier,
1038                                     !conf->barrier ||
1039                                     (conf->nr_pending &&
1040                                      current->bio_list &&
1041                                      !bio_list_empty(current->bio_list)),
1042                                     conf->resync_lock);
1043                 conf->nr_waiting--;
1044         }
1045         conf->nr_pending++;
1046         spin_unlock_irq(&conf->resync_lock);
1047 }
1048
1049 static void allow_barrier(struct r10conf *conf)
1050 {
1051         unsigned long flags;
1052         spin_lock_irqsave(&conf->resync_lock, flags);
1053         conf->nr_pending--;
1054         spin_unlock_irqrestore(&conf->resync_lock, flags);
1055         wake_up(&conf->wait_barrier);
1056 }
1057
1058 static void freeze_array(struct r10conf *conf)
1059 {
1060         /* stop syncio and normal IO and wait for everything to
1061          * go quiet.
1062          * We increment barrier and nr_waiting, and then
1063          * wait until nr_pending match nr_queued+1
1064          * This is called in the context of one normal IO request
1065          * that has failed. Thus any sync request that might be pending
1066          * will be blocked by nr_pending, and we need to wait for
1067          * pending IO requests to complete or be queued for re-try.
1068          * Thus the number queued (nr_queued) plus this request (1)
1069          * must match the number of pending IOs (nr_pending) before
1070          * we continue.
1071          */
1072         spin_lock_irq(&conf->resync_lock);
1073         conf->barrier++;
1074         conf->nr_waiting++;
1075         wait_event_lock_irq_cmd(conf->wait_barrier,
1076                                 conf->nr_pending == conf->nr_queued+1,
1077                                 conf->resync_lock,
1078                                 flush_pending_writes(conf));
1079
1080         spin_unlock_irq(&conf->resync_lock);
1081 }
1082
1083 static void unfreeze_array(struct r10conf *conf)
1084 {
1085         /* reverse the effect of the freeze */
1086         spin_lock_irq(&conf->resync_lock);
1087         conf->barrier--;
1088         conf->nr_waiting--;
1089         wake_up(&conf->wait_barrier);
1090         spin_unlock_irq(&conf->resync_lock);
1091 }
1092
1093 static sector_t choose_data_offset(struct r10bio *r10_bio,
1094                                    struct md_rdev *rdev)
1095 {
1096         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1097             test_bit(R10BIO_Previous, &r10_bio->state))
1098                 return rdev->data_offset;
1099         else
1100                 return rdev->new_data_offset;
1101 }
1102
1103 struct raid10_plug_cb {
1104         struct blk_plug_cb      cb;
1105         struct bio_list         pending;
1106         int                     pending_cnt;
1107 };
1108
1109 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1110 {
1111         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1112                                                    cb);
1113         struct mddev *mddev = plug->cb.data;
1114         struct r10conf *conf = mddev->private;
1115         struct bio *bio;
1116
1117         if (from_schedule || current->bio_list) {
1118                 spin_lock_irq(&conf->device_lock);
1119                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1120                 conf->pending_count += plug->pending_cnt;
1121                 spin_unlock_irq(&conf->device_lock);
1122                 wake_up(&conf->wait_barrier);
1123                 md_wakeup_thread(mddev->thread);
1124                 kfree(plug);
1125                 return;
1126         }
1127
1128         /* we aren't scheduling, so we can do the write-out directly. */
1129         bio = bio_list_get(&plug->pending);
1130         bitmap_unplug(mddev->bitmap);
1131         wake_up(&conf->wait_barrier);
1132
1133         while (bio) { /* submit pending writes */
1134                 struct bio *next = bio->bi_next;
1135                 bio->bi_next = NULL;
1136                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1137                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1138                         /* Just ignore it */
1139                         bio_endio(bio, 0);
1140                 else
1141                         generic_make_request(bio);
1142                 bio = next;
1143         }
1144         kfree(plug);
1145 }
1146
1147 static void make_request(struct mddev *mddev, struct bio * bio)
1148 {
1149         struct r10conf *conf = mddev->private;
1150         struct r10bio *r10_bio;
1151         struct bio *read_bio;
1152         int i;
1153         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1154         int chunk_sects = chunk_mask + 1;
1155         const int rw = bio_data_dir(bio);
1156         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1157         const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1158         const unsigned long do_discard = (bio->bi_rw
1159                                           & (REQ_DISCARD | REQ_SECURE));
1160         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1161         unsigned long flags;
1162         struct md_rdev *blocked_rdev;
1163         struct blk_plug_cb *cb;
1164         struct raid10_plug_cb *plug = NULL;
1165         int sectors_handled;
1166         int max_sectors;
1167         int sectors;
1168
1169         if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1170                 md_flush_request(mddev, bio);
1171                 return;
1172         }
1173
1174         /* If this request crosses a chunk boundary, we need to
1175          * split it.  This will only happen for 1 PAGE (or less) requests.
1176          */
1177         if (unlikely((bio->bi_sector & chunk_mask) + bio_sectors(bio)
1178                      > chunk_sects
1179                      && (conf->geo.near_copies < conf->geo.raid_disks
1180                          || conf->prev.near_copies < conf->prev.raid_disks))) {
1181                 struct bio_pair *bp;
1182                 /* Sanity check -- queue functions should prevent this happening */
1183                 if (bio_segments(bio) > 1)
1184                         goto bad_map;
1185                 /* This is a one page bio that upper layers
1186                  * refuse to split for us, so we need to split it.
1187                  */
1188                 bp = bio_split(bio,
1189                                chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1190
1191                 /* Each of these 'make_request' calls will call 'wait_barrier'.
1192                  * If the first succeeds but the second blocks due to the resync
1193                  * thread raising the barrier, we will deadlock because the
1194                  * IO to the underlying device will be queued in generic_make_request
1195                  * and will never complete, so will never reduce nr_pending.
1196                  * So increment nr_waiting here so no new raise_barriers will
1197                  * succeed, and so the second wait_barrier cannot block.
1198                  */
1199                 spin_lock_irq(&conf->resync_lock);
1200                 conf->nr_waiting++;
1201                 spin_unlock_irq(&conf->resync_lock);
1202
1203                 make_request(mddev, &bp->bio1);
1204                 make_request(mddev, &bp->bio2);
1205
1206                 spin_lock_irq(&conf->resync_lock);
1207                 conf->nr_waiting--;
1208                 wake_up(&conf->wait_barrier);
1209                 spin_unlock_irq(&conf->resync_lock);
1210
1211                 bio_pair_release(bp);
1212                 return;
1213         bad_map:
1214                 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1215                        " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1216                        (unsigned long long)bio->bi_sector, bio_sectors(bio) / 2);
1217
1218                 bio_io_error(bio);
1219                 return;
1220         }
1221
1222         md_write_start(mddev, bio);
1223
1224         /*
1225          * Register the new request and wait if the reconstruction
1226          * thread has put up a bar for new requests.
1227          * Continue immediately if no resync is active currently.
1228          */
1229         wait_barrier(conf);
1230
1231         sectors = bio_sectors(bio);
1232         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1233             bio->bi_sector < conf->reshape_progress &&
1234             bio->bi_sector + sectors > conf->reshape_progress) {
1235                 /* IO spans the reshape position.  Need to wait for
1236                  * reshape to pass
1237                  */
1238                 allow_barrier(conf);
1239                 wait_event(conf->wait_barrier,
1240                            conf->reshape_progress <= bio->bi_sector ||
1241                            conf->reshape_progress >= bio->bi_sector + sectors);
1242                 wait_barrier(conf);
1243         }
1244         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1245             bio_data_dir(bio) == WRITE &&
1246             (mddev->reshape_backwards
1247              ? (bio->bi_sector < conf->reshape_safe &&
1248                 bio->bi_sector + sectors > conf->reshape_progress)
1249              : (bio->bi_sector + sectors > conf->reshape_safe &&
1250                 bio->bi_sector < conf->reshape_progress))) {
1251                 /* Need to update reshape_position in metadata */
1252                 mddev->reshape_position = conf->reshape_progress;
1253                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1254                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1255                 md_wakeup_thread(mddev->thread);
1256                 wait_event(mddev->sb_wait,
1257                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1258
1259                 conf->reshape_safe = mddev->reshape_position;
1260         }
1261
1262         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1263
1264         r10_bio->master_bio = bio;
1265         r10_bio->sectors = sectors;
1266
1267         r10_bio->mddev = mddev;
1268         r10_bio->sector = bio->bi_sector;
1269         r10_bio->state = 0;
1270
1271         /* We might need to issue multiple reads to different
1272          * devices if there are bad blocks around, so we keep
1273          * track of the number of reads in bio->bi_phys_segments.
1274          * If this is 0, there is only one r10_bio and no locking
1275          * will be needed when the request completes.  If it is
1276          * non-zero, then it is the number of not-completed requests.
1277          */
1278         bio->bi_phys_segments = 0;
1279         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1280
1281         if (rw == READ) {
1282                 /*
1283                  * read balancing logic:
1284                  */
1285                 struct md_rdev *rdev;
1286                 int slot;
1287
1288 read_again:
1289                 rdev = read_balance(conf, r10_bio, &max_sectors);
1290                 if (!rdev) {
1291                         raid_end_bio_io(r10_bio);
1292                         return;
1293                 }
1294                 slot = r10_bio->read_slot;
1295
1296                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1297                 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1298                             max_sectors);
1299
1300                 r10_bio->devs[slot].bio = read_bio;
1301                 r10_bio->devs[slot].rdev = rdev;
1302
1303                 read_bio->bi_sector = r10_bio->devs[slot].addr +
1304                         choose_data_offset(r10_bio, rdev);
1305                 read_bio->bi_bdev = rdev->bdev;
1306                 read_bio->bi_end_io = raid10_end_read_request;
1307                 read_bio->bi_rw = READ | do_sync;
1308                 read_bio->bi_private = r10_bio;
1309
1310                 if (max_sectors < r10_bio->sectors) {
1311                         /* Could not read all from this device, so we will
1312                          * need another r10_bio.
1313                          */
1314                         sectors_handled = (r10_bio->sectors + max_sectors
1315                                            - bio->bi_sector);
1316                         r10_bio->sectors = max_sectors;
1317                         spin_lock_irq(&conf->device_lock);
1318                         if (bio->bi_phys_segments == 0)
1319                                 bio->bi_phys_segments = 2;
1320                         else
1321                                 bio->bi_phys_segments++;
1322                         spin_unlock(&conf->device_lock);
1323                         /* Cannot call generic_make_request directly
1324                          * as that will be queued in __generic_make_request
1325                          * and subsequent mempool_alloc might block
1326                          * waiting for it.  so hand bio over to raid10d.
1327                          */
1328                         reschedule_retry(r10_bio);
1329
1330                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1331
1332                         r10_bio->master_bio = bio;
1333                         r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1334                         r10_bio->state = 0;
1335                         r10_bio->mddev = mddev;
1336                         r10_bio->sector = bio->bi_sector + sectors_handled;
1337                         goto read_again;
1338                 } else
1339                         generic_make_request(read_bio);
1340                 return;
1341         }
1342
1343         /*
1344          * WRITE:
1345          */
1346         if (conf->pending_count >= max_queued_requests) {
1347                 md_wakeup_thread(mddev->thread);
1348                 wait_event(conf->wait_barrier,
1349                            conf->pending_count < max_queued_requests);
1350         }
1351         /* first select target devices under rcu_lock and
1352          * inc refcount on their rdev.  Record them by setting
1353          * bios[x] to bio
1354          * If there are known/acknowledged bad blocks on any device
1355          * on which we have seen a write error, we want to avoid
1356          * writing to those blocks.  This potentially requires several
1357          * writes to write around the bad blocks.  Each set of writes
1358          * gets its own r10_bio with a set of bios attached.  The number
1359          * of r10_bios is recored in bio->bi_phys_segments just as with
1360          * the read case.
1361          */
1362
1363         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1364         raid10_find_phys(conf, r10_bio);
1365 retry_write:
1366         blocked_rdev = NULL;
1367         rcu_read_lock();
1368         max_sectors = r10_bio->sectors;
1369
1370         for (i = 0;  i < conf->copies; i++) {
1371                 int d = r10_bio->devs[i].devnum;
1372                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1373                 struct md_rdev *rrdev = rcu_dereference(
1374                         conf->mirrors[d].replacement);
1375                 if (rdev == rrdev)
1376                         rrdev = NULL;
1377                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1378                         atomic_inc(&rdev->nr_pending);
1379                         blocked_rdev = rdev;
1380                         break;
1381                 }
1382                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1383                         atomic_inc(&rrdev->nr_pending);
1384                         blocked_rdev = rrdev;
1385                         break;
1386                 }
1387                 if (rdev && (test_bit(Faulty, &rdev->flags)
1388                              || test_bit(Unmerged, &rdev->flags)))
1389                         rdev = NULL;
1390                 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1391                               || test_bit(Unmerged, &rrdev->flags)))
1392                         rrdev = NULL;
1393
1394                 r10_bio->devs[i].bio = NULL;
1395                 r10_bio->devs[i].repl_bio = NULL;
1396
1397                 if (!rdev && !rrdev) {
1398                         set_bit(R10BIO_Degraded, &r10_bio->state);
1399                         continue;
1400                 }
1401                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1402                         sector_t first_bad;
1403                         sector_t dev_sector = r10_bio->devs[i].addr;
1404                         int bad_sectors;
1405                         int is_bad;
1406
1407                         is_bad = is_badblock(rdev, dev_sector,
1408                                              max_sectors,
1409                                              &first_bad, &bad_sectors);
1410                         if (is_bad < 0) {
1411                                 /* Mustn't write here until the bad block
1412                                  * is acknowledged
1413                                  */
1414                                 atomic_inc(&rdev->nr_pending);
1415                                 set_bit(BlockedBadBlocks, &rdev->flags);
1416                                 blocked_rdev = rdev;
1417                                 break;
1418                         }
1419                         if (is_bad && first_bad <= dev_sector) {
1420                                 /* Cannot write here at all */
1421                                 bad_sectors -= (dev_sector - first_bad);
1422                                 if (bad_sectors < max_sectors)
1423                                         /* Mustn't write more than bad_sectors
1424                                          * to other devices yet
1425                                          */
1426                                         max_sectors = bad_sectors;
1427                                 /* We don't set R10BIO_Degraded as that
1428                                  * only applies if the disk is missing,
1429                                  * so it might be re-added, and we want to
1430                                  * know to recover this chunk.
1431                                  * In this case the device is here, and the
1432                                  * fact that this chunk is not in-sync is
1433                                  * recorded in the bad block log.
1434                                  */
1435                                 continue;
1436                         }
1437                         if (is_bad) {
1438                                 int good_sectors = first_bad - dev_sector;
1439                                 if (good_sectors < max_sectors)
1440                                         max_sectors = good_sectors;
1441                         }
1442                 }
1443                 if (rdev) {
1444                         r10_bio->devs[i].bio = bio;
1445                         atomic_inc(&rdev->nr_pending);
1446                 }
1447                 if (rrdev) {
1448                         r10_bio->devs[i].repl_bio = bio;
1449                         atomic_inc(&rrdev->nr_pending);
1450                 }
1451         }
1452         rcu_read_unlock();
1453
1454         if (unlikely(blocked_rdev)) {
1455                 /* Have to wait for this device to get unblocked, then retry */
1456                 int j;
1457                 int d;
1458
1459                 for (j = 0; j < i; j++) {
1460                         if (r10_bio->devs[j].bio) {
1461                                 d = r10_bio->devs[j].devnum;
1462                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1463                         }
1464                         if (r10_bio->devs[j].repl_bio) {
1465                                 struct md_rdev *rdev;
1466                                 d = r10_bio->devs[j].devnum;
1467                                 rdev = conf->mirrors[d].replacement;
1468                                 if (!rdev) {
1469                                         /* Race with remove_disk */
1470                                         smp_mb();
1471                                         rdev = conf->mirrors[d].rdev;
1472                                 }
1473                                 rdev_dec_pending(rdev, mddev);
1474                         }
1475                 }
1476                 allow_barrier(conf);
1477                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1478                 wait_barrier(conf);
1479                 goto retry_write;
1480         }
1481
1482         if (max_sectors < r10_bio->sectors) {
1483                 /* We are splitting this into multiple parts, so
1484                  * we need to prepare for allocating another r10_bio.
1485                  */
1486                 r10_bio->sectors = max_sectors;
1487                 spin_lock_irq(&conf->device_lock);
1488                 if (bio->bi_phys_segments == 0)
1489                         bio->bi_phys_segments = 2;
1490                 else
1491                         bio->bi_phys_segments++;
1492                 spin_unlock_irq(&conf->device_lock);
1493         }
1494         sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1495
1496         atomic_set(&r10_bio->remaining, 1);
1497         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1498
1499         for (i = 0; i < conf->copies; i++) {
1500                 struct bio *mbio;
1501                 int d = r10_bio->devs[i].devnum;
1502                 if (r10_bio->devs[i].bio) {
1503                         struct md_rdev *rdev = conf->mirrors[d].rdev;
1504                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1505                         md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1506                                     max_sectors);
1507                         r10_bio->devs[i].bio = mbio;
1508
1509                         mbio->bi_sector = (r10_bio->devs[i].addr+
1510                                            choose_data_offset(r10_bio,
1511                                                               rdev));
1512                         mbio->bi_bdev = rdev->bdev;
1513                         mbio->bi_end_io = raid10_end_write_request;
1514                         mbio->bi_rw =
1515                                 WRITE | do_sync | do_fua | do_discard | do_same;
1516                         mbio->bi_private = r10_bio;
1517
1518                         atomic_inc(&r10_bio->remaining);
1519
1520                         cb = blk_check_plugged(raid10_unplug, mddev,
1521                                                sizeof(*plug));
1522                         if (cb)
1523                                 plug = container_of(cb, struct raid10_plug_cb,
1524                                                     cb);
1525                         else
1526                                 plug = NULL;
1527                         spin_lock_irqsave(&conf->device_lock, flags);
1528                         if (plug) {
1529                                 bio_list_add(&plug->pending, mbio);
1530                                 plug->pending_cnt++;
1531                         } else {
1532                                 bio_list_add(&conf->pending_bio_list, mbio);
1533                                 conf->pending_count++;
1534                         }
1535                         spin_unlock_irqrestore(&conf->device_lock, flags);
1536                         if (!plug)
1537                                 md_wakeup_thread(mddev->thread);
1538                 }
1539
1540                 if (r10_bio->devs[i].repl_bio) {
1541                         struct md_rdev *rdev = conf->mirrors[d].replacement;
1542                         if (rdev == NULL) {
1543                                 /* Replacement just got moved to main 'rdev' */
1544                                 smp_mb();
1545                                 rdev = conf->mirrors[d].rdev;
1546                         }
1547                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1548                         md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1549                                     max_sectors);
1550                         r10_bio->devs[i].repl_bio = mbio;
1551
1552                         mbio->bi_sector = (r10_bio->devs[i].addr +
1553                                            choose_data_offset(
1554                                                    r10_bio, rdev));
1555                         mbio->bi_bdev = rdev->bdev;
1556                         mbio->bi_end_io = raid10_end_write_request;
1557                         mbio->bi_rw =
1558                                 WRITE | do_sync | do_fua | do_discard | do_same;
1559                         mbio->bi_private = r10_bio;
1560
1561                         atomic_inc(&r10_bio->remaining);
1562                         spin_lock_irqsave(&conf->device_lock, flags);
1563                         bio_list_add(&conf->pending_bio_list, mbio);
1564                         conf->pending_count++;
1565                         spin_unlock_irqrestore(&conf->device_lock, flags);
1566                         if (!mddev_check_plugged(mddev))
1567                                 md_wakeup_thread(mddev->thread);
1568                 }
1569         }
1570
1571         /* Don't remove the bias on 'remaining' (one_write_done) until
1572          * after checking if we need to go around again.
1573          */
1574
1575         if (sectors_handled < bio_sectors(bio)) {
1576                 one_write_done(r10_bio);
1577                 /* We need another r10_bio.  It has already been counted
1578                  * in bio->bi_phys_segments.
1579                  */
1580                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1581
1582                 r10_bio->master_bio = bio;
1583                 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1584
1585                 r10_bio->mddev = mddev;
1586                 r10_bio->sector = bio->bi_sector + sectors_handled;
1587                 r10_bio->state = 0;
1588                 goto retry_write;
1589         }
1590         one_write_done(r10_bio);
1591
1592         /* In case raid10d snuck in to freeze_array */
1593         wake_up(&conf->wait_barrier);
1594 }
1595
1596 static void status(struct seq_file *seq, struct mddev *mddev)
1597 {
1598         struct r10conf *conf = mddev->private;
1599         int i;
1600
1601         if (conf->geo.near_copies < conf->geo.raid_disks)
1602                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1603         if (conf->geo.near_copies > 1)
1604                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1605         if (conf->geo.far_copies > 1) {
1606                 if (conf->geo.far_offset)
1607                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1608                 else
1609                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1610         }
1611         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1612                                         conf->geo.raid_disks - mddev->degraded);
1613         for (i = 0; i < conf->geo.raid_disks; i++)
1614                 seq_printf(seq, "%s",
1615                               conf->mirrors[i].rdev &&
1616                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1617         seq_printf(seq, "]");
1618 }
1619
1620 /* check if there are enough drives for
1621  * every block to appear on atleast one.
1622  * Don't consider the device numbered 'ignore'
1623  * as we might be about to remove it.
1624  */
1625 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1626 {
1627         int first = 0;
1628
1629         do {
1630                 int n = conf->copies;
1631                 int cnt = 0;
1632                 int this = first;
1633                 while (n--) {
1634                         if (conf->mirrors[this].rdev &&
1635                             this != ignore)
1636                                 cnt++;
1637                         this = (this+1) % geo->raid_disks;
1638                 }
1639                 if (cnt == 0)
1640                         return 0;
1641                 first = (first + geo->near_copies) % geo->raid_disks;
1642         } while (first != 0);
1643         return 1;
1644 }
1645
1646 static int enough(struct r10conf *conf, int ignore)
1647 {
1648         return _enough(conf, &conf->geo, ignore) &&
1649                 _enough(conf, &conf->prev, ignore);
1650 }
1651
1652 static void error(struct mddev *mddev, struct md_rdev *rdev)
1653 {
1654         char b[BDEVNAME_SIZE];
1655         struct r10conf *conf = mddev->private;
1656
1657         /*
1658          * If it is not operational, then we have already marked it as dead
1659          * else if it is the last working disks, ignore the error, let the
1660          * next level up know.
1661          * else mark the drive as failed
1662          */
1663         if (test_bit(In_sync, &rdev->flags)
1664             && !enough(conf, rdev->raid_disk))
1665                 /*
1666                  * Don't fail the drive, just return an IO error.
1667                  */
1668                 return;
1669         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1670                 unsigned long flags;
1671                 spin_lock_irqsave(&conf->device_lock, flags);
1672                 mddev->degraded++;
1673                 spin_unlock_irqrestore(&conf->device_lock, flags);
1674                 /*
1675                  * if recovery is running, make sure it aborts.
1676                  */
1677                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1678         }
1679         set_bit(Blocked, &rdev->flags);
1680         set_bit(Faulty, &rdev->flags);
1681         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1682         printk(KERN_ALERT
1683                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1684                "md/raid10:%s: Operation continuing on %d devices.\n",
1685                mdname(mddev), bdevname(rdev->bdev, b),
1686                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1687 }
1688
1689 static void print_conf(struct r10conf *conf)
1690 {
1691         int i;
1692         struct raid10_info *tmp;
1693
1694         printk(KERN_DEBUG "RAID10 conf printout:\n");
1695         if (!conf) {
1696                 printk(KERN_DEBUG "(!conf)\n");
1697                 return;
1698         }
1699         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1700                 conf->geo.raid_disks);
1701
1702         for (i = 0; i < conf->geo.raid_disks; i++) {
1703                 char b[BDEVNAME_SIZE];
1704                 tmp = conf->mirrors + i;
1705                 if (tmp->rdev)
1706                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1707                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1708                                 !test_bit(Faulty, &tmp->rdev->flags),
1709                                 bdevname(tmp->rdev->bdev,b));
1710         }
1711 }
1712
1713 static void close_sync(struct r10conf *conf)
1714 {
1715         wait_barrier(conf);
1716         allow_barrier(conf);
1717
1718         mempool_destroy(conf->r10buf_pool);
1719         conf->r10buf_pool = NULL;
1720 }
1721
1722 static int raid10_spare_active(struct mddev *mddev)
1723 {
1724         int i;
1725         struct r10conf *conf = mddev->private;
1726         struct raid10_info *tmp;
1727         int count = 0;
1728         unsigned long flags;
1729
1730         /*
1731          * Find all non-in_sync disks within the RAID10 configuration
1732          * and mark them in_sync
1733          */
1734         for (i = 0; i < conf->geo.raid_disks; i++) {
1735                 tmp = conf->mirrors + i;
1736                 if (tmp->replacement
1737                     && tmp->replacement->recovery_offset == MaxSector
1738                     && !test_bit(Faulty, &tmp->replacement->flags)
1739                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1740                         /* Replacement has just become active */
1741                         if (!tmp->rdev
1742                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1743                                 count++;
1744                         if (tmp->rdev) {
1745                                 /* Replaced device not technically faulty,
1746                                  * but we need to be sure it gets removed
1747                                  * and never re-added.
1748                                  */
1749                                 set_bit(Faulty, &tmp->rdev->flags);
1750                                 sysfs_notify_dirent_safe(
1751                                         tmp->rdev->sysfs_state);
1752                         }
1753                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1754                 } else if (tmp->rdev
1755                            && !test_bit(Faulty, &tmp->rdev->flags)
1756                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1757                         count++;
1758                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1759                 }
1760         }
1761         spin_lock_irqsave(&conf->device_lock, flags);
1762         mddev->degraded -= count;
1763         spin_unlock_irqrestore(&conf->device_lock, flags);
1764
1765         print_conf(conf);
1766         return count;
1767 }
1768
1769
1770 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1771 {
1772         struct r10conf *conf = mddev->private;
1773         int err = -EEXIST;
1774         int mirror;
1775         int first = 0;
1776         int last = conf->geo.raid_disks - 1;
1777         struct request_queue *q = bdev_get_queue(rdev->bdev);
1778
1779         if (mddev->recovery_cp < MaxSector)
1780                 /* only hot-add to in-sync arrays, as recovery is
1781                  * very different from resync
1782                  */
1783                 return -EBUSY;
1784         if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1785                 return -EINVAL;
1786
1787         if (rdev->raid_disk >= 0)
1788                 first = last = rdev->raid_disk;
1789
1790         if (q->merge_bvec_fn) {
1791                 set_bit(Unmerged, &rdev->flags);
1792                 mddev->merge_check_needed = 1;
1793         }
1794
1795         if (rdev->saved_raid_disk >= first &&
1796             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1797                 mirror = rdev->saved_raid_disk;
1798         else
1799                 mirror = first;
1800         for ( ; mirror <= last ; mirror++) {
1801                 struct raid10_info *p = &conf->mirrors[mirror];
1802                 if (p->recovery_disabled == mddev->recovery_disabled)
1803                         continue;
1804                 if (p->rdev) {
1805                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1806                             p->replacement != NULL)
1807                                 continue;
1808                         clear_bit(In_sync, &rdev->flags);
1809                         set_bit(Replacement, &rdev->flags);
1810                         rdev->raid_disk = mirror;
1811                         err = 0;
1812                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1813                                           rdev->data_offset << 9);
1814                         conf->fullsync = 1;
1815                         rcu_assign_pointer(p->replacement, rdev);
1816                         break;
1817                 }
1818
1819                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1820                                   rdev->data_offset << 9);
1821
1822                 p->head_position = 0;
1823                 p->recovery_disabled = mddev->recovery_disabled - 1;
1824                 rdev->raid_disk = mirror;
1825                 err = 0;
1826                 if (rdev->saved_raid_disk != mirror)
1827                         conf->fullsync = 1;
1828                 rcu_assign_pointer(p->rdev, rdev);
1829                 break;
1830         }
1831         if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1832                 /* Some requests might not have seen this new
1833                  * merge_bvec_fn.  We must wait for them to complete
1834                  * before merging the device fully.
1835                  * First we make sure any code which has tested
1836                  * our function has submitted the request, then
1837                  * we wait for all outstanding requests to complete.
1838                  */
1839                 synchronize_sched();
1840                 raise_barrier(conf, 0);
1841                 lower_barrier(conf);
1842                 clear_bit(Unmerged, &rdev->flags);
1843         }
1844         md_integrity_add_rdev(rdev, mddev);
1845         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1846                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1847
1848         print_conf(conf);
1849         return err;
1850 }
1851
1852 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1853 {
1854         struct r10conf *conf = mddev->private;
1855         int err = 0;
1856         int number = rdev->raid_disk;
1857         struct md_rdev **rdevp;
1858         struct raid10_info *p = conf->mirrors + number;
1859
1860         print_conf(conf);
1861         if (rdev == p->rdev)
1862                 rdevp = &p->rdev;
1863         else if (rdev == p->replacement)
1864                 rdevp = &p->replacement;
1865         else
1866                 return 0;
1867
1868         if (test_bit(In_sync, &rdev->flags) ||
1869             atomic_read(&rdev->nr_pending)) {
1870                 err = -EBUSY;
1871                 goto abort;
1872         }
1873         /* Only remove faulty devices if recovery
1874          * is not possible.
1875          */
1876         if (!test_bit(Faulty, &rdev->flags) &&
1877             mddev->recovery_disabled != p->recovery_disabled &&
1878             (!p->replacement || p->replacement == rdev) &&
1879             number < conf->geo.raid_disks &&
1880             enough(conf, -1)) {
1881                 err = -EBUSY;
1882                 goto abort;
1883         }
1884         *rdevp = NULL;
1885         synchronize_rcu();
1886         if (atomic_read(&rdev->nr_pending)) {
1887                 /* lost the race, try later */
1888                 err = -EBUSY;
1889                 *rdevp = rdev;
1890                 goto abort;
1891         } else if (p->replacement) {
1892                 /* We must have just cleared 'rdev' */
1893                 p->rdev = p->replacement;
1894                 clear_bit(Replacement, &p->replacement->flags);
1895                 smp_mb(); /* Make sure other CPUs may see both as identical
1896                            * but will never see neither -- if they are careful.
1897                            */
1898                 p->replacement = NULL;
1899                 clear_bit(WantReplacement, &rdev->flags);
1900         } else
1901                 /* We might have just remove the Replacement as faulty
1902                  * Clear the flag just in case
1903                  */
1904                 clear_bit(WantReplacement, &rdev->flags);
1905
1906         err = md_integrity_register(mddev);
1907
1908 abort:
1909
1910         print_conf(conf);
1911         return err;
1912 }
1913
1914
1915 static void end_sync_read(struct bio *bio, int error)
1916 {
1917         struct r10bio *r10_bio = bio->bi_private;
1918         struct r10conf *conf = r10_bio->mddev->private;
1919         int d;
1920
1921         if (bio == r10_bio->master_bio) {
1922                 /* this is a reshape read */
1923                 d = r10_bio->read_slot; /* really the read dev */
1924         } else
1925                 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1926
1927         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1928                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1929         else
1930                 /* The write handler will notice the lack of
1931                  * R10BIO_Uptodate and record any errors etc
1932                  */
1933                 atomic_add(r10_bio->sectors,
1934                            &conf->mirrors[d].rdev->corrected_errors);
1935
1936         /* for reconstruct, we always reschedule after a read.
1937          * for resync, only after all reads
1938          */
1939         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1940         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1941             atomic_dec_and_test(&r10_bio->remaining)) {
1942                 /* we have read all the blocks,
1943                  * do the comparison in process context in raid10d
1944                  */
1945                 reschedule_retry(r10_bio);
1946         }
1947 }
1948
1949 static void end_sync_request(struct r10bio *r10_bio)
1950 {
1951         struct mddev *mddev = r10_bio->mddev;
1952
1953         while (atomic_dec_and_test(&r10_bio->remaining)) {
1954                 if (r10_bio->master_bio == NULL) {
1955                         /* the primary of several recovery bios */
1956                         sector_t s = r10_bio->sectors;
1957                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1958                             test_bit(R10BIO_WriteError, &r10_bio->state))
1959                                 reschedule_retry(r10_bio);
1960                         else
1961                                 put_buf(r10_bio);
1962                         md_done_sync(mddev, s, 1);
1963                         break;
1964                 } else {
1965                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1966                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1967                             test_bit(R10BIO_WriteError, &r10_bio->state))
1968                                 reschedule_retry(r10_bio);
1969                         else
1970                                 put_buf(r10_bio);
1971                         r10_bio = r10_bio2;
1972                 }
1973         }
1974 }
1975
1976 static void end_sync_write(struct bio *bio, int error)
1977 {
1978         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1979         struct r10bio *r10_bio = bio->bi_private;
1980         struct mddev *mddev = r10_bio->mddev;
1981         struct r10conf *conf = mddev->private;
1982         int d;
1983         sector_t first_bad;
1984         int bad_sectors;
1985         int slot;
1986         int repl;
1987         struct md_rdev *rdev = NULL;
1988
1989         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1990         if (repl)
1991                 rdev = conf->mirrors[d].replacement;
1992         else
1993                 rdev = conf->mirrors[d].rdev;
1994
1995         if (!uptodate) {
1996                 if (repl)
1997                         md_error(mddev, rdev);
1998                 else {
1999                         set_bit(WriteErrorSeen, &rdev->flags);
2000                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2001                                 set_bit(MD_RECOVERY_NEEDED,
2002                                         &rdev->mddev->recovery);
2003                         set_bit(R10BIO_WriteError, &r10_bio->state);
2004                 }
2005         } else if (is_badblock(rdev,
2006                              r10_bio->devs[slot].addr,
2007                              r10_bio->sectors,
2008                              &first_bad, &bad_sectors))
2009                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2010
2011         rdev_dec_pending(rdev, mddev);
2012
2013         end_sync_request(r10_bio);
2014 }
2015
2016 /*
2017  * Note: sync and recover and handled very differently for raid10
2018  * This code is for resync.
2019  * For resync, we read through virtual addresses and read all blocks.
2020  * If there is any error, we schedule a write.  The lowest numbered
2021  * drive is authoritative.
2022  * However requests come for physical address, so we need to map.
2023  * For every physical address there are raid_disks/copies virtual addresses,
2024  * which is always are least one, but is not necessarly an integer.
2025  * This means that a physical address can span multiple chunks, so we may
2026  * have to submit multiple io requests for a single sync request.
2027  */
2028 /*
2029  * We check if all blocks are in-sync and only write to blocks that
2030  * aren't in sync
2031  */
2032 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2033 {
2034         struct r10conf *conf = mddev->private;
2035         int i, first;
2036         struct bio *tbio, *fbio;
2037         int vcnt;
2038
2039         atomic_set(&r10_bio->remaining, 1);
2040
2041         /* find the first device with a block */
2042         for (i=0; i<conf->copies; i++)
2043                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2044                         break;
2045
2046         if (i == conf->copies)
2047                 goto done;
2048
2049         first = i;
2050         fbio = r10_bio->devs[i].bio;
2051
2052         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2053         /* now find blocks with errors */
2054         for (i=0 ; i < conf->copies ; i++) {
2055                 int  j, d;
2056
2057                 tbio = r10_bio->devs[i].bio;
2058
2059                 if (tbio->bi_end_io != end_sync_read)
2060                         continue;
2061                 if (i == first)
2062                         continue;
2063                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2064                         /* We know that the bi_io_vec layout is the same for
2065                          * both 'first' and 'i', so we just compare them.
2066                          * All vec entries are PAGE_SIZE;
2067                          */
2068                         for (j = 0; j < vcnt; j++)
2069                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2070                                            page_address(tbio->bi_io_vec[j].bv_page),
2071                                            fbio->bi_io_vec[j].bv_len))
2072                                         break;
2073                         if (j == vcnt)
2074                                 continue;
2075                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2076                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2077                                 /* Don't fix anything. */
2078                                 continue;
2079                 }
2080                 /* Ok, we need to write this bio, either to correct an
2081                  * inconsistency or to correct an unreadable block.
2082                  * First we need to fixup bv_offset, bv_len and
2083                  * bi_vecs, as the read request might have corrupted these
2084                  */
2085                 bio_reset(tbio);
2086
2087                 tbio->bi_vcnt = vcnt;
2088                 tbio->bi_size = r10_bio->sectors << 9;
2089                 tbio->bi_rw = WRITE;
2090                 tbio->bi_private = r10_bio;
2091                 tbio->bi_sector = r10_bio->devs[i].addr;
2092
2093                 for (j=0; j < vcnt ; j++) {
2094                         tbio->bi_io_vec[j].bv_offset = 0;
2095                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2096
2097                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2098                                page_address(fbio->bi_io_vec[j].bv_page),
2099                                PAGE_SIZE);
2100                 }
2101                 tbio->bi_end_io = end_sync_write;
2102
2103                 d = r10_bio->devs[i].devnum;
2104                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2105                 atomic_inc(&r10_bio->remaining);
2106                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2107
2108                 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2109                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2110                 generic_make_request(tbio);
2111         }
2112
2113         /* Now write out to any replacement devices
2114          * that are active
2115          */
2116         for (i = 0; i < conf->copies; i++) {
2117                 int j, d;
2118
2119                 tbio = r10_bio->devs[i].repl_bio;
2120                 if (!tbio || !tbio->bi_end_io)
2121                         continue;
2122                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2123                     && r10_bio->devs[i].bio != fbio)
2124                         for (j = 0; j < vcnt; j++)
2125                                 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2126                                        page_address(fbio->bi_io_vec[j].bv_page),
2127                                        PAGE_SIZE);
2128                 d = r10_bio->devs[i].devnum;
2129                 atomic_inc(&r10_bio->remaining);
2130                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2131                              bio_sectors(tbio));
2132                 generic_make_request(tbio);
2133         }
2134
2135 done:
2136         if (atomic_dec_and_test(&r10_bio->remaining)) {
2137                 md_done_sync(mddev, r10_bio->sectors, 1);
2138                 put_buf(r10_bio);
2139         }
2140 }
2141
2142 /*
2143  * Now for the recovery code.
2144  * Recovery happens across physical sectors.
2145  * We recover all non-is_sync drives by finding the virtual address of
2146  * each, and then choose a working drive that also has that virt address.
2147  * There is a separate r10_bio for each non-in_sync drive.
2148  * Only the first two slots are in use. The first for reading,
2149  * The second for writing.
2150  *
2151  */
2152 static void fix_recovery_read_error(struct r10bio *r10_bio)
2153 {
2154         /* We got a read error during recovery.
2155          * We repeat the read in smaller page-sized sections.
2156          * If a read succeeds, write it to the new device or record
2157          * a bad block if we cannot.
2158          * If a read fails, record a bad block on both old and
2159          * new devices.
2160          */
2161         struct mddev *mddev = r10_bio->mddev;
2162         struct r10conf *conf = mddev->private;
2163         struct bio *bio = r10_bio->devs[0].bio;
2164         sector_t sect = 0;
2165         int sectors = r10_bio->sectors;
2166         int idx = 0;
2167         int dr = r10_bio->devs[0].devnum;
2168         int dw = r10_bio->devs[1].devnum;
2169
2170         while (sectors) {
2171                 int s = sectors;
2172                 struct md_rdev *rdev;
2173                 sector_t addr;
2174                 int ok;
2175
2176                 if (s > (PAGE_SIZE>>9))
2177                         s = PAGE_SIZE >> 9;
2178
2179                 rdev = conf->mirrors[dr].rdev;
2180                 addr = r10_bio->devs[0].addr + sect,
2181                 ok = sync_page_io(rdev,
2182                                   addr,
2183                                   s << 9,
2184                                   bio->bi_io_vec[idx].bv_page,
2185                                   READ, false);
2186                 if (ok) {
2187                         rdev = conf->mirrors[dw].rdev;
2188                         addr = r10_bio->devs[1].addr + sect;
2189                         ok = sync_page_io(rdev,
2190                                           addr,
2191                                           s << 9,
2192                                           bio->bi_io_vec[idx].bv_page,
2193                                           WRITE, false);
2194                         if (!ok) {
2195                                 set_bit(WriteErrorSeen, &rdev->flags);
2196                                 if (!test_and_set_bit(WantReplacement,
2197                                                       &rdev->flags))
2198                                         set_bit(MD_RECOVERY_NEEDED,
2199                                                 &rdev->mddev->recovery);
2200                         }
2201                 }
2202                 if (!ok) {
2203                         /* We don't worry if we cannot set a bad block -
2204                          * it really is bad so there is no loss in not
2205                          * recording it yet
2206                          */
2207                         rdev_set_badblocks(rdev, addr, s, 0);
2208
2209                         if (rdev != conf->mirrors[dw].rdev) {
2210                                 /* need bad block on destination too */
2211                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2212                                 addr = r10_bio->devs[1].addr + sect;
2213                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2214                                 if (!ok) {
2215                                         /* just abort the recovery */
2216                                         printk(KERN_NOTICE
2217                                                "md/raid10:%s: recovery aborted"
2218                                                " due to read error\n",
2219                                                mdname(mddev));
2220
2221                                         conf->mirrors[dw].recovery_disabled
2222                                                 = mddev->recovery_disabled;
2223                                         set_bit(MD_RECOVERY_INTR,
2224                                                 &mddev->recovery);
2225                                         break;
2226                                 }
2227                         }
2228                 }
2229
2230                 sectors -= s;
2231                 sect += s;
2232                 idx++;
2233         }
2234 }
2235
2236 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2237 {
2238         struct r10conf *conf = mddev->private;
2239         int d;
2240         struct bio *wbio, *wbio2;
2241
2242         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2243                 fix_recovery_read_error(r10_bio);
2244                 end_sync_request(r10_bio);
2245                 return;
2246         }
2247
2248         /*
2249          * share the pages with the first bio
2250          * and submit the write request
2251          */
2252         d = r10_bio->devs[1].devnum;
2253         wbio = r10_bio->devs[1].bio;
2254         wbio2 = r10_bio->devs[1].repl_bio;
2255         if (wbio->bi_end_io) {
2256                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2257                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2258                 generic_make_request(wbio);
2259         }
2260         if (wbio2 && wbio2->bi_end_io) {
2261                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2262                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2263                              bio_sectors(wbio2));
2264                 generic_make_request(wbio2);
2265         }
2266 }
2267
2268
2269 /*
2270  * Used by fix_read_error() to decay the per rdev read_errors.
2271  * We halve the read error count for every hour that has elapsed
2272  * since the last recorded read error.
2273  *
2274  */
2275 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2276 {
2277         struct timespec cur_time_mon;
2278         unsigned long hours_since_last;
2279         unsigned int read_errors = atomic_read(&rdev->read_errors);
2280
2281         ktime_get_ts(&cur_time_mon);
2282
2283         if (rdev->last_read_error.tv_sec == 0 &&
2284             rdev->last_read_error.tv_nsec == 0) {
2285                 /* first time we've seen a read error */
2286                 rdev->last_read_error = cur_time_mon;
2287                 return;
2288         }
2289
2290         hours_since_last = (cur_time_mon.tv_sec -
2291                             rdev->last_read_error.tv_sec) / 3600;
2292
2293         rdev->last_read_error = cur_time_mon;
2294
2295         /*
2296          * if hours_since_last is > the number of bits in read_errors
2297          * just set read errors to 0. We do this to avoid
2298          * overflowing the shift of read_errors by hours_since_last.
2299          */
2300         if (hours_since_last >= 8 * sizeof(read_errors))
2301                 atomic_set(&rdev->read_errors, 0);
2302         else
2303                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2304 }
2305
2306 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2307                             int sectors, struct page *page, int rw)
2308 {
2309         sector_t first_bad;
2310         int bad_sectors;
2311
2312         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2313             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2314                 return -1;
2315         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2316                 /* success */
2317                 return 1;
2318         if (rw == WRITE) {
2319                 set_bit(WriteErrorSeen, &rdev->flags);
2320                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2321                         set_bit(MD_RECOVERY_NEEDED,
2322                                 &rdev->mddev->recovery);
2323         }
2324         /* need to record an error - either for the block or the device */
2325         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2326                 md_error(rdev->mddev, rdev);
2327         return 0;
2328 }
2329
2330 /*
2331  * This is a kernel thread which:
2332  *
2333  *      1.      Retries failed read operations on working mirrors.
2334  *      2.      Updates the raid superblock when problems encounter.
2335  *      3.      Performs writes following reads for array synchronising.
2336  */
2337
2338 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2339 {
2340         int sect = 0; /* Offset from r10_bio->sector */
2341         int sectors = r10_bio->sectors;
2342         struct md_rdev*rdev;
2343         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2344         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2345
2346         /* still own a reference to this rdev, so it cannot
2347          * have been cleared recently.
2348          */
2349         rdev = conf->mirrors[d].rdev;
2350
2351         if (test_bit(Faulty, &rdev->flags))
2352                 /* drive has already been failed, just ignore any
2353                    more fix_read_error() attempts */
2354                 return;
2355
2356         check_decay_read_errors(mddev, rdev);
2357         atomic_inc(&rdev->read_errors);
2358         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2359                 char b[BDEVNAME_SIZE];
2360                 bdevname(rdev->bdev, b);
2361
2362                 printk(KERN_NOTICE
2363                        "md/raid10:%s: %s: Raid device exceeded "
2364                        "read_error threshold [cur %d:max %d]\n",
2365                        mdname(mddev), b,
2366                        atomic_read(&rdev->read_errors), max_read_errors);
2367                 printk(KERN_NOTICE
2368                        "md/raid10:%s: %s: Failing raid device\n",
2369                        mdname(mddev), b);
2370                 md_error(mddev, conf->mirrors[d].rdev);
2371                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2372                 return;
2373         }
2374
2375         while(sectors) {
2376                 int s = sectors;
2377                 int sl = r10_bio->read_slot;
2378                 int success = 0;
2379                 int start;
2380
2381                 if (s > (PAGE_SIZE>>9))
2382                         s = PAGE_SIZE >> 9;
2383
2384                 rcu_read_lock();
2385                 do {
2386                         sector_t first_bad;
2387                         int bad_sectors;
2388
2389                         d = r10_bio->devs[sl].devnum;
2390                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2391                         if (rdev &&
2392                             !test_bit(Unmerged, &rdev->flags) &&
2393                             test_bit(In_sync, &rdev->flags) &&
2394                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2395                                         &first_bad, &bad_sectors) == 0) {
2396                                 atomic_inc(&rdev->nr_pending);
2397                                 rcu_read_unlock();
2398                                 success = sync_page_io(rdev,
2399                                                        r10_bio->devs[sl].addr +
2400                                                        sect,
2401                                                        s<<9,
2402                                                        conf->tmppage, READ, false);
2403                                 rdev_dec_pending(rdev, mddev);
2404                                 rcu_read_lock();
2405                                 if (success)
2406                                         break;
2407                         }
2408                         sl++;
2409                         if (sl == conf->copies)
2410                                 sl = 0;
2411                 } while (!success && sl != r10_bio->read_slot);
2412                 rcu_read_unlock();
2413
2414                 if (!success) {
2415                         /* Cannot read from anywhere, just mark the block
2416                          * as bad on the first device to discourage future
2417                          * reads.
2418                          */
2419                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2420                         rdev = conf->mirrors[dn].rdev;
2421
2422                         if (!rdev_set_badblocks(
2423                                     rdev,
2424                                     r10_bio->devs[r10_bio->read_slot].addr
2425                                     + sect,
2426                                     s, 0)) {
2427                                 md_error(mddev, rdev);
2428                                 r10_bio->devs[r10_bio->read_slot].bio
2429                                         = IO_BLOCKED;
2430                         }
2431                         break;
2432                 }
2433
2434                 start = sl;
2435                 /* write it back and re-read */
2436                 rcu_read_lock();
2437                 while (sl != r10_bio->read_slot) {
2438                         char b[BDEVNAME_SIZE];
2439
2440                         if (sl==0)
2441                                 sl = conf->copies;
2442                         sl--;
2443                         d = r10_bio->devs[sl].devnum;
2444                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2445                         if (!rdev ||
2446                             test_bit(Unmerged, &rdev->flags) ||
2447                             !test_bit(In_sync, &rdev->flags))
2448                                 continue;
2449
2450                         atomic_inc(&rdev->nr_pending);
2451                         rcu_read_unlock();
2452                         if (r10_sync_page_io(rdev,
2453                                              r10_bio->devs[sl].addr +
2454                                              sect,
2455                                              s, conf->tmppage, WRITE)
2456                             == 0) {
2457                                 /* Well, this device is dead */
2458                                 printk(KERN_NOTICE
2459                                        "md/raid10:%s: read correction "
2460                                        "write failed"
2461                                        " (%d sectors at %llu on %s)\n",
2462                                        mdname(mddev), s,
2463                                        (unsigned long long)(
2464                                                sect +
2465                                                choose_data_offset(r10_bio,
2466                                                                   rdev)),
2467                                        bdevname(rdev->bdev, b));
2468                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2469                                        "drive\n",
2470                                        mdname(mddev),
2471                                        bdevname(rdev->bdev, b));
2472                         }
2473                         rdev_dec_pending(rdev, mddev);
2474                         rcu_read_lock();
2475                 }
2476                 sl = start;
2477                 while (sl != r10_bio->read_slot) {
2478                         char b[BDEVNAME_SIZE];
2479
2480                         if (sl==0)
2481                                 sl = conf->copies;
2482                         sl--;
2483                         d = r10_bio->devs[sl].devnum;
2484                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2485                         if (!rdev ||
2486                             !test_bit(In_sync, &rdev->flags))
2487                                 continue;
2488
2489                         atomic_inc(&rdev->nr_pending);
2490                         rcu_read_unlock();
2491                         switch (r10_sync_page_io(rdev,
2492                                              r10_bio->devs[sl].addr +
2493                                              sect,
2494                                              s, conf->tmppage,
2495                                                  READ)) {
2496                         case 0:
2497                                 /* Well, this device is dead */
2498                                 printk(KERN_NOTICE
2499                                        "md/raid10:%s: unable to read back "
2500                                        "corrected sectors"
2501                                        " (%d sectors at %llu on %s)\n",
2502                                        mdname(mddev), s,
2503                                        (unsigned long long)(
2504                                                sect +
2505                                                choose_data_offset(r10_bio, rdev)),
2506                                        bdevname(rdev->bdev, b));
2507                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2508                                        "drive\n",
2509                                        mdname(mddev),
2510                                        bdevname(rdev->bdev, b));
2511                                 break;
2512                         case 1:
2513                                 printk(KERN_INFO
2514                                        "md/raid10:%s: read error corrected"
2515                                        " (%d sectors at %llu on %s)\n",
2516                                        mdname(mddev), s,
2517                                        (unsigned long long)(
2518                                                sect +
2519                                                choose_data_offset(r10_bio, rdev)),
2520                                        bdevname(rdev->bdev, b));
2521                                 atomic_add(s, &rdev->corrected_errors);
2522                         }
2523
2524                         rdev_dec_pending(rdev, mddev);
2525                         rcu_read_lock();
2526                 }
2527                 rcu_read_unlock();
2528
2529                 sectors -= s;
2530                 sect += s;
2531         }
2532 }
2533
2534 static int narrow_write_error(struct r10bio *r10_bio, int i)
2535 {
2536         struct bio *bio = r10_bio->master_bio;
2537         struct mddev *mddev = r10_bio->mddev;
2538         struct r10conf *conf = mddev->private;
2539         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2540         /* bio has the data to be written to slot 'i' where
2541          * we just recently had a write error.
2542          * We repeatedly clone the bio and trim down to one block,
2543          * then try the write.  Where the write fails we record
2544          * a bad block.
2545          * It is conceivable that the bio doesn't exactly align with
2546          * blocks.  We must handle this.
2547          *
2548          * We currently own a reference to the rdev.
2549          */
2550
2551         int block_sectors;
2552         sector_t sector;
2553         int sectors;
2554         int sect_to_write = r10_bio->sectors;
2555         int ok = 1;
2556
2557         if (rdev->badblocks.shift < 0)
2558                 return 0;
2559
2560         block_sectors = 1 << rdev->badblocks.shift;
2561         sector = r10_bio->sector;
2562         sectors = ((r10_bio->sector + block_sectors)
2563                    & ~(sector_t)(block_sectors - 1))
2564                 - sector;
2565
2566         while (sect_to_write) {
2567                 struct bio *wbio;
2568                 if (sectors > sect_to_write)
2569                         sectors = sect_to_write;
2570                 /* Write at 'sector' for 'sectors' */
2571                 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2572                 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2573                 wbio->bi_sector = (r10_bio->devs[i].addr+
2574                                    choose_data_offset(r10_bio, rdev) +
2575                                    (sector - r10_bio->sector));
2576                 wbio->bi_bdev = rdev->bdev;
2577                 if (submit_bio_wait(WRITE, wbio) == 0)
2578                         /* Failure! */
2579                         ok = rdev_set_badblocks(rdev, sector,
2580                                                 sectors, 0)
2581                                 && ok;
2582
2583                 bio_put(wbio);
2584                 sect_to_write -= sectors;
2585                 sector += sectors;
2586                 sectors = block_sectors;
2587         }
2588         return ok;
2589 }
2590
2591 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2592 {
2593         int slot = r10_bio->read_slot;
2594         struct bio *bio;
2595         struct r10conf *conf = mddev->private;
2596         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2597         char b[BDEVNAME_SIZE];
2598         unsigned long do_sync;
2599         int max_sectors;
2600
2601         /* we got a read error. Maybe the drive is bad.  Maybe just
2602          * the block and we can fix it.
2603          * We freeze all other IO, and try reading the block from
2604          * other devices.  When we find one, we re-write
2605          * and check it that fixes the read error.
2606          * This is all done synchronously while the array is
2607          * frozen.
2608          */
2609         bio = r10_bio->devs[slot].bio;
2610         bdevname(bio->bi_bdev, b);
2611         bio_put(bio);
2612         r10_bio->devs[slot].bio = NULL;
2613
2614         if (mddev->ro == 0) {
2615                 freeze_array(conf);
2616                 fix_read_error(conf, mddev, r10_bio);
2617                 unfreeze_array(conf);
2618         } else
2619                 r10_bio->devs[slot].bio = IO_BLOCKED;
2620
2621         rdev_dec_pending(rdev, mddev);
2622
2623 read_more:
2624         rdev = read_balance(conf, r10_bio, &max_sectors);
2625         if (rdev == NULL) {
2626                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2627                        " read error for block %llu\n",
2628                        mdname(mddev), b,
2629                        (unsigned long long)r10_bio->sector);
2630                 raid_end_bio_io(r10_bio);
2631                 return;
2632         }
2633
2634         do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2635         slot = r10_bio->read_slot;
2636         printk_ratelimited(
2637                 KERN_ERR
2638                 "md/raid10:%s: %s: redirecting "
2639                 "sector %llu to another mirror\n",
2640                 mdname(mddev),
2641                 bdevname(rdev->bdev, b),
2642                 (unsigned long long)r10_bio->sector);
2643         bio = bio_clone_mddev(r10_bio->master_bio,
2644                               GFP_NOIO, mddev);
2645         md_trim_bio(bio,
2646                     r10_bio->sector - bio->bi_sector,
2647                     max_sectors);
2648         r10_bio->devs[slot].bio = bio;
2649         r10_bio->devs[slot].rdev = rdev;
2650         bio->bi_sector = r10_bio->devs[slot].addr
2651                 + choose_data_offset(r10_bio, rdev);
2652         bio->bi_bdev = rdev->bdev;
2653         bio->bi_rw = READ | do_sync;
2654         bio->bi_private = r10_bio;
2655         bio->bi_end_io = raid10_end_read_request;
2656         if (max_sectors < r10_bio->sectors) {
2657                 /* Drat - have to split this up more */
2658                 struct bio *mbio = r10_bio->master_bio;
2659                 int sectors_handled =
2660                         r10_bio->sector + max_sectors
2661                         - mbio->bi_sector;
2662                 r10_bio->sectors = max_sectors;
2663                 spin_lock_irq(&conf->device_lock);
2664                 if (mbio->bi_phys_segments == 0)
2665                         mbio->bi_phys_segments = 2;
2666                 else
2667                         mbio->bi_phys_segments++;
2668                 spin_unlock_irq(&conf->device_lock);
2669                 generic_make_request(bio);
2670
2671                 r10_bio = mempool_alloc(conf->r10bio_pool,
2672                                         GFP_NOIO);
2673                 r10_bio->master_bio = mbio;
2674                 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2675                 r10_bio->state = 0;
2676                 set_bit(R10BIO_ReadError,
2677                         &r10_bio->state);
2678                 r10_bio->mddev = mddev;
2679                 r10_bio->sector = mbio->bi_sector
2680                         + sectors_handled;
2681
2682                 goto read_more;
2683         } else
2684                 generic_make_request(bio);
2685 }
2686
2687 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2688 {
2689         /* Some sort of write request has finished and it
2690          * succeeded in writing where we thought there was a
2691          * bad block.  So forget the bad block.
2692          * Or possibly if failed and we need to record
2693          * a bad block.
2694          */
2695         int m;
2696         struct md_rdev *rdev;
2697
2698         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2699             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2700                 for (m = 0; m < conf->copies; m++) {
2701                         int dev = r10_bio->devs[m].devnum;
2702                         rdev = conf->mirrors[dev].rdev;
2703                         if (r10_bio->devs[m].bio == NULL)
2704                                 continue;
2705                         if (test_bit(BIO_UPTODATE,
2706                                      &r10_bio->devs[m].bio->bi_flags)) {
2707                                 rdev_clear_badblocks(
2708                                         rdev,
2709                                         r10_bio->devs[m].addr,
2710                                         r10_bio->sectors, 0);
2711                         } else {
2712                                 if (!rdev_set_badblocks(
2713                                             rdev,
2714                                             r10_bio->devs[m].addr,
2715                                             r10_bio->sectors, 0))
2716                                         md_error(conf->mddev, rdev);
2717                         }
2718                         rdev = conf->mirrors[dev].replacement;
2719                         if (r10_bio->devs[m].repl_bio == NULL)
2720                                 continue;
2721                         if (test_bit(BIO_UPTODATE,
2722                                      &r10_bio->devs[m].repl_bio->bi_flags)) {
2723                                 rdev_clear_badblocks(
2724                                         rdev,
2725                                         r10_bio->devs[m].addr,
2726                                         r10_bio->sectors, 0);
2727                         } else {
2728                                 if (!rdev_set_badblocks(
2729                                             rdev,
2730                                             r10_bio->devs[m].addr,
2731                                             r10_bio->sectors, 0))
2732                                         md_error(conf->mddev, rdev);
2733                         }
2734                 }
2735                 put_buf(r10_bio);
2736         } else {
2737                 for (m = 0; m < conf->copies; m++) {
2738                         int dev = r10_bio->devs[m].devnum;
2739                         struct bio *bio = r10_bio->devs[m].bio;
2740                         rdev = conf->mirrors[dev].rdev;
2741                         if (bio == IO_MADE_GOOD) {
2742                                 rdev_clear_badblocks(
2743                                         rdev,
2744                                         r10_bio->devs[m].addr,
2745                                         r10_bio->sectors, 0);
2746                                 rdev_dec_pending(rdev, conf->mddev);
2747                         } else if (bio != NULL &&
2748                                    !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2749                                 if (!narrow_write_error(r10_bio, m)) {
2750                                         md_error(conf->mddev, rdev);
2751                                         set_bit(R10BIO_Degraded,
2752                                                 &r10_bio->state);
2753                                 }
2754                                 rdev_dec_pending(rdev, conf->mddev);
2755                         }
2756                         bio = r10_bio->devs[m].repl_bio;
2757                         rdev = conf->mirrors[dev].replacement;
2758                         if (rdev && bio == IO_MADE_GOOD) {
2759                                 rdev_clear_badblocks(
2760                                         rdev,
2761                                         r10_bio->devs[m].addr,
2762                                         r10_bio->sectors, 0);
2763                                 rdev_dec_pending(rdev, conf->mddev);
2764                         }
2765                 }
2766                 if (test_bit(R10BIO_WriteError,
2767                              &r10_bio->state))
2768                         close_write(r10_bio);
2769                 raid_end_bio_io(r10_bio);
2770         }
2771 }
2772
2773 static void raid10d(struct md_thread *thread)
2774 {
2775         struct mddev *mddev = thread->mddev;
2776         struct r10bio *r10_bio;
2777         unsigned long flags;
2778         struct r10conf *conf = mddev->private;
2779         struct list_head *head = &conf->retry_list;
2780         struct blk_plug plug;
2781
2782         md_check_recovery(mddev);
2783
2784         blk_start_plug(&plug);
2785         for (;;) {
2786
2787                 flush_pending_writes(conf);
2788
2789                 spin_lock_irqsave(&conf->device_lock, flags);
2790                 if (list_empty(head)) {
2791                         spin_unlock_irqrestore(&conf->device_lock, flags);
2792                         break;
2793                 }
2794                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2795                 list_del(head->prev);
2796                 conf->nr_queued--;
2797                 spin_unlock_irqrestore(&conf->device_lock, flags);
2798
2799                 mddev = r10_bio->mddev;
2800                 conf = mddev->private;
2801                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2802                     test_bit(R10BIO_WriteError, &r10_bio->state))
2803                         handle_write_completed(conf, r10_bio);
2804                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2805                         reshape_request_write(mddev, r10_bio);
2806                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2807                         sync_request_write(mddev, r10_bio);
2808                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2809                         recovery_request_write(mddev, r10_bio);
2810                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2811                         handle_read_error(mddev, r10_bio);
2812                 else {
2813                         /* just a partial read to be scheduled from a
2814                          * separate context
2815                          */
2816                         int slot = r10_bio->read_slot;
2817                         generic_make_request(r10_bio->devs[slot].bio);
2818                 }
2819
2820                 cond_resched();
2821                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2822                         md_check_recovery(mddev);
2823         }
2824         blk_finish_plug(&plug);
2825 }
2826
2827
2828 static int init_resync(struct r10conf *conf)
2829 {
2830         int buffs;
2831         int i;
2832
2833         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2834         BUG_ON(conf->r10buf_pool);
2835         conf->have_replacement = 0;
2836         for (i = 0; i < conf->geo.raid_disks; i++)
2837                 if (conf->mirrors[i].replacement)
2838                         conf->have_replacement = 1;
2839         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2840         if (!conf->r10buf_pool)
2841                 return -ENOMEM;
2842         conf->next_resync = 0;
2843         return 0;
2844 }
2845
2846 /*
2847  * perform a "sync" on one "block"
2848  *
2849  * We need to make sure that no normal I/O request - particularly write
2850  * requests - conflict with active sync requests.
2851  *
2852  * This is achieved by tracking pending requests and a 'barrier' concept
2853  * that can be installed to exclude normal IO requests.
2854  *
2855  * Resync and recovery are handled very differently.
2856  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2857  *
2858  * For resync, we iterate over virtual addresses, read all copies,
2859  * and update if there are differences.  If only one copy is live,
2860  * skip it.
2861  * For recovery, we iterate over physical addresses, read a good
2862  * value for each non-in_sync drive, and over-write.
2863  *
2864  * So, for recovery we may have several outstanding complex requests for a
2865  * given address, one for each out-of-sync device.  We model this by allocating
2866  * a number of r10_bio structures, one for each out-of-sync device.
2867  * As we setup these structures, we collect all bio's together into a list
2868  * which we then process collectively to add pages, and then process again
2869  * to pass to generic_make_request.
2870  *
2871  * The r10_bio structures are linked using a borrowed master_bio pointer.
2872  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2873  * has its remaining count decremented to 0, the whole complex operation
2874  * is complete.
2875  *
2876  */
2877
2878 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2879                              int *skipped, int go_faster)
2880 {
2881         struct r10conf *conf = mddev->private;
2882         struct r10bio *r10_bio;
2883         struct bio *biolist = NULL, *bio;
2884         sector_t max_sector, nr_sectors;
2885         int i;
2886         int max_sync;
2887         sector_t sync_blocks;
2888         sector_t sectors_skipped = 0;
2889         int chunks_skipped = 0;
2890         sector_t chunk_mask = conf->geo.chunk_mask;
2891
2892         if (!conf->r10buf_pool)
2893                 if (init_resync(conf))
2894                         return 0;
2895
2896         /*
2897          * Allow skipping a full rebuild for incremental assembly
2898          * of a clean array, like RAID1 does.
2899          */
2900         if (mddev->bitmap == NULL &&
2901             mddev->recovery_cp == MaxSector &&
2902             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2903             conf->fullsync == 0) {
2904                 *skipped = 1;
2905                 max_sector = mddev->dev_sectors;
2906                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2907                     test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2908                         max_sector = mddev->resync_max_sectors;
2909                 return max_sector - sector_nr;
2910         }
2911
2912  skipped:
2913         max_sector = mddev->dev_sectors;
2914         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2915             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2916                 max_sector = mddev->resync_max_sectors;
2917         if (sector_nr >= max_sector) {
2918                 /* If we aborted, we need to abort the
2919                  * sync on the 'current' bitmap chucks (there can
2920                  * be several when recovering multiple devices).
2921                  * as we may have started syncing it but not finished.
2922                  * We can find the current address in
2923                  * mddev->curr_resync, but for recovery,
2924                  * we need to convert that to several
2925                  * virtual addresses.
2926                  */
2927                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2928                         end_reshape(conf);
2929                         return 0;
2930                 }
2931
2932                 if (mddev->curr_resync < max_sector) { /* aborted */
2933                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2934                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2935                                                 &sync_blocks, 1);
2936                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2937                                 sector_t sect =
2938                                         raid10_find_virt(conf, mddev->curr_resync, i);
2939                                 bitmap_end_sync(mddev->bitmap, sect,
2940                                                 &sync_blocks, 1);
2941                         }
2942                 } else {
2943                         /* completed sync */
2944                         if ((!mddev->bitmap || conf->fullsync)
2945                             && conf->have_replacement
2946                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2947                                 /* Completed a full sync so the replacements
2948                                  * are now fully recovered.
2949                                  */
2950                                 for (i = 0; i < conf->geo.raid_disks; i++)
2951                                         if (conf->mirrors[i].replacement)
2952                                                 conf->mirrors[i].replacement
2953                                                         ->recovery_offset
2954                                                         = MaxSector;
2955                         }
2956                         conf->fullsync = 0;
2957                 }
2958                 bitmap_close_sync(mddev->bitmap);
2959                 close_sync(conf);
2960                 *skipped = 1;
2961                 return sectors_skipped;
2962         }
2963
2964         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2965                 return reshape_request(mddev, sector_nr, skipped);
2966
2967         if (chunks_skipped >= conf->geo.raid_disks) {
2968                 /* if there has been nothing to do on any drive,
2969                  * then there is nothing to do at all..
2970                  */
2971                 *skipped = 1;
2972                 return (max_sector - sector_nr) + sectors_skipped;
2973         }
2974
2975         if (max_sector > mddev->resync_max)
2976                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2977
2978         /* make sure whole request will fit in a chunk - if chunks
2979          * are meaningful
2980          */
2981         if (conf->geo.near_copies < conf->geo.raid_disks &&
2982             max_sector > (sector_nr | chunk_mask))
2983                 max_sector = (sector_nr | chunk_mask) + 1;
2984         /*
2985          * If there is non-resync activity waiting for us then
2986          * put in a delay to throttle resync.
2987          */
2988         if (!go_faster && conf->nr_waiting)
2989                 msleep_interruptible(1000);
2990
2991         /* Again, very different code for resync and recovery.
2992          * Both must result in an r10bio with a list of bios that
2993          * have bi_end_io, bi_sector, bi_bdev set,
2994          * and bi_private set to the r10bio.
2995          * For recovery, we may actually create several r10bios
2996          * with 2 bios in each, that correspond to the bios in the main one.
2997          * In this case, the subordinate r10bios link back through a
2998          * borrowed master_bio pointer, and the counter in the master
2999          * includes a ref from each subordinate.
3000          */
3001         /* First, we decide what to do and set ->bi_end_io
3002          * To end_sync_read if we want to read, and
3003          * end_sync_write if we will want to write.
3004          */
3005
3006         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3007         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3008                 /* recovery... the complicated one */
3009                 int j;
3010                 r10_bio = NULL;
3011
3012                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3013                         int still_degraded;
3014                         struct r10bio *rb2;
3015                         sector_t sect;
3016                         int must_sync;
3017                         int any_working;
3018                         struct raid10_info *mirror = &conf->mirrors[i];
3019
3020                         if ((mirror->rdev == NULL ||
3021                              test_bit(In_sync, &mirror->rdev->flags))
3022                             &&
3023                             (mirror->replacement == NULL ||
3024                              test_bit(Faulty,
3025                                       &mirror->replacement->flags)))
3026                                 continue;
3027
3028                         still_degraded = 0;
3029                         /* want to reconstruct this device */
3030                         rb2 = r10_bio;
3031                         sect = raid10_find_virt(conf, sector_nr, i);
3032                         if (sect >= mddev->resync_max_sectors) {
3033                                 /* last stripe is not complete - don't
3034                                  * try to recover this sector.
3035                                  */
3036                                 continue;
3037                         }
3038                         /* Unless we are doing a full sync, or a replacement
3039                          * we only need to recover the block if it is set in
3040                          * the bitmap
3041                          */
3042                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3043                                                       &sync_blocks, 1);
3044                         if (sync_blocks < max_sync)
3045                                 max_sync = sync_blocks;
3046                         if (!must_sync &&
3047                             mirror->replacement == NULL &&
3048                             !conf->fullsync) {
3049                                 /* yep, skip the sync_blocks here, but don't assume
3050                                  * that there will never be anything to do here
3051                                  */
3052                                 chunks_skipped = -1;
3053                                 continue;
3054                         }
3055
3056                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3057                         raise_barrier(conf, rb2 != NULL);
3058                         atomic_set(&r10_bio->remaining, 0);
3059
3060                         r10_bio->master_bio = (struct bio*)rb2;
3061                         if (rb2)
3062                                 atomic_inc(&rb2->remaining);
3063                         r10_bio->mddev = mddev;
3064                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3065                         r10_bio->sector = sect;
3066
3067                         raid10_find_phys(conf, r10_bio);
3068
3069                         /* Need to check if the array will still be
3070                          * degraded
3071                          */
3072                         for (j = 0; j < conf->geo.raid_disks; j++)
3073                                 if (conf->mirrors[j].rdev == NULL ||
3074                                     test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3075                                         still_degraded = 1;
3076                                         break;
3077                                 }
3078
3079                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3080                                                       &sync_blocks, still_degraded);
3081
3082                         any_working = 0;
3083                         for (j=0; j<conf->copies;j++) {
3084                                 int k;
3085                                 int d = r10_bio->devs[j].devnum;
3086                                 sector_t from_addr, to_addr;
3087                                 struct md_rdev *rdev;
3088                                 sector_t sector, first_bad;
3089                                 int bad_sectors;
3090                                 if (!conf->mirrors[d].rdev ||
3091                                     !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3092                                         continue;
3093                                 /* This is where we read from */
3094                                 any_working = 1;
3095                                 rdev = conf->mirrors[d].rdev;
3096                                 sector = r10_bio->devs[j].addr;
3097
3098                                 if (is_badblock(rdev, sector, max_sync,
3099                                                 &first_bad, &bad_sectors)) {
3100                                         if (first_bad > sector)
3101                                                 max_sync = first_bad - sector;
3102                                         else {
3103                                                 bad_sectors -= (sector
3104                                                                 - first_bad);
3105                                                 if (max_sync > bad_sectors)
3106                                                         max_sync = bad_sectors;
3107                                                 continue;
3108                                         }
3109                                 }
3110                                 bio = r10_bio->devs[0].bio;
3111                                 bio_reset(bio);
3112                                 bio->bi_next = biolist;
3113                                 biolist = bio;
3114                                 bio->bi_private = r10_bio;
3115                                 bio->bi_end_io = end_sync_read;
3116                                 bio->bi_rw = READ;
3117                                 from_addr = r10_bio->devs[j].addr;
3118                                 bio->bi_sector = from_addr + rdev->data_offset;
3119                                 bio->bi_bdev = rdev->bdev;
3120                                 atomic_inc(&rdev->nr_pending);
3121                                 /* and we write to 'i' (if not in_sync) */
3122
3123                                 for (k=0; k<conf->copies; k++)
3124                                         if (r10_bio->devs[k].devnum == i)
3125                                                 break;
3126                                 BUG_ON(k == conf->copies);
3127                                 to_addr = r10_bio->devs[k].addr;
3128                                 r10_bio->devs[0].devnum = d;
3129                                 r10_bio->devs[0].addr = from_addr;
3130                                 r10_bio->devs[1].devnum = i;
3131                                 r10_bio->devs[1].addr = to_addr;
3132
3133                                 rdev = mirror->rdev;
3134                                 if (!test_bit(In_sync, &rdev->flags)) {
3135                                         bio = r10_bio->devs[1].bio;
3136                                         bio_reset(bio);
3137                                         bio->bi_next = biolist;
3138                                         biolist = bio;
3139                                         bio->bi_private = r10_bio;
3140                                         bio->bi_end_io = end_sync_write;
3141                                         bio->bi_rw = WRITE;
3142                                         bio->bi_sector = to_addr
3143                                                 + rdev->data_offset;
3144                                         bio->bi_bdev = rdev->bdev;
3145                                         atomic_inc(&r10_bio->remaining);
3146                                 } else
3147                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3148
3149                                 /* and maybe write to replacement */
3150                                 bio = r10_bio->devs[1].repl_bio;
3151                                 if (bio)
3152                                         bio->bi_end_io = NULL;
3153                                 rdev = mirror->replacement;
3154                                 /* Note: if rdev != NULL, then bio
3155                                  * cannot be NULL as r10buf_pool_alloc will
3156                                  * have allocated it.
3157                                  * So the second test here is pointless.
3158                                  * But it keeps semantic-checkers happy, and
3159                                  * this comment keeps human reviewers
3160                                  * happy.
3161                                  */
3162                                 if (rdev == NULL || bio == NULL ||
3163                                     test_bit(Faulty, &rdev->flags))
3164                                         break;
3165                                 bio_reset(bio);
3166                                 bio->bi_next = biolist;
3167                                 biolist = bio;
3168                                 bio->bi_private = r10_bio;
3169                                 bio->bi_end_io = end_sync_write;
3170                                 bio->bi_rw = WRITE;
3171                                 bio->bi_sector = to_addr + rdev->data_offset;
3172                                 bio->bi_bdev = rdev->bdev;
3173                                 atomic_inc(&r10_bio->remaining);
3174                                 break;
3175                         }
3176                         if (j == conf->copies) {
3177                                 /* Cannot recover, so abort the recovery or
3178                                  * record a bad block */
3179                                 put_buf(r10_bio);
3180                                 if (rb2)
3181                                         atomic_dec(&rb2->remaining);
3182                                 r10_bio = rb2;
3183                                 if (any_working) {
3184                                         /* problem is that there are bad blocks
3185                                          * on other device(s)
3186                                          */
3187                                         int k;
3188                                         for (k = 0; k < conf->copies; k++)
3189                                                 if (r10_bio->devs[k].devnum == i)
3190                                                         break;
3191                                         if (!test_bit(In_sync,
3192                                                       &mirror->rdev->flags)
3193                                             && !rdev_set_badblocks(
3194                                                     mirror->rdev,
3195                                                     r10_bio->devs[k].addr,
3196                                                     max_sync, 0))
3197                                                 any_working = 0;
3198                                         if (mirror->replacement &&
3199                                             !rdev_set_badblocks(
3200                                                     mirror->replacement,
3201                                                     r10_bio->devs[k].addr,
3202                                                     max_sync, 0))
3203                                                 any_working = 0;
3204                                 }
3205                                 if (!any_working)  {
3206                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3207                                                               &mddev->recovery))
3208                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
3209                                                        "working devices for recovery.\n",
3210                                                        mdname(mddev));
3211                                         mirror->recovery_disabled
3212                                                 = mddev->recovery_disabled;
3213                                 }
3214                                 break;
3215                         }
3216                 }
3217                 if (biolist == NULL) {
3218                         while (r10_bio) {
3219                                 struct r10bio *rb2 = r10_bio;
3220                                 r10_bio = (struct r10bio*) rb2->master_bio;
3221                                 rb2->master_bio = NULL;
3222                                 put_buf(rb2);
3223                         }
3224                         goto giveup;
3225                 }
3226         } else {
3227                 /* resync. Schedule a read for every block at this virt offset */
3228                 int count = 0;
3229
3230                 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3231
3232                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3233                                        &sync_blocks, mddev->degraded) &&
3234                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3235                                                  &mddev->recovery)) {
3236                         /* We can skip this block */
3237                         *skipped = 1;
3238                         return sync_blocks + sectors_skipped;
3239                 }
3240                 if (sync_blocks < max_sync)
3241                         max_sync = sync_blocks;
3242                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3243
3244                 r10_bio->mddev = mddev;
3245                 atomic_set(&r10_bio->remaining, 0);
3246                 raise_barrier(conf, 0);
3247                 conf->next_resync = sector_nr;
3248
3249                 r10_bio->master_bio = NULL;
3250                 r10_bio->sector = sector_nr;
3251                 set_bit(R10BIO_IsSync, &r10_bio->state);
3252                 raid10_find_phys(conf, r10_bio);
3253                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3254
3255                 for (i = 0; i < conf->copies; i++) {
3256                         int d = r10_bio->devs[i].devnum;
3257                         sector_t first_bad, sector;
3258                         int bad_sectors;
3259
3260                         if (r10_bio->devs[i].repl_bio)
3261                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3262
3263                         bio = r10_bio->devs[i].bio;
3264                         bio_reset(bio);
3265                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
3266                         if (conf->mirrors[d].rdev == NULL ||
3267                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3268                                 continue;
3269                         sector = r10_bio->devs[i].addr;
3270                         if (is_badblock(conf->mirrors[d].rdev,
3271                                         sector, max_sync,
3272                                         &first_bad, &bad_sectors)) {
3273                                 if (first_bad > sector)
3274                                         max_sync = first_bad - sector;
3275                                 else {
3276                                         bad_sectors -= (sector - first_bad);
3277                                         if (max_sync > bad_sectors)
3278                                                 max_sync = bad_sectors;
3279                                         continue;
3280                                 }
3281                         }
3282                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3283                         atomic_inc(&r10_bio->remaining);
3284                         bio->bi_next = biolist;
3285                         biolist = bio;
3286                         bio->bi_private = r10_bio;
3287                         bio->bi_end_io = end_sync_read;
3288                         bio->bi_rw = READ;
3289                         bio->bi_sector = sector +
3290                                 conf->mirrors[d].rdev->data_offset;
3291                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3292                         count++;
3293
3294                         if (conf->mirrors[d].replacement == NULL ||
3295                             test_bit(Faulty,
3296                                      &conf->mirrors[d].replacement->flags))
3297                                 continue;
3298
3299                         /* Need to set up for writing to the replacement */
3300                         bio = r10_bio->devs[i].repl_bio;
3301                         bio_reset(bio);
3302                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
3303
3304                         sector = r10_bio->devs[i].addr;
3305                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3306                         bio->bi_next = biolist;
3307                         biolist = bio;
3308                         bio->bi_private = r10_bio;
3309                         bio->bi_end_io = end_sync_write;
3310                         bio->bi_rw = WRITE;
3311                         bio->bi_sector = sector +
3312                                 conf->mirrors[d].replacement->data_offset;
3313                         bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3314                         count++;
3315                 }
3316
3317                 if (count < 2) {
3318                         for (i=0; i<conf->copies; i++) {
3319                                 int d = r10_bio->devs[i].devnum;
3320                                 if (r10_bio->devs[i].bio->bi_end_io)
3321                                         rdev_dec_pending(conf->mirrors[d].rdev,
3322                                                          mddev);
3323                                 if (r10_bio->devs[i].repl_bio &&
3324                                     r10_bio->devs[i].repl_bio->bi_end_io)
3325                                         rdev_dec_pending(
3326                                                 conf->mirrors[d].replacement,
3327                                                 mddev);
3328                         }
3329                         put_buf(r10_bio);
3330                         biolist = NULL;
3331                         goto giveup;
3332                 }
3333         }
3334
3335         nr_sectors = 0;
3336         if (sector_nr + max_sync < max_sector)
3337                 max_sector = sector_nr + max_sync;
3338         do {
3339                 struct page *page;
3340                 int len = PAGE_SIZE;
3341                 if (sector_nr + (len>>9) > max_sector)
3342                         len = (max_sector - sector_nr) << 9;
3343                 if (len == 0)
3344                         break;
3345                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3346                         struct bio *bio2;
3347                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3348                         if (bio_add_page(bio, page, len, 0))
3349                                 continue;
3350
3351                         /* stop here */
3352                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3353                         for (bio2 = biolist;
3354                              bio2 && bio2 != bio;
3355                              bio2 = bio2->bi_next) {
3356                                 /* remove last page from this bio */
3357                                 bio2->bi_vcnt--;
3358                                 bio2->bi_size -= len;
3359                                 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3360                         }
3361                         goto bio_full;
3362                 }
3363                 nr_sectors += len>>9;
3364                 sector_nr += len>>9;
3365         } while (biolist->bi_vcnt < RESYNC_PAGES);
3366  bio_full:
3367         r10_bio->sectors = nr_sectors;
3368
3369         while (biolist) {
3370                 bio = biolist;
3371                 biolist = biolist->bi_next;
3372
3373                 bio->bi_next = NULL;
3374                 r10_bio = bio->bi_private;
3375                 r10_bio->sectors = nr_sectors;
3376
3377                 if (bio->bi_end_io == end_sync_read) {
3378                         md_sync_acct(bio->bi_bdev, nr_sectors);
3379                         generic_make_request(bio);
3380                 }
3381         }
3382
3383         if (sectors_skipped)
3384                 /* pretend they weren't skipped, it makes
3385                  * no important difference in this case
3386                  */
3387                 md_done_sync(mddev, sectors_skipped, 1);
3388
3389         return sectors_skipped + nr_sectors;
3390  giveup:
3391         /* There is nowhere to write, so all non-sync
3392          * drives must be failed or in resync, all drives
3393          * have a bad block, so try the next chunk...
3394          */
3395         if (sector_nr + max_sync < max_sector)
3396                 max_sector = sector_nr + max_sync;
3397
3398         sectors_skipped += (max_sector - sector_nr);
3399         chunks_skipped ++;
3400         sector_nr = max_sector;
3401         goto skipped;
3402 }
3403
3404 static sector_t
3405 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3406 {
3407         sector_t size;
3408         struct r10conf *conf = mddev->private;
3409
3410         if (!raid_disks)
3411                 raid_disks = min(conf->geo.raid_disks,
3412                                  conf->prev.raid_disks);
3413         if (!sectors)
3414                 sectors = conf->dev_sectors;
3415
3416         size = sectors >> conf->geo.chunk_shift;
3417         sector_div(size, conf->geo.far_copies);
3418         size = size * raid_disks;
3419         sector_div(size, conf->geo.near_copies);
3420
3421         return size << conf->geo.chunk_shift;
3422 }
3423
3424 static void calc_sectors(struct r10conf *conf, sector_t size)
3425 {
3426         /* Calculate the number of sectors-per-device that will
3427          * actually be used, and set conf->dev_sectors and
3428          * conf->stride
3429          */
3430
3431         size = size >> conf->geo.chunk_shift;
3432         sector_div(size, conf->geo.far_copies);
3433         size = size * conf->geo.raid_disks;
3434         sector_div(size, conf->geo.near_copies);
3435         /* 'size' is now the number of chunks in the array */
3436         /* calculate "used chunks per device" */
3437         size = size * conf->copies;
3438
3439         /* We need to round up when dividing by raid_disks to
3440          * get the stride size.
3441          */
3442         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3443
3444         conf->dev_sectors = size << conf->geo.chunk_shift;
3445
3446         if (conf->geo.far_offset)
3447                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3448         else {
3449                 sector_div(size, conf->geo.far_copies);
3450                 conf->geo.stride = size << conf->geo.chunk_shift;
3451         }
3452 }
3453
3454 enum geo_type {geo_new, geo_old, geo_start};
3455 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3456 {
3457         int nc, fc, fo;
3458         int layout, chunk, disks;
3459         switch (new) {
3460         case geo_old:
3461                 layout = mddev->layout;
3462                 chunk = mddev->chunk_sectors;
3463                 disks = mddev->raid_disks - mddev->delta_disks;
3464                 break;
3465         case geo_new:
3466                 layout = mddev->new_layout;
3467                 chunk = mddev->new_chunk_sectors;
3468                 disks = mddev->raid_disks;
3469                 break;
3470         default: /* avoid 'may be unused' warnings */
3471         case geo_start: /* new when starting reshape - raid_disks not
3472                          * updated yet. */
3473                 layout = mddev->new_layout;
3474                 chunk = mddev->new_chunk_sectors;
3475                 disks = mddev->raid_disks + mddev->delta_disks;
3476                 break;
3477         }
3478         if (layout >> 18)
3479                 return -1;
3480         if (chunk < (PAGE_SIZE >> 9) ||
3481             !is_power_of_2(chunk))
3482                 return -2;
3483         nc = layout & 255;
3484         fc = (layout >> 8) & 255;
3485         fo = layout & (1<<16);
3486         geo->raid_disks = disks;
3487         geo->near_copies = nc;
3488         geo->far_copies = fc;
3489         geo->far_offset = fo;
3490         geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3491         geo->chunk_mask = chunk - 1;
3492         geo->chunk_shift = ffz(~chunk);
3493         return nc*fc;
3494 }
3495
3496 static struct r10conf *setup_conf(struct mddev *mddev)
3497 {
3498         struct r10conf *conf = NULL;
3499         int err = -EINVAL;
3500         struct geom geo;
3501         int copies;
3502
3503         copies = setup_geo(&geo, mddev, geo_new);
3504
3505         if (copies == -2) {
3506                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3507                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3508                        mdname(mddev), PAGE_SIZE);
3509                 goto out;
3510         }
3511
3512         if (copies < 2 || copies > mddev->raid_disks) {
3513                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3514                        mdname(mddev), mddev->new_layout);
3515                 goto out;
3516         }
3517
3518         err = -ENOMEM;
3519         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3520         if (!conf)
3521                 goto out;
3522
3523         /* FIXME calc properly */
3524         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3525                                                             max(0,mddev->delta_disks)),
3526                                 GFP_KERNEL);
3527         if (!conf->mirrors)
3528                 goto out;
3529
3530         conf->tmppage = alloc_page(GFP_KERNEL);
3531         if (!conf->tmppage)
3532                 goto out;
3533
3534         conf->geo = geo;
3535         conf->copies = copies;
3536         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3537                                            r10bio_pool_free, conf);
3538         if (!conf->r10bio_pool)
3539                 goto out;
3540
3541         calc_sectors(conf, mddev->dev_sectors);
3542         if (mddev->reshape_position == MaxSector) {
3543                 conf->prev = conf->geo;
3544                 conf->reshape_progress = MaxSector;
3545         } else {
3546                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3547                         err = -EINVAL;
3548                         goto out;
3549                 }
3550                 conf->reshape_progress = mddev->reshape_position;
3551                 if (conf->prev.far_offset)
3552                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3553                 else
3554                         /* far_copies must be 1 */
3555                         conf->prev.stride = conf->dev_sectors;
3556         }
3557         spin_lock_init(&conf->device_lock);
3558         INIT_LIST_HEAD(&conf->retry_list);
3559
3560         spin_lock_init(&conf->resync_lock);
3561         init_waitqueue_head(&conf->wait_barrier);
3562
3563         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3564         if (!conf->thread)
3565                 goto out;
3566
3567         conf->mddev = mddev;
3568         return conf;
3569
3570  out:
3571         if (err == -ENOMEM)
3572                 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3573                        mdname(mddev));
3574         if (conf) {
3575                 if (conf->r10bio_pool)
3576                         mempool_destroy(conf->r10bio_pool);
3577                 kfree(conf->mirrors);
3578                 safe_put_page(conf->tmppage);
3579                 kfree(conf);
3580         }
3581         return ERR_PTR(err);
3582 }
3583
3584 static int run(struct mddev *mddev)
3585 {
3586         struct r10conf *conf;
3587         int i, disk_idx, chunk_size;
3588         struct raid10_info *disk;
3589         struct md_rdev *rdev;
3590         sector_t size;
3591         sector_t min_offset_diff = 0;
3592         int first = 1;
3593         bool discard_supported = false;
3594
3595         if (mddev->private == NULL) {
3596                 conf = setup_conf(mddev);
3597                 if (IS_ERR(conf))
3598                         return PTR_ERR(conf);
3599                 mddev->private = conf;
3600         }
3601         conf = mddev->private;
3602         if (!conf)
3603                 goto out;
3604
3605         mddev->thread = conf->thread;
3606         conf->thread = NULL;
3607
3608         chunk_size = mddev->chunk_sectors << 9;
3609         if (mddev->queue) {
3610                 blk_queue_max_discard_sectors(mddev->queue,
3611                                               mddev->chunk_sectors);
3612                 blk_queue_max_write_same_sectors(mddev->queue,
3613                                                  mddev->chunk_sectors);
3614                 blk_queue_io_min(mddev->queue, chunk_size);
3615                 if (conf->geo.raid_disks % conf->geo.near_copies)
3616                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3617                 else
3618                         blk_queue_io_opt(mddev->queue, chunk_size *
3619                                          (conf->geo.raid_disks / conf->geo.near_copies));
3620         }
3621
3622         rdev_for_each(rdev, mddev) {
3623                 long long diff;
3624                 struct request_queue *q;
3625
3626                 disk_idx = rdev->raid_disk;
3627                 if (disk_idx < 0)
3628                         continue;
3629                 if (disk_idx >= conf->geo.raid_disks &&
3630                     disk_idx >= conf->prev.raid_disks)
3631                         continue;
3632                 disk = conf->mirrors + disk_idx;
3633
3634                 if (test_bit(Replacement, &rdev->flags)) {
3635                         if (disk->replacement)
3636                                 goto out_free_conf;
3637                         disk->replacement = rdev;
3638                 } else {
3639                         if (disk->rdev)
3640                                 goto out_free_conf;
3641                         disk->rdev = rdev;
3642                 }
3643                 q = bdev_get_queue(rdev->bdev);
3644                 if (q->merge_bvec_fn)
3645                         mddev->merge_check_needed = 1;
3646                 diff = (rdev->new_data_offset - rdev->data_offset);
3647                 if (!mddev->reshape_backwards)
3648                         diff = -diff;
3649                 if (diff < 0)
3650                         diff = 0;
3651                 if (first || diff < min_offset_diff)
3652                         min_offset_diff = diff;
3653
3654                 if (mddev->gendisk)
3655                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3656                                           rdev->data_offset << 9);
3657
3658                 disk->head_position = 0;
3659
3660                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3661                         discard_supported = true;
3662         }
3663
3664         if (mddev->queue) {
3665                 if (discard_supported)
3666                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3667                                                 mddev->queue);
3668                 else
3669                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3670                                                   mddev->queue);
3671         }
3672         /* need to check that every block has at least one working mirror */
3673         if (!enough(conf, -1)) {
3674                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3675                        mdname(mddev));
3676                 goto out_free_conf;
3677         }
3678
3679         if (conf->reshape_progress != MaxSector) {
3680                 /* must ensure that shape change is supported */
3681                 if (conf->geo.far_copies != 1 &&
3682                     conf->geo.far_offset == 0)
3683                         goto out_free_conf;
3684                 if (conf->prev.far_copies != 1 &&
3685                     conf->geo.far_offset == 0)
3686                         goto out_free_conf;
3687         }
3688
3689         mddev->degraded = 0;
3690         for (i = 0;
3691              i < conf->geo.raid_disks
3692                      || i < conf->prev.raid_disks;
3693              i++) {
3694
3695                 disk = conf->mirrors + i;
3696
3697                 if (!disk->rdev && disk->replacement) {
3698                         /* The replacement is all we have - use it */
3699                         disk->rdev = disk->replacement;
3700                         disk->replacement = NULL;
3701                         clear_bit(Replacement, &disk->rdev->flags);
3702                 }
3703
3704                 if (!disk->rdev ||
3705                     !test_bit(In_sync, &disk->rdev->flags)) {
3706                         disk->head_position = 0;
3707                         mddev->degraded++;
3708                         if (disk->rdev)
3709                                 conf->fullsync = 1;
3710                 }
3711                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3712         }
3713
3714         if (mddev->recovery_cp != MaxSector)
3715                 printk(KERN_NOTICE "md/raid10:%s: not clean"
3716                        " -- starting background reconstruction\n",
3717                        mdname(mddev));
3718         printk(KERN_INFO
3719                 "md/raid10:%s: active with %d out of %d devices\n",
3720                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3721                 conf->geo.raid_disks);
3722         /*
3723          * Ok, everything is just fine now
3724          */
3725         mddev->dev_sectors = conf->dev_sectors;
3726         size = raid10_size(mddev, 0, 0);
3727         md_set_array_sectors(mddev, size);
3728         mddev->resync_max_sectors = size;
3729
3730         if (mddev->queue) {
3731                 int stripe = conf->geo.raid_disks *
3732                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3733                 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3734                 mddev->queue->backing_dev_info.congested_data = mddev;
3735
3736                 /* Calculate max read-ahead size.
3737                  * We need to readahead at least twice a whole stripe....
3738                  * maybe...
3739                  */
3740                 stripe /= conf->geo.near_copies;
3741                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3742                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3743                 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3744         }
3745
3746
3747         if (md_integrity_register(mddev))
3748                 goto out_free_conf;
3749
3750         if (conf->reshape_progress != MaxSector) {
3751                 unsigned long before_length, after_length;
3752
3753                 before_length = ((1 << conf->prev.chunk_shift) *
3754                                  conf->prev.far_copies);
3755                 after_length = ((1 << conf->geo.chunk_shift) *
3756                                 conf->geo.far_copies);
3757
3758                 if (max(before_length, after_length) > min_offset_diff) {
3759                         /* This cannot work */
3760                         printk("md/raid10: offset difference not enough to continue reshape\n");
3761                         goto out_free_conf;
3762                 }
3763                 conf->offset_diff = min_offset_diff;
3764
3765                 conf->reshape_safe = conf->reshape_progress;
3766                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3767                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3768                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3769                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3770                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3771                                                         "reshape");
3772         }
3773
3774         return 0;
3775
3776 out_free_conf:
3777         md_unregister_thread(&mddev->thread);
3778         if (conf->r10bio_pool)
3779                 mempool_destroy(conf->r10bio_pool);
3780         safe_put_page(conf->tmppage);
3781         kfree(conf->mirrors);
3782         kfree(conf);
3783         mddev->private = NULL;
3784 out:
3785         return -EIO;
3786 }
3787
3788 static int stop(struct mddev *mddev)
3789 {
3790         struct r10conf *conf = mddev->private;
3791
3792         raise_barrier(conf, 0);
3793         lower_barrier(conf);
3794
3795         md_unregister_thread(&mddev->thread);
3796         if (mddev->queue)
3797                 /* the unplug fn references 'conf'*/
3798                 blk_sync_queue(mddev->queue);
3799
3800         if (conf->r10bio_pool)
3801                 mempool_destroy(conf->r10bio_pool);
3802         safe_put_page(conf->tmppage);
3803         kfree(conf->mirrors);
3804         kfree(conf);
3805         mddev->private = NULL;
3806         return 0;
3807 }
3808
3809 static void raid10_quiesce(struct mddev *mddev, int state)
3810 {
3811         struct r10conf *conf = mddev->private;
3812
3813         switch(state) {
3814         case 1:
3815                 raise_barrier(conf, 0);
3816                 break;
3817         case 0:
3818                 lower_barrier(conf);
3819                 break;
3820         }
3821 }
3822
3823 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3824 {
3825         /* Resize of 'far' arrays is not supported.
3826          * For 'near' and 'offset' arrays we can set the
3827          * number of sectors used to be an appropriate multiple
3828          * of the chunk size.
3829          * For 'offset', this is far_copies*chunksize.
3830          * For 'near' the multiplier is the LCM of
3831          * near_copies and raid_disks.
3832          * So if far_copies > 1 && !far_offset, fail.
3833          * Else find LCM(raid_disks, near_copy)*far_copies and
3834          * multiply by chunk_size.  Then round to this number.
3835          * This is mostly done by raid10_size()
3836          */
3837         struct r10conf *conf = mddev->private;
3838         sector_t oldsize, size;
3839
3840         if (mddev->reshape_position != MaxSector)
3841                 return -EBUSY;
3842
3843         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3844                 return -EINVAL;
3845
3846         oldsize = raid10_size(mddev, 0, 0);
3847         size = raid10_size(mddev, sectors, 0);
3848         if (mddev->external_size &&
3849             mddev->array_sectors > size)
3850                 return -EINVAL;
3851         if (mddev->bitmap) {
3852                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3853                 if (ret)
3854                         return ret;
3855         }
3856         md_set_array_sectors(mddev, size);
3857         set_capacity(mddev->gendisk, mddev->array_sectors);
3858         revalidate_disk(mddev->gendisk);
3859         if (sectors > mddev->dev_sectors &&
3860             mddev->recovery_cp > oldsize) {
3861                 mddev->recovery_cp = oldsize;
3862                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3863         }
3864         calc_sectors(conf, sectors);
3865         mddev->dev_sectors = conf->dev_sectors;
3866         mddev->resync_max_sectors = size;
3867         return 0;
3868 }
3869
3870 static void *raid10_takeover_raid0(struct mddev *mddev)
3871 {
3872         struct md_rdev *rdev;
3873         struct r10conf *conf;
3874
3875         if (mddev->degraded > 0) {
3876                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3877                        mdname(mddev));
3878                 return ERR_PTR(-EINVAL);
3879         }
3880
3881         /* Set new parameters */
3882         mddev->new_level = 10;
3883         /* new layout: far_copies = 1, near_copies = 2 */
3884         mddev->new_layout = (1<<8) + 2;
3885         mddev->new_chunk_sectors = mddev->chunk_sectors;
3886         mddev->delta_disks = mddev->raid_disks;
3887         mddev->raid_disks *= 2;
3888         /* make sure it will be not marked as dirty */
3889         mddev->recovery_cp = MaxSector;
3890
3891         conf = setup_conf(mddev);
3892         if (!IS_ERR(conf)) {
3893                 rdev_for_each(rdev, mddev)
3894                         if (rdev->raid_disk >= 0)
3895                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3896                 conf->barrier = 1;
3897         }
3898
3899         return conf;
3900 }
3901
3902 static void *raid10_takeover(struct mddev *mddev)
3903 {
3904         struct r0conf *raid0_conf;
3905
3906         /* raid10 can take over:
3907          *  raid0 - providing it has only two drives
3908          */
3909         if (mddev->level == 0) {
3910                 /* for raid0 takeover only one zone is supported */
3911                 raid0_conf = mddev->private;
3912                 if (raid0_conf->nr_strip_zones > 1) {
3913                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3914                                " with more than one zone.\n",
3915                                mdname(mddev));
3916                         return ERR_PTR(-EINVAL);
3917                 }
3918                 return raid10_takeover_raid0(mddev);
3919         }
3920         return ERR_PTR(-EINVAL);
3921 }
3922
3923 static int raid10_check_reshape(struct mddev *mddev)
3924 {
3925         /* Called when there is a request to change
3926          * - layout (to ->new_layout)
3927          * - chunk size (to ->new_chunk_sectors)
3928          * - raid_disks (by delta_disks)
3929          * or when trying to restart a reshape that was ongoing.
3930          *
3931          * We need to validate the request and possibly allocate
3932          * space if that might be an issue later.
3933          *
3934          * Currently we reject any reshape of a 'far' mode array,
3935          * allow chunk size to change if new is generally acceptable,
3936          * allow raid_disks to increase, and allow
3937          * a switch between 'near' mode and 'offset' mode.
3938          */
3939         struct r10conf *conf = mddev->private;
3940         struct geom geo;
3941
3942         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3943                 return -EINVAL;
3944
3945         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3946                 /* mustn't change number of copies */
3947                 return -EINVAL;
3948         if (geo.far_copies > 1 && !geo.far_offset)
3949                 /* Cannot switch to 'far' mode */
3950                 return -EINVAL;
3951
3952         if (mddev->array_sectors & geo.chunk_mask)
3953                         /* not factor of array size */
3954                         return -EINVAL;
3955
3956         if (!enough(conf, -1))
3957                 return -EINVAL;
3958
3959         kfree(conf->mirrors_new);
3960         conf->mirrors_new = NULL;
3961         if (mddev->delta_disks > 0) {
3962                 /* allocate new 'mirrors' list */
3963                 conf->mirrors_new = kzalloc(
3964                         sizeof(struct raid10_info)
3965                         *(mddev->raid_disks +
3966                           mddev->delta_disks),
3967                         GFP_KERNEL);
3968                 if (!conf->mirrors_new)
3969                         return -ENOMEM;
3970         }
3971         return 0;
3972 }
3973
3974 /*
3975  * Need to check if array has failed when deciding whether to:
3976  *  - start an array
3977  *  - remove non-faulty devices
3978  *  - add a spare
3979  *  - allow a reshape
3980  * This determination is simple when no reshape is happening.
3981  * However if there is a reshape, we need to carefully check
3982  * both the before and after sections.
3983  * This is because some failed devices may only affect one
3984  * of the two sections, and some non-in_sync devices may
3985  * be insync in the section most affected by failed devices.
3986  */
3987 static int calc_degraded(struct r10conf *conf)
3988 {
3989         int degraded, degraded2;
3990         int i;
3991
3992         rcu_read_lock();
3993         degraded = 0;
3994         /* 'prev' section first */
3995         for (i = 0; i < conf->prev.raid_disks; i++) {
3996                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3997                 if (!rdev || test_bit(Faulty, &rdev->flags))
3998                         degraded++;
3999                 else if (!test_bit(In_sync, &rdev->flags))
4000                         /* When we can reduce the number of devices in
4001                          * an array, this might not contribute to
4002                          * 'degraded'.  It does now.
4003                          */
4004                         degraded++;
4005         }
4006         rcu_read_unlock();
4007         if (conf->geo.raid_disks == conf->prev.raid_disks)
4008                 return degraded;
4009         rcu_read_lock();
4010         degraded2 = 0;
4011         for (i = 0; i < conf->geo.raid_disks; i++) {
4012                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4013                 if (!rdev || test_bit(Faulty, &rdev->flags))
4014                         degraded2++;
4015                 else if (!test_bit(In_sync, &rdev->flags)) {
4016                         /* If reshape is increasing the number of devices,
4017                          * this section has already been recovered, so
4018                          * it doesn't contribute to degraded.
4019                          * else it does.
4020                          */
4021                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4022                                 degraded2++;
4023                 }
4024         }
4025         rcu_read_unlock();
4026         if (degraded2 > degraded)
4027                 return degraded2;
4028         return degraded;
4029 }
4030
4031 static int raid10_start_reshape(struct mddev *mddev)
4032 {
4033         /* A 'reshape' has been requested. This commits
4034          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4035          * This also checks if there are enough spares and adds them
4036          * to the array.
4037          * We currently require enough spares to make the final
4038          * array non-degraded.  We also require that the difference
4039          * between old and new data_offset - on each device - is
4040          * enough that we never risk over-writing.
4041          */
4042
4043         unsigned long before_length, after_length;
4044         sector_t min_offset_diff = 0;
4045         int first = 1;
4046         struct geom new;
4047         struct r10conf *conf = mddev->private;
4048         struct md_rdev *rdev;
4049         int spares = 0;
4050         int ret;
4051
4052         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4053                 return -EBUSY;
4054
4055         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4056                 return -EINVAL;
4057
4058         before_length = ((1 << conf->prev.chunk_shift) *
4059                          conf->prev.far_copies);
4060         after_length = ((1 << conf->geo.chunk_shift) *
4061                         conf->geo.far_copies);
4062
4063         rdev_for_each(rdev, mddev) {
4064                 if (!test_bit(In_sync, &rdev->flags)
4065                     && !test_bit(Faulty, &rdev->flags))
4066                         spares++;
4067                 if (rdev->raid_disk >= 0) {
4068                         long long diff = (rdev->new_data_offset
4069                                           - rdev->data_offset);
4070                         if (!mddev->reshape_backwards)
4071                                 diff = -diff;
4072                         if (diff < 0)
4073                                 diff = 0;
4074                         if (first || diff < min_offset_diff)
4075                                 min_offset_diff = diff;
4076                 }
4077         }
4078
4079         if (max(before_length, after_length) > min_offset_diff)
4080                 return -EINVAL;
4081
4082         if (spares < mddev->delta_disks)
4083                 return -EINVAL;
4084
4085         conf->offset_diff = min_offset_diff;
4086         spin_lock_irq(&conf->device_lock);
4087         if (conf->mirrors_new) {
4088                 memcpy(conf->mirrors_new, conf->mirrors,
4089                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4090                 smp_mb();
4091                 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4092                 conf->mirrors_old = conf->mirrors;
4093                 conf->mirrors = conf->mirrors_new;
4094                 conf->mirrors_new = NULL;
4095         }
4096         setup_geo(&conf->geo, mddev, geo_start);
4097         smp_mb();
4098         if (mddev->reshape_backwards) {
4099                 sector_t size = raid10_size(mddev, 0, 0);
4100                 if (size < mddev->array_sectors) {
4101                         spin_unlock_irq(&conf->device_lock);
4102                         printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4103                                mdname(mddev));
4104                         return -EINVAL;
4105                 }
4106                 mddev->resync_max_sectors = size;
4107                 conf->reshape_progress = size;
4108         } else
4109                 conf->reshape_progress = 0;
4110         spin_unlock_irq(&conf->device_lock);
4111
4112         if (mddev->delta_disks && mddev->bitmap) {
4113                 ret = bitmap_resize(mddev->bitmap,
4114                                     raid10_size(mddev, 0,
4115                                                 conf->geo.raid_disks),
4116                                     0, 0);
4117                 if (ret)
4118                         goto abort;
4119         }
4120         if (mddev->delta_disks > 0) {
4121                 rdev_for_each(rdev, mddev)
4122                         if (rdev->raid_disk < 0 &&
4123                             !test_bit(Faulty, &rdev->flags)) {
4124                                 if (raid10_add_disk(mddev, rdev) == 0) {
4125                                         if (rdev->raid_disk >=
4126                                             conf->prev.raid_disks)
4127                                                 set_bit(In_sync, &rdev->flags);
4128                                         else
4129                                                 rdev->recovery_offset = 0;
4130
4131                                         if (sysfs_link_rdev(mddev, rdev))
4132                                                 /* Failure here  is OK */;
4133                                 }
4134                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4135                                    && !test_bit(Faulty, &rdev->flags)) {
4136                                 /* This is a spare that was manually added */
4137                                 set_bit(In_sync, &rdev->flags);
4138                         }
4139         }
4140         /* When a reshape changes the number of devices,
4141          * ->degraded is measured against the larger of the
4142          * pre and  post numbers.
4143          */
4144         spin_lock_irq(&conf->device_lock);
4145         mddev->degraded = calc_degraded(conf);
4146         spin_unlock_irq(&conf->device_lock);
4147         mddev->raid_disks = conf->geo.raid_disks;
4148         mddev->reshape_position = conf->reshape_progress;
4149         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4150
4151         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4152         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4153         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4154         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4155
4156         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4157                                                 "reshape");
4158         if (!mddev->sync_thread) {
4159                 ret = -EAGAIN;
4160                 goto abort;
4161         }
4162         conf->reshape_checkpoint = jiffies;
4163         md_wakeup_thread(mddev->sync_thread);
4164         md_new_event(mddev);
4165         return 0;
4166
4167 abort:
4168         mddev->recovery = 0;
4169         spin_lock_irq(&conf->device_lock);
4170         conf->geo = conf->prev;
4171         mddev->raid_disks = conf->geo.raid_disks;
4172         rdev_for_each(rdev, mddev)
4173                 rdev->new_data_offset = rdev->data_offset;
4174         smp_wmb();
4175         conf->reshape_progress = MaxSector;
4176         mddev->reshape_position = MaxSector;
4177         spin_unlock_irq(&conf->device_lock);
4178         return ret;
4179 }
4180
4181 /* Calculate the last device-address that could contain
4182  * any block from the chunk that includes the array-address 's'
4183  * and report the next address.
4184  * i.e. the address returned will be chunk-aligned and after
4185  * any data that is in the chunk containing 's'.
4186  */
4187 static sector_t last_dev_address(sector_t s, struct geom *geo)
4188 {
4189         s = (s | geo->chunk_mask) + 1;
4190         s >>= geo->chunk_shift;
4191         s *= geo->near_copies;
4192         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4193         s *= geo->far_copies;
4194         s <<= geo->chunk_shift;
4195         return s;
4196 }
4197
4198 /* Calculate the first device-address that could contain
4199  * any block from the chunk that includes the array-address 's'.
4200  * This too will be the start of a chunk
4201  */
4202 static sector_t first_dev_address(sector_t s, struct geom *geo)
4203 {
4204         s >>= geo->chunk_shift;
4205         s *= geo->near_copies;
4206         sector_div(s, geo->raid_disks);
4207         s *= geo->far_copies;
4208         s <<= geo->chunk_shift;
4209         return s;
4210 }
4211
4212 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4213                                 int *skipped)
4214 {
4215         /* We simply copy at most one chunk (smallest of old and new)
4216          * at a time, possibly less if that exceeds RESYNC_PAGES,
4217          * or we hit a bad block or something.
4218          * This might mean we pause for normal IO in the middle of
4219          * a chunk, but that is not a problem was mddev->reshape_position
4220          * can record any location.
4221          *
4222          * If we will want to write to a location that isn't
4223          * yet recorded as 'safe' (i.e. in metadata on disk) then
4224          * we need to flush all reshape requests and update the metadata.
4225          *
4226          * When reshaping forwards (e.g. to more devices), we interpret
4227          * 'safe' as the earliest block which might not have been copied
4228          * down yet.  We divide this by previous stripe size and multiply
4229          * by previous stripe length to get lowest device offset that we
4230          * cannot write to yet.
4231          * We interpret 'sector_nr' as an address that we want to write to.
4232          * From this we use last_device_address() to find where we might
4233          * write to, and first_device_address on the  'safe' position.
4234          * If this 'next' write position is after the 'safe' position,
4235          * we must update the metadata to increase the 'safe' position.
4236          *
4237          * When reshaping backwards, we round in the opposite direction
4238          * and perform the reverse test:  next write position must not be
4239          * less than current safe position.
4240          *
4241          * In all this the minimum difference in data offsets
4242          * (conf->offset_diff - always positive) allows a bit of slack,
4243          * so next can be after 'safe', but not by more than offset_disk
4244          *
4245          * We need to prepare all the bios here before we start any IO
4246          * to ensure the size we choose is acceptable to all devices.
4247          * The means one for each copy for write-out and an extra one for
4248          * read-in.
4249          * We store the read-in bio in ->master_bio and the others in
4250          * ->devs[x].bio and ->devs[x].repl_bio.
4251          */
4252         struct r10conf *conf = mddev->private;
4253         struct r10bio *r10_bio;
4254         sector_t next, safe, last;
4255         int max_sectors;
4256         int nr_sectors;
4257         int s;
4258         struct md_rdev *rdev;
4259         int need_flush = 0;
4260         struct bio *blist;
4261         struct bio *bio, *read_bio;
4262         int sectors_done = 0;
4263
4264         if (sector_nr == 0) {
4265                 /* If restarting in the middle, skip the initial sectors */
4266                 if (mddev->reshape_backwards &&
4267                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4268                         sector_nr = (raid10_size(mddev, 0, 0)
4269                                      - conf->reshape_progress);
4270                 } else if (!mddev->reshape_backwards &&
4271                            conf->reshape_progress > 0)
4272                         sector_nr = conf->reshape_progress;
4273                 if (sector_nr) {
4274                         mddev->curr_resync_completed = sector_nr;
4275                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4276                         *skipped = 1;
4277                         return sector_nr;
4278                 }
4279         }
4280
4281         /* We don't use sector_nr to track where we are up to
4282          * as that doesn't work well for ->reshape_backwards.
4283          * So just use ->reshape_progress.
4284          */
4285         if (mddev->reshape_backwards) {
4286                 /* 'next' is the earliest device address that we might
4287                  * write to for this chunk in the new layout
4288                  */
4289                 next = first_dev_address(conf->reshape_progress - 1,
4290                                          &conf->geo);
4291
4292                 /* 'safe' is the last device address that we might read from
4293                  * in the old layout after a restart
4294                  */
4295                 safe = last_dev_address(conf->reshape_safe - 1,
4296                                         &conf->prev);
4297
4298                 if (next + conf->offset_diff < safe)
4299                         need_flush = 1;
4300
4301                 last = conf->reshape_progress - 1;
4302                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4303                                                & conf->prev.chunk_mask);
4304                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4305                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4306         } else {
4307                 /* 'next' is after the last device address that we
4308                  * might write to for this chunk in the new layout
4309                  */
4310                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4311
4312                 /* 'safe' is the earliest device address that we might
4313                  * read from in the old layout after a restart
4314                  */
4315                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4316
4317                 /* Need to update metadata if 'next' might be beyond 'safe'
4318                  * as that would possibly corrupt data
4319                  */
4320                 if (next > safe + conf->offset_diff)
4321                         need_flush = 1;
4322
4323                 sector_nr = conf->reshape_progress;
4324                 last  = sector_nr | (conf->geo.chunk_mask
4325                                      & conf->prev.chunk_mask);
4326
4327                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4328                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4329         }
4330
4331         if (need_flush ||
4332             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4333                 /* Need to update reshape_position in metadata */
4334                 wait_barrier(conf);
4335                 mddev->reshape_position = conf->reshape_progress;
4336                 if (mddev->reshape_backwards)
4337                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4338                                 - conf->reshape_progress;
4339                 else
4340                         mddev->curr_resync_completed = conf->reshape_progress;
4341                 conf->reshape_checkpoint = jiffies;
4342                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4343                 md_wakeup_thread(mddev->thread);
4344                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4345                            kthread_should_stop());
4346                 conf->reshape_safe = mddev->reshape_position;
4347                 allow_barrier(conf);
4348         }
4349
4350 read_more:
4351         /* Now schedule reads for blocks from sector_nr to last */
4352         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4353         raise_barrier(conf, sectors_done != 0);
4354         atomic_set(&r10_bio->remaining, 0);
4355         r10_bio->mddev = mddev;
4356         r10_bio->sector = sector_nr;
4357         set_bit(R10BIO_IsReshape, &r10_bio->state);
4358         r10_bio->sectors = last - sector_nr + 1;
4359         rdev = read_balance(conf, r10_bio, &max_sectors);
4360         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4361
4362         if (!rdev) {
4363                 /* Cannot read from here, so need to record bad blocks
4364                  * on all the target devices.
4365                  */
4366                 // FIXME
4367                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4368                 return sectors_done;
4369         }
4370
4371         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4372
4373         read_bio->bi_bdev = rdev->bdev;
4374         read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4375                                + rdev->data_offset);
4376         read_bio->bi_private = r10_bio;
4377         read_bio->bi_end_io = end_sync_read;
4378         read_bio->bi_rw = READ;
4379         read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4380         read_bio->bi_flags |= 1 << BIO_UPTODATE;
4381         read_bio->bi_vcnt = 0;
4382         read_bio->bi_size = 0;
4383         r10_bio->master_bio = read_bio;
4384         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4385
4386         /* Now find the locations in the new layout */
4387         __raid10_find_phys(&conf->geo, r10_bio);
4388
4389         blist = read_bio;
4390         read_bio->bi_next = NULL;
4391
4392         for (s = 0; s < conf->copies*2; s++) {
4393                 struct bio *b;
4394                 int d = r10_bio->devs[s/2].devnum;
4395                 struct md_rdev *rdev2;
4396                 if (s&1) {
4397                         rdev2 = conf->mirrors[d].replacement;
4398                         b = r10_bio->devs[s/2].repl_bio;
4399                 } else {
4400                         rdev2 = conf->mirrors[d].rdev;
4401                         b = r10_bio->devs[s/2].bio;
4402                 }
4403                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4404                         continue;
4405
4406                 bio_reset(b);
4407                 b->bi_bdev = rdev2->bdev;
4408                 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4409                 b->bi_private = r10_bio;
4410                 b->bi_end_io = end_reshape_write;
4411                 b->bi_rw = WRITE;
4412                 b->bi_next = blist;
4413                 blist = b;
4414         }
4415
4416         /* Now add as many pages as possible to all of these bios. */
4417
4418         nr_sectors = 0;
4419         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4420                 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4421                 int len = (max_sectors - s) << 9;
4422                 if (len > PAGE_SIZE)
4423                         len = PAGE_SIZE;
4424                 for (bio = blist; bio ; bio = bio->bi_next) {
4425                         struct bio *bio2;
4426                         if (bio_add_page(bio, page, len, 0))
4427                                 continue;
4428
4429                         /* Didn't fit, must stop */
4430                         for (bio2 = blist;
4431                              bio2 && bio2 != bio;
4432                              bio2 = bio2->bi_next) {
4433                                 /* Remove last page from this bio */
4434                                 bio2->bi_vcnt--;
4435                                 bio2->bi_size -= len;
4436                                 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4437                         }
4438                         goto bio_full;
4439                 }
4440                 sector_nr += len >> 9;
4441                 nr_sectors += len >> 9;
4442         }
4443 bio_full:
4444         r10_bio->sectors = nr_sectors;
4445
4446         /* Now submit the read */
4447         md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4448         atomic_inc(&r10_bio->remaining);
4449         read_bio->bi_next = NULL;
4450         generic_make_request(read_bio);
4451         sector_nr += nr_sectors;
4452         sectors_done += nr_sectors;
4453         if (sector_nr <= last)
4454                 goto read_more;
4455
4456         /* Now that we have done the whole section we can
4457          * update reshape_progress
4458          */
4459         if (mddev->reshape_backwards)
4460                 conf->reshape_progress -= sectors_done;
4461         else
4462                 conf->reshape_progress += sectors_done;
4463
4464         return sectors_done;
4465 }
4466
4467 static void end_reshape_request(struct r10bio *r10_bio);
4468 static int handle_reshape_read_error(struct mddev *mddev,
4469                                      struct r10bio *r10_bio);
4470 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4471 {
4472         /* Reshape read completed.  Hopefully we have a block
4473          * to write out.
4474          * If we got a read error then we do sync 1-page reads from
4475          * elsewhere until we find the data - or give up.
4476          */
4477         struct r10conf *conf = mddev->private;
4478         int s;
4479
4480         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4481                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4482                         /* Reshape has been aborted */
4483                         md_done_sync(mddev, r10_bio->sectors, 0);
4484                         return;
4485                 }
4486
4487         /* We definitely have the data in the pages, schedule the
4488          * writes.
4489          */
4490         atomic_set(&r10_bio->remaining, 1);
4491         for (s = 0; s < conf->copies*2; s++) {
4492                 struct bio *b;
4493                 int d = r10_bio->devs[s/2].devnum;
4494                 struct md_rdev *rdev;
4495                 if (s&1) {
4496                         rdev = conf->mirrors[d].replacement;
4497                         b = r10_bio->devs[s/2].repl_bio;
4498                 } else {
4499                         rdev = conf->mirrors[d].rdev;
4500                         b = r10_bio->devs[s/2].bio;
4501                 }
4502                 if (!rdev || test_bit(Faulty, &rdev->flags))
4503                         continue;
4504                 atomic_inc(&rdev->nr_pending);
4505                 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4506                 atomic_inc(&r10_bio->remaining);
4507                 b->bi_next = NULL;
4508                 generic_make_request(b);
4509         }
4510         end_reshape_request(r10_bio);
4511 }
4512
4513 static void end_reshape(struct r10conf *conf)
4514 {
4515         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4516                 return;
4517
4518         spin_lock_irq(&conf->device_lock);
4519         conf->prev = conf->geo;
4520         md_finish_reshape(conf->mddev);
4521         smp_wmb();
4522         conf->reshape_progress = MaxSector;
4523         spin_unlock_irq(&conf->device_lock);
4524
4525         /* read-ahead size must cover two whole stripes, which is
4526          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4527          */
4528         if (conf->mddev->queue) {
4529                 int stripe = conf->geo.raid_disks *
4530                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4531                 stripe /= conf->geo.near_copies;
4532                 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4533                         conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4534         }
4535         conf->fullsync = 0;
4536 }
4537
4538
4539 static int handle_reshape_read_error(struct mddev *mddev,
4540                                      struct r10bio *r10_bio)
4541 {
4542         /* Use sync reads to get the blocks from somewhere else */
4543         int sectors = r10_bio->sectors;
4544         struct r10conf *conf = mddev->private;
4545         struct {
4546                 struct r10bio r10_bio;
4547                 struct r10dev devs[conf->copies];
4548         } on_stack;
4549         struct r10bio *r10b = &on_stack.r10_bio;
4550         int slot = 0;
4551         int idx = 0;
4552         struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4553
4554         r10b->sector = r10_bio->sector;
4555         __raid10_find_phys(&conf->prev, r10b);
4556
4557         while (sectors) {
4558                 int s = sectors;
4559                 int success = 0;
4560                 int first_slot = slot;
4561
4562                 if (s > (PAGE_SIZE >> 9))
4563                         s = PAGE_SIZE >> 9;
4564
4565                 while (!success) {
4566                         int d = r10b->devs[slot].devnum;
4567                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4568                         sector_t addr;
4569                         if (rdev == NULL ||
4570                             test_bit(Faulty, &rdev->flags) ||
4571                             !test_bit(In_sync, &rdev->flags))
4572                                 goto failed;
4573
4574                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4575                         success = sync_page_io(rdev,
4576                                                addr,
4577                                                s << 9,
4578                                                bvec[idx].bv_page,
4579                                                READ, false);
4580                         if (success)
4581                                 break;
4582                 failed:
4583                         slot++;
4584                         if (slot >= conf->copies)
4585                                 slot = 0;
4586                         if (slot == first_slot)
4587                                 break;
4588                 }
4589                 if (!success) {
4590                         /* couldn't read this block, must give up */
4591                         set_bit(MD_RECOVERY_INTR,
4592                                 &mddev->recovery);
4593                         return -EIO;
4594                 }
4595                 sectors -= s;
4596                 idx++;
4597         }
4598         return 0;
4599 }
4600
4601 static void end_reshape_write(struct bio *bio, int error)
4602 {
4603         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4604         struct r10bio *r10_bio = bio->bi_private;
4605         struct mddev *mddev = r10_bio->mddev;
4606         struct r10conf *conf = mddev->private;
4607         int d;
4608         int slot;
4609         int repl;
4610         struct md_rdev *rdev = NULL;
4611
4612         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4613         if (repl)
4614                 rdev = conf->mirrors[d].replacement;
4615         if (!rdev) {
4616                 smp_mb();
4617                 rdev = conf->mirrors[d].rdev;
4618         }
4619
4620         if (!uptodate) {
4621                 /* FIXME should record badblock */
4622                 md_error(mddev, rdev);
4623         }
4624
4625         rdev_dec_pending(rdev, mddev);
4626         end_reshape_request(r10_bio);
4627 }
4628
4629 static void end_reshape_request(struct r10bio *r10_bio)
4630 {
4631         if (!atomic_dec_and_test(&r10_bio->remaining))
4632                 return;
4633         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4634         bio_put(r10_bio->master_bio);
4635         put_buf(r10_bio);
4636 }
4637
4638 static void raid10_finish_reshape(struct mddev *mddev)
4639 {
4640         struct r10conf *conf = mddev->private;
4641
4642         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4643                 return;
4644
4645         if (mddev->delta_disks > 0) {
4646                 sector_t size = raid10_size(mddev, 0, 0);
4647                 md_set_array_sectors(mddev, size);
4648                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4649                         mddev->recovery_cp = mddev->resync_max_sectors;
4650                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4651                 }
4652                 mddev->resync_max_sectors = size;
4653                 set_capacity(mddev->gendisk, mddev->array_sectors);
4654                 revalidate_disk(mddev->gendisk);
4655         } else {
4656                 int d;
4657                 for (d = conf->geo.raid_disks ;
4658                      d < conf->geo.raid_disks - mddev->delta_disks;
4659                      d++) {
4660                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4661                         if (rdev)
4662                                 clear_bit(In_sync, &rdev->flags);
4663                         rdev = conf->mirrors[d].replacement;
4664                         if (rdev)
4665                                 clear_bit(In_sync, &rdev->flags);
4666                 }
4667         }
4668         mddev->layout = mddev->new_layout;
4669         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4670         mddev->reshape_position = MaxSector;
4671         mddev->delta_disks = 0;
4672         mddev->reshape_backwards = 0;
4673 }
4674
4675 static struct md_personality raid10_personality =
4676 {
4677         .name           = "raid10",
4678         .level          = 10,
4679         .owner          = THIS_MODULE,
4680         .make_request   = make_request,
4681         .run            = run,
4682         .stop           = stop,
4683         .status         = status,
4684         .error_handler  = error,
4685         .hot_add_disk   = raid10_add_disk,
4686         .hot_remove_disk= raid10_remove_disk,
4687         .spare_active   = raid10_spare_active,
4688         .sync_request   = sync_request,
4689         .quiesce        = raid10_quiesce,
4690         .size           = raid10_size,
4691         .resize         = raid10_resize,
4692         .takeover       = raid10_takeover,
4693         .check_reshape  = raid10_check_reshape,
4694         .start_reshape  = raid10_start_reshape,
4695         .finish_reshape = raid10_finish_reshape,
4696 };
4697
4698 static int __init raid_init(void)
4699 {
4700         return register_md_personality(&raid10_personality);
4701 }
4702
4703 static void raid_exit(void)
4704 {
4705         unregister_md_personality(&raid10_personality);
4706 }
4707
4708 module_init(raid_init);
4709 module_exit(raid_exit);
4710 MODULE_LICENSE("GPL");
4711 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4712 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4713 MODULE_ALIAS("md-raid10");
4714 MODULE_ALIAS("md-level-10");
4715
4716 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);