]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/raid10.c
md/raid1{,0}: fix deadlock in bitmap_unplug.
[karo-tx-linux.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *
42  * The data to be stored is divided into chunks using chunksize.
43  * Each device is divided into far_copies sections.
44  * In each section, chunks are laid out in a style similar to raid0, but
45  * near_copies copies of each chunk is stored (each on a different drive).
46  * The starting device for each section is offset near_copies from the starting
47  * device of the previous section.
48  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
49  * drive.
50  * near_copies and far_copies must be at least one, and their product is at most
51  * raid_disks.
52  *
53  * If far_offset is true, then the far_copies are handled a bit differently.
54  * The copies are still in different stripes, but instead of be very far apart
55  * on disk, there are adjacent stripes.
56  */
57
58 /*
59  * Number of guaranteed r10bios in case of extreme VM load:
60  */
61 #define NR_RAID10_BIOS 256
62
63 /* when we get a read error on a read-only array, we redirect to another
64  * device without failing the first device, or trying to over-write to
65  * correct the read error.  To keep track of bad blocks on a per-bio
66  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
67  */
68 #define IO_BLOCKED ((struct bio *)1)
69 /* When we successfully write to a known bad-block, we need to remove the
70  * bad-block marking which must be done from process context.  So we record
71  * the success by setting devs[n].bio to IO_MADE_GOOD
72  */
73 #define IO_MADE_GOOD ((struct bio *)2)
74
75 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
76
77 /* When there are this many requests queued to be written by
78  * the raid10 thread, we become 'congested' to provide back-pressure
79  * for writeback.
80  */
81 static int max_queued_requests = 1024;
82
83 static void allow_barrier(struct r10conf *conf);
84 static void lower_barrier(struct r10conf *conf);
85 static int enough(struct r10conf *conf, int ignore);
86 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
87                                 int *skipped);
88 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
89 static void end_reshape_write(struct bio *bio, int error);
90 static void end_reshape(struct r10conf *conf);
91
92 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94         struct r10conf *conf = data;
95         int size = offsetof(struct r10bio, devs[conf->copies]);
96
97         /* allocate a r10bio with room for raid_disks entries in the
98          * bios array */
99         return kzalloc(size, gfp_flags);
100 }
101
102 static void r10bio_pool_free(void *r10_bio, void *data)
103 {
104         kfree(r10_bio);
105 }
106
107 /* Maximum size of each resync request */
108 #define RESYNC_BLOCK_SIZE (64*1024)
109 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
110 /* amount of memory to reserve for resync requests */
111 #define RESYNC_WINDOW (1024*1024)
112 /* maximum number of concurrent requests, memory permitting */
113 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
114
115 /*
116  * When performing a resync, we need to read and compare, so
117  * we need as many pages are there are copies.
118  * When performing a recovery, we need 2 bios, one for read,
119  * one for write (we recover only one drive per r10buf)
120  *
121  */
122 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
123 {
124         struct r10conf *conf = data;
125         struct page *page;
126         struct r10bio *r10_bio;
127         struct bio *bio;
128         int i, j;
129         int nalloc;
130
131         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
132         if (!r10_bio)
133                 return NULL;
134
135         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
136             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
137                 nalloc = conf->copies; /* resync */
138         else
139                 nalloc = 2; /* recovery */
140
141         /*
142          * Allocate bios.
143          */
144         for (j = nalloc ; j-- ; ) {
145                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146                 if (!bio)
147                         goto out_free_bio;
148                 r10_bio->devs[j].bio = bio;
149                 if (!conf->have_replacement)
150                         continue;
151                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
152                 if (!bio)
153                         goto out_free_bio;
154                 r10_bio->devs[j].repl_bio = bio;
155         }
156         /*
157          * Allocate RESYNC_PAGES data pages and attach them
158          * where needed.
159          */
160         for (j = 0 ; j < nalloc; j++) {
161                 struct bio *rbio = r10_bio->devs[j].repl_bio;
162                 bio = r10_bio->devs[j].bio;
163                 for (i = 0; i < RESYNC_PAGES; i++) {
164                         if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
165                                                &conf->mddev->recovery)) {
166                                 /* we can share bv_page's during recovery
167                                  * and reshape */
168                                 struct bio *rbio = r10_bio->devs[0].bio;
169                                 page = rbio->bi_io_vec[i].bv_page;
170                                 get_page(page);
171                         } else
172                                 page = alloc_page(gfp_flags);
173                         if (unlikely(!page))
174                                 goto out_free_pages;
175
176                         bio->bi_io_vec[i].bv_page = page;
177                         if (rbio)
178                                 rbio->bi_io_vec[i].bv_page = page;
179                 }
180         }
181
182         return r10_bio;
183
184 out_free_pages:
185         for ( ; i > 0 ; i--)
186                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
187         while (j--)
188                 for (i = 0; i < RESYNC_PAGES ; i++)
189                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
190         j = 0;
191 out_free_bio:
192         for ( ; j < nalloc; j++) {
193                 if (r10_bio->devs[j].bio)
194                         bio_put(r10_bio->devs[j].bio);
195                 if (r10_bio->devs[j].repl_bio)
196                         bio_put(r10_bio->devs[j].repl_bio);
197         }
198         r10bio_pool_free(r10_bio, conf);
199         return NULL;
200 }
201
202 static void r10buf_pool_free(void *__r10_bio, void *data)
203 {
204         int i;
205         struct r10conf *conf = data;
206         struct r10bio *r10bio = __r10_bio;
207         int j;
208
209         for (j=0; j < conf->copies; j++) {
210                 struct bio *bio = r10bio->devs[j].bio;
211                 if (bio) {
212                         for (i = 0; i < RESYNC_PAGES; i++) {
213                                 safe_put_page(bio->bi_io_vec[i].bv_page);
214                                 bio->bi_io_vec[i].bv_page = NULL;
215                         }
216                         bio_put(bio);
217                 }
218                 bio = r10bio->devs[j].repl_bio;
219                 if (bio)
220                         bio_put(bio);
221         }
222         r10bio_pool_free(r10bio, conf);
223 }
224
225 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
226 {
227         int i;
228
229         for (i = 0; i < conf->copies; i++) {
230                 struct bio **bio = & r10_bio->devs[i].bio;
231                 if (!BIO_SPECIAL(*bio))
232                         bio_put(*bio);
233                 *bio = NULL;
234                 bio = &r10_bio->devs[i].repl_bio;
235                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
236                         bio_put(*bio);
237                 *bio = NULL;
238         }
239 }
240
241 static void free_r10bio(struct r10bio *r10_bio)
242 {
243         struct r10conf *conf = r10_bio->mddev->private;
244
245         put_all_bios(conf, r10_bio);
246         mempool_free(r10_bio, conf->r10bio_pool);
247 }
248
249 static void put_buf(struct r10bio *r10_bio)
250 {
251         struct r10conf *conf = r10_bio->mddev->private;
252
253         mempool_free(r10_bio, conf->r10buf_pool);
254
255         lower_barrier(conf);
256 }
257
258 static void reschedule_retry(struct r10bio *r10_bio)
259 {
260         unsigned long flags;
261         struct mddev *mddev = r10_bio->mddev;
262         struct r10conf *conf = mddev->private;
263
264         spin_lock_irqsave(&conf->device_lock, flags);
265         list_add(&r10_bio->retry_list, &conf->retry_list);
266         conf->nr_queued ++;
267         spin_unlock_irqrestore(&conf->device_lock, flags);
268
269         /* wake up frozen array... */
270         wake_up(&conf->wait_barrier);
271
272         md_wakeup_thread(mddev->thread);
273 }
274
275 /*
276  * raid_end_bio_io() is called when we have finished servicing a mirrored
277  * operation and are ready to return a success/failure code to the buffer
278  * cache layer.
279  */
280 static void raid_end_bio_io(struct r10bio *r10_bio)
281 {
282         struct bio *bio = r10_bio->master_bio;
283         int done;
284         struct r10conf *conf = r10_bio->mddev->private;
285
286         if (bio->bi_phys_segments) {
287                 unsigned long flags;
288                 spin_lock_irqsave(&conf->device_lock, flags);
289                 bio->bi_phys_segments--;
290                 done = (bio->bi_phys_segments == 0);
291                 spin_unlock_irqrestore(&conf->device_lock, flags);
292         } else
293                 done = 1;
294         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
295                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
296         if (done) {
297                 bio_endio(bio, 0);
298                 /*
299                  * Wake up any possible resync thread that waits for the device
300                  * to go idle.
301                  */
302                 allow_barrier(conf);
303         }
304         free_r10bio(r10_bio);
305 }
306
307 /*
308  * Update disk head position estimator based on IRQ completion info.
309  */
310 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
311 {
312         struct r10conf *conf = r10_bio->mddev->private;
313
314         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
315                 r10_bio->devs[slot].addr + (r10_bio->sectors);
316 }
317
318 /*
319  * Find the disk number which triggered given bio
320  */
321 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
322                          struct bio *bio, int *slotp, int *replp)
323 {
324         int slot;
325         int repl = 0;
326
327         for (slot = 0; slot < conf->copies; slot++) {
328                 if (r10_bio->devs[slot].bio == bio)
329                         break;
330                 if (r10_bio->devs[slot].repl_bio == bio) {
331                         repl = 1;
332                         break;
333                 }
334         }
335
336         BUG_ON(slot == conf->copies);
337         update_head_pos(slot, r10_bio);
338
339         if (slotp)
340                 *slotp = slot;
341         if (replp)
342                 *replp = repl;
343         return r10_bio->devs[slot].devnum;
344 }
345
346 static void raid10_end_read_request(struct bio *bio, int error)
347 {
348         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
349         struct r10bio *r10_bio = bio->bi_private;
350         int slot, dev;
351         struct md_rdev *rdev;
352         struct r10conf *conf = r10_bio->mddev->private;
353
354
355         slot = r10_bio->read_slot;
356         dev = r10_bio->devs[slot].devnum;
357         rdev = r10_bio->devs[slot].rdev;
358         /*
359          * this branch is our 'one mirror IO has finished' event handler:
360          */
361         update_head_pos(slot, r10_bio);
362
363         if (uptodate) {
364                 /*
365                  * Set R10BIO_Uptodate in our master bio, so that
366                  * we will return a good error code to the higher
367                  * levels even if IO on some other mirrored buffer fails.
368                  *
369                  * The 'master' represents the composite IO operation to
370                  * user-side. So if something waits for IO, then it will
371                  * wait for the 'master' bio.
372                  */
373                 set_bit(R10BIO_Uptodate, &r10_bio->state);
374         } else {
375                 /* If all other devices that store this block have
376                  * failed, we want to return the error upwards rather
377                  * than fail the last device.  Here we redefine
378                  * "uptodate" to mean "Don't want to retry"
379                  */
380                 unsigned long flags;
381                 spin_lock_irqsave(&conf->device_lock, flags);
382                 if (!enough(conf, rdev->raid_disk))
383                         uptodate = 1;
384                 spin_unlock_irqrestore(&conf->device_lock, flags);
385         }
386         if (uptodate) {
387                 raid_end_bio_io(r10_bio);
388                 rdev_dec_pending(rdev, conf->mddev);
389         } else {
390                 /*
391                  * oops, read error - keep the refcount on the rdev
392                  */
393                 char b[BDEVNAME_SIZE];
394                 printk_ratelimited(KERN_ERR
395                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
396                                    mdname(conf->mddev),
397                                    bdevname(rdev->bdev, b),
398                                    (unsigned long long)r10_bio->sector);
399                 set_bit(R10BIO_ReadError, &r10_bio->state);
400                 reschedule_retry(r10_bio);
401         }
402 }
403
404 static void close_write(struct r10bio *r10_bio)
405 {
406         /* clear the bitmap if all writes complete successfully */
407         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
408                         r10_bio->sectors,
409                         !test_bit(R10BIO_Degraded, &r10_bio->state),
410                         0);
411         md_write_end(r10_bio->mddev);
412 }
413
414 static void one_write_done(struct r10bio *r10_bio)
415 {
416         if (atomic_dec_and_test(&r10_bio->remaining)) {
417                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
418                         reschedule_retry(r10_bio);
419                 else {
420                         close_write(r10_bio);
421                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
422                                 reschedule_retry(r10_bio);
423                         else
424                                 raid_end_bio_io(r10_bio);
425                 }
426         }
427 }
428
429 static void raid10_end_write_request(struct bio *bio, int error)
430 {
431         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
432         struct r10bio *r10_bio = bio->bi_private;
433         int dev;
434         int dec_rdev = 1;
435         struct r10conf *conf = r10_bio->mddev->private;
436         int slot, repl;
437         struct md_rdev *rdev = NULL;
438
439         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
440
441         if (repl)
442                 rdev = conf->mirrors[dev].replacement;
443         if (!rdev) {
444                 smp_rmb();
445                 repl = 0;
446                 rdev = conf->mirrors[dev].rdev;
447         }
448         /*
449          * this branch is our 'one mirror IO has finished' event handler:
450          */
451         if (!uptodate) {
452                 if (repl)
453                         /* Never record new bad blocks to replacement,
454                          * just fail it.
455                          */
456                         md_error(rdev->mddev, rdev);
457                 else {
458                         set_bit(WriteErrorSeen, &rdev->flags);
459                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
460                                 set_bit(MD_RECOVERY_NEEDED,
461                                         &rdev->mddev->recovery);
462                         set_bit(R10BIO_WriteError, &r10_bio->state);
463                         dec_rdev = 0;
464                 }
465         } else {
466                 /*
467                  * Set R10BIO_Uptodate in our master bio, so that
468                  * we will return a good error code for to the higher
469                  * levels even if IO on some other mirrored buffer fails.
470                  *
471                  * The 'master' represents the composite IO operation to
472                  * user-side. So if something waits for IO, then it will
473                  * wait for the 'master' bio.
474                  */
475                 sector_t first_bad;
476                 int bad_sectors;
477
478                 set_bit(R10BIO_Uptodate, &r10_bio->state);
479
480                 /* Maybe we can clear some bad blocks. */
481                 if (is_badblock(rdev,
482                                 r10_bio->devs[slot].addr,
483                                 r10_bio->sectors,
484                                 &first_bad, &bad_sectors)) {
485                         bio_put(bio);
486                         if (repl)
487                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
488                         else
489                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
490                         dec_rdev = 0;
491                         set_bit(R10BIO_MadeGood, &r10_bio->state);
492                 }
493         }
494
495         /*
496          *
497          * Let's see if all mirrored write operations have finished
498          * already.
499          */
500         one_write_done(r10_bio);
501         if (dec_rdev)
502                 rdev_dec_pending(rdev, conf->mddev);
503 }
504
505 /*
506  * RAID10 layout manager
507  * As well as the chunksize and raid_disks count, there are two
508  * parameters: near_copies and far_copies.
509  * near_copies * far_copies must be <= raid_disks.
510  * Normally one of these will be 1.
511  * If both are 1, we get raid0.
512  * If near_copies == raid_disks, we get raid1.
513  *
514  * Chunks are laid out in raid0 style with near_copies copies of the
515  * first chunk, followed by near_copies copies of the next chunk and
516  * so on.
517  * If far_copies > 1, then after 1/far_copies of the array has been assigned
518  * as described above, we start again with a device offset of near_copies.
519  * So we effectively have another copy of the whole array further down all
520  * the drives, but with blocks on different drives.
521  * With this layout, and block is never stored twice on the one device.
522  *
523  * raid10_find_phys finds the sector offset of a given virtual sector
524  * on each device that it is on.
525  *
526  * raid10_find_virt does the reverse mapping, from a device and a
527  * sector offset to a virtual address
528  */
529
530 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
531 {
532         int n,f;
533         sector_t sector;
534         sector_t chunk;
535         sector_t stripe;
536         int dev;
537         int slot = 0;
538
539         /* now calculate first sector/dev */
540         chunk = r10bio->sector >> geo->chunk_shift;
541         sector = r10bio->sector & geo->chunk_mask;
542
543         chunk *= geo->near_copies;
544         stripe = chunk;
545         dev = sector_div(stripe, geo->raid_disks);
546         if (geo->far_offset)
547                 stripe *= geo->far_copies;
548
549         sector += stripe << geo->chunk_shift;
550
551         /* and calculate all the others */
552         for (n = 0; n < geo->near_copies; n++) {
553                 int d = dev;
554                 sector_t s = sector;
555                 r10bio->devs[slot].addr = sector;
556                 r10bio->devs[slot].devnum = d;
557                 slot++;
558
559                 for (f = 1; f < geo->far_copies; f++) {
560                         d += geo->near_copies;
561                         if (d >= geo->raid_disks)
562                                 d -= geo->raid_disks;
563                         s += geo->stride;
564                         r10bio->devs[slot].devnum = d;
565                         r10bio->devs[slot].addr = s;
566                         slot++;
567                 }
568                 dev++;
569                 if (dev >= geo->raid_disks) {
570                         dev = 0;
571                         sector += (geo->chunk_mask + 1);
572                 }
573         }
574 }
575
576 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
577 {
578         struct geom *geo = &conf->geo;
579
580         if (conf->reshape_progress != MaxSector &&
581             ((r10bio->sector >= conf->reshape_progress) !=
582              conf->mddev->reshape_backwards)) {
583                 set_bit(R10BIO_Previous, &r10bio->state);
584                 geo = &conf->prev;
585         } else
586                 clear_bit(R10BIO_Previous, &r10bio->state);
587
588         __raid10_find_phys(geo, r10bio);
589 }
590
591 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
592 {
593         sector_t offset, chunk, vchunk;
594         /* Never use conf->prev as this is only called during resync
595          * or recovery, so reshape isn't happening
596          */
597         struct geom *geo = &conf->geo;
598
599         offset = sector & geo->chunk_mask;
600         if (geo->far_offset) {
601                 int fc;
602                 chunk = sector >> geo->chunk_shift;
603                 fc = sector_div(chunk, geo->far_copies);
604                 dev -= fc * geo->near_copies;
605                 if (dev < 0)
606                         dev += geo->raid_disks;
607         } else {
608                 while (sector >= geo->stride) {
609                         sector -= geo->stride;
610                         if (dev < geo->near_copies)
611                                 dev += geo->raid_disks - geo->near_copies;
612                         else
613                                 dev -= geo->near_copies;
614                 }
615                 chunk = sector >> geo->chunk_shift;
616         }
617         vchunk = chunk * geo->raid_disks + dev;
618         sector_div(vchunk, geo->near_copies);
619         return (vchunk << geo->chunk_shift) + offset;
620 }
621
622 /**
623  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
624  *      @q: request queue
625  *      @bvm: properties of new bio
626  *      @biovec: the request that could be merged to it.
627  *
628  *      Return amount of bytes we can accept at this offset
629  *      This requires checking for end-of-chunk if near_copies != raid_disks,
630  *      and for subordinate merge_bvec_fns if merge_check_needed.
631  */
632 static int raid10_mergeable_bvec(struct request_queue *q,
633                                  struct bvec_merge_data *bvm,
634                                  struct bio_vec *biovec)
635 {
636         struct mddev *mddev = q->queuedata;
637         struct r10conf *conf = mddev->private;
638         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
639         int max;
640         unsigned int chunk_sectors;
641         unsigned int bio_sectors = bvm->bi_size >> 9;
642         struct geom *geo = &conf->geo;
643
644         chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
645         if (conf->reshape_progress != MaxSector &&
646             ((sector >= conf->reshape_progress) !=
647              conf->mddev->reshape_backwards))
648                 geo = &conf->prev;
649
650         if (geo->near_copies < geo->raid_disks) {
651                 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
652                                         + bio_sectors)) << 9;
653                 if (max < 0)
654                         /* bio_add cannot handle a negative return */
655                         max = 0;
656                 if (max <= biovec->bv_len && bio_sectors == 0)
657                         return biovec->bv_len;
658         } else
659                 max = biovec->bv_len;
660
661         if (mddev->merge_check_needed) {
662                 struct {
663                         struct r10bio r10_bio;
664                         struct r10dev devs[conf->copies];
665                 } on_stack;
666                 struct r10bio *r10_bio = &on_stack.r10_bio;
667                 int s;
668                 if (conf->reshape_progress != MaxSector) {
669                         /* Cannot give any guidance during reshape */
670                         if (max <= biovec->bv_len && bio_sectors == 0)
671                                 return biovec->bv_len;
672                         return 0;
673                 }
674                 r10_bio->sector = sector;
675                 raid10_find_phys(conf, r10_bio);
676                 rcu_read_lock();
677                 for (s = 0; s < conf->copies; s++) {
678                         int disk = r10_bio->devs[s].devnum;
679                         struct md_rdev *rdev = rcu_dereference(
680                                 conf->mirrors[disk].rdev);
681                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
682                                 struct request_queue *q =
683                                         bdev_get_queue(rdev->bdev);
684                                 if (q->merge_bvec_fn) {
685                                         bvm->bi_sector = r10_bio->devs[s].addr
686                                                 + rdev->data_offset;
687                                         bvm->bi_bdev = rdev->bdev;
688                                         max = min(max, q->merge_bvec_fn(
689                                                           q, bvm, biovec));
690                                 }
691                         }
692                         rdev = rcu_dereference(conf->mirrors[disk].replacement);
693                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
694                                 struct request_queue *q =
695                                         bdev_get_queue(rdev->bdev);
696                                 if (q->merge_bvec_fn) {
697                                         bvm->bi_sector = r10_bio->devs[s].addr
698                                                 + rdev->data_offset;
699                                         bvm->bi_bdev = rdev->bdev;
700                                         max = min(max, q->merge_bvec_fn(
701                                                           q, bvm, biovec));
702                                 }
703                         }
704                 }
705                 rcu_read_unlock();
706         }
707         return max;
708 }
709
710 /*
711  * This routine returns the disk from which the requested read should
712  * be done. There is a per-array 'next expected sequential IO' sector
713  * number - if this matches on the next IO then we use the last disk.
714  * There is also a per-disk 'last know head position' sector that is
715  * maintained from IRQ contexts, both the normal and the resync IO
716  * completion handlers update this position correctly. If there is no
717  * perfect sequential match then we pick the disk whose head is closest.
718  *
719  * If there are 2 mirrors in the same 2 devices, performance degrades
720  * because position is mirror, not device based.
721  *
722  * The rdev for the device selected will have nr_pending incremented.
723  */
724
725 /*
726  * FIXME: possibly should rethink readbalancing and do it differently
727  * depending on near_copies / far_copies geometry.
728  */
729 static struct md_rdev *read_balance(struct r10conf *conf,
730                                     struct r10bio *r10_bio,
731                                     int *max_sectors)
732 {
733         const sector_t this_sector = r10_bio->sector;
734         int disk, slot;
735         int sectors = r10_bio->sectors;
736         int best_good_sectors;
737         sector_t new_distance, best_dist;
738         struct md_rdev *best_rdev, *rdev = NULL;
739         int do_balance;
740         int best_slot;
741         struct geom *geo = &conf->geo;
742
743         raid10_find_phys(conf, r10_bio);
744         rcu_read_lock();
745 retry:
746         sectors = r10_bio->sectors;
747         best_slot = -1;
748         best_rdev = NULL;
749         best_dist = MaxSector;
750         best_good_sectors = 0;
751         do_balance = 1;
752         /*
753          * Check if we can balance. We can balance on the whole
754          * device if no resync is going on (recovery is ok), or below
755          * the resync window. We take the first readable disk when
756          * above the resync window.
757          */
758         if (conf->mddev->recovery_cp < MaxSector
759             && (this_sector + sectors >= conf->next_resync))
760                 do_balance = 0;
761
762         for (slot = 0; slot < conf->copies ; slot++) {
763                 sector_t first_bad;
764                 int bad_sectors;
765                 sector_t dev_sector;
766
767                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
768                         continue;
769                 disk = r10_bio->devs[slot].devnum;
770                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
771                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
772                     test_bit(Unmerged, &rdev->flags) ||
773                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
774                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
775                 if (rdev == NULL ||
776                     test_bit(Faulty, &rdev->flags) ||
777                     test_bit(Unmerged, &rdev->flags))
778                         continue;
779                 if (!test_bit(In_sync, &rdev->flags) &&
780                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
781                         continue;
782
783                 dev_sector = r10_bio->devs[slot].addr;
784                 if (is_badblock(rdev, dev_sector, sectors,
785                                 &first_bad, &bad_sectors)) {
786                         if (best_dist < MaxSector)
787                                 /* Already have a better slot */
788                                 continue;
789                         if (first_bad <= dev_sector) {
790                                 /* Cannot read here.  If this is the
791                                  * 'primary' device, then we must not read
792                                  * beyond 'bad_sectors' from another device.
793                                  */
794                                 bad_sectors -= (dev_sector - first_bad);
795                                 if (!do_balance && sectors > bad_sectors)
796                                         sectors = bad_sectors;
797                                 if (best_good_sectors > sectors)
798                                         best_good_sectors = sectors;
799                         } else {
800                                 sector_t good_sectors =
801                                         first_bad - dev_sector;
802                                 if (good_sectors > best_good_sectors) {
803                                         best_good_sectors = good_sectors;
804                                         best_slot = slot;
805                                         best_rdev = rdev;
806                                 }
807                                 if (!do_balance)
808                                         /* Must read from here */
809                                         break;
810                         }
811                         continue;
812                 } else
813                         best_good_sectors = sectors;
814
815                 if (!do_balance)
816                         break;
817
818                 /* This optimisation is debatable, and completely destroys
819                  * sequential read speed for 'far copies' arrays.  So only
820                  * keep it for 'near' arrays, and review those later.
821                  */
822                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
823                         break;
824
825                 /* for far > 1 always use the lowest address */
826                 if (geo->far_copies > 1)
827                         new_distance = r10_bio->devs[slot].addr;
828                 else
829                         new_distance = abs(r10_bio->devs[slot].addr -
830                                            conf->mirrors[disk].head_position);
831                 if (new_distance < best_dist) {
832                         best_dist = new_distance;
833                         best_slot = slot;
834                         best_rdev = rdev;
835                 }
836         }
837         if (slot >= conf->copies) {
838                 slot = best_slot;
839                 rdev = best_rdev;
840         }
841
842         if (slot >= 0) {
843                 atomic_inc(&rdev->nr_pending);
844                 if (test_bit(Faulty, &rdev->flags)) {
845                         /* Cannot risk returning a device that failed
846                          * before we inc'ed nr_pending
847                          */
848                         rdev_dec_pending(rdev, conf->mddev);
849                         goto retry;
850                 }
851                 r10_bio->read_slot = slot;
852         } else
853                 rdev = NULL;
854         rcu_read_unlock();
855         *max_sectors = best_good_sectors;
856
857         return rdev;
858 }
859
860 int md_raid10_congested(struct mddev *mddev, int bits)
861 {
862         struct r10conf *conf = mddev->private;
863         int i, ret = 0;
864
865         if ((bits & (1 << BDI_async_congested)) &&
866             conf->pending_count >= max_queued_requests)
867                 return 1;
868
869         rcu_read_lock();
870         for (i = 0;
871              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
872                      && ret == 0;
873              i++) {
874                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
875                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
876                         struct request_queue *q = bdev_get_queue(rdev->bdev);
877
878                         ret |= bdi_congested(&q->backing_dev_info, bits);
879                 }
880         }
881         rcu_read_unlock();
882         return ret;
883 }
884 EXPORT_SYMBOL_GPL(md_raid10_congested);
885
886 static int raid10_congested(void *data, int bits)
887 {
888         struct mddev *mddev = data;
889
890         return mddev_congested(mddev, bits) ||
891                 md_raid10_congested(mddev, bits);
892 }
893
894 static void flush_pending_writes(struct r10conf *conf)
895 {
896         /* Any writes that have been queued but are awaiting
897          * bitmap updates get flushed here.
898          */
899         spin_lock_irq(&conf->device_lock);
900
901         if (conf->pending_bio_list.head) {
902                 struct bio *bio;
903                 bio = bio_list_get(&conf->pending_bio_list);
904                 conf->pending_count = 0;
905                 spin_unlock_irq(&conf->device_lock);
906                 /* flush any pending bitmap writes to disk
907                  * before proceeding w/ I/O */
908                 bitmap_unplug(conf->mddev->bitmap);
909                 wake_up(&conf->wait_barrier);
910
911                 while (bio) { /* submit pending writes */
912                         struct bio *next = bio->bi_next;
913                         bio->bi_next = NULL;
914                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
915                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
916                                 /* Just ignore it */
917                                 bio_endio(bio, 0);
918                         else
919                                 generic_make_request(bio);
920                         bio = next;
921                 }
922         } else
923                 spin_unlock_irq(&conf->device_lock);
924 }
925
926 /* Barriers....
927  * Sometimes we need to suspend IO while we do something else,
928  * either some resync/recovery, or reconfigure the array.
929  * To do this we raise a 'barrier'.
930  * The 'barrier' is a counter that can be raised multiple times
931  * to count how many activities are happening which preclude
932  * normal IO.
933  * We can only raise the barrier if there is no pending IO.
934  * i.e. if nr_pending == 0.
935  * We choose only to raise the barrier if no-one is waiting for the
936  * barrier to go down.  This means that as soon as an IO request
937  * is ready, no other operations which require a barrier will start
938  * until the IO request has had a chance.
939  *
940  * So: regular IO calls 'wait_barrier'.  When that returns there
941  *    is no backgroup IO happening,  It must arrange to call
942  *    allow_barrier when it has finished its IO.
943  * backgroup IO calls must call raise_barrier.  Once that returns
944  *    there is no normal IO happeing.  It must arrange to call
945  *    lower_barrier when the particular background IO completes.
946  */
947
948 static void raise_barrier(struct r10conf *conf, int force)
949 {
950         BUG_ON(force && !conf->barrier);
951         spin_lock_irq(&conf->resync_lock);
952
953         /* Wait until no block IO is waiting (unless 'force') */
954         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
955                             conf->resync_lock, );
956
957         /* block any new IO from starting */
958         conf->barrier++;
959
960         /* Now wait for all pending IO to complete */
961         wait_event_lock_irq(conf->wait_barrier,
962                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
963                             conf->resync_lock, );
964
965         spin_unlock_irq(&conf->resync_lock);
966 }
967
968 static void lower_barrier(struct r10conf *conf)
969 {
970         unsigned long flags;
971         spin_lock_irqsave(&conf->resync_lock, flags);
972         conf->barrier--;
973         spin_unlock_irqrestore(&conf->resync_lock, flags);
974         wake_up(&conf->wait_barrier);
975 }
976
977 static void wait_barrier(struct r10conf *conf)
978 {
979         spin_lock_irq(&conf->resync_lock);
980         if (conf->barrier) {
981                 conf->nr_waiting++;
982                 /* Wait for the barrier to drop.
983                  * However if there are already pending
984                  * requests (preventing the barrier from
985                  * rising completely), and the
986                  * pre-process bio queue isn't empty,
987                  * then don't wait, as we need to empty
988                  * that queue to get the nr_pending
989                  * count down.
990                  */
991                 wait_event_lock_irq(conf->wait_barrier,
992                                     !conf->barrier ||
993                                     (conf->nr_pending &&
994                                      current->bio_list &&
995                                      !bio_list_empty(current->bio_list)),
996                                     conf->resync_lock,
997                         );
998                 conf->nr_waiting--;
999         }
1000         conf->nr_pending++;
1001         spin_unlock_irq(&conf->resync_lock);
1002 }
1003
1004 static void allow_barrier(struct r10conf *conf)
1005 {
1006         unsigned long flags;
1007         spin_lock_irqsave(&conf->resync_lock, flags);
1008         conf->nr_pending--;
1009         spin_unlock_irqrestore(&conf->resync_lock, flags);
1010         wake_up(&conf->wait_barrier);
1011 }
1012
1013 static void freeze_array(struct r10conf *conf)
1014 {
1015         /* stop syncio and normal IO and wait for everything to
1016          * go quiet.
1017          * We increment barrier and nr_waiting, and then
1018          * wait until nr_pending match nr_queued+1
1019          * This is called in the context of one normal IO request
1020          * that has failed. Thus any sync request that might be pending
1021          * will be blocked by nr_pending, and we need to wait for
1022          * pending IO requests to complete or be queued for re-try.
1023          * Thus the number queued (nr_queued) plus this request (1)
1024          * must match the number of pending IOs (nr_pending) before
1025          * we continue.
1026          */
1027         spin_lock_irq(&conf->resync_lock);
1028         conf->barrier++;
1029         conf->nr_waiting++;
1030         wait_event_lock_irq(conf->wait_barrier,
1031                             conf->nr_pending == conf->nr_queued+1,
1032                             conf->resync_lock,
1033                             flush_pending_writes(conf));
1034
1035         spin_unlock_irq(&conf->resync_lock);
1036 }
1037
1038 static void unfreeze_array(struct r10conf *conf)
1039 {
1040         /* reverse the effect of the freeze */
1041         spin_lock_irq(&conf->resync_lock);
1042         conf->barrier--;
1043         conf->nr_waiting--;
1044         wake_up(&conf->wait_barrier);
1045         spin_unlock_irq(&conf->resync_lock);
1046 }
1047
1048 static sector_t choose_data_offset(struct r10bio *r10_bio,
1049                                    struct md_rdev *rdev)
1050 {
1051         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1052             test_bit(R10BIO_Previous, &r10_bio->state))
1053                 return rdev->data_offset;
1054         else
1055                 return rdev->new_data_offset;
1056 }
1057
1058 struct raid10_plug_cb {
1059         struct blk_plug_cb      cb;
1060         struct bio_list         pending;
1061         int                     pending_cnt;
1062 };
1063
1064 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1065 {
1066         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1067                                                    cb);
1068         struct mddev *mddev = plug->cb.data;
1069         struct r10conf *conf = mddev->private;
1070         struct bio *bio;
1071
1072         if (from_schedule || current->bio_list) {
1073                 spin_lock_irq(&conf->device_lock);
1074                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1075                 conf->pending_count += plug->pending_cnt;
1076                 spin_unlock_irq(&conf->device_lock);
1077                 md_wakeup_thread(mddev->thread);
1078                 kfree(plug);
1079                 return;
1080         }
1081
1082         /* we aren't scheduling, so we can do the write-out directly. */
1083         bio = bio_list_get(&plug->pending);
1084         bitmap_unplug(mddev->bitmap);
1085         wake_up(&conf->wait_barrier);
1086
1087         while (bio) { /* submit pending writes */
1088                 struct bio *next = bio->bi_next;
1089                 bio->bi_next = NULL;
1090                 generic_make_request(bio);
1091                 bio = next;
1092         }
1093         kfree(plug);
1094 }
1095
1096 static void make_request(struct mddev *mddev, struct bio * bio)
1097 {
1098         struct r10conf *conf = mddev->private;
1099         struct r10bio *r10_bio;
1100         struct bio *read_bio;
1101         int i;
1102         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1103         int chunk_sects = chunk_mask + 1;
1104         const int rw = bio_data_dir(bio);
1105         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1106         const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1107         const unsigned long do_discard = (bio->bi_rw
1108                                           & (REQ_DISCARD | REQ_SECURE));
1109         unsigned long flags;
1110         struct md_rdev *blocked_rdev;
1111         struct blk_plug_cb *cb;
1112         struct raid10_plug_cb *plug = NULL;
1113         int sectors_handled;
1114         int max_sectors;
1115         int sectors;
1116
1117         if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1118                 md_flush_request(mddev, bio);
1119                 return;
1120         }
1121
1122         /* If this request crosses a chunk boundary, we need to
1123          * split it.  This will only happen for 1 PAGE (or less) requests.
1124          */
1125         if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1126                      > chunk_sects
1127                      && (conf->geo.near_copies < conf->geo.raid_disks
1128                          || conf->prev.near_copies < conf->prev.raid_disks))) {
1129                 struct bio_pair *bp;
1130                 /* Sanity check -- queue functions should prevent this happening */
1131                 if ((bio->bi_vcnt != 1 && bio->bi_vcnt != 0) ||
1132                     bio->bi_idx != 0)
1133                         goto bad_map;
1134                 /* This is a one page bio that upper layers
1135                  * refuse to split for us, so we need to split it.
1136                  */
1137                 bp = bio_split(bio,
1138                                chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1139
1140                 /* Each of these 'make_request' calls will call 'wait_barrier'.
1141                  * If the first succeeds but the second blocks due to the resync
1142                  * thread raising the barrier, we will deadlock because the
1143                  * IO to the underlying device will be queued in generic_make_request
1144                  * and will never complete, so will never reduce nr_pending.
1145                  * So increment nr_waiting here so no new raise_barriers will
1146                  * succeed, and so the second wait_barrier cannot block.
1147                  */
1148                 spin_lock_irq(&conf->resync_lock);
1149                 conf->nr_waiting++;
1150                 spin_unlock_irq(&conf->resync_lock);
1151
1152                 make_request(mddev, &bp->bio1);
1153                 make_request(mddev, &bp->bio2);
1154
1155                 spin_lock_irq(&conf->resync_lock);
1156                 conf->nr_waiting--;
1157                 wake_up(&conf->wait_barrier);
1158                 spin_unlock_irq(&conf->resync_lock);
1159
1160                 bio_pair_release(bp);
1161                 return;
1162         bad_map:
1163                 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1164                        " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1165                        (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1166
1167                 bio_io_error(bio);
1168                 return;
1169         }
1170
1171         md_write_start(mddev, bio);
1172
1173         /*
1174          * Register the new request and wait if the reconstruction
1175          * thread has put up a bar for new requests.
1176          * Continue immediately if no resync is active currently.
1177          */
1178         wait_barrier(conf);
1179
1180         sectors = bio->bi_size >> 9;
1181         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1182             bio->bi_sector < conf->reshape_progress &&
1183             bio->bi_sector + sectors > conf->reshape_progress) {
1184                 /* IO spans the reshape position.  Need to wait for
1185                  * reshape to pass
1186                  */
1187                 allow_barrier(conf);
1188                 wait_event(conf->wait_barrier,
1189                            conf->reshape_progress <= bio->bi_sector ||
1190                            conf->reshape_progress >= bio->bi_sector + sectors);
1191                 wait_barrier(conf);
1192         }
1193         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1194             bio_data_dir(bio) == WRITE &&
1195             (mddev->reshape_backwards
1196              ? (bio->bi_sector < conf->reshape_safe &&
1197                 bio->bi_sector + sectors > conf->reshape_progress)
1198              : (bio->bi_sector + sectors > conf->reshape_safe &&
1199                 bio->bi_sector < conf->reshape_progress))) {
1200                 /* Need to update reshape_position in metadata */
1201                 mddev->reshape_position = conf->reshape_progress;
1202                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1203                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1204                 md_wakeup_thread(mddev->thread);
1205                 wait_event(mddev->sb_wait,
1206                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1207
1208                 conf->reshape_safe = mddev->reshape_position;
1209         }
1210
1211         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1212
1213         r10_bio->master_bio = bio;
1214         r10_bio->sectors = sectors;
1215
1216         r10_bio->mddev = mddev;
1217         r10_bio->sector = bio->bi_sector;
1218         r10_bio->state = 0;
1219
1220         /* We might need to issue multiple reads to different
1221          * devices if there are bad blocks around, so we keep
1222          * track of the number of reads in bio->bi_phys_segments.
1223          * If this is 0, there is only one r10_bio and no locking
1224          * will be needed when the request completes.  If it is
1225          * non-zero, then it is the number of not-completed requests.
1226          */
1227         bio->bi_phys_segments = 0;
1228         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1229
1230         if (rw == READ) {
1231                 /*
1232                  * read balancing logic:
1233                  */
1234                 struct md_rdev *rdev;
1235                 int slot;
1236
1237 read_again:
1238                 rdev = read_balance(conf, r10_bio, &max_sectors);
1239                 if (!rdev) {
1240                         raid_end_bio_io(r10_bio);
1241                         return;
1242                 }
1243                 slot = r10_bio->read_slot;
1244
1245                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1246                 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1247                             max_sectors);
1248
1249                 r10_bio->devs[slot].bio = read_bio;
1250                 r10_bio->devs[slot].rdev = rdev;
1251
1252                 read_bio->bi_sector = r10_bio->devs[slot].addr +
1253                         choose_data_offset(r10_bio, rdev);
1254                 read_bio->bi_bdev = rdev->bdev;
1255                 read_bio->bi_end_io = raid10_end_read_request;
1256                 read_bio->bi_rw = READ | do_sync;
1257                 read_bio->bi_private = r10_bio;
1258
1259                 if (max_sectors < r10_bio->sectors) {
1260                         /* Could not read all from this device, so we will
1261                          * need another r10_bio.
1262                          */
1263                         sectors_handled = (r10_bio->sectors + max_sectors
1264                                            - bio->bi_sector);
1265                         r10_bio->sectors = max_sectors;
1266                         spin_lock_irq(&conf->device_lock);
1267                         if (bio->bi_phys_segments == 0)
1268                                 bio->bi_phys_segments = 2;
1269                         else
1270                                 bio->bi_phys_segments++;
1271                         spin_unlock(&conf->device_lock);
1272                         /* Cannot call generic_make_request directly
1273                          * as that will be queued in __generic_make_request
1274                          * and subsequent mempool_alloc might block
1275                          * waiting for it.  so hand bio over to raid10d.
1276                          */
1277                         reschedule_retry(r10_bio);
1278
1279                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1280
1281                         r10_bio->master_bio = bio;
1282                         r10_bio->sectors = ((bio->bi_size >> 9)
1283                                             - sectors_handled);
1284                         r10_bio->state = 0;
1285                         r10_bio->mddev = mddev;
1286                         r10_bio->sector = bio->bi_sector + sectors_handled;
1287                         goto read_again;
1288                 } else
1289                         generic_make_request(read_bio);
1290                 return;
1291         }
1292
1293         /*
1294          * WRITE:
1295          */
1296         if (conf->pending_count >= max_queued_requests) {
1297                 md_wakeup_thread(mddev->thread);
1298                 wait_event(conf->wait_barrier,
1299                            conf->pending_count < max_queued_requests);
1300         }
1301         /* first select target devices under rcu_lock and
1302          * inc refcount on their rdev.  Record them by setting
1303          * bios[x] to bio
1304          * If there are known/acknowledged bad blocks on any device
1305          * on which we have seen a write error, we want to avoid
1306          * writing to those blocks.  This potentially requires several
1307          * writes to write around the bad blocks.  Each set of writes
1308          * gets its own r10_bio with a set of bios attached.  The number
1309          * of r10_bios is recored in bio->bi_phys_segments just as with
1310          * the read case.
1311          */
1312
1313         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1314         raid10_find_phys(conf, r10_bio);
1315 retry_write:
1316         blocked_rdev = NULL;
1317         rcu_read_lock();
1318         max_sectors = r10_bio->sectors;
1319
1320         for (i = 0;  i < conf->copies; i++) {
1321                 int d = r10_bio->devs[i].devnum;
1322                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1323                 struct md_rdev *rrdev = rcu_dereference(
1324                         conf->mirrors[d].replacement);
1325                 if (rdev == rrdev)
1326                         rrdev = NULL;
1327                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1328                         atomic_inc(&rdev->nr_pending);
1329                         blocked_rdev = rdev;
1330                         break;
1331                 }
1332                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1333                         atomic_inc(&rrdev->nr_pending);
1334                         blocked_rdev = rrdev;
1335                         break;
1336                 }
1337                 if (rdev && (test_bit(Faulty, &rdev->flags)
1338                              || test_bit(Unmerged, &rdev->flags)))
1339                         rdev = NULL;
1340                 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1341                               || test_bit(Unmerged, &rrdev->flags)))
1342                         rrdev = NULL;
1343
1344                 r10_bio->devs[i].bio = NULL;
1345                 r10_bio->devs[i].repl_bio = NULL;
1346
1347                 if (!rdev && !rrdev) {
1348                         set_bit(R10BIO_Degraded, &r10_bio->state);
1349                         continue;
1350                 }
1351                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1352                         sector_t first_bad;
1353                         sector_t dev_sector = r10_bio->devs[i].addr;
1354                         int bad_sectors;
1355                         int is_bad;
1356
1357                         is_bad = is_badblock(rdev, dev_sector,
1358                                              max_sectors,
1359                                              &first_bad, &bad_sectors);
1360                         if (is_bad < 0) {
1361                                 /* Mustn't write here until the bad block
1362                                  * is acknowledged
1363                                  */
1364                                 atomic_inc(&rdev->nr_pending);
1365                                 set_bit(BlockedBadBlocks, &rdev->flags);
1366                                 blocked_rdev = rdev;
1367                                 break;
1368                         }
1369                         if (is_bad && first_bad <= dev_sector) {
1370                                 /* Cannot write here at all */
1371                                 bad_sectors -= (dev_sector - first_bad);
1372                                 if (bad_sectors < max_sectors)
1373                                         /* Mustn't write more than bad_sectors
1374                                          * to other devices yet
1375                                          */
1376                                         max_sectors = bad_sectors;
1377                                 /* We don't set R10BIO_Degraded as that
1378                                  * only applies if the disk is missing,
1379                                  * so it might be re-added, and we want to
1380                                  * know to recover this chunk.
1381                                  * In this case the device is here, and the
1382                                  * fact that this chunk is not in-sync is
1383                                  * recorded in the bad block log.
1384                                  */
1385                                 continue;
1386                         }
1387                         if (is_bad) {
1388                                 int good_sectors = first_bad - dev_sector;
1389                                 if (good_sectors < max_sectors)
1390                                         max_sectors = good_sectors;
1391                         }
1392                 }
1393                 if (rdev) {
1394                         r10_bio->devs[i].bio = bio;
1395                         atomic_inc(&rdev->nr_pending);
1396                 }
1397                 if (rrdev) {
1398                         r10_bio->devs[i].repl_bio = bio;
1399                         atomic_inc(&rrdev->nr_pending);
1400                 }
1401         }
1402         rcu_read_unlock();
1403
1404         if (unlikely(blocked_rdev)) {
1405                 /* Have to wait for this device to get unblocked, then retry */
1406                 int j;
1407                 int d;
1408
1409                 for (j = 0; j < i; j++) {
1410                         if (r10_bio->devs[j].bio) {
1411                                 d = r10_bio->devs[j].devnum;
1412                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1413                         }
1414                         if (r10_bio->devs[j].repl_bio) {
1415                                 struct md_rdev *rdev;
1416                                 d = r10_bio->devs[j].devnum;
1417                                 rdev = conf->mirrors[d].replacement;
1418                                 if (!rdev) {
1419                                         /* Race with remove_disk */
1420                                         smp_mb();
1421                                         rdev = conf->mirrors[d].rdev;
1422                                 }
1423                                 rdev_dec_pending(rdev, mddev);
1424                         }
1425                 }
1426                 allow_barrier(conf);
1427                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1428                 wait_barrier(conf);
1429                 goto retry_write;
1430         }
1431
1432         if (max_sectors < r10_bio->sectors) {
1433                 /* We are splitting this into multiple parts, so
1434                  * we need to prepare for allocating another r10_bio.
1435                  */
1436                 r10_bio->sectors = max_sectors;
1437                 spin_lock_irq(&conf->device_lock);
1438                 if (bio->bi_phys_segments == 0)
1439                         bio->bi_phys_segments = 2;
1440                 else
1441                         bio->bi_phys_segments++;
1442                 spin_unlock_irq(&conf->device_lock);
1443         }
1444         sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1445
1446         atomic_set(&r10_bio->remaining, 1);
1447         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1448
1449         for (i = 0; i < conf->copies; i++) {
1450                 struct bio *mbio;
1451                 int d = r10_bio->devs[i].devnum;
1452                 if (r10_bio->devs[i].bio) {
1453                         struct md_rdev *rdev = conf->mirrors[d].rdev;
1454                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1455                         md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1456                                     max_sectors);
1457                         r10_bio->devs[i].bio = mbio;
1458
1459                         mbio->bi_sector = (r10_bio->devs[i].addr+
1460                                            choose_data_offset(r10_bio,
1461                                                               rdev));
1462                         mbio->bi_bdev = rdev->bdev;
1463                         mbio->bi_end_io = raid10_end_write_request;
1464                         mbio->bi_rw = WRITE | do_sync | do_fua | do_discard;
1465                         mbio->bi_private = r10_bio;
1466
1467                         atomic_inc(&r10_bio->remaining);
1468
1469                         cb = blk_check_plugged(raid10_unplug, mddev,
1470                                                sizeof(*plug));
1471                         if (cb)
1472                                 plug = container_of(cb, struct raid10_plug_cb,
1473                                                     cb);
1474                         else
1475                                 plug = NULL;
1476                         spin_lock_irqsave(&conf->device_lock, flags);
1477                         if (plug) {
1478                                 bio_list_add(&plug->pending, mbio);
1479                                 plug->pending_cnt++;
1480                         } else {
1481                                 bio_list_add(&conf->pending_bio_list, mbio);
1482                                 conf->pending_count++;
1483                         }
1484                         spin_unlock_irqrestore(&conf->device_lock, flags);
1485                         if (!plug)
1486                                 md_wakeup_thread(mddev->thread);
1487                 }
1488
1489                 if (r10_bio->devs[i].repl_bio) {
1490                         struct md_rdev *rdev = conf->mirrors[d].replacement;
1491                         if (rdev == NULL) {
1492                                 /* Replacement just got moved to main 'rdev' */
1493                                 smp_mb();
1494                                 rdev = conf->mirrors[d].rdev;
1495                         }
1496                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1497                         md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1498                                     max_sectors);
1499                         r10_bio->devs[i].repl_bio = mbio;
1500
1501                         mbio->bi_sector = (r10_bio->devs[i].addr +
1502                                            choose_data_offset(
1503                                                    r10_bio, rdev));
1504                         mbio->bi_bdev = rdev->bdev;
1505                         mbio->bi_end_io = raid10_end_write_request;
1506                         mbio->bi_rw = WRITE | do_sync | do_fua | do_discard;
1507                         mbio->bi_private = r10_bio;
1508
1509                         atomic_inc(&r10_bio->remaining);
1510                         spin_lock_irqsave(&conf->device_lock, flags);
1511                         bio_list_add(&conf->pending_bio_list, mbio);
1512                         conf->pending_count++;
1513                         spin_unlock_irqrestore(&conf->device_lock, flags);
1514                         if (!mddev_check_plugged(mddev))
1515                                 md_wakeup_thread(mddev->thread);
1516                 }
1517         }
1518
1519         /* Don't remove the bias on 'remaining' (one_write_done) until
1520          * after checking if we need to go around again.
1521          */
1522
1523         if (sectors_handled < (bio->bi_size >> 9)) {
1524                 one_write_done(r10_bio);
1525                 /* We need another r10_bio.  It has already been counted
1526                  * in bio->bi_phys_segments.
1527                  */
1528                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1529
1530                 r10_bio->master_bio = bio;
1531                 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1532
1533                 r10_bio->mddev = mddev;
1534                 r10_bio->sector = bio->bi_sector + sectors_handled;
1535                 r10_bio->state = 0;
1536                 goto retry_write;
1537         }
1538         one_write_done(r10_bio);
1539
1540         /* In case raid10d snuck in to freeze_array */
1541         wake_up(&conf->wait_barrier);
1542 }
1543
1544 static void status(struct seq_file *seq, struct mddev *mddev)
1545 {
1546         struct r10conf *conf = mddev->private;
1547         int i;
1548
1549         if (conf->geo.near_copies < conf->geo.raid_disks)
1550                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1551         if (conf->geo.near_copies > 1)
1552                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1553         if (conf->geo.far_copies > 1) {
1554                 if (conf->geo.far_offset)
1555                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1556                 else
1557                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1558         }
1559         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1560                                         conf->geo.raid_disks - mddev->degraded);
1561         for (i = 0; i < conf->geo.raid_disks; i++)
1562                 seq_printf(seq, "%s",
1563                               conf->mirrors[i].rdev &&
1564                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1565         seq_printf(seq, "]");
1566 }
1567
1568 /* check if there are enough drives for
1569  * every block to appear on atleast one.
1570  * Don't consider the device numbered 'ignore'
1571  * as we might be about to remove it.
1572  */
1573 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1574 {
1575         int first = 0;
1576
1577         do {
1578                 int n = conf->copies;
1579                 int cnt = 0;
1580                 int this = first;
1581                 while (n--) {
1582                         if (conf->mirrors[this].rdev &&
1583                             this != ignore)
1584                                 cnt++;
1585                         this = (this+1) % geo->raid_disks;
1586                 }
1587                 if (cnt == 0)
1588                         return 0;
1589                 first = (first + geo->near_copies) % geo->raid_disks;
1590         } while (first != 0);
1591         return 1;
1592 }
1593
1594 static int enough(struct r10conf *conf, int ignore)
1595 {
1596         return _enough(conf, &conf->geo, ignore) &&
1597                 _enough(conf, &conf->prev, ignore);
1598 }
1599
1600 static void error(struct mddev *mddev, struct md_rdev *rdev)
1601 {
1602         char b[BDEVNAME_SIZE];
1603         struct r10conf *conf = mddev->private;
1604
1605         /*
1606          * If it is not operational, then we have already marked it as dead
1607          * else if it is the last working disks, ignore the error, let the
1608          * next level up know.
1609          * else mark the drive as failed
1610          */
1611         if (test_bit(In_sync, &rdev->flags)
1612             && !enough(conf, rdev->raid_disk))
1613                 /*
1614                  * Don't fail the drive, just return an IO error.
1615                  */
1616                 return;
1617         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1618                 unsigned long flags;
1619                 spin_lock_irqsave(&conf->device_lock, flags);
1620                 mddev->degraded++;
1621                 spin_unlock_irqrestore(&conf->device_lock, flags);
1622                 /*
1623                  * if recovery is running, make sure it aborts.
1624                  */
1625                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1626         }
1627         set_bit(Blocked, &rdev->flags);
1628         set_bit(Faulty, &rdev->flags);
1629         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1630         printk(KERN_ALERT
1631                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1632                "md/raid10:%s: Operation continuing on %d devices.\n",
1633                mdname(mddev), bdevname(rdev->bdev, b),
1634                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1635 }
1636
1637 static void print_conf(struct r10conf *conf)
1638 {
1639         int i;
1640         struct raid10_info *tmp;
1641
1642         printk(KERN_DEBUG "RAID10 conf printout:\n");
1643         if (!conf) {
1644                 printk(KERN_DEBUG "(!conf)\n");
1645                 return;
1646         }
1647         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1648                 conf->geo.raid_disks);
1649
1650         for (i = 0; i < conf->geo.raid_disks; i++) {
1651                 char b[BDEVNAME_SIZE];
1652                 tmp = conf->mirrors + i;
1653                 if (tmp->rdev)
1654                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1655                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1656                                 !test_bit(Faulty, &tmp->rdev->flags),
1657                                 bdevname(tmp->rdev->bdev,b));
1658         }
1659 }
1660
1661 static void close_sync(struct r10conf *conf)
1662 {
1663         wait_barrier(conf);
1664         allow_barrier(conf);
1665
1666         mempool_destroy(conf->r10buf_pool);
1667         conf->r10buf_pool = NULL;
1668 }
1669
1670 static int raid10_spare_active(struct mddev *mddev)
1671 {
1672         int i;
1673         struct r10conf *conf = mddev->private;
1674         struct raid10_info *tmp;
1675         int count = 0;
1676         unsigned long flags;
1677
1678         /*
1679          * Find all non-in_sync disks within the RAID10 configuration
1680          * and mark them in_sync
1681          */
1682         for (i = 0; i < conf->geo.raid_disks; i++) {
1683                 tmp = conf->mirrors + i;
1684                 if (tmp->replacement
1685                     && tmp->replacement->recovery_offset == MaxSector
1686                     && !test_bit(Faulty, &tmp->replacement->flags)
1687                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1688                         /* Replacement has just become active */
1689                         if (!tmp->rdev
1690                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1691                                 count++;
1692                         if (tmp->rdev) {
1693                                 /* Replaced device not technically faulty,
1694                                  * but we need to be sure it gets removed
1695                                  * and never re-added.
1696                                  */
1697                                 set_bit(Faulty, &tmp->rdev->flags);
1698                                 sysfs_notify_dirent_safe(
1699                                         tmp->rdev->sysfs_state);
1700                         }
1701                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1702                 } else if (tmp->rdev
1703                            && !test_bit(Faulty, &tmp->rdev->flags)
1704                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1705                         count++;
1706                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1707                 }
1708         }
1709         spin_lock_irqsave(&conf->device_lock, flags);
1710         mddev->degraded -= count;
1711         spin_unlock_irqrestore(&conf->device_lock, flags);
1712
1713         print_conf(conf);
1714         return count;
1715 }
1716
1717
1718 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1719 {
1720         struct r10conf *conf = mddev->private;
1721         int err = -EEXIST;
1722         int mirror;
1723         int first = 0;
1724         int last = conf->geo.raid_disks - 1;
1725         struct request_queue *q = bdev_get_queue(rdev->bdev);
1726
1727         if (mddev->recovery_cp < MaxSector)
1728                 /* only hot-add to in-sync arrays, as recovery is
1729                  * very different from resync
1730                  */
1731                 return -EBUSY;
1732         if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1733                 return -EINVAL;
1734
1735         if (rdev->raid_disk >= 0)
1736                 first = last = rdev->raid_disk;
1737
1738         if (q->merge_bvec_fn) {
1739                 set_bit(Unmerged, &rdev->flags);
1740                 mddev->merge_check_needed = 1;
1741         }
1742
1743         if (rdev->saved_raid_disk >= first &&
1744             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1745                 mirror = rdev->saved_raid_disk;
1746         else
1747                 mirror = first;
1748         for ( ; mirror <= last ; mirror++) {
1749                 struct raid10_info *p = &conf->mirrors[mirror];
1750                 if (p->recovery_disabled == mddev->recovery_disabled)
1751                         continue;
1752                 if (p->rdev) {
1753                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1754                             p->replacement != NULL)
1755                                 continue;
1756                         clear_bit(In_sync, &rdev->flags);
1757                         set_bit(Replacement, &rdev->flags);
1758                         rdev->raid_disk = mirror;
1759                         err = 0;
1760                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1761                                           rdev->data_offset << 9);
1762                         conf->fullsync = 1;
1763                         rcu_assign_pointer(p->replacement, rdev);
1764                         break;
1765                 }
1766
1767                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1768                                   rdev->data_offset << 9);
1769
1770                 p->head_position = 0;
1771                 p->recovery_disabled = mddev->recovery_disabled - 1;
1772                 rdev->raid_disk = mirror;
1773                 err = 0;
1774                 if (rdev->saved_raid_disk != mirror)
1775                         conf->fullsync = 1;
1776                 rcu_assign_pointer(p->rdev, rdev);
1777                 break;
1778         }
1779         if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1780                 /* Some requests might not have seen this new
1781                  * merge_bvec_fn.  We must wait for them to complete
1782                  * before merging the device fully.
1783                  * First we make sure any code which has tested
1784                  * our function has submitted the request, then
1785                  * we wait for all outstanding requests to complete.
1786                  */
1787                 synchronize_sched();
1788                 raise_barrier(conf, 0);
1789                 lower_barrier(conf);
1790                 clear_bit(Unmerged, &rdev->flags);
1791         }
1792         md_integrity_add_rdev(rdev, mddev);
1793         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1794                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1795
1796         print_conf(conf);
1797         return err;
1798 }
1799
1800 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1801 {
1802         struct r10conf *conf = mddev->private;
1803         int err = 0;
1804         int number = rdev->raid_disk;
1805         struct md_rdev **rdevp;
1806         struct raid10_info *p = conf->mirrors + number;
1807
1808         print_conf(conf);
1809         if (rdev == p->rdev)
1810                 rdevp = &p->rdev;
1811         else if (rdev == p->replacement)
1812                 rdevp = &p->replacement;
1813         else
1814                 return 0;
1815
1816         if (test_bit(In_sync, &rdev->flags) ||
1817             atomic_read(&rdev->nr_pending)) {
1818                 err = -EBUSY;
1819                 goto abort;
1820         }
1821         /* Only remove faulty devices if recovery
1822          * is not possible.
1823          */
1824         if (!test_bit(Faulty, &rdev->flags) &&
1825             mddev->recovery_disabled != p->recovery_disabled &&
1826             (!p->replacement || p->replacement == rdev) &&
1827             number < conf->geo.raid_disks &&
1828             enough(conf, -1)) {
1829                 err = -EBUSY;
1830                 goto abort;
1831         }
1832         *rdevp = NULL;
1833         synchronize_rcu();
1834         if (atomic_read(&rdev->nr_pending)) {
1835                 /* lost the race, try later */
1836                 err = -EBUSY;
1837                 *rdevp = rdev;
1838                 goto abort;
1839         } else if (p->replacement) {
1840                 /* We must have just cleared 'rdev' */
1841                 p->rdev = p->replacement;
1842                 clear_bit(Replacement, &p->replacement->flags);
1843                 smp_mb(); /* Make sure other CPUs may see both as identical
1844                            * but will never see neither -- if they are careful.
1845                            */
1846                 p->replacement = NULL;
1847                 clear_bit(WantReplacement, &rdev->flags);
1848         } else
1849                 /* We might have just remove the Replacement as faulty
1850                  * Clear the flag just in case
1851                  */
1852                 clear_bit(WantReplacement, &rdev->flags);
1853
1854         err = md_integrity_register(mddev);
1855
1856 abort:
1857
1858         print_conf(conf);
1859         return err;
1860 }
1861
1862
1863 static void end_sync_read(struct bio *bio, int error)
1864 {
1865         struct r10bio *r10_bio = bio->bi_private;
1866         struct r10conf *conf = r10_bio->mddev->private;
1867         int d;
1868
1869         if (bio == r10_bio->master_bio) {
1870                 /* this is a reshape read */
1871                 d = r10_bio->read_slot; /* really the read dev */
1872         } else
1873                 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1874
1875         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1876                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1877         else
1878                 /* The write handler will notice the lack of
1879                  * R10BIO_Uptodate and record any errors etc
1880                  */
1881                 atomic_add(r10_bio->sectors,
1882                            &conf->mirrors[d].rdev->corrected_errors);
1883
1884         /* for reconstruct, we always reschedule after a read.
1885          * for resync, only after all reads
1886          */
1887         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1888         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1889             atomic_dec_and_test(&r10_bio->remaining)) {
1890                 /* we have read all the blocks,
1891                  * do the comparison in process context in raid10d
1892                  */
1893                 reschedule_retry(r10_bio);
1894         }
1895 }
1896
1897 static void end_sync_request(struct r10bio *r10_bio)
1898 {
1899         struct mddev *mddev = r10_bio->mddev;
1900
1901         while (atomic_dec_and_test(&r10_bio->remaining)) {
1902                 if (r10_bio->master_bio == NULL) {
1903                         /* the primary of several recovery bios */
1904                         sector_t s = r10_bio->sectors;
1905                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1906                             test_bit(R10BIO_WriteError, &r10_bio->state))
1907                                 reschedule_retry(r10_bio);
1908                         else
1909                                 put_buf(r10_bio);
1910                         md_done_sync(mddev, s, 1);
1911                         break;
1912                 } else {
1913                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1914                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1915                             test_bit(R10BIO_WriteError, &r10_bio->state))
1916                                 reschedule_retry(r10_bio);
1917                         else
1918                                 put_buf(r10_bio);
1919                         r10_bio = r10_bio2;
1920                 }
1921         }
1922 }
1923
1924 static void end_sync_write(struct bio *bio, int error)
1925 {
1926         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1927         struct r10bio *r10_bio = bio->bi_private;
1928         struct mddev *mddev = r10_bio->mddev;
1929         struct r10conf *conf = mddev->private;
1930         int d;
1931         sector_t first_bad;
1932         int bad_sectors;
1933         int slot;
1934         int repl;
1935         struct md_rdev *rdev = NULL;
1936
1937         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1938         if (repl)
1939                 rdev = conf->mirrors[d].replacement;
1940         else
1941                 rdev = conf->mirrors[d].rdev;
1942
1943         if (!uptodate) {
1944                 if (repl)
1945                         md_error(mddev, rdev);
1946                 else {
1947                         set_bit(WriteErrorSeen, &rdev->flags);
1948                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1949                                 set_bit(MD_RECOVERY_NEEDED,
1950                                         &rdev->mddev->recovery);
1951                         set_bit(R10BIO_WriteError, &r10_bio->state);
1952                 }
1953         } else if (is_badblock(rdev,
1954                              r10_bio->devs[slot].addr,
1955                              r10_bio->sectors,
1956                              &first_bad, &bad_sectors))
1957                 set_bit(R10BIO_MadeGood, &r10_bio->state);
1958
1959         rdev_dec_pending(rdev, mddev);
1960
1961         end_sync_request(r10_bio);
1962 }
1963
1964 /*
1965  * Note: sync and recover and handled very differently for raid10
1966  * This code is for resync.
1967  * For resync, we read through virtual addresses and read all blocks.
1968  * If there is any error, we schedule a write.  The lowest numbered
1969  * drive is authoritative.
1970  * However requests come for physical address, so we need to map.
1971  * For every physical address there are raid_disks/copies virtual addresses,
1972  * which is always are least one, but is not necessarly an integer.
1973  * This means that a physical address can span multiple chunks, so we may
1974  * have to submit multiple io requests for a single sync request.
1975  */
1976 /*
1977  * We check if all blocks are in-sync and only write to blocks that
1978  * aren't in sync
1979  */
1980 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1981 {
1982         struct r10conf *conf = mddev->private;
1983         int i, first;
1984         struct bio *tbio, *fbio;
1985         int vcnt;
1986
1987         atomic_set(&r10_bio->remaining, 1);
1988
1989         /* find the first device with a block */
1990         for (i=0; i<conf->copies; i++)
1991                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1992                         break;
1993
1994         if (i == conf->copies)
1995                 goto done;
1996
1997         first = i;
1998         fbio = r10_bio->devs[i].bio;
1999
2000         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2001         /* now find blocks with errors */
2002         for (i=0 ; i < conf->copies ; i++) {
2003                 int  j, d;
2004
2005                 tbio = r10_bio->devs[i].bio;
2006
2007                 if (tbio->bi_end_io != end_sync_read)
2008                         continue;
2009                 if (i == first)
2010                         continue;
2011                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2012                         /* We know that the bi_io_vec layout is the same for
2013                          * both 'first' and 'i', so we just compare them.
2014                          * All vec entries are PAGE_SIZE;
2015                          */
2016                         for (j = 0; j < vcnt; j++)
2017                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2018                                            page_address(tbio->bi_io_vec[j].bv_page),
2019                                            fbio->bi_io_vec[j].bv_len))
2020                                         break;
2021                         if (j == vcnt)
2022                                 continue;
2023                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2024                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2025                                 /* Don't fix anything. */
2026                                 continue;
2027                 }
2028                 /* Ok, we need to write this bio, either to correct an
2029                  * inconsistency or to correct an unreadable block.
2030                  * First we need to fixup bv_offset, bv_len and
2031                  * bi_vecs, as the read request might have corrupted these
2032                  */
2033                 tbio->bi_vcnt = vcnt;
2034                 tbio->bi_size = r10_bio->sectors << 9;
2035                 tbio->bi_idx = 0;
2036                 tbio->bi_phys_segments = 0;
2037                 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
2038                 tbio->bi_flags |= 1 << BIO_UPTODATE;
2039                 tbio->bi_next = NULL;
2040                 tbio->bi_rw = WRITE;
2041                 tbio->bi_private = r10_bio;
2042                 tbio->bi_sector = r10_bio->devs[i].addr;
2043
2044                 for (j=0; j < vcnt ; j++) {
2045                         tbio->bi_io_vec[j].bv_offset = 0;
2046                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2047
2048                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2049                                page_address(fbio->bi_io_vec[j].bv_page),
2050                                PAGE_SIZE);
2051                 }
2052                 tbio->bi_end_io = end_sync_write;
2053
2054                 d = r10_bio->devs[i].devnum;
2055                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2056                 atomic_inc(&r10_bio->remaining);
2057                 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
2058
2059                 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2060                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2061                 generic_make_request(tbio);
2062         }
2063
2064         /* Now write out to any replacement devices
2065          * that are active
2066          */
2067         for (i = 0; i < conf->copies; i++) {
2068                 int j, d;
2069
2070                 tbio = r10_bio->devs[i].repl_bio;
2071                 if (!tbio || !tbio->bi_end_io)
2072                         continue;
2073                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2074                     && r10_bio->devs[i].bio != fbio)
2075                         for (j = 0; j < vcnt; j++)
2076                                 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2077                                        page_address(fbio->bi_io_vec[j].bv_page),
2078                                        PAGE_SIZE);
2079                 d = r10_bio->devs[i].devnum;
2080                 atomic_inc(&r10_bio->remaining);
2081                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2082                              tbio->bi_size >> 9);
2083                 generic_make_request(tbio);
2084         }
2085
2086 done:
2087         if (atomic_dec_and_test(&r10_bio->remaining)) {
2088                 md_done_sync(mddev, r10_bio->sectors, 1);
2089                 put_buf(r10_bio);
2090         }
2091 }
2092
2093 /*
2094  * Now for the recovery code.
2095  * Recovery happens across physical sectors.
2096  * We recover all non-is_sync drives by finding the virtual address of
2097  * each, and then choose a working drive that also has that virt address.
2098  * There is a separate r10_bio for each non-in_sync drive.
2099  * Only the first two slots are in use. The first for reading,
2100  * The second for writing.
2101  *
2102  */
2103 static void fix_recovery_read_error(struct r10bio *r10_bio)
2104 {
2105         /* We got a read error during recovery.
2106          * We repeat the read in smaller page-sized sections.
2107          * If a read succeeds, write it to the new device or record
2108          * a bad block if we cannot.
2109          * If a read fails, record a bad block on both old and
2110          * new devices.
2111          */
2112         struct mddev *mddev = r10_bio->mddev;
2113         struct r10conf *conf = mddev->private;
2114         struct bio *bio = r10_bio->devs[0].bio;
2115         sector_t sect = 0;
2116         int sectors = r10_bio->sectors;
2117         int idx = 0;
2118         int dr = r10_bio->devs[0].devnum;
2119         int dw = r10_bio->devs[1].devnum;
2120
2121         while (sectors) {
2122                 int s = sectors;
2123                 struct md_rdev *rdev;
2124                 sector_t addr;
2125                 int ok;
2126
2127                 if (s > (PAGE_SIZE>>9))
2128                         s = PAGE_SIZE >> 9;
2129
2130                 rdev = conf->mirrors[dr].rdev;
2131                 addr = r10_bio->devs[0].addr + sect,
2132                 ok = sync_page_io(rdev,
2133                                   addr,
2134                                   s << 9,
2135                                   bio->bi_io_vec[idx].bv_page,
2136                                   READ, false);
2137                 if (ok) {
2138                         rdev = conf->mirrors[dw].rdev;
2139                         addr = r10_bio->devs[1].addr + sect;
2140                         ok = sync_page_io(rdev,
2141                                           addr,
2142                                           s << 9,
2143                                           bio->bi_io_vec[idx].bv_page,
2144                                           WRITE, false);
2145                         if (!ok) {
2146                                 set_bit(WriteErrorSeen, &rdev->flags);
2147                                 if (!test_and_set_bit(WantReplacement,
2148                                                       &rdev->flags))
2149                                         set_bit(MD_RECOVERY_NEEDED,
2150                                                 &rdev->mddev->recovery);
2151                         }
2152                 }
2153                 if (!ok) {
2154                         /* We don't worry if we cannot set a bad block -
2155                          * it really is bad so there is no loss in not
2156                          * recording it yet
2157                          */
2158                         rdev_set_badblocks(rdev, addr, s, 0);
2159
2160                         if (rdev != conf->mirrors[dw].rdev) {
2161                                 /* need bad block on destination too */
2162                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2163                                 addr = r10_bio->devs[1].addr + sect;
2164                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2165                                 if (!ok) {
2166                                         /* just abort the recovery */
2167                                         printk(KERN_NOTICE
2168                                                "md/raid10:%s: recovery aborted"
2169                                                " due to read error\n",
2170                                                mdname(mddev));
2171
2172                                         conf->mirrors[dw].recovery_disabled
2173                                                 = mddev->recovery_disabled;
2174                                         set_bit(MD_RECOVERY_INTR,
2175                                                 &mddev->recovery);
2176                                         break;
2177                                 }
2178                         }
2179                 }
2180
2181                 sectors -= s;
2182                 sect += s;
2183                 idx++;
2184         }
2185 }
2186
2187 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2188 {
2189         struct r10conf *conf = mddev->private;
2190         int d;
2191         struct bio *wbio, *wbio2;
2192
2193         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2194                 fix_recovery_read_error(r10_bio);
2195                 end_sync_request(r10_bio);
2196                 return;
2197         }
2198
2199         /*
2200          * share the pages with the first bio
2201          * and submit the write request
2202          */
2203         d = r10_bio->devs[1].devnum;
2204         wbio = r10_bio->devs[1].bio;
2205         wbio2 = r10_bio->devs[1].repl_bio;
2206         if (wbio->bi_end_io) {
2207                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2208                 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2209                 generic_make_request(wbio);
2210         }
2211         if (wbio2 && wbio2->bi_end_io) {
2212                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2213                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2214                              wbio2->bi_size >> 9);
2215                 generic_make_request(wbio2);
2216         }
2217 }
2218
2219
2220 /*
2221  * Used by fix_read_error() to decay the per rdev read_errors.
2222  * We halve the read error count for every hour that has elapsed
2223  * since the last recorded read error.
2224  *
2225  */
2226 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2227 {
2228         struct timespec cur_time_mon;
2229         unsigned long hours_since_last;
2230         unsigned int read_errors = atomic_read(&rdev->read_errors);
2231
2232         ktime_get_ts(&cur_time_mon);
2233
2234         if (rdev->last_read_error.tv_sec == 0 &&
2235             rdev->last_read_error.tv_nsec == 0) {
2236                 /* first time we've seen a read error */
2237                 rdev->last_read_error = cur_time_mon;
2238                 return;
2239         }
2240
2241         hours_since_last = (cur_time_mon.tv_sec -
2242                             rdev->last_read_error.tv_sec) / 3600;
2243
2244         rdev->last_read_error = cur_time_mon;
2245
2246         /*
2247          * if hours_since_last is > the number of bits in read_errors
2248          * just set read errors to 0. We do this to avoid
2249          * overflowing the shift of read_errors by hours_since_last.
2250          */
2251         if (hours_since_last >= 8 * sizeof(read_errors))
2252                 atomic_set(&rdev->read_errors, 0);
2253         else
2254                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2255 }
2256
2257 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2258                             int sectors, struct page *page, int rw)
2259 {
2260         sector_t first_bad;
2261         int bad_sectors;
2262
2263         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2264             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2265                 return -1;
2266         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2267                 /* success */
2268                 return 1;
2269         if (rw == WRITE) {
2270                 set_bit(WriteErrorSeen, &rdev->flags);
2271                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2272                         set_bit(MD_RECOVERY_NEEDED,
2273                                 &rdev->mddev->recovery);
2274         }
2275         /* need to record an error - either for the block or the device */
2276         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2277                 md_error(rdev->mddev, rdev);
2278         return 0;
2279 }
2280
2281 /*
2282  * This is a kernel thread which:
2283  *
2284  *      1.      Retries failed read operations on working mirrors.
2285  *      2.      Updates the raid superblock when problems encounter.
2286  *      3.      Performs writes following reads for array synchronising.
2287  */
2288
2289 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2290 {
2291         int sect = 0; /* Offset from r10_bio->sector */
2292         int sectors = r10_bio->sectors;
2293         struct md_rdev*rdev;
2294         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2295         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2296
2297         /* still own a reference to this rdev, so it cannot
2298          * have been cleared recently.
2299          */
2300         rdev = conf->mirrors[d].rdev;
2301
2302         if (test_bit(Faulty, &rdev->flags))
2303                 /* drive has already been failed, just ignore any
2304                    more fix_read_error() attempts */
2305                 return;
2306
2307         check_decay_read_errors(mddev, rdev);
2308         atomic_inc(&rdev->read_errors);
2309         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2310                 char b[BDEVNAME_SIZE];
2311                 bdevname(rdev->bdev, b);
2312
2313                 printk(KERN_NOTICE
2314                        "md/raid10:%s: %s: Raid device exceeded "
2315                        "read_error threshold [cur %d:max %d]\n",
2316                        mdname(mddev), b,
2317                        atomic_read(&rdev->read_errors), max_read_errors);
2318                 printk(KERN_NOTICE
2319                        "md/raid10:%s: %s: Failing raid device\n",
2320                        mdname(mddev), b);
2321                 md_error(mddev, conf->mirrors[d].rdev);
2322                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2323                 return;
2324         }
2325
2326         while(sectors) {
2327                 int s = sectors;
2328                 int sl = r10_bio->read_slot;
2329                 int success = 0;
2330                 int start;
2331
2332                 if (s > (PAGE_SIZE>>9))
2333                         s = PAGE_SIZE >> 9;
2334
2335                 rcu_read_lock();
2336                 do {
2337                         sector_t first_bad;
2338                         int bad_sectors;
2339
2340                         d = r10_bio->devs[sl].devnum;
2341                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2342                         if (rdev &&
2343                             !test_bit(Unmerged, &rdev->flags) &&
2344                             test_bit(In_sync, &rdev->flags) &&
2345                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2346                                         &first_bad, &bad_sectors) == 0) {
2347                                 atomic_inc(&rdev->nr_pending);
2348                                 rcu_read_unlock();
2349                                 success = sync_page_io(rdev,
2350                                                        r10_bio->devs[sl].addr +
2351                                                        sect,
2352                                                        s<<9,
2353                                                        conf->tmppage, READ, false);
2354                                 rdev_dec_pending(rdev, mddev);
2355                                 rcu_read_lock();
2356                                 if (success)
2357                                         break;
2358                         }
2359                         sl++;
2360                         if (sl == conf->copies)
2361                                 sl = 0;
2362                 } while (!success && sl != r10_bio->read_slot);
2363                 rcu_read_unlock();
2364
2365                 if (!success) {
2366                         /* Cannot read from anywhere, just mark the block
2367                          * as bad on the first device to discourage future
2368                          * reads.
2369                          */
2370                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2371                         rdev = conf->mirrors[dn].rdev;
2372
2373                         if (!rdev_set_badblocks(
2374                                     rdev,
2375                                     r10_bio->devs[r10_bio->read_slot].addr
2376                                     + sect,
2377                                     s, 0)) {
2378                                 md_error(mddev, rdev);
2379                                 r10_bio->devs[r10_bio->read_slot].bio
2380                                         = IO_BLOCKED;
2381                         }
2382                         break;
2383                 }
2384
2385                 start = sl;
2386                 /* write it back and re-read */
2387                 rcu_read_lock();
2388                 while (sl != r10_bio->read_slot) {
2389                         char b[BDEVNAME_SIZE];
2390
2391                         if (sl==0)
2392                                 sl = conf->copies;
2393                         sl--;
2394                         d = r10_bio->devs[sl].devnum;
2395                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2396                         if (!rdev ||
2397                             test_bit(Unmerged, &rdev->flags) ||
2398                             !test_bit(In_sync, &rdev->flags))
2399                                 continue;
2400
2401                         atomic_inc(&rdev->nr_pending);
2402                         rcu_read_unlock();
2403                         if (r10_sync_page_io(rdev,
2404                                              r10_bio->devs[sl].addr +
2405                                              sect,
2406                                              s, conf->tmppage, WRITE)
2407                             == 0) {
2408                                 /* Well, this device is dead */
2409                                 printk(KERN_NOTICE
2410                                        "md/raid10:%s: read correction "
2411                                        "write failed"
2412                                        " (%d sectors at %llu on %s)\n",
2413                                        mdname(mddev), s,
2414                                        (unsigned long long)(
2415                                                sect +
2416                                                choose_data_offset(r10_bio,
2417                                                                   rdev)),
2418                                        bdevname(rdev->bdev, b));
2419                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2420                                        "drive\n",
2421                                        mdname(mddev),
2422                                        bdevname(rdev->bdev, b));
2423                         }
2424                         rdev_dec_pending(rdev, mddev);
2425                         rcu_read_lock();
2426                 }
2427                 sl = start;
2428                 while (sl != r10_bio->read_slot) {
2429                         char b[BDEVNAME_SIZE];
2430
2431                         if (sl==0)
2432                                 sl = conf->copies;
2433                         sl--;
2434                         d = r10_bio->devs[sl].devnum;
2435                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2436                         if (!rdev ||
2437                             !test_bit(In_sync, &rdev->flags))
2438                                 continue;
2439
2440                         atomic_inc(&rdev->nr_pending);
2441                         rcu_read_unlock();
2442                         switch (r10_sync_page_io(rdev,
2443                                              r10_bio->devs[sl].addr +
2444                                              sect,
2445                                              s, conf->tmppage,
2446                                                  READ)) {
2447                         case 0:
2448                                 /* Well, this device is dead */
2449                                 printk(KERN_NOTICE
2450                                        "md/raid10:%s: unable to read back "
2451                                        "corrected sectors"
2452                                        " (%d sectors at %llu on %s)\n",
2453                                        mdname(mddev), s,
2454                                        (unsigned long long)(
2455                                                sect +
2456                                                choose_data_offset(r10_bio, rdev)),
2457                                        bdevname(rdev->bdev, b));
2458                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2459                                        "drive\n",
2460                                        mdname(mddev),
2461                                        bdevname(rdev->bdev, b));
2462                                 break;
2463                         case 1:
2464                                 printk(KERN_INFO
2465                                        "md/raid10:%s: read error corrected"
2466                                        " (%d sectors at %llu on %s)\n",
2467                                        mdname(mddev), s,
2468                                        (unsigned long long)(
2469                                                sect +
2470                                                choose_data_offset(r10_bio, rdev)),
2471                                        bdevname(rdev->bdev, b));
2472                                 atomic_add(s, &rdev->corrected_errors);
2473                         }
2474
2475                         rdev_dec_pending(rdev, mddev);
2476                         rcu_read_lock();
2477                 }
2478                 rcu_read_unlock();
2479
2480                 sectors -= s;
2481                 sect += s;
2482         }
2483 }
2484
2485 static void bi_complete(struct bio *bio, int error)
2486 {
2487         complete((struct completion *)bio->bi_private);
2488 }
2489
2490 static int submit_bio_wait(int rw, struct bio *bio)
2491 {
2492         struct completion event;
2493         rw |= REQ_SYNC;
2494
2495         init_completion(&event);
2496         bio->bi_private = &event;
2497         bio->bi_end_io = bi_complete;
2498         submit_bio(rw, bio);
2499         wait_for_completion(&event);
2500
2501         return test_bit(BIO_UPTODATE, &bio->bi_flags);
2502 }
2503
2504 static int narrow_write_error(struct r10bio *r10_bio, int i)
2505 {
2506         struct bio *bio = r10_bio->master_bio;
2507         struct mddev *mddev = r10_bio->mddev;
2508         struct r10conf *conf = mddev->private;
2509         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2510         /* bio has the data to be written to slot 'i' where
2511          * we just recently had a write error.
2512          * We repeatedly clone the bio and trim down to one block,
2513          * then try the write.  Where the write fails we record
2514          * a bad block.
2515          * It is conceivable that the bio doesn't exactly align with
2516          * blocks.  We must handle this.
2517          *
2518          * We currently own a reference to the rdev.
2519          */
2520
2521         int block_sectors;
2522         sector_t sector;
2523         int sectors;
2524         int sect_to_write = r10_bio->sectors;
2525         int ok = 1;
2526
2527         if (rdev->badblocks.shift < 0)
2528                 return 0;
2529
2530         block_sectors = 1 << rdev->badblocks.shift;
2531         sector = r10_bio->sector;
2532         sectors = ((r10_bio->sector + block_sectors)
2533                    & ~(sector_t)(block_sectors - 1))
2534                 - sector;
2535
2536         while (sect_to_write) {
2537                 struct bio *wbio;
2538                 if (sectors > sect_to_write)
2539                         sectors = sect_to_write;
2540                 /* Write at 'sector' for 'sectors' */
2541                 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2542                 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2543                 wbio->bi_sector = (r10_bio->devs[i].addr+
2544                                    choose_data_offset(r10_bio, rdev) +
2545                                    (sector - r10_bio->sector));
2546                 wbio->bi_bdev = rdev->bdev;
2547                 if (submit_bio_wait(WRITE, wbio) == 0)
2548                         /* Failure! */
2549                         ok = rdev_set_badblocks(rdev, sector,
2550                                                 sectors, 0)
2551                                 && ok;
2552
2553                 bio_put(wbio);
2554                 sect_to_write -= sectors;
2555                 sector += sectors;
2556                 sectors = block_sectors;
2557         }
2558         return ok;
2559 }
2560
2561 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2562 {
2563         int slot = r10_bio->read_slot;
2564         struct bio *bio;
2565         struct r10conf *conf = mddev->private;
2566         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2567         char b[BDEVNAME_SIZE];
2568         unsigned long do_sync;
2569         int max_sectors;
2570
2571         /* we got a read error. Maybe the drive is bad.  Maybe just
2572          * the block and we can fix it.
2573          * We freeze all other IO, and try reading the block from
2574          * other devices.  When we find one, we re-write
2575          * and check it that fixes the read error.
2576          * This is all done synchronously while the array is
2577          * frozen.
2578          */
2579         bio = r10_bio->devs[slot].bio;
2580         bdevname(bio->bi_bdev, b);
2581         bio_put(bio);
2582         r10_bio->devs[slot].bio = NULL;
2583
2584         if (mddev->ro == 0) {
2585                 freeze_array(conf);
2586                 fix_read_error(conf, mddev, r10_bio);
2587                 unfreeze_array(conf);
2588         } else
2589                 r10_bio->devs[slot].bio = IO_BLOCKED;
2590
2591         rdev_dec_pending(rdev, mddev);
2592
2593 read_more:
2594         rdev = read_balance(conf, r10_bio, &max_sectors);
2595         if (rdev == NULL) {
2596                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2597                        " read error for block %llu\n",
2598                        mdname(mddev), b,
2599                        (unsigned long long)r10_bio->sector);
2600                 raid_end_bio_io(r10_bio);
2601                 return;
2602         }
2603
2604         do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2605         slot = r10_bio->read_slot;
2606         printk_ratelimited(
2607                 KERN_ERR
2608                 "md/raid10:%s: %s: redirecting "
2609                 "sector %llu to another mirror\n",
2610                 mdname(mddev),
2611                 bdevname(rdev->bdev, b),
2612                 (unsigned long long)r10_bio->sector);
2613         bio = bio_clone_mddev(r10_bio->master_bio,
2614                               GFP_NOIO, mddev);
2615         md_trim_bio(bio,
2616                     r10_bio->sector - bio->bi_sector,
2617                     max_sectors);
2618         r10_bio->devs[slot].bio = bio;
2619         r10_bio->devs[slot].rdev = rdev;
2620         bio->bi_sector = r10_bio->devs[slot].addr
2621                 + choose_data_offset(r10_bio, rdev);
2622         bio->bi_bdev = rdev->bdev;
2623         bio->bi_rw = READ | do_sync;
2624         bio->bi_private = r10_bio;
2625         bio->bi_end_io = raid10_end_read_request;
2626         if (max_sectors < r10_bio->sectors) {
2627                 /* Drat - have to split this up more */
2628                 struct bio *mbio = r10_bio->master_bio;
2629                 int sectors_handled =
2630                         r10_bio->sector + max_sectors
2631                         - mbio->bi_sector;
2632                 r10_bio->sectors = max_sectors;
2633                 spin_lock_irq(&conf->device_lock);
2634                 if (mbio->bi_phys_segments == 0)
2635                         mbio->bi_phys_segments = 2;
2636                 else
2637                         mbio->bi_phys_segments++;
2638                 spin_unlock_irq(&conf->device_lock);
2639                 generic_make_request(bio);
2640
2641                 r10_bio = mempool_alloc(conf->r10bio_pool,
2642                                         GFP_NOIO);
2643                 r10_bio->master_bio = mbio;
2644                 r10_bio->sectors = (mbio->bi_size >> 9)
2645                         - sectors_handled;
2646                 r10_bio->state = 0;
2647                 set_bit(R10BIO_ReadError,
2648                         &r10_bio->state);
2649                 r10_bio->mddev = mddev;
2650                 r10_bio->sector = mbio->bi_sector
2651                         + sectors_handled;
2652
2653                 goto read_more;
2654         } else
2655                 generic_make_request(bio);
2656 }
2657
2658 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2659 {
2660         /* Some sort of write request has finished and it
2661          * succeeded in writing where we thought there was a
2662          * bad block.  So forget the bad block.
2663          * Or possibly if failed and we need to record
2664          * a bad block.
2665          */
2666         int m;
2667         struct md_rdev *rdev;
2668
2669         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2670             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2671                 for (m = 0; m < conf->copies; m++) {
2672                         int dev = r10_bio->devs[m].devnum;
2673                         rdev = conf->mirrors[dev].rdev;
2674                         if (r10_bio->devs[m].bio == NULL)
2675                                 continue;
2676                         if (test_bit(BIO_UPTODATE,
2677                                      &r10_bio->devs[m].bio->bi_flags)) {
2678                                 rdev_clear_badblocks(
2679                                         rdev,
2680                                         r10_bio->devs[m].addr,
2681                                         r10_bio->sectors, 0);
2682                         } else {
2683                                 if (!rdev_set_badblocks(
2684                                             rdev,
2685                                             r10_bio->devs[m].addr,
2686                                             r10_bio->sectors, 0))
2687                                         md_error(conf->mddev, rdev);
2688                         }
2689                         rdev = conf->mirrors[dev].replacement;
2690                         if (r10_bio->devs[m].repl_bio == NULL)
2691                                 continue;
2692                         if (test_bit(BIO_UPTODATE,
2693                                      &r10_bio->devs[m].repl_bio->bi_flags)) {
2694                                 rdev_clear_badblocks(
2695                                         rdev,
2696                                         r10_bio->devs[m].addr,
2697                                         r10_bio->sectors, 0);
2698                         } else {
2699                                 if (!rdev_set_badblocks(
2700                                             rdev,
2701                                             r10_bio->devs[m].addr,
2702                                             r10_bio->sectors, 0))
2703                                         md_error(conf->mddev, rdev);
2704                         }
2705                 }
2706                 put_buf(r10_bio);
2707         } else {
2708                 for (m = 0; m < conf->copies; m++) {
2709                         int dev = r10_bio->devs[m].devnum;
2710                         struct bio *bio = r10_bio->devs[m].bio;
2711                         rdev = conf->mirrors[dev].rdev;
2712                         if (bio == IO_MADE_GOOD) {
2713                                 rdev_clear_badblocks(
2714                                         rdev,
2715                                         r10_bio->devs[m].addr,
2716                                         r10_bio->sectors, 0);
2717                                 rdev_dec_pending(rdev, conf->mddev);
2718                         } else if (bio != NULL &&
2719                                    !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2720                                 if (!narrow_write_error(r10_bio, m)) {
2721                                         md_error(conf->mddev, rdev);
2722                                         set_bit(R10BIO_Degraded,
2723                                                 &r10_bio->state);
2724                                 }
2725                                 rdev_dec_pending(rdev, conf->mddev);
2726                         }
2727                         bio = r10_bio->devs[m].repl_bio;
2728                         rdev = conf->mirrors[dev].replacement;
2729                         if (rdev && bio == IO_MADE_GOOD) {
2730                                 rdev_clear_badblocks(
2731                                         rdev,
2732                                         r10_bio->devs[m].addr,
2733                                         r10_bio->sectors, 0);
2734                                 rdev_dec_pending(rdev, conf->mddev);
2735                         }
2736                 }
2737                 if (test_bit(R10BIO_WriteError,
2738                              &r10_bio->state))
2739                         close_write(r10_bio);
2740                 raid_end_bio_io(r10_bio);
2741         }
2742 }
2743
2744 static void raid10d(struct md_thread *thread)
2745 {
2746         struct mddev *mddev = thread->mddev;
2747         struct r10bio *r10_bio;
2748         unsigned long flags;
2749         struct r10conf *conf = mddev->private;
2750         struct list_head *head = &conf->retry_list;
2751         struct blk_plug plug;
2752
2753         md_check_recovery(mddev);
2754
2755         blk_start_plug(&plug);
2756         for (;;) {
2757
2758                 flush_pending_writes(conf);
2759
2760                 spin_lock_irqsave(&conf->device_lock, flags);
2761                 if (list_empty(head)) {
2762                         spin_unlock_irqrestore(&conf->device_lock, flags);
2763                         break;
2764                 }
2765                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2766                 list_del(head->prev);
2767                 conf->nr_queued--;
2768                 spin_unlock_irqrestore(&conf->device_lock, flags);
2769
2770                 mddev = r10_bio->mddev;
2771                 conf = mddev->private;
2772                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2773                     test_bit(R10BIO_WriteError, &r10_bio->state))
2774                         handle_write_completed(conf, r10_bio);
2775                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2776                         reshape_request_write(mddev, r10_bio);
2777                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2778                         sync_request_write(mddev, r10_bio);
2779                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2780                         recovery_request_write(mddev, r10_bio);
2781                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2782                         handle_read_error(mddev, r10_bio);
2783                 else {
2784                         /* just a partial read to be scheduled from a
2785                          * separate context
2786                          */
2787                         int slot = r10_bio->read_slot;
2788                         generic_make_request(r10_bio->devs[slot].bio);
2789                 }
2790
2791                 cond_resched();
2792                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2793                         md_check_recovery(mddev);
2794         }
2795         blk_finish_plug(&plug);
2796 }
2797
2798
2799 static int init_resync(struct r10conf *conf)
2800 {
2801         int buffs;
2802         int i;
2803
2804         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2805         BUG_ON(conf->r10buf_pool);
2806         conf->have_replacement = 0;
2807         for (i = 0; i < conf->geo.raid_disks; i++)
2808                 if (conf->mirrors[i].replacement)
2809                         conf->have_replacement = 1;
2810         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2811         if (!conf->r10buf_pool)
2812                 return -ENOMEM;
2813         conf->next_resync = 0;
2814         return 0;
2815 }
2816
2817 /*
2818  * perform a "sync" on one "block"
2819  *
2820  * We need to make sure that no normal I/O request - particularly write
2821  * requests - conflict with active sync requests.
2822  *
2823  * This is achieved by tracking pending requests and a 'barrier' concept
2824  * that can be installed to exclude normal IO requests.
2825  *
2826  * Resync and recovery are handled very differently.
2827  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2828  *
2829  * For resync, we iterate over virtual addresses, read all copies,
2830  * and update if there are differences.  If only one copy is live,
2831  * skip it.
2832  * For recovery, we iterate over physical addresses, read a good
2833  * value for each non-in_sync drive, and over-write.
2834  *
2835  * So, for recovery we may have several outstanding complex requests for a
2836  * given address, one for each out-of-sync device.  We model this by allocating
2837  * a number of r10_bio structures, one for each out-of-sync device.
2838  * As we setup these structures, we collect all bio's together into a list
2839  * which we then process collectively to add pages, and then process again
2840  * to pass to generic_make_request.
2841  *
2842  * The r10_bio structures are linked using a borrowed master_bio pointer.
2843  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2844  * has its remaining count decremented to 0, the whole complex operation
2845  * is complete.
2846  *
2847  */
2848
2849 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2850                              int *skipped, int go_faster)
2851 {
2852         struct r10conf *conf = mddev->private;
2853         struct r10bio *r10_bio;
2854         struct bio *biolist = NULL, *bio;
2855         sector_t max_sector, nr_sectors;
2856         int i;
2857         int max_sync;
2858         sector_t sync_blocks;
2859         sector_t sectors_skipped = 0;
2860         int chunks_skipped = 0;
2861         sector_t chunk_mask = conf->geo.chunk_mask;
2862
2863         if (!conf->r10buf_pool)
2864                 if (init_resync(conf))
2865                         return 0;
2866
2867  skipped:
2868         max_sector = mddev->dev_sectors;
2869         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2870             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2871                 max_sector = mddev->resync_max_sectors;
2872         if (sector_nr >= max_sector) {
2873                 /* If we aborted, we need to abort the
2874                  * sync on the 'current' bitmap chucks (there can
2875                  * be several when recovering multiple devices).
2876                  * as we may have started syncing it but not finished.
2877                  * We can find the current address in
2878                  * mddev->curr_resync, but for recovery,
2879                  * we need to convert that to several
2880                  * virtual addresses.
2881                  */
2882                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2883                         end_reshape(conf);
2884                         return 0;
2885                 }
2886
2887                 if (mddev->curr_resync < max_sector) { /* aborted */
2888                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2889                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2890                                                 &sync_blocks, 1);
2891                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2892                                 sector_t sect =
2893                                         raid10_find_virt(conf, mddev->curr_resync, i);
2894                                 bitmap_end_sync(mddev->bitmap, sect,
2895                                                 &sync_blocks, 1);
2896                         }
2897                 } else {
2898                         /* completed sync */
2899                         if ((!mddev->bitmap || conf->fullsync)
2900                             && conf->have_replacement
2901                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2902                                 /* Completed a full sync so the replacements
2903                                  * are now fully recovered.
2904                                  */
2905                                 for (i = 0; i < conf->geo.raid_disks; i++)
2906                                         if (conf->mirrors[i].replacement)
2907                                                 conf->mirrors[i].replacement
2908                                                         ->recovery_offset
2909                                                         = MaxSector;
2910                         }
2911                         conf->fullsync = 0;
2912                 }
2913                 bitmap_close_sync(mddev->bitmap);
2914                 close_sync(conf);
2915                 *skipped = 1;
2916                 return sectors_skipped;
2917         }
2918
2919         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2920                 return reshape_request(mddev, sector_nr, skipped);
2921
2922         if (chunks_skipped >= conf->geo.raid_disks) {
2923                 /* if there has been nothing to do on any drive,
2924                  * then there is nothing to do at all..
2925                  */
2926                 *skipped = 1;
2927                 return (max_sector - sector_nr) + sectors_skipped;
2928         }
2929
2930         if (max_sector > mddev->resync_max)
2931                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2932
2933         /* make sure whole request will fit in a chunk - if chunks
2934          * are meaningful
2935          */
2936         if (conf->geo.near_copies < conf->geo.raid_disks &&
2937             max_sector > (sector_nr | chunk_mask))
2938                 max_sector = (sector_nr | chunk_mask) + 1;
2939         /*
2940          * If there is non-resync activity waiting for us then
2941          * put in a delay to throttle resync.
2942          */
2943         if (!go_faster && conf->nr_waiting)
2944                 msleep_interruptible(1000);
2945
2946         /* Again, very different code for resync and recovery.
2947          * Both must result in an r10bio with a list of bios that
2948          * have bi_end_io, bi_sector, bi_bdev set,
2949          * and bi_private set to the r10bio.
2950          * For recovery, we may actually create several r10bios
2951          * with 2 bios in each, that correspond to the bios in the main one.
2952          * In this case, the subordinate r10bios link back through a
2953          * borrowed master_bio pointer, and the counter in the master
2954          * includes a ref from each subordinate.
2955          */
2956         /* First, we decide what to do and set ->bi_end_io
2957          * To end_sync_read if we want to read, and
2958          * end_sync_write if we will want to write.
2959          */
2960
2961         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2962         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2963                 /* recovery... the complicated one */
2964                 int j;
2965                 r10_bio = NULL;
2966
2967                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2968                         int still_degraded;
2969                         struct r10bio *rb2;
2970                         sector_t sect;
2971                         int must_sync;
2972                         int any_working;
2973                         struct raid10_info *mirror = &conf->mirrors[i];
2974
2975                         if ((mirror->rdev == NULL ||
2976                              test_bit(In_sync, &mirror->rdev->flags))
2977                             &&
2978                             (mirror->replacement == NULL ||
2979                              test_bit(Faulty,
2980                                       &mirror->replacement->flags)))
2981                                 continue;
2982
2983                         still_degraded = 0;
2984                         /* want to reconstruct this device */
2985                         rb2 = r10_bio;
2986                         sect = raid10_find_virt(conf, sector_nr, i);
2987                         if (sect >= mddev->resync_max_sectors) {
2988                                 /* last stripe is not complete - don't
2989                                  * try to recover this sector.
2990                                  */
2991                                 continue;
2992                         }
2993                         /* Unless we are doing a full sync, or a replacement
2994                          * we only need to recover the block if it is set in
2995                          * the bitmap
2996                          */
2997                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
2998                                                       &sync_blocks, 1);
2999                         if (sync_blocks < max_sync)
3000                                 max_sync = sync_blocks;
3001                         if (!must_sync &&
3002                             mirror->replacement == NULL &&
3003                             !conf->fullsync) {
3004                                 /* yep, skip the sync_blocks here, but don't assume
3005                                  * that there will never be anything to do here
3006                                  */
3007                                 chunks_skipped = -1;
3008                                 continue;
3009                         }
3010
3011                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3012                         raise_barrier(conf, rb2 != NULL);
3013                         atomic_set(&r10_bio->remaining, 0);
3014
3015                         r10_bio->master_bio = (struct bio*)rb2;
3016                         if (rb2)
3017                                 atomic_inc(&rb2->remaining);
3018                         r10_bio->mddev = mddev;
3019                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3020                         r10_bio->sector = sect;
3021
3022                         raid10_find_phys(conf, r10_bio);
3023
3024                         /* Need to check if the array will still be
3025                          * degraded
3026                          */
3027                         for (j = 0; j < conf->geo.raid_disks; j++)
3028                                 if (conf->mirrors[j].rdev == NULL ||
3029                                     test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3030                                         still_degraded = 1;
3031                                         break;
3032                                 }
3033
3034                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3035                                                       &sync_blocks, still_degraded);
3036
3037                         any_working = 0;
3038                         for (j=0; j<conf->copies;j++) {
3039                                 int k;
3040                                 int d = r10_bio->devs[j].devnum;
3041                                 sector_t from_addr, to_addr;
3042                                 struct md_rdev *rdev;
3043                                 sector_t sector, first_bad;
3044                                 int bad_sectors;
3045                                 if (!conf->mirrors[d].rdev ||
3046                                     !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3047                                         continue;
3048                                 /* This is where we read from */
3049                                 any_working = 1;
3050                                 rdev = conf->mirrors[d].rdev;
3051                                 sector = r10_bio->devs[j].addr;
3052
3053                                 if (is_badblock(rdev, sector, max_sync,
3054                                                 &first_bad, &bad_sectors)) {
3055                                         if (first_bad > sector)
3056                                                 max_sync = first_bad - sector;
3057                                         else {
3058                                                 bad_sectors -= (sector
3059                                                                 - first_bad);
3060                                                 if (max_sync > bad_sectors)
3061                                                         max_sync = bad_sectors;
3062                                                 continue;
3063                                         }
3064                                 }
3065                                 bio = r10_bio->devs[0].bio;
3066                                 bio->bi_next = biolist;
3067                                 biolist = bio;
3068                                 bio->bi_private = r10_bio;
3069                                 bio->bi_end_io = end_sync_read;
3070                                 bio->bi_rw = READ;
3071                                 from_addr = r10_bio->devs[j].addr;
3072                                 bio->bi_sector = from_addr + rdev->data_offset;
3073                                 bio->bi_bdev = rdev->bdev;
3074                                 atomic_inc(&rdev->nr_pending);
3075                                 /* and we write to 'i' (if not in_sync) */
3076
3077                                 for (k=0; k<conf->copies; k++)
3078                                         if (r10_bio->devs[k].devnum == i)
3079                                                 break;
3080                                 BUG_ON(k == conf->copies);
3081                                 to_addr = r10_bio->devs[k].addr;
3082                                 r10_bio->devs[0].devnum = d;
3083                                 r10_bio->devs[0].addr = from_addr;
3084                                 r10_bio->devs[1].devnum = i;
3085                                 r10_bio->devs[1].addr = to_addr;
3086
3087                                 rdev = mirror->rdev;
3088                                 if (!test_bit(In_sync, &rdev->flags)) {
3089                                         bio = r10_bio->devs[1].bio;
3090                                         bio->bi_next = biolist;
3091                                         biolist = bio;
3092                                         bio->bi_private = r10_bio;
3093                                         bio->bi_end_io = end_sync_write;
3094                                         bio->bi_rw = WRITE;
3095                                         bio->bi_sector = to_addr
3096                                                 + rdev->data_offset;
3097                                         bio->bi_bdev = rdev->bdev;
3098                                         atomic_inc(&r10_bio->remaining);
3099                                 } else
3100                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3101
3102                                 /* and maybe write to replacement */
3103                                 bio = r10_bio->devs[1].repl_bio;
3104                                 if (bio)
3105                                         bio->bi_end_io = NULL;
3106                                 rdev = mirror->replacement;
3107                                 /* Note: if rdev != NULL, then bio
3108                                  * cannot be NULL as r10buf_pool_alloc will
3109                                  * have allocated it.
3110                                  * So the second test here is pointless.
3111                                  * But it keeps semantic-checkers happy, and
3112                                  * this comment keeps human reviewers
3113                                  * happy.
3114                                  */
3115                                 if (rdev == NULL || bio == NULL ||
3116                                     test_bit(Faulty, &rdev->flags))
3117                                         break;
3118                                 bio->bi_next = biolist;
3119                                 biolist = bio;
3120                                 bio->bi_private = r10_bio;
3121                                 bio->bi_end_io = end_sync_write;
3122                                 bio->bi_rw = WRITE;
3123                                 bio->bi_sector = to_addr + rdev->data_offset;
3124                                 bio->bi_bdev = rdev->bdev;
3125                                 atomic_inc(&r10_bio->remaining);
3126                                 break;
3127                         }
3128                         if (j == conf->copies) {
3129                                 /* Cannot recover, so abort the recovery or
3130                                  * record a bad block */
3131                                 put_buf(r10_bio);
3132                                 if (rb2)
3133                                         atomic_dec(&rb2->remaining);
3134                                 r10_bio = rb2;
3135                                 if (any_working) {
3136                                         /* problem is that there are bad blocks
3137                                          * on other device(s)
3138                                          */
3139                                         int k;
3140                                         for (k = 0; k < conf->copies; k++)
3141                                                 if (r10_bio->devs[k].devnum == i)
3142                                                         break;
3143                                         if (!test_bit(In_sync,
3144                                                       &mirror->rdev->flags)
3145                                             && !rdev_set_badblocks(
3146                                                     mirror->rdev,
3147                                                     r10_bio->devs[k].addr,
3148                                                     max_sync, 0))
3149                                                 any_working = 0;
3150                                         if (mirror->replacement &&
3151                                             !rdev_set_badblocks(
3152                                                     mirror->replacement,
3153                                                     r10_bio->devs[k].addr,
3154                                                     max_sync, 0))
3155                                                 any_working = 0;
3156                                 }
3157                                 if (!any_working)  {
3158                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3159                                                               &mddev->recovery))
3160                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
3161                                                        "working devices for recovery.\n",
3162                                                        mdname(mddev));
3163                                         mirror->recovery_disabled
3164                                                 = mddev->recovery_disabled;
3165                                 }
3166                                 break;
3167                         }
3168                 }
3169                 if (biolist == NULL) {
3170                         while (r10_bio) {
3171                                 struct r10bio *rb2 = r10_bio;
3172                                 r10_bio = (struct r10bio*) rb2->master_bio;
3173                                 rb2->master_bio = NULL;
3174                                 put_buf(rb2);
3175                         }
3176                         goto giveup;
3177                 }
3178         } else {
3179                 /* resync. Schedule a read for every block at this virt offset */
3180                 int count = 0;
3181
3182                 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3183
3184                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3185                                        &sync_blocks, mddev->degraded) &&
3186                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3187                                                  &mddev->recovery)) {
3188                         /* We can skip this block */
3189                         *skipped = 1;
3190                         return sync_blocks + sectors_skipped;
3191                 }
3192                 if (sync_blocks < max_sync)
3193                         max_sync = sync_blocks;
3194                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3195
3196                 r10_bio->mddev = mddev;
3197                 atomic_set(&r10_bio->remaining, 0);
3198                 raise_barrier(conf, 0);
3199                 conf->next_resync = sector_nr;
3200
3201                 r10_bio->master_bio = NULL;
3202                 r10_bio->sector = sector_nr;
3203                 set_bit(R10BIO_IsSync, &r10_bio->state);
3204                 raid10_find_phys(conf, r10_bio);
3205                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3206
3207                 for (i = 0; i < conf->copies; i++) {
3208                         int d = r10_bio->devs[i].devnum;
3209                         sector_t first_bad, sector;
3210                         int bad_sectors;
3211
3212                         if (r10_bio->devs[i].repl_bio)
3213                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3214
3215                         bio = r10_bio->devs[i].bio;
3216                         bio->bi_end_io = NULL;
3217                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
3218                         if (conf->mirrors[d].rdev == NULL ||
3219                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3220                                 continue;
3221                         sector = r10_bio->devs[i].addr;
3222                         if (is_badblock(conf->mirrors[d].rdev,
3223                                         sector, max_sync,
3224                                         &first_bad, &bad_sectors)) {
3225                                 if (first_bad > sector)
3226                                         max_sync = first_bad - sector;
3227                                 else {
3228                                         bad_sectors -= (sector - first_bad);
3229                                         if (max_sync > bad_sectors)
3230                                                 max_sync = bad_sectors;
3231                                         continue;
3232                                 }
3233                         }
3234                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3235                         atomic_inc(&r10_bio->remaining);
3236                         bio->bi_next = biolist;
3237                         biolist = bio;
3238                         bio->bi_private = r10_bio;
3239                         bio->bi_end_io = end_sync_read;
3240                         bio->bi_rw = READ;
3241                         bio->bi_sector = sector +
3242                                 conf->mirrors[d].rdev->data_offset;
3243                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3244                         count++;
3245
3246                         if (conf->mirrors[d].replacement == NULL ||
3247                             test_bit(Faulty,
3248                                      &conf->mirrors[d].replacement->flags))
3249                                 continue;
3250
3251                         /* Need to set up for writing to the replacement */
3252                         bio = r10_bio->devs[i].repl_bio;
3253                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
3254
3255                         sector = r10_bio->devs[i].addr;
3256                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3257                         bio->bi_next = biolist;
3258                         biolist = bio;
3259                         bio->bi_private = r10_bio;
3260                         bio->bi_end_io = end_sync_write;
3261                         bio->bi_rw = WRITE;
3262                         bio->bi_sector = sector +
3263                                 conf->mirrors[d].replacement->data_offset;
3264                         bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3265                         count++;
3266                 }
3267
3268                 if (count < 2) {
3269                         for (i=0; i<conf->copies; i++) {
3270                                 int d = r10_bio->devs[i].devnum;
3271                                 if (r10_bio->devs[i].bio->bi_end_io)
3272                                         rdev_dec_pending(conf->mirrors[d].rdev,
3273                                                          mddev);
3274                                 if (r10_bio->devs[i].repl_bio &&
3275                                     r10_bio->devs[i].repl_bio->bi_end_io)
3276                                         rdev_dec_pending(
3277                                                 conf->mirrors[d].replacement,
3278                                                 mddev);
3279                         }
3280                         put_buf(r10_bio);
3281                         biolist = NULL;
3282                         goto giveup;
3283                 }
3284         }
3285
3286         for (bio = biolist; bio ; bio=bio->bi_next) {
3287
3288                 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3289                 if (bio->bi_end_io)
3290                         bio->bi_flags |= 1 << BIO_UPTODATE;
3291                 bio->bi_vcnt = 0;
3292                 bio->bi_idx = 0;
3293                 bio->bi_phys_segments = 0;
3294                 bio->bi_size = 0;
3295         }
3296
3297         nr_sectors = 0;
3298         if (sector_nr + max_sync < max_sector)
3299                 max_sector = sector_nr + max_sync;
3300         do {
3301                 struct page *page;
3302                 int len = PAGE_SIZE;
3303                 if (sector_nr + (len>>9) > max_sector)
3304                         len = (max_sector - sector_nr) << 9;
3305                 if (len == 0)
3306                         break;
3307                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3308                         struct bio *bio2;
3309                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3310                         if (bio_add_page(bio, page, len, 0))
3311                                 continue;
3312
3313                         /* stop here */
3314                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3315                         for (bio2 = biolist;
3316                              bio2 && bio2 != bio;
3317                              bio2 = bio2->bi_next) {
3318                                 /* remove last page from this bio */
3319                                 bio2->bi_vcnt--;
3320                                 bio2->bi_size -= len;
3321                                 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3322                         }
3323                         goto bio_full;
3324                 }
3325                 nr_sectors += len>>9;
3326                 sector_nr += len>>9;
3327         } while (biolist->bi_vcnt < RESYNC_PAGES);
3328  bio_full:
3329         r10_bio->sectors = nr_sectors;
3330
3331         while (biolist) {
3332                 bio = biolist;
3333                 biolist = biolist->bi_next;
3334
3335                 bio->bi_next = NULL;
3336                 r10_bio = bio->bi_private;
3337                 r10_bio->sectors = nr_sectors;
3338
3339                 if (bio->bi_end_io == end_sync_read) {
3340                         md_sync_acct(bio->bi_bdev, nr_sectors);
3341                         generic_make_request(bio);
3342                 }
3343         }
3344
3345         if (sectors_skipped)
3346                 /* pretend they weren't skipped, it makes
3347                  * no important difference in this case
3348                  */
3349                 md_done_sync(mddev, sectors_skipped, 1);
3350
3351         return sectors_skipped + nr_sectors;
3352  giveup:
3353         /* There is nowhere to write, so all non-sync
3354          * drives must be failed or in resync, all drives
3355          * have a bad block, so try the next chunk...
3356          */
3357         if (sector_nr + max_sync < max_sector)
3358                 max_sector = sector_nr + max_sync;
3359
3360         sectors_skipped += (max_sector - sector_nr);
3361         chunks_skipped ++;
3362         sector_nr = max_sector;
3363         goto skipped;
3364 }
3365
3366 static sector_t
3367 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3368 {
3369         sector_t size;
3370         struct r10conf *conf = mddev->private;
3371
3372         if (!raid_disks)
3373                 raid_disks = min(conf->geo.raid_disks,
3374                                  conf->prev.raid_disks);
3375         if (!sectors)
3376                 sectors = conf->dev_sectors;
3377
3378         size = sectors >> conf->geo.chunk_shift;
3379         sector_div(size, conf->geo.far_copies);
3380         size = size * raid_disks;
3381         sector_div(size, conf->geo.near_copies);
3382
3383         return size << conf->geo.chunk_shift;
3384 }
3385
3386 static void calc_sectors(struct r10conf *conf, sector_t size)
3387 {
3388         /* Calculate the number of sectors-per-device that will
3389          * actually be used, and set conf->dev_sectors and
3390          * conf->stride
3391          */
3392
3393         size = size >> conf->geo.chunk_shift;
3394         sector_div(size, conf->geo.far_copies);
3395         size = size * conf->geo.raid_disks;
3396         sector_div(size, conf->geo.near_copies);
3397         /* 'size' is now the number of chunks in the array */
3398         /* calculate "used chunks per device" */
3399         size = size * conf->copies;
3400
3401         /* We need to round up when dividing by raid_disks to
3402          * get the stride size.
3403          */
3404         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3405
3406         conf->dev_sectors = size << conf->geo.chunk_shift;
3407
3408         if (conf->geo.far_offset)
3409                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3410         else {
3411                 sector_div(size, conf->geo.far_copies);
3412                 conf->geo.stride = size << conf->geo.chunk_shift;
3413         }
3414 }
3415
3416 enum geo_type {geo_new, geo_old, geo_start};
3417 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3418 {
3419         int nc, fc, fo;
3420         int layout, chunk, disks;
3421         switch (new) {
3422         case geo_old:
3423                 layout = mddev->layout;
3424                 chunk = mddev->chunk_sectors;
3425                 disks = mddev->raid_disks - mddev->delta_disks;
3426                 break;
3427         case geo_new:
3428                 layout = mddev->new_layout;
3429                 chunk = mddev->new_chunk_sectors;
3430                 disks = mddev->raid_disks;
3431                 break;
3432         default: /* avoid 'may be unused' warnings */
3433         case geo_start: /* new when starting reshape - raid_disks not
3434                          * updated yet. */
3435                 layout = mddev->new_layout;
3436                 chunk = mddev->new_chunk_sectors;
3437                 disks = mddev->raid_disks + mddev->delta_disks;
3438                 break;
3439         }
3440         if (layout >> 17)
3441                 return -1;
3442         if (chunk < (PAGE_SIZE >> 9) ||
3443             !is_power_of_2(chunk))
3444                 return -2;
3445         nc = layout & 255;
3446         fc = (layout >> 8) & 255;
3447         fo = layout & (1<<16);
3448         geo->raid_disks = disks;
3449         geo->near_copies = nc;
3450         geo->far_copies = fc;
3451         geo->far_offset = fo;
3452         geo->chunk_mask = chunk - 1;
3453         geo->chunk_shift = ffz(~chunk);
3454         return nc*fc;
3455 }
3456
3457 static struct r10conf *setup_conf(struct mddev *mddev)
3458 {
3459         struct r10conf *conf = NULL;
3460         int err = -EINVAL;
3461         struct geom geo;
3462         int copies;
3463
3464         copies = setup_geo(&geo, mddev, geo_new);
3465
3466         if (copies == -2) {
3467                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3468                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3469                        mdname(mddev), PAGE_SIZE);
3470                 goto out;
3471         }
3472
3473         if (copies < 2 || copies > mddev->raid_disks) {
3474                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3475                        mdname(mddev), mddev->new_layout);
3476                 goto out;
3477         }
3478
3479         err = -ENOMEM;
3480         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3481         if (!conf)
3482                 goto out;
3483
3484         /* FIXME calc properly */
3485         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3486                                                             max(0,mddev->delta_disks)),
3487                                 GFP_KERNEL);
3488         if (!conf->mirrors)
3489                 goto out;
3490
3491         conf->tmppage = alloc_page(GFP_KERNEL);
3492         if (!conf->tmppage)
3493                 goto out;
3494
3495         conf->geo = geo;
3496         conf->copies = copies;
3497         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3498                                            r10bio_pool_free, conf);
3499         if (!conf->r10bio_pool)
3500                 goto out;
3501
3502         calc_sectors(conf, mddev->dev_sectors);
3503         if (mddev->reshape_position == MaxSector) {
3504                 conf->prev = conf->geo;
3505                 conf->reshape_progress = MaxSector;
3506         } else {
3507                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3508                         err = -EINVAL;
3509                         goto out;
3510                 }
3511                 conf->reshape_progress = mddev->reshape_position;
3512                 if (conf->prev.far_offset)
3513                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3514                 else
3515                         /* far_copies must be 1 */
3516                         conf->prev.stride = conf->dev_sectors;
3517         }
3518         spin_lock_init(&conf->device_lock);
3519         INIT_LIST_HEAD(&conf->retry_list);
3520
3521         spin_lock_init(&conf->resync_lock);
3522         init_waitqueue_head(&conf->wait_barrier);
3523
3524         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3525         if (!conf->thread)
3526                 goto out;
3527
3528         conf->mddev = mddev;
3529         return conf;
3530
3531  out:
3532         if (err == -ENOMEM)
3533                 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3534                        mdname(mddev));
3535         if (conf) {
3536                 if (conf->r10bio_pool)
3537                         mempool_destroy(conf->r10bio_pool);
3538                 kfree(conf->mirrors);
3539                 safe_put_page(conf->tmppage);
3540                 kfree(conf);
3541         }
3542         return ERR_PTR(err);
3543 }
3544
3545 static int run(struct mddev *mddev)
3546 {
3547         struct r10conf *conf;
3548         int i, disk_idx, chunk_size;
3549         struct raid10_info *disk;
3550         struct md_rdev *rdev;
3551         sector_t size;
3552         sector_t min_offset_diff = 0;
3553         int first = 1;
3554         bool discard_supported = false;
3555
3556         if (mddev->private == NULL) {
3557                 conf = setup_conf(mddev);
3558                 if (IS_ERR(conf))
3559                         return PTR_ERR(conf);
3560                 mddev->private = conf;
3561         }
3562         conf = mddev->private;
3563         if (!conf)
3564                 goto out;
3565
3566         mddev->thread = conf->thread;
3567         conf->thread = NULL;
3568
3569         chunk_size = mddev->chunk_sectors << 9;
3570         if (mddev->queue) {
3571                 blk_queue_max_discard_sectors(mddev->queue,
3572                                               mddev->chunk_sectors);
3573                 blk_queue_io_min(mddev->queue, chunk_size);
3574                 if (conf->geo.raid_disks % conf->geo.near_copies)
3575                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3576                 else
3577                         blk_queue_io_opt(mddev->queue, chunk_size *
3578                                          (conf->geo.raid_disks / conf->geo.near_copies));
3579         }
3580
3581         rdev_for_each(rdev, mddev) {
3582                 long long diff;
3583                 struct request_queue *q;
3584
3585                 disk_idx = rdev->raid_disk;
3586                 if (disk_idx < 0)
3587                         continue;
3588                 if (disk_idx >= conf->geo.raid_disks &&
3589                     disk_idx >= conf->prev.raid_disks)
3590                         continue;
3591                 disk = conf->mirrors + disk_idx;
3592
3593                 if (test_bit(Replacement, &rdev->flags)) {
3594                         if (disk->replacement)
3595                                 goto out_free_conf;
3596                         disk->replacement = rdev;
3597                 } else {
3598                         if (disk->rdev)
3599                                 goto out_free_conf;
3600                         disk->rdev = rdev;
3601                 }
3602                 q = bdev_get_queue(rdev->bdev);
3603                 if (q->merge_bvec_fn)
3604                         mddev->merge_check_needed = 1;
3605                 diff = (rdev->new_data_offset - rdev->data_offset);
3606                 if (!mddev->reshape_backwards)
3607                         diff = -diff;
3608                 if (diff < 0)
3609                         diff = 0;
3610                 if (first || diff < min_offset_diff)
3611                         min_offset_diff = diff;
3612
3613                 if (mddev->gendisk)
3614                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3615                                           rdev->data_offset << 9);
3616
3617                 disk->head_position = 0;
3618
3619                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3620                         discard_supported = true;
3621         }
3622
3623         if (mddev->queue) {
3624                 if (discard_supported)
3625                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3626                                                 mddev->queue);
3627                 else
3628                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3629                                                   mddev->queue);
3630         }
3631         /* need to check that every block has at least one working mirror */
3632         if (!enough(conf, -1)) {
3633                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3634                        mdname(mddev));
3635                 goto out_free_conf;
3636         }
3637
3638         if (conf->reshape_progress != MaxSector) {
3639                 /* must ensure that shape change is supported */
3640                 if (conf->geo.far_copies != 1 &&
3641                     conf->geo.far_offset == 0)
3642                         goto out_free_conf;
3643                 if (conf->prev.far_copies != 1 &&
3644                     conf->geo.far_offset == 0)
3645                         goto out_free_conf;
3646         }
3647
3648         mddev->degraded = 0;
3649         for (i = 0;
3650              i < conf->geo.raid_disks
3651                      || i < conf->prev.raid_disks;
3652              i++) {
3653
3654                 disk = conf->mirrors + i;
3655
3656                 if (!disk->rdev && disk->replacement) {
3657                         /* The replacement is all we have - use it */
3658                         disk->rdev = disk->replacement;
3659                         disk->replacement = NULL;
3660                         clear_bit(Replacement, &disk->rdev->flags);
3661                 }
3662
3663                 if (!disk->rdev ||
3664                     !test_bit(In_sync, &disk->rdev->flags)) {
3665                         disk->head_position = 0;
3666                         mddev->degraded++;
3667                         if (disk->rdev)
3668                                 conf->fullsync = 1;
3669                 }
3670                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3671         }
3672
3673         if (mddev->recovery_cp != MaxSector)
3674                 printk(KERN_NOTICE "md/raid10:%s: not clean"
3675                        " -- starting background reconstruction\n",
3676                        mdname(mddev));
3677         printk(KERN_INFO
3678                 "md/raid10:%s: active with %d out of %d devices\n",
3679                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3680                 conf->geo.raid_disks);
3681         /*
3682          * Ok, everything is just fine now
3683          */
3684         mddev->dev_sectors = conf->dev_sectors;
3685         size = raid10_size(mddev, 0, 0);
3686         md_set_array_sectors(mddev, size);
3687         mddev->resync_max_sectors = size;
3688
3689         if (mddev->queue) {
3690                 int stripe = conf->geo.raid_disks *
3691                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3692                 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3693                 mddev->queue->backing_dev_info.congested_data = mddev;
3694
3695                 /* Calculate max read-ahead size.
3696                  * We need to readahead at least twice a whole stripe....
3697                  * maybe...
3698                  */
3699                 stripe /= conf->geo.near_copies;
3700                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3701                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3702                 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3703         }
3704
3705
3706         if (md_integrity_register(mddev))
3707                 goto out_free_conf;
3708
3709         if (conf->reshape_progress != MaxSector) {
3710                 unsigned long before_length, after_length;
3711
3712                 before_length = ((1 << conf->prev.chunk_shift) *
3713                                  conf->prev.far_copies);
3714                 after_length = ((1 << conf->geo.chunk_shift) *
3715                                 conf->geo.far_copies);
3716
3717                 if (max(before_length, after_length) > min_offset_diff) {
3718                         /* This cannot work */
3719                         printk("md/raid10: offset difference not enough to continue reshape\n");
3720                         goto out_free_conf;
3721                 }
3722                 conf->offset_diff = min_offset_diff;
3723
3724                 conf->reshape_safe = conf->reshape_progress;
3725                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3726                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3727                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3728                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3729                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3730                                                         "reshape");
3731         }
3732
3733         return 0;
3734
3735 out_free_conf:
3736         md_unregister_thread(&mddev->thread);
3737         if (conf->r10bio_pool)
3738                 mempool_destroy(conf->r10bio_pool);
3739         safe_put_page(conf->tmppage);
3740         kfree(conf->mirrors);
3741         kfree(conf);
3742         mddev->private = NULL;
3743 out:
3744         return -EIO;
3745 }
3746
3747 static int stop(struct mddev *mddev)
3748 {
3749         struct r10conf *conf = mddev->private;
3750
3751         raise_barrier(conf, 0);
3752         lower_barrier(conf);
3753
3754         md_unregister_thread(&mddev->thread);
3755         if (mddev->queue)
3756                 /* the unplug fn references 'conf'*/
3757                 blk_sync_queue(mddev->queue);
3758
3759         if (conf->r10bio_pool)
3760                 mempool_destroy(conf->r10bio_pool);
3761         kfree(conf->mirrors);
3762         kfree(conf);
3763         mddev->private = NULL;
3764         return 0;
3765 }
3766
3767 static void raid10_quiesce(struct mddev *mddev, int state)
3768 {
3769         struct r10conf *conf = mddev->private;
3770
3771         switch(state) {
3772         case 1:
3773                 raise_barrier(conf, 0);
3774                 break;
3775         case 0:
3776                 lower_barrier(conf);
3777                 break;
3778         }
3779 }
3780
3781 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3782 {
3783         /* Resize of 'far' arrays is not supported.
3784          * For 'near' and 'offset' arrays we can set the
3785          * number of sectors used to be an appropriate multiple
3786          * of the chunk size.
3787          * For 'offset', this is far_copies*chunksize.
3788          * For 'near' the multiplier is the LCM of
3789          * near_copies and raid_disks.
3790          * So if far_copies > 1 && !far_offset, fail.
3791          * Else find LCM(raid_disks, near_copy)*far_copies and
3792          * multiply by chunk_size.  Then round to this number.
3793          * This is mostly done by raid10_size()
3794          */
3795         struct r10conf *conf = mddev->private;
3796         sector_t oldsize, size;
3797
3798         if (mddev->reshape_position != MaxSector)
3799                 return -EBUSY;
3800
3801         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3802                 return -EINVAL;
3803
3804         oldsize = raid10_size(mddev, 0, 0);
3805         size = raid10_size(mddev, sectors, 0);
3806         if (mddev->external_size &&
3807             mddev->array_sectors > size)
3808                 return -EINVAL;
3809         if (mddev->bitmap) {
3810                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3811                 if (ret)
3812                         return ret;
3813         }
3814         md_set_array_sectors(mddev, size);
3815         set_capacity(mddev->gendisk, mddev->array_sectors);
3816         revalidate_disk(mddev->gendisk);
3817         if (sectors > mddev->dev_sectors &&
3818             mddev->recovery_cp > oldsize) {
3819                 mddev->recovery_cp = oldsize;
3820                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3821         }
3822         calc_sectors(conf, sectors);
3823         mddev->dev_sectors = conf->dev_sectors;
3824         mddev->resync_max_sectors = size;
3825         return 0;
3826 }
3827
3828 static void *raid10_takeover_raid0(struct mddev *mddev)
3829 {
3830         struct md_rdev *rdev;
3831         struct r10conf *conf;
3832
3833         if (mddev->degraded > 0) {
3834                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3835                        mdname(mddev));
3836                 return ERR_PTR(-EINVAL);
3837         }
3838
3839         /* Set new parameters */
3840         mddev->new_level = 10;
3841         /* new layout: far_copies = 1, near_copies = 2 */
3842         mddev->new_layout = (1<<8) + 2;
3843         mddev->new_chunk_sectors = mddev->chunk_sectors;
3844         mddev->delta_disks = mddev->raid_disks;
3845         mddev->raid_disks *= 2;
3846         /* make sure it will be not marked as dirty */
3847         mddev->recovery_cp = MaxSector;
3848
3849         conf = setup_conf(mddev);
3850         if (!IS_ERR(conf)) {
3851                 rdev_for_each(rdev, mddev)
3852                         if (rdev->raid_disk >= 0)
3853                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3854                 conf->barrier = 1;
3855         }
3856
3857         return conf;
3858 }
3859
3860 static void *raid10_takeover(struct mddev *mddev)
3861 {
3862         struct r0conf *raid0_conf;
3863
3864         /* raid10 can take over:
3865          *  raid0 - providing it has only two drives
3866          */
3867         if (mddev->level == 0) {
3868                 /* for raid0 takeover only one zone is supported */
3869                 raid0_conf = mddev->private;
3870                 if (raid0_conf->nr_strip_zones > 1) {
3871                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3872                                " with more than one zone.\n",
3873                                mdname(mddev));
3874                         return ERR_PTR(-EINVAL);
3875                 }
3876                 return raid10_takeover_raid0(mddev);
3877         }
3878         return ERR_PTR(-EINVAL);
3879 }
3880
3881 static int raid10_check_reshape(struct mddev *mddev)
3882 {
3883         /* Called when there is a request to change
3884          * - layout (to ->new_layout)
3885          * - chunk size (to ->new_chunk_sectors)
3886          * - raid_disks (by delta_disks)
3887          * or when trying to restart a reshape that was ongoing.
3888          *
3889          * We need to validate the request and possibly allocate
3890          * space if that might be an issue later.
3891          *
3892          * Currently we reject any reshape of a 'far' mode array,
3893          * allow chunk size to change if new is generally acceptable,
3894          * allow raid_disks to increase, and allow
3895          * a switch between 'near' mode and 'offset' mode.
3896          */
3897         struct r10conf *conf = mddev->private;
3898         struct geom geo;
3899
3900         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3901                 return -EINVAL;
3902
3903         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3904                 /* mustn't change number of copies */
3905                 return -EINVAL;
3906         if (geo.far_copies > 1 && !geo.far_offset)
3907                 /* Cannot switch to 'far' mode */
3908                 return -EINVAL;
3909
3910         if (mddev->array_sectors & geo.chunk_mask)
3911                         /* not factor of array size */
3912                         return -EINVAL;
3913
3914         if (!enough(conf, -1))
3915                 return -EINVAL;
3916
3917         kfree(conf->mirrors_new);
3918         conf->mirrors_new = NULL;
3919         if (mddev->delta_disks > 0) {
3920                 /* allocate new 'mirrors' list */
3921                 conf->mirrors_new = kzalloc(
3922                         sizeof(struct raid10_info)
3923                         *(mddev->raid_disks +
3924                           mddev->delta_disks),
3925                         GFP_KERNEL);
3926                 if (!conf->mirrors_new)
3927                         return -ENOMEM;
3928         }
3929         return 0;
3930 }
3931
3932 /*
3933  * Need to check if array has failed when deciding whether to:
3934  *  - start an array
3935  *  - remove non-faulty devices
3936  *  - add a spare
3937  *  - allow a reshape
3938  * This determination is simple when no reshape is happening.
3939  * However if there is a reshape, we need to carefully check
3940  * both the before and after sections.
3941  * This is because some failed devices may only affect one
3942  * of the two sections, and some non-in_sync devices may
3943  * be insync in the section most affected by failed devices.
3944  */
3945 static int calc_degraded(struct r10conf *conf)
3946 {
3947         int degraded, degraded2;
3948         int i;
3949
3950         rcu_read_lock();
3951         degraded = 0;
3952         /* 'prev' section first */
3953         for (i = 0; i < conf->prev.raid_disks; i++) {
3954                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3955                 if (!rdev || test_bit(Faulty, &rdev->flags))
3956                         degraded++;
3957                 else if (!test_bit(In_sync, &rdev->flags))
3958                         /* When we can reduce the number of devices in
3959                          * an array, this might not contribute to
3960                          * 'degraded'.  It does now.
3961                          */
3962                         degraded++;
3963         }
3964         rcu_read_unlock();
3965         if (conf->geo.raid_disks == conf->prev.raid_disks)
3966                 return degraded;
3967         rcu_read_lock();
3968         degraded2 = 0;
3969         for (i = 0; i < conf->geo.raid_disks; i++) {
3970                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3971                 if (!rdev || test_bit(Faulty, &rdev->flags))
3972                         degraded2++;
3973                 else if (!test_bit(In_sync, &rdev->flags)) {
3974                         /* If reshape is increasing the number of devices,
3975                          * this section has already been recovered, so
3976                          * it doesn't contribute to degraded.
3977                          * else it does.
3978                          */
3979                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
3980                                 degraded2++;
3981                 }
3982         }
3983         rcu_read_unlock();
3984         if (degraded2 > degraded)
3985                 return degraded2;
3986         return degraded;
3987 }
3988
3989 static int raid10_start_reshape(struct mddev *mddev)
3990 {
3991         /* A 'reshape' has been requested. This commits
3992          * the various 'new' fields and sets MD_RECOVER_RESHAPE
3993          * This also checks if there are enough spares and adds them
3994          * to the array.
3995          * We currently require enough spares to make the final
3996          * array non-degraded.  We also require that the difference
3997          * between old and new data_offset - on each device - is
3998          * enough that we never risk over-writing.
3999          */
4000
4001         unsigned long before_length, after_length;
4002         sector_t min_offset_diff = 0;
4003         int first = 1;
4004         struct geom new;
4005         struct r10conf *conf = mddev->private;
4006         struct md_rdev *rdev;
4007         int spares = 0;
4008         int ret;
4009
4010         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4011                 return -EBUSY;
4012
4013         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4014                 return -EINVAL;
4015
4016         before_length = ((1 << conf->prev.chunk_shift) *
4017                          conf->prev.far_copies);
4018         after_length = ((1 << conf->geo.chunk_shift) *
4019                         conf->geo.far_copies);
4020
4021         rdev_for_each(rdev, mddev) {
4022                 if (!test_bit(In_sync, &rdev->flags)
4023                     && !test_bit(Faulty, &rdev->flags))
4024                         spares++;
4025                 if (rdev->raid_disk >= 0) {
4026                         long long diff = (rdev->new_data_offset
4027                                           - rdev->data_offset);
4028                         if (!mddev->reshape_backwards)
4029                                 diff = -diff;
4030                         if (diff < 0)
4031                                 diff = 0;
4032                         if (first || diff < min_offset_diff)
4033                                 min_offset_diff = diff;
4034                 }
4035         }
4036
4037         if (max(before_length, after_length) > min_offset_diff)
4038                 return -EINVAL;
4039
4040         if (spares < mddev->delta_disks)
4041                 return -EINVAL;
4042
4043         conf->offset_diff = min_offset_diff;
4044         spin_lock_irq(&conf->device_lock);
4045         if (conf->mirrors_new) {
4046                 memcpy(conf->mirrors_new, conf->mirrors,
4047                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4048                 smp_mb();
4049                 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4050                 conf->mirrors_old = conf->mirrors;
4051                 conf->mirrors = conf->mirrors_new;
4052                 conf->mirrors_new = NULL;
4053         }
4054         setup_geo(&conf->geo, mddev, geo_start);
4055         smp_mb();
4056         if (mddev->reshape_backwards) {
4057                 sector_t size = raid10_size(mddev, 0, 0);
4058                 if (size < mddev->array_sectors) {
4059                         spin_unlock_irq(&conf->device_lock);
4060                         printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4061                                mdname(mddev));
4062                         return -EINVAL;
4063                 }
4064                 mddev->resync_max_sectors = size;
4065                 conf->reshape_progress = size;
4066         } else
4067                 conf->reshape_progress = 0;
4068         spin_unlock_irq(&conf->device_lock);
4069
4070         if (mddev->delta_disks && mddev->bitmap) {
4071                 ret = bitmap_resize(mddev->bitmap,
4072                                     raid10_size(mddev, 0,
4073                                                 conf->geo.raid_disks),
4074                                     0, 0);
4075                 if (ret)
4076                         goto abort;
4077         }
4078         if (mddev->delta_disks > 0) {
4079                 rdev_for_each(rdev, mddev)
4080                         if (rdev->raid_disk < 0 &&
4081                             !test_bit(Faulty, &rdev->flags)) {
4082                                 if (raid10_add_disk(mddev, rdev) == 0) {
4083                                         if (rdev->raid_disk >=
4084                                             conf->prev.raid_disks)
4085                                                 set_bit(In_sync, &rdev->flags);
4086                                         else
4087                                                 rdev->recovery_offset = 0;
4088
4089                                         if (sysfs_link_rdev(mddev, rdev))
4090                                                 /* Failure here  is OK */;
4091                                 }
4092                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4093                                    && !test_bit(Faulty, &rdev->flags)) {
4094                                 /* This is a spare that was manually added */
4095                                 set_bit(In_sync, &rdev->flags);
4096                         }
4097         }
4098         /* When a reshape changes the number of devices,
4099          * ->degraded is measured against the larger of the
4100          * pre and  post numbers.
4101          */
4102         spin_lock_irq(&conf->device_lock);
4103         mddev->degraded = calc_degraded(conf);
4104         spin_unlock_irq(&conf->device_lock);
4105         mddev->raid_disks = conf->geo.raid_disks;
4106         mddev->reshape_position = conf->reshape_progress;
4107         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4108
4109         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4110         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4111         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4112         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4113
4114         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4115                                                 "reshape");
4116         if (!mddev->sync_thread) {
4117                 ret = -EAGAIN;
4118                 goto abort;
4119         }
4120         conf->reshape_checkpoint = jiffies;
4121         md_wakeup_thread(mddev->sync_thread);
4122         md_new_event(mddev);
4123         return 0;
4124
4125 abort:
4126         mddev->recovery = 0;
4127         spin_lock_irq(&conf->device_lock);
4128         conf->geo = conf->prev;
4129         mddev->raid_disks = conf->geo.raid_disks;
4130         rdev_for_each(rdev, mddev)
4131                 rdev->new_data_offset = rdev->data_offset;
4132         smp_wmb();
4133         conf->reshape_progress = MaxSector;
4134         mddev->reshape_position = MaxSector;
4135         spin_unlock_irq(&conf->device_lock);
4136         return ret;
4137 }
4138
4139 /* Calculate the last device-address that could contain
4140  * any block from the chunk that includes the array-address 's'
4141  * and report the next address.
4142  * i.e. the address returned will be chunk-aligned and after
4143  * any data that is in the chunk containing 's'.
4144  */
4145 static sector_t last_dev_address(sector_t s, struct geom *geo)
4146 {
4147         s = (s | geo->chunk_mask) + 1;
4148         s >>= geo->chunk_shift;
4149         s *= geo->near_copies;
4150         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4151         s *= geo->far_copies;
4152         s <<= geo->chunk_shift;
4153         return s;
4154 }
4155
4156 /* Calculate the first device-address that could contain
4157  * any block from the chunk that includes the array-address 's'.
4158  * This too will be the start of a chunk
4159  */
4160 static sector_t first_dev_address(sector_t s, struct geom *geo)
4161 {
4162         s >>= geo->chunk_shift;
4163         s *= geo->near_copies;
4164         sector_div(s, geo->raid_disks);
4165         s *= geo->far_copies;
4166         s <<= geo->chunk_shift;
4167         return s;
4168 }
4169
4170 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4171                                 int *skipped)
4172 {
4173         /* We simply copy at most one chunk (smallest of old and new)
4174          * at a time, possibly less if that exceeds RESYNC_PAGES,
4175          * or we hit a bad block or something.
4176          * This might mean we pause for normal IO in the middle of
4177          * a chunk, but that is not a problem was mddev->reshape_position
4178          * can record any location.
4179          *
4180          * If we will want to write to a location that isn't
4181          * yet recorded as 'safe' (i.e. in metadata on disk) then
4182          * we need to flush all reshape requests and update the metadata.
4183          *
4184          * When reshaping forwards (e.g. to more devices), we interpret
4185          * 'safe' as the earliest block which might not have been copied
4186          * down yet.  We divide this by previous stripe size and multiply
4187          * by previous stripe length to get lowest device offset that we
4188          * cannot write to yet.
4189          * We interpret 'sector_nr' as an address that we want to write to.
4190          * From this we use last_device_address() to find where we might
4191          * write to, and first_device_address on the  'safe' position.
4192          * If this 'next' write position is after the 'safe' position,
4193          * we must update the metadata to increase the 'safe' position.
4194          *
4195          * When reshaping backwards, we round in the opposite direction
4196          * and perform the reverse test:  next write position must not be
4197          * less than current safe position.
4198          *
4199          * In all this the minimum difference in data offsets
4200          * (conf->offset_diff - always positive) allows a bit of slack,
4201          * so next can be after 'safe', but not by more than offset_disk
4202          *
4203          * We need to prepare all the bios here before we start any IO
4204          * to ensure the size we choose is acceptable to all devices.
4205          * The means one for each copy for write-out and an extra one for
4206          * read-in.
4207          * We store the read-in bio in ->master_bio and the others in
4208          * ->devs[x].bio and ->devs[x].repl_bio.
4209          */
4210         struct r10conf *conf = mddev->private;
4211         struct r10bio *r10_bio;
4212         sector_t next, safe, last;
4213         int max_sectors;
4214         int nr_sectors;
4215         int s;
4216         struct md_rdev *rdev;
4217         int need_flush = 0;
4218         struct bio *blist;
4219         struct bio *bio, *read_bio;
4220         int sectors_done = 0;
4221
4222         if (sector_nr == 0) {
4223                 /* If restarting in the middle, skip the initial sectors */
4224                 if (mddev->reshape_backwards &&
4225                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4226                         sector_nr = (raid10_size(mddev, 0, 0)
4227                                      - conf->reshape_progress);
4228                 } else if (!mddev->reshape_backwards &&
4229                            conf->reshape_progress > 0)
4230                         sector_nr = conf->reshape_progress;
4231                 if (sector_nr) {
4232                         mddev->curr_resync_completed = sector_nr;
4233                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4234                         *skipped = 1;
4235                         return sector_nr;
4236                 }
4237         }
4238
4239         /* We don't use sector_nr to track where we are up to
4240          * as that doesn't work well for ->reshape_backwards.
4241          * So just use ->reshape_progress.
4242          */
4243         if (mddev->reshape_backwards) {
4244                 /* 'next' is the earliest device address that we might
4245                  * write to for this chunk in the new layout
4246                  */
4247                 next = first_dev_address(conf->reshape_progress - 1,
4248                                          &conf->geo);
4249
4250                 /* 'safe' is the last device address that we might read from
4251                  * in the old layout after a restart
4252                  */
4253                 safe = last_dev_address(conf->reshape_safe - 1,
4254                                         &conf->prev);
4255
4256                 if (next + conf->offset_diff < safe)
4257                         need_flush = 1;
4258
4259                 last = conf->reshape_progress - 1;
4260                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4261                                                & conf->prev.chunk_mask);
4262                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4263                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4264         } else {
4265                 /* 'next' is after the last device address that we
4266                  * might write to for this chunk in the new layout
4267                  */
4268                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4269
4270                 /* 'safe' is the earliest device address that we might
4271                  * read from in the old layout after a restart
4272                  */
4273                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4274
4275                 /* Need to update metadata if 'next' might be beyond 'safe'
4276                  * as that would possibly corrupt data
4277                  */
4278                 if (next > safe + conf->offset_diff)
4279                         need_flush = 1;
4280
4281                 sector_nr = conf->reshape_progress;
4282                 last  = sector_nr | (conf->geo.chunk_mask
4283                                      & conf->prev.chunk_mask);
4284
4285                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4286                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4287         }
4288
4289         if (need_flush ||
4290             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4291                 /* Need to update reshape_position in metadata */
4292                 wait_barrier(conf);
4293                 mddev->reshape_position = conf->reshape_progress;
4294                 if (mddev->reshape_backwards)
4295                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4296                                 - conf->reshape_progress;
4297                 else
4298                         mddev->curr_resync_completed = conf->reshape_progress;
4299                 conf->reshape_checkpoint = jiffies;
4300                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4301                 md_wakeup_thread(mddev->thread);
4302                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4303                            kthread_should_stop());
4304                 conf->reshape_safe = mddev->reshape_position;
4305                 allow_barrier(conf);
4306         }
4307
4308 read_more:
4309         /* Now schedule reads for blocks from sector_nr to last */
4310         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4311         raise_barrier(conf, sectors_done != 0);
4312         atomic_set(&r10_bio->remaining, 0);
4313         r10_bio->mddev = mddev;
4314         r10_bio->sector = sector_nr;
4315         set_bit(R10BIO_IsReshape, &r10_bio->state);
4316         r10_bio->sectors = last - sector_nr + 1;
4317         rdev = read_balance(conf, r10_bio, &max_sectors);
4318         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4319
4320         if (!rdev) {
4321                 /* Cannot read from here, so need to record bad blocks
4322                  * on all the target devices.
4323                  */
4324                 // FIXME
4325                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4326                 return sectors_done;
4327         }
4328
4329         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4330
4331         read_bio->bi_bdev = rdev->bdev;
4332         read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4333                                + rdev->data_offset);
4334         read_bio->bi_private = r10_bio;
4335         read_bio->bi_end_io = end_sync_read;
4336         read_bio->bi_rw = READ;
4337         read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4338         read_bio->bi_flags |= 1 << BIO_UPTODATE;
4339         read_bio->bi_vcnt = 0;
4340         read_bio->bi_idx = 0;
4341         read_bio->bi_size = 0;
4342         r10_bio->master_bio = read_bio;
4343         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4344
4345         /* Now find the locations in the new layout */
4346         __raid10_find_phys(&conf->geo, r10_bio);
4347
4348         blist = read_bio;
4349         read_bio->bi_next = NULL;
4350
4351         for (s = 0; s < conf->copies*2; s++) {
4352                 struct bio *b;
4353                 int d = r10_bio->devs[s/2].devnum;
4354                 struct md_rdev *rdev2;
4355                 if (s&1) {
4356                         rdev2 = conf->mirrors[d].replacement;
4357                         b = r10_bio->devs[s/2].repl_bio;
4358                 } else {
4359                         rdev2 = conf->mirrors[d].rdev;
4360                         b = r10_bio->devs[s/2].bio;
4361                 }
4362                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4363                         continue;
4364                 b->bi_bdev = rdev2->bdev;
4365                 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4366                 b->bi_private = r10_bio;
4367                 b->bi_end_io = end_reshape_write;
4368                 b->bi_rw = WRITE;
4369                 b->bi_flags &= ~(BIO_POOL_MASK - 1);
4370                 b->bi_flags |= 1 << BIO_UPTODATE;
4371                 b->bi_next = blist;
4372                 b->bi_vcnt = 0;
4373                 b->bi_idx = 0;
4374                 b->bi_size = 0;
4375                 blist = b;
4376         }
4377
4378         /* Now add as many pages as possible to all of these bios. */
4379
4380         nr_sectors = 0;
4381         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4382                 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4383                 int len = (max_sectors - s) << 9;
4384                 if (len > PAGE_SIZE)
4385                         len = PAGE_SIZE;
4386                 for (bio = blist; bio ; bio = bio->bi_next) {
4387                         struct bio *bio2;
4388                         if (bio_add_page(bio, page, len, 0))
4389                                 continue;
4390
4391                         /* Didn't fit, must stop */
4392                         for (bio2 = blist;
4393                              bio2 && bio2 != bio;
4394                              bio2 = bio2->bi_next) {
4395                                 /* Remove last page from this bio */
4396                                 bio2->bi_vcnt--;
4397                                 bio2->bi_size -= len;
4398                                 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4399                         }
4400                         goto bio_full;
4401                 }
4402                 sector_nr += len >> 9;
4403                 nr_sectors += len >> 9;
4404         }
4405 bio_full:
4406         r10_bio->sectors = nr_sectors;
4407
4408         /* Now submit the read */
4409         md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4410         atomic_inc(&r10_bio->remaining);
4411         read_bio->bi_next = NULL;
4412         generic_make_request(read_bio);
4413         sector_nr += nr_sectors;
4414         sectors_done += nr_sectors;
4415         if (sector_nr <= last)
4416                 goto read_more;
4417
4418         /* Now that we have done the whole section we can
4419          * update reshape_progress
4420          */
4421         if (mddev->reshape_backwards)
4422                 conf->reshape_progress -= sectors_done;
4423         else
4424                 conf->reshape_progress += sectors_done;
4425
4426         return sectors_done;
4427 }
4428
4429 static void end_reshape_request(struct r10bio *r10_bio);
4430 static int handle_reshape_read_error(struct mddev *mddev,
4431                                      struct r10bio *r10_bio);
4432 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4433 {
4434         /* Reshape read completed.  Hopefully we have a block
4435          * to write out.
4436          * If we got a read error then we do sync 1-page reads from
4437          * elsewhere until we find the data - or give up.
4438          */
4439         struct r10conf *conf = mddev->private;
4440         int s;
4441
4442         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4443                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4444                         /* Reshape has been aborted */
4445                         md_done_sync(mddev, r10_bio->sectors, 0);
4446                         return;
4447                 }
4448
4449         /* We definitely have the data in the pages, schedule the
4450          * writes.
4451          */
4452         atomic_set(&r10_bio->remaining, 1);
4453         for (s = 0; s < conf->copies*2; s++) {
4454                 struct bio *b;
4455                 int d = r10_bio->devs[s/2].devnum;
4456                 struct md_rdev *rdev;
4457                 if (s&1) {
4458                         rdev = conf->mirrors[d].replacement;
4459                         b = r10_bio->devs[s/2].repl_bio;
4460                 } else {
4461                         rdev = conf->mirrors[d].rdev;
4462                         b = r10_bio->devs[s/2].bio;
4463                 }
4464                 if (!rdev || test_bit(Faulty, &rdev->flags))
4465                         continue;
4466                 atomic_inc(&rdev->nr_pending);
4467                 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4468                 atomic_inc(&r10_bio->remaining);
4469                 b->bi_next = NULL;
4470                 generic_make_request(b);
4471         }
4472         end_reshape_request(r10_bio);
4473 }
4474
4475 static void end_reshape(struct r10conf *conf)
4476 {
4477         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4478                 return;
4479
4480         spin_lock_irq(&conf->device_lock);
4481         conf->prev = conf->geo;
4482         md_finish_reshape(conf->mddev);
4483         smp_wmb();
4484         conf->reshape_progress = MaxSector;
4485         spin_unlock_irq(&conf->device_lock);
4486
4487         /* read-ahead size must cover two whole stripes, which is
4488          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4489          */
4490         if (conf->mddev->queue) {
4491                 int stripe = conf->geo.raid_disks *
4492                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4493                 stripe /= conf->geo.near_copies;
4494                 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4495                         conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4496         }
4497         conf->fullsync = 0;
4498 }
4499
4500
4501 static int handle_reshape_read_error(struct mddev *mddev,
4502                                      struct r10bio *r10_bio)
4503 {
4504         /* Use sync reads to get the blocks from somewhere else */
4505         int sectors = r10_bio->sectors;
4506         struct r10conf *conf = mddev->private;
4507         struct {
4508                 struct r10bio r10_bio;
4509                 struct r10dev devs[conf->copies];
4510         } on_stack;
4511         struct r10bio *r10b = &on_stack.r10_bio;
4512         int slot = 0;
4513         int idx = 0;
4514         struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4515
4516         r10b->sector = r10_bio->sector;
4517         __raid10_find_phys(&conf->prev, r10b);
4518
4519         while (sectors) {
4520                 int s = sectors;
4521                 int success = 0;
4522                 int first_slot = slot;
4523
4524                 if (s > (PAGE_SIZE >> 9))
4525                         s = PAGE_SIZE >> 9;
4526
4527                 while (!success) {
4528                         int d = r10b->devs[slot].devnum;
4529                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4530                         sector_t addr;
4531                         if (rdev == NULL ||
4532                             test_bit(Faulty, &rdev->flags) ||
4533                             !test_bit(In_sync, &rdev->flags))
4534                                 goto failed;
4535
4536                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4537                         success = sync_page_io(rdev,
4538                                                addr,
4539                                                s << 9,
4540                                                bvec[idx].bv_page,
4541                                                READ, false);
4542                         if (success)
4543                                 break;
4544                 failed:
4545                         slot++;
4546                         if (slot >= conf->copies)
4547                                 slot = 0;
4548                         if (slot == first_slot)
4549                                 break;
4550                 }
4551                 if (!success) {
4552                         /* couldn't read this block, must give up */
4553                         set_bit(MD_RECOVERY_INTR,
4554                                 &mddev->recovery);
4555                         return -EIO;
4556                 }
4557                 sectors -= s;
4558                 idx++;
4559         }
4560         return 0;
4561 }
4562
4563 static void end_reshape_write(struct bio *bio, int error)
4564 {
4565         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4566         struct r10bio *r10_bio = bio->bi_private;
4567         struct mddev *mddev = r10_bio->mddev;
4568         struct r10conf *conf = mddev->private;
4569         int d;
4570         int slot;
4571         int repl;
4572         struct md_rdev *rdev = NULL;
4573
4574         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4575         if (repl)
4576                 rdev = conf->mirrors[d].replacement;
4577         if (!rdev) {
4578                 smp_mb();
4579                 rdev = conf->mirrors[d].rdev;
4580         }
4581
4582         if (!uptodate) {
4583                 /* FIXME should record badblock */
4584                 md_error(mddev, rdev);
4585         }
4586
4587         rdev_dec_pending(rdev, mddev);
4588         end_reshape_request(r10_bio);
4589 }
4590
4591 static void end_reshape_request(struct r10bio *r10_bio)
4592 {
4593         if (!atomic_dec_and_test(&r10_bio->remaining))
4594                 return;
4595         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4596         bio_put(r10_bio->master_bio);
4597         put_buf(r10_bio);
4598 }
4599
4600 static void raid10_finish_reshape(struct mddev *mddev)
4601 {
4602         struct r10conf *conf = mddev->private;
4603
4604         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4605                 return;
4606
4607         if (mddev->delta_disks > 0) {
4608                 sector_t size = raid10_size(mddev, 0, 0);
4609                 md_set_array_sectors(mddev, size);
4610                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4611                         mddev->recovery_cp = mddev->resync_max_sectors;
4612                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4613                 }
4614                 mddev->resync_max_sectors = size;
4615                 set_capacity(mddev->gendisk, mddev->array_sectors);
4616                 revalidate_disk(mddev->gendisk);
4617         } else {
4618                 int d;
4619                 for (d = conf->geo.raid_disks ;
4620                      d < conf->geo.raid_disks - mddev->delta_disks;
4621                      d++) {
4622                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4623                         if (rdev)
4624                                 clear_bit(In_sync, &rdev->flags);
4625                         rdev = conf->mirrors[d].replacement;
4626                         if (rdev)
4627                                 clear_bit(In_sync, &rdev->flags);
4628                 }
4629         }
4630         mddev->layout = mddev->new_layout;
4631         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4632         mddev->reshape_position = MaxSector;
4633         mddev->delta_disks = 0;
4634         mddev->reshape_backwards = 0;
4635 }
4636
4637 static struct md_personality raid10_personality =
4638 {
4639         .name           = "raid10",
4640         .level          = 10,
4641         .owner          = THIS_MODULE,
4642         .make_request   = make_request,
4643         .run            = run,
4644         .stop           = stop,
4645         .status         = status,
4646         .error_handler  = error,
4647         .hot_add_disk   = raid10_add_disk,
4648         .hot_remove_disk= raid10_remove_disk,
4649         .spare_active   = raid10_spare_active,
4650         .sync_request   = sync_request,
4651         .quiesce        = raid10_quiesce,
4652         .size           = raid10_size,
4653         .resize         = raid10_resize,
4654         .takeover       = raid10_takeover,
4655         .check_reshape  = raid10_check_reshape,
4656         .start_reshape  = raid10_start_reshape,
4657         .finish_reshape = raid10_finish_reshape,
4658 };
4659
4660 static int __init raid_init(void)
4661 {
4662         return register_md_personality(&raid10_personality);
4663 }
4664
4665 static void raid_exit(void)
4666 {
4667         unregister_md_personality(&raid10_personality);
4668 }
4669
4670 module_init(raid_init);
4671 module_exit(raid_exit);
4672 MODULE_LICENSE("GPL");
4673 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4674 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4675 MODULE_ALIAS("md-raid10");
4676 MODULE_ALIAS("md-level-10");
4677
4678 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);