]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/raid5-cache.c
8cb79fc0eed95fedd3d20ff496643c0013c4f844
[karo-tx-linux.git] / drivers / md / raid5-cache.c
1 /*
2  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3  * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 #include <linux/kernel.h>
16 #include <linux/wait.h>
17 #include <linux/blkdev.h>
18 #include <linux/slab.h>
19 #include <linux/raid/md_p.h>
20 #include <linux/crc32c.h>
21 #include <linux/random.h>
22 #include "md.h"
23 #include "raid5.h"
24 #include "bitmap.h"
25
26 /*
27  * metadata/data stored in disk with 4k size unit (a block) regardless
28  * underneath hardware sector size. only works with PAGE_SIZE == 4096
29  */
30 #define BLOCK_SECTORS (8)
31
32 /*
33  * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
34  *
35  * In write through mode, the reclaim runs every log->max_free_space.
36  * This can prevent the recovery scans for too long
37  */
38 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
39 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
40
41 /* wake up reclaim thread periodically */
42 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
43 /* start flush with these full stripes */
44 #define R5C_FULL_STRIPE_FLUSH_BATCH 256
45 /* reclaim stripes in groups */
46 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
47
48 /*
49  * We only need 2 bios per I/O unit to make progress, but ensure we
50  * have a few more available to not get too tight.
51  */
52 #define R5L_POOL_SIZE   4
53
54 /*
55  * r5c journal modes of the array: write-back or write-through.
56  * write-through mode has identical behavior as existing log only
57  * implementation.
58  */
59 enum r5c_journal_mode {
60         R5C_JOURNAL_MODE_WRITE_THROUGH = 0,
61         R5C_JOURNAL_MODE_WRITE_BACK = 1,
62 };
63
64 static char *r5c_journal_mode_str[] = {"write-through",
65                                        "write-back"};
66 /*
67  * raid5 cache state machine
68  *
69  * With rhe RAID cache, each stripe works in two phases:
70  *      - caching phase
71  *      - writing-out phase
72  *
73  * These two phases are controlled by bit STRIPE_R5C_CACHING:
74  *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
75  *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
76  *
77  * When there is no journal, or the journal is in write-through mode,
78  * the stripe is always in writing-out phase.
79  *
80  * For write-back journal, the stripe is sent to caching phase on write
81  * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
82  * the write-out phase by clearing STRIPE_R5C_CACHING.
83  *
84  * Stripes in caching phase do not write the raid disks. Instead, all
85  * writes are committed from the log device. Therefore, a stripe in
86  * caching phase handles writes as:
87  *      - write to log device
88  *      - return IO
89  *
90  * Stripes in writing-out phase handle writes as:
91  *      - calculate parity
92  *      - write pending data and parity to journal
93  *      - write data and parity to raid disks
94  *      - return IO for pending writes
95  */
96
97 struct r5l_log {
98         struct md_rdev *rdev;
99
100         u32 uuid_checksum;
101
102         sector_t device_size;           /* log device size, round to
103                                          * BLOCK_SECTORS */
104         sector_t max_free_space;        /* reclaim run if free space is at
105                                          * this size */
106
107         sector_t last_checkpoint;       /* log tail. where recovery scan
108                                          * starts from */
109         u64 last_cp_seq;                /* log tail sequence */
110
111         sector_t log_start;             /* log head. where new data appends */
112         u64 seq;                        /* log head sequence */
113
114         sector_t next_checkpoint;
115         u64 next_cp_seq;
116
117         struct mutex io_mutex;
118         struct r5l_io_unit *current_io; /* current io_unit accepting new data */
119
120         spinlock_t io_list_lock;
121         struct list_head running_ios;   /* io_units which are still running,
122                                          * and have not yet been completely
123                                          * written to the log */
124         struct list_head io_end_ios;    /* io_units which have been completely
125                                          * written to the log but not yet written
126                                          * to the RAID */
127         struct list_head flushing_ios;  /* io_units which are waiting for log
128                                          * cache flush */
129         struct list_head finished_ios;  /* io_units which settle down in log disk */
130         struct bio flush_bio;
131
132         struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
133
134         struct kmem_cache *io_kc;
135         mempool_t *io_pool;
136         struct bio_set *bs;
137         mempool_t *meta_pool;
138
139         struct md_thread *reclaim_thread;
140         unsigned long reclaim_target;   /* number of space that need to be
141                                          * reclaimed.  if it's 0, reclaim spaces
142                                          * used by io_units which are in
143                                          * IO_UNIT_STRIPE_END state (eg, reclaim
144                                          * dones't wait for specific io_unit
145                                          * switching to IO_UNIT_STRIPE_END
146                                          * state) */
147         wait_queue_head_t iounit_wait;
148
149         struct list_head no_space_stripes; /* pending stripes, log has no space */
150         spinlock_t no_space_stripes_lock;
151
152         bool need_cache_flush;
153
154         /* for r5c_cache */
155         enum r5c_journal_mode r5c_journal_mode;
156
157         /* all stripes in r5cache, in the order of seq at sh->log_start */
158         struct list_head stripe_in_journal_list;
159
160         spinlock_t stripe_in_journal_lock;
161         atomic_t stripe_in_journal_count;
162
163         /* to submit async io_units, to fulfill ordering of flush */
164         struct work_struct deferred_io_work;
165 };
166
167 /*
168  * an IO range starts from a meta data block and end at the next meta data
169  * block. The io unit's the meta data block tracks data/parity followed it. io
170  * unit is written to log disk with normal write, as we always flush log disk
171  * first and then start move data to raid disks, there is no requirement to
172  * write io unit with FLUSH/FUA
173  */
174 struct r5l_io_unit {
175         struct r5l_log *log;
176
177         struct page *meta_page; /* store meta block */
178         int meta_offset;        /* current offset in meta_page */
179
180         struct bio *current_bio;/* current_bio accepting new data */
181
182         atomic_t pending_stripe;/* how many stripes not flushed to raid */
183         u64 seq;                /* seq number of the metablock */
184         sector_t log_start;     /* where the io_unit starts */
185         sector_t log_end;       /* where the io_unit ends */
186         struct list_head log_sibling; /* log->running_ios */
187         struct list_head stripe_list; /* stripes added to the io_unit */
188
189         int state;
190         bool need_split_bio;
191         struct bio *split_bio;
192
193         unsigned int has_flush:1;      /* include flush request */
194         unsigned int has_fua:1;        /* include fua request */
195         unsigned int has_null_flush:1; /* include empty flush request */
196         /*
197          * io isn't sent yet, flush/fua request can only be submitted till it's
198          * the first IO in running_ios list
199          */
200         unsigned int io_deferred:1;
201
202         struct bio_list flush_barriers;   /* size == 0 flush bios */
203 };
204
205 /* r5l_io_unit state */
206 enum r5l_io_unit_state {
207         IO_UNIT_RUNNING = 0,    /* accepting new IO */
208         IO_UNIT_IO_START = 1,   /* io_unit bio start writing to log,
209                                  * don't accepting new bio */
210         IO_UNIT_IO_END = 2,     /* io_unit bio finish writing to log */
211         IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
212 };
213
214 bool r5c_is_writeback(struct r5l_log *log)
215 {
216         return (log != NULL &&
217                 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
218 }
219
220 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
221 {
222         start += inc;
223         if (start >= log->device_size)
224                 start = start - log->device_size;
225         return start;
226 }
227
228 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
229                                   sector_t end)
230 {
231         if (end >= start)
232                 return end - start;
233         else
234                 return end + log->device_size - start;
235 }
236
237 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
238 {
239         sector_t used_size;
240
241         used_size = r5l_ring_distance(log, log->last_checkpoint,
242                                         log->log_start);
243
244         return log->device_size > used_size + size;
245 }
246
247 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
248                                     enum r5l_io_unit_state state)
249 {
250         if (WARN_ON(io->state >= state))
251                 return;
252         io->state = state;
253 }
254
255 static void
256 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev,
257                               struct bio_list *return_bi)
258 {
259         struct bio *wbi, *wbi2;
260
261         wbi = dev->written;
262         dev->written = NULL;
263         while (wbi && wbi->bi_iter.bi_sector <
264                dev->sector + STRIPE_SECTORS) {
265                 wbi2 = r5_next_bio(wbi, dev->sector);
266                 if (!raid5_dec_bi_active_stripes(wbi)) {
267                         md_write_end(conf->mddev);
268                         bio_list_add(return_bi, wbi);
269                 }
270                 wbi = wbi2;
271         }
272 }
273
274 void r5c_handle_cached_data_endio(struct r5conf *conf,
275           struct stripe_head *sh, int disks, struct bio_list *return_bi)
276 {
277         int i;
278
279         for (i = sh->disks; i--; ) {
280                 if (sh->dev[i].written) {
281                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
282                         r5c_return_dev_pending_writes(conf, &sh->dev[i],
283                                                       return_bi);
284                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
285                                         STRIPE_SECTORS,
286                                         !test_bit(STRIPE_DEGRADED, &sh->state),
287                                         0);
288                 }
289         }
290 }
291
292 /* Check whether we should flush some stripes to free up stripe cache */
293 void r5c_check_stripe_cache_usage(struct r5conf *conf)
294 {
295         int total_cached;
296
297         if (!r5c_is_writeback(conf->log))
298                 return;
299
300         total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
301                 atomic_read(&conf->r5c_cached_full_stripes);
302
303         /*
304          * The following condition is true for either of the following:
305          *   - stripe cache pressure high:
306          *          total_cached > 3/4 min_nr_stripes ||
307          *          empty_inactive_list_nr > 0
308          *   - stripe cache pressure moderate:
309          *          total_cached > 1/2 min_nr_stripes
310          */
311         if (total_cached > conf->min_nr_stripes * 1 / 2 ||
312             atomic_read(&conf->empty_inactive_list_nr) > 0)
313                 r5l_wake_reclaim(conf->log, 0);
314 }
315
316 /*
317  * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
318  * stripes in the cache
319  */
320 void r5c_check_cached_full_stripe(struct r5conf *conf)
321 {
322         if (!r5c_is_writeback(conf->log))
323                 return;
324
325         /*
326          * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
327          * or a full stripe (chunk size / 4k stripes).
328          */
329         if (atomic_read(&conf->r5c_cached_full_stripes) >=
330             min(R5C_FULL_STRIPE_FLUSH_BATCH,
331                 conf->chunk_sectors >> STRIPE_SHIFT))
332                 r5l_wake_reclaim(conf->log, 0);
333 }
334
335 /*
336  * Total log space (in sectors) needed to flush all data in cache
337  *
338  * Currently, writing-out phase automatically includes all pending writes
339  * to the same sector. So the reclaim of each stripe takes up to
340  * (conf->raid_disks + 1) pages of log space.
341  *
342  * To totally avoid deadlock due to log space, the code reserves
343  * (conf->raid_disks + 1) pages for each stripe in cache, which is not
344  * necessary in most cases.
345  *
346  * To improve this, we will need writing-out phase to be able to NOT include
347  * pending writes, which will reduce the requirement to
348  * (conf->max_degraded + 1) pages per stripe in cache.
349  */
350 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
351 {
352         struct r5l_log *log = conf->log;
353
354         if (!r5c_is_writeback(log))
355                 return 0;
356
357         return BLOCK_SECTORS * (conf->raid_disks + 1) *
358                 atomic_read(&log->stripe_in_journal_count);
359 }
360
361 /*
362  * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
363  *
364  * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
365  * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
366  * device is less than 2x of reclaim_required_space.
367  */
368 static inline void r5c_update_log_state(struct r5l_log *log)
369 {
370         struct r5conf *conf = log->rdev->mddev->private;
371         sector_t free_space;
372         sector_t reclaim_space;
373
374         if (!r5c_is_writeback(log))
375                 return;
376
377         free_space = r5l_ring_distance(log, log->log_start,
378                                        log->last_checkpoint);
379         reclaim_space = r5c_log_required_to_flush_cache(conf);
380         if (free_space < 2 * reclaim_space)
381                 set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
382         else
383                 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
384         if (free_space < 3 * reclaim_space)
385                 set_bit(R5C_LOG_TIGHT, &conf->cache_state);
386         else
387                 clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
388 }
389
390 /*
391  * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
392  * This function should only be called in write-back mode.
393  */
394 void r5c_make_stripe_write_out(struct stripe_head *sh)
395 {
396         struct r5conf *conf = sh->raid_conf;
397         struct r5l_log *log = conf->log;
398
399         BUG_ON(!r5c_is_writeback(log));
400
401         WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
402         clear_bit(STRIPE_R5C_CACHING, &sh->state);
403
404         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
405                 atomic_inc(&conf->preread_active_stripes);
406
407         if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
408                 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
409                 atomic_dec(&conf->r5c_cached_partial_stripes);
410         }
411
412         if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
413                 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
414                 atomic_dec(&conf->r5c_cached_full_stripes);
415         }
416 }
417
418 static void r5c_handle_data_cached(struct stripe_head *sh)
419 {
420         int i;
421
422         for (i = sh->disks; i--; )
423                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
424                         set_bit(R5_InJournal, &sh->dev[i].flags);
425                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
426                 }
427         clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
428 }
429
430 /*
431  * this journal write must contain full parity,
432  * it may also contain some data pages
433  */
434 static void r5c_handle_parity_cached(struct stripe_head *sh)
435 {
436         int i;
437
438         for (i = sh->disks; i--; )
439                 if (test_bit(R5_InJournal, &sh->dev[i].flags))
440                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
441 }
442
443 /*
444  * Setting proper flags after writing (or flushing) data and/or parity to the
445  * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
446  */
447 static void r5c_finish_cache_stripe(struct stripe_head *sh)
448 {
449         struct r5l_log *log = sh->raid_conf->log;
450
451         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
452                 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
453                 /*
454                  * Set R5_InJournal for parity dev[pd_idx]. This means
455                  * all data AND parity in the journal. For RAID 6, it is
456                  * NOT necessary to set the flag for dev[qd_idx], as the
457                  * two parities are written out together.
458                  */
459                 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
460         } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
461                 r5c_handle_data_cached(sh);
462         } else {
463                 r5c_handle_parity_cached(sh);
464                 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
465         }
466 }
467
468 static void r5l_io_run_stripes(struct r5l_io_unit *io)
469 {
470         struct stripe_head *sh, *next;
471
472         list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
473                 list_del_init(&sh->log_list);
474
475                 r5c_finish_cache_stripe(sh);
476
477                 set_bit(STRIPE_HANDLE, &sh->state);
478                 raid5_release_stripe(sh);
479         }
480 }
481
482 static void r5l_log_run_stripes(struct r5l_log *log)
483 {
484         struct r5l_io_unit *io, *next;
485
486         assert_spin_locked(&log->io_list_lock);
487
488         list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
489                 /* don't change list order */
490                 if (io->state < IO_UNIT_IO_END)
491                         break;
492
493                 list_move_tail(&io->log_sibling, &log->finished_ios);
494                 r5l_io_run_stripes(io);
495         }
496 }
497
498 static void r5l_move_to_end_ios(struct r5l_log *log)
499 {
500         struct r5l_io_unit *io, *next;
501
502         assert_spin_locked(&log->io_list_lock);
503
504         list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
505                 /* don't change list order */
506                 if (io->state < IO_UNIT_IO_END)
507                         break;
508                 list_move_tail(&io->log_sibling, &log->io_end_ios);
509         }
510 }
511
512 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
513 static void r5l_log_endio(struct bio *bio)
514 {
515         struct r5l_io_unit *io = bio->bi_private;
516         struct r5l_io_unit *io_deferred;
517         struct r5l_log *log = io->log;
518         unsigned long flags;
519
520         if (bio->bi_error)
521                 md_error(log->rdev->mddev, log->rdev);
522
523         bio_put(bio);
524         mempool_free(io->meta_page, log->meta_pool);
525
526         spin_lock_irqsave(&log->io_list_lock, flags);
527         __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
528         if (log->need_cache_flush)
529                 r5l_move_to_end_ios(log);
530         else
531                 r5l_log_run_stripes(log);
532         if (!list_empty(&log->running_ios)) {
533                 /*
534                  * FLUSH/FUA io_unit is deferred because of ordering, now we
535                  * can dispatch it
536                  */
537                 io_deferred = list_first_entry(&log->running_ios,
538                                                struct r5l_io_unit, log_sibling);
539                 if (io_deferred->io_deferred)
540                         schedule_work(&log->deferred_io_work);
541         }
542
543         spin_unlock_irqrestore(&log->io_list_lock, flags);
544
545         if (log->need_cache_flush)
546                 md_wakeup_thread(log->rdev->mddev->thread);
547
548         if (io->has_null_flush) {
549                 struct bio *bi;
550
551                 WARN_ON(bio_list_empty(&io->flush_barriers));
552                 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
553                         bio_endio(bi);
554                         atomic_dec(&io->pending_stripe);
555                 }
556                 if (atomic_read(&io->pending_stripe) == 0)
557                         __r5l_stripe_write_finished(io);
558         }
559 }
560
561 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
562 {
563         unsigned long flags;
564
565         spin_lock_irqsave(&log->io_list_lock, flags);
566         __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
567         spin_unlock_irqrestore(&log->io_list_lock, flags);
568
569         if (io->has_flush)
570                 bio_set_op_attrs(io->current_bio, REQ_OP_WRITE, WRITE_FLUSH);
571         if (io->has_fua)
572                 bio_set_op_attrs(io->current_bio, REQ_OP_WRITE, WRITE_FUA);
573         submit_bio(io->current_bio);
574
575         if (!io->split_bio)
576                 return;
577
578         if (io->has_flush)
579                 bio_set_op_attrs(io->split_bio, REQ_OP_WRITE, WRITE_FLUSH);
580         if (io->has_fua)
581                 bio_set_op_attrs(io->split_bio, REQ_OP_WRITE, WRITE_FUA);
582         submit_bio(io->split_bio);
583 }
584
585 /* deferred io_unit will be dispatched here */
586 static void r5l_submit_io_async(struct work_struct *work)
587 {
588         struct r5l_log *log = container_of(work, struct r5l_log,
589                                            deferred_io_work);
590         struct r5l_io_unit *io = NULL;
591         unsigned long flags;
592
593         spin_lock_irqsave(&log->io_list_lock, flags);
594         if (!list_empty(&log->running_ios)) {
595                 io = list_first_entry(&log->running_ios, struct r5l_io_unit,
596                                       log_sibling);
597                 if (!io->io_deferred)
598                         io = NULL;
599                 else
600                         io->io_deferred = 0;
601         }
602         spin_unlock_irqrestore(&log->io_list_lock, flags);
603         if (io)
604                 r5l_do_submit_io(log, io);
605 }
606
607 static void r5l_submit_current_io(struct r5l_log *log)
608 {
609         struct r5l_io_unit *io = log->current_io;
610         struct bio *bio;
611         struct r5l_meta_block *block;
612         unsigned long flags;
613         u32 crc;
614         bool do_submit = true;
615
616         if (!io)
617                 return;
618
619         block = page_address(io->meta_page);
620         block->meta_size = cpu_to_le32(io->meta_offset);
621         crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
622         block->checksum = cpu_to_le32(crc);
623         bio = io->current_bio;
624
625         log->current_io = NULL;
626         spin_lock_irqsave(&log->io_list_lock, flags);
627         if (io->has_flush || io->has_fua) {
628                 if (io != list_first_entry(&log->running_ios,
629                                            struct r5l_io_unit, log_sibling)) {
630                         io->io_deferred = 1;
631                         do_submit = false;
632                 }
633         }
634         spin_unlock_irqrestore(&log->io_list_lock, flags);
635         if (do_submit)
636                 r5l_do_submit_io(log, io);
637 }
638
639 static struct bio *r5l_bio_alloc(struct r5l_log *log)
640 {
641         struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
642
643         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
644         bio->bi_bdev = log->rdev->bdev;
645         bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
646
647         return bio;
648 }
649
650 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
651 {
652         log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
653
654         r5c_update_log_state(log);
655         /*
656          * If we filled up the log device start from the beginning again,
657          * which will require a new bio.
658          *
659          * Note: for this to work properly the log size needs to me a multiple
660          * of BLOCK_SECTORS.
661          */
662         if (log->log_start == 0)
663                 io->need_split_bio = true;
664
665         io->log_end = log->log_start;
666 }
667
668 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
669 {
670         struct r5l_io_unit *io;
671         struct r5l_meta_block *block;
672
673         io = mempool_alloc(log->io_pool, GFP_ATOMIC);
674         if (!io)
675                 return NULL;
676         memset(io, 0, sizeof(*io));
677
678         io->log = log;
679         INIT_LIST_HEAD(&io->log_sibling);
680         INIT_LIST_HEAD(&io->stripe_list);
681         bio_list_init(&io->flush_barriers);
682         io->state = IO_UNIT_RUNNING;
683
684         io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
685         block = page_address(io->meta_page);
686         clear_page(block);
687         block->magic = cpu_to_le32(R5LOG_MAGIC);
688         block->version = R5LOG_VERSION;
689         block->seq = cpu_to_le64(log->seq);
690         block->position = cpu_to_le64(log->log_start);
691
692         io->log_start = log->log_start;
693         io->meta_offset = sizeof(struct r5l_meta_block);
694         io->seq = log->seq++;
695
696         io->current_bio = r5l_bio_alloc(log);
697         io->current_bio->bi_end_io = r5l_log_endio;
698         io->current_bio->bi_private = io;
699         bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
700
701         r5_reserve_log_entry(log, io);
702
703         spin_lock_irq(&log->io_list_lock);
704         list_add_tail(&io->log_sibling, &log->running_ios);
705         spin_unlock_irq(&log->io_list_lock);
706
707         return io;
708 }
709
710 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
711 {
712         if (log->current_io &&
713             log->current_io->meta_offset + payload_size > PAGE_SIZE)
714                 r5l_submit_current_io(log);
715
716         if (!log->current_io) {
717                 log->current_io = r5l_new_meta(log);
718                 if (!log->current_io)
719                         return -ENOMEM;
720         }
721
722         return 0;
723 }
724
725 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
726                                     sector_t location,
727                                     u32 checksum1, u32 checksum2,
728                                     bool checksum2_valid)
729 {
730         struct r5l_io_unit *io = log->current_io;
731         struct r5l_payload_data_parity *payload;
732
733         payload = page_address(io->meta_page) + io->meta_offset;
734         payload->header.type = cpu_to_le16(type);
735         payload->header.flags = cpu_to_le16(0);
736         payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
737                                     (PAGE_SHIFT - 9));
738         payload->location = cpu_to_le64(location);
739         payload->checksum[0] = cpu_to_le32(checksum1);
740         if (checksum2_valid)
741                 payload->checksum[1] = cpu_to_le32(checksum2);
742
743         io->meta_offset += sizeof(struct r5l_payload_data_parity) +
744                 sizeof(__le32) * (1 + !!checksum2_valid);
745 }
746
747 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
748 {
749         struct r5l_io_unit *io = log->current_io;
750
751         if (io->need_split_bio) {
752                 BUG_ON(io->split_bio);
753                 io->split_bio = io->current_bio;
754                 io->current_bio = r5l_bio_alloc(log);
755                 bio_chain(io->current_bio, io->split_bio);
756                 io->need_split_bio = false;
757         }
758
759         if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
760                 BUG();
761
762         r5_reserve_log_entry(log, io);
763 }
764
765 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
766                            int data_pages, int parity_pages)
767 {
768         int i;
769         int meta_size;
770         int ret;
771         struct r5l_io_unit *io;
772
773         meta_size =
774                 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
775                  * data_pages) +
776                 sizeof(struct r5l_payload_data_parity) +
777                 sizeof(__le32) * parity_pages;
778
779         ret = r5l_get_meta(log, meta_size);
780         if (ret)
781                 return ret;
782
783         io = log->current_io;
784
785         if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
786                 io->has_flush = 1;
787
788         for (i = 0; i < sh->disks; i++) {
789                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
790                     test_bit(R5_InJournal, &sh->dev[i].flags))
791                         continue;
792                 if (i == sh->pd_idx || i == sh->qd_idx)
793                         continue;
794                 if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
795                     log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
796                         io->has_fua = 1;
797                         /*
798                          * we need to flush journal to make sure recovery can
799                          * reach the data with fua flag
800                          */
801                         io->has_flush = 1;
802                 }
803                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
804                                         raid5_compute_blocknr(sh, i, 0),
805                                         sh->dev[i].log_checksum, 0, false);
806                 r5l_append_payload_page(log, sh->dev[i].page);
807         }
808
809         if (parity_pages == 2) {
810                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
811                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
812                                         sh->dev[sh->qd_idx].log_checksum, true);
813                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
814                 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
815         } else if (parity_pages == 1) {
816                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
817                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
818                                         0, false);
819                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
820         } else  /* Just writing data, not parity, in caching phase */
821                 BUG_ON(parity_pages != 0);
822
823         list_add_tail(&sh->log_list, &io->stripe_list);
824         atomic_inc(&io->pending_stripe);
825         sh->log_io = io;
826
827         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
828                 return 0;
829
830         if (sh->log_start == MaxSector) {
831                 BUG_ON(!list_empty(&sh->r5c));
832                 sh->log_start = io->log_start;
833                 spin_lock_irq(&log->stripe_in_journal_lock);
834                 list_add_tail(&sh->r5c,
835                               &log->stripe_in_journal_list);
836                 spin_unlock_irq(&log->stripe_in_journal_lock);
837                 atomic_inc(&log->stripe_in_journal_count);
838         }
839         return 0;
840 }
841
842 /* add stripe to no_space_stripes, and then wake up reclaim */
843 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
844                                            struct stripe_head *sh)
845 {
846         spin_lock(&log->no_space_stripes_lock);
847         list_add_tail(&sh->log_list, &log->no_space_stripes);
848         spin_unlock(&log->no_space_stripes_lock);
849 }
850
851 /*
852  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
853  * data from log to raid disks), so we shouldn't wait for reclaim here
854  */
855 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
856 {
857         struct r5conf *conf = sh->raid_conf;
858         int write_disks = 0;
859         int data_pages, parity_pages;
860         int reserve;
861         int i;
862         int ret = 0;
863         bool wake_reclaim = false;
864
865         if (!log)
866                 return -EAGAIN;
867         /* Don't support stripe batch */
868         if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
869             test_bit(STRIPE_SYNCING, &sh->state)) {
870                 /* the stripe is written to log, we start writing it to raid */
871                 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
872                 return -EAGAIN;
873         }
874
875         WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
876
877         for (i = 0; i < sh->disks; i++) {
878                 void *addr;
879
880                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
881                     test_bit(R5_InJournal, &sh->dev[i].flags))
882                         continue;
883
884                 write_disks++;
885                 /* checksum is already calculated in last run */
886                 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
887                         continue;
888                 addr = kmap_atomic(sh->dev[i].page);
889                 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
890                                                     addr, PAGE_SIZE);
891                 kunmap_atomic(addr);
892         }
893         parity_pages = 1 + !!(sh->qd_idx >= 0);
894         data_pages = write_disks - parity_pages;
895
896         set_bit(STRIPE_LOG_TRAPPED, &sh->state);
897         /*
898          * The stripe must enter state machine again to finish the write, so
899          * don't delay.
900          */
901         clear_bit(STRIPE_DELAYED, &sh->state);
902         atomic_inc(&sh->count);
903
904         mutex_lock(&log->io_mutex);
905         /* meta + data */
906         reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
907
908         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
909                 if (!r5l_has_free_space(log, reserve)) {
910                         r5l_add_no_space_stripe(log, sh);
911                         wake_reclaim = true;
912                 } else {
913                         ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
914                         if (ret) {
915                                 spin_lock_irq(&log->io_list_lock);
916                                 list_add_tail(&sh->log_list,
917                                               &log->no_mem_stripes);
918                                 spin_unlock_irq(&log->io_list_lock);
919                         }
920                 }
921         } else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
922                 /*
923                  * log space critical, do not process stripes that are
924                  * not in cache yet (sh->log_start == MaxSector).
925                  */
926                 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
927                     sh->log_start == MaxSector) {
928                         r5l_add_no_space_stripe(log, sh);
929                         wake_reclaim = true;
930                         reserve = 0;
931                 } else if (!r5l_has_free_space(log, reserve)) {
932                         if (sh->log_start == log->last_checkpoint)
933                                 BUG();
934                         else
935                                 r5l_add_no_space_stripe(log, sh);
936                 } else {
937                         ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
938                         if (ret) {
939                                 spin_lock_irq(&log->io_list_lock);
940                                 list_add_tail(&sh->log_list,
941                                               &log->no_mem_stripes);
942                                 spin_unlock_irq(&log->io_list_lock);
943                         }
944                 }
945         }
946
947         mutex_unlock(&log->io_mutex);
948         if (wake_reclaim)
949                 r5l_wake_reclaim(log, reserve);
950         return 0;
951 }
952
953 void r5l_write_stripe_run(struct r5l_log *log)
954 {
955         if (!log)
956                 return;
957         mutex_lock(&log->io_mutex);
958         r5l_submit_current_io(log);
959         mutex_unlock(&log->io_mutex);
960 }
961
962 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
963 {
964         if (!log)
965                 return -ENODEV;
966
967         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
968                 /*
969                  * in write through (journal only)
970                  * we flush log disk cache first, then write stripe data to
971                  * raid disks. So if bio is finished, the log disk cache is
972                  * flushed already. The recovery guarantees we can recovery
973                  * the bio from log disk, so we don't need to flush again
974                  */
975                 if (bio->bi_iter.bi_size == 0) {
976                         bio_endio(bio);
977                         return 0;
978                 }
979                 bio->bi_opf &= ~REQ_PREFLUSH;
980         } else {
981                 /* write back (with cache) */
982                 if (bio->bi_iter.bi_size == 0) {
983                         mutex_lock(&log->io_mutex);
984                         r5l_get_meta(log, 0);
985                         bio_list_add(&log->current_io->flush_barriers, bio);
986                         log->current_io->has_flush = 1;
987                         log->current_io->has_null_flush = 1;
988                         atomic_inc(&log->current_io->pending_stripe);
989                         r5l_submit_current_io(log);
990                         mutex_unlock(&log->io_mutex);
991                         return 0;
992                 }
993         }
994         return -EAGAIN;
995 }
996
997 /* This will run after log space is reclaimed */
998 static void r5l_run_no_space_stripes(struct r5l_log *log)
999 {
1000         struct stripe_head *sh;
1001
1002         spin_lock(&log->no_space_stripes_lock);
1003         while (!list_empty(&log->no_space_stripes)) {
1004                 sh = list_first_entry(&log->no_space_stripes,
1005                                       struct stripe_head, log_list);
1006                 list_del_init(&sh->log_list);
1007                 set_bit(STRIPE_HANDLE, &sh->state);
1008                 raid5_release_stripe(sh);
1009         }
1010         spin_unlock(&log->no_space_stripes_lock);
1011 }
1012
1013 /*
1014  * calculate new last_checkpoint
1015  * for write through mode, returns log->next_checkpoint
1016  * for write back, returns log_start of first sh in stripe_in_journal_list
1017  */
1018 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1019 {
1020         struct stripe_head *sh;
1021         struct r5l_log *log = conf->log;
1022         sector_t new_cp;
1023         unsigned long flags;
1024
1025         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1026                 return log->next_checkpoint;
1027
1028         spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1029         if (list_empty(&conf->log->stripe_in_journal_list)) {
1030                 /* all stripes flushed */
1031                 spin_unlock(&log->stripe_in_journal_lock);
1032                 return log->next_checkpoint;
1033         }
1034         sh = list_first_entry(&conf->log->stripe_in_journal_list,
1035                               struct stripe_head, r5c);
1036         new_cp = sh->log_start;
1037         spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1038         return new_cp;
1039 }
1040
1041 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1042 {
1043         struct r5conf *conf = log->rdev->mddev->private;
1044
1045         return r5l_ring_distance(log, log->last_checkpoint,
1046                                  r5c_calculate_new_cp(conf));
1047 }
1048
1049 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1050 {
1051         struct stripe_head *sh;
1052
1053         assert_spin_locked(&log->io_list_lock);
1054
1055         if (!list_empty(&log->no_mem_stripes)) {
1056                 sh = list_first_entry(&log->no_mem_stripes,
1057                                       struct stripe_head, log_list);
1058                 list_del_init(&sh->log_list);
1059                 set_bit(STRIPE_HANDLE, &sh->state);
1060                 raid5_release_stripe(sh);
1061         }
1062 }
1063
1064 static bool r5l_complete_finished_ios(struct r5l_log *log)
1065 {
1066         struct r5l_io_unit *io, *next;
1067         bool found = false;
1068
1069         assert_spin_locked(&log->io_list_lock);
1070
1071         list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1072                 /* don't change list order */
1073                 if (io->state < IO_UNIT_STRIPE_END)
1074                         break;
1075
1076                 log->next_checkpoint = io->log_start;
1077                 log->next_cp_seq = io->seq;
1078
1079                 list_del(&io->log_sibling);
1080                 mempool_free(io, log->io_pool);
1081                 r5l_run_no_mem_stripe(log);
1082
1083                 found = true;
1084         }
1085
1086         return found;
1087 }
1088
1089 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1090 {
1091         struct r5l_log *log = io->log;
1092         struct r5conf *conf = log->rdev->mddev->private;
1093         unsigned long flags;
1094
1095         spin_lock_irqsave(&log->io_list_lock, flags);
1096         __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1097
1098         if (!r5l_complete_finished_ios(log)) {
1099                 spin_unlock_irqrestore(&log->io_list_lock, flags);
1100                 return;
1101         }
1102
1103         if (r5l_reclaimable_space(log) > log->max_free_space ||
1104             test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1105                 r5l_wake_reclaim(log, 0);
1106
1107         spin_unlock_irqrestore(&log->io_list_lock, flags);
1108         wake_up(&log->iounit_wait);
1109 }
1110
1111 void r5l_stripe_write_finished(struct stripe_head *sh)
1112 {
1113         struct r5l_io_unit *io;
1114
1115         io = sh->log_io;
1116         sh->log_io = NULL;
1117
1118         if (io && atomic_dec_and_test(&io->pending_stripe))
1119                 __r5l_stripe_write_finished(io);
1120 }
1121
1122 static void r5l_log_flush_endio(struct bio *bio)
1123 {
1124         struct r5l_log *log = container_of(bio, struct r5l_log,
1125                 flush_bio);
1126         unsigned long flags;
1127         struct r5l_io_unit *io;
1128
1129         if (bio->bi_error)
1130                 md_error(log->rdev->mddev, log->rdev);
1131
1132         spin_lock_irqsave(&log->io_list_lock, flags);
1133         list_for_each_entry(io, &log->flushing_ios, log_sibling)
1134                 r5l_io_run_stripes(io);
1135         list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1136         spin_unlock_irqrestore(&log->io_list_lock, flags);
1137 }
1138
1139 /*
1140  * Starting dispatch IO to raid.
1141  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1142  * broken meta in the middle of a log causes recovery can't find meta at the
1143  * head of log. If operations require meta at the head persistent in log, we
1144  * must make sure meta before it persistent in log too. A case is:
1145  *
1146  * stripe data/parity is in log, we start write stripe to raid disks. stripe
1147  * data/parity must be persistent in log before we do the write to raid disks.
1148  *
1149  * The solution is we restrictly maintain io_unit list order. In this case, we
1150  * only write stripes of an io_unit to raid disks till the io_unit is the first
1151  * one whose data/parity is in log.
1152  */
1153 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1154 {
1155         bool do_flush;
1156
1157         if (!log || !log->need_cache_flush)
1158                 return;
1159
1160         spin_lock_irq(&log->io_list_lock);
1161         /* flush bio is running */
1162         if (!list_empty(&log->flushing_ios)) {
1163                 spin_unlock_irq(&log->io_list_lock);
1164                 return;
1165         }
1166         list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1167         do_flush = !list_empty(&log->flushing_ios);
1168         spin_unlock_irq(&log->io_list_lock);
1169
1170         if (!do_flush)
1171                 return;
1172         bio_reset(&log->flush_bio);
1173         log->flush_bio.bi_bdev = log->rdev->bdev;
1174         log->flush_bio.bi_end_io = r5l_log_flush_endio;
1175         bio_set_op_attrs(&log->flush_bio, REQ_OP_WRITE, WRITE_FLUSH);
1176         submit_bio(&log->flush_bio);
1177 }
1178
1179 static void r5l_write_super(struct r5l_log *log, sector_t cp);
1180 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1181         sector_t end)
1182 {
1183         struct block_device *bdev = log->rdev->bdev;
1184         struct mddev *mddev;
1185
1186         r5l_write_super(log, end);
1187
1188         if (!blk_queue_discard(bdev_get_queue(bdev)))
1189                 return;
1190
1191         mddev = log->rdev->mddev;
1192         /*
1193          * Discard could zero data, so before discard we must make sure
1194          * superblock is updated to new log tail. Updating superblock (either
1195          * directly call md_update_sb() or depend on md thread) must hold
1196          * reconfig mutex. On the other hand, raid5_quiesce is called with
1197          * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1198          * for all IO finish, hence waitting for reclaim thread, while reclaim
1199          * thread is calling this function and waitting for reconfig mutex. So
1200          * there is a deadlock. We workaround this issue with a trylock.
1201          * FIXME: we could miss discard if we can't take reconfig mutex
1202          */
1203         set_mask_bits(&mddev->flags, 0,
1204                 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1205         if (!mddev_trylock(mddev))
1206                 return;
1207         md_update_sb(mddev, 1);
1208         mddev_unlock(mddev);
1209
1210         /* discard IO error really doesn't matter, ignore it */
1211         if (log->last_checkpoint < end) {
1212                 blkdev_issue_discard(bdev,
1213                                 log->last_checkpoint + log->rdev->data_offset,
1214                                 end - log->last_checkpoint, GFP_NOIO, 0);
1215         } else {
1216                 blkdev_issue_discard(bdev,
1217                                 log->last_checkpoint + log->rdev->data_offset,
1218                                 log->device_size - log->last_checkpoint,
1219                                 GFP_NOIO, 0);
1220                 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1221                                 GFP_NOIO, 0);
1222         }
1223 }
1224
1225 /*
1226  * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1227  * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1228  *
1229  * must hold conf->device_lock
1230  */
1231 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1232 {
1233         BUG_ON(list_empty(&sh->lru));
1234         BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1235         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1236
1237         /*
1238          * The stripe is not ON_RELEASE_LIST, so it is safe to call
1239          * raid5_release_stripe() while holding conf->device_lock
1240          */
1241         BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1242         assert_spin_locked(&conf->device_lock);
1243
1244         list_del_init(&sh->lru);
1245         atomic_inc(&sh->count);
1246
1247         set_bit(STRIPE_HANDLE, &sh->state);
1248         atomic_inc(&conf->active_stripes);
1249         r5c_make_stripe_write_out(sh);
1250
1251         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1252                 atomic_inc(&conf->preread_active_stripes);
1253         raid5_release_stripe(sh);
1254 }
1255
1256 /*
1257  * if num == 0, flush all full stripes
1258  * if num > 0, flush all full stripes. If less than num full stripes are
1259  *             flushed, flush some partial stripes until totally num stripes are
1260  *             flushed or there is no more cached stripes.
1261  */
1262 void r5c_flush_cache(struct r5conf *conf, int num)
1263 {
1264         int count;
1265         struct stripe_head *sh, *next;
1266
1267         assert_spin_locked(&conf->device_lock);
1268         if (!conf->log)
1269                 return;
1270
1271         count = 0;
1272         list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1273                 r5c_flush_stripe(conf, sh);
1274                 count++;
1275         }
1276
1277         if (count >= num)
1278                 return;
1279         list_for_each_entry_safe(sh, next,
1280                                  &conf->r5c_partial_stripe_list, lru) {
1281                 r5c_flush_stripe(conf, sh);
1282                 if (++count >= num)
1283                         break;
1284         }
1285 }
1286
1287 static void r5c_do_reclaim(struct r5conf *conf)
1288 {
1289         struct r5l_log *log = conf->log;
1290         struct stripe_head *sh;
1291         int count = 0;
1292         unsigned long flags;
1293         int total_cached;
1294         int stripes_to_flush;
1295
1296         if (!r5c_is_writeback(log))
1297                 return;
1298
1299         total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1300                 atomic_read(&conf->r5c_cached_full_stripes);
1301
1302         if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1303             atomic_read(&conf->empty_inactive_list_nr) > 0)
1304                 /*
1305                  * if stripe cache pressure high, flush all full stripes and
1306                  * some partial stripes
1307                  */
1308                 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1309         else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1310                  atomic_read(&conf->r5c_cached_full_stripes) >
1311                  R5C_FULL_STRIPE_FLUSH_BATCH)
1312                 /*
1313                  * if stripe cache pressure moderate, or if there is many full
1314                  * stripes,flush all full stripes
1315                  */
1316                 stripes_to_flush = 0;
1317         else
1318                 /* no need to flush */
1319                 stripes_to_flush = -1;
1320
1321         if (stripes_to_flush >= 0) {
1322                 spin_lock_irqsave(&conf->device_lock, flags);
1323                 r5c_flush_cache(conf, stripes_to_flush);
1324                 spin_unlock_irqrestore(&conf->device_lock, flags);
1325         }
1326
1327         /* if log space is tight, flush stripes on stripe_in_journal_list */
1328         if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1329                 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1330                 spin_lock(&conf->device_lock);
1331                 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1332                         /*
1333                          * stripes on stripe_in_journal_list could be in any
1334                          * state of the stripe_cache state machine. In this
1335                          * case, we only want to flush stripe on
1336                          * r5c_cached_full/partial_stripes. The following
1337                          * condition makes sure the stripe is on one of the
1338                          * two lists.
1339                          */
1340                         if (!list_empty(&sh->lru) &&
1341                             !test_bit(STRIPE_HANDLE, &sh->state) &&
1342                             atomic_read(&sh->count) == 0) {
1343                                 r5c_flush_stripe(conf, sh);
1344                         }
1345                         if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1346                                 break;
1347                 }
1348                 spin_unlock(&conf->device_lock);
1349                 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1350         }
1351         md_wakeup_thread(conf->mddev->thread);
1352 }
1353
1354 static void r5l_do_reclaim(struct r5l_log *log)
1355 {
1356         struct r5conf *conf = log->rdev->mddev->private;
1357         sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1358         sector_t reclaimable;
1359         sector_t next_checkpoint;
1360         bool write_super;
1361
1362         spin_lock_irq(&log->io_list_lock);
1363         write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1364                 reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1365         /*
1366          * move proper io_unit to reclaim list. We should not change the order.
1367          * reclaimable/unreclaimable io_unit can be mixed in the list, we
1368          * shouldn't reuse space of an unreclaimable io_unit
1369          */
1370         while (1) {
1371                 reclaimable = r5l_reclaimable_space(log);
1372                 if (reclaimable >= reclaim_target ||
1373                     (list_empty(&log->running_ios) &&
1374                      list_empty(&log->io_end_ios) &&
1375                      list_empty(&log->flushing_ios) &&
1376                      list_empty(&log->finished_ios)))
1377                         break;
1378
1379                 md_wakeup_thread(log->rdev->mddev->thread);
1380                 wait_event_lock_irq(log->iounit_wait,
1381                                     r5l_reclaimable_space(log) > reclaimable,
1382                                     log->io_list_lock);
1383         }
1384
1385         next_checkpoint = r5c_calculate_new_cp(conf);
1386         spin_unlock_irq(&log->io_list_lock);
1387
1388         BUG_ON(reclaimable < 0);
1389
1390         if (reclaimable == 0 || !write_super)
1391                 return;
1392
1393         /*
1394          * write_super will flush cache of each raid disk. We must write super
1395          * here, because the log area might be reused soon and we don't want to
1396          * confuse recovery
1397          */
1398         r5l_write_super_and_discard_space(log, next_checkpoint);
1399
1400         mutex_lock(&log->io_mutex);
1401         log->last_checkpoint = next_checkpoint;
1402         r5c_update_log_state(log);
1403         mutex_unlock(&log->io_mutex);
1404
1405         r5l_run_no_space_stripes(log);
1406 }
1407
1408 static void r5l_reclaim_thread(struct md_thread *thread)
1409 {
1410         struct mddev *mddev = thread->mddev;
1411         struct r5conf *conf = mddev->private;
1412         struct r5l_log *log = conf->log;
1413
1414         if (!log)
1415                 return;
1416         r5c_do_reclaim(conf);
1417         r5l_do_reclaim(log);
1418 }
1419
1420 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1421 {
1422         unsigned long target;
1423         unsigned long new = (unsigned long)space; /* overflow in theory */
1424
1425         if (!log)
1426                 return;
1427         do {
1428                 target = log->reclaim_target;
1429                 if (new < target)
1430                         return;
1431         } while (cmpxchg(&log->reclaim_target, target, new) != target);
1432         md_wakeup_thread(log->reclaim_thread);
1433 }
1434
1435 void r5l_quiesce(struct r5l_log *log, int state)
1436 {
1437         struct mddev *mddev;
1438         if (!log || state == 2)
1439                 return;
1440         if (state == 0) {
1441                 /*
1442                  * This is a special case for hotadd. In suspend, the array has
1443                  * no journal. In resume, journal is initialized as well as the
1444                  * reclaim thread.
1445                  */
1446                 if (log->reclaim_thread)
1447                         return;
1448                 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
1449                                         log->rdev->mddev, "reclaim");
1450                 log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
1451         } else if (state == 1) {
1452                 /* make sure r5l_write_super_and_discard_space exits */
1453                 mddev = log->rdev->mddev;
1454                 wake_up(&mddev->sb_wait);
1455                 r5l_wake_reclaim(log, MaxSector);
1456                 md_unregister_thread(&log->reclaim_thread);
1457                 r5l_do_reclaim(log);
1458         }
1459 }
1460
1461 bool r5l_log_disk_error(struct r5conf *conf)
1462 {
1463         struct r5l_log *log;
1464         bool ret;
1465         /* don't allow write if journal disk is missing */
1466         rcu_read_lock();
1467         log = rcu_dereference(conf->log);
1468
1469         if (!log)
1470                 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1471         else
1472                 ret = test_bit(Faulty, &log->rdev->flags);
1473         rcu_read_unlock();
1474         return ret;
1475 }
1476
1477 struct r5l_recovery_ctx {
1478         struct page *meta_page;         /* current meta */
1479         sector_t meta_total_blocks;     /* total size of current meta and data */
1480         sector_t pos;                   /* recovery position */
1481         u64 seq;                        /* recovery position seq */
1482         int data_parity_stripes;        /* number of data_parity stripes */
1483         int data_only_stripes;          /* number of data_only stripes */
1484         struct list_head cached_list;
1485 };
1486
1487 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1488                                         struct r5l_recovery_ctx *ctx)
1489 {
1490         struct page *page = ctx->meta_page;
1491         struct r5l_meta_block *mb;
1492         u32 crc, stored_crc;
1493
1494         if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, REQ_OP_READ, 0,
1495                           false))
1496                 return -EIO;
1497
1498         mb = page_address(page);
1499         stored_crc = le32_to_cpu(mb->checksum);
1500         mb->checksum = 0;
1501
1502         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1503             le64_to_cpu(mb->seq) != ctx->seq ||
1504             mb->version != R5LOG_VERSION ||
1505             le64_to_cpu(mb->position) != ctx->pos)
1506                 return -EINVAL;
1507
1508         crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1509         if (stored_crc != crc)
1510                 return -EINVAL;
1511
1512         if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1513                 return -EINVAL;
1514
1515         ctx->meta_total_blocks = BLOCK_SECTORS;
1516
1517         return 0;
1518 }
1519
1520 static void
1521 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1522                                      struct page *page,
1523                                      sector_t pos, u64 seq)
1524 {
1525         struct r5l_meta_block *mb;
1526         u32 crc;
1527
1528         mb = page_address(page);
1529         clear_page(mb);
1530         mb->magic = cpu_to_le32(R5LOG_MAGIC);
1531         mb->version = R5LOG_VERSION;
1532         mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1533         mb->seq = cpu_to_le64(seq);
1534         mb->position = cpu_to_le64(pos);
1535         crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1536         mb->checksum = cpu_to_le32(crc);
1537 }
1538
1539 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1540                                           u64 seq)
1541 {
1542         struct page *page;
1543
1544         page = alloc_page(GFP_KERNEL);
1545         if (!page)
1546                 return -ENOMEM;
1547         r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1548         if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1549                           WRITE_FUA, false)) {
1550                 __free_page(page);
1551                 return -EIO;
1552         }
1553         __free_page(page);
1554         return 0;
1555 }
1556
1557 /*
1558  * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1559  * to mark valid (potentially not flushed) data in the journal.
1560  *
1561  * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1562  * so there should not be any mismatch here.
1563  */
1564 static void r5l_recovery_load_data(struct r5l_log *log,
1565                                    struct stripe_head *sh,
1566                                    struct r5l_recovery_ctx *ctx,
1567                                    struct r5l_payload_data_parity *payload,
1568                                    sector_t log_offset)
1569 {
1570         struct mddev *mddev = log->rdev->mddev;
1571         struct r5conf *conf = mddev->private;
1572         int dd_idx;
1573
1574         raid5_compute_sector(conf,
1575                              le64_to_cpu(payload->location), 0,
1576                              &dd_idx, sh);
1577         sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1578                      sh->dev[dd_idx].page, REQ_OP_READ, 0, false);
1579         sh->dev[dd_idx].log_checksum =
1580                 le32_to_cpu(payload->checksum[0]);
1581         ctx->meta_total_blocks += BLOCK_SECTORS;
1582
1583         set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1584         set_bit(STRIPE_R5C_CACHING, &sh->state);
1585 }
1586
1587 static void r5l_recovery_load_parity(struct r5l_log *log,
1588                                      struct stripe_head *sh,
1589                                      struct r5l_recovery_ctx *ctx,
1590                                      struct r5l_payload_data_parity *payload,
1591                                      sector_t log_offset)
1592 {
1593         struct mddev *mddev = log->rdev->mddev;
1594         struct r5conf *conf = mddev->private;
1595
1596         ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1597         sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1598                      sh->dev[sh->pd_idx].page, REQ_OP_READ, 0, false);
1599         sh->dev[sh->pd_idx].log_checksum =
1600                 le32_to_cpu(payload->checksum[0]);
1601         set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1602
1603         if (sh->qd_idx >= 0) {
1604                 sync_page_io(log->rdev,
1605                              r5l_ring_add(log, log_offset, BLOCK_SECTORS),
1606                              PAGE_SIZE, sh->dev[sh->qd_idx].page,
1607                              REQ_OP_READ, 0, false);
1608                 sh->dev[sh->qd_idx].log_checksum =
1609                         le32_to_cpu(payload->checksum[1]);
1610                 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1611         }
1612         clear_bit(STRIPE_R5C_CACHING, &sh->state);
1613 }
1614
1615 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1616 {
1617         int i;
1618
1619         sh->state = 0;
1620         sh->log_start = MaxSector;
1621         for (i = sh->disks; i--; )
1622                 sh->dev[i].flags = 0;
1623 }
1624
1625 static void
1626 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1627                                struct stripe_head *sh,
1628                                struct r5l_recovery_ctx *ctx)
1629 {
1630         struct md_rdev *rdev, *rrdev;
1631         int disk_index;
1632         int data_count = 0;
1633
1634         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1635                 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1636                         continue;
1637                 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1638                         continue;
1639                 data_count++;
1640         }
1641
1642         /*
1643          * stripes that only have parity must have been flushed
1644          * before the crash that we are now recovering from, so
1645          * there is nothing more to recovery.
1646          */
1647         if (data_count == 0)
1648                 goto out;
1649
1650         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1651                 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1652                         continue;
1653
1654                 /* in case device is broken */
1655                 rcu_read_lock();
1656                 rdev = rcu_dereference(conf->disks[disk_index].rdev);
1657                 if (rdev) {
1658                         atomic_inc(&rdev->nr_pending);
1659                         rcu_read_unlock();
1660                         sync_page_io(rdev, sh->sector, PAGE_SIZE,
1661                                      sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1662                                      false);
1663                         rdev_dec_pending(rdev, rdev->mddev);
1664                         rcu_read_lock();
1665                 }
1666                 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1667                 if (rrdev) {
1668                         atomic_inc(&rrdev->nr_pending);
1669                         rcu_read_unlock();
1670                         sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1671                                      sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1672                                      false);
1673                         rdev_dec_pending(rrdev, rrdev->mddev);
1674                         rcu_read_lock();
1675                 }
1676                 rcu_read_unlock();
1677         }
1678         ctx->data_parity_stripes++;
1679 out:
1680         r5l_recovery_reset_stripe(sh);
1681 }
1682
1683 static struct stripe_head *
1684 r5c_recovery_alloc_stripe(struct r5conf *conf,
1685                           struct list_head *recovery_list,
1686                           sector_t stripe_sect,
1687                           sector_t log_start)
1688 {
1689         struct stripe_head *sh;
1690
1691         sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0);
1692         if (!sh)
1693                 return NULL;  /* no more stripe available */
1694
1695         r5l_recovery_reset_stripe(sh);
1696         sh->log_start = log_start;
1697
1698         return sh;
1699 }
1700
1701 static struct stripe_head *
1702 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1703 {
1704         struct stripe_head *sh;
1705
1706         list_for_each_entry(sh, list, lru)
1707                 if (sh->sector == sect)
1708                         return sh;
1709         return NULL;
1710 }
1711
1712 static void
1713 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1714                           struct r5l_recovery_ctx *ctx)
1715 {
1716         struct stripe_head *sh, *next;
1717
1718         list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1719                 r5l_recovery_reset_stripe(sh);
1720                 list_del_init(&sh->lru);
1721                 raid5_release_stripe(sh);
1722         }
1723 }
1724
1725 static void
1726 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1727                             struct r5l_recovery_ctx *ctx)
1728 {
1729         struct stripe_head *sh, *next;
1730
1731         list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1732                 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1733                         r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1734                         list_del_init(&sh->lru);
1735                         raid5_release_stripe(sh);
1736                 }
1737 }
1738
1739 /* if matches return 0; otherwise return -EINVAL */
1740 static int
1741 r5l_recovery_verify_data_checksum(struct r5l_log *log, struct page *page,
1742                                   sector_t log_offset, __le32 log_checksum)
1743 {
1744         void *addr;
1745         u32 checksum;
1746
1747         sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1748                      page, REQ_OP_READ, 0, false);
1749         addr = kmap_atomic(page);
1750         checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1751         kunmap_atomic(addr);
1752         return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1753 }
1754
1755 /*
1756  * before loading data to stripe cache, we need verify checksum for all data,
1757  * if there is mismatch for any data page, we drop all data in the mata block
1758  */
1759 static int
1760 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1761                                          struct r5l_recovery_ctx *ctx)
1762 {
1763         struct mddev *mddev = log->rdev->mddev;
1764         struct r5conf *conf = mddev->private;
1765         struct r5l_meta_block *mb = page_address(ctx->meta_page);
1766         sector_t mb_offset = sizeof(struct r5l_meta_block);
1767         sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1768         struct page *page;
1769         struct r5l_payload_data_parity *payload;
1770
1771         page = alloc_page(GFP_KERNEL);
1772         if (!page)
1773                 return -ENOMEM;
1774
1775         while (mb_offset < le32_to_cpu(mb->meta_size)) {
1776                 payload = (void *)mb + mb_offset;
1777
1778                 if (payload->header.type == R5LOG_PAYLOAD_DATA) {
1779                         if (r5l_recovery_verify_data_checksum(
1780                                     log, page, log_offset,
1781                                     payload->checksum[0]) < 0)
1782                                 goto mismatch;
1783                 } else if (payload->header.type == R5LOG_PAYLOAD_PARITY) {
1784                         if (r5l_recovery_verify_data_checksum(
1785                                     log, page, log_offset,
1786                                     payload->checksum[0]) < 0)
1787                                 goto mismatch;
1788                         if (conf->max_degraded == 2 && /* q for RAID 6 */
1789                             r5l_recovery_verify_data_checksum(
1790                                     log, page,
1791                                     r5l_ring_add(log, log_offset,
1792                                                  BLOCK_SECTORS),
1793                                     payload->checksum[1]) < 0)
1794                                 goto mismatch;
1795                 } else /* not R5LOG_PAYLOAD_DATA or R5LOG_PAYLOAD_PARITY */
1796                         goto mismatch;
1797
1798                 log_offset = r5l_ring_add(log, log_offset,
1799                                           le32_to_cpu(payload->size));
1800
1801                 mb_offset += sizeof(struct r5l_payload_data_parity) +
1802                         sizeof(__le32) *
1803                         (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
1804         }
1805
1806         put_page(page);
1807         return 0;
1808
1809 mismatch:
1810         put_page(page);
1811         return -EINVAL;
1812 }
1813
1814 /*
1815  * Analyze all data/parity pages in one meta block
1816  * Returns:
1817  * 0 for success
1818  * -EINVAL for unknown playload type
1819  * -EAGAIN for checksum mismatch of data page
1820  * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
1821  */
1822 static int
1823 r5c_recovery_analyze_meta_block(struct r5l_log *log,
1824                                 struct r5l_recovery_ctx *ctx,
1825                                 struct list_head *cached_stripe_list)
1826 {
1827         struct mddev *mddev = log->rdev->mddev;
1828         struct r5conf *conf = mddev->private;
1829         struct r5l_meta_block *mb;
1830         struct r5l_payload_data_parity *payload;
1831         int mb_offset;
1832         sector_t log_offset;
1833         sector_t stripe_sect;
1834         struct stripe_head *sh;
1835         int ret;
1836
1837         /*
1838          * for mismatch in data blocks, we will drop all data in this mb, but
1839          * we will still read next mb for other data with FLUSH flag, as
1840          * io_unit could finish out of order.
1841          */
1842         ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
1843         if (ret == -EINVAL)
1844                 return -EAGAIN;
1845         else if (ret)
1846                 return ret;   /* -ENOMEM duo to alloc_page() failed */
1847
1848         mb = page_address(ctx->meta_page);
1849         mb_offset = sizeof(struct r5l_meta_block);
1850         log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1851
1852         while (mb_offset < le32_to_cpu(mb->meta_size)) {
1853                 int dd;
1854
1855                 payload = (void *)mb + mb_offset;
1856                 stripe_sect = (payload->header.type == R5LOG_PAYLOAD_DATA) ?
1857                         raid5_compute_sector(
1858                                 conf, le64_to_cpu(payload->location), 0, &dd,
1859                                 NULL)
1860                         : le64_to_cpu(payload->location);
1861
1862                 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
1863                                                 stripe_sect);
1864
1865                 if (!sh) {
1866                         sh = r5c_recovery_alloc_stripe(conf, cached_stripe_list,
1867                                                        stripe_sect, ctx->pos);
1868                         /*
1869                          * cannot get stripe from raid5_get_active_stripe
1870                          * try replay some stripes
1871                          */
1872                         if (!sh) {
1873                                 r5c_recovery_replay_stripes(
1874                                         cached_stripe_list, ctx);
1875                                 sh = r5c_recovery_alloc_stripe(
1876                                         conf, cached_stripe_list,
1877                                         stripe_sect, ctx->pos);
1878                         }
1879                         if (!sh) {
1880                                 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
1881                                         mdname(mddev),
1882                                         conf->min_nr_stripes * 2);
1883                                 raid5_set_cache_size(mddev,
1884                                                      conf->min_nr_stripes * 2);
1885                                 sh = r5c_recovery_alloc_stripe(
1886                                         conf, cached_stripe_list, stripe_sect,
1887                                         ctx->pos);
1888                         }
1889                         if (!sh) {
1890                                 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
1891                                        mdname(mddev));
1892                                 return -ENOMEM;
1893                         }
1894                         list_add_tail(&sh->lru, cached_stripe_list);
1895                 }
1896
1897                 if (payload->header.type == R5LOG_PAYLOAD_DATA) {
1898                         if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1899                                 r5l_recovery_replay_one_stripe(conf, sh, ctx);
1900                                 r5l_recovery_reset_stripe(sh);
1901                                 sh->log_start = ctx->pos;
1902                                 list_move_tail(&sh->lru, cached_stripe_list);
1903                         }
1904                         r5l_recovery_load_data(log, sh, ctx, payload,
1905                                                log_offset);
1906                 } else if (payload->header.type == R5LOG_PAYLOAD_PARITY)
1907                         r5l_recovery_load_parity(log, sh, ctx, payload,
1908                                                  log_offset);
1909                 else
1910                         return -EINVAL;
1911
1912                 log_offset = r5l_ring_add(log, log_offset,
1913                                           le32_to_cpu(payload->size));
1914
1915                 mb_offset += sizeof(struct r5l_payload_data_parity) +
1916                         sizeof(__le32) *
1917                         (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
1918         }
1919
1920         return 0;
1921 }
1922
1923 /*
1924  * Load the stripe into cache. The stripe will be written out later by
1925  * the stripe cache state machine.
1926  */
1927 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
1928                                          struct stripe_head *sh)
1929 {
1930         struct r5conf *conf = sh->raid_conf;
1931         struct r5dev *dev;
1932         int i;
1933
1934         for (i = sh->disks; i--; ) {
1935                 dev = sh->dev + i;
1936                 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
1937                         set_bit(R5_InJournal, &dev->flags);
1938                         set_bit(R5_UPTODATE, &dev->flags);
1939                 }
1940         }
1941         set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
1942         atomic_inc(&conf->r5c_cached_partial_stripes);
1943         list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
1944 }
1945
1946 /*
1947  * Scan through the log for all to-be-flushed data
1948  *
1949  * For stripes with data and parity, namely Data-Parity stripe
1950  * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
1951  *
1952  * For stripes with only data, namely Data-Only stripe
1953  * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
1954  *
1955  * For a stripe, if we see data after parity, we should discard all previous
1956  * data and parity for this stripe, as these data are already flushed to
1957  * the array.
1958  *
1959  * At the end of the scan, we return the new journal_tail, which points to
1960  * first data-only stripe on the journal device, or next invalid meta block.
1961  */
1962 static int r5c_recovery_flush_log(struct r5l_log *log,
1963                                   struct r5l_recovery_ctx *ctx)
1964 {
1965         struct stripe_head *sh, *next;
1966         int ret = 0;
1967
1968         /* scan through the log */
1969         while (1) {
1970                 if (r5l_recovery_read_meta_block(log, ctx))
1971                         break;
1972
1973                 ret = r5c_recovery_analyze_meta_block(log, ctx,
1974                                                       &ctx->cached_list);
1975                 /*
1976                  * -EAGAIN means mismatch in data block, in this case, we still
1977                  * try scan the next metablock
1978                  */
1979                 if (ret && ret != -EAGAIN)
1980                         break;   /* ret == -EINVAL or -ENOMEM */
1981                 ctx->seq++;
1982                 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
1983         }
1984
1985         if (ret == -ENOMEM) {
1986                 r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
1987                 return ret;
1988         }
1989
1990         /* replay data-parity stripes */
1991         r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
1992
1993         /* load data-only stripes to stripe cache */
1994         list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
1995                 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1996                 r5c_recovery_load_one_stripe(log, sh);
1997                 list_del_init(&sh->lru);
1998                 raid5_release_stripe(sh);
1999                 ctx->data_only_stripes++;
2000         }
2001
2002         return 0;
2003 }
2004
2005 /*
2006  * we did a recovery. Now ctx.pos points to an invalid meta block. New
2007  * log will start here. but we can't let superblock point to last valid
2008  * meta block. The log might looks like:
2009  * | meta 1| meta 2| meta 3|
2010  * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2011  * superblock points to meta 1, we write a new valid meta 2n.  if crash
2012  * happens again, new recovery will start from meta 1. Since meta 2n is
2013  * valid now, recovery will think meta 3 is valid, which is wrong.
2014  * The solution is we create a new meta in meta2 with its seq == meta
2015  * 1's seq + 10 and let superblock points to meta2. The same recovery will
2016  * not think meta 3 is a valid meta, because its seq doesn't match
2017  */
2018
2019 /*
2020  * Before recovery, the log looks like the following
2021  *
2022  *   ---------------------------------------------
2023  *   |           valid log        | invalid log  |
2024  *   ---------------------------------------------
2025  *   ^
2026  *   |- log->last_checkpoint
2027  *   |- log->last_cp_seq
2028  *
2029  * Now we scan through the log until we see invalid entry
2030  *
2031  *   ---------------------------------------------
2032  *   |           valid log        | invalid log  |
2033  *   ---------------------------------------------
2034  *   ^                            ^
2035  *   |- log->last_checkpoint      |- ctx->pos
2036  *   |- log->last_cp_seq          |- ctx->seq
2037  *
2038  * From this point, we need to increase seq number by 10 to avoid
2039  * confusing next recovery.
2040  *
2041  *   ---------------------------------------------
2042  *   |           valid log        | invalid log  |
2043  *   ---------------------------------------------
2044  *   ^                              ^
2045  *   |- log->last_checkpoint        |- ctx->pos+1
2046  *   |- log->last_cp_seq            |- ctx->seq+11
2047  *
2048  * However, it is not safe to start the state machine yet, because data only
2049  * parities are not yet secured in RAID. To save these data only parities, we
2050  * rewrite them from seq+11.
2051  *
2052  *   -----------------------------------------------------------------
2053  *   |           valid log        | data only stripes | invalid log  |
2054  *   -----------------------------------------------------------------
2055  *   ^                                                ^
2056  *   |- log->last_checkpoint                          |- ctx->pos+n
2057  *   |- log->last_cp_seq                              |- ctx->seq+10+n
2058  *
2059  * If failure happens again during this process, the recovery can safe start
2060  * again from log->last_checkpoint.
2061  *
2062  * Once data only stripes are rewritten to journal, we move log_tail
2063  *
2064  *   -----------------------------------------------------------------
2065  *   |     old log        |    data only stripes    | invalid log  |
2066  *   -----------------------------------------------------------------
2067  *                        ^                         ^
2068  *                        |- log->last_checkpoint   |- ctx->pos+n
2069  *                        |- log->last_cp_seq       |- ctx->seq+10+n
2070  *
2071  * Then we can safely start the state machine. If failure happens from this
2072  * point on, the recovery will start from new log->last_checkpoint.
2073  */
2074 static int
2075 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2076                                        struct r5l_recovery_ctx *ctx)
2077 {
2078         struct stripe_head *sh;
2079         struct mddev *mddev = log->rdev->mddev;
2080         struct page *page;
2081
2082         page = alloc_page(GFP_KERNEL);
2083         if (!page) {
2084                 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2085                        mdname(mddev));
2086                 return -ENOMEM;
2087         }
2088
2089         ctx->seq += 10;
2090         list_for_each_entry(sh, &ctx->cached_list, lru) {
2091                 struct r5l_meta_block *mb;
2092                 int i;
2093                 int offset;
2094                 sector_t write_pos;
2095
2096                 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2097                 r5l_recovery_create_empty_meta_block(log, page,
2098                                                      ctx->pos, ctx->seq);
2099                 mb = page_address(page);
2100                 offset = le32_to_cpu(mb->meta_size);
2101                 write_pos = ctx->pos + BLOCK_SECTORS;
2102
2103                 for (i = sh->disks; i--; ) {
2104                         struct r5dev *dev = &sh->dev[i];
2105                         struct r5l_payload_data_parity *payload;
2106                         void *addr;
2107
2108                         if (test_bit(R5_InJournal, &dev->flags)) {
2109                                 payload = (void *)mb + offset;
2110                                 payload->header.type = cpu_to_le16(
2111                                         R5LOG_PAYLOAD_DATA);
2112                                 payload->size = BLOCK_SECTORS;
2113                                 payload->location = cpu_to_le64(
2114                                         raid5_compute_blocknr(sh, i, 0));
2115                                 addr = kmap_atomic(dev->page);
2116                                 payload->checksum[0] = cpu_to_le32(
2117                                         crc32c_le(log->uuid_checksum, addr,
2118                                                   PAGE_SIZE));
2119                                 kunmap_atomic(addr);
2120                                 sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2121                                              dev->page, REQ_OP_WRITE, 0, false);
2122                                 write_pos = r5l_ring_add(log, write_pos,
2123                                                          BLOCK_SECTORS);
2124                                 offset += sizeof(__le32) +
2125                                         sizeof(struct r5l_payload_data_parity);
2126
2127                         }
2128                 }
2129                 mb->meta_size = cpu_to_le32(offset);
2130                 mb->checksum = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2131                 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2132                              REQ_OP_WRITE, WRITE_FUA, false);
2133                 sh->log_start = ctx->pos;
2134                 ctx->pos = write_pos;
2135                 ctx->seq += 1;
2136         }
2137         __free_page(page);
2138         return 0;
2139 }
2140
2141 static int r5l_recovery_log(struct r5l_log *log)
2142 {
2143         struct mddev *mddev = log->rdev->mddev;
2144         struct r5l_recovery_ctx ctx;
2145         int ret;
2146
2147         ctx.pos = log->last_checkpoint;
2148         ctx.seq = log->last_cp_seq;
2149         ctx.meta_page = alloc_page(GFP_KERNEL);
2150         ctx.data_only_stripes = 0;
2151         ctx.data_parity_stripes = 0;
2152         INIT_LIST_HEAD(&ctx.cached_list);
2153
2154         if (!ctx.meta_page)
2155                 return -ENOMEM;
2156
2157         ret = r5c_recovery_flush_log(log, &ctx);
2158         __free_page(ctx.meta_page);
2159
2160         if (ret)
2161                 return ret;
2162
2163         if ((ctx.data_only_stripes == 0) && (ctx.data_parity_stripes == 0))
2164                 pr_debug("md/raid:%s: starting from clean shutdown\n",
2165                          mdname(mddev));
2166         else {
2167                 pr_debug("md/raid:%s: recoverying %d data-only stripes and %d data-parity stripes\n",
2168                          mdname(mddev), ctx.data_only_stripes,
2169                          ctx.data_parity_stripes);
2170
2171                 if (ctx.data_only_stripes > 0)
2172                         if (r5c_recovery_rewrite_data_only_stripes(log, &ctx)) {
2173                                 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2174                                        mdname(mddev));
2175                                 return -EIO;
2176                         }
2177         }
2178
2179         log->log_start = ctx.pos;
2180         log->next_checkpoint = ctx.pos;
2181         log->seq = ctx.seq;
2182         r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq);
2183         r5l_write_super(log, ctx.pos);
2184         return 0;
2185 }
2186
2187 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2188 {
2189         struct mddev *mddev = log->rdev->mddev;
2190
2191         log->rdev->journal_tail = cp;
2192         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2193 }
2194
2195 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2196 {
2197         struct r5conf *conf = mddev->private;
2198         int ret;
2199
2200         if (!conf->log)
2201                 return 0;
2202
2203         switch (conf->log->r5c_journal_mode) {
2204         case R5C_JOURNAL_MODE_WRITE_THROUGH:
2205                 ret = snprintf(
2206                         page, PAGE_SIZE, "[%s] %s\n",
2207                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2208                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2209                 break;
2210         case R5C_JOURNAL_MODE_WRITE_BACK:
2211                 ret = snprintf(
2212                         page, PAGE_SIZE, "%s [%s]\n",
2213                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2214                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2215                 break;
2216         default:
2217                 ret = 0;
2218         }
2219         return ret;
2220 }
2221
2222 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2223                                       const char *page, size_t length)
2224 {
2225         struct r5conf *conf = mddev->private;
2226         struct r5l_log *log = conf->log;
2227         int val = -1, i;
2228         int len = length;
2229
2230         if (!log)
2231                 return -ENODEV;
2232
2233         if (len && page[len - 1] == '\n')
2234                 len -= 1;
2235         for (i = 0; i < ARRAY_SIZE(r5c_journal_mode_str); i++)
2236                 if (strlen(r5c_journal_mode_str[i]) == len &&
2237                     strncmp(page, r5c_journal_mode_str[i], len) == 0) {
2238                         val = i;
2239                         break;
2240                 }
2241         if (val < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2242             val > R5C_JOURNAL_MODE_WRITE_BACK)
2243                 return -EINVAL;
2244
2245         mddev_suspend(mddev);
2246         conf->log->r5c_journal_mode = val;
2247         mddev_resume(mddev);
2248
2249         pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2250                  mdname(mddev), val, r5c_journal_mode_str[val]);
2251         return length;
2252 }
2253
2254 struct md_sysfs_entry
2255 r5c_journal_mode = __ATTR(journal_mode, 0644,
2256                           r5c_journal_mode_show, r5c_journal_mode_store);
2257
2258 /*
2259  * Try handle write operation in caching phase. This function should only
2260  * be called in write-back mode.
2261  *
2262  * If all outstanding writes can be handled in caching phase, returns 0
2263  * If writes requires write-out phase, call r5c_make_stripe_write_out()
2264  * and returns -EAGAIN
2265  */
2266 int r5c_try_caching_write(struct r5conf *conf,
2267                           struct stripe_head *sh,
2268                           struct stripe_head_state *s,
2269                           int disks)
2270 {
2271         struct r5l_log *log = conf->log;
2272         int i;
2273         struct r5dev *dev;
2274         int to_cache = 0;
2275
2276         BUG_ON(!r5c_is_writeback(log));
2277
2278         if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2279                 /*
2280                  * There are two different scenarios here:
2281                  *  1. The stripe has some data cached, and it is sent to
2282                  *     write-out phase for reclaim
2283                  *  2. The stripe is clean, and this is the first write
2284                  *
2285                  * For 1, return -EAGAIN, so we continue with
2286                  * handle_stripe_dirtying().
2287                  *
2288                  * For 2, set STRIPE_R5C_CACHING and continue with caching
2289                  * write.
2290                  */
2291
2292                 /* case 1: anything injournal or anything in written */
2293                 if (s->injournal > 0 || s->written > 0)
2294                         return -EAGAIN;
2295                 /* case 2 */
2296                 set_bit(STRIPE_R5C_CACHING, &sh->state);
2297         }
2298
2299         for (i = disks; i--; ) {
2300                 dev = &sh->dev[i];
2301                 /* if non-overwrite, use writing-out phase */
2302                 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2303                     !test_bit(R5_InJournal, &dev->flags)) {
2304                         r5c_make_stripe_write_out(sh);
2305                         return -EAGAIN;
2306                 }
2307         }
2308
2309         for (i = disks; i--; ) {
2310                 dev = &sh->dev[i];
2311                 if (dev->towrite) {
2312                         set_bit(R5_Wantwrite, &dev->flags);
2313                         set_bit(R5_Wantdrain, &dev->flags);
2314                         set_bit(R5_LOCKED, &dev->flags);
2315                         to_cache++;
2316                 }
2317         }
2318
2319         if (to_cache) {
2320                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2321                 /*
2322                  * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2323                  * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2324                  * r5c_handle_data_cached()
2325                  */
2326                 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2327         }
2328
2329         return 0;
2330 }
2331
2332 /*
2333  * free extra pages (orig_page) we allocated for prexor
2334  */
2335 void r5c_release_extra_page(struct stripe_head *sh)
2336 {
2337         int i;
2338
2339         for (i = sh->disks; i--; )
2340                 if (sh->dev[i].page != sh->dev[i].orig_page) {
2341                         struct page *p = sh->dev[i].orig_page;
2342
2343                         sh->dev[i].orig_page = sh->dev[i].page;
2344                         put_page(p);
2345                 }
2346 }
2347
2348 /*
2349  * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2350  * stripe is committed to RAID disks.
2351  */
2352 void r5c_finish_stripe_write_out(struct r5conf *conf,
2353                                  struct stripe_head *sh,
2354                                  struct stripe_head_state *s)
2355 {
2356         int i;
2357         int do_wakeup = 0;
2358
2359         if (!conf->log ||
2360             !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2361                 return;
2362
2363         WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2364         clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2365
2366         if (conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2367                 return;
2368
2369         for (i = sh->disks; i--; ) {
2370                 clear_bit(R5_InJournal, &sh->dev[i].flags);
2371                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2372                         do_wakeup = 1;
2373         }
2374
2375         /*
2376          * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2377          * We updated R5_InJournal, so we also update s->injournal.
2378          */
2379         s->injournal = 0;
2380
2381         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2382                 if (atomic_dec_and_test(&conf->pending_full_writes))
2383                         md_wakeup_thread(conf->mddev->thread);
2384
2385         if (do_wakeup)
2386                 wake_up(&conf->wait_for_overlap);
2387
2388         if (conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2389                 return;
2390
2391         spin_lock_irq(&conf->log->stripe_in_journal_lock);
2392         list_del_init(&sh->r5c);
2393         spin_unlock_irq(&conf->log->stripe_in_journal_lock);
2394         sh->log_start = MaxSector;
2395         atomic_dec(&conf->log->stripe_in_journal_count);
2396 }
2397
2398 int
2399 r5c_cache_data(struct r5l_log *log, struct stripe_head *sh,
2400                struct stripe_head_state *s)
2401 {
2402         struct r5conf *conf = sh->raid_conf;
2403         int pages = 0;
2404         int reserve;
2405         int i;
2406         int ret = 0;
2407
2408         BUG_ON(!log);
2409
2410         for (i = 0; i < sh->disks; i++) {
2411                 void *addr;
2412
2413                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2414                         continue;
2415                 addr = kmap_atomic(sh->dev[i].page);
2416                 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2417                                                     addr, PAGE_SIZE);
2418                 kunmap_atomic(addr);
2419                 pages++;
2420         }
2421         WARN_ON(pages == 0);
2422
2423         /*
2424          * The stripe must enter state machine again to call endio, so
2425          * don't delay.
2426          */
2427         clear_bit(STRIPE_DELAYED, &sh->state);
2428         atomic_inc(&sh->count);
2429
2430         mutex_lock(&log->io_mutex);
2431         /* meta + data */
2432         reserve = (1 + pages) << (PAGE_SHIFT - 9);
2433
2434         if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2435             sh->log_start == MaxSector)
2436                 r5l_add_no_space_stripe(log, sh);
2437         else if (!r5l_has_free_space(log, reserve)) {
2438                 if (sh->log_start == log->last_checkpoint)
2439                         BUG();
2440                 else
2441                         r5l_add_no_space_stripe(log, sh);
2442         } else {
2443                 ret = r5l_log_stripe(log, sh, pages, 0);
2444                 if (ret) {
2445                         spin_lock_irq(&log->io_list_lock);
2446                         list_add_tail(&sh->log_list, &log->no_mem_stripes);
2447                         spin_unlock_irq(&log->io_list_lock);
2448                 }
2449         }
2450
2451         mutex_unlock(&log->io_mutex);
2452         return 0;
2453 }
2454
2455 static int r5l_load_log(struct r5l_log *log)
2456 {
2457         struct md_rdev *rdev = log->rdev;
2458         struct page *page;
2459         struct r5l_meta_block *mb;
2460         sector_t cp = log->rdev->journal_tail;
2461         u32 stored_crc, expected_crc;
2462         bool create_super = false;
2463         int ret;
2464
2465         /* Make sure it's valid */
2466         if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2467                 cp = 0;
2468         page = alloc_page(GFP_KERNEL);
2469         if (!page)
2470                 return -ENOMEM;
2471
2472         if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
2473                 ret = -EIO;
2474                 goto ioerr;
2475         }
2476         mb = page_address(page);
2477
2478         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2479             mb->version != R5LOG_VERSION) {
2480                 create_super = true;
2481                 goto create;
2482         }
2483         stored_crc = le32_to_cpu(mb->checksum);
2484         mb->checksum = 0;
2485         expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2486         if (stored_crc != expected_crc) {
2487                 create_super = true;
2488                 goto create;
2489         }
2490         if (le64_to_cpu(mb->position) != cp) {
2491                 create_super = true;
2492                 goto create;
2493         }
2494 create:
2495         if (create_super) {
2496                 log->last_cp_seq = prandom_u32();
2497                 cp = 0;
2498                 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
2499                 /*
2500                  * Make sure super points to correct address. Log might have
2501                  * data very soon. If super hasn't correct log tail address,
2502                  * recovery can't find the log
2503                  */
2504                 r5l_write_super(log, cp);
2505         } else
2506                 log->last_cp_seq = le64_to_cpu(mb->seq);
2507
2508         log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
2509         log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
2510         if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
2511                 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
2512         log->last_checkpoint = cp;
2513         log->next_checkpoint = cp;
2514         mutex_lock(&log->io_mutex);
2515         r5c_update_log_state(log);
2516         mutex_unlock(&log->io_mutex);
2517
2518         __free_page(page);
2519
2520         return r5l_recovery_log(log);
2521 ioerr:
2522         __free_page(page);
2523         return ret;
2524 }
2525
2526 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
2527 {
2528         struct request_queue *q = bdev_get_queue(rdev->bdev);
2529         struct r5l_log *log;
2530
2531         if (PAGE_SIZE != 4096)
2532                 return -EINVAL;
2533
2534         /*
2535          * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
2536          * raid_disks r5l_payload_data_parity.
2537          *
2538          * Write journal and cache does not work for very big array
2539          * (raid_disks > 203)
2540          */
2541         if (sizeof(struct r5l_meta_block) +
2542             ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
2543              conf->raid_disks) > PAGE_SIZE) {
2544                 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
2545                        mdname(conf->mddev), conf->raid_disks);
2546                 return -EINVAL;
2547         }
2548
2549         log = kzalloc(sizeof(*log), GFP_KERNEL);
2550         if (!log)
2551                 return -ENOMEM;
2552         log->rdev = rdev;
2553
2554         log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
2555
2556         log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
2557                                        sizeof(rdev->mddev->uuid));
2558
2559         mutex_init(&log->io_mutex);
2560
2561         spin_lock_init(&log->io_list_lock);
2562         INIT_LIST_HEAD(&log->running_ios);
2563         INIT_LIST_HEAD(&log->io_end_ios);
2564         INIT_LIST_HEAD(&log->flushing_ios);
2565         INIT_LIST_HEAD(&log->finished_ios);
2566         bio_init(&log->flush_bio);
2567
2568         log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
2569         if (!log->io_kc)
2570                 goto io_kc;
2571
2572         log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
2573         if (!log->io_pool)
2574                 goto io_pool;
2575
2576         log->bs = bioset_create(R5L_POOL_SIZE, 0);
2577         if (!log->bs)
2578                 goto io_bs;
2579
2580         log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
2581         if (!log->meta_pool)
2582                 goto out_mempool;
2583
2584         log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
2585                                                  log->rdev->mddev, "reclaim");
2586         if (!log->reclaim_thread)
2587                 goto reclaim_thread;
2588         log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
2589
2590         init_waitqueue_head(&log->iounit_wait);
2591
2592         INIT_LIST_HEAD(&log->no_mem_stripes);
2593
2594         INIT_LIST_HEAD(&log->no_space_stripes);
2595         spin_lock_init(&log->no_space_stripes_lock);
2596
2597         INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
2598
2599         log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2600         INIT_LIST_HEAD(&log->stripe_in_journal_list);
2601         spin_lock_init(&log->stripe_in_journal_lock);
2602         atomic_set(&log->stripe_in_journal_count, 0);
2603
2604         if (r5l_load_log(log))
2605                 goto error;
2606
2607         rcu_assign_pointer(conf->log, log);
2608         set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
2609         return 0;
2610
2611 error:
2612         md_unregister_thread(&log->reclaim_thread);
2613 reclaim_thread:
2614         mempool_destroy(log->meta_pool);
2615 out_mempool:
2616         bioset_free(log->bs);
2617 io_bs:
2618         mempool_destroy(log->io_pool);
2619 io_pool:
2620         kmem_cache_destroy(log->io_kc);
2621 io_kc:
2622         kfree(log);
2623         return -EINVAL;
2624 }
2625
2626 void r5l_exit_log(struct r5l_log *log)
2627 {
2628         md_unregister_thread(&log->reclaim_thread);
2629         mempool_destroy(log->meta_pool);
2630         bioset_free(log->bs);
2631         mempool_destroy(log->io_pool);
2632         kmem_cache_destroy(log->io_kc);
2633         kfree(log);
2634 }