]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/media/tuners/msi001.c
b533240f8ec07da917825e43d9b45fb6b6495561
[karo-tx-linux.git] / drivers / media / tuners / msi001.c
1 /*
2  * Mirics MSi001 silicon tuner driver
3  *
4  * Copyright (C) 2013 Antti Palosaari <crope@iki.fi>
5  * Copyright (C) 2014 Antti Palosaari <crope@iki.fi>
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; either version 2 of the License, or
10  *    (at your option) any later version.
11  *
12  *    This program is distributed in the hope that it will be useful,
13  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *    GNU General Public License for more details.
16  */
17
18 #include <linux/module.h>
19 #include <linux/gcd.h>
20 #include <media/v4l2-device.h>
21 #include <media/v4l2-ctrls.h>
22
23 static const struct v4l2_frequency_band bands[] = {
24         {
25                 .type = V4L2_TUNER_RF,
26                 .index = 0,
27                 .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS,
28                 .rangelow   =   49000000,
29                 .rangehigh  =  263000000,
30         }, {
31                 .type = V4L2_TUNER_RF,
32                 .index = 1,
33                 .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS,
34                 .rangelow   =  390000000,
35                 .rangehigh  =  960000000,
36         },
37 };
38
39 struct msi001_dev {
40         struct spi_device *spi;
41         struct v4l2_subdev sd;
42
43         /* Controls */
44         struct v4l2_ctrl_handler hdl;
45         struct v4l2_ctrl *bandwidth_auto;
46         struct v4l2_ctrl *bandwidth;
47         struct v4l2_ctrl *lna_gain;
48         struct v4l2_ctrl *mixer_gain;
49         struct v4l2_ctrl *if_gain;
50
51         unsigned int f_tuner;
52 };
53
54 static inline struct msi001_dev *sd_to_msi001_dev(struct v4l2_subdev *sd)
55 {
56         return container_of(sd, struct msi001_dev, sd);
57 }
58
59 static int msi001_wreg(struct msi001_dev *dev, u32 data)
60 {
61         /* Register format: 4 bits addr + 20 bits value */
62         return spi_write(dev->spi, &data, 3);
63 };
64
65 static int msi001_set_gain(struct msi001_dev *dev, int lna_gain, int mixer_gain,
66                            int if_gain)
67 {
68         struct spi_device *spi = dev->spi;
69         int ret;
70         u32 reg;
71
72         dev_dbg(&spi->dev, "lna=%d mixer=%d if=%d\n",
73                 lna_gain, mixer_gain, if_gain);
74
75         reg = 1 << 0;
76         reg |= (59 - if_gain) << 4;
77         reg |= 0 << 10;
78         reg |= (1 - mixer_gain) << 12;
79         reg |= (1 - lna_gain) << 13;
80         reg |= 4 << 14;
81         reg |= 0 << 17;
82         ret = msi001_wreg(dev, reg);
83         if (ret)
84                 goto err;
85
86         return 0;
87 err:
88         dev_dbg(&spi->dev, "failed %d\n", ret);
89         return ret;
90 };
91
92 static int msi001_set_tuner(struct msi001_dev *dev)
93 {
94         struct spi_device *spi = dev->spi;
95         int ret, i;
96         unsigned int uitmp, div_n, k, k_thresh, k_frac, div_lo, f_if1;
97         u32 reg;
98         u64 f_vco;
99         u8 mode, filter_mode;
100
101         static const struct {
102                 u32 rf;
103                 u8 mode;
104                 u8 div_lo;
105         } band_lut[] = {
106                 { 50000000, 0xe1, 16}, /* AM_MODE2, antenna 2 */
107                 {108000000, 0x42, 32}, /* VHF_MODE */
108                 {330000000, 0x44, 16}, /* B3_MODE */
109                 {960000000, 0x48,  4}, /* B45_MODE */
110                 {      ~0U, 0x50,  2}, /* BL_MODE */
111         };
112         static const struct {
113                 u32 freq;
114                 u8 filter_mode;
115         } if_freq_lut[] = {
116                 {      0, 0x03}, /* Zero IF */
117                 { 450000, 0x02}, /* 450 kHz IF */
118                 {1620000, 0x01}, /* 1.62 MHz IF */
119                 {2048000, 0x00}, /* 2.048 MHz IF */
120         };
121         static const struct {
122                 u32 freq;
123                 u8 val;
124         } bandwidth_lut[] = {
125                 { 200000, 0x00}, /* 200 kHz */
126                 { 300000, 0x01}, /* 300 kHz */
127                 { 600000, 0x02}, /* 600 kHz */
128                 {1536000, 0x03}, /* 1.536 MHz */
129                 {5000000, 0x04}, /* 5 MHz */
130                 {6000000, 0x05}, /* 6 MHz */
131                 {7000000, 0x06}, /* 7 MHz */
132                 {8000000, 0x07}, /* 8 MHz */
133         };
134
135         unsigned int f_rf = dev->f_tuner;
136
137         /*
138          * bandwidth (Hz)
139          * 200000, 300000, 600000, 1536000, 5000000, 6000000, 7000000, 8000000
140          */
141         unsigned int bandwidth;
142
143         /*
144          * intermediate frequency (Hz)
145          * 0, 450000, 1620000, 2048000
146          */
147         unsigned int f_if = 0;
148         #define F_REF 24000000
149         #define DIV_PRE_N 4
150         #define F_VCO_STEP div_lo
151
152         dev_dbg(&spi->dev, "f_rf=%d f_if=%d\n", f_rf, f_if);
153
154         for (i = 0; i < ARRAY_SIZE(band_lut); i++) {
155                 if (f_rf <= band_lut[i].rf) {
156                         mode = band_lut[i].mode;
157                         div_lo = band_lut[i].div_lo;
158                         break;
159                 }
160         }
161         if (i == ARRAY_SIZE(band_lut)) {
162                 ret = -EINVAL;
163                 goto err;
164         }
165
166         /* AM_MODE is upconverted */
167         if ((mode >> 0) & 0x1)
168                 f_if1 =  5 * F_REF;
169         else
170                 f_if1 =  0;
171
172         for (i = 0; i < ARRAY_SIZE(if_freq_lut); i++) {
173                 if (f_if == if_freq_lut[i].freq) {
174                         filter_mode = if_freq_lut[i].filter_mode;
175                         break;
176                 }
177         }
178         if (i == ARRAY_SIZE(if_freq_lut)) {
179                 ret = -EINVAL;
180                 goto err;
181         }
182
183         /* filters */
184         bandwidth = dev->bandwidth->val;
185         bandwidth = clamp(bandwidth, 200000U, 8000000U);
186
187         for (i = 0; i < ARRAY_SIZE(bandwidth_lut); i++) {
188                 if (bandwidth <= bandwidth_lut[i].freq) {
189                         bandwidth = bandwidth_lut[i].val;
190                         break;
191                 }
192         }
193         if (i == ARRAY_SIZE(bandwidth_lut)) {
194                 ret = -EINVAL;
195                 goto err;
196         }
197
198         dev->bandwidth->val = bandwidth_lut[i].freq;
199
200         dev_dbg(&spi->dev, "bandwidth selected=%d\n", bandwidth_lut[i].freq);
201
202         /*
203          * Fractional-N synthesizer
204          *
205          *           +---------------------------------------+
206          *           v                                       |
207          *  Fref   +----+     +-------+         +----+     +------+     +---+
208          * ------> | PD | --> |  VCO  | ------> | /4 | --> | /N.F | <-- | K |
209          *         +----+     +-------+         +----+     +------+     +---+
210          *                      |
211          *                      |
212          *                      v
213          *                    +-------+  Fout
214          *                    | /Rout | ------>
215          *                    +-------+
216          */
217
218         /* Calculate PLL integer and fractional control word. */
219         f_vco = (u64) (f_rf + f_if + f_if1) * div_lo;
220         div_n = div_u64_rem(f_vco, DIV_PRE_N * F_REF, &k);
221         k_thresh = (DIV_PRE_N * F_REF) / F_VCO_STEP;
222         k_frac = div_u64((u64) k * k_thresh, (DIV_PRE_N * F_REF));
223
224         /* Find out greatest common divisor and divide to smaller. */
225         uitmp = gcd(k_thresh, k_frac);
226         k_thresh /= uitmp;
227         k_frac /= uitmp;
228
229         /* Force divide to reg max. Resolution will be reduced. */
230         uitmp = DIV_ROUND_UP(k_thresh, 4095);
231         k_thresh = DIV_ROUND_CLOSEST(k_thresh, uitmp);
232         k_frac = DIV_ROUND_CLOSEST(k_frac, uitmp);
233
234         /* Calculate real RF set. */
235         uitmp = (unsigned int) F_REF * DIV_PRE_N * div_n;
236         uitmp += (unsigned int) F_REF * DIV_PRE_N * k_frac / k_thresh;
237         uitmp /= div_lo;
238
239         dev_dbg(&spi->dev,
240                 "f_rf=%u:%u f_vco=%llu div_n=%u k_thresh=%u k_frac=%u div_lo=%u\n",
241                 f_rf, uitmp, f_vco, div_n, k_thresh, k_frac, div_lo);
242
243         ret = msi001_wreg(dev, 0x00000e);
244         if (ret)
245                 goto err;
246
247         ret = msi001_wreg(dev, 0x000003);
248         if (ret)
249                 goto err;
250
251         reg = 0 << 0;
252         reg |= mode << 4;
253         reg |= filter_mode << 12;
254         reg |= bandwidth << 14;
255         reg |= 0x02 << 17;
256         reg |= 0x00 << 20;
257         ret = msi001_wreg(dev, reg);
258         if (ret)
259                 goto err;
260
261         reg = 5 << 0;
262         reg |= k_thresh << 4;
263         reg |= 1 << 19;
264         reg |= 1 << 21;
265         ret = msi001_wreg(dev, reg);
266         if (ret)
267                 goto err;
268
269         reg = 2 << 0;
270         reg |= k_frac << 4;
271         reg |= div_n << 16;
272         ret = msi001_wreg(dev, reg);
273         if (ret)
274                 goto err;
275
276         ret = msi001_set_gain(dev, dev->lna_gain->cur.val,
277                               dev->mixer_gain->cur.val, dev->if_gain->cur.val);
278         if (ret)
279                 goto err;
280
281         reg = 6 << 0;
282         reg |= 63 << 4;
283         reg |= 4095 << 10;
284         ret = msi001_wreg(dev, reg);
285         if (ret)
286                 goto err;
287
288         return 0;
289 err:
290         dev_dbg(&spi->dev, "failed %d\n", ret);
291         return ret;
292 }
293
294 static int msi001_s_power(struct v4l2_subdev *sd, int on)
295 {
296         struct msi001_dev *dev = sd_to_msi001_dev(sd);
297         struct spi_device *spi = dev->spi;
298         int ret;
299
300         dev_dbg(&spi->dev, "on=%d\n", on);
301
302         if (on)
303                 ret = 0;
304         else
305                 ret = msi001_wreg(dev, 0x000000);
306
307         return ret;
308 }
309
310 static const struct v4l2_subdev_core_ops msi001_core_ops = {
311         .s_power                  = msi001_s_power,
312 };
313
314 static int msi001_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *v)
315 {
316         struct msi001_dev *dev = sd_to_msi001_dev(sd);
317         struct spi_device *spi = dev->spi;
318
319         dev_dbg(&spi->dev, "index=%d\n", v->index);
320
321         strlcpy(v->name, "Mirics MSi001", sizeof(v->name));
322         v->type = V4L2_TUNER_RF;
323         v->capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS;
324         v->rangelow =    49000000;
325         v->rangehigh =  960000000;
326
327         return 0;
328 }
329
330 static int msi001_s_tuner(struct v4l2_subdev *sd, const struct v4l2_tuner *v)
331 {
332         struct msi001_dev *dev = sd_to_msi001_dev(sd);
333         struct spi_device *spi = dev->spi;
334
335         dev_dbg(&spi->dev, "index=%d\n", v->index);
336         return 0;
337 }
338
339 static int msi001_g_frequency(struct v4l2_subdev *sd, struct v4l2_frequency *f)
340 {
341         struct msi001_dev *dev = sd_to_msi001_dev(sd);
342         struct spi_device *spi = dev->spi;
343
344         dev_dbg(&spi->dev, "tuner=%d\n", f->tuner);
345         f->frequency = dev->f_tuner;
346         return 0;
347 }
348
349 static int msi001_s_frequency(struct v4l2_subdev *sd,
350                               const struct v4l2_frequency *f)
351 {
352         struct msi001_dev *dev = sd_to_msi001_dev(sd);
353         struct spi_device *spi = dev->spi;
354         unsigned int band;
355
356         dev_dbg(&spi->dev, "tuner=%d type=%d frequency=%u\n",
357                 f->tuner, f->type, f->frequency);
358
359         if (f->frequency < ((bands[0].rangehigh + bands[1].rangelow) / 2))
360                 band = 0;
361         else
362                 band = 1;
363         dev->f_tuner = clamp_t(unsigned int, f->frequency,
364                                bands[band].rangelow, bands[band].rangehigh);
365
366         return msi001_set_tuner(dev);
367 }
368
369 static int msi001_enum_freq_bands(struct v4l2_subdev *sd,
370                                   struct v4l2_frequency_band *band)
371 {
372         struct msi001_dev *dev = sd_to_msi001_dev(sd);
373         struct spi_device *spi = dev->spi;
374
375         dev_dbg(&spi->dev, "tuner=%d type=%d index=%d\n",
376                 band->tuner, band->type, band->index);
377
378         if (band->index >= ARRAY_SIZE(bands))
379                 return -EINVAL;
380
381         band->capability = bands[band->index].capability;
382         band->rangelow = bands[band->index].rangelow;
383         band->rangehigh = bands[band->index].rangehigh;
384
385         return 0;
386 }
387
388 static const struct v4l2_subdev_tuner_ops msi001_tuner_ops = {
389         .g_tuner                  = msi001_g_tuner,
390         .s_tuner                  = msi001_s_tuner,
391         .g_frequency              = msi001_g_frequency,
392         .s_frequency              = msi001_s_frequency,
393         .enum_freq_bands          = msi001_enum_freq_bands,
394 };
395
396 static const struct v4l2_subdev_ops msi001_ops = {
397         .core                     = &msi001_core_ops,
398         .tuner                    = &msi001_tuner_ops,
399 };
400
401 static int msi001_s_ctrl(struct v4l2_ctrl *ctrl)
402 {
403         struct msi001_dev *dev = container_of(ctrl->handler, struct msi001_dev, hdl);
404         struct spi_device *spi = dev->spi;
405
406         int ret;
407
408         dev_dbg(&spi->dev, "id=%d name=%s val=%d min=%lld max=%lld step=%lld\n",
409                 ctrl->id, ctrl->name, ctrl->val, ctrl->minimum, ctrl->maximum,
410                 ctrl->step);
411
412         switch (ctrl->id) {
413         case V4L2_CID_RF_TUNER_BANDWIDTH_AUTO:
414         case V4L2_CID_RF_TUNER_BANDWIDTH:
415                 ret = msi001_set_tuner(dev);
416                 break;
417         case  V4L2_CID_RF_TUNER_LNA_GAIN:
418                 ret = msi001_set_gain(dev, dev->lna_gain->val,
419                                       dev->mixer_gain->cur.val,
420                                       dev->if_gain->cur.val);
421                 break;
422         case  V4L2_CID_RF_TUNER_MIXER_GAIN:
423                 ret = msi001_set_gain(dev, dev->lna_gain->cur.val,
424                                       dev->mixer_gain->val,
425                                       dev->if_gain->cur.val);
426                 break;
427         case  V4L2_CID_RF_TUNER_IF_GAIN:
428                 ret = msi001_set_gain(dev, dev->lna_gain->cur.val,
429                                       dev->mixer_gain->cur.val,
430                                       dev->if_gain->val);
431                 break;
432         default:
433                 dev_dbg(&spi->dev, "unknown control %d\n", ctrl->id);
434                 ret = -EINVAL;
435         }
436
437         return ret;
438 }
439
440 static const struct v4l2_ctrl_ops msi001_ctrl_ops = {
441         .s_ctrl                   = msi001_s_ctrl,
442 };
443
444 static int msi001_probe(struct spi_device *spi)
445 {
446         struct msi001_dev *dev;
447         int ret;
448
449         dev_dbg(&spi->dev, "\n");
450
451         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
452         if (!dev) {
453                 ret = -ENOMEM;
454                 goto err;
455         }
456
457         dev->spi = spi;
458         dev->f_tuner = bands[0].rangelow;
459         v4l2_spi_subdev_init(&dev->sd, spi, &msi001_ops);
460
461         /* Register controls */
462         v4l2_ctrl_handler_init(&dev->hdl, 5);
463         dev->bandwidth_auto = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
464                         V4L2_CID_RF_TUNER_BANDWIDTH_AUTO, 0, 1, 1, 1);
465         dev->bandwidth = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
466                         V4L2_CID_RF_TUNER_BANDWIDTH, 200000, 8000000, 1, 200000);
467         v4l2_ctrl_auto_cluster(2, &dev->bandwidth_auto, 0, false);
468         dev->lna_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
469                         V4L2_CID_RF_TUNER_LNA_GAIN, 0, 1, 1, 1);
470         dev->mixer_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
471                         V4L2_CID_RF_TUNER_MIXER_GAIN, 0, 1, 1, 1);
472         dev->if_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
473                         V4L2_CID_RF_TUNER_IF_GAIN, 0, 59, 1, 0);
474         if (dev->hdl.error) {
475                 ret = dev->hdl.error;
476                 dev_err(&spi->dev, "Could not initialize controls\n");
477                 /* control init failed, free handler */
478                 goto err_ctrl_handler_free;
479         }
480
481         dev->sd.ctrl_handler = &dev->hdl;
482         return 0;
483 err_ctrl_handler_free:
484         v4l2_ctrl_handler_free(&dev->hdl);
485         kfree(dev);
486 err:
487         return ret;
488 }
489
490 static int msi001_remove(struct spi_device *spi)
491 {
492         struct v4l2_subdev *sd = spi_get_drvdata(spi);
493         struct msi001_dev *dev = sd_to_msi001_dev(sd);
494
495         dev_dbg(&spi->dev, "\n");
496
497         /*
498          * Registered by v4l2_spi_new_subdev() from master driver, but we must
499          * unregister it from here. Weird.
500          */
501         v4l2_device_unregister_subdev(&dev->sd);
502         v4l2_ctrl_handler_free(&dev->hdl);
503         kfree(dev);
504         return 0;
505 }
506
507 static const struct spi_device_id msi001_id_table[] = {
508         {"msi001", 0},
509         {}
510 };
511 MODULE_DEVICE_TABLE(spi, msi001_id_table);
512
513 static struct spi_driver msi001_driver = {
514         .driver = {
515                 .name   = "msi001",
516                 .owner  = THIS_MODULE,
517                 .suppress_bind_attrs = true,
518         },
519         .probe          = msi001_probe,
520         .remove         = msi001_remove,
521         .id_table       = msi001_id_table,
522 };
523 module_spi_driver(msi001_driver);
524
525 MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
526 MODULE_DESCRIPTION("Mirics MSi001");
527 MODULE_LICENSE("GPL");