]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/mtd/nand/au1550nd.c
mtd: nand: atmel: Add ->setup_data_interface() hooks
[karo-tx-linux.git] / drivers / mtd / nand / au1550nd.c
1 /*
2  *  drivers/mtd/nand/au1550nd.c
3  *
4  *  Copyright (C) 2004 Embedded Edge, LLC
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  */
11
12 #include <linux/slab.h>
13 #include <linux/gpio.h>
14 #include <linux/module.h>
15 #include <linux/interrupt.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/nand.h>
18 #include <linux/mtd/partitions.h>
19 #include <linux/platform_device.h>
20 #include <asm/io.h>
21 #include <asm/mach-au1x00/au1000.h>
22 #include <asm/mach-au1x00/au1550nd.h>
23
24
25 struct au1550nd_ctx {
26         struct nand_chip chip;
27
28         int cs;
29         void __iomem *base;
30         void (*write_byte)(struct mtd_info *, u_char);
31 };
32
33 /**
34  * au_read_byte -  read one byte from the chip
35  * @mtd:        MTD device structure
36  *
37  * read function for 8bit buswidth
38  */
39 static u_char au_read_byte(struct mtd_info *mtd)
40 {
41         struct nand_chip *this = mtd_to_nand(mtd);
42         u_char ret = readb(this->IO_ADDR_R);
43         wmb(); /* drain writebuffer */
44         return ret;
45 }
46
47 /**
48  * au_write_byte -  write one byte to the chip
49  * @mtd:        MTD device structure
50  * @byte:       pointer to data byte to write
51  *
52  * write function for 8it buswidth
53  */
54 static void au_write_byte(struct mtd_info *mtd, u_char byte)
55 {
56         struct nand_chip *this = mtd_to_nand(mtd);
57         writeb(byte, this->IO_ADDR_W);
58         wmb(); /* drain writebuffer */
59 }
60
61 /**
62  * au_read_byte16 -  read one byte endianness aware from the chip
63  * @mtd:        MTD device structure
64  *
65  * read function for 16bit buswidth with endianness conversion
66  */
67 static u_char au_read_byte16(struct mtd_info *mtd)
68 {
69         struct nand_chip *this = mtd_to_nand(mtd);
70         u_char ret = (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
71         wmb(); /* drain writebuffer */
72         return ret;
73 }
74
75 /**
76  * au_write_byte16 -  write one byte endianness aware to the chip
77  * @mtd:        MTD device structure
78  * @byte:       pointer to data byte to write
79  *
80  * write function for 16bit buswidth with endianness conversion
81  */
82 static void au_write_byte16(struct mtd_info *mtd, u_char byte)
83 {
84         struct nand_chip *this = mtd_to_nand(mtd);
85         writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
86         wmb(); /* drain writebuffer */
87 }
88
89 /**
90  * au_read_word -  read one word from the chip
91  * @mtd:        MTD device structure
92  *
93  * read function for 16bit buswidth without endianness conversion
94  */
95 static u16 au_read_word(struct mtd_info *mtd)
96 {
97         struct nand_chip *this = mtd_to_nand(mtd);
98         u16 ret = readw(this->IO_ADDR_R);
99         wmb(); /* drain writebuffer */
100         return ret;
101 }
102
103 /**
104  * au_write_buf -  write buffer to chip
105  * @mtd:        MTD device structure
106  * @buf:        data buffer
107  * @len:        number of bytes to write
108  *
109  * write function for 8bit buswidth
110  */
111 static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
112 {
113         int i;
114         struct nand_chip *this = mtd_to_nand(mtd);
115
116         for (i = 0; i < len; i++) {
117                 writeb(buf[i], this->IO_ADDR_W);
118                 wmb(); /* drain writebuffer */
119         }
120 }
121
122 /**
123  * au_read_buf -  read chip data into buffer
124  * @mtd:        MTD device structure
125  * @buf:        buffer to store date
126  * @len:        number of bytes to read
127  *
128  * read function for 8bit buswidth
129  */
130 static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len)
131 {
132         int i;
133         struct nand_chip *this = mtd_to_nand(mtd);
134
135         for (i = 0; i < len; i++) {
136                 buf[i] = readb(this->IO_ADDR_R);
137                 wmb(); /* drain writebuffer */
138         }
139 }
140
141 /**
142  * au_write_buf16 -  write buffer to chip
143  * @mtd:        MTD device structure
144  * @buf:        data buffer
145  * @len:        number of bytes to write
146  *
147  * write function for 16bit buswidth
148  */
149 static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
150 {
151         int i;
152         struct nand_chip *this = mtd_to_nand(mtd);
153         u16 *p = (u16 *) buf;
154         len >>= 1;
155
156         for (i = 0; i < len; i++) {
157                 writew(p[i], this->IO_ADDR_W);
158                 wmb(); /* drain writebuffer */
159         }
160
161 }
162
163 /**
164  * au_read_buf16 -  read chip data into buffer
165  * @mtd:        MTD device structure
166  * @buf:        buffer to store date
167  * @len:        number of bytes to read
168  *
169  * read function for 16bit buswidth
170  */
171 static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
172 {
173         int i;
174         struct nand_chip *this = mtd_to_nand(mtd);
175         u16 *p = (u16 *) buf;
176         len >>= 1;
177
178         for (i = 0; i < len; i++) {
179                 p[i] = readw(this->IO_ADDR_R);
180                 wmb(); /* drain writebuffer */
181         }
182 }
183
184 /* Select the chip by setting nCE to low */
185 #define NAND_CTL_SETNCE         1
186 /* Deselect the chip by setting nCE to high */
187 #define NAND_CTL_CLRNCE         2
188 /* Select the command latch by setting CLE to high */
189 #define NAND_CTL_SETCLE         3
190 /* Deselect the command latch by setting CLE to low */
191 #define NAND_CTL_CLRCLE         4
192 /* Select the address latch by setting ALE to high */
193 #define NAND_CTL_SETALE         5
194 /* Deselect the address latch by setting ALE to low */
195 #define NAND_CTL_CLRALE         6
196
197 static void au1550_hwcontrol(struct mtd_info *mtd, int cmd)
198 {
199         struct nand_chip *this = mtd_to_nand(mtd);
200         struct au1550nd_ctx *ctx = container_of(this, struct au1550nd_ctx,
201                                                 chip);
202
203         switch (cmd) {
204
205         case NAND_CTL_SETCLE:
206                 this->IO_ADDR_W = ctx->base + MEM_STNAND_CMD;
207                 break;
208
209         case NAND_CTL_CLRCLE:
210                 this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
211                 break;
212
213         case NAND_CTL_SETALE:
214                 this->IO_ADDR_W = ctx->base + MEM_STNAND_ADDR;
215                 break;
216
217         case NAND_CTL_CLRALE:
218                 this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
219                 /* FIXME: Nobody knows why this is necessary,
220                  * but it works only that way */
221                 udelay(1);
222                 break;
223
224         case NAND_CTL_SETNCE:
225                 /* assert (force assert) chip enable */
226                 alchemy_wrsmem((1 << (4 + ctx->cs)), AU1000_MEM_STNDCTL);
227                 break;
228
229         case NAND_CTL_CLRNCE:
230                 /* deassert chip enable */
231                 alchemy_wrsmem(0, AU1000_MEM_STNDCTL);
232                 break;
233         }
234
235         this->IO_ADDR_R = this->IO_ADDR_W;
236
237         wmb(); /* Drain the writebuffer */
238 }
239
240 int au1550_device_ready(struct mtd_info *mtd)
241 {
242         return (alchemy_rdsmem(AU1000_MEM_STSTAT) & 0x1) ? 1 : 0;
243 }
244
245 /**
246  * au1550_select_chip - control -CE line
247  *      Forbid driving -CE manually permitting the NAND controller to do this.
248  *      Keeping -CE asserted during the whole sector reads interferes with the
249  *      NOR flash and PCMCIA drivers as it causes contention on the static bus.
250  *      We only have to hold -CE low for the NAND read commands since the flash
251  *      chip needs it to be asserted during chip not ready time but the NAND
252  *      controller keeps it released.
253  *
254  * @mtd:        MTD device structure
255  * @chip:       chipnumber to select, -1 for deselect
256  */
257 static void au1550_select_chip(struct mtd_info *mtd, int chip)
258 {
259 }
260
261 /**
262  * au1550_command - Send command to NAND device
263  * @mtd:        MTD device structure
264  * @command:    the command to be sent
265  * @column:     the column address for this command, -1 if none
266  * @page_addr:  the page address for this command, -1 if none
267  */
268 static void au1550_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
269 {
270         struct nand_chip *this = mtd_to_nand(mtd);
271         struct au1550nd_ctx *ctx = container_of(this, struct au1550nd_ctx,
272                                                 chip);
273         int ce_override = 0, i;
274         unsigned long flags = 0;
275
276         /* Begin command latch cycle */
277         au1550_hwcontrol(mtd, NAND_CTL_SETCLE);
278         /*
279          * Write out the command to the device.
280          */
281         if (command == NAND_CMD_SEQIN) {
282                 int readcmd;
283
284                 if (column >= mtd->writesize) {
285                         /* OOB area */
286                         column -= mtd->writesize;
287                         readcmd = NAND_CMD_READOOB;
288                 } else if (column < 256) {
289                         /* First 256 bytes --> READ0 */
290                         readcmd = NAND_CMD_READ0;
291                 } else {
292                         column -= 256;
293                         readcmd = NAND_CMD_READ1;
294                 }
295                 ctx->write_byte(mtd, readcmd);
296         }
297         ctx->write_byte(mtd, command);
298
299         /* Set ALE and clear CLE to start address cycle */
300         au1550_hwcontrol(mtd, NAND_CTL_CLRCLE);
301
302         if (column != -1 || page_addr != -1) {
303                 au1550_hwcontrol(mtd, NAND_CTL_SETALE);
304
305                 /* Serially input address */
306                 if (column != -1) {
307                         /* Adjust columns for 16 bit buswidth */
308                         if (this->options & NAND_BUSWIDTH_16 &&
309                                         !nand_opcode_8bits(command))
310                                 column >>= 1;
311                         ctx->write_byte(mtd, column);
312                 }
313                 if (page_addr != -1) {
314                         ctx->write_byte(mtd, (u8)(page_addr & 0xff));
315
316                         if (command == NAND_CMD_READ0 ||
317                             command == NAND_CMD_READ1 ||
318                             command == NAND_CMD_READOOB) {
319                                 /*
320                                  * NAND controller will release -CE after
321                                  * the last address byte is written, so we'll
322                                  * have to forcibly assert it. No interrupts
323                                  * are allowed while we do this as we don't
324                                  * want the NOR flash or PCMCIA drivers to
325                                  * steal our precious bytes of data...
326                                  */
327                                 ce_override = 1;
328                                 local_irq_save(flags);
329                                 au1550_hwcontrol(mtd, NAND_CTL_SETNCE);
330                         }
331
332                         ctx->write_byte(mtd, (u8)(page_addr >> 8));
333
334                         /* One more address cycle for devices > 32MiB */
335                         if (this->chipsize > (32 << 20))
336                                 ctx->write_byte(mtd,
337                                                 ((page_addr >> 16) & 0x0f));
338                 }
339                 /* Latch in address */
340                 au1550_hwcontrol(mtd, NAND_CTL_CLRALE);
341         }
342
343         /*
344          * Program and erase have their own busy handlers.
345          * Status and sequential in need no delay.
346          */
347         switch (command) {
348
349         case NAND_CMD_PAGEPROG:
350         case NAND_CMD_ERASE1:
351         case NAND_CMD_ERASE2:
352         case NAND_CMD_SEQIN:
353         case NAND_CMD_STATUS:
354                 return;
355
356         case NAND_CMD_RESET:
357                 break;
358
359         case NAND_CMD_READ0:
360         case NAND_CMD_READ1:
361         case NAND_CMD_READOOB:
362                 /* Check if we're really driving -CE low (just in case) */
363                 if (unlikely(!ce_override))
364                         break;
365
366                 /* Apply a short delay always to ensure that we do wait tWB. */
367                 ndelay(100);
368                 /* Wait for a chip to become ready... */
369                 for (i = this->chip_delay; !this->dev_ready(mtd) && i > 0; --i)
370                         udelay(1);
371
372                 /* Release -CE and re-enable interrupts. */
373                 au1550_hwcontrol(mtd, NAND_CTL_CLRNCE);
374                 local_irq_restore(flags);
375                 return;
376         }
377         /* Apply this short delay always to ensure that we do wait tWB. */
378         ndelay(100);
379
380         while(!this->dev_ready(mtd));
381 }
382
383 static int find_nand_cs(unsigned long nand_base)
384 {
385         void __iomem *base =
386                         (void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR);
387         unsigned long addr, staddr, start, mask, end;
388         int i;
389
390         for (i = 0; i < 4; i++) {
391                 addr = 0x1000 + (i * 0x10);                     /* CSx */
392                 staddr = __raw_readl(base + addr + 0x08);       /* STADDRx */
393                 /* figure out the decoded range of this CS */
394                 start = (staddr << 4) & 0xfffc0000;
395                 mask = (staddr << 18) & 0xfffc0000;
396                 end = (start | (start - 1)) & ~(start ^ mask);
397                 if ((nand_base >= start) && (nand_base < end))
398                         return i;
399         }
400
401         return -ENODEV;
402 }
403
404 static int au1550nd_probe(struct platform_device *pdev)
405 {
406         struct au1550nd_platdata *pd;
407         struct au1550nd_ctx *ctx;
408         struct nand_chip *this;
409         struct mtd_info *mtd;
410         struct resource *r;
411         int ret, cs;
412
413         pd = dev_get_platdata(&pdev->dev);
414         if (!pd) {
415                 dev_err(&pdev->dev, "missing platform data\n");
416                 return -ENODEV;
417         }
418
419         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
420         if (!ctx)
421                 return -ENOMEM;
422
423         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
424         if (!r) {
425                 dev_err(&pdev->dev, "no NAND memory resource\n");
426                 ret = -ENODEV;
427                 goto out1;
428         }
429         if (request_mem_region(r->start, resource_size(r), "au1550-nand")) {
430                 dev_err(&pdev->dev, "cannot claim NAND memory area\n");
431                 ret = -ENOMEM;
432                 goto out1;
433         }
434
435         ctx->base = ioremap_nocache(r->start, 0x1000);
436         if (!ctx->base) {
437                 dev_err(&pdev->dev, "cannot remap NAND memory area\n");
438                 ret = -ENODEV;
439                 goto out2;
440         }
441
442         this = &ctx->chip;
443         mtd = nand_to_mtd(this);
444         mtd->dev.parent = &pdev->dev;
445
446         /* figure out which CS# r->start belongs to */
447         cs = find_nand_cs(r->start);
448         if (cs < 0) {
449                 dev_err(&pdev->dev, "cannot detect NAND chipselect\n");
450                 ret = -ENODEV;
451                 goto out3;
452         }
453         ctx->cs = cs;
454
455         this->dev_ready = au1550_device_ready;
456         this->select_chip = au1550_select_chip;
457         this->cmdfunc = au1550_command;
458
459         /* 30 us command delay time */
460         this->chip_delay = 30;
461         this->ecc.mode = NAND_ECC_SOFT;
462         this->ecc.algo = NAND_ECC_HAMMING;
463
464         if (pd->devwidth)
465                 this->options |= NAND_BUSWIDTH_16;
466
467         this->read_byte = (pd->devwidth) ? au_read_byte16 : au_read_byte;
468         ctx->write_byte = (pd->devwidth) ? au_write_byte16 : au_write_byte;
469         this->read_word = au_read_word;
470         this->write_buf = (pd->devwidth) ? au_write_buf16 : au_write_buf;
471         this->read_buf = (pd->devwidth) ? au_read_buf16 : au_read_buf;
472
473         ret = nand_scan(mtd, 1);
474         if (ret) {
475                 dev_err(&pdev->dev, "NAND scan failed with %d\n", ret);
476                 goto out3;
477         }
478
479         mtd_device_register(mtd, pd->parts, pd->num_parts);
480
481         platform_set_drvdata(pdev, ctx);
482
483         return 0;
484
485 out3:
486         iounmap(ctx->base);
487 out2:
488         release_mem_region(r->start, resource_size(r));
489 out1:
490         kfree(ctx);
491         return ret;
492 }
493
494 static int au1550nd_remove(struct platform_device *pdev)
495 {
496         struct au1550nd_ctx *ctx = platform_get_drvdata(pdev);
497         struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
498
499         nand_release(nand_to_mtd(&ctx->chip));
500         iounmap(ctx->base);
501         release_mem_region(r->start, 0x1000);
502         kfree(ctx);
503         return 0;
504 }
505
506 static struct platform_driver au1550nd_driver = {
507         .driver = {
508                 .name   = "au1550-nand",
509         },
510         .probe          = au1550nd_probe,
511         .remove         = au1550nd_remove,
512 };
513
514 module_platform_driver(au1550nd_driver);
515
516 MODULE_LICENSE("GPL");
517 MODULE_AUTHOR("Embedded Edge, LLC");
518 MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");