]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/mtd/nand/gpmi-nand/gpmi-lib.c
Merge tag 'for-linus-4.10-ofs1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / drivers / mtd / nand / gpmi-nand / gpmi-lib.c
1 /*
2  * Freescale GPMI NAND Flash Driver
3  *
4  * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
5  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, write to the Free Software Foundation, Inc.,
19  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20  */
21 #include <linux/delay.h>
22 #include <linux/clk.h>
23 #include <linux/slab.h>
24
25 #include "gpmi-nand.h"
26 #include "gpmi-regs.h"
27 #include "bch-regs.h"
28
29 static struct timing_threshod timing_default_threshold = {
30         .max_data_setup_cycles       = (BM_GPMI_TIMING0_DATA_SETUP >>
31                                                 BP_GPMI_TIMING0_DATA_SETUP),
32         .internal_data_setup_in_ns   = 0,
33         .max_sample_delay_factor     = (BM_GPMI_CTRL1_RDN_DELAY >>
34                                                 BP_GPMI_CTRL1_RDN_DELAY),
35         .max_dll_clock_period_in_ns  = 32,
36         .max_dll_delay_in_ns         = 16,
37 };
38
39 #define MXS_SET_ADDR            0x4
40 #define MXS_CLR_ADDR            0x8
41 /*
42  * Clear the bit and poll it cleared.  This is usually called with
43  * a reset address and mask being either SFTRST(bit 31) or CLKGATE
44  * (bit 30).
45  */
46 static int clear_poll_bit(void __iomem *addr, u32 mask)
47 {
48         int timeout = 0x400;
49
50         /* clear the bit */
51         writel(mask, addr + MXS_CLR_ADDR);
52
53         /*
54          * SFTRST needs 3 GPMI clocks to settle, the reference manual
55          * recommends to wait 1us.
56          */
57         udelay(1);
58
59         /* poll the bit becoming clear */
60         while ((readl(addr) & mask) && --timeout)
61                 /* nothing */;
62
63         return !timeout;
64 }
65
66 #define MODULE_CLKGATE          (1 << 30)
67 #define MODULE_SFTRST           (1 << 31)
68 /*
69  * The current mxs_reset_block() will do two things:
70  *  [1] enable the module.
71  *  [2] reset the module.
72  *
73  * In most of the cases, it's ok.
74  * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
75  * If you try to soft reset the BCH block, it becomes unusable until
76  * the next hard reset. This case occurs in the NAND boot mode. When the board
77  * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
78  * So If the driver tries to reset the BCH again, the BCH will not work anymore.
79  * You will see a DMA timeout in this case. The bug has been fixed
80  * in the following chips, such as MX28.
81  *
82  * To avoid this bug, just add a new parameter `just_enable` for
83  * the mxs_reset_block(), and rewrite it here.
84  */
85 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
86 {
87         int ret;
88         int timeout = 0x400;
89
90         /* clear and poll SFTRST */
91         ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
92         if (unlikely(ret))
93                 goto error;
94
95         /* clear CLKGATE */
96         writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
97
98         if (!just_enable) {
99                 /* set SFTRST to reset the block */
100                 writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
101                 udelay(1);
102
103                 /* poll CLKGATE becoming set */
104                 while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
105                         /* nothing */;
106                 if (unlikely(!timeout))
107                         goto error;
108         }
109
110         /* clear and poll SFTRST */
111         ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
112         if (unlikely(ret))
113                 goto error;
114
115         /* clear and poll CLKGATE */
116         ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
117         if (unlikely(ret))
118                 goto error;
119
120         return 0;
121
122 error:
123         pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
124         return -ETIMEDOUT;
125 }
126
127 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
128 {
129         struct clk *clk;
130         int ret;
131         int i;
132
133         for (i = 0; i < GPMI_CLK_MAX; i++) {
134                 clk = this->resources.clock[i];
135                 if (!clk)
136                         break;
137
138                 if (v) {
139                         ret = clk_prepare_enable(clk);
140                         if (ret)
141                                 goto err_clk;
142                 } else {
143                         clk_disable_unprepare(clk);
144                 }
145         }
146         return 0;
147
148 err_clk:
149         for (; i > 0; i--)
150                 clk_disable_unprepare(this->resources.clock[i - 1]);
151         return ret;
152 }
153
154 #define gpmi_enable_clk(x) __gpmi_enable_clk(x, true)
155 #define gpmi_disable_clk(x) __gpmi_enable_clk(x, false)
156
157 int gpmi_init(struct gpmi_nand_data *this)
158 {
159         struct resources *r = &this->resources;
160         int ret;
161
162         ret = gpmi_enable_clk(this);
163         if (ret)
164                 return ret;
165         ret = gpmi_reset_block(r->gpmi_regs, false);
166         if (ret)
167                 goto err_out;
168
169         /*
170          * Reset BCH here, too. We got failures otherwise :(
171          * See later BCH reset for explanation of MX23 handling
172          */
173         ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
174         if (ret)
175                 goto err_out;
176
177
178         /* Choose NAND mode. */
179         writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
180
181         /* Set the IRQ polarity. */
182         writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
183                                 r->gpmi_regs + HW_GPMI_CTRL1_SET);
184
185         /* Disable Write-Protection. */
186         writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
187
188         /* Select BCH ECC. */
189         writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
190
191         /*
192          * Decouple the chip select from dma channel. We use dma0 for all
193          * the chips.
194          */
195         writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
196
197         gpmi_disable_clk(this);
198         return 0;
199 err_out:
200         gpmi_disable_clk(this);
201         return ret;
202 }
203
204 /* This function is very useful. It is called only when the bug occur. */
205 void gpmi_dump_info(struct gpmi_nand_data *this)
206 {
207         struct resources *r = &this->resources;
208         struct bch_geometry *geo = &this->bch_geometry;
209         u32 reg;
210         int i;
211
212         dev_err(this->dev, "Show GPMI registers :\n");
213         for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
214                 reg = readl(r->gpmi_regs + i * 0x10);
215                 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
216         }
217
218         /* start to print out the BCH info */
219         dev_err(this->dev, "Show BCH registers :\n");
220         for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
221                 reg = readl(r->bch_regs + i * 0x10);
222                 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
223         }
224         dev_err(this->dev, "BCH Geometry :\n"
225                 "GF length              : %u\n"
226                 "ECC Strength           : %u\n"
227                 "Page Size in Bytes     : %u\n"
228                 "Metadata Size in Bytes : %u\n"
229                 "ECC Chunk Size in Bytes: %u\n"
230                 "ECC Chunk Count        : %u\n"
231                 "Payload Size in Bytes  : %u\n"
232                 "Auxiliary Size in Bytes: %u\n"
233                 "Auxiliary Status Offset: %u\n"
234                 "Block Mark Byte Offset : %u\n"
235                 "Block Mark Bit Offset  : %u\n",
236                 geo->gf_len,
237                 geo->ecc_strength,
238                 geo->page_size,
239                 geo->metadata_size,
240                 geo->ecc_chunk_size,
241                 geo->ecc_chunk_count,
242                 geo->payload_size,
243                 geo->auxiliary_size,
244                 geo->auxiliary_status_offset,
245                 geo->block_mark_byte_offset,
246                 geo->block_mark_bit_offset);
247 }
248
249 /* Configures the geometry for BCH.  */
250 int bch_set_geometry(struct gpmi_nand_data *this)
251 {
252         struct resources *r = &this->resources;
253         struct bch_geometry *bch_geo = &this->bch_geometry;
254         unsigned int block_count;
255         unsigned int block_size;
256         unsigned int metadata_size;
257         unsigned int ecc_strength;
258         unsigned int page_size;
259         unsigned int gf_len;
260         int ret;
261
262         if (common_nfc_set_geometry(this))
263                 return !0;
264
265         block_count   = bch_geo->ecc_chunk_count - 1;
266         block_size    = bch_geo->ecc_chunk_size;
267         metadata_size = bch_geo->metadata_size;
268         ecc_strength  = bch_geo->ecc_strength >> 1;
269         page_size     = bch_geo->page_size;
270         gf_len        = bch_geo->gf_len;
271
272         ret = gpmi_enable_clk(this);
273         if (ret)
274                 return ret;
275
276         /*
277         * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
278         * chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
279         * On the other hand, the MX28 needs the reset, because one case has been
280         * seen where the BCH produced ECC errors constantly after 10000
281         * consecutive reboots. The latter case has not been seen on the MX23
282         * yet, still we don't know if it could happen there as well.
283         */
284         ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
285         if (ret)
286                 goto err_out;
287
288         /* Configure layout 0. */
289         writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
290                         | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
291                         | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this)
292                         | BF_BCH_FLASH0LAYOUT0_GF(gf_len, this)
293                         | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this),
294                         r->bch_regs + HW_BCH_FLASH0LAYOUT0);
295
296         writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
297                         | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this)
298                         | BF_BCH_FLASH0LAYOUT1_GF(gf_len, this)
299                         | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this),
300                         r->bch_regs + HW_BCH_FLASH0LAYOUT1);
301
302         /* Set *all* chip selects to use layout 0. */
303         writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
304
305         /* Enable interrupts. */
306         writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
307                                 r->bch_regs + HW_BCH_CTRL_SET);
308
309         gpmi_disable_clk(this);
310         return 0;
311 err_out:
312         gpmi_disable_clk(this);
313         return ret;
314 }
315
316 /* Converts time in nanoseconds to cycles. */
317 static unsigned int ns_to_cycles(unsigned int time,
318                         unsigned int period, unsigned int min)
319 {
320         unsigned int k;
321
322         k = (time + period - 1) / period;
323         return max(k, min);
324 }
325
326 #define DEF_MIN_PROP_DELAY      5
327 #define DEF_MAX_PROP_DELAY      9
328 /* Apply timing to current hardware conditions. */
329 static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this,
330                                         struct gpmi_nfc_hardware_timing *hw)
331 {
332         struct timing_threshod *nfc = &timing_default_threshold;
333         struct resources *r = &this->resources;
334         struct nand_chip *nand = &this->nand;
335         struct nand_timing target = this->timing;
336         bool improved_timing_is_available;
337         unsigned long clock_frequency_in_hz;
338         unsigned int clock_period_in_ns;
339         bool dll_use_half_periods;
340         unsigned int dll_delay_shift;
341         unsigned int max_sample_delay_in_ns;
342         unsigned int address_setup_in_cycles;
343         unsigned int data_setup_in_ns;
344         unsigned int data_setup_in_cycles;
345         unsigned int data_hold_in_cycles;
346         int ideal_sample_delay_in_ns;
347         unsigned int sample_delay_factor;
348         int tEYE;
349         unsigned int min_prop_delay_in_ns = DEF_MIN_PROP_DELAY;
350         unsigned int max_prop_delay_in_ns = DEF_MAX_PROP_DELAY;
351
352         /*
353          * If there are multiple chips, we need to relax the timings to allow
354          * for signal distortion due to higher capacitance.
355          */
356         if (nand->numchips > 2) {
357                 target.data_setup_in_ns    += 10;
358                 target.data_hold_in_ns     += 10;
359                 target.address_setup_in_ns += 10;
360         } else if (nand->numchips > 1) {
361                 target.data_setup_in_ns    += 5;
362                 target.data_hold_in_ns     += 5;
363                 target.address_setup_in_ns += 5;
364         }
365
366         /* Check if improved timing information is available. */
367         improved_timing_is_available =
368                 (target.tREA_in_ns  >= 0) &&
369                 (target.tRLOH_in_ns >= 0) &&
370                 (target.tRHOH_in_ns >= 0);
371
372         /* Inspect the clock. */
373         nfc->clock_frequency_in_hz = clk_get_rate(r->clock[0]);
374         clock_frequency_in_hz = nfc->clock_frequency_in_hz;
375         clock_period_in_ns    = NSEC_PER_SEC / clock_frequency_in_hz;
376
377         /*
378          * The NFC quantizes setup and hold parameters in terms of clock cycles.
379          * Here, we quantize the setup and hold timing parameters to the
380          * next-highest clock period to make sure we apply at least the
381          * specified times.
382          *
383          * For data setup and data hold, the hardware interprets a value of zero
384          * as the largest possible delay. This is not what's intended by a zero
385          * in the input parameter, so we impose a minimum of one cycle.
386          */
387         data_setup_in_cycles    = ns_to_cycles(target.data_setup_in_ns,
388                                                         clock_period_in_ns, 1);
389         data_hold_in_cycles     = ns_to_cycles(target.data_hold_in_ns,
390                                                         clock_period_in_ns, 1);
391         address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns,
392                                                         clock_period_in_ns, 0);
393
394         /*
395          * The clock's period affects the sample delay in a number of ways:
396          *
397          * (1) The NFC HAL tells us the maximum clock period the sample delay
398          *     DLL can tolerate. If the clock period is greater than half that
399          *     maximum, we must configure the DLL to be driven by half periods.
400          *
401          * (2) We need to convert from an ideal sample delay, in ns, to a
402          *     "sample delay factor," which the NFC uses. This factor depends on
403          *     whether we're driving the DLL with full or half periods.
404          *     Paraphrasing the reference manual:
405          *
406          *         AD = SDF x 0.125 x RP
407          *
408          * where:
409          *
410          *     AD   is the applied delay, in ns.
411          *     SDF  is the sample delay factor, which is dimensionless.
412          *     RP   is the reference period, in ns, which is a full clock period
413          *          if the DLL is being driven by full periods, or half that if
414          *          the DLL is being driven by half periods.
415          *
416          * Let's re-arrange this in a way that's more useful to us:
417          *
418          *                        8
419          *         SDF  =  AD x ----
420          *                       RP
421          *
422          * The reference period is either the clock period or half that, so this
423          * is:
424          *
425          *                        8       AD x DDF
426          *         SDF  =  AD x -----  =  --------
427          *                      f x P        P
428          *
429          * where:
430          *
431          *       f  is 1 or 1/2, depending on how we're driving the DLL.
432          *       P  is the clock period.
433          *     DDF  is the DLL Delay Factor, a dimensionless value that
434          *          incorporates all the constants in the conversion.
435          *
436          * DDF will be either 8 or 16, both of which are powers of two. We can
437          * reduce the cost of this conversion by using bit shifts instead of
438          * multiplication or division. Thus:
439          *
440          *                 AD << DDS
441          *         SDF  =  ---------
442          *                     P
443          *
444          *     or
445          *
446          *         AD  =  (SDF >> DDS) x P
447          *
448          * where:
449          *
450          *     DDS  is the DLL Delay Shift, the logarithm to base 2 of the DDF.
451          */
452         if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) {
453                 dll_use_half_periods = true;
454                 dll_delay_shift      = 3 + 1;
455         } else {
456                 dll_use_half_periods = false;
457                 dll_delay_shift      = 3;
458         }
459
460         /*
461          * Compute the maximum sample delay the NFC allows, under current
462          * conditions. If the clock is running too slowly, no sample delay is
463          * possible.
464          */
465         if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns)
466                 max_sample_delay_in_ns = 0;
467         else {
468                 /*
469                  * Compute the delay implied by the largest sample delay factor
470                  * the NFC allows.
471                  */
472                 max_sample_delay_in_ns =
473                         (nfc->max_sample_delay_factor * clock_period_in_ns) >>
474                                                                 dll_delay_shift;
475
476                 /*
477                  * Check if the implied sample delay larger than the NFC
478                  * actually allows.
479                  */
480                 if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns)
481                         max_sample_delay_in_ns = nfc->max_dll_delay_in_ns;
482         }
483
484         /*
485          * Check if improved timing information is available. If not, we have to
486          * use a less-sophisticated algorithm.
487          */
488         if (!improved_timing_is_available) {
489                 /*
490                  * Fold the read setup time required by the NFC into the ideal
491                  * sample delay.
492                  */
493                 ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns +
494                                                 nfc->internal_data_setup_in_ns;
495
496                 /*
497                  * The ideal sample delay may be greater than the maximum
498                  * allowed by the NFC. If so, we can trade off sample delay time
499                  * for more data setup time.
500                  *
501                  * In each iteration of the following loop, we add a cycle to
502                  * the data setup time and subtract a corresponding amount from
503                  * the sample delay until we've satisified the constraints or
504                  * can't do any better.
505                  */
506                 while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
507                         (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
508
509                         data_setup_in_cycles++;
510                         ideal_sample_delay_in_ns -= clock_period_in_ns;
511
512                         if (ideal_sample_delay_in_ns < 0)
513                                 ideal_sample_delay_in_ns = 0;
514
515                 }
516
517                 /*
518                  * Compute the sample delay factor that corresponds most closely
519                  * to the ideal sample delay. If the result is too large for the
520                  * NFC, use the maximum value.
521                  *
522                  * Notice that we use the ns_to_cycles function to compute the
523                  * sample delay factor. We do this because the form of the
524                  * computation is the same as that for calculating cycles.
525                  */
526                 sample_delay_factor =
527                         ns_to_cycles(
528                                 ideal_sample_delay_in_ns << dll_delay_shift,
529                                                         clock_period_in_ns, 0);
530
531                 if (sample_delay_factor > nfc->max_sample_delay_factor)
532                         sample_delay_factor = nfc->max_sample_delay_factor;
533
534                 /* Skip to the part where we return our results. */
535                 goto return_results;
536         }
537
538         /*
539          * If control arrives here, we have more detailed timing information,
540          * so we can use a better algorithm.
541          */
542
543         /*
544          * Fold the read setup time required by the NFC into the maximum
545          * propagation delay.
546          */
547         max_prop_delay_in_ns += nfc->internal_data_setup_in_ns;
548
549         /*
550          * Earlier, we computed the number of clock cycles required to satisfy
551          * the data setup time. Now, we need to know the actual nanoseconds.
552          */
553         data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles;
554
555         /*
556          * Compute tEYE, the width of the data eye when reading from the NAND
557          * Flash. The eye width is fundamentally determined by the data setup
558          * time, perturbed by propagation delays and some characteristics of the
559          * NAND Flash device.
560          *
561          * start of the eye = max_prop_delay + tREA
562          * end of the eye   = min_prop_delay + tRHOH + data_setup
563          */
564         tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns +
565                                                         (int)data_setup_in_ns;
566
567         tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns;
568
569         /*
570          * The eye must be open. If it's not, we can try to open it by
571          * increasing its main forcer, the data setup time.
572          *
573          * In each iteration of the following loop, we increase the data setup
574          * time by a single clock cycle. We do this until either the eye is
575          * open or we run into NFC limits.
576          */
577         while ((tEYE <= 0) &&
578                         (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
579                 /* Give a cycle to data setup. */
580                 data_setup_in_cycles++;
581                 /* Synchronize the data setup time with the cycles. */
582                 data_setup_in_ns += clock_period_in_ns;
583                 /* Adjust tEYE accordingly. */
584                 tEYE += clock_period_in_ns;
585         }
586
587         /*
588          * When control arrives here, the eye is open. The ideal time to sample
589          * the data is in the center of the eye:
590          *
591          *     end of the eye + start of the eye
592          *     ---------------------------------  -  data_setup
593          *                    2
594          *
595          * After some algebra, this simplifies to the code immediately below.
596          */
597         ideal_sample_delay_in_ns =
598                 ((int)max_prop_delay_in_ns +
599                         (int)target.tREA_in_ns +
600                                 (int)min_prop_delay_in_ns +
601                                         (int)target.tRHOH_in_ns -
602                                                 (int)data_setup_in_ns) >> 1;
603
604         /*
605          * The following figure illustrates some aspects of a NAND Flash read:
606          *
607          *
608          *           __                   _____________________________________
609          * RDN         \_________________/
610          *
611          *                                         <---- tEYE ----->
612          *                                        /-----------------\
613          * Read Data ----------------------------<                   >---------
614          *                                        \-----------------/
615          *             ^                 ^                 ^              ^
616          *             |                 |                 |              |
617          *             |<--Data Setup -->|<--Delay Time -->|              |
618          *             |                 |                 |              |
619          *             |                 |                                |
620          *             |                 |<--   Quantized Delay Time   -->|
621          *             |                 |                                |
622          *
623          *
624          * We have some issues we must now address:
625          *
626          * (1) The *ideal* sample delay time must not be negative. If it is, we
627          *     jam it to zero.
628          *
629          * (2) The *ideal* sample delay time must not be greater than that
630          *     allowed by the NFC. If it is, we can increase the data setup
631          *     time, which will reduce the delay between the end of the data
632          *     setup and the center of the eye. It will also make the eye
633          *     larger, which might help with the next issue...
634          *
635          * (3) The *quantized* sample delay time must not fall either before the
636          *     eye opens or after it closes (the latter is the problem
637          *     illustrated in the above figure).
638          */
639
640         /* Jam a negative ideal sample delay to zero. */
641         if (ideal_sample_delay_in_ns < 0)
642                 ideal_sample_delay_in_ns = 0;
643
644         /*
645          * Extend the data setup as needed to reduce the ideal sample delay
646          * below the maximum permitted by the NFC.
647          */
648         while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
649                         (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
650
651                 /* Give a cycle to data setup. */
652                 data_setup_in_cycles++;
653                 /* Synchronize the data setup time with the cycles. */
654                 data_setup_in_ns += clock_period_in_ns;
655                 /* Adjust tEYE accordingly. */
656                 tEYE += clock_period_in_ns;
657
658                 /*
659                  * Decrease the ideal sample delay by one half cycle, to keep it
660                  * in the middle of the eye.
661                  */
662                 ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
663
664                 /* Jam a negative ideal sample delay to zero. */
665                 if (ideal_sample_delay_in_ns < 0)
666                         ideal_sample_delay_in_ns = 0;
667         }
668
669         /*
670          * Compute the sample delay factor that corresponds to the ideal sample
671          * delay. If the result is too large, then use the maximum allowed
672          * value.
673          *
674          * Notice that we use the ns_to_cycles function to compute the sample
675          * delay factor. We do this because the form of the computation is the
676          * same as that for calculating cycles.
677          */
678         sample_delay_factor =
679                 ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift,
680                                                         clock_period_in_ns, 0);
681
682         if (sample_delay_factor > nfc->max_sample_delay_factor)
683                 sample_delay_factor = nfc->max_sample_delay_factor;
684
685         /*
686          * These macros conveniently encapsulate a computation we'll use to
687          * continuously evaluate whether or not the data sample delay is inside
688          * the eye.
689          */
690         #define IDEAL_DELAY  ((int) ideal_sample_delay_in_ns)
691
692         #define QUANTIZED_DELAY  \
693                 ((int) ((sample_delay_factor * clock_period_in_ns) >> \
694                                                         dll_delay_shift))
695
696         #define DELAY_ERROR  (abs(QUANTIZED_DELAY - IDEAL_DELAY))
697
698         #define SAMPLE_IS_NOT_WITHIN_THE_EYE  (DELAY_ERROR > (tEYE >> 1))
699
700         /*
701          * While the quantized sample time falls outside the eye, reduce the
702          * sample delay or extend the data setup to move the sampling point back
703          * toward the eye. Do not allow the number of data setup cycles to
704          * exceed the maximum allowed by the NFC.
705          */
706         while (SAMPLE_IS_NOT_WITHIN_THE_EYE &&
707                         (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
708                 /*
709                  * If control arrives here, the quantized sample delay falls
710                  * outside the eye. Check if it's before the eye opens, or after
711                  * the eye closes.
712                  */
713                 if (QUANTIZED_DELAY > IDEAL_DELAY) {
714                         /*
715                          * If control arrives here, the quantized sample delay
716                          * falls after the eye closes. Decrease the quantized
717                          * delay time and then go back to re-evaluate.
718                          */
719                         if (sample_delay_factor != 0)
720                                 sample_delay_factor--;
721                         continue;
722                 }
723
724                 /*
725                  * If control arrives here, the quantized sample delay falls
726                  * before the eye opens. Shift the sample point by increasing
727                  * data setup time. This will also make the eye larger.
728                  */
729
730                 /* Give a cycle to data setup. */
731                 data_setup_in_cycles++;
732                 /* Synchronize the data setup time with the cycles. */
733                 data_setup_in_ns += clock_period_in_ns;
734                 /* Adjust tEYE accordingly. */
735                 tEYE += clock_period_in_ns;
736
737                 /*
738                  * Decrease the ideal sample delay by one half cycle, to keep it
739                  * in the middle of the eye.
740                  */
741                 ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
742
743                 /* ...and one less period for the delay time. */
744                 ideal_sample_delay_in_ns -= clock_period_in_ns;
745
746                 /* Jam a negative ideal sample delay to zero. */
747                 if (ideal_sample_delay_in_ns < 0)
748                         ideal_sample_delay_in_ns = 0;
749
750                 /*
751                  * We have a new ideal sample delay, so re-compute the quantized
752                  * delay.
753                  */
754                 sample_delay_factor =
755                         ns_to_cycles(
756                                 ideal_sample_delay_in_ns << dll_delay_shift,
757                                                         clock_period_in_ns, 0);
758
759                 if (sample_delay_factor > nfc->max_sample_delay_factor)
760                         sample_delay_factor = nfc->max_sample_delay_factor;
761         }
762
763         /* Control arrives here when we're ready to return our results. */
764 return_results:
765         hw->data_setup_in_cycles    = data_setup_in_cycles;
766         hw->data_hold_in_cycles     = data_hold_in_cycles;
767         hw->address_setup_in_cycles = address_setup_in_cycles;
768         hw->use_half_periods        = dll_use_half_periods;
769         hw->sample_delay_factor     = sample_delay_factor;
770         hw->device_busy_timeout     = GPMI_DEFAULT_BUSY_TIMEOUT;
771         hw->wrn_dly_sel             = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
772
773         /* Return success. */
774         return 0;
775 }
776
777 /*
778  * <1> Firstly, we should know what's the GPMI-clock means.
779  *     The GPMI-clock is the internal clock in the gpmi nand controller.
780  *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
781  *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
782  *
783  * <2> Secondly, we should know what's the frequency on the nand chip pins.
784  *     The frequency on the nand chip pins is derived from the GPMI-clock.
785  *     We can get it from the following equation:
786  *
787  *         F = G / (DS + DH)
788  *
789  *         F  : the frequency on the nand chip pins.
790  *         G  : the GPMI clock, such as 100MHz.
791  *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
792  *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
793  *
794  * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
795  *     the nand EDO(extended Data Out) timing could be applied.
796  *     The GPMI implements a feedback read strobe to sample the read data.
797  *     The feedback read strobe can be delayed to support the nand EDO timing
798  *     where the read strobe may deasserts before the read data is valid, and
799  *     read data is valid for some time after read strobe.
800  *
801  *     The following figure illustrates some aspects of a NAND Flash read:
802  *
803  *                   |<---tREA---->|
804  *                   |             |
805  *                   |         |   |
806  *                   |<--tRP-->|   |
807  *                   |         |   |
808  *                  __          ___|__________________________________
809  *     RDN            \________/   |
810  *                                 |
811  *                                 /---------\
812  *     Read Data    --------------<           >---------
813  *                                 \---------/
814  *                                |     |
815  *                                |<-D->|
816  *     FeedbackRDN  ________             ____________
817  *                          \___________/
818  *
819  *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
820  *
821  *
822  * <4> Now, we begin to describe how to compute the right RDN_DELAY.
823  *
824  *  4.1) From the aspect of the nand chip pins:
825  *        Delay = (tREA + C - tRP)               {1}
826  *
827  *        tREA : the maximum read access time. From the ONFI nand standards,
828  *               we know that tREA is 16ns in mode 5, tREA is 20ns is mode 4.
829  *               Please check it in : www.onfi.org
830  *        C    : a constant for adjust the delay. default is 4.
831  *        tRP  : the read pulse width.
832  *               Specified by the HW_GPMI_TIMING0:DATA_SETUP:
833  *                    tRP = (GPMI-clock-period) * DATA_SETUP
834  *
835  *  4.2) From the aspect of the GPMI nand controller:
836  *         Delay = RDN_DELAY * 0.125 * RP        {2}
837  *
838  *         RP   : the DLL reference period.
839  *            if (GPMI-clock-period > DLL_THRETHOLD)
840  *                   RP = GPMI-clock-period / 2;
841  *            else
842  *                   RP = GPMI-clock-period;
843  *
844  *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
845  *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
846  *            is 16ns, but in mx6q, we use 12ns.
847  *
848  *  4.3) since {1} equals {2}, we get:
849  *
850  *                    (tREA + 4 - tRP) * 8
851  *         RDN_DELAY = ---------------------     {3}
852  *                           RP
853  *
854  *  4.4) We only support the fastest asynchronous mode of ONFI nand.
855  *       For some ONFI nand, the mode 4 is the fastest mode;
856  *       while for some ONFI nand, the mode 5 is the fastest mode.
857  *       So we only support the mode 4 and mode 5. It is no need to
858  *       support other modes.
859  */
860 static void gpmi_compute_edo_timing(struct gpmi_nand_data *this,
861                         struct gpmi_nfc_hardware_timing *hw)
862 {
863         struct resources *r = &this->resources;
864         unsigned long rate = clk_get_rate(r->clock[0]);
865         int mode = this->timing_mode;
866         int dll_threshold = this->devdata->max_chain_delay;
867         unsigned long delay;
868         unsigned long clk_period;
869         int t_rea;
870         int c = 4;
871         int t_rp;
872         int rp;
873
874         /*
875          * [1] for GPMI_HW_GPMI_TIMING0:
876          *     The async mode requires 40MHz for mode 4, 50MHz for mode 5.
877          *     The GPMI can support 100MHz at most. So if we want to
878          *     get the 40MHz or 50MHz, we have to set DS=1, DH=1.
879          *     Set the ADDRESS_SETUP to 0 in mode 4.
880          */
881         hw->data_setup_in_cycles = 1;
882         hw->data_hold_in_cycles = 1;
883         hw->address_setup_in_cycles = ((mode == 5) ? 1 : 0);
884
885         /* [2] for GPMI_HW_GPMI_TIMING1 */
886         hw->device_busy_timeout = 0x9000;
887
888         /* [3] for GPMI_HW_GPMI_CTRL1 */
889         hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
890
891         /*
892          * Enlarge 10 times for the numerator and denominator in {3}.
893          * This make us to get more accurate result.
894          */
895         clk_period = NSEC_PER_SEC / (rate / 10);
896         dll_threshold *= 10;
897         t_rea = ((mode == 5) ? 16 : 20) * 10;
898         c *= 10;
899
900         t_rp = clk_period * 1; /* DATA_SETUP is 1 */
901
902         if (clk_period > dll_threshold) {
903                 hw->use_half_periods = 1;
904                 rp = clk_period / 2;
905         } else {
906                 hw->use_half_periods = 0;
907                 rp = clk_period;
908         }
909
910         /*
911          * Multiply the numerator with 10, we could do a round off:
912          *      7.8 round up to 8; 7.4 round down to 7.
913          */
914         delay  = (((t_rea + c - t_rp) * 8) * 10) / rp;
915         delay = (delay + 5) / 10;
916
917         hw->sample_delay_factor = delay;
918 }
919
920 static int enable_edo_mode(struct gpmi_nand_data *this, int mode)
921 {
922         struct resources  *r = &this->resources;
923         struct nand_chip *nand = &this->nand;
924         struct mtd_info  *mtd = nand_to_mtd(nand);
925         uint8_t *feature;
926         unsigned long rate;
927         int ret;
928
929         feature = kzalloc(ONFI_SUBFEATURE_PARAM_LEN, GFP_KERNEL);
930         if (!feature)
931                 return -ENOMEM;
932
933         nand->select_chip(mtd, 0);
934
935         /* [1] send SET FEATURE commond to NAND */
936         feature[0] = mode;
937         ret = nand->onfi_set_features(mtd, nand,
938                                 ONFI_FEATURE_ADDR_TIMING_MODE, feature);
939         if (ret)
940                 goto err_out;
941
942         /* [2] send GET FEATURE command to double-check the timing mode */
943         memset(feature, 0, ONFI_SUBFEATURE_PARAM_LEN);
944         ret = nand->onfi_get_features(mtd, nand,
945                                 ONFI_FEATURE_ADDR_TIMING_MODE, feature);
946         if (ret || feature[0] != mode)
947                 goto err_out;
948
949         nand->select_chip(mtd, -1);
950
951         /* [3] set the main IO clock, 100MHz for mode 5, 80MHz for mode 4. */
952         rate = (mode == 5) ? 100000000 : 80000000;
953         clk_set_rate(r->clock[0], rate);
954
955         /* Let the gpmi_begin() re-compute the timing again. */
956         this->flags &= ~GPMI_TIMING_INIT_OK;
957
958         this->flags |= GPMI_ASYNC_EDO_ENABLED;
959         this->timing_mode = mode;
960         kfree(feature);
961         dev_info(this->dev, "enable the asynchronous EDO mode %d\n", mode);
962         return 0;
963
964 err_out:
965         nand->select_chip(mtd, -1);
966         kfree(feature);
967         dev_err(this->dev, "mode:%d ,failed in set feature.\n", mode);
968         return -EINVAL;
969 }
970
971 int gpmi_extra_init(struct gpmi_nand_data *this)
972 {
973         struct nand_chip *chip = &this->nand;
974
975         /* Enable the asynchronous EDO feature. */
976         if (GPMI_IS_MX6(this) && chip->onfi_version) {
977                 int mode = onfi_get_async_timing_mode(chip);
978
979                 /* We only support the timing mode 4 and mode 5. */
980                 if (mode & ONFI_TIMING_MODE_5)
981                         mode = 5;
982                 else if (mode & ONFI_TIMING_MODE_4)
983                         mode = 4;
984                 else
985                         return 0;
986
987                 return enable_edo_mode(this, mode);
988         }
989         return 0;
990 }
991
992 /* Begin the I/O */
993 void gpmi_begin(struct gpmi_nand_data *this)
994 {
995         struct resources *r = &this->resources;
996         void __iomem *gpmi_regs = r->gpmi_regs;
997         unsigned int   clock_period_in_ns;
998         uint32_t       reg;
999         unsigned int   dll_wait_time_in_us;
1000         struct gpmi_nfc_hardware_timing  hw;
1001         int ret;
1002
1003         /* Enable the clock. */
1004         ret = gpmi_enable_clk(this);
1005         if (ret) {
1006                 dev_err(this->dev, "We failed in enable the clk\n");
1007                 goto err_out;
1008         }
1009
1010         /* Only initialize the timing once */
1011         if (this->flags & GPMI_TIMING_INIT_OK)
1012                 return;
1013         this->flags |= GPMI_TIMING_INIT_OK;
1014
1015         if (this->flags & GPMI_ASYNC_EDO_ENABLED)
1016                 gpmi_compute_edo_timing(this, &hw);
1017         else
1018                 gpmi_nfc_compute_hardware_timing(this, &hw);
1019
1020         /* [1] Set HW_GPMI_TIMING0 */
1021         reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) |
1022                 BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles)         |
1023                 BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles);
1024
1025         writel(reg, gpmi_regs + HW_GPMI_TIMING0);
1026
1027         /* [2] Set HW_GPMI_TIMING1 */
1028         writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw.device_busy_timeout),
1029                 gpmi_regs + HW_GPMI_TIMING1);
1030
1031         /* [3] The following code is to set the HW_GPMI_CTRL1. */
1032
1033         /* Set the WRN_DLY_SEL */
1034         writel(BM_GPMI_CTRL1_WRN_DLY_SEL, gpmi_regs + HW_GPMI_CTRL1_CLR);
1035         writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw.wrn_dly_sel),
1036                                         gpmi_regs + HW_GPMI_CTRL1_SET);
1037
1038         /* DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. */
1039         writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR);
1040
1041         /* Clear out the DLL control fields. */
1042         reg = BM_GPMI_CTRL1_RDN_DELAY | BM_GPMI_CTRL1_HALF_PERIOD;
1043         writel(reg, gpmi_regs + HW_GPMI_CTRL1_CLR);
1044
1045         /* If no sample delay is called for, return immediately. */
1046         if (!hw.sample_delay_factor)
1047                 return;
1048
1049         /* Set RDN_DELAY or HALF_PERIOD. */
1050         reg = ((hw.use_half_periods) ? BM_GPMI_CTRL1_HALF_PERIOD : 0)
1051                 | BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor);
1052
1053         writel(reg, gpmi_regs + HW_GPMI_CTRL1_SET);
1054
1055         /* At last, we enable the DLL. */
1056         writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET);
1057
1058         /*
1059          * After we enable the GPMI DLL, we have to wait 64 clock cycles before
1060          * we can use the GPMI. Calculate the amount of time we need to wait,
1061          * in microseconds.
1062          */
1063         clock_period_in_ns = NSEC_PER_SEC / clk_get_rate(r->clock[0]);
1064         dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000;
1065
1066         if (!dll_wait_time_in_us)
1067                 dll_wait_time_in_us = 1;
1068
1069         /* Wait for the DLL to settle. */
1070         udelay(dll_wait_time_in_us);
1071
1072 err_out:
1073         return;
1074 }
1075
1076 void gpmi_end(struct gpmi_nand_data *this)
1077 {
1078         gpmi_disable_clk(this);
1079 }
1080
1081 /* Clears a BCH interrupt. */
1082 void gpmi_clear_bch(struct gpmi_nand_data *this)
1083 {
1084         struct resources *r = &this->resources;
1085         writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
1086 }
1087
1088 /* Returns the Ready/Busy status of the given chip. */
1089 int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip)
1090 {
1091         struct resources *r = &this->resources;
1092         uint32_t mask = 0;
1093         uint32_t reg = 0;
1094
1095         if (GPMI_IS_MX23(this)) {
1096                 mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
1097                 reg = readl(r->gpmi_regs + HW_GPMI_DEBUG);
1098         } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) {
1099                 /*
1100                  * In the imx6, all the ready/busy pins are bound
1101                  * together. So we only need to check chip 0.
1102                  */
1103                 if (GPMI_IS_MX6(this))
1104                         chip = 0;
1105
1106                 /* MX28 shares the same R/B register as MX6Q. */
1107                 mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip);
1108                 reg = readl(r->gpmi_regs + HW_GPMI_STAT);
1109         } else
1110                 dev_err(this->dev, "unknown arch.\n");
1111         return reg & mask;
1112 }
1113
1114 static inline void set_dma_type(struct gpmi_nand_data *this,
1115                                         enum dma_ops_type type)
1116 {
1117         this->last_dma_type = this->dma_type;
1118         this->dma_type = type;
1119 }
1120
1121 int gpmi_send_command(struct gpmi_nand_data *this)
1122 {
1123         struct dma_chan *channel = get_dma_chan(this);
1124         struct dma_async_tx_descriptor *desc;
1125         struct scatterlist *sgl;
1126         int chip = this->current_chip;
1127         u32 pio[3];
1128
1129         /* [1] send out the PIO words */
1130         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
1131                 | BM_GPMI_CTRL0_WORD_LENGTH
1132                 | BF_GPMI_CTRL0_CS(chip, this)
1133                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1134                 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
1135                 | BM_GPMI_CTRL0_ADDRESS_INCREMENT
1136                 | BF_GPMI_CTRL0_XFER_COUNT(this->command_length);
1137         pio[1] = pio[2] = 0;
1138         desc = dmaengine_prep_slave_sg(channel,
1139                                         (struct scatterlist *)pio,
1140                                         ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1141         if (!desc)
1142                 return -EINVAL;
1143
1144         /* [2] send out the COMMAND + ADDRESS string stored in @buffer */
1145         sgl = &this->cmd_sgl;
1146
1147         sg_init_one(sgl, this->cmd_buffer, this->command_length);
1148         dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
1149         desc = dmaengine_prep_slave_sg(channel,
1150                                 sgl, 1, DMA_MEM_TO_DEV,
1151                                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1152         if (!desc)
1153                 return -EINVAL;
1154
1155         /* [3] submit the DMA */
1156         set_dma_type(this, DMA_FOR_COMMAND);
1157         return start_dma_without_bch_irq(this, desc);
1158 }
1159
1160 int gpmi_send_data(struct gpmi_nand_data *this)
1161 {
1162         struct dma_async_tx_descriptor *desc;
1163         struct dma_chan *channel = get_dma_chan(this);
1164         int chip = this->current_chip;
1165         uint32_t command_mode;
1166         uint32_t address;
1167         u32 pio[2];
1168
1169         /* [1] PIO */
1170         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
1171         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1172
1173         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1174                 | BM_GPMI_CTRL0_WORD_LENGTH
1175                 | BF_GPMI_CTRL0_CS(chip, this)
1176                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1177                 | BF_GPMI_CTRL0_ADDRESS(address)
1178                 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
1179         pio[1] = 0;
1180         desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio,
1181                                         ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1182         if (!desc)
1183                 return -EINVAL;
1184
1185         /* [2] send DMA request */
1186         prepare_data_dma(this, DMA_TO_DEVICE);
1187         desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
1188                                         1, DMA_MEM_TO_DEV,
1189                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1190         if (!desc)
1191                 return -EINVAL;
1192
1193         /* [3] submit the DMA */
1194         set_dma_type(this, DMA_FOR_WRITE_DATA);
1195         return start_dma_without_bch_irq(this, desc);
1196 }
1197
1198 int gpmi_read_data(struct gpmi_nand_data *this)
1199 {
1200         struct dma_async_tx_descriptor *desc;
1201         struct dma_chan *channel = get_dma_chan(this);
1202         int chip = this->current_chip;
1203         u32 pio[2];
1204
1205         /* [1] : send PIO */
1206         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
1207                 | BM_GPMI_CTRL0_WORD_LENGTH
1208                 | BF_GPMI_CTRL0_CS(chip, this)
1209                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1210                 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
1211                 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
1212         pio[1] = 0;
1213         desc = dmaengine_prep_slave_sg(channel,
1214                                         (struct scatterlist *)pio,
1215                                         ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1216         if (!desc)
1217                 return -EINVAL;
1218
1219         /* [2] : send DMA request */
1220         prepare_data_dma(this, DMA_FROM_DEVICE);
1221         desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
1222                                         1, DMA_DEV_TO_MEM,
1223                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1224         if (!desc)
1225                 return -EINVAL;
1226
1227         /* [3] : submit the DMA */
1228         set_dma_type(this, DMA_FOR_READ_DATA);
1229         return start_dma_without_bch_irq(this, desc);
1230 }
1231
1232 int gpmi_send_page(struct gpmi_nand_data *this,
1233                         dma_addr_t payload, dma_addr_t auxiliary)
1234 {
1235         struct bch_geometry *geo = &this->bch_geometry;
1236         uint32_t command_mode;
1237         uint32_t address;
1238         uint32_t ecc_command;
1239         uint32_t buffer_mask;
1240         struct dma_async_tx_descriptor *desc;
1241         struct dma_chan *channel = get_dma_chan(this);
1242         int chip = this->current_chip;
1243         u32 pio[6];
1244
1245         /* A DMA descriptor that does an ECC page read. */
1246         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
1247         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1248         ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
1249         buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
1250                                 BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
1251
1252         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1253                 | BM_GPMI_CTRL0_WORD_LENGTH
1254                 | BF_GPMI_CTRL0_CS(chip, this)
1255                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1256                 | BF_GPMI_CTRL0_ADDRESS(address)
1257                 | BF_GPMI_CTRL0_XFER_COUNT(0);
1258         pio[1] = 0;
1259         pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
1260                 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
1261                 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
1262         pio[3] = geo->page_size;
1263         pio[4] = payload;
1264         pio[5] = auxiliary;
1265
1266         desc = dmaengine_prep_slave_sg(channel,
1267                                         (struct scatterlist *)pio,
1268                                         ARRAY_SIZE(pio), DMA_TRANS_NONE,
1269                                         DMA_CTRL_ACK);
1270         if (!desc)
1271                 return -EINVAL;
1272
1273         set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE);
1274         return start_dma_with_bch_irq(this, desc);
1275 }
1276
1277 int gpmi_read_page(struct gpmi_nand_data *this,
1278                                 dma_addr_t payload, dma_addr_t auxiliary)
1279 {
1280         struct bch_geometry *geo = &this->bch_geometry;
1281         uint32_t command_mode;
1282         uint32_t address;
1283         uint32_t ecc_command;
1284         uint32_t buffer_mask;
1285         struct dma_async_tx_descriptor *desc;
1286         struct dma_chan *channel = get_dma_chan(this);
1287         int chip = this->current_chip;
1288         u32 pio[6];
1289
1290         /* [1] Wait for the chip to report ready. */
1291         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
1292         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1293
1294         pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1295                 | BM_GPMI_CTRL0_WORD_LENGTH
1296                 | BF_GPMI_CTRL0_CS(chip, this)
1297                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1298                 | BF_GPMI_CTRL0_ADDRESS(address)
1299                 | BF_GPMI_CTRL0_XFER_COUNT(0);
1300         pio[1] = 0;
1301         desc = dmaengine_prep_slave_sg(channel,
1302                                 (struct scatterlist *)pio, 2,
1303                                 DMA_TRANS_NONE, 0);
1304         if (!desc)
1305                 return -EINVAL;
1306
1307         /* [2] Enable the BCH block and read. */
1308         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
1309         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1310         ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
1311         buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
1312                         | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
1313
1314         pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1315                 | BM_GPMI_CTRL0_WORD_LENGTH
1316                 | BF_GPMI_CTRL0_CS(chip, this)
1317                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1318                 | BF_GPMI_CTRL0_ADDRESS(address)
1319                 | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
1320
1321         pio[1] = 0;
1322         pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
1323                 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
1324                 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
1325         pio[3] = geo->page_size;
1326         pio[4] = payload;
1327         pio[5] = auxiliary;
1328         desc = dmaengine_prep_slave_sg(channel,
1329                                         (struct scatterlist *)pio,
1330                                         ARRAY_SIZE(pio), DMA_TRANS_NONE,
1331                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1332         if (!desc)
1333                 return -EINVAL;
1334
1335         /* [3] Disable the BCH block */
1336         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
1337         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1338
1339         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1340                 | BM_GPMI_CTRL0_WORD_LENGTH
1341                 | BF_GPMI_CTRL0_CS(chip, this)
1342                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1343                 | BF_GPMI_CTRL0_ADDRESS(address)
1344                 | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
1345         pio[1] = 0;
1346         pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */
1347         desc = dmaengine_prep_slave_sg(channel,
1348                                 (struct scatterlist *)pio, 3,
1349                                 DMA_TRANS_NONE,
1350                                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1351         if (!desc)
1352                 return -EINVAL;
1353
1354         /* [4] submit the DMA */
1355         set_dma_type(this, DMA_FOR_READ_ECC_PAGE);
1356         return start_dma_with_bch_irq(this, desc);
1357 }
1358
1359 /**
1360  * gpmi_copy_bits - copy bits from one memory region to another
1361  * @dst: destination buffer
1362  * @dst_bit_off: bit offset we're starting to write at
1363  * @src: source buffer
1364  * @src_bit_off: bit offset we're starting to read from
1365  * @nbits: number of bits to copy
1366  *
1367  * This functions copies bits from one memory region to another, and is used by
1368  * the GPMI driver to copy ECC sections which are not guaranteed to be byte
1369  * aligned.
1370  *
1371  * src and dst should not overlap.
1372  *
1373  */
1374 void gpmi_copy_bits(u8 *dst, size_t dst_bit_off,
1375                     const u8 *src, size_t src_bit_off,
1376                     size_t nbits)
1377 {
1378         size_t i;
1379         size_t nbytes;
1380         u32 src_buffer = 0;
1381         size_t bits_in_src_buffer = 0;
1382
1383         if (!nbits)
1384                 return;
1385
1386         /*
1387          * Move src and dst pointers to the closest byte pointer and store bit
1388          * offsets within a byte.
1389          */
1390         src += src_bit_off / 8;
1391         src_bit_off %= 8;
1392
1393         dst += dst_bit_off / 8;
1394         dst_bit_off %= 8;
1395
1396         /*
1397          * Initialize the src_buffer value with bits available in the first
1398          * byte of data so that we end up with a byte aligned src pointer.
1399          */
1400         if (src_bit_off) {
1401                 src_buffer = src[0] >> src_bit_off;
1402                 if (nbits >= (8 - src_bit_off)) {
1403                         bits_in_src_buffer += 8 - src_bit_off;
1404                 } else {
1405                         src_buffer &= GENMASK(nbits - 1, 0);
1406                         bits_in_src_buffer += nbits;
1407                 }
1408                 nbits -= bits_in_src_buffer;
1409                 src++;
1410         }
1411
1412         /* Calculate the number of bytes that can be copied from src to dst. */
1413         nbytes = nbits / 8;
1414
1415         /* Try to align dst to a byte boundary. */
1416         if (dst_bit_off) {
1417                 if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) {
1418                         src_buffer |= src[0] << bits_in_src_buffer;
1419                         bits_in_src_buffer += 8;
1420                         src++;
1421                         nbytes--;
1422                 }
1423
1424                 if (bits_in_src_buffer >= (8 - dst_bit_off)) {
1425                         dst[0] &= GENMASK(dst_bit_off - 1, 0);
1426                         dst[0] |= src_buffer << dst_bit_off;
1427                         src_buffer >>= (8 - dst_bit_off);
1428                         bits_in_src_buffer -= (8 - dst_bit_off);
1429                         dst_bit_off = 0;
1430                         dst++;
1431                         if (bits_in_src_buffer > 7) {
1432                                 bits_in_src_buffer -= 8;
1433                                 dst[0] = src_buffer;
1434                                 dst++;
1435                                 src_buffer >>= 8;
1436                         }
1437                 }
1438         }
1439
1440         if (!bits_in_src_buffer && !dst_bit_off) {
1441                 /*
1442                  * Both src and dst pointers are byte aligned, thus we can
1443                  * just use the optimized memcpy function.
1444                  */
1445                 if (nbytes)
1446                         memcpy(dst, src, nbytes);
1447         } else {
1448                 /*
1449                  * src buffer is not byte aligned, hence we have to copy each
1450                  * src byte to the src_buffer variable before extracting a byte
1451                  * to store in dst.
1452                  */
1453                 for (i = 0; i < nbytes; i++) {
1454                         src_buffer |= src[i] << bits_in_src_buffer;
1455                         dst[i] = src_buffer;
1456                         src_buffer >>= 8;
1457                 }
1458         }
1459         /* Update dst and src pointers */
1460         dst += nbytes;
1461         src += nbytes;
1462
1463         /*
1464          * nbits is the number of remaining bits. It should not exceed 8 as
1465          * we've already copied as much bytes as possible.
1466          */
1467         nbits %= 8;
1468
1469         /*
1470          * If there's no more bits to copy to the destination and src buffer
1471          * was already byte aligned, then we're done.
1472          */
1473         if (!nbits && !bits_in_src_buffer)
1474                 return;
1475
1476         /* Copy the remaining bits to src_buffer */
1477         if (nbits)
1478                 src_buffer |= (*src & GENMASK(nbits - 1, 0)) <<
1479                               bits_in_src_buffer;
1480         bits_in_src_buffer += nbits;
1481
1482         /*
1483          * In case there were not enough bits to get a byte aligned dst buffer
1484          * prepare the src_buffer variable to match the dst organization (shift
1485          * src_buffer by dst_bit_off and retrieve the least significant bits
1486          * from dst).
1487          */
1488         if (dst_bit_off)
1489                 src_buffer = (src_buffer << dst_bit_off) |
1490                              (*dst & GENMASK(dst_bit_off - 1, 0));
1491         bits_in_src_buffer += dst_bit_off;
1492
1493         /*
1494          * Keep most significant bits from dst if we end up with an unaligned
1495          * number of bits.
1496          */
1497         nbytes = bits_in_src_buffer / 8;
1498         if (bits_in_src_buffer % 8) {
1499                 src_buffer |= (dst[nbytes] &
1500                                GENMASK(7, bits_in_src_buffer % 8)) <<
1501                               (nbytes * 8);
1502                 nbytes++;
1503         }
1504
1505         /* Copy the remaining bytes to dst */
1506         for (i = 0; i < nbytes; i++) {
1507                 dst[i] = src_buffer;
1508                 src_buffer >>= 8;
1509         }
1510 }