]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/mtd/nand/mxc_nand.c
arm: imx6: defconfig: update tx6 defconfigs
[karo-tx-linux.git] / drivers / mtd / nand / mxc_nand.c
1 /*
2  * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17  * MA 02110-1301, USA.
18  */
19
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/completion.h>
35 #include <linux/of_device.h>
36 #include <linux/of_mtd.h>
37
38 #include <asm/mach/flash.h>
39 #include <linux/platform_data/mtd-mxc_nand.h>
40
41 #define DRIVER_NAME "mxc_nand"
42
43 /* Addresses for NFC registers */
44 #define NFC_V1_V2_BUF_SIZE              (host->regs + 0x00)
45 #define NFC_V1_V2_BUF_ADDR              (host->regs + 0x04)
46 #define NFC_V1_V2_FLASH_ADDR            (host->regs + 0x06)
47 #define NFC_V1_V2_FLASH_CMD             (host->regs + 0x08)
48 #define NFC_V1_V2_CONFIG                (host->regs + 0x0a)
49 #define NFC_V1_V2_ECC_STATUS_RESULT     (host->regs + 0x0c)
50 #define NFC_V1_V2_RSLTMAIN_AREA         (host->regs + 0x0e)
51 #define NFC_V1_V2_RSLTSPARE_AREA        (host->regs + 0x10)
52 #define NFC_V1_V2_WRPROT                (host->regs + 0x12)
53 #define NFC_V1_UNLOCKSTART_BLKADDR      (host->regs + 0x14)
54 #define NFC_V1_UNLOCKEND_BLKADDR        (host->regs + 0x16)
55 #define NFC_V21_UNLOCKSTART_BLKADDR0    (host->regs + 0x20)
56 #define NFC_V21_UNLOCKSTART_BLKADDR1    (host->regs + 0x24)
57 #define NFC_V21_UNLOCKSTART_BLKADDR2    (host->regs + 0x28)
58 #define NFC_V21_UNLOCKSTART_BLKADDR3    (host->regs + 0x2c)
59 #define NFC_V21_UNLOCKEND_BLKADDR0      (host->regs + 0x22)
60 #define NFC_V21_UNLOCKEND_BLKADDR1      (host->regs + 0x26)
61 #define NFC_V21_UNLOCKEND_BLKADDR2      (host->regs + 0x2a)
62 #define NFC_V21_UNLOCKEND_BLKADDR3      (host->regs + 0x2e)
63 #define NFC_V1_V2_NF_WRPRST             (host->regs + 0x18)
64 #define NFC_V1_V2_CONFIG1               (host->regs + 0x1a)
65 #define NFC_V1_V2_CONFIG2               (host->regs + 0x1c)
66
67 #define NFC_V2_CONFIG1_ECC_MODE_4       (1 << 0)
68 #define NFC_V1_V2_CONFIG1_SP_EN         (1 << 2)
69 #define NFC_V1_V2_CONFIG1_ECC_EN        (1 << 3)
70 #define NFC_V1_V2_CONFIG1_INT_MSK       (1 << 4)
71 #define NFC_V1_V2_CONFIG1_BIG           (1 << 5)
72 #define NFC_V1_V2_CONFIG1_RST           (1 << 6)
73 #define NFC_V1_V2_CONFIG1_CE            (1 << 7)
74 #define NFC_V2_CONFIG1_ONE_CYCLE        (1 << 8)
75 #define NFC_V2_CONFIG1_PPB(x)           (((x) & 0x3) << 9)
76 #define NFC_V2_CONFIG1_FP_INT           (1 << 11)
77
78 #define NFC_V1_V2_CONFIG2_INT           (1 << 15)
79
80 /*
81  * Operation modes for the NFC. Valid for v1, v2 and v3
82  * type controllers.
83  */
84 #define NFC_CMD                         (1 << 0)
85 #define NFC_ADDR                        (1 << 1)
86 #define NFC_INPUT                       (1 << 2)
87 #define NFC_OUTPUT                      (1 << 3)
88 #define NFC_ID                          (1 << 4)
89 #define NFC_STATUS                      (1 << 5)
90
91 #define NFC_V3_FLASH_CMD                (host->regs_axi + 0x00)
92 #define NFC_V3_FLASH_ADDR0              (host->regs_axi + 0x04)
93
94 #define NFC_V3_CONFIG1                  (host->regs_axi + 0x34)
95 #define NFC_V3_CONFIG1_SP_EN            (1 << 0)
96 #define NFC_V3_CONFIG1_RBA(x)           (((x) & 0x7 ) << 4)
97
98 #define NFC_V3_ECC_STATUS_RESULT        (host->regs_axi + 0x38)
99
100 #define NFC_V3_LAUNCH                   (host->regs_axi + 0x40)
101
102 #define NFC_V3_WRPROT                   (host->regs_ip + 0x0)
103 #define NFC_V3_WRPROT_LOCK_TIGHT        (1 << 0)
104 #define NFC_V3_WRPROT_LOCK              (1 << 1)
105 #define NFC_V3_WRPROT_UNLOCK            (1 << 2)
106 #define NFC_V3_WRPROT_BLS_UNLOCK        (2 << 6)
107
108 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
109
110 #define NFC_V3_CONFIG2                  (host->regs_ip + 0x24)
111 #define NFC_V3_CONFIG2_PS_512                   (0 << 0)
112 #define NFC_V3_CONFIG2_PS_2048                  (1 << 0)
113 #define NFC_V3_CONFIG2_PS_4096                  (2 << 0)
114 #define NFC_V3_CONFIG2_ONE_CYCLE                (1 << 2)
115 #define NFC_V3_CONFIG2_ECC_EN                   (1 << 3)
116 #define NFC_V3_CONFIG2_2CMD_PHASES              (1 << 4)
117 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0          (1 << 5)
118 #define NFC_V3_CONFIG2_ECC_MODE_8               (1 << 6)
119 #define NFC_V3_CONFIG2_PPB(x, shift)            (((x) & 0x3) << shift)
120 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)       (((x) & 0x3) << 12)
121 #define NFC_V3_CONFIG2_INT_MSK                  (1 << 15)
122 #define NFC_V3_CONFIG2_ST_CMD(x)                (((x) & 0xff) << 24)
123 #define NFC_V3_CONFIG2_SPAS(x)                  (((x) & 0xff) << 16)
124
125 #define NFC_V3_CONFIG3                          (host->regs_ip + 0x28)
126 #define NFC_V3_CONFIG3_ADD_OP(x)                (((x) & 0x3) << 0)
127 #define NFC_V3_CONFIG3_FW8                      (1 << 3)
128 #define NFC_V3_CONFIG3_SBB(x)                   (((x) & 0x7) << 8)
129 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)        (((x) & 0x7) << 12)
130 #define NFC_V3_CONFIG3_RBB_MODE                 (1 << 15)
131 #define NFC_V3_CONFIG3_NO_SDMA                  (1 << 20)
132
133 #define NFC_V3_IPC                      (host->regs_ip + 0x2C)
134 #define NFC_V3_IPC_CREQ                 (1 << 0)
135 #define NFC_V3_IPC_INT                  (1 << 31)
136
137 #define NFC_V3_DELAY_LINE               (host->regs_ip + 0x34)
138
139 struct mxc_nand_host;
140
141 struct mxc_nand_devtype_data {
142         void (*preset)(struct mtd_info *);
143         void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
144         void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
145         void (*send_page)(struct mtd_info *, unsigned int);
146         void (*send_read_id)(struct mxc_nand_host *);
147         uint16_t (*get_dev_status)(struct mxc_nand_host *);
148         int (*check_int)(struct mxc_nand_host *);
149         void (*irq_control)(struct mxc_nand_host *, int);
150         u32 (*get_ecc_status)(struct mxc_nand_host *);
151         struct nand_ecclayout *ecclayout_512, *ecclayout_2k, *ecclayout_4k;
152         void (*select_chip)(struct mtd_info *mtd, int chip);
153         int (*correct_data)(struct mtd_info *mtd, u_char *dat,
154                         u_char *read_ecc, u_char *calc_ecc);
155
156         /*
157          * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
158          * (CONFIG1:INT_MSK is set). To handle this the driver uses
159          * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
160          */
161         int irqpending_quirk;
162         int needs_ip;
163
164         size_t regs_offset;
165         size_t spare0_offset;
166         size_t axi_offset;
167
168         int spare_len;
169         int eccbytes;
170         int eccsize;
171         int ppb_shift;
172 };
173
174 struct mxc_nand_host {
175         struct mtd_info         mtd;
176         struct nand_chip        nand;
177         struct device           *dev;
178
179         void __iomem            *spare0;
180         void __iomem            *main_area0;
181
182         void __iomem            *base;
183         void __iomem            *regs;
184         void __iomem            *regs_axi;
185         void __iomem            *regs_ip;
186         int                     status_request;
187         struct clk              *clk;
188         int                     clk_act;
189         int                     irq;
190         int                     eccsize;
191         int                     active_cs;
192
193         struct completion       op_completion;
194
195         uint8_t                 *data_buf;
196         unsigned int            buf_start;
197
198         const struct mxc_nand_devtype_data *devtype_data;
199         struct mxc_nand_platform_data pdata;
200 };
201
202 /* OOB placement block for use with hardware ecc generation */
203 static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
204         .eccbytes = 5,
205         .eccpos = {6, 7, 8, 9, 10},
206         .oobfree = {{0, 5}, {12, 4}, }
207 };
208
209 static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
210         .eccbytes = 20,
211         .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
212                    38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
213         .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
214 };
215
216 /* OOB description for 512 byte pages with 16 byte OOB */
217 static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
218         .eccbytes = 1 * 9,
219         .eccpos = {
220                  7,  8,  9, 10, 11, 12, 13, 14, 15
221         },
222         .oobfree = {
223                 {.offset = 0, .length = 5}
224         }
225 };
226
227 /* OOB description for 2048 byte pages with 64 byte OOB */
228 static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
229         .eccbytes = 4 * 9,
230         .eccpos = {
231                  7,  8,  9, 10, 11, 12, 13, 14, 15,
232                 23, 24, 25, 26, 27, 28, 29, 30, 31,
233                 39, 40, 41, 42, 43, 44, 45, 46, 47,
234                 55, 56, 57, 58, 59, 60, 61, 62, 63
235         },
236         .oobfree = {
237                 {.offset = 2, .length = 4},
238                 {.offset = 16, .length = 7},
239                 {.offset = 32, .length = 7},
240                 {.offset = 48, .length = 7}
241         }
242 };
243
244 /* OOB description for 4096 byte pages with 128 byte OOB */
245 static struct nand_ecclayout nandv2_hw_eccoob_4k = {
246         .eccbytes = 8 * 9,
247         .eccpos = {
248                 7,  8,  9, 10, 11, 12, 13, 14, 15,
249                 23, 24, 25, 26, 27, 28, 29, 30, 31,
250                 39, 40, 41, 42, 43, 44, 45, 46, 47,
251                 55, 56, 57, 58, 59, 60, 61, 62, 63,
252                 71, 72, 73, 74, 75, 76, 77, 78, 79,
253                 87, 88, 89, 90, 91, 92, 93, 94, 95,
254                 103, 104, 105, 106, 107, 108, 109, 110, 111,
255                 119, 120, 121, 122, 123, 124, 125, 126, 127,
256         },
257         .oobfree = {
258                 {.offset = 2, .length = 4},
259                 {.offset = 16, .length = 7},
260                 {.offset = 32, .length = 7},
261                 {.offset = 48, .length = 7},
262                 {.offset = 64, .length = 7},
263                 {.offset = 80, .length = 7},
264                 {.offset = 96, .length = 7},
265                 {.offset = 112, .length = 7},
266         }
267 };
268
269 static const char * const part_probes[] = {
270         "cmdlinepart", "RedBoot", "ofpart", NULL };
271
272 static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
273 {
274         int i;
275         u32 *t = trg;
276         const __iomem u32 *s = src;
277
278         for (i = 0; i < (size >> 2); i++)
279                 *t++ = __raw_readl(s++);
280 }
281
282 static void memcpy32_toio(void __iomem *trg, const void *src, int size)
283 {
284         int i;
285         u32 __iomem *t = trg;
286         const u32 *s = src;
287
288         for (i = 0; i < (size >> 2); i++)
289                 __raw_writel(*s++, t++);
290 }
291
292 static int check_int_v3(struct mxc_nand_host *host)
293 {
294         uint32_t tmp;
295
296         tmp = readl(NFC_V3_IPC);
297         if (!(tmp & NFC_V3_IPC_INT))
298                 return 0;
299
300         tmp &= ~NFC_V3_IPC_INT;
301         writel(tmp, NFC_V3_IPC);
302
303         return 1;
304 }
305
306 static int check_int_v1_v2(struct mxc_nand_host *host)
307 {
308         uint32_t tmp;
309
310         tmp = readw(NFC_V1_V2_CONFIG2);
311         if (!(tmp & NFC_V1_V2_CONFIG2_INT))
312                 return 0;
313
314         if (!host->devtype_data->irqpending_quirk)
315                 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
316
317         return 1;
318 }
319
320 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
321 {
322         uint16_t tmp;
323
324         tmp = readw(NFC_V1_V2_CONFIG1);
325
326         if (activate)
327                 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
328         else
329                 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
330
331         writew(tmp, NFC_V1_V2_CONFIG1);
332 }
333
334 static void irq_control_v3(struct mxc_nand_host *host, int activate)
335 {
336         uint32_t tmp;
337
338         tmp = readl(NFC_V3_CONFIG2);
339
340         if (activate)
341                 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
342         else
343                 tmp |= NFC_V3_CONFIG2_INT_MSK;
344
345         writel(tmp, NFC_V3_CONFIG2);
346 }
347
348 static void irq_control(struct mxc_nand_host *host, int activate)
349 {
350         if (host->devtype_data->irqpending_quirk) {
351                 if (activate)
352                         enable_irq(host->irq);
353                 else
354                         disable_irq_nosync(host->irq);
355         } else {
356                 host->devtype_data->irq_control(host, activate);
357         }
358 }
359
360 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
361 {
362         return readw(NFC_V1_V2_ECC_STATUS_RESULT);
363 }
364
365 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
366 {
367         return readl(NFC_V1_V2_ECC_STATUS_RESULT);
368 }
369
370 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
371 {
372         return readl(NFC_V3_ECC_STATUS_RESULT);
373 }
374
375 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
376 {
377         struct mxc_nand_host *host = dev_id;
378
379         if (!host->devtype_data->check_int(host))
380                 return IRQ_NONE;
381
382         irq_control(host, 0);
383
384         complete(&host->op_completion);
385
386         return IRQ_HANDLED;
387 }
388
389 /* This function polls the NANDFC to wait for the basic operation to
390  * complete by checking the INT bit of config2 register.
391  */
392 static void wait_op_done(struct mxc_nand_host *host, int useirq)
393 {
394         int max_retries = 8000;
395
396         if (useirq) {
397                 if (!host->devtype_data->check_int(host)) {
398                         INIT_COMPLETION(host->op_completion);
399                         irq_control(host, 1);
400                         wait_for_completion(&host->op_completion);
401                 }
402         } else {
403                 while (max_retries-- > 0) {
404                         if (host->devtype_data->check_int(host))
405                                 break;
406
407                         udelay(1);
408                 }
409                 if (max_retries < 0)
410                         pr_debug("%s: INT not set\n", __func__);
411         }
412 }
413
414 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
415 {
416         /* fill command */
417         writel(cmd, NFC_V3_FLASH_CMD);
418
419         /* send out command */
420         writel(NFC_CMD, NFC_V3_LAUNCH);
421
422         /* Wait for operation to complete */
423         wait_op_done(host, useirq);
424 }
425
426 /* This function issues the specified command to the NAND device and
427  * waits for completion. */
428 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
429 {
430         pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
431
432         writew(cmd, NFC_V1_V2_FLASH_CMD);
433         writew(NFC_CMD, NFC_V1_V2_CONFIG2);
434
435         if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
436                 int max_retries = 100;
437                 /* Reset completion is indicated by NFC_CONFIG2 */
438                 /* being set to 0 */
439                 while (max_retries-- > 0) {
440                         if (readw(NFC_V1_V2_CONFIG2) == 0) {
441                                 break;
442                         }
443                         udelay(1);
444                 }
445                 if (max_retries < 0)
446                         pr_debug("%s: RESET failed\n", __func__);
447         } else {
448                 /* Wait for operation to complete */
449                 wait_op_done(host, useirq);
450         }
451 }
452
453 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
454 {
455         /* fill address */
456         writel(addr, NFC_V3_FLASH_ADDR0);
457
458         /* send out address */
459         writel(NFC_ADDR, NFC_V3_LAUNCH);
460
461         wait_op_done(host, 0);
462 }
463
464 /* This function sends an address (or partial address) to the
465  * NAND device. The address is used to select the source/destination for
466  * a NAND command. */
467 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
468 {
469         pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
470
471         writew(addr, NFC_V1_V2_FLASH_ADDR);
472         writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
473
474         /* Wait for operation to complete */
475         wait_op_done(host, islast);
476 }
477
478 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
479 {
480         struct nand_chip *nand_chip = mtd->priv;
481         struct mxc_nand_host *host = nand_chip->priv;
482         uint32_t tmp;
483
484         tmp = readl(NFC_V3_CONFIG1);
485         tmp &= ~(7 << 4);
486         writel(tmp, NFC_V3_CONFIG1);
487
488         /* transfer data from NFC ram to nand */
489         writel(ops, NFC_V3_LAUNCH);
490
491         wait_op_done(host, false);
492 }
493
494 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
495 {
496         struct nand_chip *nand_chip = mtd->priv;
497         struct mxc_nand_host *host = nand_chip->priv;
498
499         /* NANDFC buffer 0 is used for page read/write */
500         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
501
502         writew(ops, NFC_V1_V2_CONFIG2);
503
504         /* Wait for operation to complete */
505         wait_op_done(host, true);
506 }
507
508 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
509 {
510         struct nand_chip *nand_chip = mtd->priv;
511         struct mxc_nand_host *host = nand_chip->priv;
512         int bufs, i;
513
514         if (mtd->writesize > 512)
515                 bufs = 4;
516         else
517                 bufs = 1;
518
519         for (i = 0; i < bufs; i++) {
520
521                 /* NANDFC buffer 0 is used for page read/write */
522                 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
523
524                 writew(ops, NFC_V1_V2_CONFIG2);
525
526                 /* Wait for operation to complete */
527                 wait_op_done(host, true);
528         }
529 }
530
531 static void send_read_id_v3(struct mxc_nand_host *host)
532 {
533         struct nand_chip *this = &host->nand;
534
535         /* Read ID into main buffer */
536         writel(NFC_ID, NFC_V3_LAUNCH);
537
538         wait_op_done(host, true);
539
540         memcpy32_fromio(host->data_buf, host->main_area0, 16);
541
542         if (this->options & NAND_BUSWIDTH_16) {
543                 /* compress the ID info */
544                 host->data_buf[1] = host->data_buf[2];
545                 host->data_buf[2] = host->data_buf[4];
546                 host->data_buf[3] = host->data_buf[6];
547                 host->data_buf[4] = host->data_buf[8];
548                 host->data_buf[5] = host->data_buf[10];
549         }
550 }
551
552 /* Request the NANDFC to perform a read of the NAND device ID. */
553 static void send_read_id_v1_v2(struct mxc_nand_host *host)
554 {
555         struct nand_chip *this = &host->nand;
556
557         /* NANDFC buffer 0 is used for device ID output */
558         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
559
560         writew(NFC_ID, NFC_V1_V2_CONFIG2);
561
562         /* Wait for operation to complete */
563         wait_op_done(host, true);
564
565         memcpy32_fromio(host->data_buf, host->main_area0, 16);
566
567         if (this->options & NAND_BUSWIDTH_16) {
568                 /* compress the ID info */
569                 host->data_buf[1] = host->data_buf[2];
570                 host->data_buf[2] = host->data_buf[4];
571                 host->data_buf[3] = host->data_buf[6];
572                 host->data_buf[4] = host->data_buf[8];
573                 host->data_buf[5] = host->data_buf[10];
574         }
575 }
576
577 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
578 {
579         writew(NFC_STATUS, NFC_V3_LAUNCH);
580         wait_op_done(host, true);
581
582         return readl(NFC_V3_CONFIG1) >> 16;
583 }
584
585 /* This function requests the NANDFC to perform a read of the
586  * NAND device status and returns the current status. */
587 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
588 {
589         void __iomem *main_buf = host->main_area0;
590         uint32_t store;
591         uint16_t ret;
592
593         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
594
595         /*
596          * The device status is stored in main_area0. To
597          * prevent corruption of the buffer save the value
598          * and restore it afterwards.
599          */
600         store = readl(main_buf);
601
602         writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
603         wait_op_done(host, true);
604
605         ret = readw(main_buf);
606
607         writel(store, main_buf);
608
609         return ret;
610 }
611
612 /* This functions is used by upper layer to checks if device is ready */
613 static int mxc_nand_dev_ready(struct mtd_info *mtd)
614 {
615         /*
616          * NFC handles R/B internally. Therefore, this function
617          * always returns status as ready.
618          */
619         return 1;
620 }
621
622 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
623 {
624         /*
625          * If HW ECC is enabled, we turn it on during init. There is
626          * no need to enable again here.
627          */
628 }
629
630 static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
631                                  u_char *read_ecc, u_char *calc_ecc)
632 {
633         struct nand_chip *nand_chip = mtd->priv;
634         struct mxc_nand_host *host = nand_chip->priv;
635
636         /*
637          * 1-Bit errors are automatically corrected in HW.  No need for
638          * additional correction.  2-Bit errors cannot be corrected by
639          * HW ECC, so we need to return failure
640          */
641         uint16_t ecc_status = get_ecc_status_v1(host);
642
643         if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
644                 pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
645                 return -1;
646         }
647
648         return 0;
649 }
650
651 static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
652                                  u_char *read_ecc, u_char *calc_ecc)
653 {
654         struct nand_chip *nand_chip = mtd->priv;
655         struct mxc_nand_host *host = nand_chip->priv;
656         u32 ecc_stat, err;
657         int no_subpages = 1;
658         int ret = 0;
659         u8 ecc_bit_mask, err_limit;
660
661         ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
662         err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
663
664         no_subpages = mtd->writesize >> 9;
665
666         ecc_stat = host->devtype_data->get_ecc_status(host);
667
668         do {
669                 err = ecc_stat & ecc_bit_mask;
670                 if (err > err_limit) {
671                         printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
672                         return -1;
673                 } else {
674                         ret += err;
675                 }
676                 ecc_stat >>= 4;
677         } while (--no_subpages);
678
679         mtd->ecc_stats.corrected += ret;
680         pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
681
682         return ret;
683 }
684
685 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
686                                   u_char *ecc_code)
687 {
688         return 0;
689 }
690
691 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
692 {
693         struct nand_chip *nand_chip = mtd->priv;
694         struct mxc_nand_host *host = nand_chip->priv;
695         uint8_t ret;
696
697         /* Check for status request */
698         if (host->status_request)
699                 return host->devtype_data->get_dev_status(host) & 0xFF;
700
701         ret = *(uint8_t *)(host->data_buf + host->buf_start);
702         host->buf_start++;
703
704         return ret;
705 }
706
707 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
708 {
709         struct nand_chip *nand_chip = mtd->priv;
710         struct mxc_nand_host *host = nand_chip->priv;
711         uint16_t ret;
712
713         ret = *(uint16_t *)(host->data_buf + host->buf_start);
714         host->buf_start += 2;
715
716         return ret;
717 }
718
719 /* Write data of length len to buffer buf. The data to be
720  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
721  * Operation by the NFC, the data is written to NAND Flash */
722 static void mxc_nand_write_buf(struct mtd_info *mtd,
723                                 const u_char *buf, int len)
724 {
725         struct nand_chip *nand_chip = mtd->priv;
726         struct mxc_nand_host *host = nand_chip->priv;
727         u16 col = host->buf_start;
728         int n = mtd->oobsize + mtd->writesize - col;
729
730         n = min(n, len);
731
732         memcpy(host->data_buf + col, buf, n);
733
734         host->buf_start += n;
735 }
736
737 /* Read the data buffer from the NAND Flash. To read the data from NAND
738  * Flash first the data output cycle is initiated by the NFC, which copies
739  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
740  */
741 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
742 {
743         struct nand_chip *nand_chip = mtd->priv;
744         struct mxc_nand_host *host = nand_chip->priv;
745         u16 col = host->buf_start;
746         int n = mtd->oobsize + mtd->writesize - col;
747
748         n = min(n, len);
749
750         memcpy(buf, host->data_buf + col, n);
751
752         host->buf_start += n;
753 }
754
755 /* This function is used by upper layer for select and
756  * deselect of the NAND chip */
757 static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
758 {
759         struct nand_chip *nand_chip = mtd->priv;
760         struct mxc_nand_host *host = nand_chip->priv;
761
762         if (chip == -1) {
763                 /* Disable the NFC clock */
764                 if (host->clk_act) {
765                         clk_disable_unprepare(host->clk);
766                         host->clk_act = 0;
767                 }
768                 return;
769         }
770
771         if (!host->clk_act) {
772                 /* Enable the NFC clock */
773                 clk_prepare_enable(host->clk);
774                 host->clk_act = 1;
775         }
776 }
777
778 static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
779 {
780         struct nand_chip *nand_chip = mtd->priv;
781         struct mxc_nand_host *host = nand_chip->priv;
782
783         if (chip == -1) {
784                 /* Disable the NFC clock */
785                 if (host->clk_act) {
786                         clk_disable_unprepare(host->clk);
787                         host->clk_act = 0;
788                 }
789                 return;
790         }
791
792         if (!host->clk_act) {
793                 /* Enable the NFC clock */
794                 clk_prepare_enable(host->clk);
795                 host->clk_act = 1;
796         }
797
798         host->active_cs = chip;
799         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
800 }
801
802 /*
803  * Function to transfer data to/from spare area.
804  */
805 static void copy_spare(struct mtd_info *mtd, bool bfrom)
806 {
807         struct nand_chip *this = mtd->priv;
808         struct mxc_nand_host *host = this->priv;
809         u16 i, j;
810         u16 n = mtd->writesize >> 9;
811         u8 *d = host->data_buf + mtd->writesize;
812         u8 __iomem *s = host->spare0;
813         u16 t = host->devtype_data->spare_len;
814
815         j = (mtd->oobsize / n >> 1) << 1;
816
817         if (bfrom) {
818                 for (i = 0; i < n - 1; i++)
819                         memcpy32_fromio(d + i * j, s + i * t, j);
820
821                 /* the last section */
822                 memcpy32_fromio(d + i * j, s + i * t, mtd->oobsize - i * j);
823         } else {
824                 for (i = 0; i < n - 1; i++)
825                         memcpy32_toio(&s[i * t], &d[i * j], j);
826
827                 /* the last section */
828                 memcpy32_toio(&s[i * t], &d[i * j], mtd->oobsize - i * j);
829         }
830 }
831
832 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
833 {
834         struct nand_chip *nand_chip = mtd->priv;
835         struct mxc_nand_host *host = nand_chip->priv;
836
837         /* Write out column address, if necessary */
838         if (column != -1) {
839                 /*
840                  * MXC NANDFC can only perform full page+spare or
841                  * spare-only read/write.  When the upper layers
842                  * perform a read/write buf operation, the saved column
843                   * address is used to index into the full page.
844                  */
845                 host->devtype_data->send_addr(host, 0, page_addr == -1);
846                 if (mtd->writesize > 512)
847                         /* another col addr cycle for 2k page */
848                         host->devtype_data->send_addr(host, 0, false);
849         }
850
851         /* Write out page address, if necessary */
852         if (page_addr != -1) {
853                 /* paddr_0 - p_addr_7 */
854                 host->devtype_data->send_addr(host, (page_addr & 0xff), false);
855
856                 if (mtd->writesize > 512) {
857                         if (mtd->size >= 0x10000000) {
858                                 /* paddr_8 - paddr_15 */
859                                 host->devtype_data->send_addr(host,
860                                                 (page_addr >> 8) & 0xff,
861                                                 false);
862                                 host->devtype_data->send_addr(host,
863                                                 (page_addr >> 16) & 0xff,
864                                                 true);
865                         } else
866                                 /* paddr_8 - paddr_15 */
867                                 host->devtype_data->send_addr(host,
868                                                 (page_addr >> 8) & 0xff, true);
869                 } else {
870                         /* One more address cycle for higher density devices */
871                         if (mtd->size >= 0x4000000) {
872                                 /* paddr_8 - paddr_15 */
873                                 host->devtype_data->send_addr(host,
874                                                 (page_addr >> 8) & 0xff,
875                                                 false);
876                                 host->devtype_data->send_addr(host,
877                                                 (page_addr >> 16) & 0xff,
878                                                 true);
879                         } else
880                                 /* paddr_8 - paddr_15 */
881                                 host->devtype_data->send_addr(host,
882                                                 (page_addr >> 8) & 0xff, true);
883                 }
884         }
885 }
886
887 /*
888  * v2 and v3 type controllers can do 4bit or 8bit ecc depending
889  * on how much oob the nand chip has. For 8bit ecc we need at least
890  * 26 bytes of oob data per 512 byte block.
891  */
892 static int get_eccsize(struct mtd_info *mtd)
893 {
894         int oobbytes_per_512 = 0;
895
896         oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
897
898         if (oobbytes_per_512 < 26)
899                 return 4;
900         else
901                 return 8;
902 }
903
904 static void preset_v1(struct mtd_info *mtd)
905 {
906         struct nand_chip *nand_chip = mtd->priv;
907         struct mxc_nand_host *host = nand_chip->priv;
908         uint16_t config1 = 0;
909
910         if (nand_chip->ecc.mode == NAND_ECC_HW)
911                 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
912
913         if (!host->devtype_data->irqpending_quirk)
914                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
915
916         host->eccsize = 1;
917
918         writew(config1, NFC_V1_V2_CONFIG1);
919         /* preset operation */
920
921         /* Unlock the internal RAM Buffer */
922         writew(0x2, NFC_V1_V2_CONFIG);
923
924         /* Blocks to be unlocked */
925         writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
926         writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
927
928         /* Unlock Block Command for given address range */
929         writew(0x4, NFC_V1_V2_WRPROT);
930 }
931
932 static void preset_v2(struct mtd_info *mtd)
933 {
934         struct nand_chip *nand_chip = mtd->priv;
935         struct mxc_nand_host *host = nand_chip->priv;
936         uint16_t config1 = 0;
937
938         if (nand_chip->ecc.mode == NAND_ECC_HW)
939                 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
940
941         config1 |= NFC_V2_CONFIG1_FP_INT;
942
943         if (!host->devtype_data->irqpending_quirk)
944                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
945
946         if (mtd->writesize) {
947                 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
948
949                 host->eccsize = get_eccsize(mtd);
950                 if (host->eccsize == 4)
951                         config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
952
953                 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
954         } else {
955                 host->eccsize = 1;
956         }
957
958         writew(config1, NFC_V1_V2_CONFIG1);
959         /* preset operation */
960
961         /* Unlock the internal RAM Buffer */
962         writew(0x2, NFC_V1_V2_CONFIG);
963
964         /* Blocks to be unlocked */
965         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
966         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
967         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
968         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
969         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
970         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
971         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
972         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
973
974         /* Unlock Block Command for given address range */
975         writew(0x4, NFC_V1_V2_WRPROT);
976 }
977
978 static void preset_v3(struct mtd_info *mtd)
979 {
980         struct nand_chip *chip = mtd->priv;
981         struct mxc_nand_host *host = chip->priv;
982         uint32_t config2, config3;
983         int i, addr_phases;
984
985         writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
986         writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
987
988         /* Unlock the internal RAM Buffer */
989         writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
990                         NFC_V3_WRPROT);
991
992         /* Blocks to be unlocked */
993         for (i = 0; i < NAND_MAX_CHIPS; i++)
994                 writel(0x0 |    (0xffff << 16),
995                                 NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
996
997         writel(0, NFC_V3_IPC);
998
999         config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1000                 NFC_V3_CONFIG2_2CMD_PHASES |
1001                 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1002                 NFC_V3_CONFIG2_ST_CMD(0x70) |
1003                 NFC_V3_CONFIG2_INT_MSK |
1004                 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1005
1006         if (chip->ecc.mode == NAND_ECC_HW)
1007                 config2 |= NFC_V3_CONFIG2_ECC_EN;
1008
1009         addr_phases = fls(chip->pagemask) >> 3;
1010
1011         if (mtd->writesize == 2048) {
1012                 config2 |= NFC_V3_CONFIG2_PS_2048;
1013                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1014         } else if (mtd->writesize == 4096) {
1015                 config2 |= NFC_V3_CONFIG2_PS_4096;
1016                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1017         } else {
1018                 config2 |= NFC_V3_CONFIG2_PS_512;
1019                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1020         }
1021
1022         if (mtd->writesize) {
1023                 config2 |= NFC_V3_CONFIG2_PPB(
1024                                 ffs(mtd->erasesize / mtd->writesize) - 6,
1025                                 host->devtype_data->ppb_shift);
1026                 host->eccsize = get_eccsize(mtd);
1027                 if (host->eccsize == 8)
1028                         config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1029         }
1030
1031         writel(config2, NFC_V3_CONFIG2);
1032
1033         config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1034                         NFC_V3_CONFIG3_NO_SDMA |
1035                         NFC_V3_CONFIG3_RBB_MODE |
1036                         NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1037                         NFC_V3_CONFIG3_ADD_OP(0);
1038
1039         if (!(chip->options & NAND_BUSWIDTH_16))
1040                 config3 |= NFC_V3_CONFIG3_FW8;
1041
1042         writel(config3, NFC_V3_CONFIG3);
1043
1044         writel(0, NFC_V3_DELAY_LINE);
1045 }
1046
1047 /* Used by the upper layer to write command to NAND Flash for
1048  * different operations to be carried out on NAND Flash */
1049 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1050                                 int column, int page_addr)
1051 {
1052         struct nand_chip *nand_chip = mtd->priv;
1053         struct mxc_nand_host *host = nand_chip->priv;
1054
1055         pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1056               command, column, page_addr);
1057
1058         /* Reset command state information */
1059         host->status_request = false;
1060
1061         /* Command pre-processing step */
1062         switch (command) {
1063         case NAND_CMD_RESET:
1064                 host->devtype_data->preset(mtd);
1065                 host->devtype_data->send_cmd(host, command, false);
1066                 break;
1067
1068         case NAND_CMD_STATUS:
1069                 host->buf_start = 0;
1070                 host->status_request = true;
1071
1072                 host->devtype_data->send_cmd(host, command, true);
1073                 mxc_do_addr_cycle(mtd, column, page_addr);
1074                 break;
1075
1076         case NAND_CMD_READ0:
1077         case NAND_CMD_READOOB:
1078                 if (command == NAND_CMD_READ0)
1079                         host->buf_start = column;
1080                 else
1081                         host->buf_start = column + mtd->writesize;
1082
1083                 command = NAND_CMD_READ0; /* only READ0 is valid */
1084
1085                 host->devtype_data->send_cmd(host, command, false);
1086                 mxc_do_addr_cycle(mtd, column, page_addr);
1087
1088                 if (mtd->writesize > 512)
1089                         host->devtype_data->send_cmd(host,
1090                                         NAND_CMD_READSTART, true);
1091
1092                 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1093
1094                 memcpy32_fromio(host->data_buf, host->main_area0,
1095                                 mtd->writesize);
1096                 copy_spare(mtd, true);
1097                 break;
1098
1099         case NAND_CMD_SEQIN:
1100                 if (column >= mtd->writesize)
1101                         /* call ourself to read a page */
1102                         mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1103
1104                 host->buf_start = column;
1105
1106                 host->devtype_data->send_cmd(host, command, false);
1107                 mxc_do_addr_cycle(mtd, column, page_addr);
1108                 break;
1109
1110         case NAND_CMD_PAGEPROG:
1111                 memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1112                 copy_spare(mtd, false);
1113                 host->devtype_data->send_page(mtd, NFC_INPUT);
1114                 host->devtype_data->send_cmd(host, command, true);
1115                 mxc_do_addr_cycle(mtd, column, page_addr);
1116                 break;
1117
1118         case NAND_CMD_READID:
1119                 host->devtype_data->send_cmd(host, command, true);
1120                 mxc_do_addr_cycle(mtd, column, page_addr);
1121                 host->devtype_data->send_read_id(host);
1122                 host->buf_start = column;
1123                 break;
1124
1125         case NAND_CMD_ERASE1:
1126         case NAND_CMD_ERASE2:
1127                 host->devtype_data->send_cmd(host, command, false);
1128                 mxc_do_addr_cycle(mtd, column, page_addr);
1129
1130                 break;
1131         }
1132 }
1133
1134 /*
1135  * The generic flash bbt decriptors overlap with our ecc
1136  * hardware, so define some i.MX specific ones.
1137  */
1138 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1139 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1140
1141 static struct nand_bbt_descr bbt_main_descr = {
1142         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1143             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1144         .offs = 0,
1145         .len = 4,
1146         .veroffs = 4,
1147         .maxblocks = 4,
1148         .pattern = bbt_pattern,
1149 };
1150
1151 static struct nand_bbt_descr bbt_mirror_descr = {
1152         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1153             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1154         .offs = 0,
1155         .len = 4,
1156         .veroffs = 4,
1157         .maxblocks = 4,
1158         .pattern = mirror_pattern,
1159 };
1160
1161 /* v1 + irqpending_quirk: i.MX21 */
1162 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1163         .preset = preset_v1,
1164         .send_cmd = send_cmd_v1_v2,
1165         .send_addr = send_addr_v1_v2,
1166         .send_page = send_page_v1,
1167         .send_read_id = send_read_id_v1_v2,
1168         .get_dev_status = get_dev_status_v1_v2,
1169         .check_int = check_int_v1_v2,
1170         .irq_control = irq_control_v1_v2,
1171         .get_ecc_status = get_ecc_status_v1,
1172         .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1173         .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1174         .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1175         .select_chip = mxc_nand_select_chip_v1_v3,
1176         .correct_data = mxc_nand_correct_data_v1,
1177         .irqpending_quirk = 1,
1178         .needs_ip = 0,
1179         .regs_offset = 0xe00,
1180         .spare0_offset = 0x800,
1181         .spare_len = 16,
1182         .eccbytes = 3,
1183         .eccsize = 1,
1184 };
1185
1186 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1187 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1188         .preset = preset_v1,
1189         .send_cmd = send_cmd_v1_v2,
1190         .send_addr = send_addr_v1_v2,
1191         .send_page = send_page_v1,
1192         .send_read_id = send_read_id_v1_v2,
1193         .get_dev_status = get_dev_status_v1_v2,
1194         .check_int = check_int_v1_v2,
1195         .irq_control = irq_control_v1_v2,
1196         .get_ecc_status = get_ecc_status_v1,
1197         .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1198         .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1199         .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1200         .select_chip = mxc_nand_select_chip_v1_v3,
1201         .correct_data = mxc_nand_correct_data_v1,
1202         .irqpending_quirk = 0,
1203         .needs_ip = 0,
1204         .regs_offset = 0xe00,
1205         .spare0_offset = 0x800,
1206         .axi_offset = 0,
1207         .spare_len = 16,
1208         .eccbytes = 3,
1209         .eccsize = 1,
1210 };
1211
1212 /* v21: i.MX25, i.MX35 */
1213 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1214         .preset = preset_v2,
1215         .send_cmd = send_cmd_v1_v2,
1216         .send_addr = send_addr_v1_v2,
1217         .send_page = send_page_v2,
1218         .send_read_id = send_read_id_v1_v2,
1219         .get_dev_status = get_dev_status_v1_v2,
1220         .check_int = check_int_v1_v2,
1221         .irq_control = irq_control_v1_v2,
1222         .get_ecc_status = get_ecc_status_v2,
1223         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1224         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1225         .ecclayout_4k = &nandv2_hw_eccoob_4k,
1226         .select_chip = mxc_nand_select_chip_v2,
1227         .correct_data = mxc_nand_correct_data_v2_v3,
1228         .irqpending_quirk = 0,
1229         .needs_ip = 0,
1230         .regs_offset = 0x1e00,
1231         .spare0_offset = 0x1000,
1232         .axi_offset = 0,
1233         .spare_len = 64,
1234         .eccbytes = 9,
1235         .eccsize = 0,
1236 };
1237
1238 /* v3.2a: i.MX51 */
1239 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1240         .preset = preset_v3,
1241         .send_cmd = send_cmd_v3,
1242         .send_addr = send_addr_v3,
1243         .send_page = send_page_v3,
1244         .send_read_id = send_read_id_v3,
1245         .get_dev_status = get_dev_status_v3,
1246         .check_int = check_int_v3,
1247         .irq_control = irq_control_v3,
1248         .get_ecc_status = get_ecc_status_v3,
1249         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1250         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1251         .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1252         .select_chip = mxc_nand_select_chip_v1_v3,
1253         .correct_data = mxc_nand_correct_data_v2_v3,
1254         .irqpending_quirk = 0,
1255         .needs_ip = 1,
1256         .regs_offset = 0,
1257         .spare0_offset = 0x1000,
1258         .axi_offset = 0x1e00,
1259         .spare_len = 64,
1260         .eccbytes = 0,
1261         .eccsize = 0,
1262         .ppb_shift = 7,
1263 };
1264
1265 /* v3.2b: i.MX53 */
1266 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1267         .preset = preset_v3,
1268         .send_cmd = send_cmd_v3,
1269         .send_addr = send_addr_v3,
1270         .send_page = send_page_v3,
1271         .send_read_id = send_read_id_v3,
1272         .get_dev_status = get_dev_status_v3,
1273         .check_int = check_int_v3,
1274         .irq_control = irq_control_v3,
1275         .get_ecc_status = get_ecc_status_v3,
1276         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1277         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1278         .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1279         .select_chip = mxc_nand_select_chip_v1_v3,
1280         .correct_data = mxc_nand_correct_data_v2_v3,
1281         .irqpending_quirk = 0,
1282         .needs_ip = 1,
1283         .regs_offset = 0,
1284         .spare0_offset = 0x1000,
1285         .axi_offset = 0x1e00,
1286         .spare_len = 64,
1287         .eccbytes = 0,
1288         .eccsize = 0,
1289         .ppb_shift = 8,
1290 };
1291
1292 static inline int is_imx21_nfc(struct mxc_nand_host *host)
1293 {
1294         return host->devtype_data == &imx21_nand_devtype_data;
1295 }
1296
1297 static inline int is_imx27_nfc(struct mxc_nand_host *host)
1298 {
1299         return host->devtype_data == &imx27_nand_devtype_data;
1300 }
1301
1302 static inline int is_imx25_nfc(struct mxc_nand_host *host)
1303 {
1304         return host->devtype_data == &imx25_nand_devtype_data;
1305 }
1306
1307 static inline int is_imx51_nfc(struct mxc_nand_host *host)
1308 {
1309         return host->devtype_data == &imx51_nand_devtype_data;
1310 }
1311
1312 static inline int is_imx53_nfc(struct mxc_nand_host *host)
1313 {
1314         return host->devtype_data == &imx53_nand_devtype_data;
1315 }
1316
1317 static struct platform_device_id mxcnd_devtype[] = {
1318         {
1319                 .name = "imx21-nand",
1320                 .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1321         }, {
1322                 .name = "imx27-nand",
1323                 .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1324         }, {
1325                 .name = "imx25-nand",
1326                 .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1327         }, {
1328                 .name = "imx51-nand",
1329                 .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1330         }, {
1331                 .name = "imx53-nand",
1332                 .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1333         }, {
1334                 /* sentinel */
1335         }
1336 };
1337 MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1338
1339 #ifdef CONFIG_OF_MTD
1340 static const struct of_device_id mxcnd_dt_ids[] = {
1341         {
1342                 .compatible = "fsl,imx21-nand",
1343                 .data = &imx21_nand_devtype_data,
1344         }, {
1345                 .compatible = "fsl,imx27-nand",
1346                 .data = &imx27_nand_devtype_data,
1347         }, {
1348                 .compatible = "fsl,imx25-nand",
1349                 .data = &imx25_nand_devtype_data,
1350         }, {
1351                 .compatible = "fsl,imx51-nand",
1352                 .data = &imx51_nand_devtype_data,
1353         }, {
1354                 .compatible = "fsl,imx53-nand",
1355                 .data = &imx53_nand_devtype_data,
1356         },
1357         { /* sentinel */ }
1358 };
1359
1360 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1361 {
1362         struct device_node *np = host->dev->of_node;
1363         struct mxc_nand_platform_data *pdata = &host->pdata;
1364         const struct of_device_id *of_id =
1365                 of_match_device(mxcnd_dt_ids, host->dev);
1366         int buswidth;
1367
1368         if (!np)
1369                 return 1;
1370
1371         if (of_get_nand_ecc_mode(np) >= 0)
1372                 pdata->hw_ecc = 1;
1373
1374         pdata->flash_bbt = of_get_nand_on_flash_bbt(np);
1375
1376         buswidth = of_get_nand_bus_width(np);
1377         if (buswidth < 0)
1378                 return buswidth;
1379
1380         pdata->width = buswidth / 8;
1381
1382         host->devtype_data = of_id->data;
1383
1384         return 0;
1385 }
1386 #else
1387 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1388 {
1389         return 1;
1390 }
1391 #endif
1392
1393 static int mxcnd_probe(struct platform_device *pdev)
1394 {
1395         struct nand_chip *this;
1396         struct mtd_info *mtd;
1397         struct mxc_nand_host *host;
1398         struct resource *res;
1399         int err = 0;
1400
1401         /* Allocate memory for MTD device structure and private data */
1402         host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host) +
1403                         NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE, GFP_KERNEL);
1404         if (!host)
1405                 return -ENOMEM;
1406
1407         host->data_buf = (uint8_t *)(host + 1);
1408
1409         host->dev = &pdev->dev;
1410         /* structures must be linked */
1411         this = &host->nand;
1412         mtd = &host->mtd;
1413         mtd->priv = this;
1414         mtd->owner = THIS_MODULE;
1415         mtd->dev.parent = &pdev->dev;
1416         mtd->name = DRIVER_NAME;
1417
1418         /* 50 us command delay time */
1419         this->chip_delay = 5;
1420
1421         this->priv = host;
1422         this->dev_ready = mxc_nand_dev_ready;
1423         this->cmdfunc = mxc_nand_command;
1424         this->read_byte = mxc_nand_read_byte;
1425         this->read_word = mxc_nand_read_word;
1426         this->write_buf = mxc_nand_write_buf;
1427         this->read_buf = mxc_nand_read_buf;
1428
1429         host->clk = devm_clk_get(&pdev->dev, NULL);
1430         if (IS_ERR(host->clk))
1431                 return PTR_ERR(host->clk);
1432
1433         err = mxcnd_probe_dt(host);
1434         if (err > 0) {
1435                 struct mxc_nand_platform_data *pdata =
1436                                         dev_get_platdata(&pdev->dev);
1437                 if (pdata) {
1438                         host->pdata = *pdata;
1439                         host->devtype_data = (struct mxc_nand_devtype_data *)
1440                                                 pdev->id_entry->driver_data;
1441                 } else {
1442                         err = -ENODEV;
1443                 }
1444         }
1445         if (err < 0)
1446                 return err;
1447
1448         if (host->devtype_data->needs_ip) {
1449                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1450                 host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1451                 if (IS_ERR(host->regs_ip))
1452                         return PTR_ERR(host->regs_ip);
1453
1454                 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1455         } else {
1456                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1457         }
1458
1459         host->base = devm_ioremap_resource(&pdev->dev, res);
1460         if (IS_ERR(host->base))
1461                 return PTR_ERR(host->base);
1462
1463         host->main_area0 = host->base;
1464
1465         if (host->devtype_data->regs_offset)
1466                 host->regs = host->base + host->devtype_data->regs_offset;
1467         host->spare0 = host->base + host->devtype_data->spare0_offset;
1468         if (host->devtype_data->axi_offset)
1469                 host->regs_axi = host->base + host->devtype_data->axi_offset;
1470
1471         this->ecc.bytes = host->devtype_data->eccbytes;
1472         host->eccsize = host->devtype_data->eccsize;
1473
1474         this->select_chip = host->devtype_data->select_chip;
1475         this->ecc.size = 512;
1476         this->ecc.layout = host->devtype_data->ecclayout_512;
1477
1478         if (host->pdata.hw_ecc) {
1479                 this->ecc.calculate = mxc_nand_calculate_ecc;
1480                 this->ecc.hwctl = mxc_nand_enable_hwecc;
1481                 this->ecc.correct = host->devtype_data->correct_data;
1482                 this->ecc.mode = NAND_ECC_HW;
1483         } else {
1484                 this->ecc.mode = NAND_ECC_SOFT;
1485         }
1486
1487         /* NAND bus width determines access functions used by upper layer */
1488         if (host->pdata.width == 2)
1489                 this->options |= NAND_BUSWIDTH_16;
1490
1491         if (host->pdata.flash_bbt) {
1492                 this->bbt_td = &bbt_main_descr;
1493                 this->bbt_md = &bbt_mirror_descr;
1494                 /* update flash based bbt */
1495                 this->bbt_options |= NAND_BBT_USE_FLASH;
1496         }
1497
1498         init_completion(&host->op_completion);
1499
1500         host->irq = platform_get_irq(pdev, 0);
1501
1502         /*
1503          * Use host->devtype_data->irq_control() here instead of irq_control()
1504          * because we must not disable_irq_nosync without having requested the
1505          * irq.
1506          */
1507         host->devtype_data->irq_control(host, 0);
1508
1509         err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1510                         IRQF_DISABLED, DRIVER_NAME, host);
1511         if (err)
1512                 return err;
1513
1514         clk_prepare_enable(host->clk);
1515         host->clk_act = 1;
1516
1517         /*
1518          * Now that we "own" the interrupt make sure the interrupt mask bit is
1519          * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1520          * on this machine.
1521          */
1522         if (host->devtype_data->irqpending_quirk) {
1523                 disable_irq_nosync(host->irq);
1524                 host->devtype_data->irq_control(host, 1);
1525         }
1526
1527         /* first scan to find the device and get the page size */
1528         if (nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL)) {
1529                 err = -ENXIO;
1530                 goto escan;
1531         }
1532
1533         /* Call preset again, with correct writesize this time */
1534         host->devtype_data->preset(mtd);
1535
1536         if (mtd->writesize == 2048)
1537                 this->ecc.layout = host->devtype_data->ecclayout_2k;
1538         else if (mtd->writesize == 4096)
1539                 this->ecc.layout = host->devtype_data->ecclayout_4k;
1540
1541         if (this->ecc.mode == NAND_ECC_HW) {
1542                 if (is_imx21_nfc(host) || is_imx27_nfc(host))
1543                         this->ecc.strength = 1;
1544                 else
1545                         this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1546         }
1547
1548         /* second phase scan */
1549         if (nand_scan_tail(mtd)) {
1550                 err = -ENXIO;
1551                 goto escan;
1552         }
1553
1554         /* Register the partitions */
1555         mtd_device_parse_register(mtd, part_probes,
1556                         &(struct mtd_part_parser_data){
1557                                 .of_node = pdev->dev.of_node,
1558                         },
1559                         host->pdata.parts,
1560                         host->pdata.nr_parts);
1561
1562         platform_set_drvdata(pdev, host);
1563
1564         return 0;
1565
1566 escan:
1567         if (host->clk_act)
1568                 clk_disable_unprepare(host->clk);
1569
1570         return err;
1571 }
1572
1573 static int mxcnd_remove(struct platform_device *pdev)
1574 {
1575         struct mxc_nand_host *host = platform_get_drvdata(pdev);
1576
1577         nand_release(&host->mtd);
1578
1579         return 0;
1580 }
1581
1582 static struct platform_driver mxcnd_driver = {
1583         .driver = {
1584                    .name = DRIVER_NAME,
1585                    .owner = THIS_MODULE,
1586                    .of_match_table = of_match_ptr(mxcnd_dt_ids),
1587         },
1588         .id_table = mxcnd_devtype,
1589         .probe = mxcnd_probe,
1590         .remove = mxcnd_remove,
1591 };
1592 module_platform_driver(mxcnd_driver);
1593
1594 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1595 MODULE_DESCRIPTION("MXC NAND MTD driver");
1596 MODULE_LICENSE("GPL");