]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/mtd/nand/nuc900_nand.c
Merge branch 'WIP.x86/boot' into x86/boot, to pick up ready branch
[karo-tx-linux.git] / drivers / mtd / nand / nuc900_nand.c
1 /*
2  * Copyright © 2009 Nuvoton technology corporation.
3  *
4  * Wan ZongShun <mcuos.com@gmail.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation;version 2 of the License.
9  *
10  */
11
12 #include <linux/slab.h>
13 #include <linux/module.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/platform_device.h>
17 #include <linux/delay.h>
18 #include <linux/clk.h>
19 #include <linux/err.h>
20
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/nand.h>
23 #include <linux/mtd/partitions.h>
24
25 #define REG_FMICSR      0x00
26 #define REG_SMCSR       0xa0
27 #define REG_SMISR       0xac
28 #define REG_SMCMD       0xb0
29 #define REG_SMADDR      0xb4
30 #define REG_SMDATA      0xb8
31
32 #define RESET_FMI       0x01
33 #define NAND_EN         0x08
34 #define READYBUSY       (0x01 << 18)
35
36 #define SWRST           0x01
37 #define PSIZE           (0x01 << 3)
38 #define DMARWEN         (0x03 << 1)
39 #define BUSWID          (0x01 << 4)
40 #define ECC4EN          (0x01 << 5)
41 #define WP              (0x01 << 24)
42 #define NANDCS          (0x01 << 25)
43 #define ENDADDR         (0x01 << 31)
44
45 #define read_data_reg(dev)              \
46         __raw_readl((dev)->reg + REG_SMDATA)
47
48 #define write_data_reg(dev, val)        \
49         __raw_writel((val), (dev)->reg + REG_SMDATA)
50
51 #define write_cmd_reg(dev, val)         \
52         __raw_writel((val), (dev)->reg + REG_SMCMD)
53
54 #define write_addr_reg(dev, val)        \
55         __raw_writel((val), (dev)->reg + REG_SMADDR)
56
57 struct nuc900_nand {
58         struct nand_chip chip;
59         void __iomem *reg;
60         struct clk *clk;
61         spinlock_t lock;
62 };
63
64 static inline struct nuc900_nand *mtd_to_nuc900(struct mtd_info *mtd)
65 {
66         return container_of(mtd_to_nand(mtd), struct nuc900_nand, chip);
67 }
68
69 static const struct mtd_partition partitions[] = {
70         {
71          .name = "NAND FS 0",
72          .offset = 0,
73          .size = 8 * 1024 * 1024
74         },
75         {
76          .name = "NAND FS 1",
77          .offset = MTDPART_OFS_APPEND,
78          .size = MTDPART_SIZ_FULL
79         }
80 };
81
82 static unsigned char nuc900_nand_read_byte(struct mtd_info *mtd)
83 {
84         unsigned char ret;
85         struct nuc900_nand *nand = mtd_to_nuc900(mtd);
86
87         ret = (unsigned char)read_data_reg(nand);
88
89         return ret;
90 }
91
92 static void nuc900_nand_read_buf(struct mtd_info *mtd,
93                                  unsigned char *buf, int len)
94 {
95         int i;
96         struct nuc900_nand *nand = mtd_to_nuc900(mtd);
97
98         for (i = 0; i < len; i++)
99                 buf[i] = (unsigned char)read_data_reg(nand);
100 }
101
102 static void nuc900_nand_write_buf(struct mtd_info *mtd,
103                                   const unsigned char *buf, int len)
104 {
105         int i;
106         struct nuc900_nand *nand = mtd_to_nuc900(mtd);
107
108         for (i = 0; i < len; i++)
109                 write_data_reg(nand, buf[i]);
110 }
111
112 static int nuc900_check_rb(struct nuc900_nand *nand)
113 {
114         unsigned int val;
115         spin_lock(&nand->lock);
116         val = __raw_readl(nand->reg + REG_SMISR);
117         val &= READYBUSY;
118         spin_unlock(&nand->lock);
119
120         return val;
121 }
122
123 static int nuc900_nand_devready(struct mtd_info *mtd)
124 {
125         struct nuc900_nand *nand = mtd_to_nuc900(mtd);
126         int ready;
127
128         ready = (nuc900_check_rb(nand)) ? 1 : 0;
129         return ready;
130 }
131
132 static void nuc900_nand_command_lp(struct mtd_info *mtd, unsigned int command,
133                                    int column, int page_addr)
134 {
135         register struct nand_chip *chip = mtd_to_nand(mtd);
136         struct nuc900_nand *nand = mtd_to_nuc900(mtd);
137
138         if (command == NAND_CMD_READOOB) {
139                 column += mtd->writesize;
140                 command = NAND_CMD_READ0;
141         }
142
143         write_cmd_reg(nand, command & 0xff);
144
145         if (column != -1 || page_addr != -1) {
146
147                 if (column != -1) {
148                         if (chip->options & NAND_BUSWIDTH_16 &&
149                                         !nand_opcode_8bits(command))
150                                 column >>= 1;
151                         write_addr_reg(nand, column);
152                         write_addr_reg(nand, column >> 8 | ENDADDR);
153                 }
154                 if (page_addr != -1) {
155                         write_addr_reg(nand, page_addr);
156
157                         if (chip->chipsize > (128 << 20)) {
158                                 write_addr_reg(nand, page_addr >> 8);
159                                 write_addr_reg(nand, page_addr >> 16 | ENDADDR);
160                         } else {
161                                 write_addr_reg(nand, page_addr >> 8 | ENDADDR);
162                         }
163                 }
164         }
165
166         switch (command) {
167         case NAND_CMD_CACHEDPROG:
168         case NAND_CMD_PAGEPROG:
169         case NAND_CMD_ERASE1:
170         case NAND_CMD_ERASE2:
171         case NAND_CMD_SEQIN:
172         case NAND_CMD_RNDIN:
173         case NAND_CMD_STATUS:
174                 return;
175
176         case NAND_CMD_RESET:
177                 if (chip->dev_ready)
178                         break;
179                 udelay(chip->chip_delay);
180
181                 write_cmd_reg(nand, NAND_CMD_STATUS);
182                 write_cmd_reg(nand, command);
183
184                 while (!nuc900_check_rb(nand))
185                         ;
186
187                 return;
188
189         case NAND_CMD_RNDOUT:
190                 write_cmd_reg(nand, NAND_CMD_RNDOUTSTART);
191                 return;
192
193         case NAND_CMD_READ0:
194
195                 write_cmd_reg(nand, NAND_CMD_READSTART);
196         default:
197
198                 if (!chip->dev_ready) {
199                         udelay(chip->chip_delay);
200                         return;
201                 }
202         }
203
204         /* Apply this short delay always to ensure that we do wait tWB in
205          * any case on any machine. */
206         ndelay(100);
207
208         while (!chip->dev_ready(mtd))
209                 ;
210 }
211
212
213 static void nuc900_nand_enable(struct nuc900_nand *nand)
214 {
215         unsigned int val;
216         spin_lock(&nand->lock);
217         __raw_writel(RESET_FMI, (nand->reg + REG_FMICSR));
218
219         val = __raw_readl(nand->reg + REG_FMICSR);
220
221         if (!(val & NAND_EN))
222                 __raw_writel(val | NAND_EN, nand->reg + REG_FMICSR);
223
224         val = __raw_readl(nand->reg + REG_SMCSR);
225
226         val &= ~(SWRST|PSIZE|DMARWEN|BUSWID|ECC4EN|NANDCS);
227         val |= WP;
228
229         __raw_writel(val, nand->reg + REG_SMCSR);
230
231         spin_unlock(&nand->lock);
232 }
233
234 static int nuc900_nand_probe(struct platform_device *pdev)
235 {
236         struct nuc900_nand *nuc900_nand;
237         struct nand_chip *chip;
238         struct mtd_info *mtd;
239         struct resource *res;
240
241         nuc900_nand = devm_kzalloc(&pdev->dev, sizeof(struct nuc900_nand),
242                                    GFP_KERNEL);
243         if (!nuc900_nand)
244                 return -ENOMEM;
245         chip = &(nuc900_nand->chip);
246         mtd = nand_to_mtd(chip);
247
248         mtd->dev.parent         = &pdev->dev;
249         spin_lock_init(&nuc900_nand->lock);
250
251         nuc900_nand->clk = devm_clk_get(&pdev->dev, NULL);
252         if (IS_ERR(nuc900_nand->clk))
253                 return -ENOENT;
254         clk_enable(nuc900_nand->clk);
255
256         chip->cmdfunc           = nuc900_nand_command_lp;
257         chip->dev_ready         = nuc900_nand_devready;
258         chip->read_byte         = nuc900_nand_read_byte;
259         chip->write_buf         = nuc900_nand_write_buf;
260         chip->read_buf          = nuc900_nand_read_buf;
261         chip->chip_delay        = 50;
262         chip->options           = 0;
263         chip->ecc.mode          = NAND_ECC_SOFT;
264         chip->ecc.algo          = NAND_ECC_HAMMING;
265
266         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
267         nuc900_nand->reg = devm_ioremap_resource(&pdev->dev, res);
268         if (IS_ERR(nuc900_nand->reg))
269                 return PTR_ERR(nuc900_nand->reg);
270
271         nuc900_nand_enable(nuc900_nand);
272
273         if (nand_scan(mtd, 1))
274                 return -ENXIO;
275
276         mtd_device_register(mtd, partitions, ARRAY_SIZE(partitions));
277
278         platform_set_drvdata(pdev, nuc900_nand);
279
280         return 0;
281 }
282
283 static int nuc900_nand_remove(struct platform_device *pdev)
284 {
285         struct nuc900_nand *nuc900_nand = platform_get_drvdata(pdev);
286
287         nand_release(nand_to_mtd(&nuc900_nand->chip));
288         clk_disable(nuc900_nand->clk);
289
290         return 0;
291 }
292
293 static struct platform_driver nuc900_nand_driver = {
294         .probe          = nuc900_nand_probe,
295         .remove         = nuc900_nand_remove,
296         .driver         = {
297                 .name   = "nuc900-fmi",
298         },
299 };
300
301 module_platform_driver(nuc900_nand_driver);
302
303 MODULE_AUTHOR("Wan ZongShun <mcuos.com@gmail.com>");
304 MODULE_DESCRIPTION("w90p910/NUC9xx nand driver!");
305 MODULE_LICENSE("GPL");
306 MODULE_ALIAS("platform:nuc900-fmi");