]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/broadcom/genet/bcmgenet.c
drm/nouveau/disp/nv04: avoid creation of output paths
[karo-tx-linux.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014-2017 Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #define pr_fmt(fmt)                             "bcmgenet: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46
47 #include <asm/unaligned.h>
48
49 #include "bcmgenet.h"
50
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT        4
53
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY       0
56
57 #define GENET_Q16_RX_BD_CNT     \
58         (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT     \
60         (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61
62 #define RX_BUF_LENGTH           2048
63 #define SKB_ALIGNMENT           32
64
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
68
69 #define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
70                                 TOTAL_DESC * DMA_DESC_SIZE)
71
72 #define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
73                                 TOTAL_DESC * DMA_DESC_SIZE)
74
75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76                                              void __iomem *d, u32 value)
77 {
78         __raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
79 }
80
81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82                                             void __iomem *d)
83 {
84         return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
85 }
86
87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
88                                     void __iomem *d,
89                                     dma_addr_t addr)
90 {
91         __raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
92
93         /* Register writes to GISB bus can take couple hundred nanoseconds
94          * and are done for each packet, save these expensive writes unless
95          * the platform is explicitly configured for 64-bits/LPAE.
96          */
97 #ifdef CONFIG_PHYS_ADDR_T_64BIT
98         if (priv->hw_params->flags & GENET_HAS_40BITS)
99                 __raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
100 #endif
101 }
102
103 /* Combined address + length/status setter */
104 static inline void dmadesc_set(struct bcmgenet_priv *priv,
105                                void __iomem *d, dma_addr_t addr, u32 val)
106 {
107         dmadesc_set_addr(priv, d, addr);
108         dmadesc_set_length_status(priv, d, val);
109 }
110
111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
112                                           void __iomem *d)
113 {
114         dma_addr_t addr;
115
116         addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
117
118         /* Register writes to GISB bus can take couple hundred nanoseconds
119          * and are done for each packet, save these expensive writes unless
120          * the platform is explicitly configured for 64-bits/LPAE.
121          */
122 #ifdef CONFIG_PHYS_ADDR_T_64BIT
123         if (priv->hw_params->flags & GENET_HAS_40BITS)
124                 addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
125 #endif
126         return addr;
127 }
128
129 #define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
130
131 #define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
132                                 NETIF_MSG_LINK)
133
134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
135 {
136         if (GENET_IS_V1(priv))
137                 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
138         else
139                 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
140 }
141
142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
143 {
144         if (GENET_IS_V1(priv))
145                 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
146         else
147                 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
148 }
149
150 /* These macros are defined to deal with register map change
151  * between GENET1.1 and GENET2. Only those currently being used
152  * by driver are defined.
153  */
154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
155 {
156         if (GENET_IS_V1(priv))
157                 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
158         else
159                 return __raw_readl(priv->base +
160                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162
163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
164 {
165         if (GENET_IS_V1(priv))
166                 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
167         else
168                 __raw_writel(val, priv->base +
169                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171
172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
173 {
174         if (GENET_IS_V1(priv))
175                 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
176         else
177                 return __raw_readl(priv->base +
178                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180
181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
182 {
183         if (GENET_IS_V1(priv))
184                 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
185         else
186                 __raw_writel(val, priv->base +
187                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189
190 /* RX/TX DMA register accessors */
191 enum dma_reg {
192         DMA_RING_CFG = 0,
193         DMA_CTRL,
194         DMA_STATUS,
195         DMA_SCB_BURST_SIZE,
196         DMA_ARB_CTRL,
197         DMA_PRIORITY_0,
198         DMA_PRIORITY_1,
199         DMA_PRIORITY_2,
200         DMA_INDEX2RING_0,
201         DMA_INDEX2RING_1,
202         DMA_INDEX2RING_2,
203         DMA_INDEX2RING_3,
204         DMA_INDEX2RING_4,
205         DMA_INDEX2RING_5,
206         DMA_INDEX2RING_6,
207         DMA_INDEX2RING_7,
208         DMA_RING0_TIMEOUT,
209         DMA_RING1_TIMEOUT,
210         DMA_RING2_TIMEOUT,
211         DMA_RING3_TIMEOUT,
212         DMA_RING4_TIMEOUT,
213         DMA_RING5_TIMEOUT,
214         DMA_RING6_TIMEOUT,
215         DMA_RING7_TIMEOUT,
216         DMA_RING8_TIMEOUT,
217         DMA_RING9_TIMEOUT,
218         DMA_RING10_TIMEOUT,
219         DMA_RING11_TIMEOUT,
220         DMA_RING12_TIMEOUT,
221         DMA_RING13_TIMEOUT,
222         DMA_RING14_TIMEOUT,
223         DMA_RING15_TIMEOUT,
224         DMA_RING16_TIMEOUT,
225 };
226
227 static const u8 bcmgenet_dma_regs_v3plus[] = {
228         [DMA_RING_CFG]          = 0x00,
229         [DMA_CTRL]              = 0x04,
230         [DMA_STATUS]            = 0x08,
231         [DMA_SCB_BURST_SIZE]    = 0x0C,
232         [DMA_ARB_CTRL]          = 0x2C,
233         [DMA_PRIORITY_0]        = 0x30,
234         [DMA_PRIORITY_1]        = 0x34,
235         [DMA_PRIORITY_2]        = 0x38,
236         [DMA_RING0_TIMEOUT]     = 0x2C,
237         [DMA_RING1_TIMEOUT]     = 0x30,
238         [DMA_RING2_TIMEOUT]     = 0x34,
239         [DMA_RING3_TIMEOUT]     = 0x38,
240         [DMA_RING4_TIMEOUT]     = 0x3c,
241         [DMA_RING5_TIMEOUT]     = 0x40,
242         [DMA_RING6_TIMEOUT]     = 0x44,
243         [DMA_RING7_TIMEOUT]     = 0x48,
244         [DMA_RING8_TIMEOUT]     = 0x4c,
245         [DMA_RING9_TIMEOUT]     = 0x50,
246         [DMA_RING10_TIMEOUT]    = 0x54,
247         [DMA_RING11_TIMEOUT]    = 0x58,
248         [DMA_RING12_TIMEOUT]    = 0x5c,
249         [DMA_RING13_TIMEOUT]    = 0x60,
250         [DMA_RING14_TIMEOUT]    = 0x64,
251         [DMA_RING15_TIMEOUT]    = 0x68,
252         [DMA_RING16_TIMEOUT]    = 0x6C,
253         [DMA_INDEX2RING_0]      = 0x70,
254         [DMA_INDEX2RING_1]      = 0x74,
255         [DMA_INDEX2RING_2]      = 0x78,
256         [DMA_INDEX2RING_3]      = 0x7C,
257         [DMA_INDEX2RING_4]      = 0x80,
258         [DMA_INDEX2RING_5]      = 0x84,
259         [DMA_INDEX2RING_6]      = 0x88,
260         [DMA_INDEX2RING_7]      = 0x8C,
261 };
262
263 static const u8 bcmgenet_dma_regs_v2[] = {
264         [DMA_RING_CFG]          = 0x00,
265         [DMA_CTRL]              = 0x04,
266         [DMA_STATUS]            = 0x08,
267         [DMA_SCB_BURST_SIZE]    = 0x0C,
268         [DMA_ARB_CTRL]          = 0x30,
269         [DMA_PRIORITY_0]        = 0x34,
270         [DMA_PRIORITY_1]        = 0x38,
271         [DMA_PRIORITY_2]        = 0x3C,
272         [DMA_RING0_TIMEOUT]     = 0x2C,
273         [DMA_RING1_TIMEOUT]     = 0x30,
274         [DMA_RING2_TIMEOUT]     = 0x34,
275         [DMA_RING3_TIMEOUT]     = 0x38,
276         [DMA_RING4_TIMEOUT]     = 0x3c,
277         [DMA_RING5_TIMEOUT]     = 0x40,
278         [DMA_RING6_TIMEOUT]     = 0x44,
279         [DMA_RING7_TIMEOUT]     = 0x48,
280         [DMA_RING8_TIMEOUT]     = 0x4c,
281         [DMA_RING9_TIMEOUT]     = 0x50,
282         [DMA_RING10_TIMEOUT]    = 0x54,
283         [DMA_RING11_TIMEOUT]    = 0x58,
284         [DMA_RING12_TIMEOUT]    = 0x5c,
285         [DMA_RING13_TIMEOUT]    = 0x60,
286         [DMA_RING14_TIMEOUT]    = 0x64,
287         [DMA_RING15_TIMEOUT]    = 0x68,
288         [DMA_RING16_TIMEOUT]    = 0x6C,
289 };
290
291 static const u8 bcmgenet_dma_regs_v1[] = {
292         [DMA_CTRL]              = 0x00,
293         [DMA_STATUS]            = 0x04,
294         [DMA_SCB_BURST_SIZE]    = 0x0C,
295         [DMA_ARB_CTRL]          = 0x30,
296         [DMA_PRIORITY_0]        = 0x34,
297         [DMA_PRIORITY_1]        = 0x38,
298         [DMA_PRIORITY_2]        = 0x3C,
299         [DMA_RING0_TIMEOUT]     = 0x2C,
300         [DMA_RING1_TIMEOUT]     = 0x30,
301         [DMA_RING2_TIMEOUT]     = 0x34,
302         [DMA_RING3_TIMEOUT]     = 0x38,
303         [DMA_RING4_TIMEOUT]     = 0x3c,
304         [DMA_RING5_TIMEOUT]     = 0x40,
305         [DMA_RING6_TIMEOUT]     = 0x44,
306         [DMA_RING7_TIMEOUT]     = 0x48,
307         [DMA_RING8_TIMEOUT]     = 0x4c,
308         [DMA_RING9_TIMEOUT]     = 0x50,
309         [DMA_RING10_TIMEOUT]    = 0x54,
310         [DMA_RING11_TIMEOUT]    = 0x58,
311         [DMA_RING12_TIMEOUT]    = 0x5c,
312         [DMA_RING13_TIMEOUT]    = 0x60,
313         [DMA_RING14_TIMEOUT]    = 0x64,
314         [DMA_RING15_TIMEOUT]    = 0x68,
315         [DMA_RING16_TIMEOUT]    = 0x6C,
316 };
317
318 /* Set at runtime once bcmgenet version is known */
319 static const u8 *bcmgenet_dma_regs;
320
321 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
322 {
323         return netdev_priv(dev_get_drvdata(dev));
324 }
325
326 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
327                                       enum dma_reg r)
328 {
329         return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
330                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
331 }
332
333 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
334                                         u32 val, enum dma_reg r)
335 {
336         __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
337                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
338 }
339
340 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
341                                       enum dma_reg r)
342 {
343         return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
344                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
345 }
346
347 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
348                                         u32 val, enum dma_reg r)
349 {
350         __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
351                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
352 }
353
354 /* RDMA/TDMA ring registers and accessors
355  * we merge the common fields and just prefix with T/D the registers
356  * having different meaning depending on the direction
357  */
358 enum dma_ring_reg {
359         TDMA_READ_PTR = 0,
360         RDMA_WRITE_PTR = TDMA_READ_PTR,
361         TDMA_READ_PTR_HI,
362         RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
363         TDMA_CONS_INDEX,
364         RDMA_PROD_INDEX = TDMA_CONS_INDEX,
365         TDMA_PROD_INDEX,
366         RDMA_CONS_INDEX = TDMA_PROD_INDEX,
367         DMA_RING_BUF_SIZE,
368         DMA_START_ADDR,
369         DMA_START_ADDR_HI,
370         DMA_END_ADDR,
371         DMA_END_ADDR_HI,
372         DMA_MBUF_DONE_THRESH,
373         TDMA_FLOW_PERIOD,
374         RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
375         TDMA_WRITE_PTR,
376         RDMA_READ_PTR = TDMA_WRITE_PTR,
377         TDMA_WRITE_PTR_HI,
378         RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
379 };
380
381 /* GENET v4 supports 40-bits pointer addressing
382  * for obvious reasons the LO and HI word parts
383  * are contiguous, but this offsets the other
384  * registers.
385  */
386 static const u8 genet_dma_ring_regs_v4[] = {
387         [TDMA_READ_PTR]                 = 0x00,
388         [TDMA_READ_PTR_HI]              = 0x04,
389         [TDMA_CONS_INDEX]               = 0x08,
390         [TDMA_PROD_INDEX]               = 0x0C,
391         [DMA_RING_BUF_SIZE]             = 0x10,
392         [DMA_START_ADDR]                = 0x14,
393         [DMA_START_ADDR_HI]             = 0x18,
394         [DMA_END_ADDR]                  = 0x1C,
395         [DMA_END_ADDR_HI]               = 0x20,
396         [DMA_MBUF_DONE_THRESH]          = 0x24,
397         [TDMA_FLOW_PERIOD]              = 0x28,
398         [TDMA_WRITE_PTR]                = 0x2C,
399         [TDMA_WRITE_PTR_HI]             = 0x30,
400 };
401
402 static const u8 genet_dma_ring_regs_v123[] = {
403         [TDMA_READ_PTR]                 = 0x00,
404         [TDMA_CONS_INDEX]               = 0x04,
405         [TDMA_PROD_INDEX]               = 0x08,
406         [DMA_RING_BUF_SIZE]             = 0x0C,
407         [DMA_START_ADDR]                = 0x10,
408         [DMA_END_ADDR]                  = 0x14,
409         [DMA_MBUF_DONE_THRESH]          = 0x18,
410         [TDMA_FLOW_PERIOD]              = 0x1C,
411         [TDMA_WRITE_PTR]                = 0x20,
412 };
413
414 /* Set at runtime once GENET version is known */
415 static const u8 *genet_dma_ring_regs;
416
417 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
418                                            unsigned int ring,
419                                            enum dma_ring_reg r)
420 {
421         return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
422                         (DMA_RING_SIZE * ring) +
423                         genet_dma_ring_regs[r]);
424 }
425
426 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
427                                              unsigned int ring, u32 val,
428                                              enum dma_ring_reg r)
429 {
430         __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
431                         (DMA_RING_SIZE * ring) +
432                         genet_dma_ring_regs[r]);
433 }
434
435 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
436                                            unsigned int ring,
437                                            enum dma_ring_reg r)
438 {
439         return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
440                         (DMA_RING_SIZE * ring) +
441                         genet_dma_ring_regs[r]);
442 }
443
444 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
445                                              unsigned int ring, u32 val,
446                                              enum dma_ring_reg r)
447 {
448         __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
449                         (DMA_RING_SIZE * ring) +
450                         genet_dma_ring_regs[r]);
451 }
452
453 static int bcmgenet_begin(struct net_device *dev)
454 {
455         struct bcmgenet_priv *priv = netdev_priv(dev);
456
457         /* Turn on the clock */
458         return clk_prepare_enable(priv->clk);
459 }
460
461 static void bcmgenet_complete(struct net_device *dev)
462 {
463         struct bcmgenet_priv *priv = netdev_priv(dev);
464
465         /* Turn off the clock */
466         clk_disable_unprepare(priv->clk);
467 }
468
469 static int bcmgenet_get_link_ksettings(struct net_device *dev,
470                                        struct ethtool_link_ksettings *cmd)
471 {
472         struct bcmgenet_priv *priv = netdev_priv(dev);
473
474         if (!netif_running(dev))
475                 return -EINVAL;
476
477         if (!priv->phydev)
478                 return -ENODEV;
479
480         phy_ethtool_ksettings_get(priv->phydev, cmd);
481
482         return 0;
483 }
484
485 static int bcmgenet_set_link_ksettings(struct net_device *dev,
486                                        const struct ethtool_link_ksettings *cmd)
487 {
488         struct bcmgenet_priv *priv = netdev_priv(dev);
489
490         if (!netif_running(dev))
491                 return -EINVAL;
492
493         if (!priv->phydev)
494                 return -ENODEV;
495
496         return phy_ethtool_ksettings_set(priv->phydev, cmd);
497 }
498
499 static int bcmgenet_set_rx_csum(struct net_device *dev,
500                                 netdev_features_t wanted)
501 {
502         struct bcmgenet_priv *priv = netdev_priv(dev);
503         u32 rbuf_chk_ctrl;
504         bool rx_csum_en;
505
506         rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
507
508         rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
509
510         /* enable rx checksumming */
511         if (rx_csum_en)
512                 rbuf_chk_ctrl |= RBUF_RXCHK_EN;
513         else
514                 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
515         priv->desc_rxchk_en = rx_csum_en;
516
517         /* If UniMAC forwards CRC, we need to skip over it to get
518          * a valid CHK bit to be set in the per-packet status word
519         */
520         if (rx_csum_en && priv->crc_fwd_en)
521                 rbuf_chk_ctrl |= RBUF_SKIP_FCS;
522         else
523                 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
524
525         bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
526
527         return 0;
528 }
529
530 static int bcmgenet_set_tx_csum(struct net_device *dev,
531                                 netdev_features_t wanted)
532 {
533         struct bcmgenet_priv *priv = netdev_priv(dev);
534         bool desc_64b_en;
535         u32 tbuf_ctrl, rbuf_ctrl;
536
537         tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
538         rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
539
540         desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
541
542         /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
543         if (desc_64b_en) {
544                 tbuf_ctrl |= RBUF_64B_EN;
545                 rbuf_ctrl |= RBUF_64B_EN;
546         } else {
547                 tbuf_ctrl &= ~RBUF_64B_EN;
548                 rbuf_ctrl &= ~RBUF_64B_EN;
549         }
550         priv->desc_64b_en = desc_64b_en;
551
552         bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
553         bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
554
555         return 0;
556 }
557
558 static int bcmgenet_set_features(struct net_device *dev,
559                                  netdev_features_t features)
560 {
561         netdev_features_t changed = features ^ dev->features;
562         netdev_features_t wanted = dev->wanted_features;
563         int ret = 0;
564
565         if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
566                 ret = bcmgenet_set_tx_csum(dev, wanted);
567         if (changed & (NETIF_F_RXCSUM))
568                 ret = bcmgenet_set_rx_csum(dev, wanted);
569
570         return ret;
571 }
572
573 static u32 bcmgenet_get_msglevel(struct net_device *dev)
574 {
575         struct bcmgenet_priv *priv = netdev_priv(dev);
576
577         return priv->msg_enable;
578 }
579
580 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
581 {
582         struct bcmgenet_priv *priv = netdev_priv(dev);
583
584         priv->msg_enable = level;
585 }
586
587 static int bcmgenet_get_coalesce(struct net_device *dev,
588                                  struct ethtool_coalesce *ec)
589 {
590         struct bcmgenet_priv *priv = netdev_priv(dev);
591
592         ec->tx_max_coalesced_frames =
593                 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
594                                          DMA_MBUF_DONE_THRESH);
595         ec->rx_max_coalesced_frames =
596                 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
597                                          DMA_MBUF_DONE_THRESH);
598         ec->rx_coalesce_usecs =
599                 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
600
601         return 0;
602 }
603
604 static int bcmgenet_set_coalesce(struct net_device *dev,
605                                  struct ethtool_coalesce *ec)
606 {
607         struct bcmgenet_priv *priv = netdev_priv(dev);
608         unsigned int i;
609         u32 reg;
610
611         /* Base system clock is 125Mhz, DMA timeout is this reference clock
612          * divided by 1024, which yields roughly 8.192us, our maximum value
613          * has to fit in the DMA_TIMEOUT_MASK (16 bits)
614          */
615         if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
616             ec->tx_max_coalesced_frames == 0 ||
617             ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
618             ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
619                 return -EINVAL;
620
621         if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
622                 return -EINVAL;
623
624         /* GENET TDMA hardware does not support a configurable timeout, but will
625          * always generate an interrupt either after MBDONE packets have been
626          * transmitted, or when the ring is empty.
627          */
628         if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
629             ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
630                 return -EOPNOTSUPP;
631
632         /* Program all TX queues with the same values, as there is no
633          * ethtool knob to do coalescing on a per-queue basis
634          */
635         for (i = 0; i < priv->hw_params->tx_queues; i++)
636                 bcmgenet_tdma_ring_writel(priv, i,
637                                           ec->tx_max_coalesced_frames,
638                                           DMA_MBUF_DONE_THRESH);
639         bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
640                                   ec->tx_max_coalesced_frames,
641                                   DMA_MBUF_DONE_THRESH);
642
643         for (i = 0; i < priv->hw_params->rx_queues; i++) {
644                 bcmgenet_rdma_ring_writel(priv, i,
645                                           ec->rx_max_coalesced_frames,
646                                           DMA_MBUF_DONE_THRESH);
647
648                 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
649                 reg &= ~DMA_TIMEOUT_MASK;
650                 reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
651                 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
652         }
653
654         bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
655                                   ec->rx_max_coalesced_frames,
656                                   DMA_MBUF_DONE_THRESH);
657
658         reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
659         reg &= ~DMA_TIMEOUT_MASK;
660         reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
661         bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
662
663         return 0;
664 }
665
666 /* standard ethtool support functions. */
667 enum bcmgenet_stat_type {
668         BCMGENET_STAT_NETDEV = -1,
669         BCMGENET_STAT_MIB_RX,
670         BCMGENET_STAT_MIB_TX,
671         BCMGENET_STAT_RUNT,
672         BCMGENET_STAT_MISC,
673         BCMGENET_STAT_SOFT,
674 };
675
676 struct bcmgenet_stats {
677         char stat_string[ETH_GSTRING_LEN];
678         int stat_sizeof;
679         int stat_offset;
680         enum bcmgenet_stat_type type;
681         /* reg offset from UMAC base for misc counters */
682         u16 reg_offset;
683 };
684
685 #define STAT_NETDEV(m) { \
686         .stat_string = __stringify(m), \
687         .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
688         .stat_offset = offsetof(struct net_device_stats, m), \
689         .type = BCMGENET_STAT_NETDEV, \
690 }
691
692 #define STAT_GENET_MIB(str, m, _type) { \
693         .stat_string = str, \
694         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
695         .stat_offset = offsetof(struct bcmgenet_priv, m), \
696         .type = _type, \
697 }
698
699 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
700 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
701 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
702 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
703
704 #define STAT_GENET_MISC(str, m, offset) { \
705         .stat_string = str, \
706         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
707         .stat_offset = offsetof(struct bcmgenet_priv, m), \
708         .type = BCMGENET_STAT_MISC, \
709         .reg_offset = offset, \
710 }
711
712 #define STAT_GENET_Q(num) \
713         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
714                         tx_rings[num].packets), \
715         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
716                         tx_rings[num].bytes), \
717         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
718                         rx_rings[num].bytes),    \
719         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
720                         rx_rings[num].packets), \
721         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
722                         rx_rings[num].errors), \
723         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
724                         rx_rings[num].dropped)
725
726 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
727  * between the end of TX stats and the beginning of the RX RUNT
728  */
729 #define BCMGENET_STAT_OFFSET    0xc
730
731 /* Hardware counters must be kept in sync because the order/offset
732  * is important here (order in structure declaration = order in hardware)
733  */
734 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
735         /* general stats */
736         STAT_NETDEV(rx_packets),
737         STAT_NETDEV(tx_packets),
738         STAT_NETDEV(rx_bytes),
739         STAT_NETDEV(tx_bytes),
740         STAT_NETDEV(rx_errors),
741         STAT_NETDEV(tx_errors),
742         STAT_NETDEV(rx_dropped),
743         STAT_NETDEV(tx_dropped),
744         STAT_NETDEV(multicast),
745         /* UniMAC RSV counters */
746         STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
747         STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
748         STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
749         STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
750         STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
751         STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
752         STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
753         STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
754         STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
755         STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
756         STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
757         STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
758         STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
759         STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
760         STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
761         STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
762         STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
763         STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
764         STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
765         STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
766         STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
767         STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
768         STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
769         STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
770         STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
771         STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
772         STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
773         STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
774         STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
775         /* UniMAC TSV counters */
776         STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
777         STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
778         STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
779         STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
780         STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
781         STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
782         STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
783         STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
784         STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
785         STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
786         STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
787         STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
788         STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
789         STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
790         STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
791         STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
792         STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
793         STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
794         STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
795         STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
796         STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
797         STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
798         STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
799         STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
800         STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
801         STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
802         STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
803         STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
804         STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
805         /* UniMAC RUNT counters */
806         STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
807         STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
808         STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
809         STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
810         /* Misc UniMAC counters */
811         STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
812                         UMAC_RBUF_OVFL_CNT_V1),
813         STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
814                         UMAC_RBUF_ERR_CNT_V1),
815         STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
816         STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
817         STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
818         STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
819         /* Per TX queues */
820         STAT_GENET_Q(0),
821         STAT_GENET_Q(1),
822         STAT_GENET_Q(2),
823         STAT_GENET_Q(3),
824         STAT_GENET_Q(16),
825 };
826
827 #define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
828
829 static void bcmgenet_get_drvinfo(struct net_device *dev,
830                                  struct ethtool_drvinfo *info)
831 {
832         strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
833         strlcpy(info->version, "v2.0", sizeof(info->version));
834 }
835
836 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
837 {
838         switch (string_set) {
839         case ETH_SS_STATS:
840                 return BCMGENET_STATS_LEN;
841         default:
842                 return -EOPNOTSUPP;
843         }
844 }
845
846 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
847                                  u8 *data)
848 {
849         int i;
850
851         switch (stringset) {
852         case ETH_SS_STATS:
853                 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
854                         memcpy(data + i * ETH_GSTRING_LEN,
855                                bcmgenet_gstrings_stats[i].stat_string,
856                                ETH_GSTRING_LEN);
857                 }
858                 break;
859         }
860 }
861
862 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
863 {
864         u16 new_offset;
865         u32 val;
866
867         switch (offset) {
868         case UMAC_RBUF_OVFL_CNT_V1:
869                 if (GENET_IS_V2(priv))
870                         new_offset = RBUF_OVFL_CNT_V2;
871                 else
872                         new_offset = RBUF_OVFL_CNT_V3PLUS;
873
874                 val = bcmgenet_rbuf_readl(priv, new_offset);
875                 /* clear if overflowed */
876                 if (val == ~0)
877                         bcmgenet_rbuf_writel(priv, 0, new_offset);
878                 break;
879         case UMAC_RBUF_ERR_CNT_V1:
880                 if (GENET_IS_V2(priv))
881                         new_offset = RBUF_ERR_CNT_V2;
882                 else
883                         new_offset = RBUF_ERR_CNT_V3PLUS;
884
885                 val = bcmgenet_rbuf_readl(priv, new_offset);
886                 /* clear if overflowed */
887                 if (val == ~0)
888                         bcmgenet_rbuf_writel(priv, 0, new_offset);
889                 break;
890         default:
891                 val = bcmgenet_umac_readl(priv, offset);
892                 /* clear if overflowed */
893                 if (val == ~0)
894                         bcmgenet_umac_writel(priv, 0, offset);
895                 break;
896         }
897
898         return val;
899 }
900
901 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
902 {
903         int i, j = 0;
904
905         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
906                 const struct bcmgenet_stats *s;
907                 u8 offset = 0;
908                 u32 val = 0;
909                 char *p;
910
911                 s = &bcmgenet_gstrings_stats[i];
912                 switch (s->type) {
913                 case BCMGENET_STAT_NETDEV:
914                 case BCMGENET_STAT_SOFT:
915                         continue;
916                 case BCMGENET_STAT_RUNT:
917                         offset += BCMGENET_STAT_OFFSET;
918                         /* fall through */
919                 case BCMGENET_STAT_MIB_TX:
920                         offset += BCMGENET_STAT_OFFSET;
921                         /* fall through */
922                 case BCMGENET_STAT_MIB_RX:
923                         val = bcmgenet_umac_readl(priv,
924                                                   UMAC_MIB_START + j + offset);
925                         offset = 0;     /* Reset Offset */
926                         break;
927                 case BCMGENET_STAT_MISC:
928                         if (GENET_IS_V1(priv)) {
929                                 val = bcmgenet_umac_readl(priv, s->reg_offset);
930                                 /* clear if overflowed */
931                                 if (val == ~0)
932                                         bcmgenet_umac_writel(priv, 0,
933                                                              s->reg_offset);
934                         } else {
935                                 val = bcmgenet_update_stat_misc(priv,
936                                                                 s->reg_offset);
937                         }
938                         break;
939                 }
940
941                 j += s->stat_sizeof;
942                 p = (char *)priv + s->stat_offset;
943                 *(u32 *)p = val;
944         }
945 }
946
947 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
948                                        struct ethtool_stats *stats,
949                                        u64 *data)
950 {
951         struct bcmgenet_priv *priv = netdev_priv(dev);
952         int i;
953
954         if (netif_running(dev))
955                 bcmgenet_update_mib_counters(priv);
956
957         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
958                 const struct bcmgenet_stats *s;
959                 char *p;
960
961                 s = &bcmgenet_gstrings_stats[i];
962                 if (s->type == BCMGENET_STAT_NETDEV)
963                         p = (char *)&dev->stats;
964                 else
965                         p = (char *)priv;
966                 p += s->stat_offset;
967                 if (sizeof(unsigned long) != sizeof(u32) &&
968                     s->stat_sizeof == sizeof(unsigned long))
969                         data[i] = *(unsigned long *)p;
970                 else
971                         data[i] = *(u32 *)p;
972         }
973 }
974
975 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
976 {
977         struct bcmgenet_priv *priv = netdev_priv(dev);
978         u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
979         u32 reg;
980
981         if (enable && !priv->clk_eee_enabled) {
982                 clk_prepare_enable(priv->clk_eee);
983                 priv->clk_eee_enabled = true;
984         }
985
986         reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
987         if (enable)
988                 reg |= EEE_EN;
989         else
990                 reg &= ~EEE_EN;
991         bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
992
993         /* Enable EEE and switch to a 27Mhz clock automatically */
994         reg = __raw_readl(priv->base + off);
995         if (enable)
996                 reg |= TBUF_EEE_EN | TBUF_PM_EN;
997         else
998                 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
999         __raw_writel(reg, priv->base + off);
1000
1001         /* Do the same for thing for RBUF */
1002         reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1003         if (enable)
1004                 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1005         else
1006                 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1007         bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1008
1009         if (!enable && priv->clk_eee_enabled) {
1010                 clk_disable_unprepare(priv->clk_eee);
1011                 priv->clk_eee_enabled = false;
1012         }
1013
1014         priv->eee.eee_enabled = enable;
1015         priv->eee.eee_active = enable;
1016 }
1017
1018 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1019 {
1020         struct bcmgenet_priv *priv = netdev_priv(dev);
1021         struct ethtool_eee *p = &priv->eee;
1022
1023         if (GENET_IS_V1(priv))
1024                 return -EOPNOTSUPP;
1025
1026         e->eee_enabled = p->eee_enabled;
1027         e->eee_active = p->eee_active;
1028         e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1029
1030         return phy_ethtool_get_eee(priv->phydev, e);
1031 }
1032
1033 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1034 {
1035         struct bcmgenet_priv *priv = netdev_priv(dev);
1036         struct ethtool_eee *p = &priv->eee;
1037         int ret = 0;
1038
1039         if (GENET_IS_V1(priv))
1040                 return -EOPNOTSUPP;
1041
1042         p->eee_enabled = e->eee_enabled;
1043
1044         if (!p->eee_enabled) {
1045                 bcmgenet_eee_enable_set(dev, false);
1046         } else {
1047                 ret = phy_init_eee(priv->phydev, 0);
1048                 if (ret) {
1049                         netif_err(priv, hw, dev, "EEE initialization failed\n");
1050                         return ret;
1051                 }
1052
1053                 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1054                 bcmgenet_eee_enable_set(dev, true);
1055         }
1056
1057         return phy_ethtool_set_eee(priv->phydev, e);
1058 }
1059
1060 /* standard ethtool support functions. */
1061 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1062         .begin                  = bcmgenet_begin,
1063         .complete               = bcmgenet_complete,
1064         .get_strings            = bcmgenet_get_strings,
1065         .get_sset_count         = bcmgenet_get_sset_count,
1066         .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
1067         .get_drvinfo            = bcmgenet_get_drvinfo,
1068         .get_link               = ethtool_op_get_link,
1069         .get_msglevel           = bcmgenet_get_msglevel,
1070         .set_msglevel           = bcmgenet_set_msglevel,
1071         .get_wol                = bcmgenet_get_wol,
1072         .set_wol                = bcmgenet_set_wol,
1073         .get_eee                = bcmgenet_get_eee,
1074         .set_eee                = bcmgenet_set_eee,
1075         .nway_reset             = phy_ethtool_nway_reset,
1076         .get_coalesce           = bcmgenet_get_coalesce,
1077         .set_coalesce           = bcmgenet_set_coalesce,
1078         .get_link_ksettings     = bcmgenet_get_link_ksettings,
1079         .set_link_ksettings     = bcmgenet_set_link_ksettings,
1080 };
1081
1082 /* Power down the unimac, based on mode. */
1083 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1084                                 enum bcmgenet_power_mode mode)
1085 {
1086         int ret = 0;
1087         u32 reg;
1088
1089         switch (mode) {
1090         case GENET_POWER_CABLE_SENSE:
1091                 phy_detach(priv->phydev);
1092                 break;
1093
1094         case GENET_POWER_WOL_MAGIC:
1095                 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1096                 break;
1097
1098         case GENET_POWER_PASSIVE:
1099                 /* Power down LED */
1100                 if (priv->hw_params->flags & GENET_HAS_EXT) {
1101                         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1102                         if (GENET_IS_V5(priv))
1103                                 reg |= EXT_PWR_DOWN_PHY_EN |
1104                                        EXT_PWR_DOWN_PHY_RD |
1105                                        EXT_PWR_DOWN_PHY_SD |
1106                                        EXT_PWR_DOWN_PHY_RX |
1107                                        EXT_PWR_DOWN_PHY_TX |
1108                                        EXT_IDDQ_GLBL_PWR;
1109                         else
1110                                 reg |= EXT_PWR_DOWN_PHY;
1111
1112                         reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1113                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1114
1115                         bcmgenet_phy_power_set(priv->dev, false);
1116                 }
1117                 break;
1118         default:
1119                 break;
1120         }
1121
1122         return 0;
1123 }
1124
1125 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1126                               enum bcmgenet_power_mode mode)
1127 {
1128         u32 reg;
1129
1130         if (!(priv->hw_params->flags & GENET_HAS_EXT))
1131                 return;
1132
1133         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1134
1135         switch (mode) {
1136         case GENET_POWER_PASSIVE:
1137                 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1138                 if (GENET_IS_V5(priv)) {
1139                         reg &= ~(EXT_PWR_DOWN_PHY_EN |
1140                                  EXT_PWR_DOWN_PHY_RD |
1141                                  EXT_PWR_DOWN_PHY_SD |
1142                                  EXT_PWR_DOWN_PHY_RX |
1143                                  EXT_PWR_DOWN_PHY_TX |
1144                                  EXT_IDDQ_GLBL_PWR);
1145                         reg |=   EXT_PHY_RESET;
1146                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1147                         mdelay(1);
1148
1149                         reg &=  ~EXT_PHY_RESET;
1150                 } else {
1151                         reg &= ~EXT_PWR_DOWN_PHY;
1152                         reg |= EXT_PWR_DN_EN_LD;
1153                 }
1154                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1155                 bcmgenet_phy_power_set(priv->dev, true);
1156                 bcmgenet_mii_reset(priv->dev);
1157                 break;
1158
1159         case GENET_POWER_CABLE_SENSE:
1160                 /* enable APD */
1161                 if (!GENET_IS_V5(priv)) {
1162                         reg |= EXT_PWR_DN_EN_LD;
1163                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1164                 }
1165                 break;
1166         case GENET_POWER_WOL_MAGIC:
1167                 bcmgenet_wol_power_up_cfg(priv, mode);
1168                 return;
1169         default:
1170                 break;
1171         }
1172 }
1173
1174 /* ioctl handle special commands that are not present in ethtool. */
1175 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1176 {
1177         struct bcmgenet_priv *priv = netdev_priv(dev);
1178
1179         if (!netif_running(dev))
1180                 return -EINVAL;
1181
1182         if (!priv->phydev)
1183                 return -ENODEV;
1184
1185         return phy_mii_ioctl(priv->phydev, rq, cmd);
1186 }
1187
1188 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1189                                          struct bcmgenet_tx_ring *ring)
1190 {
1191         struct enet_cb *tx_cb_ptr;
1192
1193         tx_cb_ptr = ring->cbs;
1194         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1195
1196         /* Advancing local write pointer */
1197         if (ring->write_ptr == ring->end_ptr)
1198                 ring->write_ptr = ring->cb_ptr;
1199         else
1200                 ring->write_ptr++;
1201
1202         return tx_cb_ptr;
1203 }
1204
1205 /* Simple helper to free a control block's resources */
1206 static void bcmgenet_free_cb(struct enet_cb *cb)
1207 {
1208         dev_kfree_skb_any(cb->skb);
1209         cb->skb = NULL;
1210         dma_unmap_addr_set(cb, dma_addr, 0);
1211 }
1212
1213 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1214 {
1215         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1216                                  INTRL2_CPU_MASK_SET);
1217 }
1218
1219 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1220 {
1221         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1222                                  INTRL2_CPU_MASK_CLEAR);
1223 }
1224
1225 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1226 {
1227         bcmgenet_intrl2_1_writel(ring->priv,
1228                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1229                                  INTRL2_CPU_MASK_SET);
1230 }
1231
1232 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1233 {
1234         bcmgenet_intrl2_1_writel(ring->priv,
1235                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1236                                  INTRL2_CPU_MASK_CLEAR);
1237 }
1238
1239 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1240 {
1241         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1242                                  INTRL2_CPU_MASK_SET);
1243 }
1244
1245 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1246 {
1247         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1248                                  INTRL2_CPU_MASK_CLEAR);
1249 }
1250
1251 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1252 {
1253         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1254                                  INTRL2_CPU_MASK_CLEAR);
1255 }
1256
1257 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1258 {
1259         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1260                                  INTRL2_CPU_MASK_SET);
1261 }
1262
1263 /* Unlocked version of the reclaim routine */
1264 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1265                                           struct bcmgenet_tx_ring *ring)
1266 {
1267         struct bcmgenet_priv *priv = netdev_priv(dev);
1268         struct device *kdev = &priv->pdev->dev;
1269         struct enet_cb *tx_cb_ptr;
1270         unsigned int pkts_compl = 0;
1271         unsigned int bytes_compl = 0;
1272         unsigned int c_index;
1273         unsigned int txbds_ready;
1274         unsigned int txbds_processed = 0;
1275
1276         /* Clear status before servicing to reduce spurious interrupts */
1277         if (ring->index == DESC_INDEX)
1278                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1279                                          INTRL2_CPU_CLEAR);
1280         else
1281                 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1282                                          INTRL2_CPU_CLEAR);
1283
1284         /* Compute how many buffers are transmitted since last xmit call */
1285         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1286                 & DMA_C_INDEX_MASK;
1287         txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1288
1289         netif_dbg(priv, tx_done, dev,
1290                   "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1291                   __func__, ring->index, ring->c_index, c_index, txbds_ready);
1292
1293         /* Reclaim transmitted buffers */
1294         while (txbds_processed < txbds_ready) {
1295                 tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1296                 if (tx_cb_ptr->skb) {
1297                         pkts_compl++;
1298                         bytes_compl += GENET_CB(tx_cb_ptr->skb)->bytes_sent;
1299                         dma_unmap_single(kdev,
1300                                          dma_unmap_addr(tx_cb_ptr, dma_addr),
1301                                          dma_unmap_len(tx_cb_ptr, dma_len),
1302                                          DMA_TO_DEVICE);
1303                         bcmgenet_free_cb(tx_cb_ptr);
1304                 } else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1305                         dma_unmap_page(kdev,
1306                                        dma_unmap_addr(tx_cb_ptr, dma_addr),
1307                                        dma_unmap_len(tx_cb_ptr, dma_len),
1308                                        DMA_TO_DEVICE);
1309                         dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1310                 }
1311
1312                 txbds_processed++;
1313                 if (likely(ring->clean_ptr < ring->end_ptr))
1314                         ring->clean_ptr++;
1315                 else
1316                         ring->clean_ptr = ring->cb_ptr;
1317         }
1318
1319         ring->free_bds += txbds_processed;
1320         ring->c_index = c_index;
1321
1322         ring->packets += pkts_compl;
1323         ring->bytes += bytes_compl;
1324
1325         netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1326                                   pkts_compl, bytes_compl);
1327
1328         return txbds_processed;
1329 }
1330
1331 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1332                                 struct bcmgenet_tx_ring *ring)
1333 {
1334         unsigned int released;
1335         unsigned long flags;
1336
1337         spin_lock_irqsave(&ring->lock, flags);
1338         released = __bcmgenet_tx_reclaim(dev, ring);
1339         spin_unlock_irqrestore(&ring->lock, flags);
1340
1341         return released;
1342 }
1343
1344 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1345 {
1346         struct bcmgenet_tx_ring *ring =
1347                 container_of(napi, struct bcmgenet_tx_ring, napi);
1348         unsigned int work_done = 0;
1349         struct netdev_queue *txq;
1350         unsigned long flags;
1351
1352         spin_lock_irqsave(&ring->lock, flags);
1353         work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1354         if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1355                 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1356                 netif_tx_wake_queue(txq);
1357         }
1358         spin_unlock_irqrestore(&ring->lock, flags);
1359
1360         if (work_done == 0) {
1361                 napi_complete(napi);
1362                 ring->int_enable(ring);
1363
1364                 return 0;
1365         }
1366
1367         return budget;
1368 }
1369
1370 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1371 {
1372         struct bcmgenet_priv *priv = netdev_priv(dev);
1373         int i;
1374
1375         if (netif_is_multiqueue(dev)) {
1376                 for (i = 0; i < priv->hw_params->tx_queues; i++)
1377                         bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1378         }
1379
1380         bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1381 }
1382
1383 /* Transmits a single SKB (either head of a fragment or a single SKB)
1384  * caller must hold priv->lock
1385  */
1386 static int bcmgenet_xmit_single(struct net_device *dev,
1387                                 struct sk_buff *skb,
1388                                 u16 dma_desc_flags,
1389                                 struct bcmgenet_tx_ring *ring)
1390 {
1391         struct bcmgenet_priv *priv = netdev_priv(dev);
1392         struct device *kdev = &priv->pdev->dev;
1393         struct enet_cb *tx_cb_ptr;
1394         unsigned int skb_len;
1395         dma_addr_t mapping;
1396         u32 length_status;
1397         int ret;
1398
1399         tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1400
1401         if (unlikely(!tx_cb_ptr))
1402                 BUG();
1403
1404         tx_cb_ptr->skb = skb;
1405
1406         skb_len = skb_headlen(skb);
1407
1408         mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1409         ret = dma_mapping_error(kdev, mapping);
1410         if (ret) {
1411                 priv->mib.tx_dma_failed++;
1412                 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1413                 dev_kfree_skb(skb);
1414                 return ret;
1415         }
1416
1417         dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1418         dma_unmap_len_set(tx_cb_ptr, dma_len, skb_len);
1419         length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1420                         (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1421                         DMA_TX_APPEND_CRC;
1422
1423         if (skb->ip_summed == CHECKSUM_PARTIAL)
1424                 length_status |= DMA_TX_DO_CSUM;
1425
1426         dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1427
1428         return 0;
1429 }
1430
1431 /* Transmit a SKB fragment */
1432 static int bcmgenet_xmit_frag(struct net_device *dev,
1433                               skb_frag_t *frag,
1434                               u16 dma_desc_flags,
1435                               struct bcmgenet_tx_ring *ring)
1436 {
1437         struct bcmgenet_priv *priv = netdev_priv(dev);
1438         struct device *kdev = &priv->pdev->dev;
1439         struct enet_cb *tx_cb_ptr;
1440         unsigned int frag_size;
1441         dma_addr_t mapping;
1442         int ret;
1443
1444         tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1445
1446         if (unlikely(!tx_cb_ptr))
1447                 BUG();
1448
1449         tx_cb_ptr->skb = NULL;
1450
1451         frag_size = skb_frag_size(frag);
1452
1453         mapping = skb_frag_dma_map(kdev, frag, 0, frag_size, DMA_TO_DEVICE);
1454         ret = dma_mapping_error(kdev, mapping);
1455         if (ret) {
1456                 priv->mib.tx_dma_failed++;
1457                 netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1458                           __func__);
1459                 return ret;
1460         }
1461
1462         dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1463         dma_unmap_len_set(tx_cb_ptr, dma_len, frag_size);
1464
1465         dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1466                     (frag_size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1467                     (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1468
1469         return 0;
1470 }
1471
1472 /* Reallocate the SKB to put enough headroom in front of it and insert
1473  * the transmit checksum offsets in the descriptors
1474  */
1475 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1476                                             struct sk_buff *skb)
1477 {
1478         struct status_64 *status = NULL;
1479         struct sk_buff *new_skb;
1480         u16 offset;
1481         u8 ip_proto;
1482         u16 ip_ver;
1483         u32 tx_csum_info;
1484
1485         if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1486                 /* If 64 byte status block enabled, must make sure skb has
1487                  * enough headroom for us to insert 64B status block.
1488                  */
1489                 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1490                 dev_kfree_skb(skb);
1491                 if (!new_skb) {
1492                         dev->stats.tx_dropped++;
1493                         return NULL;
1494                 }
1495                 skb = new_skb;
1496         }
1497
1498         skb_push(skb, sizeof(*status));
1499         status = (struct status_64 *)skb->data;
1500
1501         if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1502                 ip_ver = htons(skb->protocol);
1503                 switch (ip_ver) {
1504                 case ETH_P_IP:
1505                         ip_proto = ip_hdr(skb)->protocol;
1506                         break;
1507                 case ETH_P_IPV6:
1508                         ip_proto = ipv6_hdr(skb)->nexthdr;
1509                         break;
1510                 default:
1511                         return skb;
1512                 }
1513
1514                 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1515                 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1516                                 (offset + skb->csum_offset);
1517
1518                 /* Set the length valid bit for TCP and UDP and just set
1519                  * the special UDP flag for IPv4, else just set to 0.
1520                  */
1521                 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1522                         tx_csum_info |= STATUS_TX_CSUM_LV;
1523                         if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1524                                 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1525                 } else {
1526                         tx_csum_info = 0;
1527                 }
1528
1529                 status->tx_csum_info = tx_csum_info;
1530         }
1531
1532         return skb;
1533 }
1534
1535 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1536 {
1537         struct bcmgenet_priv *priv = netdev_priv(dev);
1538         struct bcmgenet_tx_ring *ring = NULL;
1539         struct netdev_queue *txq;
1540         unsigned long flags = 0;
1541         int nr_frags, index;
1542         u16 dma_desc_flags;
1543         int ret;
1544         int i;
1545
1546         index = skb_get_queue_mapping(skb);
1547         /* Mapping strategy:
1548          * queue_mapping = 0, unclassified, packet xmited through ring16
1549          * queue_mapping = 1, goes to ring 0. (highest priority queue
1550          * queue_mapping = 2, goes to ring 1.
1551          * queue_mapping = 3, goes to ring 2.
1552          * queue_mapping = 4, goes to ring 3.
1553          */
1554         if (index == 0)
1555                 index = DESC_INDEX;
1556         else
1557                 index -= 1;
1558
1559         ring = &priv->tx_rings[index];
1560         txq = netdev_get_tx_queue(dev, ring->queue);
1561
1562         nr_frags = skb_shinfo(skb)->nr_frags;
1563
1564         spin_lock_irqsave(&ring->lock, flags);
1565         if (ring->free_bds <= (nr_frags + 1)) {
1566                 if (!netif_tx_queue_stopped(txq)) {
1567                         netif_tx_stop_queue(txq);
1568                         netdev_err(dev,
1569                                    "%s: tx ring %d full when queue %d awake\n",
1570                                    __func__, index, ring->queue);
1571                 }
1572                 ret = NETDEV_TX_BUSY;
1573                 goto out;
1574         }
1575
1576         if (skb_padto(skb, ETH_ZLEN)) {
1577                 ret = NETDEV_TX_OK;
1578                 goto out;
1579         }
1580
1581         /* Retain how many bytes will be sent on the wire, without TSB inserted
1582          * by transmit checksum offload
1583          */
1584         GENET_CB(skb)->bytes_sent = skb->len;
1585
1586         /* set the SKB transmit checksum */
1587         if (priv->desc_64b_en) {
1588                 skb = bcmgenet_put_tx_csum(dev, skb);
1589                 if (!skb) {
1590                         ret = NETDEV_TX_OK;
1591                         goto out;
1592                 }
1593         }
1594
1595         dma_desc_flags = DMA_SOP;
1596         if (nr_frags == 0)
1597                 dma_desc_flags |= DMA_EOP;
1598
1599         /* Transmit single SKB or head of fragment list */
1600         ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1601         if (ret) {
1602                 ret = NETDEV_TX_OK;
1603                 goto out;
1604         }
1605
1606         /* xmit fragment */
1607         for (i = 0; i < nr_frags; i++) {
1608                 ret = bcmgenet_xmit_frag(dev,
1609                                          &skb_shinfo(skb)->frags[i],
1610                                          (i == nr_frags - 1) ? DMA_EOP : 0,
1611                                          ring);
1612                 if (ret) {
1613                         ret = NETDEV_TX_OK;
1614                         goto out;
1615                 }
1616         }
1617
1618         skb_tx_timestamp(skb);
1619
1620         /* Decrement total BD count and advance our write pointer */
1621         ring->free_bds -= nr_frags + 1;
1622         ring->prod_index += nr_frags + 1;
1623         ring->prod_index &= DMA_P_INDEX_MASK;
1624
1625         netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1626
1627         if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1628                 netif_tx_stop_queue(txq);
1629
1630         if (!skb->xmit_more || netif_xmit_stopped(txq))
1631                 /* Packets are ready, update producer index */
1632                 bcmgenet_tdma_ring_writel(priv, ring->index,
1633                                           ring->prod_index, TDMA_PROD_INDEX);
1634 out:
1635         spin_unlock_irqrestore(&ring->lock, flags);
1636
1637         return ret;
1638 }
1639
1640 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1641                                           struct enet_cb *cb)
1642 {
1643         struct device *kdev = &priv->pdev->dev;
1644         struct sk_buff *skb;
1645         struct sk_buff *rx_skb;
1646         dma_addr_t mapping;
1647
1648         /* Allocate a new Rx skb */
1649         skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1650         if (!skb) {
1651                 priv->mib.alloc_rx_buff_failed++;
1652                 netif_err(priv, rx_err, priv->dev,
1653                           "%s: Rx skb allocation failed\n", __func__);
1654                 return NULL;
1655         }
1656
1657         /* DMA-map the new Rx skb */
1658         mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1659                                  DMA_FROM_DEVICE);
1660         if (dma_mapping_error(kdev, mapping)) {
1661                 priv->mib.rx_dma_failed++;
1662                 dev_kfree_skb_any(skb);
1663                 netif_err(priv, rx_err, priv->dev,
1664                           "%s: Rx skb DMA mapping failed\n", __func__);
1665                 return NULL;
1666         }
1667
1668         /* Grab the current Rx skb from the ring and DMA-unmap it */
1669         rx_skb = cb->skb;
1670         if (likely(rx_skb))
1671                 dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
1672                                  priv->rx_buf_len, DMA_FROM_DEVICE);
1673
1674         /* Put the new Rx skb on the ring */
1675         cb->skb = skb;
1676         dma_unmap_addr_set(cb, dma_addr, mapping);
1677         dmadesc_set_addr(priv, cb->bd_addr, mapping);
1678
1679         /* Return the current Rx skb to caller */
1680         return rx_skb;
1681 }
1682
1683 /* bcmgenet_desc_rx - descriptor based rx process.
1684  * this could be called from bottom half, or from NAPI polling method.
1685  */
1686 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1687                                      unsigned int budget)
1688 {
1689         struct bcmgenet_priv *priv = ring->priv;
1690         struct net_device *dev = priv->dev;
1691         struct enet_cb *cb;
1692         struct sk_buff *skb;
1693         u32 dma_length_status;
1694         unsigned long dma_flag;
1695         int len;
1696         unsigned int rxpktprocessed = 0, rxpkttoprocess;
1697         unsigned int p_index, mask;
1698         unsigned int discards;
1699         unsigned int chksum_ok = 0;
1700
1701         /* Clear status before servicing to reduce spurious interrupts */
1702         if (ring->index == DESC_INDEX) {
1703                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1704                                          INTRL2_CPU_CLEAR);
1705         } else {
1706                 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1707                 bcmgenet_intrl2_1_writel(priv,
1708                                          mask,
1709                                          INTRL2_CPU_CLEAR);
1710         }
1711
1712         p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1713
1714         discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1715                    DMA_P_INDEX_DISCARD_CNT_MASK;
1716         if (discards > ring->old_discards) {
1717                 discards = discards - ring->old_discards;
1718                 ring->errors += discards;
1719                 ring->old_discards += discards;
1720
1721                 /* Clear HW register when we reach 75% of maximum 0xFFFF */
1722                 if (ring->old_discards >= 0xC000) {
1723                         ring->old_discards = 0;
1724                         bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1725                                                   RDMA_PROD_INDEX);
1726                 }
1727         }
1728
1729         p_index &= DMA_P_INDEX_MASK;
1730         rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1731
1732         netif_dbg(priv, rx_status, dev,
1733                   "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1734
1735         while ((rxpktprocessed < rxpkttoprocess) &&
1736                (rxpktprocessed < budget)) {
1737                 cb = &priv->rx_cbs[ring->read_ptr];
1738                 skb = bcmgenet_rx_refill(priv, cb);
1739
1740                 if (unlikely(!skb)) {
1741                         ring->dropped++;
1742                         goto next;
1743                 }
1744
1745                 if (!priv->desc_64b_en) {
1746                         dma_length_status =
1747                                 dmadesc_get_length_status(priv, cb->bd_addr);
1748                 } else {
1749                         struct status_64 *status;
1750
1751                         status = (struct status_64 *)skb->data;
1752                         dma_length_status = status->length_status;
1753                 }
1754
1755                 /* DMA flags and length are still valid no matter how
1756                  * we got the Receive Status Vector (64B RSB or register)
1757                  */
1758                 dma_flag = dma_length_status & 0xffff;
1759                 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1760
1761                 netif_dbg(priv, rx_status, dev,
1762                           "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1763                           __func__, p_index, ring->c_index,
1764                           ring->read_ptr, dma_length_status);
1765
1766                 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1767                         netif_err(priv, rx_status, dev,
1768                                   "dropping fragmented packet!\n");
1769                         ring->errors++;
1770                         dev_kfree_skb_any(skb);
1771                         goto next;
1772                 }
1773
1774                 /* report errors */
1775                 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1776                                                 DMA_RX_OV |
1777                                                 DMA_RX_NO |
1778                                                 DMA_RX_LG |
1779                                                 DMA_RX_RXER))) {
1780                         netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1781                                   (unsigned int)dma_flag);
1782                         if (dma_flag & DMA_RX_CRC_ERROR)
1783                                 dev->stats.rx_crc_errors++;
1784                         if (dma_flag & DMA_RX_OV)
1785                                 dev->stats.rx_over_errors++;
1786                         if (dma_flag & DMA_RX_NO)
1787                                 dev->stats.rx_frame_errors++;
1788                         if (dma_flag & DMA_RX_LG)
1789                                 dev->stats.rx_length_errors++;
1790                         dev->stats.rx_errors++;
1791                         dev_kfree_skb_any(skb);
1792                         goto next;
1793                 } /* error packet */
1794
1795                 chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1796                              priv->desc_rxchk_en;
1797
1798                 skb_put(skb, len);
1799                 if (priv->desc_64b_en) {
1800                         skb_pull(skb, 64);
1801                         len -= 64;
1802                 }
1803
1804                 if (likely(chksum_ok))
1805                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1806
1807                 /* remove hardware 2bytes added for IP alignment */
1808                 skb_pull(skb, 2);
1809                 len -= 2;
1810
1811                 if (priv->crc_fwd_en) {
1812                         skb_trim(skb, len - ETH_FCS_LEN);
1813                         len -= ETH_FCS_LEN;
1814                 }
1815
1816                 /*Finish setting up the received SKB and send it to the kernel*/
1817                 skb->protocol = eth_type_trans(skb, priv->dev);
1818                 ring->packets++;
1819                 ring->bytes += len;
1820                 if (dma_flag & DMA_RX_MULT)
1821                         dev->stats.multicast++;
1822
1823                 /* Notify kernel */
1824                 napi_gro_receive(&ring->napi, skb);
1825                 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1826
1827 next:
1828                 rxpktprocessed++;
1829                 if (likely(ring->read_ptr < ring->end_ptr))
1830                         ring->read_ptr++;
1831                 else
1832                         ring->read_ptr = ring->cb_ptr;
1833
1834                 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1835                 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1836         }
1837
1838         return rxpktprocessed;
1839 }
1840
1841 /* Rx NAPI polling method */
1842 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1843 {
1844         struct bcmgenet_rx_ring *ring = container_of(napi,
1845                         struct bcmgenet_rx_ring, napi);
1846         unsigned int work_done;
1847
1848         work_done = bcmgenet_desc_rx(ring, budget);
1849
1850         if (work_done < budget) {
1851                 napi_complete_done(napi, work_done);
1852                 ring->int_enable(ring);
1853         }
1854
1855         return work_done;
1856 }
1857
1858 /* Assign skb to RX DMA descriptor. */
1859 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1860                                      struct bcmgenet_rx_ring *ring)
1861 {
1862         struct enet_cb *cb;
1863         struct sk_buff *skb;
1864         int i;
1865
1866         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1867
1868         /* loop here for each buffer needing assign */
1869         for (i = 0; i < ring->size; i++) {
1870                 cb = ring->cbs + i;
1871                 skb = bcmgenet_rx_refill(priv, cb);
1872                 if (skb)
1873                         dev_kfree_skb_any(skb);
1874                 if (!cb->skb)
1875                         return -ENOMEM;
1876         }
1877
1878         return 0;
1879 }
1880
1881 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1882 {
1883         struct device *kdev = &priv->pdev->dev;
1884         struct enet_cb *cb;
1885         int i;
1886
1887         for (i = 0; i < priv->num_rx_bds; i++) {
1888                 cb = &priv->rx_cbs[i];
1889
1890                 if (dma_unmap_addr(cb, dma_addr)) {
1891                         dma_unmap_single(kdev,
1892                                          dma_unmap_addr(cb, dma_addr),
1893                                          priv->rx_buf_len, DMA_FROM_DEVICE);
1894                         dma_unmap_addr_set(cb, dma_addr, 0);
1895                 }
1896
1897                 if (cb->skb)
1898                         bcmgenet_free_cb(cb);
1899         }
1900 }
1901
1902 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1903 {
1904         u32 reg;
1905
1906         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1907         if (enable)
1908                 reg |= mask;
1909         else
1910                 reg &= ~mask;
1911         bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1912
1913         /* UniMAC stops on a packet boundary, wait for a full-size packet
1914          * to be processed
1915          */
1916         if (enable == 0)
1917                 usleep_range(1000, 2000);
1918 }
1919
1920 static int reset_umac(struct bcmgenet_priv *priv)
1921 {
1922         struct device *kdev = &priv->pdev->dev;
1923         unsigned int timeout = 0;
1924         u32 reg;
1925
1926         /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1927         bcmgenet_rbuf_ctrl_set(priv, 0);
1928         udelay(10);
1929
1930         /* disable MAC while updating its registers */
1931         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1932
1933         /* issue soft reset, wait for it to complete */
1934         bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1935         while (timeout++ < 1000) {
1936                 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1937                 if (!(reg & CMD_SW_RESET))
1938                         return 0;
1939
1940                 udelay(1);
1941         }
1942
1943         if (timeout == 1000) {
1944                 dev_err(kdev,
1945                         "timeout waiting for MAC to come out of reset\n");
1946                 return -ETIMEDOUT;
1947         }
1948
1949         return 0;
1950 }
1951
1952 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1953 {
1954         /* Mask all interrupts.*/
1955         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1956         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1957         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1958         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1959 }
1960
1961 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1962 {
1963         u32 int0_enable = 0;
1964
1965         /* Monitor cable plug/unplugged event for internal PHY, external PHY
1966          * and MoCA PHY
1967          */
1968         if (priv->internal_phy) {
1969                 int0_enable |= UMAC_IRQ_LINK_EVENT;
1970         } else if (priv->ext_phy) {
1971                 int0_enable |= UMAC_IRQ_LINK_EVENT;
1972         } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1973                 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1974                         int0_enable |= UMAC_IRQ_LINK_EVENT;
1975         }
1976         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1977 }
1978
1979 static int init_umac(struct bcmgenet_priv *priv)
1980 {
1981         struct device *kdev = &priv->pdev->dev;
1982         int ret;
1983         u32 reg;
1984         u32 int0_enable = 0;
1985
1986         dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1987
1988         ret = reset_umac(priv);
1989         if (ret)
1990                 return ret;
1991
1992         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1993         /* clear tx/rx counter */
1994         bcmgenet_umac_writel(priv,
1995                              MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1996                              UMAC_MIB_CTRL);
1997         bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1998
1999         bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2000
2001         /* init rx registers, enable ip header optimization */
2002         reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2003         reg |= RBUF_ALIGN_2B;
2004         bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2005
2006         if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2007                 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2008
2009         bcmgenet_intr_disable(priv);
2010
2011         /* Configure backpressure vectors for MoCA */
2012         if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2013                 reg = bcmgenet_bp_mc_get(priv);
2014                 reg |= BIT(priv->hw_params->bp_in_en_shift);
2015
2016                 /* bp_mask: back pressure mask */
2017                 if (netif_is_multiqueue(priv->dev))
2018                         reg |= priv->hw_params->bp_in_mask;
2019                 else
2020                         reg &= ~priv->hw_params->bp_in_mask;
2021                 bcmgenet_bp_mc_set(priv, reg);
2022         }
2023
2024         /* Enable MDIO interrupts on GENET v3+ */
2025         if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2026                 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2027
2028         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2029
2030         dev_dbg(kdev, "done init umac\n");
2031
2032         return 0;
2033 }
2034
2035 /* Initialize a Tx ring along with corresponding hardware registers */
2036 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2037                                   unsigned int index, unsigned int size,
2038                                   unsigned int start_ptr, unsigned int end_ptr)
2039 {
2040         struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2041         u32 words_per_bd = WORDS_PER_BD(priv);
2042         u32 flow_period_val = 0;
2043
2044         spin_lock_init(&ring->lock);
2045         ring->priv = priv;
2046         ring->index = index;
2047         if (index == DESC_INDEX) {
2048                 ring->queue = 0;
2049                 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2050                 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2051         } else {
2052                 ring->queue = index + 1;
2053                 ring->int_enable = bcmgenet_tx_ring_int_enable;
2054                 ring->int_disable = bcmgenet_tx_ring_int_disable;
2055         }
2056         ring->cbs = priv->tx_cbs + start_ptr;
2057         ring->size = size;
2058         ring->clean_ptr = start_ptr;
2059         ring->c_index = 0;
2060         ring->free_bds = size;
2061         ring->write_ptr = start_ptr;
2062         ring->cb_ptr = start_ptr;
2063         ring->end_ptr = end_ptr - 1;
2064         ring->prod_index = 0;
2065
2066         /* Set flow period for ring != 16 */
2067         if (index != DESC_INDEX)
2068                 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2069
2070         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2071         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2072         bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2073         /* Disable rate control for now */
2074         bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2075                                   TDMA_FLOW_PERIOD);
2076         bcmgenet_tdma_ring_writel(priv, index,
2077                                   ((size << DMA_RING_SIZE_SHIFT) |
2078                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2079
2080         /* Set start and end address, read and write pointers */
2081         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2082                                   DMA_START_ADDR);
2083         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2084                                   TDMA_READ_PTR);
2085         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2086                                   TDMA_WRITE_PTR);
2087         bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2088                                   DMA_END_ADDR);
2089 }
2090
2091 /* Initialize a RDMA ring */
2092 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2093                                  unsigned int index, unsigned int size,
2094                                  unsigned int start_ptr, unsigned int end_ptr)
2095 {
2096         struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2097         u32 words_per_bd = WORDS_PER_BD(priv);
2098         int ret;
2099
2100         ring->priv = priv;
2101         ring->index = index;
2102         if (index == DESC_INDEX) {
2103                 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2104                 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2105         } else {
2106                 ring->int_enable = bcmgenet_rx_ring_int_enable;
2107                 ring->int_disable = bcmgenet_rx_ring_int_disable;
2108         }
2109         ring->cbs = priv->rx_cbs + start_ptr;
2110         ring->size = size;
2111         ring->c_index = 0;
2112         ring->read_ptr = start_ptr;
2113         ring->cb_ptr = start_ptr;
2114         ring->end_ptr = end_ptr - 1;
2115
2116         ret = bcmgenet_alloc_rx_buffers(priv, ring);
2117         if (ret)
2118                 return ret;
2119
2120         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2121         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2122         bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2123         bcmgenet_rdma_ring_writel(priv, index,
2124                                   ((size << DMA_RING_SIZE_SHIFT) |
2125                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2126         bcmgenet_rdma_ring_writel(priv, index,
2127                                   (DMA_FC_THRESH_LO <<
2128                                    DMA_XOFF_THRESHOLD_SHIFT) |
2129                                    DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2130
2131         /* Set start and end address, read and write pointers */
2132         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2133                                   DMA_START_ADDR);
2134         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2135                                   RDMA_READ_PTR);
2136         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2137                                   RDMA_WRITE_PTR);
2138         bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2139                                   DMA_END_ADDR);
2140
2141         return ret;
2142 }
2143
2144 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
2145 {
2146         unsigned int i;
2147         struct bcmgenet_tx_ring *ring;
2148
2149         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2150                 ring = &priv->tx_rings[i];
2151                 netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2152         }
2153
2154         ring = &priv->tx_rings[DESC_INDEX];
2155         netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2156 }
2157
2158 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2159 {
2160         unsigned int i;
2161         u32 int0_enable = UMAC_IRQ_TXDMA_DONE;
2162         u32 int1_enable = 0;
2163         struct bcmgenet_tx_ring *ring;
2164
2165         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2166                 ring = &priv->tx_rings[i];
2167                 napi_enable(&ring->napi);
2168                 int1_enable |= (1 << i);
2169         }
2170
2171         ring = &priv->tx_rings[DESC_INDEX];
2172         napi_enable(&ring->napi);
2173
2174         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2175         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2176 }
2177
2178 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2179 {
2180         unsigned int i;
2181         u32 int0_disable = UMAC_IRQ_TXDMA_DONE;
2182         u32 int1_disable = 0xffff;
2183         struct bcmgenet_tx_ring *ring;
2184
2185         bcmgenet_intrl2_0_writel(priv, int0_disable, INTRL2_CPU_MASK_SET);
2186         bcmgenet_intrl2_1_writel(priv, int1_disable, INTRL2_CPU_MASK_SET);
2187
2188         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2189                 ring = &priv->tx_rings[i];
2190                 napi_disable(&ring->napi);
2191         }
2192
2193         ring = &priv->tx_rings[DESC_INDEX];
2194         napi_disable(&ring->napi);
2195 }
2196
2197 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2198 {
2199         unsigned int i;
2200         struct bcmgenet_tx_ring *ring;
2201
2202         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2203                 ring = &priv->tx_rings[i];
2204                 netif_napi_del(&ring->napi);
2205         }
2206
2207         ring = &priv->tx_rings[DESC_INDEX];
2208         netif_napi_del(&ring->napi);
2209 }
2210
2211 /* Initialize Tx queues
2212  *
2213  * Queues 0-3 are priority-based, each one has 32 descriptors,
2214  * with queue 0 being the highest priority queue.
2215  *
2216  * Queue 16 is the default Tx queue with
2217  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2218  *
2219  * The transmit control block pool is then partitioned as follows:
2220  * - Tx queue 0 uses tx_cbs[0..31]
2221  * - Tx queue 1 uses tx_cbs[32..63]
2222  * - Tx queue 2 uses tx_cbs[64..95]
2223  * - Tx queue 3 uses tx_cbs[96..127]
2224  * - Tx queue 16 uses tx_cbs[128..255]
2225  */
2226 static void bcmgenet_init_tx_queues(struct net_device *dev)
2227 {
2228         struct bcmgenet_priv *priv = netdev_priv(dev);
2229         u32 i, dma_enable;
2230         u32 dma_ctrl, ring_cfg;
2231         u32 dma_priority[3] = {0, 0, 0};
2232
2233         dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2234         dma_enable = dma_ctrl & DMA_EN;
2235         dma_ctrl &= ~DMA_EN;
2236         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2237
2238         dma_ctrl = 0;
2239         ring_cfg = 0;
2240
2241         /* Enable strict priority arbiter mode */
2242         bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2243
2244         /* Initialize Tx priority queues */
2245         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2246                 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2247                                       i * priv->hw_params->tx_bds_per_q,
2248                                       (i + 1) * priv->hw_params->tx_bds_per_q);
2249                 ring_cfg |= (1 << i);
2250                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2251                 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2252                         ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2253         }
2254
2255         /* Initialize Tx default queue 16 */
2256         bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2257                               priv->hw_params->tx_queues *
2258                               priv->hw_params->tx_bds_per_q,
2259                               TOTAL_DESC);
2260         ring_cfg |= (1 << DESC_INDEX);
2261         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2262         dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2263                 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2264                  DMA_PRIO_REG_SHIFT(DESC_INDEX));
2265
2266         /* Set Tx queue priorities */
2267         bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2268         bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2269         bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2270
2271         /* Initialize Tx NAPI */
2272         bcmgenet_init_tx_napi(priv);
2273
2274         /* Enable Tx queues */
2275         bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2276
2277         /* Enable Tx DMA */
2278         if (dma_enable)
2279                 dma_ctrl |= DMA_EN;
2280         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2281 }
2282
2283 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2284 {
2285         unsigned int i;
2286         struct bcmgenet_rx_ring *ring;
2287
2288         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2289                 ring = &priv->rx_rings[i];
2290                 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2291         }
2292
2293         ring = &priv->rx_rings[DESC_INDEX];
2294         netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2295 }
2296
2297 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2298 {
2299         unsigned int i;
2300         u32 int0_enable = UMAC_IRQ_RXDMA_DONE;
2301         u32 int1_enable = 0;
2302         struct bcmgenet_rx_ring *ring;
2303
2304         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2305                 ring = &priv->rx_rings[i];
2306                 napi_enable(&ring->napi);
2307                 int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
2308         }
2309
2310         ring = &priv->rx_rings[DESC_INDEX];
2311         napi_enable(&ring->napi);
2312
2313         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2314         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2315 }
2316
2317 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2318 {
2319         unsigned int i;
2320         u32 int0_disable = UMAC_IRQ_RXDMA_DONE;
2321         u32 int1_disable = 0xffff << UMAC_IRQ1_RX_INTR_SHIFT;
2322         struct bcmgenet_rx_ring *ring;
2323
2324         bcmgenet_intrl2_0_writel(priv, int0_disable, INTRL2_CPU_MASK_SET);
2325         bcmgenet_intrl2_1_writel(priv, int1_disable, INTRL2_CPU_MASK_SET);
2326
2327         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2328                 ring = &priv->rx_rings[i];
2329                 napi_disable(&ring->napi);
2330         }
2331
2332         ring = &priv->rx_rings[DESC_INDEX];
2333         napi_disable(&ring->napi);
2334 }
2335
2336 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2337 {
2338         unsigned int i;
2339         struct bcmgenet_rx_ring *ring;
2340
2341         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2342                 ring = &priv->rx_rings[i];
2343                 netif_napi_del(&ring->napi);
2344         }
2345
2346         ring = &priv->rx_rings[DESC_INDEX];
2347         netif_napi_del(&ring->napi);
2348 }
2349
2350 /* Initialize Rx queues
2351  *
2352  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2353  * used to direct traffic to these queues.
2354  *
2355  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2356  */
2357 static int bcmgenet_init_rx_queues(struct net_device *dev)
2358 {
2359         struct bcmgenet_priv *priv = netdev_priv(dev);
2360         u32 i;
2361         u32 dma_enable;
2362         u32 dma_ctrl;
2363         u32 ring_cfg;
2364         int ret;
2365
2366         dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2367         dma_enable = dma_ctrl & DMA_EN;
2368         dma_ctrl &= ~DMA_EN;
2369         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2370
2371         dma_ctrl = 0;
2372         ring_cfg = 0;
2373
2374         /* Initialize Rx priority queues */
2375         for (i = 0; i < priv->hw_params->rx_queues; i++) {
2376                 ret = bcmgenet_init_rx_ring(priv, i,
2377                                             priv->hw_params->rx_bds_per_q,
2378                                             i * priv->hw_params->rx_bds_per_q,
2379                                             (i + 1) *
2380                                             priv->hw_params->rx_bds_per_q);
2381                 if (ret)
2382                         return ret;
2383
2384                 ring_cfg |= (1 << i);
2385                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2386         }
2387
2388         /* Initialize Rx default queue 16 */
2389         ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2390                                     priv->hw_params->rx_queues *
2391                                     priv->hw_params->rx_bds_per_q,
2392                                     TOTAL_DESC);
2393         if (ret)
2394                 return ret;
2395
2396         ring_cfg |= (1 << DESC_INDEX);
2397         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2398
2399         /* Initialize Rx NAPI */
2400         bcmgenet_init_rx_napi(priv);
2401
2402         /* Enable rings */
2403         bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2404
2405         /* Configure ring as descriptor ring and re-enable DMA if enabled */
2406         if (dma_enable)
2407                 dma_ctrl |= DMA_EN;
2408         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2409
2410         return 0;
2411 }
2412
2413 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2414 {
2415         int ret = 0;
2416         int timeout = 0;
2417         u32 reg;
2418         u32 dma_ctrl;
2419         int i;
2420
2421         /* Disable TDMA to stop add more frames in TX DMA */
2422         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2423         reg &= ~DMA_EN;
2424         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2425
2426         /* Check TDMA status register to confirm TDMA is disabled */
2427         while (timeout++ < DMA_TIMEOUT_VAL) {
2428                 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2429                 if (reg & DMA_DISABLED)
2430                         break;
2431
2432                 udelay(1);
2433         }
2434
2435         if (timeout == DMA_TIMEOUT_VAL) {
2436                 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2437                 ret = -ETIMEDOUT;
2438         }
2439
2440         /* Wait 10ms for packet drain in both tx and rx dma */
2441         usleep_range(10000, 20000);
2442
2443         /* Disable RDMA */
2444         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2445         reg &= ~DMA_EN;
2446         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2447
2448         timeout = 0;
2449         /* Check RDMA status register to confirm RDMA is disabled */
2450         while (timeout++ < DMA_TIMEOUT_VAL) {
2451                 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2452                 if (reg & DMA_DISABLED)
2453                         break;
2454
2455                 udelay(1);
2456         }
2457
2458         if (timeout == DMA_TIMEOUT_VAL) {
2459                 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2460                 ret = -ETIMEDOUT;
2461         }
2462
2463         dma_ctrl = 0;
2464         for (i = 0; i < priv->hw_params->rx_queues; i++)
2465                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2466         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2467         reg &= ~dma_ctrl;
2468         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2469
2470         dma_ctrl = 0;
2471         for (i = 0; i < priv->hw_params->tx_queues; i++)
2472                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2473         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2474         reg &= ~dma_ctrl;
2475         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2476
2477         return ret;
2478 }
2479
2480 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2481 {
2482         int i;
2483         struct netdev_queue *txq;
2484
2485         bcmgenet_fini_rx_napi(priv);
2486         bcmgenet_fini_tx_napi(priv);
2487
2488         /* disable DMA */
2489         bcmgenet_dma_teardown(priv);
2490
2491         for (i = 0; i < priv->num_tx_bds; i++) {
2492                 if (priv->tx_cbs[i].skb != NULL) {
2493                         dev_kfree_skb(priv->tx_cbs[i].skb);
2494                         priv->tx_cbs[i].skb = NULL;
2495                 }
2496         }
2497
2498         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2499                 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2500                 netdev_tx_reset_queue(txq);
2501         }
2502
2503         txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2504         netdev_tx_reset_queue(txq);
2505
2506         bcmgenet_free_rx_buffers(priv);
2507         kfree(priv->rx_cbs);
2508         kfree(priv->tx_cbs);
2509 }
2510
2511 /* init_edma: Initialize DMA control register */
2512 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2513 {
2514         int ret;
2515         unsigned int i;
2516         struct enet_cb *cb;
2517
2518         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2519
2520         /* Initialize common Rx ring structures */
2521         priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2522         priv->num_rx_bds = TOTAL_DESC;
2523         priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2524                                GFP_KERNEL);
2525         if (!priv->rx_cbs)
2526                 return -ENOMEM;
2527
2528         for (i = 0; i < priv->num_rx_bds; i++) {
2529                 cb = priv->rx_cbs + i;
2530                 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2531         }
2532
2533         /* Initialize common TX ring structures */
2534         priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2535         priv->num_tx_bds = TOTAL_DESC;
2536         priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2537                                GFP_KERNEL);
2538         if (!priv->tx_cbs) {
2539                 kfree(priv->rx_cbs);
2540                 return -ENOMEM;
2541         }
2542
2543         for (i = 0; i < priv->num_tx_bds; i++) {
2544                 cb = priv->tx_cbs + i;
2545                 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2546         }
2547
2548         /* Init rDma */
2549         bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2550
2551         /* Initialize Rx queues */
2552         ret = bcmgenet_init_rx_queues(priv->dev);
2553         if (ret) {
2554                 netdev_err(priv->dev, "failed to initialize Rx queues\n");
2555                 bcmgenet_free_rx_buffers(priv);
2556                 kfree(priv->rx_cbs);
2557                 kfree(priv->tx_cbs);
2558                 return ret;
2559         }
2560
2561         /* Init tDma */
2562         bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2563
2564         /* Initialize Tx queues */
2565         bcmgenet_init_tx_queues(priv->dev);
2566
2567         return 0;
2568 }
2569
2570 /* Interrupt bottom half */
2571 static void bcmgenet_irq_task(struct work_struct *work)
2572 {
2573         unsigned long flags;
2574         unsigned int status;
2575         struct bcmgenet_priv *priv = container_of(
2576                         work, struct bcmgenet_priv, bcmgenet_irq_work);
2577
2578         netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2579
2580         spin_lock_irqsave(&priv->lock, flags);
2581         status = priv->irq0_stat;
2582         priv->irq0_stat = 0;
2583         spin_unlock_irqrestore(&priv->lock, flags);
2584
2585         if (status & UMAC_IRQ_MPD_R) {
2586                 netif_dbg(priv, wol, priv->dev,
2587                           "magic packet detected, waking up\n");
2588                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2589         }
2590
2591         /* Link UP/DOWN event */
2592         if (status & UMAC_IRQ_LINK_EVENT)
2593                 phy_mac_interrupt(priv->phydev,
2594                                   !!(status & UMAC_IRQ_LINK_UP));
2595 }
2596
2597 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2598 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2599 {
2600         struct bcmgenet_priv *priv = dev_id;
2601         struct bcmgenet_rx_ring *rx_ring;
2602         struct bcmgenet_tx_ring *tx_ring;
2603         unsigned int index, status;
2604
2605         /* Read irq status */
2606         status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2607                 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2608
2609         /* clear interrupts */
2610         bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2611
2612         netif_dbg(priv, intr, priv->dev,
2613                   "%s: IRQ=0x%x\n", __func__, status);
2614
2615         /* Check Rx priority queue interrupts */
2616         for (index = 0; index < priv->hw_params->rx_queues; index++) {
2617                 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2618                         continue;
2619
2620                 rx_ring = &priv->rx_rings[index];
2621
2622                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2623                         rx_ring->int_disable(rx_ring);
2624                         __napi_schedule_irqoff(&rx_ring->napi);
2625                 }
2626         }
2627
2628         /* Check Tx priority queue interrupts */
2629         for (index = 0; index < priv->hw_params->tx_queues; index++) {
2630                 if (!(status & BIT(index)))
2631                         continue;
2632
2633                 tx_ring = &priv->tx_rings[index];
2634
2635                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2636                         tx_ring->int_disable(tx_ring);
2637                         __napi_schedule_irqoff(&tx_ring->napi);
2638                 }
2639         }
2640
2641         return IRQ_HANDLED;
2642 }
2643
2644 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2645 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2646 {
2647         struct bcmgenet_priv *priv = dev_id;
2648         struct bcmgenet_rx_ring *rx_ring;
2649         struct bcmgenet_tx_ring *tx_ring;
2650         unsigned int status;
2651         unsigned long flags;
2652
2653         /* Read irq status */
2654         status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2655                 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2656
2657         /* clear interrupts */
2658         bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2659
2660         netif_dbg(priv, intr, priv->dev,
2661                   "IRQ=0x%x\n", status);
2662
2663         if (status & UMAC_IRQ_RXDMA_DONE) {
2664                 rx_ring = &priv->rx_rings[DESC_INDEX];
2665
2666                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2667                         rx_ring->int_disable(rx_ring);
2668                         __napi_schedule_irqoff(&rx_ring->napi);
2669                 }
2670         }
2671
2672         if (status & UMAC_IRQ_TXDMA_DONE) {
2673                 tx_ring = &priv->tx_rings[DESC_INDEX];
2674
2675                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2676                         tx_ring->int_disable(tx_ring);
2677                         __napi_schedule_irqoff(&tx_ring->napi);
2678                 }
2679         }
2680
2681         if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2682                                 UMAC_IRQ_PHY_DET_F |
2683                                 UMAC_IRQ_LINK_EVENT |
2684                                 UMAC_IRQ_HFB_SM |
2685                                 UMAC_IRQ_HFB_MM)) {
2686                 /* all other interested interrupts handled in bottom half */
2687                 schedule_work(&priv->bcmgenet_irq_work);
2688         }
2689
2690         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2691                 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2692                 wake_up(&priv->wq);
2693         }
2694
2695         /* all other interested interrupts handled in bottom half */
2696         status &= (UMAC_IRQ_LINK_EVENT |
2697                    UMAC_IRQ_MPD_R);
2698         if (status) {
2699                 /* Save irq status for bottom-half processing. */
2700                 spin_lock_irqsave(&priv->lock, flags);
2701                 priv->irq0_stat |= status;
2702                 spin_unlock_irqrestore(&priv->lock, flags);
2703
2704                 schedule_work(&priv->bcmgenet_irq_work);
2705         }
2706
2707         return IRQ_HANDLED;
2708 }
2709
2710 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2711 {
2712         struct bcmgenet_priv *priv = dev_id;
2713
2714         pm_wakeup_event(&priv->pdev->dev, 0);
2715
2716         return IRQ_HANDLED;
2717 }
2718
2719 #ifdef CONFIG_NET_POLL_CONTROLLER
2720 static void bcmgenet_poll_controller(struct net_device *dev)
2721 {
2722         struct bcmgenet_priv *priv = netdev_priv(dev);
2723
2724         /* Invoke the main RX/TX interrupt handler */
2725         disable_irq(priv->irq0);
2726         bcmgenet_isr0(priv->irq0, priv);
2727         enable_irq(priv->irq0);
2728
2729         /* And the interrupt handler for RX/TX priority queues */
2730         disable_irq(priv->irq1);
2731         bcmgenet_isr1(priv->irq1, priv);
2732         enable_irq(priv->irq1);
2733 }
2734 #endif
2735
2736 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2737 {
2738         u32 reg;
2739
2740         reg = bcmgenet_rbuf_ctrl_get(priv);
2741         reg |= BIT(1);
2742         bcmgenet_rbuf_ctrl_set(priv, reg);
2743         udelay(10);
2744
2745         reg &= ~BIT(1);
2746         bcmgenet_rbuf_ctrl_set(priv, reg);
2747         udelay(10);
2748 }
2749
2750 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2751                                  unsigned char *addr)
2752 {
2753         bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2754                         (addr[2] << 8) | addr[3], UMAC_MAC0);
2755         bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2756 }
2757
2758 /* Returns a reusable dma control register value */
2759 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2760 {
2761         u32 reg;
2762         u32 dma_ctrl;
2763
2764         /* disable DMA */
2765         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2766         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2767         reg &= ~dma_ctrl;
2768         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2769
2770         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2771         reg &= ~dma_ctrl;
2772         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2773
2774         bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2775         udelay(10);
2776         bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2777
2778         return dma_ctrl;
2779 }
2780
2781 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2782 {
2783         u32 reg;
2784
2785         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2786         reg |= dma_ctrl;
2787         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2788
2789         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2790         reg |= dma_ctrl;
2791         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2792 }
2793
2794 /* bcmgenet_hfb_clear
2795  *
2796  * Clear Hardware Filter Block and disable all filtering.
2797  */
2798 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2799 {
2800         u32 i;
2801
2802         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2803         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2804         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2805
2806         for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2807                 bcmgenet_rdma_writel(priv, 0x0, i);
2808
2809         for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2810                 bcmgenet_hfb_reg_writel(priv, 0x0,
2811                                         HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2812
2813         for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2814                         priv->hw_params->hfb_filter_size; i++)
2815                 bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2816 }
2817
2818 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2819 {
2820         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2821                 return;
2822
2823         bcmgenet_hfb_clear(priv);
2824 }
2825
2826 static void bcmgenet_netif_start(struct net_device *dev)
2827 {
2828         struct bcmgenet_priv *priv = netdev_priv(dev);
2829
2830         /* Start the network engine */
2831         bcmgenet_enable_rx_napi(priv);
2832         bcmgenet_enable_tx_napi(priv);
2833
2834         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2835
2836         netif_tx_start_all_queues(dev);
2837
2838         /* Monitor link interrupts now */
2839         bcmgenet_link_intr_enable(priv);
2840
2841         phy_start(priv->phydev);
2842 }
2843
2844 static int bcmgenet_open(struct net_device *dev)
2845 {
2846         struct bcmgenet_priv *priv = netdev_priv(dev);
2847         unsigned long dma_ctrl;
2848         u32 reg;
2849         int ret;
2850
2851         netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2852
2853         /* Turn on the clock */
2854         clk_prepare_enable(priv->clk);
2855
2856         /* If this is an internal GPHY, power it back on now, before UniMAC is
2857          * brought out of reset as absolutely no UniMAC activity is allowed
2858          */
2859         if (priv->internal_phy)
2860                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2861
2862         /* take MAC out of reset */
2863         bcmgenet_umac_reset(priv);
2864
2865         ret = init_umac(priv);
2866         if (ret)
2867                 goto err_clk_disable;
2868
2869         /* disable ethernet MAC while updating its registers */
2870         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2871
2872         /* Make sure we reflect the value of CRC_CMD_FWD */
2873         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2874         priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2875
2876         bcmgenet_set_hw_addr(priv, dev->dev_addr);
2877
2878         if (priv->internal_phy) {
2879                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2880                 reg |= EXT_ENERGY_DET_MASK;
2881                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2882         }
2883
2884         /* Disable RX/TX DMA and flush TX queues */
2885         dma_ctrl = bcmgenet_dma_disable(priv);
2886
2887         /* Reinitialize TDMA and RDMA and SW housekeeping */
2888         ret = bcmgenet_init_dma(priv);
2889         if (ret) {
2890                 netdev_err(dev, "failed to initialize DMA\n");
2891                 goto err_clk_disable;
2892         }
2893
2894         /* Always enable ring 16 - descriptor ring */
2895         bcmgenet_enable_dma(priv, dma_ctrl);
2896
2897         /* HFB init */
2898         bcmgenet_hfb_init(priv);
2899
2900         ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2901                           dev->name, priv);
2902         if (ret < 0) {
2903                 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2904                 goto err_fini_dma;
2905         }
2906
2907         ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2908                           dev->name, priv);
2909         if (ret < 0) {
2910                 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2911                 goto err_irq0;
2912         }
2913
2914         ret = bcmgenet_mii_probe(dev);
2915         if (ret) {
2916                 netdev_err(dev, "failed to connect to PHY\n");
2917                 goto err_irq1;
2918         }
2919
2920         bcmgenet_netif_start(dev);
2921
2922         return 0;
2923
2924 err_irq1:
2925         free_irq(priv->irq1, priv);
2926 err_irq0:
2927         free_irq(priv->irq0, priv);
2928 err_fini_dma:
2929         bcmgenet_fini_dma(priv);
2930 err_clk_disable:
2931         if (priv->internal_phy)
2932                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2933         clk_disable_unprepare(priv->clk);
2934         return ret;
2935 }
2936
2937 static void bcmgenet_netif_stop(struct net_device *dev)
2938 {
2939         struct bcmgenet_priv *priv = netdev_priv(dev);
2940
2941         netif_tx_stop_all_queues(dev);
2942         phy_stop(priv->phydev);
2943         bcmgenet_intr_disable(priv);
2944         bcmgenet_disable_rx_napi(priv);
2945         bcmgenet_disable_tx_napi(priv);
2946
2947         /* Wait for pending work items to complete. Since interrupts are
2948          * disabled no new work will be scheduled.
2949          */
2950         cancel_work_sync(&priv->bcmgenet_irq_work);
2951
2952         priv->old_link = -1;
2953         priv->old_speed = -1;
2954         priv->old_duplex = -1;
2955         priv->old_pause = -1;
2956 }
2957
2958 static int bcmgenet_close(struct net_device *dev)
2959 {
2960         struct bcmgenet_priv *priv = netdev_priv(dev);
2961         int ret;
2962
2963         netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2964
2965         bcmgenet_netif_stop(dev);
2966
2967         /* Really kill the PHY state machine and disconnect from it */
2968         phy_disconnect(priv->phydev);
2969
2970         /* Disable MAC receive */
2971         umac_enable_set(priv, CMD_RX_EN, false);
2972
2973         ret = bcmgenet_dma_teardown(priv);
2974         if (ret)
2975                 return ret;
2976
2977         /* Disable MAC transmit. TX DMA disabled must be done before this */
2978         umac_enable_set(priv, CMD_TX_EN, false);
2979
2980         /* tx reclaim */
2981         bcmgenet_tx_reclaim_all(dev);
2982         bcmgenet_fini_dma(priv);
2983
2984         free_irq(priv->irq0, priv);
2985         free_irq(priv->irq1, priv);
2986
2987         if (priv->internal_phy)
2988                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2989
2990         clk_disable_unprepare(priv->clk);
2991
2992         return ret;
2993 }
2994
2995 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2996 {
2997         struct bcmgenet_priv *priv = ring->priv;
2998         u32 p_index, c_index, intsts, intmsk;
2999         struct netdev_queue *txq;
3000         unsigned int free_bds;
3001         unsigned long flags;
3002         bool txq_stopped;
3003
3004         if (!netif_msg_tx_err(priv))
3005                 return;
3006
3007         txq = netdev_get_tx_queue(priv->dev, ring->queue);
3008
3009         spin_lock_irqsave(&ring->lock, flags);
3010         if (ring->index == DESC_INDEX) {
3011                 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3012                 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3013         } else {
3014                 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3015                 intmsk = 1 << ring->index;
3016         }
3017         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3018         p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3019         txq_stopped = netif_tx_queue_stopped(txq);
3020         free_bds = ring->free_bds;
3021         spin_unlock_irqrestore(&ring->lock, flags);
3022
3023         netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3024                   "TX queue status: %s, interrupts: %s\n"
3025                   "(sw)free_bds: %d (sw)size: %d\n"
3026                   "(sw)p_index: %d (hw)p_index: %d\n"
3027                   "(sw)c_index: %d (hw)c_index: %d\n"
3028                   "(sw)clean_p: %d (sw)write_p: %d\n"
3029                   "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3030                   ring->index, ring->queue,
3031                   txq_stopped ? "stopped" : "active",
3032                   intsts & intmsk ? "enabled" : "disabled",
3033                   free_bds, ring->size,
3034                   ring->prod_index, p_index & DMA_P_INDEX_MASK,
3035                   ring->c_index, c_index & DMA_C_INDEX_MASK,
3036                   ring->clean_ptr, ring->write_ptr,
3037                   ring->cb_ptr, ring->end_ptr);
3038 }
3039
3040 static void bcmgenet_timeout(struct net_device *dev)
3041 {
3042         struct bcmgenet_priv *priv = netdev_priv(dev);
3043         u32 int0_enable = 0;
3044         u32 int1_enable = 0;
3045         unsigned int q;
3046
3047         netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3048
3049         for (q = 0; q < priv->hw_params->tx_queues; q++)
3050                 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3051         bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3052
3053         bcmgenet_tx_reclaim_all(dev);
3054
3055         for (q = 0; q < priv->hw_params->tx_queues; q++)
3056                 int1_enable |= (1 << q);
3057
3058         int0_enable = UMAC_IRQ_TXDMA_DONE;
3059
3060         /* Re-enable TX interrupts if disabled */
3061         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3062         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3063
3064         netif_trans_update(dev);
3065
3066         dev->stats.tx_errors++;
3067
3068         netif_tx_wake_all_queues(dev);
3069 }
3070
3071 #define MAX_MC_COUNT    16
3072
3073 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3074                                          unsigned char *addr,
3075                                          int *i,
3076                                          int *mc)
3077 {
3078         u32 reg;
3079
3080         bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3081                              UMAC_MDF_ADDR + (*i * 4));
3082         bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3083                              addr[4] << 8 | addr[5],
3084                              UMAC_MDF_ADDR + ((*i + 1) * 4));
3085         reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3086         reg |= (1 << (MAX_MC_COUNT - *mc));
3087         bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3088         *i += 2;
3089         (*mc)++;
3090 }
3091
3092 static void bcmgenet_set_rx_mode(struct net_device *dev)
3093 {
3094         struct bcmgenet_priv *priv = netdev_priv(dev);
3095         struct netdev_hw_addr *ha;
3096         int i, mc;
3097         u32 reg;
3098
3099         netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3100
3101         /* Promiscuous mode */
3102         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3103         if (dev->flags & IFF_PROMISC) {
3104                 reg |= CMD_PROMISC;
3105                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3106                 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3107                 return;
3108         } else {
3109                 reg &= ~CMD_PROMISC;
3110                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3111         }
3112
3113         /* UniMac doesn't support ALLMULTI */
3114         if (dev->flags & IFF_ALLMULTI) {
3115                 netdev_warn(dev, "ALLMULTI is not supported\n");
3116                 return;
3117         }
3118
3119         /* update MDF filter */
3120         i = 0;
3121         mc = 0;
3122         /* Broadcast */
3123         bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3124         /* my own address.*/
3125         bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3126         /* Unicast list*/
3127         if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3128                 return;
3129
3130         if (!netdev_uc_empty(dev))
3131                 netdev_for_each_uc_addr(ha, dev)
3132                         bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3133         /* Multicast */
3134         if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3135                 return;
3136
3137         netdev_for_each_mc_addr(ha, dev)
3138                 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3139 }
3140
3141 /* Set the hardware MAC address. */
3142 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3143 {
3144         struct sockaddr *addr = p;
3145
3146         /* Setting the MAC address at the hardware level is not possible
3147          * without disabling the UniMAC RX/TX enable bits.
3148          */
3149         if (netif_running(dev))
3150                 return -EBUSY;
3151
3152         ether_addr_copy(dev->dev_addr, addr->sa_data);
3153
3154         return 0;
3155 }
3156
3157 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3158 {
3159         struct bcmgenet_priv *priv = netdev_priv(dev);
3160         unsigned long tx_bytes = 0, tx_packets = 0;
3161         unsigned long rx_bytes = 0, rx_packets = 0;
3162         unsigned long rx_errors = 0, rx_dropped = 0;
3163         struct bcmgenet_tx_ring *tx_ring;
3164         struct bcmgenet_rx_ring *rx_ring;
3165         unsigned int q;
3166
3167         for (q = 0; q < priv->hw_params->tx_queues; q++) {
3168                 tx_ring = &priv->tx_rings[q];
3169                 tx_bytes += tx_ring->bytes;
3170                 tx_packets += tx_ring->packets;
3171         }
3172         tx_ring = &priv->tx_rings[DESC_INDEX];
3173         tx_bytes += tx_ring->bytes;
3174         tx_packets += tx_ring->packets;
3175
3176         for (q = 0; q < priv->hw_params->rx_queues; q++) {
3177                 rx_ring = &priv->rx_rings[q];
3178
3179                 rx_bytes += rx_ring->bytes;
3180                 rx_packets += rx_ring->packets;
3181                 rx_errors += rx_ring->errors;
3182                 rx_dropped += rx_ring->dropped;
3183         }
3184         rx_ring = &priv->rx_rings[DESC_INDEX];
3185         rx_bytes += rx_ring->bytes;
3186         rx_packets += rx_ring->packets;
3187         rx_errors += rx_ring->errors;
3188         rx_dropped += rx_ring->dropped;
3189
3190         dev->stats.tx_bytes = tx_bytes;
3191         dev->stats.tx_packets = tx_packets;
3192         dev->stats.rx_bytes = rx_bytes;
3193         dev->stats.rx_packets = rx_packets;
3194         dev->stats.rx_errors = rx_errors;
3195         dev->stats.rx_missed_errors = rx_errors;
3196         return &dev->stats;
3197 }
3198
3199 static const struct net_device_ops bcmgenet_netdev_ops = {
3200         .ndo_open               = bcmgenet_open,
3201         .ndo_stop               = bcmgenet_close,
3202         .ndo_start_xmit         = bcmgenet_xmit,
3203         .ndo_tx_timeout         = bcmgenet_timeout,
3204         .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
3205         .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3206         .ndo_do_ioctl           = bcmgenet_ioctl,
3207         .ndo_set_features       = bcmgenet_set_features,
3208 #ifdef CONFIG_NET_POLL_CONTROLLER
3209         .ndo_poll_controller    = bcmgenet_poll_controller,
3210 #endif
3211         .ndo_get_stats          = bcmgenet_get_stats,
3212 };
3213
3214 /* Array of GENET hardware parameters/characteristics */
3215 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3216         [GENET_V1] = {
3217                 .tx_queues = 0,
3218                 .tx_bds_per_q = 0,
3219                 .rx_queues = 0,
3220                 .rx_bds_per_q = 0,
3221                 .bp_in_en_shift = 16,
3222                 .bp_in_mask = 0xffff,
3223                 .hfb_filter_cnt = 16,
3224                 .qtag_mask = 0x1F,
3225                 .hfb_offset = 0x1000,
3226                 .rdma_offset = 0x2000,
3227                 .tdma_offset = 0x3000,
3228                 .words_per_bd = 2,
3229         },
3230         [GENET_V2] = {
3231                 .tx_queues = 4,
3232                 .tx_bds_per_q = 32,
3233                 .rx_queues = 0,
3234                 .rx_bds_per_q = 0,
3235                 .bp_in_en_shift = 16,
3236                 .bp_in_mask = 0xffff,
3237                 .hfb_filter_cnt = 16,
3238                 .qtag_mask = 0x1F,
3239                 .tbuf_offset = 0x0600,
3240                 .hfb_offset = 0x1000,
3241                 .hfb_reg_offset = 0x2000,
3242                 .rdma_offset = 0x3000,
3243                 .tdma_offset = 0x4000,
3244                 .words_per_bd = 2,
3245                 .flags = GENET_HAS_EXT,
3246         },
3247         [GENET_V3] = {
3248                 .tx_queues = 4,
3249                 .tx_bds_per_q = 32,
3250                 .rx_queues = 0,
3251                 .rx_bds_per_q = 0,
3252                 .bp_in_en_shift = 17,
3253                 .bp_in_mask = 0x1ffff,
3254                 .hfb_filter_cnt = 48,
3255                 .hfb_filter_size = 128,
3256                 .qtag_mask = 0x3F,
3257                 .tbuf_offset = 0x0600,
3258                 .hfb_offset = 0x8000,
3259                 .hfb_reg_offset = 0xfc00,
3260                 .rdma_offset = 0x10000,
3261                 .tdma_offset = 0x11000,
3262                 .words_per_bd = 2,
3263                 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3264                          GENET_HAS_MOCA_LINK_DET,
3265         },
3266         [GENET_V4] = {
3267                 .tx_queues = 4,
3268                 .tx_bds_per_q = 32,
3269                 .rx_queues = 0,
3270                 .rx_bds_per_q = 0,
3271                 .bp_in_en_shift = 17,
3272                 .bp_in_mask = 0x1ffff,
3273                 .hfb_filter_cnt = 48,
3274                 .hfb_filter_size = 128,
3275                 .qtag_mask = 0x3F,
3276                 .tbuf_offset = 0x0600,
3277                 .hfb_offset = 0x8000,
3278                 .hfb_reg_offset = 0xfc00,
3279                 .rdma_offset = 0x2000,
3280                 .tdma_offset = 0x4000,
3281                 .words_per_bd = 3,
3282                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3283                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3284         },
3285         [GENET_V5] = {
3286                 .tx_queues = 4,
3287                 .tx_bds_per_q = 32,
3288                 .rx_queues = 0,
3289                 .rx_bds_per_q = 0,
3290                 .bp_in_en_shift = 17,
3291                 .bp_in_mask = 0x1ffff,
3292                 .hfb_filter_cnt = 48,
3293                 .hfb_filter_size = 128,
3294                 .qtag_mask = 0x3F,
3295                 .tbuf_offset = 0x0600,
3296                 .hfb_offset = 0x8000,
3297                 .hfb_reg_offset = 0xfc00,
3298                 .rdma_offset = 0x2000,
3299                 .tdma_offset = 0x4000,
3300                 .words_per_bd = 3,
3301                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3302                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3303         },
3304 };
3305
3306 /* Infer hardware parameters from the detected GENET version */
3307 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3308 {
3309         struct bcmgenet_hw_params *params;
3310         u32 reg;
3311         u8 major;
3312         u16 gphy_rev;
3313
3314         if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3315                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3316                 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3317                 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3318         } else if (GENET_IS_V3(priv)) {
3319                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3320                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3321                 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3322         } else if (GENET_IS_V2(priv)) {
3323                 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3324                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3325                 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3326         } else if (GENET_IS_V1(priv)) {
3327                 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3328                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3329                 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3330         }
3331
3332         /* enum genet_version starts at 1 */
3333         priv->hw_params = &bcmgenet_hw_params[priv->version];
3334         params = priv->hw_params;
3335
3336         /* Read GENET HW version */
3337         reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3338         major = (reg >> 24 & 0x0f);
3339         if (major == 6)
3340                 major = 5;
3341         else if (major == 5)
3342                 major = 4;
3343         else if (major == 0)
3344                 major = 1;
3345         if (major != priv->version) {
3346                 dev_err(&priv->pdev->dev,
3347                         "GENET version mismatch, got: %d, configured for: %d\n",
3348                         major, priv->version);
3349         }
3350
3351         /* Print the GENET core version */
3352         dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3353                  major, (reg >> 16) & 0x0f, reg & 0xffff);
3354
3355         /* Store the integrated PHY revision for the MDIO probing function
3356          * to pass this information to the PHY driver. The PHY driver expects
3357          * to find the PHY major revision in bits 15:8 while the GENET register
3358          * stores that information in bits 7:0, account for that.
3359          *
3360          * On newer chips, starting with PHY revision G0, a new scheme is
3361          * deployed similar to the Starfighter 2 switch with GPHY major
3362          * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3363          * is reserved as well as special value 0x01ff, we have a small
3364          * heuristic to check for the new GPHY revision and re-arrange things
3365          * so the GPHY driver is happy.
3366          */
3367         gphy_rev = reg & 0xffff;
3368
3369         if (GENET_IS_V5(priv)) {
3370                 /* The EPHY revision should come from the MDIO registers of
3371                  * the PHY not from GENET.
3372                  */
3373                 if (gphy_rev != 0) {
3374                         pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3375                                 gphy_rev);
3376                 }
3377         /* This is reserved so should require special treatment */
3378         } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3379                 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3380                 return;
3381         /* This is the good old scheme, just GPHY major, no minor nor patch */
3382         } else if ((gphy_rev & 0xf0) != 0) {
3383                 priv->gphy_rev = gphy_rev << 8;
3384         /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3385         } else if ((gphy_rev & 0xff00) != 0) {
3386                 priv->gphy_rev = gphy_rev;
3387         }
3388
3389 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3390         if (!(params->flags & GENET_HAS_40BITS))
3391                 pr_warn("GENET does not support 40-bits PA\n");
3392 #endif
3393
3394         pr_debug("Configuration for version: %d\n"
3395                 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3396                 "BP << en: %2d, BP msk: 0x%05x\n"
3397                 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3398                 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3399                 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3400                 "Words/BD: %d\n",
3401                 priv->version,
3402                 params->tx_queues, params->tx_bds_per_q,
3403                 params->rx_queues, params->rx_bds_per_q,
3404                 params->bp_in_en_shift, params->bp_in_mask,
3405                 params->hfb_filter_cnt, params->qtag_mask,
3406                 params->tbuf_offset, params->hfb_offset,
3407                 params->hfb_reg_offset,
3408                 params->rdma_offset, params->tdma_offset,
3409                 params->words_per_bd);
3410 }
3411
3412 static const struct of_device_id bcmgenet_match[] = {
3413         { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3414         { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3415         { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3416         { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3417         { .compatible = "brcm,genet-v5", .data = (void *)GENET_V5 },
3418         { },
3419 };
3420 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3421
3422 static int bcmgenet_probe(struct platform_device *pdev)
3423 {
3424         struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3425         struct device_node *dn = pdev->dev.of_node;
3426         const struct of_device_id *of_id = NULL;
3427         struct bcmgenet_priv *priv;
3428         struct net_device *dev;
3429         const void *macaddr;
3430         struct resource *r;
3431         int err = -EIO;
3432         const char *phy_mode_str;
3433
3434         /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3435         dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3436                                  GENET_MAX_MQ_CNT + 1);
3437         if (!dev) {
3438                 dev_err(&pdev->dev, "can't allocate net device\n");
3439                 return -ENOMEM;
3440         }
3441
3442         if (dn) {
3443                 of_id = of_match_node(bcmgenet_match, dn);
3444                 if (!of_id)
3445                         return -EINVAL;
3446         }
3447
3448         priv = netdev_priv(dev);
3449         priv->irq0 = platform_get_irq(pdev, 0);
3450         priv->irq1 = platform_get_irq(pdev, 1);
3451         priv->wol_irq = platform_get_irq(pdev, 2);
3452         if (!priv->irq0 || !priv->irq1) {
3453                 dev_err(&pdev->dev, "can't find IRQs\n");
3454                 err = -EINVAL;
3455                 goto err;
3456         }
3457
3458         if (dn) {
3459                 macaddr = of_get_mac_address(dn);
3460                 if (!macaddr) {
3461                         dev_err(&pdev->dev, "can't find MAC address\n");
3462                         err = -EINVAL;
3463                         goto err;
3464                 }
3465         } else {
3466                 macaddr = pd->mac_address;
3467         }
3468
3469         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3470         priv->base = devm_ioremap_resource(&pdev->dev, r);
3471         if (IS_ERR(priv->base)) {
3472                 err = PTR_ERR(priv->base);
3473                 goto err;
3474         }
3475
3476         spin_lock_init(&priv->lock);
3477
3478         SET_NETDEV_DEV(dev, &pdev->dev);
3479         dev_set_drvdata(&pdev->dev, dev);
3480         ether_addr_copy(dev->dev_addr, macaddr);
3481         dev->watchdog_timeo = 2 * HZ;
3482         dev->ethtool_ops = &bcmgenet_ethtool_ops;
3483         dev->netdev_ops = &bcmgenet_netdev_ops;
3484
3485         priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3486
3487         /* Set hardware features */
3488         dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3489                 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3490
3491         /* Request the WOL interrupt and advertise suspend if available */
3492         priv->wol_irq_disabled = true;
3493         err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3494                                dev->name, priv);
3495         if (!err)
3496                 device_set_wakeup_capable(&pdev->dev, 1);
3497
3498         /* Set the needed headroom to account for any possible
3499          * features enabling/disabling at runtime
3500          */
3501         dev->needed_headroom += 64;
3502
3503         netdev_boot_setup_check(dev);
3504
3505         priv->dev = dev;
3506         priv->pdev = pdev;
3507         if (of_id)
3508                 priv->version = (enum bcmgenet_version)of_id->data;
3509         else
3510                 priv->version = pd->genet_version;
3511
3512         priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3513         if (IS_ERR(priv->clk)) {
3514                 dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3515                 priv->clk = NULL;
3516         }
3517
3518         clk_prepare_enable(priv->clk);
3519
3520         bcmgenet_set_hw_params(priv);
3521
3522         /* Mii wait queue */
3523         init_waitqueue_head(&priv->wq);
3524         /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3525         priv->rx_buf_len = RX_BUF_LENGTH;
3526         INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3527
3528         priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3529         if (IS_ERR(priv->clk_wol)) {
3530                 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3531                 priv->clk_wol = NULL;
3532         }
3533
3534         priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3535         if (IS_ERR(priv->clk_eee)) {
3536                 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3537                 priv->clk_eee = NULL;
3538         }
3539
3540         /* If this is an internal GPHY, power it on now, before UniMAC is
3541          * brought out of reset as absolutely no UniMAC activity is allowed
3542          */
3543         if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3544             !strcasecmp(phy_mode_str, "internal"))
3545                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3546
3547         err = reset_umac(priv);
3548         if (err)
3549                 goto err_clk_disable;
3550
3551         err = bcmgenet_mii_init(dev);
3552         if (err)
3553                 goto err_clk_disable;
3554
3555         /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3556          * just the ring 16 descriptor based TX
3557          */
3558         netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3559         netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3560
3561         /* libphy will determine the link state */
3562         netif_carrier_off(dev);
3563
3564         /* Turn off the main clock, WOL clock is handled separately */
3565         clk_disable_unprepare(priv->clk);
3566
3567         err = register_netdev(dev);
3568         if (err)
3569                 goto err;
3570
3571         return err;
3572
3573 err_clk_disable:
3574         clk_disable_unprepare(priv->clk);
3575 err:
3576         free_netdev(dev);
3577         return err;
3578 }
3579
3580 static int bcmgenet_remove(struct platform_device *pdev)
3581 {
3582         struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3583
3584         dev_set_drvdata(&pdev->dev, NULL);
3585         unregister_netdev(priv->dev);
3586         bcmgenet_mii_exit(priv->dev);
3587         free_netdev(priv->dev);
3588
3589         return 0;
3590 }
3591
3592 #ifdef CONFIG_PM_SLEEP
3593 static int bcmgenet_suspend(struct device *d)
3594 {
3595         struct net_device *dev = dev_get_drvdata(d);
3596         struct bcmgenet_priv *priv = netdev_priv(dev);
3597         int ret;
3598
3599         if (!netif_running(dev))
3600                 return 0;
3601
3602         bcmgenet_netif_stop(dev);
3603
3604         if (!device_may_wakeup(d))
3605                 phy_suspend(priv->phydev);
3606
3607         netif_device_detach(dev);
3608
3609         /* Disable MAC receive */
3610         umac_enable_set(priv, CMD_RX_EN, false);
3611
3612         ret = bcmgenet_dma_teardown(priv);
3613         if (ret)
3614                 return ret;
3615
3616         /* Disable MAC transmit. TX DMA disabled must be done before this */
3617         umac_enable_set(priv, CMD_TX_EN, false);
3618
3619         /* tx reclaim */
3620         bcmgenet_tx_reclaim_all(dev);
3621         bcmgenet_fini_dma(priv);
3622
3623         /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3624         if (device_may_wakeup(d) && priv->wolopts) {
3625                 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3626                 clk_prepare_enable(priv->clk_wol);
3627         } else if (priv->internal_phy) {
3628                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3629         }
3630
3631         /* Turn off the clocks */
3632         clk_disable_unprepare(priv->clk);
3633
3634         return ret;
3635 }
3636
3637 static int bcmgenet_resume(struct device *d)
3638 {
3639         struct net_device *dev = dev_get_drvdata(d);
3640         struct bcmgenet_priv *priv = netdev_priv(dev);
3641         unsigned long dma_ctrl;
3642         int ret;
3643         u32 reg;
3644
3645         if (!netif_running(dev))
3646                 return 0;
3647
3648         /* Turn on the clock */
3649         ret = clk_prepare_enable(priv->clk);
3650         if (ret)
3651                 return ret;
3652
3653         /* If this is an internal GPHY, power it back on now, before UniMAC is
3654          * brought out of reset as absolutely no UniMAC activity is allowed
3655          */
3656         if (priv->internal_phy)
3657                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3658
3659         bcmgenet_umac_reset(priv);
3660
3661         ret = init_umac(priv);
3662         if (ret)
3663                 goto out_clk_disable;
3664
3665         /* From WOL-enabled suspend, switch to regular clock */
3666         if (priv->wolopts)
3667                 clk_disable_unprepare(priv->clk_wol);
3668
3669         phy_init_hw(priv->phydev);
3670         /* Speed settings must be restored */
3671         bcmgenet_mii_config(priv->dev);
3672
3673         /* disable ethernet MAC while updating its registers */
3674         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3675
3676         bcmgenet_set_hw_addr(priv, dev->dev_addr);
3677
3678         if (priv->internal_phy) {
3679                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3680                 reg |= EXT_ENERGY_DET_MASK;
3681                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3682         }
3683
3684         if (priv->wolopts)
3685                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3686
3687         /* Disable RX/TX DMA and flush TX queues */
3688         dma_ctrl = bcmgenet_dma_disable(priv);
3689
3690         /* Reinitialize TDMA and RDMA and SW housekeeping */
3691         ret = bcmgenet_init_dma(priv);
3692         if (ret) {
3693                 netdev_err(dev, "failed to initialize DMA\n");
3694                 goto out_clk_disable;
3695         }
3696
3697         /* Always enable ring 16 - descriptor ring */
3698         bcmgenet_enable_dma(priv, dma_ctrl);
3699
3700         netif_device_attach(dev);
3701
3702         if (!device_may_wakeup(d))
3703                 phy_resume(priv->phydev);
3704
3705         if (priv->eee.eee_enabled)
3706                 bcmgenet_eee_enable_set(dev, true);
3707
3708         bcmgenet_netif_start(dev);
3709
3710         return 0;
3711
3712 out_clk_disable:
3713         if (priv->internal_phy)
3714                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3715         clk_disable_unprepare(priv->clk);
3716         return ret;
3717 }
3718 #endif /* CONFIG_PM_SLEEP */
3719
3720 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3721
3722 static struct platform_driver bcmgenet_driver = {
3723         .probe  = bcmgenet_probe,
3724         .remove = bcmgenet_remove,
3725         .driver = {
3726                 .name   = "bcmgenet",
3727                 .of_match_table = bcmgenet_match,
3728                 .pm     = &bcmgenet_pm_ops,
3729         },
3730 };
3731 module_platform_driver(bcmgenet_driver);
3732
3733 MODULE_AUTHOR("Broadcom Corporation");
3734 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3735 MODULE_ALIAS("platform:bcmgenet");
3736 MODULE_LICENSE("GPL");