]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/freescale/dpaa/dpaa_eth.c
dpaa_eth: reuse the dma_ops provided by the FMan MAC device
[karo-tx-linux.git] / drivers / net / ethernet / freescale / dpaa / dpaa_eth.c
1 /* Copyright 2008 - 2016 Freescale Semiconductor Inc.
2  *
3  * Redistribution and use in source and binary forms, with or without
4  * modification, are permitted provided that the following conditions are met:
5  *     * Redistributions of source code must retain the above copyright
6  *       notice, this list of conditions and the following disclaimer.
7  *     * Redistributions in binary form must reproduce the above copyright
8  *       notice, this list of conditions and the following disclaimer in the
9  *       documentation and/or other materials provided with the distribution.
10  *     * Neither the name of Freescale Semiconductor nor the
11  *       names of its contributors may be used to endorse or promote products
12  *       derived from this software without specific prior written permission.
13  *
14  * ALTERNATIVELY, this software may be distributed under the terms of the
15  * GNU General Public License ("GPL") as published by the Free Software
16  * Foundation, either version 2 of that License or (at your option) any
17  * later version.
18  *
19  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/init.h>
34 #include <linux/module.h>
35 #include <linux/of_platform.h>
36 #include <linux/of_mdio.h>
37 #include <linux/of_net.h>
38 #include <linux/io.h>
39 #include <linux/if_arp.h>
40 #include <linux/if_vlan.h>
41 #include <linux/icmp.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/udp.h>
45 #include <linux/tcp.h>
46 #include <linux/net.h>
47 #include <linux/skbuff.h>
48 #include <linux/etherdevice.h>
49 #include <linux/if_ether.h>
50 #include <linux/highmem.h>
51 #include <linux/percpu.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/sort.h>
54 #include <soc/fsl/bman.h>
55 #include <soc/fsl/qman.h>
56
57 #include "fman.h"
58 #include "fman_port.h"
59 #include "mac.h"
60 #include "dpaa_eth.h"
61
62 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
63  * using trace events only need to #include <trace/events/sched.h>
64  */
65 #define CREATE_TRACE_POINTS
66 #include "dpaa_eth_trace.h"
67
68 static int debug = -1;
69 module_param(debug, int, 0444);
70 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
71
72 static u16 tx_timeout = 1000;
73 module_param(tx_timeout, ushort, 0444);
74 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
75
76 #define FM_FD_STAT_RX_ERRORS                                            \
77         (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL     | \
78          FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
79          FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME     | \
80          FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
81          FM_FD_ERR_PRS_HDR_ERR)
82
83 #define FM_FD_STAT_TX_ERRORS \
84         (FM_FD_ERR_UNSUPPORTED_FORMAT | \
85          FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
86
87 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
88                           NETIF_MSG_LINK | NETIF_MSG_IFUP | \
89                           NETIF_MSG_IFDOWN)
90
91 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
92 /* Ingress congestion threshold on FMan ports
93  * The size in bytes of the ingress tail-drop threshold on FMan ports.
94  * Traffic piling up above this value will be rejected by QMan and discarded
95  * by FMan.
96  */
97
98 /* Size in bytes of the FQ taildrop threshold */
99 #define DPAA_FQ_TD 0x200000
100
101 #define DPAA_CS_THRESHOLD_1G 0x06000000
102 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
103  * The size in bytes of the egress Congestion State notification threshold on
104  * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
105  * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
106  * and the larger the frame size, the more acute the problem.
107  * So we have to find a balance between these factors:
108  * - avoiding the device staying congested for a prolonged time (risking
109  *   the netdev watchdog to fire - see also the tx_timeout module param);
110  * - affecting performance of protocols such as TCP, which otherwise
111  *   behave well under the congestion notification mechanism;
112  * - preventing the Tx cores from tightly-looping (as if the congestion
113  *   threshold was too low to be effective);
114  * - running out of memory if the CS threshold is set too high.
115  */
116
117 #define DPAA_CS_THRESHOLD_10G 0x10000000
118 /* The size in bytes of the egress Congestion State notification threshold on
119  * 10G ports, range 0x1000 .. 0x10000000
120  */
121
122 /* Largest value that the FQD's OAL field can hold */
123 #define FSL_QMAN_MAX_OAL        127
124
125 /* Default alignment for start of data in an Rx FD */
126 #define DPAA_FD_DATA_ALIGNMENT  16
127
128 /* Values for the L3R field of the FM Parse Results
129  */
130 /* L3 Type field: First IP Present IPv4 */
131 #define FM_L3_PARSE_RESULT_IPV4 0x8000
132 /* L3 Type field: First IP Present IPv6 */
133 #define FM_L3_PARSE_RESULT_IPV6 0x4000
134 /* Values for the L4R field of the FM Parse Results */
135 /* L4 Type field: UDP */
136 #define FM_L4_PARSE_RESULT_UDP  0x40
137 /* L4 Type field: TCP */
138 #define FM_L4_PARSE_RESULT_TCP  0x20
139
140 /* FD status field indicating whether the FM Parser has attempted to validate
141  * the L4 csum of the frame.
142  * Note that having this bit set doesn't necessarily imply that the checksum
143  * is valid. One would have to check the parse results to find that out.
144  */
145 #define FM_FD_STAT_L4CV         0x00000004
146
147 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
148 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
149
150 #define FSL_DPAA_BPID_INV               0xff
151 #define FSL_DPAA_ETH_MAX_BUF_COUNT      128
152 #define FSL_DPAA_ETH_REFILL_THRESHOLD   80
153
154 #define DPAA_TX_PRIV_DATA_SIZE  16
155 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
156 #define DPAA_TIME_STAMP_SIZE 8
157 #define DPAA_HASH_RESULTS_SIZE 8
158 #define DPAA_RX_PRIV_DATA_SIZE  (u16)(DPAA_TX_PRIV_DATA_SIZE + \
159                                         dpaa_rx_extra_headroom)
160
161 #define DPAA_ETH_RX_QUEUES      128
162
163 #define DPAA_ENQUEUE_RETRIES    100000
164
165 enum port_type {RX, TX};
166
167 struct fm_port_fqs {
168         struct dpaa_fq *tx_defq;
169         struct dpaa_fq *tx_errq;
170         struct dpaa_fq *rx_defq;
171         struct dpaa_fq *rx_errq;
172 };
173
174 /* All the dpa bps in use at any moment */
175 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
176
177 /* The raw buffer size must be cacheline aligned */
178 #define DPAA_BP_RAW_SIZE 4096
179 /* When using more than one buffer pool, the raw sizes are as follows:
180  * 1 bp: 4KB
181  * 2 bp: 2KB, 4KB
182  * 3 bp: 1KB, 2KB, 4KB
183  * 4 bp: 1KB, 2KB, 4KB, 8KB
184  */
185 static inline size_t bpool_buffer_raw_size(u8 index, u8 cnt)
186 {
187         size_t res = DPAA_BP_RAW_SIZE / 4;
188         u8 i;
189
190         for (i = (cnt < 3) ? cnt : 3; i < 3 + index; i++)
191                 res *= 2;
192         return res;
193 }
194
195 /* FMan-DMA requires 16-byte alignment for Rx buffers, but SKB_DATA_ALIGN is
196  * even stronger (SMP_CACHE_BYTES-aligned), so we just get away with that,
197  * via SKB_WITH_OVERHEAD(). We can't rely on netdev_alloc_frag() giving us
198  * half-page-aligned buffers, so we reserve some more space for start-of-buffer
199  * alignment.
200  */
201 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD((raw_size) - SMP_CACHE_BYTES)
202
203 static int dpaa_max_frm;
204
205 static int dpaa_rx_extra_headroom;
206
207 #define dpaa_get_max_mtu()      \
208         (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
209
210 static int dpaa_netdev_init(struct net_device *net_dev,
211                             const struct net_device_ops *dpaa_ops,
212                             u16 tx_timeout)
213 {
214         struct dpaa_priv *priv = netdev_priv(net_dev);
215         struct device *dev = net_dev->dev.parent;
216         struct dpaa_percpu_priv *percpu_priv;
217         const u8 *mac_addr;
218         int i, err;
219
220         /* Although we access another CPU's private data here
221          * we do it at initialization so it is safe
222          */
223         for_each_possible_cpu(i) {
224                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
225                 percpu_priv->net_dev = net_dev;
226         }
227
228         net_dev->netdev_ops = dpaa_ops;
229         mac_addr = priv->mac_dev->addr;
230
231         net_dev->mem_start = priv->mac_dev->res->start;
232         net_dev->mem_end = priv->mac_dev->res->end;
233
234         net_dev->min_mtu = ETH_MIN_MTU;
235         net_dev->max_mtu = dpaa_get_max_mtu();
236
237         net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
238                                  NETIF_F_LLTX);
239
240         net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
241         /* The kernels enables GSO automatically, if we declare NETIF_F_SG.
242          * For conformity, we'll still declare GSO explicitly.
243          */
244         net_dev->features |= NETIF_F_GSO;
245         net_dev->features |= NETIF_F_RXCSUM;
246
247         net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
248         /* we do not want shared skbs on TX */
249         net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
250
251         net_dev->features |= net_dev->hw_features;
252         net_dev->vlan_features = net_dev->features;
253
254         memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
255         memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len);
256
257         net_dev->ethtool_ops = &dpaa_ethtool_ops;
258
259         net_dev->needed_headroom = priv->tx_headroom;
260         net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
261
262         /* start without the RUNNING flag, phylib controls it later */
263         netif_carrier_off(net_dev);
264
265         err = register_netdev(net_dev);
266         if (err < 0) {
267                 dev_err(dev, "register_netdev() = %d\n", err);
268                 return err;
269         }
270
271         return 0;
272 }
273
274 static int dpaa_stop(struct net_device *net_dev)
275 {
276         struct mac_device *mac_dev;
277         struct dpaa_priv *priv;
278         int i, err, error;
279
280         priv = netdev_priv(net_dev);
281         mac_dev = priv->mac_dev;
282
283         netif_tx_stop_all_queues(net_dev);
284         /* Allow the Fman (Tx) port to process in-flight frames before we
285          * try switching it off.
286          */
287         usleep_range(5000, 10000);
288
289         err = mac_dev->stop(mac_dev);
290         if (err < 0)
291                 netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n",
292                           err);
293
294         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
295                 error = fman_port_disable(mac_dev->port[i]);
296                 if (error)
297                         err = error;
298         }
299
300         if (net_dev->phydev)
301                 phy_disconnect(net_dev->phydev);
302         net_dev->phydev = NULL;
303
304         return err;
305 }
306
307 static void dpaa_tx_timeout(struct net_device *net_dev)
308 {
309         struct dpaa_percpu_priv *percpu_priv;
310         const struct dpaa_priv  *priv;
311
312         priv = netdev_priv(net_dev);
313         percpu_priv = this_cpu_ptr(priv->percpu_priv);
314
315         netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
316                    jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
317
318         percpu_priv->stats.tx_errors++;
319 }
320
321 /* Calculates the statistics for the given device by adding the statistics
322  * collected by each CPU.
323  */
324 static void dpaa_get_stats64(struct net_device *net_dev,
325                              struct rtnl_link_stats64 *s)
326 {
327         int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
328         struct dpaa_priv *priv = netdev_priv(net_dev);
329         struct dpaa_percpu_priv *percpu_priv;
330         u64 *netstats = (u64 *)s;
331         u64 *cpustats;
332         int i, j;
333
334         for_each_possible_cpu(i) {
335                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
336
337                 cpustats = (u64 *)&percpu_priv->stats;
338
339                 /* add stats from all CPUs */
340                 for (j = 0; j < numstats; j++)
341                         netstats[j] += cpustats[j];
342         }
343 }
344
345 static int dpaa_setup_tc(struct net_device *net_dev, u32 handle, __be16 proto,
346                          struct tc_to_netdev *tc)
347 {
348         struct dpaa_priv *priv = netdev_priv(net_dev);
349         u8 num_tc;
350         int i;
351
352         if (tc->type != TC_SETUP_MQPRIO)
353                 return -EINVAL;
354
355         tc->mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
356         num_tc = tc->mqprio->num_tc;
357
358         if (num_tc == priv->num_tc)
359                 return 0;
360
361         if (!num_tc) {
362                 netdev_reset_tc(net_dev);
363                 goto out;
364         }
365
366         if (num_tc > DPAA_TC_NUM) {
367                 netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
368                            DPAA_TC_NUM);
369                 return -EINVAL;
370         }
371
372         netdev_set_num_tc(net_dev, num_tc);
373
374         for (i = 0; i < num_tc; i++)
375                 netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM,
376                                     i * DPAA_TC_TXQ_NUM);
377
378 out:
379         priv->num_tc = num_tc ? : 1;
380         netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
381         return 0;
382 }
383
384 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
385 {
386         struct platform_device *of_dev;
387         struct dpaa_eth_data *eth_data;
388         struct device *dpaa_dev, *dev;
389         struct device_node *mac_node;
390         struct mac_device *mac_dev;
391
392         dpaa_dev = &pdev->dev;
393         eth_data = dpaa_dev->platform_data;
394         if (!eth_data)
395                 return ERR_PTR(-ENODEV);
396
397         mac_node = eth_data->mac_node;
398
399         of_dev = of_find_device_by_node(mac_node);
400         if (!of_dev) {
401                 dev_err(dpaa_dev, "of_find_device_by_node(%s) failed\n",
402                         mac_node->full_name);
403                 of_node_put(mac_node);
404                 return ERR_PTR(-EINVAL);
405         }
406         of_node_put(mac_node);
407
408         dev = &of_dev->dev;
409
410         mac_dev = dev_get_drvdata(dev);
411         if (!mac_dev) {
412                 dev_err(dpaa_dev, "dev_get_drvdata(%s) failed\n",
413                         dev_name(dev));
414                 return ERR_PTR(-EINVAL);
415         }
416
417         return mac_dev;
418 }
419
420 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
421 {
422         const struct dpaa_priv *priv;
423         struct mac_device *mac_dev;
424         struct sockaddr old_addr;
425         int err;
426
427         priv = netdev_priv(net_dev);
428
429         memcpy(old_addr.sa_data, net_dev->dev_addr,  ETH_ALEN);
430
431         err = eth_mac_addr(net_dev, addr);
432         if (err < 0) {
433                 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
434                 return err;
435         }
436
437         mac_dev = priv->mac_dev;
438
439         err = mac_dev->change_addr(mac_dev->fman_mac,
440                                    (enet_addr_t *)net_dev->dev_addr);
441         if (err < 0) {
442                 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
443                           err);
444                 /* reverting to previous address */
445                 eth_mac_addr(net_dev, &old_addr);
446
447                 return err;
448         }
449
450         return 0;
451 }
452
453 static void dpaa_set_rx_mode(struct net_device *net_dev)
454 {
455         const struct dpaa_priv  *priv;
456         int err;
457
458         priv = netdev_priv(net_dev);
459
460         if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
461                 priv->mac_dev->promisc = !priv->mac_dev->promisc;
462                 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
463                                                  priv->mac_dev->promisc);
464                 if (err < 0)
465                         netif_err(priv, drv, net_dev,
466                                   "mac_dev->set_promisc() = %d\n",
467                                   err);
468         }
469
470         err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
471         if (err < 0)
472                 netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
473                           err);
474 }
475
476 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
477 {
478         if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
479                 return NULL;
480
481         return dpaa_bp_array[bpid];
482 }
483
484 /* checks if this bpool is already allocated */
485 static bool dpaa_bpid2pool_use(int bpid)
486 {
487         if (dpaa_bpid2pool(bpid)) {
488                 atomic_inc(&dpaa_bp_array[bpid]->refs);
489                 return true;
490         }
491
492         return false;
493 }
494
495 /* called only once per bpid by dpaa_bp_alloc_pool() */
496 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
497 {
498         dpaa_bp_array[bpid] = dpaa_bp;
499         atomic_set(&dpaa_bp->refs, 1);
500 }
501
502 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
503 {
504         int err;
505
506         if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
507                 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
508                        __func__);
509                 return -EINVAL;
510         }
511
512         /* If the pool is already specified, we only create one per bpid */
513         if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
514             dpaa_bpid2pool_use(dpaa_bp->bpid))
515                 return 0;
516
517         if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
518                 dpaa_bp->pool = bman_new_pool();
519                 if (!dpaa_bp->pool) {
520                         pr_err("%s: bman_new_pool() failed\n",
521                                __func__);
522                         return -ENODEV;
523                 }
524
525                 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
526         }
527
528         if (dpaa_bp->seed_cb) {
529                 err = dpaa_bp->seed_cb(dpaa_bp);
530                 if (err)
531                         goto pool_seed_failed;
532         }
533
534         dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
535
536         return 0;
537
538 pool_seed_failed:
539         pr_err("%s: pool seeding failed\n", __func__);
540         bman_free_pool(dpaa_bp->pool);
541
542         return err;
543 }
544
545 /* remove and free all the buffers from the given buffer pool */
546 static void dpaa_bp_drain(struct dpaa_bp *bp)
547 {
548         u8 num = 8;
549         int ret;
550
551         do {
552                 struct bm_buffer bmb[8];
553                 int i;
554
555                 ret = bman_acquire(bp->pool, bmb, num);
556                 if (ret < 0) {
557                         if (num == 8) {
558                                 /* we have less than 8 buffers left;
559                                  * drain them one by one
560                                  */
561                                 num = 1;
562                                 ret = 1;
563                                 continue;
564                         } else {
565                                 /* Pool is fully drained */
566                                 break;
567                         }
568                 }
569
570                 if (bp->free_buf_cb)
571                         for (i = 0; i < num; i++)
572                                 bp->free_buf_cb(bp, &bmb[i]);
573         } while (ret > 0);
574 }
575
576 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
577 {
578         struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
579
580         /* the mapping between bpid and dpaa_bp is done very late in the
581          * allocation procedure; if something failed before the mapping, the bp
582          * was not configured, therefore we don't need the below instructions
583          */
584         if (!bp)
585                 return;
586
587         if (!atomic_dec_and_test(&bp->refs))
588                 return;
589
590         if (bp->free_buf_cb)
591                 dpaa_bp_drain(bp);
592
593         dpaa_bp_array[bp->bpid] = NULL;
594         bman_free_pool(bp->pool);
595 }
596
597 static void dpaa_bps_free(struct dpaa_priv *priv)
598 {
599         int i;
600
601         for (i = 0; i < DPAA_BPS_NUM; i++)
602                 dpaa_bp_free(priv->dpaa_bps[i]);
603 }
604
605 /* Use multiple WQs for FQ assignment:
606  *      - Tx Confirmation queues go to WQ1.
607  *      - Rx Error and Tx Error queues go to WQ5 (giving them a better chance
608  *        to be scheduled, in case there are many more FQs in WQ6).
609  *      - Rx Default goes to WQ6.
610  *      - Tx queues go to different WQs depending on their priority. Equal
611  *        chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
612  *        WQ0 (highest priority).
613  * This ensures that Tx-confirmed buffers are timely released. In particular,
614  * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
615  * are greatly outnumbered by other FQs in the system, while
616  * dequeue scheduling is round-robin.
617  */
618 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
619 {
620         switch (fq->fq_type) {
621         case FQ_TYPE_TX_CONFIRM:
622         case FQ_TYPE_TX_CONF_MQ:
623                 fq->wq = 1;
624                 break;
625         case FQ_TYPE_RX_ERROR:
626         case FQ_TYPE_TX_ERROR:
627                 fq->wq = 5;
628                 break;
629         case FQ_TYPE_RX_DEFAULT:
630                 fq->wq = 6;
631                 break;
632         case FQ_TYPE_TX:
633                 switch (idx / DPAA_TC_TXQ_NUM) {
634                 case 0:
635                         /* Low priority (best effort) */
636                         fq->wq = 6;
637                         break;
638                 case 1:
639                         /* Medium priority */
640                         fq->wq = 2;
641                         break;
642                 case 2:
643                         /* High priority */
644                         fq->wq = 1;
645                         break;
646                 case 3:
647                         /* Very high priority */
648                         fq->wq = 0;
649                         break;
650                 default:
651                         WARN(1, "Too many TX FQs: more than %d!\n",
652                              DPAA_ETH_TXQ_NUM);
653                 }
654                 break;
655         default:
656                 WARN(1, "Invalid FQ type %d for FQID %d!\n",
657                      fq->fq_type, fq->fqid);
658         }
659 }
660
661 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
662                                      u32 start, u32 count,
663                                      struct list_head *list,
664                                      enum dpaa_fq_type fq_type)
665 {
666         struct dpaa_fq *dpaa_fq;
667         int i;
668
669         dpaa_fq = devm_kzalloc(dev, sizeof(*dpaa_fq) * count,
670                                GFP_KERNEL);
671         if (!dpaa_fq)
672                 return NULL;
673
674         for (i = 0; i < count; i++) {
675                 dpaa_fq[i].fq_type = fq_type;
676                 dpaa_fq[i].fqid = start ? start + i : 0;
677                 list_add_tail(&dpaa_fq[i].list, list);
678         }
679
680         for (i = 0; i < count; i++)
681                 dpaa_assign_wq(dpaa_fq + i, i);
682
683         return dpaa_fq;
684 }
685
686 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
687                               struct fm_port_fqs *port_fqs)
688 {
689         struct dpaa_fq *dpaa_fq;
690
691         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
692         if (!dpaa_fq)
693                 goto fq_alloc_failed;
694
695         port_fqs->rx_errq = &dpaa_fq[0];
696
697         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
698         if (!dpaa_fq)
699                 goto fq_alloc_failed;
700
701         port_fqs->rx_defq = &dpaa_fq[0];
702
703         if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ))
704                 goto fq_alloc_failed;
705
706         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
707         if (!dpaa_fq)
708                 goto fq_alloc_failed;
709
710         port_fqs->tx_errq = &dpaa_fq[0];
711
712         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
713         if (!dpaa_fq)
714                 goto fq_alloc_failed;
715
716         port_fqs->tx_defq = &dpaa_fq[0];
717
718         if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX))
719                 goto fq_alloc_failed;
720
721         return 0;
722
723 fq_alloc_failed:
724         dev_err(dev, "dpaa_fq_alloc() failed\n");
725         return -ENOMEM;
726 }
727
728 static u32 rx_pool_channel;
729 static DEFINE_SPINLOCK(rx_pool_channel_init);
730
731 static int dpaa_get_channel(void)
732 {
733         spin_lock(&rx_pool_channel_init);
734         if (!rx_pool_channel) {
735                 u32 pool;
736                 int ret;
737
738                 ret = qman_alloc_pool(&pool);
739
740                 if (!ret)
741                         rx_pool_channel = pool;
742         }
743         spin_unlock(&rx_pool_channel_init);
744         if (!rx_pool_channel)
745                 return -ENOMEM;
746         return rx_pool_channel;
747 }
748
749 static void dpaa_release_channel(void)
750 {
751         qman_release_pool(rx_pool_channel);
752 }
753
754 static void dpaa_eth_add_channel(u16 channel)
755 {
756         u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
757         const cpumask_t *cpus = qman_affine_cpus();
758         struct qman_portal *portal;
759         int cpu;
760
761         for_each_cpu(cpu, cpus) {
762                 portal = qman_get_affine_portal(cpu);
763                 qman_p_static_dequeue_add(portal, pool);
764         }
765 }
766
767 /* Congestion group state change notification callback.
768  * Stops the device's egress queues while they are congested and
769  * wakes them upon exiting congested state.
770  * Also updates some CGR-related stats.
771  */
772 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
773                            int congested)
774 {
775         struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
776                 struct dpaa_priv, cgr_data.cgr);
777
778         if (congested) {
779                 priv->cgr_data.congestion_start_jiffies = jiffies;
780                 netif_tx_stop_all_queues(priv->net_dev);
781                 priv->cgr_data.cgr_congested_count++;
782         } else {
783                 priv->cgr_data.congested_jiffies +=
784                         (jiffies - priv->cgr_data.congestion_start_jiffies);
785                 netif_tx_wake_all_queues(priv->net_dev);
786         }
787 }
788
789 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
790 {
791         struct qm_mcc_initcgr initcgr;
792         u32 cs_th;
793         int err;
794
795         err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
796         if (err < 0) {
797                 if (netif_msg_drv(priv))
798                         pr_err("%s: Error %d allocating CGR ID\n",
799                                __func__, err);
800                 goto out_error;
801         }
802         priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
803
804         /* Enable Congestion State Change Notifications and CS taildrop */
805         memset(&initcgr, 0, sizeof(initcgr));
806         initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
807         initcgr.cgr.cscn_en = QM_CGR_EN;
808
809         /* Set different thresholds based on the MAC speed.
810          * This may turn suboptimal if the MAC is reconfigured at a speed
811          * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link.
812          * In such cases, we ought to reconfigure the threshold, too.
813          */
814         if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full)
815                 cs_th = DPAA_CS_THRESHOLD_10G;
816         else
817                 cs_th = DPAA_CS_THRESHOLD_1G;
818         qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
819
820         initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
821         initcgr.cgr.cstd_en = QM_CGR_EN;
822
823         err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
824                               &initcgr);
825         if (err < 0) {
826                 if (netif_msg_drv(priv))
827                         pr_err("%s: Error %d creating CGR with ID %d\n",
828                                __func__, err, priv->cgr_data.cgr.cgrid);
829                 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
830                 goto out_error;
831         }
832         if (netif_msg_drv(priv))
833                 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
834                          priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
835                          priv->cgr_data.cgr.chan);
836
837 out_error:
838         return err;
839 }
840
841 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
842                                       struct dpaa_fq *fq,
843                                       const struct qman_fq *template)
844 {
845         fq->fq_base = *template;
846         fq->net_dev = priv->net_dev;
847
848         fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
849         fq->channel = priv->channel;
850 }
851
852 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
853                                      struct dpaa_fq *fq,
854                                      struct fman_port *port,
855                                      const struct qman_fq *template)
856 {
857         fq->fq_base = *template;
858         fq->net_dev = priv->net_dev;
859
860         if (port) {
861                 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
862                 fq->channel = (u16)fman_port_get_qman_channel_id(port);
863         } else {
864                 fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
865         }
866 }
867
868 static void dpaa_fq_setup(struct dpaa_priv *priv,
869                           const struct dpaa_fq_cbs *fq_cbs,
870                           struct fman_port *tx_port)
871 {
872         int egress_cnt = 0, conf_cnt = 0, num_portals = 0, cpu;
873         const cpumask_t *affine_cpus = qman_affine_cpus();
874         u16 portals[NR_CPUS];
875         struct dpaa_fq *fq;
876
877         for_each_cpu(cpu, affine_cpus)
878                 portals[num_portals++] = qman_affine_channel(cpu);
879         if (num_portals == 0)
880                 dev_err(priv->net_dev->dev.parent,
881                         "No Qman software (affine) channels found");
882
883         /* Initialize each FQ in the list */
884         list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
885                 switch (fq->fq_type) {
886                 case FQ_TYPE_RX_DEFAULT:
887                         dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
888                         break;
889                 case FQ_TYPE_RX_ERROR:
890                         dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
891                         break;
892                 case FQ_TYPE_TX:
893                         dpaa_setup_egress(priv, fq, tx_port,
894                                           &fq_cbs->egress_ern);
895                         /* If we have more Tx queues than the number of cores,
896                          * just ignore the extra ones.
897                          */
898                         if (egress_cnt < DPAA_ETH_TXQ_NUM)
899                                 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
900                         break;
901                 case FQ_TYPE_TX_CONF_MQ:
902                         priv->conf_fqs[conf_cnt++] = &fq->fq_base;
903                         /* fall through */
904                 case FQ_TYPE_TX_CONFIRM:
905                         dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
906                         break;
907                 case FQ_TYPE_TX_ERROR:
908                         dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
909                         break;
910                 default:
911                         dev_warn(priv->net_dev->dev.parent,
912                                  "Unknown FQ type detected!\n");
913                         break;
914                 }
915         }
916
917          /* Make sure all CPUs receive a corresponding Tx queue. */
918         while (egress_cnt < DPAA_ETH_TXQ_NUM) {
919                 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
920                         if (fq->fq_type != FQ_TYPE_TX)
921                                 continue;
922                         priv->egress_fqs[egress_cnt++] = &fq->fq_base;
923                         if (egress_cnt == DPAA_ETH_TXQ_NUM)
924                                 break;
925                 }
926         }
927 }
928
929 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
930                                    struct qman_fq *tx_fq)
931 {
932         int i;
933
934         for (i = 0; i < DPAA_ETH_TXQ_NUM; i++)
935                 if (priv->egress_fqs[i] == tx_fq)
936                         return i;
937
938         return -EINVAL;
939 }
940
941 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
942 {
943         const struct dpaa_priv  *priv;
944         struct qman_fq *confq = NULL;
945         struct qm_mcc_initfq initfq;
946         struct device *dev;
947         struct qman_fq *fq;
948         int queue_id;
949         int err;
950
951         priv = netdev_priv(dpaa_fq->net_dev);
952         dev = dpaa_fq->net_dev->dev.parent;
953
954         if (dpaa_fq->fqid == 0)
955                 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
956
957         dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
958
959         err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
960         if (err) {
961                 dev_err(dev, "qman_create_fq() failed\n");
962                 return err;
963         }
964         fq = &dpaa_fq->fq_base;
965
966         if (dpaa_fq->init) {
967                 memset(&initfq, 0, sizeof(initfq));
968
969                 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
970                 /* Note: we may get to keep an empty FQ in cache */
971                 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
972
973                 /* Try to reduce the number of portal interrupts for
974                  * Tx Confirmation FQs.
975                  */
976                 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
977                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
978
979                 /* FQ placement */
980                 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
981
982                 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
983
984                 /* Put all egress queues in a congestion group of their own.
985                  * Sensu stricto, the Tx confirmation queues are Rx FQs,
986                  * rather than Tx - but they nonetheless account for the
987                  * memory footprint on behalf of egress traffic. We therefore
988                  * place them in the netdev's CGR, along with the Tx FQs.
989                  */
990                 if (dpaa_fq->fq_type == FQ_TYPE_TX ||
991                     dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
992                     dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
993                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
994                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
995                         initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
996                         /* Set a fixed overhead accounting, in an attempt to
997                          * reduce the impact of fixed-size skb shells and the
998                          * driver's needed headroom on system memory. This is
999                          * especially the case when the egress traffic is
1000                          * composed of small datagrams.
1001                          * Unfortunately, QMan's OAL value is capped to an
1002                          * insufficient value, but even that is better than
1003                          * no overhead accounting at all.
1004                          */
1005                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1006                         qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1007                         qm_fqd_set_oal(&initfq.fqd,
1008                                        min(sizeof(struct sk_buff) +
1009                                        priv->tx_headroom,
1010                                        (size_t)FSL_QMAN_MAX_OAL));
1011                 }
1012
1013                 if (td_enable) {
1014                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1015                         qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1016                         initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1017                 }
1018
1019                 if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1020                         queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1021                         if (queue_id >= 0)
1022                                 confq = priv->conf_fqs[queue_id];
1023                         if (confq) {
1024                                 initfq.we_mask |=
1025                                         cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1026                         /* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1027                          *           A2V=1 (contextA A2 field is valid)
1028                          *           A0V=1 (contextA A0 field is valid)
1029                          *           B0V=1 (contextB field is valid)
1030                          * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1031                          * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1032                          */
1033                                 qm_fqd_context_a_set64(&initfq.fqd,
1034                                                        0x1e00000080000000ULL);
1035                         }
1036                 }
1037
1038                 /* Put all the ingress queues in our "ingress CGR". */
1039                 if (priv->use_ingress_cgr &&
1040                     (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1041                      dpaa_fq->fq_type == FQ_TYPE_RX_ERROR)) {
1042                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1043                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1044                         initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1045                         /* Set a fixed overhead accounting, just like for the
1046                          * egress CGR.
1047                          */
1048                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1049                         qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1050                         qm_fqd_set_oal(&initfq.fqd,
1051                                        min(sizeof(struct sk_buff) +
1052                                        priv->tx_headroom,
1053                                        (size_t)FSL_QMAN_MAX_OAL));
1054                 }
1055
1056                 /* Initialization common to all ingress queues */
1057                 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1058                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1059                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1060                                                 QM_FQCTRL_CTXASTASHING);
1061                         initfq.fqd.context_a.stashing.exclusive =
1062                                 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1063                                 QM_STASHING_EXCL_ANNOTATION;
1064                         qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1065                                             DIV_ROUND_UP(sizeof(struct qman_fq),
1066                                                          64));
1067                 }
1068
1069                 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1070                 if (err < 0) {
1071                         dev_err(dev, "qman_init_fq(%u) = %d\n",
1072                                 qman_fq_fqid(fq), err);
1073                         qman_destroy_fq(fq);
1074                         return err;
1075                 }
1076         }
1077
1078         dpaa_fq->fqid = qman_fq_fqid(fq);
1079
1080         return 0;
1081 }
1082
1083 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1084 {
1085         const struct dpaa_priv  *priv;
1086         struct dpaa_fq *dpaa_fq;
1087         int err, error;
1088
1089         err = 0;
1090
1091         dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1092         priv = netdev_priv(dpaa_fq->net_dev);
1093
1094         if (dpaa_fq->init) {
1095                 err = qman_retire_fq(fq, NULL);
1096                 if (err < 0 && netif_msg_drv(priv))
1097                         dev_err(dev, "qman_retire_fq(%u) = %d\n",
1098                                 qman_fq_fqid(fq), err);
1099
1100                 error = qman_oos_fq(fq);
1101                 if (error < 0 && netif_msg_drv(priv)) {
1102                         dev_err(dev, "qman_oos_fq(%u) = %d\n",
1103                                 qman_fq_fqid(fq), error);
1104                         if (err >= 0)
1105                                 err = error;
1106                 }
1107         }
1108
1109         qman_destroy_fq(fq);
1110         list_del(&dpaa_fq->list);
1111
1112         return err;
1113 }
1114
1115 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1116 {
1117         struct dpaa_fq *dpaa_fq, *tmp;
1118         int err, error;
1119
1120         err = 0;
1121         list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1122                 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1123                 if (error < 0 && err >= 0)
1124                         err = error;
1125         }
1126
1127         return err;
1128 }
1129
1130 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1131                                  struct dpaa_fq *defq,
1132                                  struct dpaa_buffer_layout *buf_layout)
1133 {
1134         struct fman_buffer_prefix_content buf_prefix_content;
1135         struct fman_port_params params;
1136         int err;
1137
1138         memset(&params, 0, sizeof(params));
1139         memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1140
1141         buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1142         buf_prefix_content.pass_prs_result = true;
1143         buf_prefix_content.pass_hash_result = true;
1144         buf_prefix_content.pass_time_stamp = false;
1145         buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1146
1147         params.specific_params.non_rx_params.err_fqid = errq->fqid;
1148         params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1149
1150         err = fman_port_config(port, &params);
1151         if (err) {
1152                 pr_err("%s: fman_port_config failed\n", __func__);
1153                 return err;
1154         }
1155
1156         err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1157         if (err) {
1158                 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1159                        __func__);
1160                 return err;
1161         }
1162
1163         err = fman_port_init(port);
1164         if (err)
1165                 pr_err("%s: fm_port_init failed\n", __func__);
1166
1167         return err;
1168 }
1169
1170 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp **bps,
1171                                  size_t count, struct dpaa_fq *errq,
1172                                  struct dpaa_fq *defq,
1173                                  struct dpaa_buffer_layout *buf_layout)
1174 {
1175         struct fman_buffer_prefix_content buf_prefix_content;
1176         struct fman_port_rx_params *rx_p;
1177         struct fman_port_params params;
1178         int i, err;
1179
1180         memset(&params, 0, sizeof(params));
1181         memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1182
1183         buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1184         buf_prefix_content.pass_prs_result = true;
1185         buf_prefix_content.pass_hash_result = true;
1186         buf_prefix_content.pass_time_stamp = false;
1187         buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1188
1189         rx_p = &params.specific_params.rx_params;
1190         rx_p->err_fqid = errq->fqid;
1191         rx_p->dflt_fqid = defq->fqid;
1192
1193         count = min(ARRAY_SIZE(rx_p->ext_buf_pools.ext_buf_pool), count);
1194         rx_p->ext_buf_pools.num_of_pools_used = (u8)count;
1195         for (i = 0; i < count; i++) {
1196                 rx_p->ext_buf_pools.ext_buf_pool[i].id =  bps[i]->bpid;
1197                 rx_p->ext_buf_pools.ext_buf_pool[i].size = (u16)bps[i]->size;
1198         }
1199
1200         err = fman_port_config(port, &params);
1201         if (err) {
1202                 pr_err("%s: fman_port_config failed\n", __func__);
1203                 return err;
1204         }
1205
1206         err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1207         if (err) {
1208                 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1209                        __func__);
1210                 return err;
1211         }
1212
1213         err = fman_port_init(port);
1214         if (err)
1215                 pr_err("%s: fm_port_init failed\n", __func__);
1216
1217         return err;
1218 }
1219
1220 static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1221                                struct dpaa_bp **bps, size_t count,
1222                                struct fm_port_fqs *port_fqs,
1223                                struct dpaa_buffer_layout *buf_layout,
1224                                struct device *dev)
1225 {
1226         struct fman_port *rxport = mac_dev->port[RX];
1227         struct fman_port *txport = mac_dev->port[TX];
1228         int err;
1229
1230         err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1231                                     port_fqs->tx_defq, &buf_layout[TX]);
1232         if (err)
1233                 return err;
1234
1235         err = dpaa_eth_init_rx_port(rxport, bps, count, port_fqs->rx_errq,
1236                                     port_fqs->rx_defq, &buf_layout[RX]);
1237
1238         return err;
1239 }
1240
1241 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1242                              struct bm_buffer *bmb, int cnt)
1243 {
1244         int err;
1245
1246         err = bman_release(dpaa_bp->pool, bmb, cnt);
1247         /* Should never occur, address anyway to avoid leaking the buffers */
1248         if (unlikely(WARN_ON(err)) && dpaa_bp->free_buf_cb)
1249                 while (cnt-- > 0)
1250                         dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1251
1252         return cnt;
1253 }
1254
1255 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1256 {
1257         struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1258         struct dpaa_bp *dpaa_bp;
1259         int i = 0, j;
1260
1261         memset(bmb, 0, sizeof(bmb));
1262
1263         do {
1264                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1265                 if (!dpaa_bp)
1266                         return;
1267
1268                 j = 0;
1269                 do {
1270                         WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1271
1272                         bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1273
1274                         j++; i++;
1275                 } while (j < ARRAY_SIZE(bmb) &&
1276                                 !qm_sg_entry_is_final(&sgt[i - 1]) &&
1277                                 sgt[i - 1].bpid == sgt[i].bpid);
1278
1279                 dpaa_bman_release(dpaa_bp, bmb, j);
1280         } while (!qm_sg_entry_is_final(&sgt[i - 1]));
1281 }
1282
1283 static void dpaa_fd_release(const struct net_device *net_dev,
1284                             const struct qm_fd *fd)
1285 {
1286         struct qm_sg_entry *sgt;
1287         struct dpaa_bp *dpaa_bp;
1288         struct bm_buffer bmb;
1289         dma_addr_t addr;
1290         void *vaddr;
1291
1292         bmb.data = 0;
1293         bm_buffer_set64(&bmb, qm_fd_addr(fd));
1294
1295         dpaa_bp = dpaa_bpid2pool(fd->bpid);
1296         if (!dpaa_bp)
1297                 return;
1298
1299         if (qm_fd_get_format(fd) == qm_fd_sg) {
1300                 vaddr = phys_to_virt(qm_fd_addr(fd));
1301                 sgt = vaddr + qm_fd_get_offset(fd);
1302
1303                 dma_unmap_single(dpaa_bp->dev, qm_fd_addr(fd), dpaa_bp->size,
1304                                  DMA_FROM_DEVICE);
1305
1306                 dpaa_release_sgt_members(sgt);
1307
1308                 addr = dma_map_single(dpaa_bp->dev, vaddr, dpaa_bp->size,
1309                                       DMA_FROM_DEVICE);
1310                 if (dma_mapping_error(dpaa_bp->dev, addr)) {
1311                         dev_err(dpaa_bp->dev, "DMA mapping failed");
1312                         return;
1313                 }
1314                 bm_buffer_set64(&bmb, addr);
1315         }
1316
1317         dpaa_bman_release(dpaa_bp, &bmb, 1);
1318 }
1319
1320 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1321                       const union qm_mr_entry *msg)
1322 {
1323         switch (msg->ern.rc & QM_MR_RC_MASK) {
1324         case QM_MR_RC_CGR_TAILDROP:
1325                 percpu_priv->ern_cnt.cg_tdrop++;
1326                 break;
1327         case QM_MR_RC_WRED:
1328                 percpu_priv->ern_cnt.wred++;
1329                 break;
1330         case QM_MR_RC_ERROR:
1331                 percpu_priv->ern_cnt.err_cond++;
1332                 break;
1333         case QM_MR_RC_ORPWINDOW_EARLY:
1334                 percpu_priv->ern_cnt.early_window++;
1335                 break;
1336         case QM_MR_RC_ORPWINDOW_LATE:
1337                 percpu_priv->ern_cnt.late_window++;
1338                 break;
1339         case QM_MR_RC_FQ_TAILDROP:
1340                 percpu_priv->ern_cnt.fq_tdrop++;
1341                 break;
1342         case QM_MR_RC_ORPWINDOW_RETIRED:
1343                 percpu_priv->ern_cnt.fq_retired++;
1344                 break;
1345         case QM_MR_RC_ORP_ZERO:
1346                 percpu_priv->ern_cnt.orp_zero++;
1347                 break;
1348         }
1349 }
1350
1351 /* Turn on HW checksum computation for this outgoing frame.
1352  * If the current protocol is not something we support in this regard
1353  * (or if the stack has already computed the SW checksum), we do nothing.
1354  *
1355  * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1356  * otherwise.
1357  *
1358  * Note that this function may modify the fd->cmd field and the skb data buffer
1359  * (the Parse Results area).
1360  */
1361 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1362                                struct sk_buff *skb,
1363                                struct qm_fd *fd,
1364                                char *parse_results)
1365 {
1366         struct fman_prs_result *parse_result;
1367         u16 ethertype = ntohs(skb->protocol);
1368         struct ipv6hdr *ipv6h = NULL;
1369         struct iphdr *iph;
1370         int retval = 0;
1371         u8 l4_proto;
1372
1373         if (skb->ip_summed != CHECKSUM_PARTIAL)
1374                 return 0;
1375
1376         /* Note: L3 csum seems to be already computed in sw, but we can't choose
1377          * L4 alone from the FM configuration anyway.
1378          */
1379
1380         /* Fill in some fields of the Parse Results array, so the FMan
1381          * can find them as if they came from the FMan Parser.
1382          */
1383         parse_result = (struct fman_prs_result *)parse_results;
1384
1385         /* If we're dealing with VLAN, get the real Ethernet type */
1386         if (ethertype == ETH_P_8021Q) {
1387                 /* We can't always assume the MAC header is set correctly
1388                  * by the stack, so reset to beginning of skb->data
1389                  */
1390                 skb_reset_mac_header(skb);
1391                 ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1392         }
1393
1394         /* Fill in the relevant L3 parse result fields
1395          * and read the L4 protocol type
1396          */
1397         switch (ethertype) {
1398         case ETH_P_IP:
1399                 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1400                 iph = ip_hdr(skb);
1401                 WARN_ON(!iph);
1402                 l4_proto = iph->protocol;
1403                 break;
1404         case ETH_P_IPV6:
1405                 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1406                 ipv6h = ipv6_hdr(skb);
1407                 WARN_ON(!ipv6h);
1408                 l4_proto = ipv6h->nexthdr;
1409                 break;
1410         default:
1411                 /* We shouldn't even be here */
1412                 if (net_ratelimit())
1413                         netif_alert(priv, tx_err, priv->net_dev,
1414                                     "Can't compute HW csum for L3 proto 0x%x\n",
1415                                     ntohs(skb->protocol));
1416                 retval = -EIO;
1417                 goto return_error;
1418         }
1419
1420         /* Fill in the relevant L4 parse result fields */
1421         switch (l4_proto) {
1422         case IPPROTO_UDP:
1423                 parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1424                 break;
1425         case IPPROTO_TCP:
1426                 parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1427                 break;
1428         default:
1429                 if (net_ratelimit())
1430                         netif_alert(priv, tx_err, priv->net_dev,
1431                                     "Can't compute HW csum for L4 proto 0x%x\n",
1432                                     l4_proto);
1433                 retval = -EIO;
1434                 goto return_error;
1435         }
1436
1437         /* At index 0 is IPOffset_1 as defined in the Parse Results */
1438         parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1439         parse_result->l4_off = (u8)skb_transport_offset(skb);
1440
1441         /* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1442         fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1443
1444         /* On P1023 and similar platforms fd->cmd interpretation could
1445          * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1446          * is not set so we do not need to check; in the future, if/when
1447          * using context_a we need to check this bit
1448          */
1449
1450 return_error:
1451         return retval;
1452 }
1453
1454 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1455 {
1456         struct device *dev = dpaa_bp->dev;
1457         struct bm_buffer bmb[8];
1458         dma_addr_t addr;
1459         void *new_buf;
1460         u8 i;
1461
1462         for (i = 0; i < 8; i++) {
1463                 new_buf = netdev_alloc_frag(dpaa_bp->raw_size);
1464                 if (unlikely(!new_buf)) {
1465                         dev_err(dev, "netdev_alloc_frag() failed, size %zu\n",
1466                                 dpaa_bp->raw_size);
1467                         goto release_previous_buffs;
1468                 }
1469                 new_buf = PTR_ALIGN(new_buf, SMP_CACHE_BYTES);
1470
1471                 addr = dma_map_single(dev, new_buf,
1472                                       dpaa_bp->size, DMA_FROM_DEVICE);
1473                 if (unlikely(dma_mapping_error(dev, addr))) {
1474                         dev_err(dpaa_bp->dev, "DMA map failed");
1475                         goto release_previous_buffs;
1476                 }
1477
1478                 bmb[i].data = 0;
1479                 bm_buffer_set64(&bmb[i], addr);
1480         }
1481
1482 release_bufs:
1483         return dpaa_bman_release(dpaa_bp, bmb, i);
1484
1485 release_previous_buffs:
1486         WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1487
1488         bm_buffer_set64(&bmb[i], 0);
1489         /* Avoid releasing a completely null buffer; bman_release() requires
1490          * at least one buffer.
1491          */
1492         if (likely(i))
1493                 goto release_bufs;
1494
1495         return 0;
1496 }
1497
1498 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1499 {
1500         int i;
1501
1502         /* Give each CPU an allotment of "config_count" buffers */
1503         for_each_possible_cpu(i) {
1504                 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1505                 int j;
1506
1507                 /* Although we access another CPU's counters here
1508                  * we do it at boot time so it is safe
1509                  */
1510                 for (j = 0; j < dpaa_bp->config_count; j += 8)
1511                         *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1512         }
1513         return 0;
1514 }
1515
1516 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1517  * REFILL_THRESHOLD.
1518  */
1519 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1520 {
1521         int count = *countptr;
1522         int new_bufs;
1523
1524         if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1525                 do {
1526                         new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1527                         if (unlikely(!new_bufs)) {
1528                                 /* Avoid looping forever if we've temporarily
1529                                  * run out of memory. We'll try again at the
1530                                  * next NAPI cycle.
1531                                  */
1532                                 break;
1533                         }
1534                         count += new_bufs;
1535                 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1536
1537                 *countptr = count;
1538                 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1539                         return -ENOMEM;
1540         }
1541
1542         return 0;
1543 }
1544
1545 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1546 {
1547         struct dpaa_bp *dpaa_bp;
1548         int *countptr;
1549         int res, i;
1550
1551         for (i = 0; i < DPAA_BPS_NUM; i++) {
1552                 dpaa_bp = priv->dpaa_bps[i];
1553                 if (!dpaa_bp)
1554                         return -EINVAL;
1555                 countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1556                 res  = dpaa_eth_refill_bpool(dpaa_bp, countptr);
1557                 if (res)
1558                         return res;
1559         }
1560         return 0;
1561 }
1562
1563 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1564  * either contiguous frames or scatter/gather ones.
1565  * Skb freeing is not handled here.
1566  *
1567  * This function may be called on error paths in the Tx function, so guard
1568  * against cases when not all fd relevant fields were filled in.
1569  *
1570  * Return the skb backpointer, since for S/G frames the buffer containing it
1571  * gets freed here.
1572  */
1573 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1574                                           const struct qm_fd *fd)
1575 {
1576         const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1577         struct device *dev = priv->net_dev->dev.parent;
1578         dma_addr_t addr = qm_fd_addr(fd);
1579         const struct qm_sg_entry *sgt;
1580         struct sk_buff **skbh, *skb;
1581         int nr_frags, i;
1582
1583         skbh = (struct sk_buff **)phys_to_virt(addr);
1584         skb = *skbh;
1585
1586         if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1587                 nr_frags = skb_shinfo(skb)->nr_frags;
1588                 dma_unmap_single(dev, addr, qm_fd_get_offset(fd) +
1589                                  sizeof(struct qm_sg_entry) * (1 + nr_frags),
1590                                  dma_dir);
1591
1592                 /* The sgt buffer has been allocated with netdev_alloc_frag(),
1593                  * it's from lowmem.
1594                  */
1595                 sgt = phys_to_virt(addr + qm_fd_get_offset(fd));
1596
1597                 /* sgt[0] is from lowmem, was dma_map_single()-ed */
1598                 dma_unmap_single(dev, qm_sg_addr(&sgt[0]),
1599                                  qm_sg_entry_get_len(&sgt[0]), dma_dir);
1600
1601                 /* remaining pages were mapped with skb_frag_dma_map() */
1602                 for (i = 1; i < nr_frags; i++) {
1603                         WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1604
1605                         dma_unmap_page(dev, qm_sg_addr(&sgt[i]),
1606                                        qm_sg_entry_get_len(&sgt[i]), dma_dir);
1607                 }
1608
1609                 /* Free the page frag that we allocated on Tx */
1610                 skb_free_frag(phys_to_virt(addr));
1611         } else {
1612                 dma_unmap_single(dev, addr,
1613                                  skb_tail_pointer(skb) - (u8 *)skbh, dma_dir);
1614         }
1615
1616         return skb;
1617 }
1618
1619 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1620 {
1621         /* The parser has run and performed L4 checksum validation.
1622          * We know there were no parser errors (and implicitly no
1623          * L4 csum error), otherwise we wouldn't be here.
1624          */
1625         if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1626             (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1627                 return CHECKSUM_UNNECESSARY;
1628
1629         /* We're here because either the parser didn't run or the L4 checksum
1630          * was not verified. This may include the case of a UDP frame with
1631          * checksum zero or an L4 proto other than TCP/UDP
1632          */
1633         return CHECKSUM_NONE;
1634 }
1635
1636 /* Build a linear skb around the received buffer.
1637  * We are guaranteed there is enough room at the end of the data buffer to
1638  * accommodate the shared info area of the skb.
1639  */
1640 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1641                                         const struct qm_fd *fd)
1642 {
1643         ssize_t fd_off = qm_fd_get_offset(fd);
1644         dma_addr_t addr = qm_fd_addr(fd);
1645         struct dpaa_bp *dpaa_bp;
1646         struct sk_buff *skb;
1647         void *vaddr;
1648
1649         vaddr = phys_to_virt(addr);
1650         WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1651
1652         dpaa_bp = dpaa_bpid2pool(fd->bpid);
1653         if (!dpaa_bp)
1654                 goto free_buffer;
1655
1656         skb = build_skb(vaddr, dpaa_bp->size +
1657                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1658         if (unlikely(!skb)) {
1659                 WARN_ONCE(1, "Build skb failure on Rx\n");
1660                 goto free_buffer;
1661         }
1662         WARN_ON(fd_off != priv->rx_headroom);
1663         skb_reserve(skb, fd_off);
1664         skb_put(skb, qm_fd_get_length(fd));
1665
1666         skb->ip_summed = rx_csum_offload(priv, fd);
1667
1668         return skb;
1669
1670 free_buffer:
1671         skb_free_frag(vaddr);
1672         return NULL;
1673 }
1674
1675 /* Build an skb with the data of the first S/G entry in the linear portion and
1676  * the rest of the frame as skb fragments.
1677  *
1678  * The page fragment holding the S/G Table is recycled here.
1679  */
1680 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1681                                     const struct qm_fd *fd)
1682 {
1683         ssize_t fd_off = qm_fd_get_offset(fd);
1684         dma_addr_t addr = qm_fd_addr(fd);
1685         const struct qm_sg_entry *sgt;
1686         struct page *page, *head_page;
1687         struct dpaa_bp *dpaa_bp;
1688         void *vaddr, *sg_vaddr;
1689         int frag_off, frag_len;
1690         struct sk_buff *skb;
1691         dma_addr_t sg_addr;
1692         int page_offset;
1693         unsigned int sz;
1694         int *count_ptr;
1695         int i;
1696
1697         vaddr = phys_to_virt(addr);
1698         WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1699
1700         /* Iterate through the SGT entries and add data buffers to the skb */
1701         sgt = vaddr + fd_off;
1702         for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1703                 /* Extension bit is not supported */
1704                 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1705
1706                 sg_addr = qm_sg_addr(&sgt[i]);
1707                 sg_vaddr = phys_to_virt(sg_addr);
1708                 WARN_ON(!IS_ALIGNED((unsigned long)sg_vaddr,
1709                                     SMP_CACHE_BYTES));
1710
1711                 /* We may use multiple Rx pools */
1712                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1713                 if (!dpaa_bp)
1714                         goto free_buffers;
1715
1716                 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1717                 dma_unmap_single(dpaa_bp->dev, sg_addr, dpaa_bp->size,
1718                                  DMA_FROM_DEVICE);
1719                 if (i == 0) {
1720                         sz = dpaa_bp->size +
1721                                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1722                         skb = build_skb(sg_vaddr, sz);
1723                         if (WARN_ON(unlikely(!skb)))
1724                                 goto free_buffers;
1725
1726                         skb->ip_summed = rx_csum_offload(priv, fd);
1727
1728                         /* Make sure forwarded skbs will have enough space
1729                          * on Tx, if extra headers are added.
1730                          */
1731                         WARN_ON(fd_off != priv->rx_headroom);
1732                         skb_reserve(skb, fd_off);
1733                         skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1734                 } else {
1735                         /* Not the first S/G entry; all data from buffer will
1736                          * be added in an skb fragment; fragment index is offset
1737                          * by one since first S/G entry was incorporated in the
1738                          * linear part of the skb.
1739                          *
1740                          * Caution: 'page' may be a tail page.
1741                          */
1742                         page = virt_to_page(sg_vaddr);
1743                         head_page = virt_to_head_page(sg_vaddr);
1744
1745                         /* Compute offset in (possibly tail) page */
1746                         page_offset = ((unsigned long)sg_vaddr &
1747                                         (PAGE_SIZE - 1)) +
1748                                 (page_address(page) - page_address(head_page));
1749                         /* page_offset only refers to the beginning of sgt[i];
1750                          * but the buffer itself may have an internal offset.
1751                          */
1752                         frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1753                         frag_len = qm_sg_entry_get_len(&sgt[i]);
1754                         /* skb_add_rx_frag() does no checking on the page; if
1755                          * we pass it a tail page, we'll end up with
1756                          * bad page accounting and eventually with segafults.
1757                          */
1758                         skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1759                                         frag_len, dpaa_bp->size);
1760                 }
1761                 /* Update the pool count for the current {cpu x bpool} */
1762                 (*count_ptr)--;
1763
1764                 if (qm_sg_entry_is_final(&sgt[i]))
1765                         break;
1766         }
1767         WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1768
1769         /* free the SG table buffer */
1770         skb_free_frag(vaddr);
1771
1772         return skb;
1773
1774 free_buffers:
1775         /* compensate sw bpool counter changes */
1776         for (i--; i >= 0; i--) {
1777                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1778                 if (dpaa_bp) {
1779                         count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1780                         (*count_ptr)++;
1781                 }
1782         }
1783         /* free all the SG entries */
1784         for (i = 0; i < DPAA_SGT_MAX_ENTRIES ; i++) {
1785                 sg_addr = qm_sg_addr(&sgt[i]);
1786                 sg_vaddr = phys_to_virt(sg_addr);
1787                 skb_free_frag(sg_vaddr);
1788                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1789                 if (dpaa_bp) {
1790                         count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1791                         (*count_ptr)--;
1792                 }
1793
1794                 if (qm_sg_entry_is_final(&sgt[i]))
1795                         break;
1796         }
1797         /* free the SGT fragment */
1798         skb_free_frag(vaddr);
1799
1800         return NULL;
1801 }
1802
1803 static int skb_to_contig_fd(struct dpaa_priv *priv,
1804                             struct sk_buff *skb, struct qm_fd *fd,
1805                             int *offset)
1806 {
1807         struct net_device *net_dev = priv->net_dev;
1808         struct device *dev = net_dev->dev.parent;
1809         enum dma_data_direction dma_dir;
1810         unsigned char *buffer_start;
1811         struct sk_buff **skbh;
1812         dma_addr_t addr;
1813         int err;
1814
1815         /* We are guaranteed to have at least tx_headroom bytes
1816          * available, so just use that for offset.
1817          */
1818         fd->bpid = FSL_DPAA_BPID_INV;
1819         buffer_start = skb->data - priv->tx_headroom;
1820         dma_dir = DMA_TO_DEVICE;
1821
1822         skbh = (struct sk_buff **)buffer_start;
1823         *skbh = skb;
1824
1825         /* Enable L3/L4 hardware checksum computation.
1826          *
1827          * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1828          * need to write into the skb.
1829          */
1830         err = dpaa_enable_tx_csum(priv, skb, fd,
1831                                   ((char *)skbh) + DPAA_TX_PRIV_DATA_SIZE);
1832         if (unlikely(err < 0)) {
1833                 if (net_ratelimit())
1834                         netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1835                                   err);
1836                 return err;
1837         }
1838
1839         /* Fill in the rest of the FD fields */
1840         qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1841         fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1842
1843         /* Map the entire buffer size that may be seen by FMan, but no more */
1844         addr = dma_map_single(dev, skbh,
1845                               skb_tail_pointer(skb) - buffer_start, dma_dir);
1846         if (unlikely(dma_mapping_error(dev, addr))) {
1847                 if (net_ratelimit())
1848                         netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1849                 return -EINVAL;
1850         }
1851         qm_fd_addr_set64(fd, addr);
1852
1853         return 0;
1854 }
1855
1856 static int skb_to_sg_fd(struct dpaa_priv *priv,
1857                         struct sk_buff *skb, struct qm_fd *fd)
1858 {
1859         const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1860         const int nr_frags = skb_shinfo(skb)->nr_frags;
1861         struct net_device *net_dev = priv->net_dev;
1862         struct device *dev = net_dev->dev.parent;
1863         struct qm_sg_entry *sgt;
1864         struct sk_buff **skbh;
1865         int i, j, err, sz;
1866         void *buffer_start;
1867         skb_frag_t *frag;
1868         dma_addr_t addr;
1869         size_t frag_len;
1870         void *sgt_buf;
1871
1872         /* get a page frag to store the SGTable */
1873         sz = SKB_DATA_ALIGN(priv->tx_headroom +
1874                 sizeof(struct qm_sg_entry) * (1 + nr_frags));
1875         sgt_buf = netdev_alloc_frag(sz);
1876         if (unlikely(!sgt_buf)) {
1877                 netdev_err(net_dev, "netdev_alloc_frag() failed for size %d\n",
1878                            sz);
1879                 return -ENOMEM;
1880         }
1881
1882         /* Enable L3/L4 hardware checksum computation.
1883          *
1884          * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1885          * need to write into the skb.
1886          */
1887         err = dpaa_enable_tx_csum(priv, skb, fd,
1888                                   sgt_buf + DPAA_TX_PRIV_DATA_SIZE);
1889         if (unlikely(err < 0)) {
1890                 if (net_ratelimit())
1891                         netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1892                                   err);
1893                 goto csum_failed;
1894         }
1895
1896         sgt = (struct qm_sg_entry *)(sgt_buf + priv->tx_headroom);
1897         qm_sg_entry_set_len(&sgt[0], skb_headlen(skb));
1898         sgt[0].bpid = FSL_DPAA_BPID_INV;
1899         sgt[0].offset = 0;
1900         addr = dma_map_single(dev, skb->data,
1901                               skb_headlen(skb), dma_dir);
1902         if (unlikely(dma_mapping_error(dev, addr))) {
1903                 dev_err(dev, "DMA mapping failed");
1904                 err = -EINVAL;
1905                 goto sg0_map_failed;
1906         }
1907         qm_sg_entry_set64(&sgt[0], addr);
1908
1909         /* populate the rest of SGT entries */
1910         frag = &skb_shinfo(skb)->frags[0];
1911         frag_len = frag->size;
1912         for (i = 1; i <= nr_frags; i++, frag++) {
1913                 WARN_ON(!skb_frag_page(frag));
1914                 addr = skb_frag_dma_map(dev, frag, 0,
1915                                         frag_len, dma_dir);
1916                 if (unlikely(dma_mapping_error(dev, addr))) {
1917                         dev_err(dev, "DMA mapping failed");
1918                         err = -EINVAL;
1919                         goto sg_map_failed;
1920                 }
1921
1922                 qm_sg_entry_set_len(&sgt[i], frag_len);
1923                 sgt[i].bpid = FSL_DPAA_BPID_INV;
1924                 sgt[i].offset = 0;
1925
1926                 /* keep the offset in the address */
1927                 qm_sg_entry_set64(&sgt[i], addr);
1928                 frag_len = frag->size;
1929         }
1930         qm_sg_entry_set_f(&sgt[i - 1], frag_len);
1931
1932         qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
1933
1934         /* DMA map the SGT page */
1935         buffer_start = (void *)sgt - priv->tx_headroom;
1936         skbh = (struct sk_buff **)buffer_start;
1937         *skbh = skb;
1938
1939         addr = dma_map_single(dev, buffer_start, priv->tx_headroom +
1940                               sizeof(struct qm_sg_entry) * (1 + nr_frags),
1941                               dma_dir);
1942         if (unlikely(dma_mapping_error(dev, addr))) {
1943                 dev_err(dev, "DMA mapping failed");
1944                 err = -EINVAL;
1945                 goto sgt_map_failed;
1946         }
1947
1948         fd->bpid = FSL_DPAA_BPID_INV;
1949         fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1950         qm_fd_addr_set64(fd, addr);
1951
1952         return 0;
1953
1954 sgt_map_failed:
1955 sg_map_failed:
1956         for (j = 0; j < i; j++)
1957                 dma_unmap_page(dev, qm_sg_addr(&sgt[j]),
1958                                qm_sg_entry_get_len(&sgt[j]), dma_dir);
1959 sg0_map_failed:
1960 csum_failed:
1961         skb_free_frag(sgt_buf);
1962
1963         return err;
1964 }
1965
1966 static inline int dpaa_xmit(struct dpaa_priv *priv,
1967                             struct rtnl_link_stats64 *percpu_stats,
1968                             int queue,
1969                             struct qm_fd *fd)
1970 {
1971         struct qman_fq *egress_fq;
1972         int err, i;
1973
1974         egress_fq = priv->egress_fqs[queue];
1975         if (fd->bpid == FSL_DPAA_BPID_INV)
1976                 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
1977
1978         /* Trace this Tx fd */
1979         trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
1980
1981         for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
1982                 err = qman_enqueue(egress_fq, fd);
1983                 if (err != -EBUSY)
1984                         break;
1985         }
1986
1987         if (unlikely(err < 0)) {
1988                 percpu_stats->tx_errors++;
1989                 percpu_stats->tx_fifo_errors++;
1990                 return err;
1991         }
1992
1993         percpu_stats->tx_packets++;
1994         percpu_stats->tx_bytes += qm_fd_get_length(fd);
1995
1996         return 0;
1997 }
1998
1999 static int dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2000 {
2001         const int queue_mapping = skb_get_queue_mapping(skb);
2002         bool nonlinear = skb_is_nonlinear(skb);
2003         struct rtnl_link_stats64 *percpu_stats;
2004         struct dpaa_percpu_priv *percpu_priv;
2005         struct dpaa_priv *priv;
2006         struct qm_fd fd;
2007         int offset = 0;
2008         int err = 0;
2009
2010         priv = netdev_priv(net_dev);
2011         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2012         percpu_stats = &percpu_priv->stats;
2013
2014         qm_fd_clear_fd(&fd);
2015
2016         if (!nonlinear) {
2017                 /* We're going to store the skb backpointer at the beginning
2018                  * of the data buffer, so we need a privately owned skb
2019                  *
2020                  * We've made sure skb is not shared in dev->priv_flags,
2021                  * we need to verify the skb head is not cloned
2022                  */
2023                 if (skb_cow_head(skb, priv->tx_headroom))
2024                         goto enomem;
2025
2026                 WARN_ON(skb_is_nonlinear(skb));
2027         }
2028
2029         /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2030          * make sure we don't feed FMan with more fragments than it supports.
2031          */
2032         if (nonlinear &&
2033             likely(skb_shinfo(skb)->nr_frags < DPAA_SGT_MAX_ENTRIES)) {
2034                 /* Just create a S/G fd based on the skb */
2035                 err = skb_to_sg_fd(priv, skb, &fd);
2036                 percpu_priv->tx_frag_skbuffs++;
2037         } else {
2038                 /* If the egress skb contains more fragments than we support
2039                  * we have no choice but to linearize it ourselves.
2040                  */
2041                 if (unlikely(nonlinear) && __skb_linearize(skb))
2042                         goto enomem;
2043
2044                 /* Finally, create a contig FD from this skb */
2045                 err = skb_to_contig_fd(priv, skb, &fd, &offset);
2046         }
2047         if (unlikely(err < 0))
2048                 goto skb_to_fd_failed;
2049
2050         if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2051                 return NETDEV_TX_OK;
2052
2053         dpaa_cleanup_tx_fd(priv, &fd);
2054 skb_to_fd_failed:
2055 enomem:
2056         percpu_stats->tx_errors++;
2057         dev_kfree_skb(skb);
2058         return NETDEV_TX_OK;
2059 }
2060
2061 static void dpaa_rx_error(struct net_device *net_dev,
2062                           const struct dpaa_priv *priv,
2063                           struct dpaa_percpu_priv *percpu_priv,
2064                           const struct qm_fd *fd,
2065                           u32 fqid)
2066 {
2067         if (net_ratelimit())
2068                 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2069                           be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2070
2071         percpu_priv->stats.rx_errors++;
2072
2073         if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2074                 percpu_priv->rx_errors.dme++;
2075         if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2076                 percpu_priv->rx_errors.fpe++;
2077         if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2078                 percpu_priv->rx_errors.fse++;
2079         if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2080                 percpu_priv->rx_errors.phe++;
2081
2082         dpaa_fd_release(net_dev, fd);
2083 }
2084
2085 static void dpaa_tx_error(struct net_device *net_dev,
2086                           const struct dpaa_priv *priv,
2087                           struct dpaa_percpu_priv *percpu_priv,
2088                           const struct qm_fd *fd,
2089                           u32 fqid)
2090 {
2091         struct sk_buff *skb;
2092
2093         if (net_ratelimit())
2094                 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2095                            be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2096
2097         percpu_priv->stats.tx_errors++;
2098
2099         skb = dpaa_cleanup_tx_fd(priv, fd);
2100         dev_kfree_skb(skb);
2101 }
2102
2103 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2104 {
2105         struct dpaa_napi_portal *np =
2106                         container_of(napi, struct dpaa_napi_portal, napi);
2107
2108         int cleaned = qman_p_poll_dqrr(np->p, budget);
2109
2110         if (cleaned < budget) {
2111                 napi_complete_done(napi, cleaned);
2112                 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2113
2114         } else if (np->down) {
2115                 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2116         }
2117
2118         return cleaned;
2119 }
2120
2121 static void dpaa_tx_conf(struct net_device *net_dev,
2122                          const struct dpaa_priv *priv,
2123                          struct dpaa_percpu_priv *percpu_priv,
2124                          const struct qm_fd *fd,
2125                          u32 fqid)
2126 {
2127         struct sk_buff  *skb;
2128
2129         if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2130                 if (net_ratelimit())
2131                         netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2132                                    be32_to_cpu(fd->status) &
2133                                    FM_FD_STAT_TX_ERRORS);
2134
2135                 percpu_priv->stats.tx_errors++;
2136         }
2137
2138         percpu_priv->tx_confirm++;
2139
2140         skb = dpaa_cleanup_tx_fd(priv, fd);
2141
2142         consume_skb(skb);
2143 }
2144
2145 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2146                                          struct qman_portal *portal)
2147 {
2148         if (unlikely(in_irq() || !in_serving_softirq())) {
2149                 /* Disable QMan IRQ and invoke NAPI */
2150                 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2151
2152                 percpu_priv->np.p = portal;
2153                 napi_schedule(&percpu_priv->np.napi);
2154                 percpu_priv->in_interrupt++;
2155                 return 1;
2156         }
2157         return 0;
2158 }
2159
2160 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2161                                               struct qman_fq *fq,
2162                                               const struct qm_dqrr_entry *dq)
2163 {
2164         struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2165         struct dpaa_percpu_priv *percpu_priv;
2166         struct net_device *net_dev;
2167         struct dpaa_bp *dpaa_bp;
2168         struct dpaa_priv *priv;
2169
2170         net_dev = dpaa_fq->net_dev;
2171         priv = netdev_priv(net_dev);
2172         dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2173         if (!dpaa_bp)
2174                 return qman_cb_dqrr_consume;
2175
2176         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2177
2178         if (dpaa_eth_napi_schedule(percpu_priv, portal))
2179                 return qman_cb_dqrr_stop;
2180
2181         if (dpaa_eth_refill_bpools(priv))
2182                 /* Unable to refill the buffer pool due to insufficient
2183                  * system memory. Just release the frame back into the pool,
2184                  * otherwise we'll soon end up with an empty buffer pool.
2185                  */
2186                 dpaa_fd_release(net_dev, &dq->fd);
2187         else
2188                 dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2189
2190         return qman_cb_dqrr_consume;
2191 }
2192
2193 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2194                                                 struct qman_fq *fq,
2195                                                 const struct qm_dqrr_entry *dq)
2196 {
2197         struct rtnl_link_stats64 *percpu_stats;
2198         struct dpaa_percpu_priv *percpu_priv;
2199         const struct qm_fd *fd = &dq->fd;
2200         dma_addr_t addr = qm_fd_addr(fd);
2201         enum qm_fd_format fd_format;
2202         struct net_device *net_dev;
2203         u32 fd_status;
2204         struct dpaa_bp *dpaa_bp;
2205         struct dpaa_priv *priv;
2206         unsigned int skb_len;
2207         struct sk_buff *skb;
2208         int *count_ptr;
2209
2210         fd_status = be32_to_cpu(fd->status);
2211         fd_format = qm_fd_get_format(fd);
2212         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2213         priv = netdev_priv(net_dev);
2214         dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2215         if (!dpaa_bp)
2216                 return qman_cb_dqrr_consume;
2217
2218         /* Trace the Rx fd */
2219         trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2220
2221         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2222         percpu_stats = &percpu_priv->stats;
2223
2224         if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal)))
2225                 return qman_cb_dqrr_stop;
2226
2227         /* Make sure we didn't run out of buffers */
2228         if (unlikely(dpaa_eth_refill_bpools(priv))) {
2229                 /* Unable to refill the buffer pool due to insufficient
2230                  * system memory. Just release the frame back into the pool,
2231                  * otherwise we'll soon end up with an empty buffer pool.
2232                  */
2233                 dpaa_fd_release(net_dev, &dq->fd);
2234                 return qman_cb_dqrr_consume;
2235         }
2236
2237         if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2238                 if (net_ratelimit())
2239                         netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2240                                    fd_status & FM_FD_STAT_RX_ERRORS);
2241
2242                 percpu_stats->rx_errors++;
2243                 dpaa_fd_release(net_dev, fd);
2244                 return qman_cb_dqrr_consume;
2245         }
2246
2247         dpaa_bp = dpaa_bpid2pool(fd->bpid);
2248         if (!dpaa_bp)
2249                 return qman_cb_dqrr_consume;
2250
2251         dma_unmap_single(dpaa_bp->dev, addr, dpaa_bp->size, DMA_FROM_DEVICE);
2252
2253         /* prefetch the first 64 bytes of the frame or the SGT start */
2254         prefetch(phys_to_virt(addr) + qm_fd_get_offset(fd));
2255
2256         fd_format = qm_fd_get_format(fd);
2257         /* The only FD types that we may receive are contig and S/G */
2258         WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2259
2260         /* Account for either the contig buffer or the SGT buffer (depending on
2261          * which case we were in) having been removed from the pool.
2262          */
2263         count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2264         (*count_ptr)--;
2265
2266         if (likely(fd_format == qm_fd_contig))
2267                 skb = contig_fd_to_skb(priv, fd);
2268         else
2269                 skb = sg_fd_to_skb(priv, fd);
2270         if (!skb)
2271                 return qman_cb_dqrr_consume;
2272
2273         skb->protocol = eth_type_trans(skb, net_dev);
2274
2275         skb_len = skb->len;
2276
2277         if (unlikely(netif_receive_skb(skb) == NET_RX_DROP))
2278                 return qman_cb_dqrr_consume;
2279
2280         percpu_stats->rx_packets++;
2281         percpu_stats->rx_bytes += skb_len;
2282
2283         return qman_cb_dqrr_consume;
2284 }
2285
2286 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2287                                                 struct qman_fq *fq,
2288                                                 const struct qm_dqrr_entry *dq)
2289 {
2290         struct dpaa_percpu_priv *percpu_priv;
2291         struct net_device *net_dev;
2292         struct dpaa_priv *priv;
2293
2294         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2295         priv = netdev_priv(net_dev);
2296
2297         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2298
2299         if (dpaa_eth_napi_schedule(percpu_priv, portal))
2300                 return qman_cb_dqrr_stop;
2301
2302         dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2303
2304         return qman_cb_dqrr_consume;
2305 }
2306
2307 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2308                                                struct qman_fq *fq,
2309                                                const struct qm_dqrr_entry *dq)
2310 {
2311         struct dpaa_percpu_priv *percpu_priv;
2312         struct net_device *net_dev;
2313         struct dpaa_priv *priv;
2314
2315         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2316         priv = netdev_priv(net_dev);
2317
2318         /* Trace the fd */
2319         trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2320
2321         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2322
2323         if (dpaa_eth_napi_schedule(percpu_priv, portal))
2324                 return qman_cb_dqrr_stop;
2325
2326         dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2327
2328         return qman_cb_dqrr_consume;
2329 }
2330
2331 static void egress_ern(struct qman_portal *portal,
2332                        struct qman_fq *fq,
2333                        const union qm_mr_entry *msg)
2334 {
2335         const struct qm_fd *fd = &msg->ern.fd;
2336         struct dpaa_percpu_priv *percpu_priv;
2337         const struct dpaa_priv *priv;
2338         struct net_device *net_dev;
2339         struct sk_buff *skb;
2340
2341         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2342         priv = netdev_priv(net_dev);
2343         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2344
2345         percpu_priv->stats.tx_dropped++;
2346         percpu_priv->stats.tx_fifo_errors++;
2347         count_ern(percpu_priv, msg);
2348
2349         skb = dpaa_cleanup_tx_fd(priv, fd);
2350         dev_kfree_skb_any(skb);
2351 }
2352
2353 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2354         .rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2355         .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2356         .rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2357         .tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2358         .egress_ern = { .cb = { .ern = egress_ern } }
2359 };
2360
2361 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2362 {
2363         struct dpaa_percpu_priv *percpu_priv;
2364         int i;
2365
2366         for_each_possible_cpu(i) {
2367                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2368
2369                 percpu_priv->np.down = 0;
2370                 napi_enable(&percpu_priv->np.napi);
2371         }
2372 }
2373
2374 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2375 {
2376         struct dpaa_percpu_priv *percpu_priv;
2377         int i;
2378
2379         for_each_possible_cpu(i) {
2380                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2381
2382                 percpu_priv->np.down = 1;
2383                 napi_disable(&percpu_priv->np.napi);
2384         }
2385 }
2386
2387 static int dpaa_open(struct net_device *net_dev)
2388 {
2389         struct mac_device *mac_dev;
2390         struct dpaa_priv *priv;
2391         int err, i;
2392
2393         priv = netdev_priv(net_dev);
2394         mac_dev = priv->mac_dev;
2395         dpaa_eth_napi_enable(priv);
2396
2397         net_dev->phydev = mac_dev->init_phy(net_dev, priv->mac_dev);
2398         if (!net_dev->phydev) {
2399                 netif_err(priv, ifup, net_dev, "init_phy() failed\n");
2400                 err = -ENODEV;
2401                 goto phy_init_failed;
2402         }
2403
2404         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2405                 err = fman_port_enable(mac_dev->port[i]);
2406                 if (err)
2407                         goto mac_start_failed;
2408         }
2409
2410         err = priv->mac_dev->start(mac_dev);
2411         if (err < 0) {
2412                 netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err);
2413                 goto mac_start_failed;
2414         }
2415
2416         netif_tx_start_all_queues(net_dev);
2417
2418         return 0;
2419
2420 mac_start_failed:
2421         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2422                 fman_port_disable(mac_dev->port[i]);
2423
2424 phy_init_failed:
2425         dpaa_eth_napi_disable(priv);
2426
2427         return err;
2428 }
2429
2430 static int dpaa_eth_stop(struct net_device *net_dev)
2431 {
2432         struct dpaa_priv *priv;
2433         int err;
2434
2435         err = dpaa_stop(net_dev);
2436
2437         priv = netdev_priv(net_dev);
2438         dpaa_eth_napi_disable(priv);
2439
2440         return err;
2441 }
2442
2443 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2444 {
2445         if (!net_dev->phydev)
2446                 return -EINVAL;
2447         return phy_mii_ioctl(net_dev->phydev, rq, cmd);
2448 }
2449
2450 static const struct net_device_ops dpaa_ops = {
2451         .ndo_open = dpaa_open,
2452         .ndo_start_xmit = dpaa_start_xmit,
2453         .ndo_stop = dpaa_eth_stop,
2454         .ndo_tx_timeout = dpaa_tx_timeout,
2455         .ndo_get_stats64 = dpaa_get_stats64,
2456         .ndo_set_mac_address = dpaa_set_mac_address,
2457         .ndo_validate_addr = eth_validate_addr,
2458         .ndo_set_rx_mode = dpaa_set_rx_mode,
2459         .ndo_do_ioctl = dpaa_ioctl,
2460         .ndo_setup_tc = dpaa_setup_tc,
2461 };
2462
2463 static int dpaa_napi_add(struct net_device *net_dev)
2464 {
2465         struct dpaa_priv *priv = netdev_priv(net_dev);
2466         struct dpaa_percpu_priv *percpu_priv;
2467         int cpu;
2468
2469         for_each_possible_cpu(cpu) {
2470                 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2471
2472                 netif_napi_add(net_dev, &percpu_priv->np.napi,
2473                                dpaa_eth_poll, NAPI_POLL_WEIGHT);
2474         }
2475
2476         return 0;
2477 }
2478
2479 static void dpaa_napi_del(struct net_device *net_dev)
2480 {
2481         struct dpaa_priv *priv = netdev_priv(net_dev);
2482         struct dpaa_percpu_priv *percpu_priv;
2483         int cpu;
2484
2485         for_each_possible_cpu(cpu) {
2486                 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2487
2488                 netif_napi_del(&percpu_priv->np.napi);
2489         }
2490 }
2491
2492 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
2493                                    struct bm_buffer *bmb)
2494 {
2495         dma_addr_t addr = bm_buf_addr(bmb);
2496
2497         dma_unmap_single(bp->dev, addr, bp->size, DMA_FROM_DEVICE);
2498
2499         skb_free_frag(phys_to_virt(addr));
2500 }
2501
2502 /* Alloc the dpaa_bp struct and configure default values */
2503 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
2504 {
2505         struct dpaa_bp *dpaa_bp;
2506
2507         dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
2508         if (!dpaa_bp)
2509                 return ERR_PTR(-ENOMEM);
2510
2511         dpaa_bp->bpid = FSL_DPAA_BPID_INV;
2512         dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
2513         dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
2514
2515         dpaa_bp->seed_cb = dpaa_bp_seed;
2516         dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
2517
2518         return dpaa_bp;
2519 }
2520
2521 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
2522  * We won't be sending congestion notifications to FMan; for now, we just use
2523  * this CGR to generate enqueue rejections to FMan in order to drop the frames
2524  * before they reach our ingress queues and eat up memory.
2525  */
2526 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
2527 {
2528         struct qm_mcc_initcgr initcgr;
2529         u32 cs_th;
2530         int err;
2531
2532         err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
2533         if (err < 0) {
2534                 if (netif_msg_drv(priv))
2535                         pr_err("Error %d allocating CGR ID\n", err);
2536                 goto out_error;
2537         }
2538
2539         /* Enable CS TD, but disable Congestion State Change Notifications. */
2540         memset(&initcgr, 0, sizeof(initcgr));
2541         initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
2542         initcgr.cgr.cscn_en = QM_CGR_EN;
2543         cs_th = DPAA_INGRESS_CS_THRESHOLD;
2544         qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
2545
2546         initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
2547         initcgr.cgr.cstd_en = QM_CGR_EN;
2548
2549         /* This CGR will be associated with the SWP affined to the current CPU.
2550          * However, we'll place all our ingress FQs in it.
2551          */
2552         err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
2553                               &initcgr);
2554         if (err < 0) {
2555                 if (netif_msg_drv(priv))
2556                         pr_err("Error %d creating ingress CGR with ID %d\n",
2557                                err, priv->ingress_cgr.cgrid);
2558                 qman_release_cgrid(priv->ingress_cgr.cgrid);
2559                 goto out_error;
2560         }
2561         if (netif_msg_drv(priv))
2562                 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
2563                          priv->ingress_cgr.cgrid, priv->mac_dev->addr);
2564
2565         priv->use_ingress_cgr = true;
2566
2567 out_error:
2568         return err;
2569 }
2570
2571 static const struct of_device_id dpaa_match[];
2572
2573 static inline u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl)
2574 {
2575         u16 headroom;
2576
2577         /* The frame headroom must accommodate:
2578          * - the driver private data area
2579          * - parse results, hash results, timestamp if selected
2580          * If either hash results or time stamp are selected, both will
2581          * be copied to/from the frame headroom, as TS is located between PR and
2582          * HR in the IC and IC copy size has a granularity of 16bytes
2583          * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
2584          *
2585          * Also make sure the headroom is a multiple of data_align bytes
2586          */
2587         headroom = (u16)(bl->priv_data_size + DPAA_PARSE_RESULTS_SIZE +
2588                 DPAA_TIME_STAMP_SIZE + DPAA_HASH_RESULTS_SIZE);
2589
2590         return DPAA_FD_DATA_ALIGNMENT ? ALIGN(headroom,
2591                                               DPAA_FD_DATA_ALIGNMENT) :
2592                                         headroom;
2593 }
2594
2595 static int dpaa_eth_probe(struct platform_device *pdev)
2596 {
2597         struct dpaa_bp *dpaa_bps[DPAA_BPS_NUM] = {NULL};
2598         struct dpaa_percpu_priv *percpu_priv;
2599         struct net_device *net_dev = NULL;
2600         struct dpaa_fq *dpaa_fq, *tmp;
2601         struct dpaa_priv *priv = NULL;
2602         struct fm_port_fqs port_fqs;
2603         struct mac_device *mac_dev;
2604         int err = 0, i, channel;
2605         struct device *dev;
2606
2607         dev = &pdev->dev;
2608
2609         /* Allocate this early, so we can store relevant information in
2610          * the private area
2611          */
2612         net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM);
2613         if (!net_dev) {
2614                 dev_err(dev, "alloc_etherdev_mq() failed\n");
2615                 goto alloc_etherdev_mq_failed;
2616         }
2617
2618         /* Do this here, so we can be verbose early */
2619         SET_NETDEV_DEV(net_dev, dev);
2620         dev_set_drvdata(dev, net_dev);
2621
2622         priv = netdev_priv(net_dev);
2623         priv->net_dev = net_dev;
2624
2625         priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
2626
2627         mac_dev = dpaa_mac_dev_get(pdev);
2628         if (IS_ERR(mac_dev)) {
2629                 dev_err(dev, "dpaa_mac_dev_get() failed\n");
2630                 err = PTR_ERR(mac_dev);
2631                 goto mac_probe_failed;
2632         }
2633
2634         /* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
2635          * we choose conservatively and let the user explicitly set a higher
2636          * MTU via ifconfig. Otherwise, the user may end up with different MTUs
2637          * in the same LAN.
2638          * If on the other hand fsl_fm_max_frm has been chosen below 1500,
2639          * start with the maximum allowed.
2640          */
2641         net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
2642
2643         netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
2644                    net_dev->mtu);
2645
2646         priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
2647         priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
2648
2649         /* device used for DMA mapping */
2650         set_dma_ops(dev, get_dma_ops(&pdev->dev));
2651         err = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(40));
2652         if (err) {
2653                 dev_err(dev, "dma_coerce_mask_and_coherent() failed\n");
2654                 goto dev_mask_failed;
2655         }
2656
2657         /* bp init */
2658         for (i = 0; i < DPAA_BPS_NUM; i++) {
2659                 int err;
2660
2661                 dpaa_bps[i] = dpaa_bp_alloc(dev);
2662                 if (IS_ERR(dpaa_bps[i]))
2663                         return PTR_ERR(dpaa_bps[i]);
2664                 /* the raw size of the buffers used for reception */
2665                 dpaa_bps[i]->raw_size = bpool_buffer_raw_size(i, DPAA_BPS_NUM);
2666                 /* avoid runtime computations by keeping the usable size here */
2667                 dpaa_bps[i]->size = dpaa_bp_size(dpaa_bps[i]->raw_size);
2668                 dpaa_bps[i]->dev = dev;
2669
2670                 err = dpaa_bp_alloc_pool(dpaa_bps[i]);
2671                 if (err < 0) {
2672                         dpaa_bps_free(priv);
2673                         priv->dpaa_bps[i] = NULL;
2674                         goto bp_create_failed;
2675                 }
2676                 priv->dpaa_bps[i] = dpaa_bps[i];
2677         }
2678
2679         INIT_LIST_HEAD(&priv->dpaa_fq_list);
2680
2681         memset(&port_fqs, 0, sizeof(port_fqs));
2682
2683         err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
2684         if (err < 0) {
2685                 dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
2686                 goto fq_probe_failed;
2687         }
2688
2689         priv->mac_dev = mac_dev;
2690
2691         channel = dpaa_get_channel();
2692         if (channel < 0) {
2693                 dev_err(dev, "dpaa_get_channel() failed\n");
2694                 err = channel;
2695                 goto get_channel_failed;
2696         }
2697
2698         priv->channel = (u16)channel;
2699
2700         /* Start a thread that will walk the CPUs with affine portals
2701          * and add this pool channel to each's dequeue mask.
2702          */
2703         dpaa_eth_add_channel(priv->channel);
2704
2705         dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
2706
2707         /* Create a congestion group for this netdev, with
2708          * dynamically-allocated CGR ID.
2709          * Must be executed after probing the MAC, but before
2710          * assigning the egress FQs to the CGRs.
2711          */
2712         err = dpaa_eth_cgr_init(priv);
2713         if (err < 0) {
2714                 dev_err(dev, "Error initializing CGR\n");
2715                 goto tx_cgr_init_failed;
2716         }
2717
2718         err = dpaa_ingress_cgr_init(priv);
2719         if (err < 0) {
2720                 dev_err(dev, "Error initializing ingress CGR\n");
2721                 goto rx_cgr_init_failed;
2722         }
2723
2724         /* Add the FQs to the interface, and make them active */
2725         list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
2726                 err = dpaa_fq_init(dpaa_fq, false);
2727                 if (err < 0)
2728                         goto fq_alloc_failed;
2729         }
2730
2731         priv->tx_headroom = dpaa_get_headroom(&priv->buf_layout[TX]);
2732         priv->rx_headroom = dpaa_get_headroom(&priv->buf_layout[RX]);
2733
2734         /* All real interfaces need their ports initialized */
2735         err = dpaa_eth_init_ports(mac_dev, dpaa_bps, DPAA_BPS_NUM, &port_fqs,
2736                                   &priv->buf_layout[0], dev);
2737         if (err)
2738                 goto init_ports_failed;
2739
2740         priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
2741         if (!priv->percpu_priv) {
2742                 dev_err(dev, "devm_alloc_percpu() failed\n");
2743                 err = -ENOMEM;
2744                 goto alloc_percpu_failed;
2745         }
2746         for_each_possible_cpu(i) {
2747                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2748                 memset(percpu_priv, 0, sizeof(*percpu_priv));
2749         }
2750
2751         priv->num_tc = 1;
2752         netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
2753
2754         /* Initialize NAPI */
2755         err = dpaa_napi_add(net_dev);
2756         if (err < 0)
2757                 goto napi_add_failed;
2758
2759         err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
2760         if (err < 0)
2761                 goto netdev_init_failed;
2762
2763         dpaa_eth_sysfs_init(&net_dev->dev);
2764
2765         netif_info(priv, probe, net_dev, "Probed interface %s\n",
2766                    net_dev->name);
2767
2768         return 0;
2769
2770 netdev_init_failed:
2771 napi_add_failed:
2772         dpaa_napi_del(net_dev);
2773 alloc_percpu_failed:
2774 init_ports_failed:
2775         dpaa_fq_free(dev, &priv->dpaa_fq_list);
2776 fq_alloc_failed:
2777         qman_delete_cgr_safe(&priv->ingress_cgr);
2778         qman_release_cgrid(priv->ingress_cgr.cgrid);
2779 rx_cgr_init_failed:
2780         qman_delete_cgr_safe(&priv->cgr_data.cgr);
2781         qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2782 tx_cgr_init_failed:
2783 get_channel_failed:
2784         dpaa_bps_free(priv);
2785 bp_create_failed:
2786 fq_probe_failed:
2787 dev_mask_failed:
2788 mac_probe_failed:
2789         dev_set_drvdata(dev, NULL);
2790         free_netdev(net_dev);
2791 alloc_etherdev_mq_failed:
2792         for (i = 0; i < DPAA_BPS_NUM && dpaa_bps[i]; i++) {
2793                 if (atomic_read(&dpaa_bps[i]->refs) == 0)
2794                         devm_kfree(dev, dpaa_bps[i]);
2795         }
2796         return err;
2797 }
2798
2799 static int dpaa_remove(struct platform_device *pdev)
2800 {
2801         struct net_device *net_dev;
2802         struct dpaa_priv *priv;
2803         struct device *dev;
2804         int err;
2805
2806         dev = &pdev->dev;
2807         net_dev = dev_get_drvdata(dev);
2808
2809         priv = netdev_priv(net_dev);
2810
2811         dpaa_eth_sysfs_remove(dev);
2812
2813         dev_set_drvdata(dev, NULL);
2814         unregister_netdev(net_dev);
2815
2816         err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
2817
2818         qman_delete_cgr_safe(&priv->ingress_cgr);
2819         qman_release_cgrid(priv->ingress_cgr.cgrid);
2820         qman_delete_cgr_safe(&priv->cgr_data.cgr);
2821         qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2822
2823         dpaa_napi_del(net_dev);
2824
2825         dpaa_bps_free(priv);
2826
2827         free_netdev(net_dev);
2828
2829         return err;
2830 }
2831
2832 static struct platform_device_id dpaa_devtype[] = {
2833         {
2834                 .name = "dpaa-ethernet",
2835                 .driver_data = 0,
2836         }, {
2837         }
2838 };
2839 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
2840
2841 static struct platform_driver dpaa_driver = {
2842         .driver = {
2843                 .name = KBUILD_MODNAME,
2844         },
2845         .id_table = dpaa_devtype,
2846         .probe = dpaa_eth_probe,
2847         .remove = dpaa_remove
2848 };
2849
2850 static int __init dpaa_load(void)
2851 {
2852         int err;
2853
2854         pr_debug("FSL DPAA Ethernet driver\n");
2855
2856         /* initialize dpaa_eth mirror values */
2857         dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
2858         dpaa_max_frm = fman_get_max_frm();
2859
2860         err = platform_driver_register(&dpaa_driver);
2861         if (err < 0)
2862                 pr_err("Error, platform_driver_register() = %d\n", err);
2863
2864         return err;
2865 }
2866 module_init(dpaa_load);
2867
2868 static void __exit dpaa_unload(void)
2869 {
2870         platform_driver_unregister(&dpaa_driver);
2871
2872         /* Only one channel is used and needs to be released after all
2873          * interfaces are removed
2874          */
2875         dpaa_release_channel();
2876 }
2877 module_exit(dpaa_unload);
2878
2879 MODULE_LICENSE("Dual BSD/GPL");
2880 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");