]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/e1000e/ethtool.c
Merge branches 'fixes', 'misc', 'mmci', 'unstable/dma-for-next' and 'sa11x0' into...
[karo-tx-linux.git] / drivers / net / ethernet / intel / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/slab.h>
36 #include <linux/delay.h>
37 #include <linux/vmalloc.h>
38 #include <linux/pm_runtime.h>
39
40 #include "e1000.h"
41
42 enum { NETDEV_STATS, E1000_STATS };
43
44 struct e1000_stats {
45         char stat_string[ETH_GSTRING_LEN];
46         int type;
47         int sizeof_stat;
48         int stat_offset;
49 };
50
51 #define E1000_STAT(str, m) { \
52                 .stat_string = str, \
53                 .type = E1000_STATS, \
54                 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
55                 .stat_offset = offsetof(struct e1000_adapter, m) }
56 #define E1000_NETDEV_STAT(str, m) { \
57                 .stat_string = str, \
58                 .type = NETDEV_STATS, \
59                 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
60                 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
61
62 static const struct e1000_stats e1000_gstrings_stats[] = {
63         E1000_STAT("rx_packets", stats.gprc),
64         E1000_STAT("tx_packets", stats.gptc),
65         E1000_STAT("rx_bytes", stats.gorc),
66         E1000_STAT("tx_bytes", stats.gotc),
67         E1000_STAT("rx_broadcast", stats.bprc),
68         E1000_STAT("tx_broadcast", stats.bptc),
69         E1000_STAT("rx_multicast", stats.mprc),
70         E1000_STAT("tx_multicast", stats.mptc),
71         E1000_NETDEV_STAT("rx_errors", rx_errors),
72         E1000_NETDEV_STAT("tx_errors", tx_errors),
73         E1000_NETDEV_STAT("tx_dropped", tx_dropped),
74         E1000_STAT("multicast", stats.mprc),
75         E1000_STAT("collisions", stats.colc),
76         E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
77         E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
78         E1000_STAT("rx_crc_errors", stats.crcerrs),
79         E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
80         E1000_STAT("rx_no_buffer_count", stats.rnbc),
81         E1000_STAT("rx_missed_errors", stats.mpc),
82         E1000_STAT("tx_aborted_errors", stats.ecol),
83         E1000_STAT("tx_carrier_errors", stats.tncrs),
84         E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
85         E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
86         E1000_STAT("tx_window_errors", stats.latecol),
87         E1000_STAT("tx_abort_late_coll", stats.latecol),
88         E1000_STAT("tx_deferred_ok", stats.dc),
89         E1000_STAT("tx_single_coll_ok", stats.scc),
90         E1000_STAT("tx_multi_coll_ok", stats.mcc),
91         E1000_STAT("tx_timeout_count", tx_timeout_count),
92         E1000_STAT("tx_restart_queue", restart_queue),
93         E1000_STAT("rx_long_length_errors", stats.roc),
94         E1000_STAT("rx_short_length_errors", stats.ruc),
95         E1000_STAT("rx_align_errors", stats.algnerrc),
96         E1000_STAT("tx_tcp_seg_good", stats.tsctc),
97         E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
98         E1000_STAT("rx_flow_control_xon", stats.xonrxc),
99         E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
100         E1000_STAT("tx_flow_control_xon", stats.xontxc),
101         E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
102         E1000_STAT("rx_csum_offload_good", hw_csum_good),
103         E1000_STAT("rx_csum_offload_errors", hw_csum_err),
104         E1000_STAT("rx_header_split", rx_hdr_split),
105         E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
106         E1000_STAT("tx_smbus", stats.mgptc),
107         E1000_STAT("rx_smbus", stats.mgprc),
108         E1000_STAT("dropped_smbus", stats.mgpdc),
109         E1000_STAT("rx_dma_failed", rx_dma_failed),
110         E1000_STAT("tx_dma_failed", tx_dma_failed),
111         E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
112         E1000_STAT("uncorr_ecc_errors", uncorr_errors),
113         E1000_STAT("corr_ecc_errors", corr_errors),
114 };
115
116 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
117 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
118 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
119         "Register test  (offline)", "Eeprom test    (offline)",
120         "Interrupt test (offline)", "Loopback test  (offline)",
121         "Link test   (on/offline)"
122 };
123
124 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
125
126 static int e1000_get_settings(struct net_device *netdev,
127                               struct ethtool_cmd *ecmd)
128 {
129         struct e1000_adapter *adapter = netdev_priv(netdev);
130         struct e1000_hw *hw = &adapter->hw;
131         u32 speed;
132
133         if (hw->phy.media_type == e1000_media_type_copper) {
134                 ecmd->supported = (SUPPORTED_10baseT_Half |
135                                    SUPPORTED_10baseT_Full |
136                                    SUPPORTED_100baseT_Half |
137                                    SUPPORTED_100baseT_Full |
138                                    SUPPORTED_1000baseT_Full |
139                                    SUPPORTED_Autoneg |
140                                    SUPPORTED_TP);
141                 if (hw->phy.type == e1000_phy_ife)
142                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
143                 ecmd->advertising = ADVERTISED_TP;
144
145                 if (hw->mac.autoneg == 1) {
146                         ecmd->advertising |= ADVERTISED_Autoneg;
147                         /* the e1000 autoneg seems to match ethtool nicely */
148                         ecmd->advertising |= hw->phy.autoneg_advertised;
149                 }
150
151                 ecmd->port = PORT_TP;
152                 ecmd->phy_address = hw->phy.addr;
153                 ecmd->transceiver = XCVR_INTERNAL;
154
155         } else {
156                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
157                                      SUPPORTED_FIBRE |
158                                      SUPPORTED_Autoneg);
159
160                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
161                                      ADVERTISED_FIBRE |
162                                      ADVERTISED_Autoneg);
163
164                 ecmd->port = PORT_FIBRE;
165                 ecmd->transceiver = XCVR_EXTERNAL;
166         }
167
168         speed = -1;
169         ecmd->duplex = -1;
170
171         if (netif_running(netdev)) {
172                 if (netif_carrier_ok(netdev)) {
173                         speed = adapter->link_speed;
174                         ecmd->duplex = adapter->link_duplex - 1;
175                 }
176         } else if (!pm_runtime_suspended(netdev->dev.parent)) {
177                 u32 status = er32(STATUS);
178                 if (status & E1000_STATUS_LU) {
179                         if (status & E1000_STATUS_SPEED_1000)
180                                 speed = SPEED_1000;
181                         else if (status & E1000_STATUS_SPEED_100)
182                                 speed = SPEED_100;
183                         else
184                                 speed = SPEED_10;
185
186                         if (status & E1000_STATUS_FD)
187                                 ecmd->duplex = DUPLEX_FULL;
188                         else
189                                 ecmd->duplex = DUPLEX_HALF;
190                 }
191         }
192
193         ethtool_cmd_speed_set(ecmd, speed);
194         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
195                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
196
197         /* MDI-X => 2; MDI =>1; Invalid =>0 */
198         if ((hw->phy.media_type == e1000_media_type_copper) &&
199             netif_carrier_ok(netdev))
200                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI;
201         else
202                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
203
204         if (hw->phy.mdix == AUTO_ALL_MODES)
205                 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
206         else
207                 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
208
209         return 0;
210 }
211
212 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
213 {
214         struct e1000_mac_info *mac = &adapter->hw.mac;
215
216         mac->autoneg = 0;
217
218         /* Make sure dplx is at most 1 bit and lsb of speed is not set
219          * for the switch() below to work
220          */
221         if ((spd & 1) || (dplx & ~1))
222                 goto err_inval;
223
224         /* Fiber NICs only allow 1000 gbps Full duplex */
225         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
226             (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
227                 goto err_inval;
228         }
229
230         switch (spd + dplx) {
231         case SPEED_10 + DUPLEX_HALF:
232                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
233                 break;
234         case SPEED_10 + DUPLEX_FULL:
235                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
236                 break;
237         case SPEED_100 + DUPLEX_HALF:
238                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
239                 break;
240         case SPEED_100 + DUPLEX_FULL:
241                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
242                 break;
243         case SPEED_1000 + DUPLEX_FULL:
244                 mac->autoneg = 1;
245                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
246                 break;
247         case SPEED_1000 + DUPLEX_HALF:  /* not supported */
248         default:
249                 goto err_inval;
250         }
251
252         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
253         adapter->hw.phy.mdix = AUTO_ALL_MODES;
254
255         return 0;
256
257 err_inval:
258         e_err("Unsupported Speed/Duplex configuration\n");
259         return -EINVAL;
260 }
261
262 static int e1000_set_settings(struct net_device *netdev,
263                               struct ethtool_cmd *ecmd)
264 {
265         struct e1000_adapter *adapter = netdev_priv(netdev);
266         struct e1000_hw *hw = &adapter->hw;
267         int ret_val = 0;
268
269         pm_runtime_get_sync(netdev->dev.parent);
270
271         /* When SoL/IDER sessions are active, autoneg/speed/duplex
272          * cannot be changed
273          */
274         if (hw->phy.ops.check_reset_block &&
275             hw->phy.ops.check_reset_block(hw)) {
276                 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
277                 ret_val = -EINVAL;
278                 goto out;
279         }
280
281         /* MDI setting is only allowed when autoneg enabled because
282          * some hardware doesn't allow MDI setting when speed or
283          * duplex is forced.
284          */
285         if (ecmd->eth_tp_mdix_ctrl) {
286                 if (hw->phy.media_type != e1000_media_type_copper) {
287                         ret_val = -EOPNOTSUPP;
288                         goto out;
289                 }
290
291                 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
292                     (ecmd->autoneg != AUTONEG_ENABLE)) {
293                         e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
294                         ret_val = -EINVAL;
295                         goto out;
296                 }
297         }
298
299         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
300                 usleep_range(1000, 2000);
301
302         if (ecmd->autoneg == AUTONEG_ENABLE) {
303                 hw->mac.autoneg = 1;
304                 if (hw->phy.media_type == e1000_media_type_fiber)
305                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
306                             ADVERTISED_FIBRE | ADVERTISED_Autoneg;
307                 else
308                         hw->phy.autoneg_advertised = ecmd->advertising |
309                             ADVERTISED_TP | ADVERTISED_Autoneg;
310                 ecmd->advertising = hw->phy.autoneg_advertised;
311                 if (adapter->fc_autoneg)
312                         hw->fc.requested_mode = e1000_fc_default;
313         } else {
314                 u32 speed = ethtool_cmd_speed(ecmd);
315                 /* calling this overrides forced MDI setting */
316                 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
317                         ret_val = -EINVAL;
318                         goto out;
319                 }
320         }
321
322         /* MDI-X => 2; MDI => 1; Auto => 3 */
323         if (ecmd->eth_tp_mdix_ctrl) {
324                 /* fix up the value for auto (3 => 0) as zero is mapped
325                  * internally to auto
326                  */
327                 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
328                         hw->phy.mdix = AUTO_ALL_MODES;
329                 else
330                         hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
331         }
332
333         /* reset the link */
334         if (netif_running(adapter->netdev)) {
335                 e1000e_down(adapter);
336                 e1000e_up(adapter);
337         } else {
338                 e1000e_reset(adapter);
339         }
340
341 out:
342         pm_runtime_put_sync(netdev->dev.parent);
343         clear_bit(__E1000_RESETTING, &adapter->state);
344         return ret_val;
345 }
346
347 static void e1000_get_pauseparam(struct net_device *netdev,
348                                  struct ethtool_pauseparam *pause)
349 {
350         struct e1000_adapter *adapter = netdev_priv(netdev);
351         struct e1000_hw *hw = &adapter->hw;
352
353         pause->autoneg =
354             (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
355
356         if (hw->fc.current_mode == e1000_fc_rx_pause) {
357                 pause->rx_pause = 1;
358         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
359                 pause->tx_pause = 1;
360         } else if (hw->fc.current_mode == e1000_fc_full) {
361                 pause->rx_pause = 1;
362                 pause->tx_pause = 1;
363         }
364 }
365
366 static int e1000_set_pauseparam(struct net_device *netdev,
367                                 struct ethtool_pauseparam *pause)
368 {
369         struct e1000_adapter *adapter = netdev_priv(netdev);
370         struct e1000_hw *hw = &adapter->hw;
371         int retval = 0;
372
373         adapter->fc_autoneg = pause->autoneg;
374
375         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
376                 usleep_range(1000, 2000);
377
378         pm_runtime_get_sync(netdev->dev.parent);
379
380         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
381                 hw->fc.requested_mode = e1000_fc_default;
382                 if (netif_running(adapter->netdev)) {
383                         e1000e_down(adapter);
384                         e1000e_up(adapter);
385                 } else {
386                         e1000e_reset(adapter);
387                 }
388         } else {
389                 if (pause->rx_pause && pause->tx_pause)
390                         hw->fc.requested_mode = e1000_fc_full;
391                 else if (pause->rx_pause && !pause->tx_pause)
392                         hw->fc.requested_mode = e1000_fc_rx_pause;
393                 else if (!pause->rx_pause && pause->tx_pause)
394                         hw->fc.requested_mode = e1000_fc_tx_pause;
395                 else if (!pause->rx_pause && !pause->tx_pause)
396                         hw->fc.requested_mode = e1000_fc_none;
397
398                 hw->fc.current_mode = hw->fc.requested_mode;
399
400                 if (hw->phy.media_type == e1000_media_type_fiber) {
401                         retval = hw->mac.ops.setup_link(hw);
402                         /* implicit goto out */
403                 } else {
404                         retval = e1000e_force_mac_fc(hw);
405                         if (retval)
406                                 goto out;
407                         e1000e_set_fc_watermarks(hw);
408                 }
409         }
410
411 out:
412         pm_runtime_put_sync(netdev->dev.parent);
413         clear_bit(__E1000_RESETTING, &adapter->state);
414         return retval;
415 }
416
417 static u32 e1000_get_msglevel(struct net_device *netdev)
418 {
419         struct e1000_adapter *adapter = netdev_priv(netdev);
420         return adapter->msg_enable;
421 }
422
423 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
424 {
425         struct e1000_adapter *adapter = netdev_priv(netdev);
426         adapter->msg_enable = data;
427 }
428
429 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
430 {
431 #define E1000_REGS_LEN 32       /* overestimate */
432         return E1000_REGS_LEN * sizeof(u32);
433 }
434
435 static void e1000_get_regs(struct net_device *netdev,
436                            struct ethtool_regs *regs, void *p)
437 {
438         struct e1000_adapter *adapter = netdev_priv(netdev);
439         struct e1000_hw *hw = &adapter->hw;
440         u32 *regs_buff = p;
441         u16 phy_data;
442
443         pm_runtime_get_sync(netdev->dev.parent);
444
445         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
446
447         regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
448             adapter->pdev->device;
449
450         regs_buff[0] = er32(CTRL);
451         regs_buff[1] = er32(STATUS);
452
453         regs_buff[2] = er32(RCTL);
454         regs_buff[3] = er32(RDLEN(0));
455         regs_buff[4] = er32(RDH(0));
456         regs_buff[5] = er32(RDT(0));
457         regs_buff[6] = er32(RDTR);
458
459         regs_buff[7] = er32(TCTL);
460         regs_buff[8] = er32(TDLEN(0));
461         regs_buff[9] = er32(TDH(0));
462         regs_buff[10] = er32(TDT(0));
463         regs_buff[11] = er32(TIDV);
464
465         regs_buff[12] = adapter->hw.phy.type;   /* PHY type (IGP=1, M88=0) */
466
467         /* ethtool doesn't use anything past this point, so all this
468          * code is likely legacy junk for apps that may or may not exist
469          */
470         if (hw->phy.type == e1000_phy_m88) {
471                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
472                 regs_buff[13] = (u32)phy_data; /* cable length */
473                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
474                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
475                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
476                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
477                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
478                 regs_buff[18] = regs_buff[13]; /* cable polarity */
479                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
480                 regs_buff[20] = regs_buff[17]; /* polarity correction */
481                 /* phy receive errors */
482                 regs_buff[22] = adapter->phy_stats.receive_errors;
483                 regs_buff[23] = regs_buff[13]; /* mdix mode */
484         }
485         regs_buff[21] = 0;      /* was idle_errors */
486         e1e_rphy(hw, MII_STAT1000, &phy_data);
487         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
488         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
489
490         pm_runtime_put_sync(netdev->dev.parent);
491 }
492
493 static int e1000_get_eeprom_len(struct net_device *netdev)
494 {
495         struct e1000_adapter *adapter = netdev_priv(netdev);
496         return adapter->hw.nvm.word_size * 2;
497 }
498
499 static int e1000_get_eeprom(struct net_device *netdev,
500                             struct ethtool_eeprom *eeprom, u8 *bytes)
501 {
502         struct e1000_adapter *adapter = netdev_priv(netdev);
503         struct e1000_hw *hw = &adapter->hw;
504         u16 *eeprom_buff;
505         int first_word;
506         int last_word;
507         int ret_val = 0;
508         u16 i;
509
510         if (eeprom->len == 0)
511                 return -EINVAL;
512
513         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
514
515         first_word = eeprom->offset >> 1;
516         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
517
518         eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
519                               GFP_KERNEL);
520         if (!eeprom_buff)
521                 return -ENOMEM;
522
523         pm_runtime_get_sync(netdev->dev.parent);
524
525         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
526                 ret_val = e1000_read_nvm(hw, first_word,
527                                          last_word - first_word + 1,
528                                          eeprom_buff);
529         } else {
530                 for (i = 0; i < last_word - first_word + 1; i++) {
531                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
532                                                  &eeprom_buff[i]);
533                         if (ret_val)
534                                 break;
535                 }
536         }
537
538         pm_runtime_put_sync(netdev->dev.parent);
539
540         if (ret_val) {
541                 /* a read error occurred, throw away the result */
542                 memset(eeprom_buff, 0xff, sizeof(u16) *
543                        (last_word - first_word + 1));
544         } else {
545                 /* Device's eeprom is always little-endian, word addressable */
546                 for (i = 0; i < last_word - first_word + 1; i++)
547                         le16_to_cpus(&eeprom_buff[i]);
548         }
549
550         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
551         kfree(eeprom_buff);
552
553         return ret_val;
554 }
555
556 static int e1000_set_eeprom(struct net_device *netdev,
557                             struct ethtool_eeprom *eeprom, u8 *bytes)
558 {
559         struct e1000_adapter *adapter = netdev_priv(netdev);
560         struct e1000_hw *hw = &adapter->hw;
561         u16 *eeprom_buff;
562         void *ptr;
563         int max_len;
564         int first_word;
565         int last_word;
566         int ret_val = 0;
567         u16 i;
568
569         if (eeprom->len == 0)
570                 return -EOPNOTSUPP;
571
572         if (eeprom->magic !=
573             (adapter->pdev->vendor | (adapter->pdev->device << 16)))
574                 return -EFAULT;
575
576         if (adapter->flags & FLAG_READ_ONLY_NVM)
577                 return -EINVAL;
578
579         max_len = hw->nvm.word_size * 2;
580
581         first_word = eeprom->offset >> 1;
582         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
583         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
584         if (!eeprom_buff)
585                 return -ENOMEM;
586
587         ptr = (void *)eeprom_buff;
588
589         pm_runtime_get_sync(netdev->dev.parent);
590
591         if (eeprom->offset & 1) {
592                 /* need read/modify/write of first changed EEPROM word */
593                 /* only the second byte of the word is being modified */
594                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
595                 ptr++;
596         }
597         if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
598                 /* need read/modify/write of last changed EEPROM word */
599                 /* only the first byte of the word is being modified */
600                 ret_val = e1000_read_nvm(hw, last_word, 1,
601                                          &eeprom_buff[last_word - first_word]);
602
603         if (ret_val)
604                 goto out;
605
606         /* Device's eeprom is always little-endian, word addressable */
607         for (i = 0; i < last_word - first_word + 1; i++)
608                 le16_to_cpus(&eeprom_buff[i]);
609
610         memcpy(ptr, bytes, eeprom->len);
611
612         for (i = 0; i < last_word - first_word + 1; i++)
613                 cpu_to_le16s(&eeprom_buff[i]);
614
615         ret_val = e1000_write_nvm(hw, first_word,
616                                   last_word - first_word + 1, eeprom_buff);
617
618         if (ret_val)
619                 goto out;
620
621         /* Update the checksum over the first part of the EEPROM if needed
622          * and flush shadow RAM for applicable controllers
623          */
624         if ((first_word <= NVM_CHECKSUM_REG) ||
625             (hw->mac.type == e1000_82583) ||
626             (hw->mac.type == e1000_82574) ||
627             (hw->mac.type == e1000_82573))
628                 ret_val = e1000e_update_nvm_checksum(hw);
629
630 out:
631         pm_runtime_put_sync(netdev->dev.parent);
632         kfree(eeprom_buff);
633         return ret_val;
634 }
635
636 static void e1000_get_drvinfo(struct net_device *netdev,
637                               struct ethtool_drvinfo *drvinfo)
638 {
639         struct e1000_adapter *adapter = netdev_priv(netdev);
640
641         strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
642         strlcpy(drvinfo->version, e1000e_driver_version,
643                 sizeof(drvinfo->version));
644
645         /* EEPROM image version # is reported as firmware version # for
646          * PCI-E controllers
647          */
648         snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
649                  "%d.%d-%d",
650                  (adapter->eeprom_vers & 0xF000) >> 12,
651                  (adapter->eeprom_vers & 0x0FF0) >> 4,
652                  (adapter->eeprom_vers & 0x000F));
653
654         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
655                 sizeof(drvinfo->bus_info));
656         drvinfo->regdump_len = e1000_get_regs_len(netdev);
657         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
658 }
659
660 static void e1000_get_ringparam(struct net_device *netdev,
661                                 struct ethtool_ringparam *ring)
662 {
663         struct e1000_adapter *adapter = netdev_priv(netdev);
664
665         ring->rx_max_pending = E1000_MAX_RXD;
666         ring->tx_max_pending = E1000_MAX_TXD;
667         ring->rx_pending = adapter->rx_ring_count;
668         ring->tx_pending = adapter->tx_ring_count;
669 }
670
671 static int e1000_set_ringparam(struct net_device *netdev,
672                                struct ethtool_ringparam *ring)
673 {
674         struct e1000_adapter *adapter = netdev_priv(netdev);
675         struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
676         int err = 0, size = sizeof(struct e1000_ring);
677         bool set_tx = false, set_rx = false;
678         u16 new_rx_count, new_tx_count;
679
680         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
681                 return -EINVAL;
682
683         new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
684                                E1000_MAX_RXD);
685         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
686
687         new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
688                                E1000_MAX_TXD);
689         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
690
691         if ((new_tx_count == adapter->tx_ring_count) &&
692             (new_rx_count == adapter->rx_ring_count))
693                 /* nothing to do */
694                 return 0;
695
696         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
697                 usleep_range(1000, 2000);
698
699         if (!netif_running(adapter->netdev)) {
700                 /* Set counts now and allocate resources during open() */
701                 adapter->tx_ring->count = new_tx_count;
702                 adapter->rx_ring->count = new_rx_count;
703                 adapter->tx_ring_count = new_tx_count;
704                 adapter->rx_ring_count = new_rx_count;
705                 goto clear_reset;
706         }
707
708         set_tx = (new_tx_count != adapter->tx_ring_count);
709         set_rx = (new_rx_count != adapter->rx_ring_count);
710
711         /* Allocate temporary storage for ring updates */
712         if (set_tx) {
713                 temp_tx = vmalloc(size);
714                 if (!temp_tx) {
715                         err = -ENOMEM;
716                         goto free_temp;
717                 }
718         }
719         if (set_rx) {
720                 temp_rx = vmalloc(size);
721                 if (!temp_rx) {
722                         err = -ENOMEM;
723                         goto free_temp;
724                 }
725         }
726
727         pm_runtime_get_sync(netdev->dev.parent);
728
729         e1000e_down(adapter);
730
731         /* We can't just free everything and then setup again, because the
732          * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
733          * structs.  First, attempt to allocate new resources...
734          */
735         if (set_tx) {
736                 memcpy(temp_tx, adapter->tx_ring, size);
737                 temp_tx->count = new_tx_count;
738                 err = e1000e_setup_tx_resources(temp_tx);
739                 if (err)
740                         goto err_setup;
741         }
742         if (set_rx) {
743                 memcpy(temp_rx, adapter->rx_ring, size);
744                 temp_rx->count = new_rx_count;
745                 err = e1000e_setup_rx_resources(temp_rx);
746                 if (err)
747                         goto err_setup_rx;
748         }
749
750         /* ...then free the old resources and copy back any new ring data */
751         if (set_tx) {
752                 e1000e_free_tx_resources(adapter->tx_ring);
753                 memcpy(adapter->tx_ring, temp_tx, size);
754                 adapter->tx_ring_count = new_tx_count;
755         }
756         if (set_rx) {
757                 e1000e_free_rx_resources(adapter->rx_ring);
758                 memcpy(adapter->rx_ring, temp_rx, size);
759                 adapter->rx_ring_count = new_rx_count;
760         }
761
762 err_setup_rx:
763         if (err && set_tx)
764                 e1000e_free_tx_resources(temp_tx);
765 err_setup:
766         e1000e_up(adapter);
767         pm_runtime_put_sync(netdev->dev.parent);
768 free_temp:
769         vfree(temp_tx);
770         vfree(temp_rx);
771 clear_reset:
772         clear_bit(__E1000_RESETTING, &adapter->state);
773         return err;
774 }
775
776 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
777                              int reg, int offset, u32 mask, u32 write)
778 {
779         u32 pat, val;
780         static const u32 test[] = {
781                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
782         };
783         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
784                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
785                                       (test[pat] & write));
786                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
787                 if (val != (test[pat] & write & mask)) {
788                         e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
789                               reg + (offset << 2), val,
790                               (test[pat] & write & mask));
791                         *data = reg;
792                         return 1;
793                 }
794         }
795         return 0;
796 }
797
798 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
799                               int reg, u32 mask, u32 write)
800 {
801         u32 val;
802         __ew32(&adapter->hw, reg, write & mask);
803         val = __er32(&adapter->hw, reg);
804         if ((write & mask) != (val & mask)) {
805                 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
806                       reg, (val & mask), (write & mask));
807                 *data = reg;
808                 return 1;
809         }
810         return 0;
811 }
812
813 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
814         do {                                                                   \
815                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
816                         return 1;                                              \
817         } while (0)
818 #define REG_PATTERN_TEST(reg, mask, write)                                     \
819         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
820
821 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
822         do {                                                                   \
823                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
824                         return 1;                                              \
825         } while (0)
826
827 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
828 {
829         struct e1000_hw *hw = &adapter->hw;
830         struct e1000_mac_info *mac = &adapter->hw.mac;
831         u32 value;
832         u32 before;
833         u32 after;
834         u32 i;
835         u32 toggle;
836         u32 mask;
837         u32 wlock_mac = 0;
838
839         /* The status register is Read Only, so a write should fail.
840          * Some bits that get toggled are ignored.  There are several bits
841          * on newer hardware that are r/w.
842          */
843         switch (mac->type) {
844         case e1000_82571:
845         case e1000_82572:
846         case e1000_80003es2lan:
847                 toggle = 0x7FFFF3FF;
848                 break;
849         default:
850                 toggle = 0x7FFFF033;
851                 break;
852         }
853
854         before = er32(STATUS);
855         value = (er32(STATUS) & toggle);
856         ew32(STATUS, toggle);
857         after = er32(STATUS) & toggle;
858         if (value != after) {
859                 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
860                       after, value);
861                 *data = 1;
862                 return 1;
863         }
864         /* restore previous status */
865         ew32(STATUS, before);
866
867         if (!(adapter->flags & FLAG_IS_ICH)) {
868                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
869                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
870                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
871                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
872         }
873
874         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
875         REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
876         REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
877         REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
878         REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
879         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
880         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
881         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
882         REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
883         REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
884
885         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
886
887         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
888         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
889         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
890
891         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
892         REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
893         if (!(adapter->flags & FLAG_IS_ICH))
894                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
895         REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
896         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
897         mask = 0x8003FFFF;
898         switch (mac->type) {
899         case e1000_ich10lan:
900         case e1000_pchlan:
901         case e1000_pch2lan:
902         case e1000_pch_lpt:
903                 mask |= (1 << 18);
904                 break;
905         default:
906                 break;
907         }
908
909         if (mac->type == e1000_pch_lpt)
910                 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
911                     E1000_FWSM_WLOCK_MAC_SHIFT;
912
913         for (i = 0; i < mac->rar_entry_count; i++) {
914                 if (mac->type == e1000_pch_lpt) {
915                         /* Cannot test write-protected SHRAL[n] registers */
916                         if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
917                                 continue;
918
919                         /* SHRAH[9] different than the others */
920                         if (i == 10)
921                                 mask |= (1 << 30);
922                         else
923                                 mask &= ~(1 << 30);
924                 }
925                 if (mac->type == e1000_pch2lan) {
926                         /* SHRAH[0,1,2] different than previous */
927                         if (i == 7)
928                                 mask &= 0xFFF4FFFF;
929                         /* SHRAH[3] different than SHRAH[0,1,2] */
930                         if (i == 10)
931                                 mask |= (1 << 30);
932                 }
933
934                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
935                                        0xFFFFFFFF);
936         }
937
938         for (i = 0; i < mac->mta_reg_count; i++)
939                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
940
941         *data = 0;
942
943         return 0;
944 }
945
946 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
947 {
948         u16 temp;
949         u16 checksum = 0;
950         u16 i;
951
952         *data = 0;
953         /* Read and add up the contents of the EEPROM */
954         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
955                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
956                         *data = 1;
957                         return *data;
958                 }
959                 checksum += temp;
960         }
961
962         /* If Checksum is not Correct return error else test passed */
963         if ((checksum != (u16)NVM_SUM) && !(*data))
964                 *data = 2;
965
966         return *data;
967 }
968
969 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
970 {
971         struct net_device *netdev = (struct net_device *)data;
972         struct e1000_adapter *adapter = netdev_priv(netdev);
973         struct e1000_hw *hw = &adapter->hw;
974
975         adapter->test_icr |= er32(ICR);
976
977         return IRQ_HANDLED;
978 }
979
980 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
981 {
982         struct net_device *netdev = adapter->netdev;
983         struct e1000_hw *hw = &adapter->hw;
984         u32 mask;
985         u32 shared_int = 1;
986         u32 irq = adapter->pdev->irq;
987         int i;
988         int ret_val = 0;
989         int int_mode = E1000E_INT_MODE_LEGACY;
990
991         *data = 0;
992
993         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
994         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
995                 int_mode = adapter->int_mode;
996                 e1000e_reset_interrupt_capability(adapter);
997                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
998                 e1000e_set_interrupt_capability(adapter);
999         }
1000         /* Hook up test interrupt handler just for this test */
1001         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1002                          netdev)) {
1003                 shared_int = 0;
1004         } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1005                                netdev)) {
1006                 *data = 1;
1007                 ret_val = -1;
1008                 goto out;
1009         }
1010         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1011
1012         /* Disable all the interrupts */
1013         ew32(IMC, 0xFFFFFFFF);
1014         e1e_flush();
1015         usleep_range(10000, 20000);
1016
1017         /* Test each interrupt */
1018         for (i = 0; i < 10; i++) {
1019                 /* Interrupt to test */
1020                 mask = 1 << i;
1021
1022                 if (adapter->flags & FLAG_IS_ICH) {
1023                         switch (mask) {
1024                         case E1000_ICR_RXSEQ:
1025                                 continue;
1026                         case 0x00000100:
1027                                 if (adapter->hw.mac.type == e1000_ich8lan ||
1028                                     adapter->hw.mac.type == e1000_ich9lan)
1029                                         continue;
1030                                 break;
1031                         default:
1032                                 break;
1033                         }
1034                 }
1035
1036                 if (!shared_int) {
1037                         /* Disable the interrupt to be reported in
1038                          * the cause register and then force the same
1039                          * interrupt and see if one gets posted.  If
1040                          * an interrupt was posted to the bus, the
1041                          * test failed.
1042                          */
1043                         adapter->test_icr = 0;
1044                         ew32(IMC, mask);
1045                         ew32(ICS, mask);
1046                         e1e_flush();
1047                         usleep_range(10000, 20000);
1048
1049                         if (adapter->test_icr & mask) {
1050                                 *data = 3;
1051                                 break;
1052                         }
1053                 }
1054
1055                 /* Enable the interrupt to be reported in
1056                  * the cause register and then force the same
1057                  * interrupt and see if one gets posted.  If
1058                  * an interrupt was not posted to the bus, the
1059                  * test failed.
1060                  */
1061                 adapter->test_icr = 0;
1062                 ew32(IMS, mask);
1063                 ew32(ICS, mask);
1064                 e1e_flush();
1065                 usleep_range(10000, 20000);
1066
1067                 if (!(adapter->test_icr & mask)) {
1068                         *data = 4;
1069                         break;
1070                 }
1071
1072                 if (!shared_int) {
1073                         /* Disable the other interrupts to be reported in
1074                          * the cause register and then force the other
1075                          * interrupts and see if any get posted.  If
1076                          * an interrupt was posted to the bus, the
1077                          * test failed.
1078                          */
1079                         adapter->test_icr = 0;
1080                         ew32(IMC, ~mask & 0x00007FFF);
1081                         ew32(ICS, ~mask & 0x00007FFF);
1082                         e1e_flush();
1083                         usleep_range(10000, 20000);
1084
1085                         if (adapter->test_icr) {
1086                                 *data = 5;
1087                                 break;
1088                         }
1089                 }
1090         }
1091
1092         /* Disable all the interrupts */
1093         ew32(IMC, 0xFFFFFFFF);
1094         e1e_flush();
1095         usleep_range(10000, 20000);
1096
1097         /* Unhook test interrupt handler */
1098         free_irq(irq, netdev);
1099
1100 out:
1101         if (int_mode == E1000E_INT_MODE_MSIX) {
1102                 e1000e_reset_interrupt_capability(adapter);
1103                 adapter->int_mode = int_mode;
1104                 e1000e_set_interrupt_capability(adapter);
1105         }
1106
1107         return ret_val;
1108 }
1109
1110 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1111 {
1112         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1113         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1114         struct pci_dev *pdev = adapter->pdev;
1115         struct e1000_buffer *buffer_info;
1116         int i;
1117
1118         if (tx_ring->desc && tx_ring->buffer_info) {
1119                 for (i = 0; i < tx_ring->count; i++) {
1120                         buffer_info = &tx_ring->buffer_info[i];
1121
1122                         if (buffer_info->dma)
1123                                 dma_unmap_single(&pdev->dev,
1124                                                  buffer_info->dma,
1125                                                  buffer_info->length,
1126                                                  DMA_TO_DEVICE);
1127                         if (buffer_info->skb)
1128                                 dev_kfree_skb(buffer_info->skb);
1129                 }
1130         }
1131
1132         if (rx_ring->desc && rx_ring->buffer_info) {
1133                 for (i = 0; i < rx_ring->count; i++) {
1134                         buffer_info = &rx_ring->buffer_info[i];
1135
1136                         if (buffer_info->dma)
1137                                 dma_unmap_single(&pdev->dev,
1138                                                  buffer_info->dma,
1139                                                  2048, DMA_FROM_DEVICE);
1140                         if (buffer_info->skb)
1141                                 dev_kfree_skb(buffer_info->skb);
1142                 }
1143         }
1144
1145         if (tx_ring->desc) {
1146                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1147                                   tx_ring->dma);
1148                 tx_ring->desc = NULL;
1149         }
1150         if (rx_ring->desc) {
1151                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1152                                   rx_ring->dma);
1153                 rx_ring->desc = NULL;
1154         }
1155
1156         kfree(tx_ring->buffer_info);
1157         tx_ring->buffer_info = NULL;
1158         kfree(rx_ring->buffer_info);
1159         rx_ring->buffer_info = NULL;
1160 }
1161
1162 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1163 {
1164         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1165         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1166         struct pci_dev *pdev = adapter->pdev;
1167         struct e1000_hw *hw = &adapter->hw;
1168         u32 rctl;
1169         int i;
1170         int ret_val;
1171
1172         /* Setup Tx descriptor ring and Tx buffers */
1173
1174         if (!tx_ring->count)
1175                 tx_ring->count = E1000_DEFAULT_TXD;
1176
1177         tx_ring->buffer_info = kcalloc(tx_ring->count,
1178                                        sizeof(struct e1000_buffer), GFP_KERNEL);
1179         if (!tx_ring->buffer_info) {
1180                 ret_val = 1;
1181                 goto err_nomem;
1182         }
1183
1184         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1185         tx_ring->size = ALIGN(tx_ring->size, 4096);
1186         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1187                                            &tx_ring->dma, GFP_KERNEL);
1188         if (!tx_ring->desc) {
1189                 ret_val = 2;
1190                 goto err_nomem;
1191         }
1192         tx_ring->next_to_use = 0;
1193         tx_ring->next_to_clean = 0;
1194
1195         ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1196         ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1197         ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1198         ew32(TDH(0), 0);
1199         ew32(TDT(0), 0);
1200         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1201              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1202              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1203
1204         for (i = 0; i < tx_ring->count; i++) {
1205                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1206                 struct sk_buff *skb;
1207                 unsigned int skb_size = 1024;
1208
1209                 skb = alloc_skb(skb_size, GFP_KERNEL);
1210                 if (!skb) {
1211                         ret_val = 3;
1212                         goto err_nomem;
1213                 }
1214                 skb_put(skb, skb_size);
1215                 tx_ring->buffer_info[i].skb = skb;
1216                 tx_ring->buffer_info[i].length = skb->len;
1217                 tx_ring->buffer_info[i].dma =
1218                     dma_map_single(&pdev->dev, skb->data, skb->len,
1219                                    DMA_TO_DEVICE);
1220                 if (dma_mapping_error(&pdev->dev,
1221                                       tx_ring->buffer_info[i].dma)) {
1222                         ret_val = 4;
1223                         goto err_nomem;
1224                 }
1225                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1226                 tx_desc->lower.data = cpu_to_le32(skb->len);
1227                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1228                                                    E1000_TXD_CMD_IFCS |
1229                                                    E1000_TXD_CMD_RS);
1230                 tx_desc->upper.data = 0;
1231         }
1232
1233         /* Setup Rx descriptor ring and Rx buffers */
1234
1235         if (!rx_ring->count)
1236                 rx_ring->count = E1000_DEFAULT_RXD;
1237
1238         rx_ring->buffer_info = kcalloc(rx_ring->count,
1239                                        sizeof(struct e1000_buffer), GFP_KERNEL);
1240         if (!rx_ring->buffer_info) {
1241                 ret_val = 5;
1242                 goto err_nomem;
1243         }
1244
1245         rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1246         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1247                                            &rx_ring->dma, GFP_KERNEL);
1248         if (!rx_ring->desc) {
1249                 ret_val = 6;
1250                 goto err_nomem;
1251         }
1252         rx_ring->next_to_use = 0;
1253         rx_ring->next_to_clean = 0;
1254
1255         rctl = er32(RCTL);
1256         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1257                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1258         ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1259         ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1260         ew32(RDLEN(0), rx_ring->size);
1261         ew32(RDH(0), 0);
1262         ew32(RDT(0), 0);
1263         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1264             E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1265             E1000_RCTL_SBP | E1000_RCTL_SECRC |
1266             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1267             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1268         ew32(RCTL, rctl);
1269
1270         for (i = 0; i < rx_ring->count; i++) {
1271                 union e1000_rx_desc_extended *rx_desc;
1272                 struct sk_buff *skb;
1273
1274                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1275                 if (!skb) {
1276                         ret_val = 7;
1277                         goto err_nomem;
1278                 }
1279                 skb_reserve(skb, NET_IP_ALIGN);
1280                 rx_ring->buffer_info[i].skb = skb;
1281                 rx_ring->buffer_info[i].dma =
1282                     dma_map_single(&pdev->dev, skb->data, 2048,
1283                                    DMA_FROM_DEVICE);
1284                 if (dma_mapping_error(&pdev->dev,
1285                                       rx_ring->buffer_info[i].dma)) {
1286                         ret_val = 8;
1287                         goto err_nomem;
1288                 }
1289                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1290                 rx_desc->read.buffer_addr =
1291                     cpu_to_le64(rx_ring->buffer_info[i].dma);
1292                 memset(skb->data, 0x00, skb->len);
1293         }
1294
1295         return 0;
1296
1297 err_nomem:
1298         e1000_free_desc_rings(adapter);
1299         return ret_val;
1300 }
1301
1302 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1303 {
1304         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1305         e1e_wphy(&adapter->hw, 29, 0x001F);
1306         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1307         e1e_wphy(&adapter->hw, 29, 0x001A);
1308         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1309 }
1310
1311 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1312 {
1313         struct e1000_hw *hw = &adapter->hw;
1314         u32 ctrl_reg = 0;
1315         u16 phy_reg = 0;
1316         s32 ret_val = 0;
1317
1318         hw->mac.autoneg = 0;
1319
1320         if (hw->phy.type == e1000_phy_ife) {
1321                 /* force 100, set loopback */
1322                 e1e_wphy(hw, MII_BMCR, 0x6100);
1323
1324                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1325                 ctrl_reg = er32(CTRL);
1326                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1327                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1328                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1329                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1330                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1331
1332                 ew32(CTRL, ctrl_reg);
1333                 e1e_flush();
1334                 usleep_range(500, 1000);
1335
1336                 return 0;
1337         }
1338
1339         /* Specific PHY configuration for loopback */
1340         switch (hw->phy.type) {
1341         case e1000_phy_m88:
1342                 /* Auto-MDI/MDIX Off */
1343                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1344                 /* reset to update Auto-MDI/MDIX */
1345                 e1e_wphy(hw, MII_BMCR, 0x9140);
1346                 /* autoneg off */
1347                 e1e_wphy(hw, MII_BMCR, 0x8140);
1348                 break;
1349         case e1000_phy_gg82563:
1350                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1351                 break;
1352         case e1000_phy_bm:
1353                 /* Set Default MAC Interface speed to 1GB */
1354                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1355                 phy_reg &= ~0x0007;
1356                 phy_reg |= 0x006;
1357                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1358                 /* Assert SW reset for above settings to take effect */
1359                 hw->phy.ops.commit(hw);
1360                 usleep_range(1000, 2000);
1361                 /* Force Full Duplex */
1362                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1363                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1364                 /* Set Link Up (in force link) */
1365                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1366                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1367                 /* Force Link */
1368                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1369                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1370                 /* Set Early Link Enable */
1371                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1372                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1373                 break;
1374         case e1000_phy_82577:
1375         case e1000_phy_82578:
1376                 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1377                 ret_val = hw->phy.ops.acquire(hw);
1378                 if (ret_val) {
1379                         e_err("Cannot setup 1Gbps loopback.\n");
1380                         return ret_val;
1381                 }
1382                 e1000_configure_k1_ich8lan(hw, false);
1383                 hw->phy.ops.release(hw);
1384                 break;
1385         case e1000_phy_82579:
1386                 /* Disable PHY energy detect power down */
1387                 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1388                 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1389                 /* Disable full chip energy detect */
1390                 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1391                 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1392                 /* Enable loopback on the PHY */
1393                 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1394                 break;
1395         default:
1396                 break;
1397         }
1398
1399         /* force 1000, set loopback */
1400         e1e_wphy(hw, MII_BMCR, 0x4140);
1401         msleep(250);
1402
1403         /* Now set up the MAC to the same speed/duplex as the PHY. */
1404         ctrl_reg = er32(CTRL);
1405         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1406         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1407                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1408                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1409                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1410
1411         if (adapter->flags & FLAG_IS_ICH)
1412                 ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1413
1414         if (hw->phy.media_type == e1000_media_type_copper &&
1415             hw->phy.type == e1000_phy_m88) {
1416                 ctrl_reg |= E1000_CTRL_ILOS;    /* Invert Loss of Signal */
1417         } else {
1418                 /* Set the ILOS bit on the fiber Nic if half duplex link is
1419                  * detected.
1420                  */
1421                 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1422                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1423         }
1424
1425         ew32(CTRL, ctrl_reg);
1426
1427         /* Disable the receiver on the PHY so when a cable is plugged in, the
1428          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1429          */
1430         if (hw->phy.type == e1000_phy_m88)
1431                 e1000_phy_disable_receiver(adapter);
1432
1433         usleep_range(500, 1000);
1434
1435         return 0;
1436 }
1437
1438 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1439 {
1440         struct e1000_hw *hw = &adapter->hw;
1441         u32 ctrl = er32(CTRL);
1442         int link;
1443
1444         /* special requirements for 82571/82572 fiber adapters */
1445
1446         /* jump through hoops to make sure link is up because serdes
1447          * link is hardwired up
1448          */
1449         ctrl |= E1000_CTRL_SLU;
1450         ew32(CTRL, ctrl);
1451
1452         /* disable autoneg */
1453         ctrl = er32(TXCW);
1454         ctrl &= ~(1 << 31);
1455         ew32(TXCW, ctrl);
1456
1457         link = (er32(STATUS) & E1000_STATUS_LU);
1458
1459         if (!link) {
1460                 /* set invert loss of signal */
1461                 ctrl = er32(CTRL);
1462                 ctrl |= E1000_CTRL_ILOS;
1463                 ew32(CTRL, ctrl);
1464         }
1465
1466         /* special write to serdes control register to enable SerDes analog
1467          * loopback
1468          */
1469         ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1470         e1e_flush();
1471         usleep_range(10000, 20000);
1472
1473         return 0;
1474 }
1475
1476 /* only call this for fiber/serdes connections to es2lan */
1477 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1478 {
1479         struct e1000_hw *hw = &adapter->hw;
1480         u32 ctrlext = er32(CTRL_EXT);
1481         u32 ctrl = er32(CTRL);
1482
1483         /* save CTRL_EXT to restore later, reuse an empty variable (unused
1484          * on mac_type 80003es2lan)
1485          */
1486         adapter->tx_fifo_head = ctrlext;
1487
1488         /* clear the serdes mode bits, putting the device into mac loopback */
1489         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1490         ew32(CTRL_EXT, ctrlext);
1491
1492         /* force speed to 1000/FD, link up */
1493         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1494         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1495                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1496         ew32(CTRL, ctrl);
1497
1498         /* set mac loopback */
1499         ctrl = er32(RCTL);
1500         ctrl |= E1000_RCTL_LBM_MAC;
1501         ew32(RCTL, ctrl);
1502
1503         /* set testing mode parameters (no need to reset later) */
1504 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1505 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1506         ew32(KMRNCTRLSTA,
1507              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1508
1509         return 0;
1510 }
1511
1512 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1513 {
1514         struct e1000_hw *hw = &adapter->hw;
1515         u32 rctl;
1516
1517         if (hw->phy.media_type == e1000_media_type_fiber ||
1518             hw->phy.media_type == e1000_media_type_internal_serdes) {
1519                 switch (hw->mac.type) {
1520                 case e1000_80003es2lan:
1521                         return e1000_set_es2lan_mac_loopback(adapter);
1522                         break;
1523                 case e1000_82571:
1524                 case e1000_82572:
1525                         return e1000_set_82571_fiber_loopback(adapter);
1526                         break;
1527                 default:
1528                         rctl = er32(RCTL);
1529                         rctl |= E1000_RCTL_LBM_TCVR;
1530                         ew32(RCTL, rctl);
1531                         return 0;
1532                 }
1533         } else if (hw->phy.media_type == e1000_media_type_copper) {
1534                 return e1000_integrated_phy_loopback(adapter);
1535         }
1536
1537         return 7;
1538 }
1539
1540 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1541 {
1542         struct e1000_hw *hw = &adapter->hw;
1543         u32 rctl;
1544         u16 phy_reg;
1545
1546         rctl = er32(RCTL);
1547         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1548         ew32(RCTL, rctl);
1549
1550         switch (hw->mac.type) {
1551         case e1000_80003es2lan:
1552                 if (hw->phy.media_type == e1000_media_type_fiber ||
1553                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1554                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1555                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1556                         adapter->tx_fifo_head = 0;
1557                 }
1558                 /* fall through */
1559         case e1000_82571:
1560         case e1000_82572:
1561                 if (hw->phy.media_type == e1000_media_type_fiber ||
1562                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1563                         ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1564                         e1e_flush();
1565                         usleep_range(10000, 20000);
1566                         break;
1567                 }
1568                 /* Fall Through */
1569         default:
1570                 hw->mac.autoneg = 1;
1571                 if (hw->phy.type == e1000_phy_gg82563)
1572                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1573                 e1e_rphy(hw, MII_BMCR, &phy_reg);
1574                 if (phy_reg & BMCR_LOOPBACK) {
1575                         phy_reg &= ~BMCR_LOOPBACK;
1576                         e1e_wphy(hw, MII_BMCR, phy_reg);
1577                         if (hw->phy.ops.commit)
1578                                 hw->phy.ops.commit(hw);
1579                 }
1580                 break;
1581         }
1582 }
1583
1584 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1585                                       unsigned int frame_size)
1586 {
1587         memset(skb->data, 0xFF, frame_size);
1588         frame_size &= ~1;
1589         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1590         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1591         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1592 }
1593
1594 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1595                                     unsigned int frame_size)
1596 {
1597         frame_size &= ~1;
1598         if (*(skb->data + 3) == 0xFF)
1599                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1600                     (*(skb->data + frame_size / 2 + 12) == 0xAF))
1601                         return 0;
1602         return 13;
1603 }
1604
1605 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1606 {
1607         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1608         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1609         struct pci_dev *pdev = adapter->pdev;
1610         struct e1000_hw *hw = &adapter->hw;
1611         struct e1000_buffer *buffer_info;
1612         int i, j, k, l;
1613         int lc;
1614         int good_cnt;
1615         int ret_val = 0;
1616         unsigned long time;
1617
1618         ew32(RDT(0), rx_ring->count - 1);
1619
1620         /* Calculate the loop count based on the largest descriptor ring
1621          * The idea is to wrap the largest ring a number of times using 64
1622          * send/receive pairs during each loop
1623          */
1624
1625         if (rx_ring->count <= tx_ring->count)
1626                 lc = ((tx_ring->count / 64) * 2) + 1;
1627         else
1628                 lc = ((rx_ring->count / 64) * 2) + 1;
1629
1630         k = 0;
1631         l = 0;
1632         /* loop count loop */
1633         for (j = 0; j <= lc; j++) {
1634                 /* send the packets */
1635                 for (i = 0; i < 64; i++) {
1636                         buffer_info = &tx_ring->buffer_info[k];
1637
1638                         e1000_create_lbtest_frame(buffer_info->skb, 1024);
1639                         dma_sync_single_for_device(&pdev->dev,
1640                                                    buffer_info->dma,
1641                                                    buffer_info->length,
1642                                                    DMA_TO_DEVICE);
1643                         k++;
1644                         if (k == tx_ring->count)
1645                                 k = 0;
1646                 }
1647                 ew32(TDT(0), k);
1648                 e1e_flush();
1649                 msleep(200);
1650                 time = jiffies; /* set the start time for the receive */
1651                 good_cnt = 0;
1652                 /* receive the sent packets */
1653                 do {
1654                         buffer_info = &rx_ring->buffer_info[l];
1655
1656                         dma_sync_single_for_cpu(&pdev->dev,
1657                                                 buffer_info->dma, 2048,
1658                                                 DMA_FROM_DEVICE);
1659
1660                         ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1661                                                            1024);
1662                         if (!ret_val)
1663                                 good_cnt++;
1664                         l++;
1665                         if (l == rx_ring->count)
1666                                 l = 0;
1667                         /* time + 20 msecs (200 msecs on 2.4) is more than
1668                          * enough time to complete the receives, if it's
1669                          * exceeded, break and error off
1670                          */
1671                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1672                 if (good_cnt != 64) {
1673                         ret_val = 13;   /* ret_val is the same as mis-compare */
1674                         break;
1675                 }
1676                 if (time_after(jiffies, time + 20)) {
1677                         ret_val = 14;   /* error code for time out error */
1678                         break;
1679                 }
1680         }
1681         return ret_val;
1682 }
1683
1684 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1685 {
1686         struct e1000_hw *hw = &adapter->hw;
1687
1688         /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1689         if (hw->phy.ops.check_reset_block &&
1690             hw->phy.ops.check_reset_block(hw)) {
1691                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1692                 *data = 0;
1693                 goto out;
1694         }
1695
1696         *data = e1000_setup_desc_rings(adapter);
1697         if (*data)
1698                 goto out;
1699
1700         *data = e1000_setup_loopback_test(adapter);
1701         if (*data)
1702                 goto err_loopback;
1703
1704         *data = e1000_run_loopback_test(adapter);
1705         e1000_loopback_cleanup(adapter);
1706
1707 err_loopback:
1708         e1000_free_desc_rings(adapter);
1709 out:
1710         return *data;
1711 }
1712
1713 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1714 {
1715         struct e1000_hw *hw = &adapter->hw;
1716
1717         *data = 0;
1718         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1719                 int i = 0;
1720                 hw->mac.serdes_has_link = false;
1721
1722                 /* On some blade server designs, link establishment
1723                  * could take as long as 2-3 minutes
1724                  */
1725                 do {
1726                         hw->mac.ops.check_for_link(hw);
1727                         if (hw->mac.serdes_has_link)
1728                                 return *data;
1729                         msleep(20);
1730                 } while (i++ < 3750);
1731
1732                 *data = 1;
1733         } else {
1734                 hw->mac.ops.check_for_link(hw);
1735                 if (hw->mac.autoneg)
1736                         /* On some Phy/switch combinations, link establishment
1737                          * can take a few seconds more than expected.
1738                          */
1739                         msleep_interruptible(5000);
1740
1741                 if (!(er32(STATUS) & E1000_STATUS_LU))
1742                         *data = 1;
1743         }
1744         return *data;
1745 }
1746
1747 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1748                                  int sset)
1749 {
1750         switch (sset) {
1751         case ETH_SS_TEST:
1752                 return E1000_TEST_LEN;
1753         case ETH_SS_STATS:
1754                 return E1000_STATS_LEN;
1755         default:
1756                 return -EOPNOTSUPP;
1757         }
1758 }
1759
1760 static void e1000_diag_test(struct net_device *netdev,
1761                             struct ethtool_test *eth_test, u64 *data)
1762 {
1763         struct e1000_adapter *adapter = netdev_priv(netdev);
1764         u16 autoneg_advertised;
1765         u8 forced_speed_duplex;
1766         u8 autoneg;
1767         bool if_running = netif_running(netdev);
1768
1769         pm_runtime_get_sync(netdev->dev.parent);
1770
1771         set_bit(__E1000_TESTING, &adapter->state);
1772
1773         if (!if_running) {
1774                 /* Get control of and reset hardware */
1775                 if (adapter->flags & FLAG_HAS_AMT)
1776                         e1000e_get_hw_control(adapter);
1777
1778                 e1000e_power_up_phy(adapter);
1779
1780                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1781                 e1000e_reset(adapter);
1782                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1783         }
1784
1785         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1786                 /* Offline tests */
1787
1788                 /* save speed, duplex, autoneg settings */
1789                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1790                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1791                 autoneg = adapter->hw.mac.autoneg;
1792
1793                 e_info("offline testing starting\n");
1794
1795                 if (if_running)
1796                         /* indicate we're in test mode */
1797                         dev_close(netdev);
1798
1799                 if (e1000_reg_test(adapter, &data[0]))
1800                         eth_test->flags |= ETH_TEST_FL_FAILED;
1801
1802                 e1000e_reset(adapter);
1803                 if (e1000_eeprom_test(adapter, &data[1]))
1804                         eth_test->flags |= ETH_TEST_FL_FAILED;
1805
1806                 e1000e_reset(adapter);
1807                 if (e1000_intr_test(adapter, &data[2]))
1808                         eth_test->flags |= ETH_TEST_FL_FAILED;
1809
1810                 e1000e_reset(adapter);
1811                 if (e1000_loopback_test(adapter, &data[3]))
1812                         eth_test->flags |= ETH_TEST_FL_FAILED;
1813
1814                 /* force this routine to wait until autoneg complete/timeout */
1815                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1816                 e1000e_reset(adapter);
1817                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1818
1819                 if (e1000_link_test(adapter, &data[4]))
1820                         eth_test->flags |= ETH_TEST_FL_FAILED;
1821
1822                 /* restore speed, duplex, autoneg settings */
1823                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1824                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1825                 adapter->hw.mac.autoneg = autoneg;
1826                 e1000e_reset(adapter);
1827
1828                 clear_bit(__E1000_TESTING, &adapter->state);
1829                 if (if_running)
1830                         dev_open(netdev);
1831         } else {
1832                 /* Online tests */
1833
1834                 e_info("online testing starting\n");
1835
1836                 /* register, eeprom, intr and loopback tests not run online */
1837                 data[0] = 0;
1838                 data[1] = 0;
1839                 data[2] = 0;
1840                 data[3] = 0;
1841
1842                 if (e1000_link_test(adapter, &data[4]))
1843                         eth_test->flags |= ETH_TEST_FL_FAILED;
1844
1845                 clear_bit(__E1000_TESTING, &adapter->state);
1846         }
1847
1848         if (!if_running) {
1849                 e1000e_reset(adapter);
1850
1851                 if (adapter->flags & FLAG_HAS_AMT)
1852                         e1000e_release_hw_control(adapter);
1853         }
1854
1855         msleep_interruptible(4 * 1000);
1856
1857         pm_runtime_put_sync(netdev->dev.parent);
1858 }
1859
1860 static void e1000_get_wol(struct net_device *netdev,
1861                           struct ethtool_wolinfo *wol)
1862 {
1863         struct e1000_adapter *adapter = netdev_priv(netdev);
1864
1865         wol->supported = 0;
1866         wol->wolopts = 0;
1867
1868         if (!(adapter->flags & FLAG_HAS_WOL) ||
1869             !device_can_wakeup(&adapter->pdev->dev))
1870                 return;
1871
1872         wol->supported = WAKE_UCAST | WAKE_MCAST |
1873             WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1874
1875         /* apply any specific unsupported masks here */
1876         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1877                 wol->supported &= ~WAKE_UCAST;
1878
1879                 if (adapter->wol & E1000_WUFC_EX)
1880                         e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1881         }
1882
1883         if (adapter->wol & E1000_WUFC_EX)
1884                 wol->wolopts |= WAKE_UCAST;
1885         if (adapter->wol & E1000_WUFC_MC)
1886                 wol->wolopts |= WAKE_MCAST;
1887         if (adapter->wol & E1000_WUFC_BC)
1888                 wol->wolopts |= WAKE_BCAST;
1889         if (adapter->wol & E1000_WUFC_MAG)
1890                 wol->wolopts |= WAKE_MAGIC;
1891         if (adapter->wol & E1000_WUFC_LNKC)
1892                 wol->wolopts |= WAKE_PHY;
1893 }
1894
1895 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1896 {
1897         struct e1000_adapter *adapter = netdev_priv(netdev);
1898
1899         if (!(adapter->flags & FLAG_HAS_WOL) ||
1900             !device_can_wakeup(&adapter->pdev->dev) ||
1901             (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1902                               WAKE_MAGIC | WAKE_PHY)))
1903                 return -EOPNOTSUPP;
1904
1905         /* these settings will always override what we currently have */
1906         adapter->wol = 0;
1907
1908         if (wol->wolopts & WAKE_UCAST)
1909                 adapter->wol |= E1000_WUFC_EX;
1910         if (wol->wolopts & WAKE_MCAST)
1911                 adapter->wol |= E1000_WUFC_MC;
1912         if (wol->wolopts & WAKE_BCAST)
1913                 adapter->wol |= E1000_WUFC_BC;
1914         if (wol->wolopts & WAKE_MAGIC)
1915                 adapter->wol |= E1000_WUFC_MAG;
1916         if (wol->wolopts & WAKE_PHY)
1917                 adapter->wol |= E1000_WUFC_LNKC;
1918
1919         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1920
1921         return 0;
1922 }
1923
1924 static int e1000_set_phys_id(struct net_device *netdev,
1925                              enum ethtool_phys_id_state state)
1926 {
1927         struct e1000_adapter *adapter = netdev_priv(netdev);
1928         struct e1000_hw *hw = &adapter->hw;
1929
1930         switch (state) {
1931         case ETHTOOL_ID_ACTIVE:
1932                 pm_runtime_get_sync(netdev->dev.parent);
1933
1934                 if (!hw->mac.ops.blink_led)
1935                         return 2;       /* cycle on/off twice per second */
1936
1937                 hw->mac.ops.blink_led(hw);
1938                 break;
1939
1940         case ETHTOOL_ID_INACTIVE:
1941                 if (hw->phy.type == e1000_phy_ife)
1942                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1943                 hw->mac.ops.led_off(hw);
1944                 hw->mac.ops.cleanup_led(hw);
1945                 pm_runtime_put_sync(netdev->dev.parent);
1946                 break;
1947
1948         case ETHTOOL_ID_ON:
1949                 hw->mac.ops.led_on(hw);
1950                 break;
1951
1952         case ETHTOOL_ID_OFF:
1953                 hw->mac.ops.led_off(hw);
1954                 break;
1955         }
1956
1957         return 0;
1958 }
1959
1960 static int e1000_get_coalesce(struct net_device *netdev,
1961                               struct ethtool_coalesce *ec)
1962 {
1963         struct e1000_adapter *adapter = netdev_priv(netdev);
1964
1965         if (adapter->itr_setting <= 4)
1966                 ec->rx_coalesce_usecs = adapter->itr_setting;
1967         else
1968                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1969
1970         return 0;
1971 }
1972
1973 static int e1000_set_coalesce(struct net_device *netdev,
1974                               struct ethtool_coalesce *ec)
1975 {
1976         struct e1000_adapter *adapter = netdev_priv(netdev);
1977
1978         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1979             ((ec->rx_coalesce_usecs > 4) &&
1980              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1981             (ec->rx_coalesce_usecs == 2))
1982                 return -EINVAL;
1983
1984         if (ec->rx_coalesce_usecs == 4) {
1985                 adapter->itr_setting = 4;
1986                 adapter->itr = adapter->itr_setting;
1987         } else if (ec->rx_coalesce_usecs <= 3) {
1988                 adapter->itr = 20000;
1989                 adapter->itr_setting = ec->rx_coalesce_usecs;
1990         } else {
1991                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1992                 adapter->itr_setting = adapter->itr & ~3;
1993         }
1994
1995         pm_runtime_get_sync(netdev->dev.parent);
1996
1997         if (adapter->itr_setting != 0)
1998                 e1000e_write_itr(adapter, adapter->itr);
1999         else
2000                 e1000e_write_itr(adapter, 0);
2001
2002         pm_runtime_put_sync(netdev->dev.parent);
2003
2004         return 0;
2005 }
2006
2007 static int e1000_nway_reset(struct net_device *netdev)
2008 {
2009         struct e1000_adapter *adapter = netdev_priv(netdev);
2010
2011         if (!netif_running(netdev))
2012                 return -EAGAIN;
2013
2014         if (!adapter->hw.mac.autoneg)
2015                 return -EINVAL;
2016
2017         pm_runtime_get_sync(netdev->dev.parent);
2018         e1000e_reinit_locked(adapter);
2019         pm_runtime_put_sync(netdev->dev.parent);
2020
2021         return 0;
2022 }
2023
2024 static void e1000_get_ethtool_stats(struct net_device *netdev,
2025                                     struct ethtool_stats __always_unused *stats,
2026                                     u64 *data)
2027 {
2028         struct e1000_adapter *adapter = netdev_priv(netdev);
2029         struct rtnl_link_stats64 net_stats;
2030         int i;
2031         char *p = NULL;
2032
2033         pm_runtime_get_sync(netdev->dev.parent);
2034
2035         e1000e_get_stats64(netdev, &net_stats);
2036
2037         pm_runtime_put_sync(netdev->dev.parent);
2038
2039         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2040                 switch (e1000_gstrings_stats[i].type) {
2041                 case NETDEV_STATS:
2042                         p = (char *)&net_stats +
2043                             e1000_gstrings_stats[i].stat_offset;
2044                         break;
2045                 case E1000_STATS:
2046                         p = (char *)adapter +
2047                             e1000_gstrings_stats[i].stat_offset;
2048                         break;
2049                 default:
2050                         data[i] = 0;
2051                         continue;
2052                 }
2053
2054                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2055                            sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2056         }
2057 }
2058
2059 static void e1000_get_strings(struct net_device __always_unused *netdev,
2060                               u32 stringset, u8 *data)
2061 {
2062         u8 *p = data;
2063         int i;
2064
2065         switch (stringset) {
2066         case ETH_SS_TEST:
2067                 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2068                 break;
2069         case ETH_SS_STATS:
2070                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2071                         memcpy(p, e1000_gstrings_stats[i].stat_string,
2072                                ETH_GSTRING_LEN);
2073                         p += ETH_GSTRING_LEN;
2074                 }
2075                 break;
2076         }
2077 }
2078
2079 static int e1000_get_rxnfc(struct net_device *netdev,
2080                            struct ethtool_rxnfc *info,
2081                            u32 __always_unused *rule_locs)
2082 {
2083         info->data = 0;
2084
2085         switch (info->cmd) {
2086         case ETHTOOL_GRXFH: {
2087                 struct e1000_adapter *adapter = netdev_priv(netdev);
2088                 struct e1000_hw *hw = &adapter->hw;
2089                 u32 mrqc;
2090
2091                 pm_runtime_get_sync(netdev->dev.parent);
2092                 mrqc = er32(MRQC);
2093                 pm_runtime_put_sync(netdev->dev.parent);
2094
2095                 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2096                         return 0;
2097
2098                 switch (info->flow_type) {
2099                 case TCP_V4_FLOW:
2100                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2101                                 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2102                         /* fall through */
2103                 case UDP_V4_FLOW:
2104                 case SCTP_V4_FLOW:
2105                 case AH_ESP_V4_FLOW:
2106                 case IPV4_FLOW:
2107                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2108                                 info->data |= RXH_IP_SRC | RXH_IP_DST;
2109                         break;
2110                 case TCP_V6_FLOW:
2111                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2112                                 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2113                         /* fall through */
2114                 case UDP_V6_FLOW:
2115                 case SCTP_V6_FLOW:
2116                 case AH_ESP_V6_FLOW:
2117                 case IPV6_FLOW:
2118                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2119                                 info->data |= RXH_IP_SRC | RXH_IP_DST;
2120                         break;
2121                 default:
2122                         break;
2123                 }
2124                 return 0;
2125         }
2126         default:
2127                 return -EOPNOTSUPP;
2128         }
2129 }
2130
2131 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2132 {
2133         struct e1000_adapter *adapter = netdev_priv(netdev);
2134         struct e1000_hw *hw = &adapter->hw;
2135         u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2136         u32 ret_val;
2137
2138         if (!(adapter->flags2 & FLAG2_HAS_EEE))
2139                 return -EOPNOTSUPP;
2140
2141         switch (hw->phy.type) {
2142         case e1000_phy_82579:
2143                 cap_addr = I82579_EEE_CAPABILITY;
2144                 lpa_addr = I82579_EEE_LP_ABILITY;
2145                 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2146                 break;
2147         case e1000_phy_i217:
2148                 cap_addr = I217_EEE_CAPABILITY;
2149                 lpa_addr = I217_EEE_LP_ABILITY;
2150                 pcs_stat_addr = I217_EEE_PCS_STATUS;
2151                 break;
2152         default:
2153                 return -EOPNOTSUPP;
2154         }
2155
2156         pm_runtime_get_sync(netdev->dev.parent);
2157
2158         ret_val = hw->phy.ops.acquire(hw);
2159         if (ret_val) {
2160                 pm_runtime_put_sync(netdev->dev.parent);
2161                 return -EBUSY;
2162         }
2163
2164         /* EEE Capability */
2165         ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2166         if (ret_val)
2167                 goto release;
2168         edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2169
2170         /* EEE Advertised */
2171         edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2172
2173         /* EEE Link Partner Advertised */
2174         ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2175         if (ret_val)
2176                 goto release;
2177         edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2178
2179         /* EEE PCS Status */
2180         ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2181         if (ret_val)
2182                 goto release;
2183         if (hw->phy.type == e1000_phy_82579)
2184                 phy_data <<= 8;
2185
2186         /* Result of the EEE auto negotiation - there is no register that
2187          * has the status of the EEE negotiation so do a best-guess based
2188          * on whether Tx or Rx LPI indications have been received.
2189          */
2190         if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2191                 edata->eee_active = true;
2192
2193         edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2194         edata->tx_lpi_enabled = true;
2195         edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2196
2197 release:
2198         hw->phy.ops.release(hw);
2199         if (ret_val)
2200                 ret_val = -ENODATA;
2201
2202         pm_runtime_put_sync(netdev->dev.parent);
2203
2204         return ret_val;
2205 }
2206
2207 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2208 {
2209         struct e1000_adapter *adapter = netdev_priv(netdev);
2210         struct e1000_hw *hw = &adapter->hw;
2211         struct ethtool_eee eee_curr;
2212         s32 ret_val;
2213
2214         ret_val = e1000e_get_eee(netdev, &eee_curr);
2215         if (ret_val)
2216                 return ret_val;
2217
2218         if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2219                 e_err("Setting EEE tx-lpi is not supported\n");
2220                 return -EINVAL;
2221         }
2222
2223         if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2224                 e_err("Setting EEE Tx LPI timer is not supported\n");
2225                 return -EINVAL;
2226         }
2227
2228         if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2229                 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2230                 return -EINVAL;
2231         }
2232
2233         adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2234
2235         hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2236
2237         pm_runtime_get_sync(netdev->dev.parent);
2238
2239         /* reset the link */
2240         if (netif_running(netdev))
2241                 e1000e_reinit_locked(adapter);
2242         else
2243                 e1000e_reset(adapter);
2244
2245         pm_runtime_put_sync(netdev->dev.parent);
2246
2247         return 0;
2248 }
2249
2250 static int e1000e_get_ts_info(struct net_device *netdev,
2251                               struct ethtool_ts_info *info)
2252 {
2253         struct e1000_adapter *adapter = netdev_priv(netdev);
2254
2255         ethtool_op_get_ts_info(netdev, info);
2256
2257         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2258                 return 0;
2259
2260         info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2261                                   SOF_TIMESTAMPING_RX_HARDWARE |
2262                                   SOF_TIMESTAMPING_RAW_HARDWARE);
2263
2264         info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
2265
2266         info->rx_filters = ((1 << HWTSTAMP_FILTER_NONE) |
2267                             (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2268                             (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2269                             (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2270                             (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2271                             (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2272                             (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2273                             (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
2274                             (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
2275                             (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2276                             (1 << HWTSTAMP_FILTER_ALL));
2277
2278         if (adapter->ptp_clock)
2279                 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2280
2281         return 0;
2282 }
2283
2284 static const struct ethtool_ops e1000_ethtool_ops = {
2285         .get_settings           = e1000_get_settings,
2286         .set_settings           = e1000_set_settings,
2287         .get_drvinfo            = e1000_get_drvinfo,
2288         .get_regs_len           = e1000_get_regs_len,
2289         .get_regs               = e1000_get_regs,
2290         .get_wol                = e1000_get_wol,
2291         .set_wol                = e1000_set_wol,
2292         .get_msglevel           = e1000_get_msglevel,
2293         .set_msglevel           = e1000_set_msglevel,
2294         .nway_reset             = e1000_nway_reset,
2295         .get_link               = ethtool_op_get_link,
2296         .get_eeprom_len         = e1000_get_eeprom_len,
2297         .get_eeprom             = e1000_get_eeprom,
2298         .set_eeprom             = e1000_set_eeprom,
2299         .get_ringparam          = e1000_get_ringparam,
2300         .set_ringparam          = e1000_set_ringparam,
2301         .get_pauseparam         = e1000_get_pauseparam,
2302         .set_pauseparam         = e1000_set_pauseparam,
2303         .self_test              = e1000_diag_test,
2304         .get_strings            = e1000_get_strings,
2305         .set_phys_id            = e1000_set_phys_id,
2306         .get_ethtool_stats      = e1000_get_ethtool_stats,
2307         .get_sset_count         = e1000e_get_sset_count,
2308         .get_coalesce           = e1000_get_coalesce,
2309         .set_coalesce           = e1000_set_coalesce,
2310         .get_rxnfc              = e1000_get_rxnfc,
2311         .get_ts_info            = e1000e_get_ts_info,
2312         .get_eee                = e1000e_get_eee,
2313         .set_eee                = e1000e_set_eee,
2314 };
2315
2316 void e1000e_set_ethtool_ops(struct net_device *netdev)
2317 {
2318         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2319 }