]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/e1000e/netdev.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
46
47 #include "e1000.h"
48
49 #define DRV_EXTRAVERSION "-k"
50
51 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug = -1;
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60 static const struct e1000_info *e1000_info_tbl[] = {
61         [board_82571]           = &e1000_82571_info,
62         [board_82572]           = &e1000_82572_info,
63         [board_82573]           = &e1000_82573_info,
64         [board_82574]           = &e1000_82574_info,
65         [board_82583]           = &e1000_82583_info,
66         [board_80003es2lan]     = &e1000_es2_info,
67         [board_ich8lan]         = &e1000_ich8_info,
68         [board_ich9lan]         = &e1000_ich9_info,
69         [board_ich10lan]        = &e1000_ich10_info,
70         [board_pchlan]          = &e1000_pch_info,
71         [board_pch2lan]         = &e1000_pch2_info,
72         [board_pch_lpt]         = &e1000_pch_lpt_info,
73         [board_pch_spt]         = &e1000_pch_spt_info,
74 };
75
76 struct e1000_reg_info {
77         u32 ofs;
78         char *name;
79 };
80
81 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
82         /* General Registers */
83         {E1000_CTRL, "CTRL"},
84         {E1000_STATUS, "STATUS"},
85         {E1000_CTRL_EXT, "CTRL_EXT"},
86
87         /* Interrupt Registers */
88         {E1000_ICR, "ICR"},
89
90         /* Rx Registers */
91         {E1000_RCTL, "RCTL"},
92         {E1000_RDLEN(0), "RDLEN"},
93         {E1000_RDH(0), "RDH"},
94         {E1000_RDT(0), "RDT"},
95         {E1000_RDTR, "RDTR"},
96         {E1000_RXDCTL(0), "RXDCTL"},
97         {E1000_ERT, "ERT"},
98         {E1000_RDBAL(0), "RDBAL"},
99         {E1000_RDBAH(0), "RDBAH"},
100         {E1000_RDFH, "RDFH"},
101         {E1000_RDFT, "RDFT"},
102         {E1000_RDFHS, "RDFHS"},
103         {E1000_RDFTS, "RDFTS"},
104         {E1000_RDFPC, "RDFPC"},
105
106         /* Tx Registers */
107         {E1000_TCTL, "TCTL"},
108         {E1000_TDBAL(0), "TDBAL"},
109         {E1000_TDBAH(0), "TDBAH"},
110         {E1000_TDLEN(0), "TDLEN"},
111         {E1000_TDH(0), "TDH"},
112         {E1000_TDT(0), "TDT"},
113         {E1000_TIDV, "TIDV"},
114         {E1000_TXDCTL(0), "TXDCTL"},
115         {E1000_TADV, "TADV"},
116         {E1000_TARC(0), "TARC"},
117         {E1000_TDFH, "TDFH"},
118         {E1000_TDFT, "TDFT"},
119         {E1000_TDFHS, "TDFHS"},
120         {E1000_TDFTS, "TDFTS"},
121         {E1000_TDFPC, "TDFPC"},
122
123         /* List Terminator */
124         {0, NULL}
125 };
126
127 /**
128  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
129  * @hw: pointer to the HW structure
130  *
131  * When updating the MAC CSR registers, the Manageability Engine (ME) could
132  * be accessing the registers at the same time.  Normally, this is handled in
133  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
134  * accesses later than it should which could result in the register to have
135  * an incorrect value.  Workaround this by checking the FWSM register which
136  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
137  * and try again a number of times.
138  **/
139 s32 __ew32_prepare(struct e1000_hw *hw)
140 {
141         s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
142
143         while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
144                 udelay(50);
145
146         return i;
147 }
148
149 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
150 {
151         if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
152                 __ew32_prepare(hw);
153
154         writel(val, hw->hw_addr + reg);
155 }
156
157 /**
158  * e1000_regdump - register printout routine
159  * @hw: pointer to the HW structure
160  * @reginfo: pointer to the register info table
161  **/
162 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
163 {
164         int n = 0;
165         char rname[16];
166         u32 regs[8];
167
168         switch (reginfo->ofs) {
169         case E1000_RXDCTL(0):
170                 for (n = 0; n < 2; n++)
171                         regs[n] = __er32(hw, E1000_RXDCTL(n));
172                 break;
173         case E1000_TXDCTL(0):
174                 for (n = 0; n < 2; n++)
175                         regs[n] = __er32(hw, E1000_TXDCTL(n));
176                 break;
177         case E1000_TARC(0):
178                 for (n = 0; n < 2; n++)
179                         regs[n] = __er32(hw, E1000_TARC(n));
180                 break;
181         default:
182                 pr_info("%-15s %08x\n",
183                         reginfo->name, __er32(hw, reginfo->ofs));
184                 return;
185         }
186
187         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
188         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
189 }
190
191 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
192                                  struct e1000_buffer *bi)
193 {
194         int i;
195         struct e1000_ps_page *ps_page;
196
197         for (i = 0; i < adapter->rx_ps_pages; i++) {
198                 ps_page = &bi->ps_pages[i];
199
200                 if (ps_page->page) {
201                         pr_info("packet dump for ps_page %d:\n", i);
202                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
203                                        16, 1, page_address(ps_page->page),
204                                        PAGE_SIZE, true);
205                 }
206         }
207 }
208
209 /**
210  * e1000e_dump - Print registers, Tx-ring and Rx-ring
211  * @adapter: board private structure
212  **/
213 static void e1000e_dump(struct e1000_adapter *adapter)
214 {
215         struct net_device *netdev = adapter->netdev;
216         struct e1000_hw *hw = &adapter->hw;
217         struct e1000_reg_info *reginfo;
218         struct e1000_ring *tx_ring = adapter->tx_ring;
219         struct e1000_tx_desc *tx_desc;
220         struct my_u0 {
221                 __le64 a;
222                 __le64 b;
223         } *u0;
224         struct e1000_buffer *buffer_info;
225         struct e1000_ring *rx_ring = adapter->rx_ring;
226         union e1000_rx_desc_packet_split *rx_desc_ps;
227         union e1000_rx_desc_extended *rx_desc;
228         struct my_u1 {
229                 __le64 a;
230                 __le64 b;
231                 __le64 c;
232                 __le64 d;
233         } *u1;
234         u32 staterr;
235         int i = 0;
236
237         if (!netif_msg_hw(adapter))
238                 return;
239
240         /* Print netdevice Info */
241         if (netdev) {
242                 dev_info(&adapter->pdev->dev, "Net device Info\n");
243                 pr_info("Device Name     state            trans_start      last_rx\n");
244                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
245                         netdev->state, dev_trans_start(netdev), netdev->last_rx);
246         }
247
248         /* Print Registers */
249         dev_info(&adapter->pdev->dev, "Register Dump\n");
250         pr_info(" Register Name   Value\n");
251         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
252              reginfo->name; reginfo++) {
253                 e1000_regdump(hw, reginfo);
254         }
255
256         /* Print Tx Ring Summary */
257         if (!netdev || !netif_running(netdev))
258                 return;
259
260         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
261         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
262         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
263         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
264                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
265                 (unsigned long long)buffer_info->dma,
266                 buffer_info->length,
267                 buffer_info->next_to_watch,
268                 (unsigned long long)buffer_info->time_stamp);
269
270         /* Print Tx Ring */
271         if (!netif_msg_tx_done(adapter))
272                 goto rx_ring_summary;
273
274         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
275
276         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
277          *
278          * Legacy Transmit Descriptor
279          *   +--------------------------------------------------------------+
280          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
281          *   +--------------------------------------------------------------+
282          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
283          *   +--------------------------------------------------------------+
284          *   63       48 47        36 35    32 31     24 23    16 15        0
285          *
286          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
287          *   63      48 47    40 39       32 31             16 15    8 7      0
288          *   +----------------------------------------------------------------+
289          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
290          *   +----------------------------------------------------------------+
291          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
292          *   +----------------------------------------------------------------+
293          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
294          *
295          * Extended Data Descriptor (DTYP=0x1)
296          *   +----------------------------------------------------------------+
297          * 0 |                     Buffer Address [63:0]                      |
298          *   +----------------------------------------------------------------+
299          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
300          *   +----------------------------------------------------------------+
301          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
302          */
303         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
304         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
305         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
306         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
307                 const char *next_desc;
308                 tx_desc = E1000_TX_DESC(*tx_ring, i);
309                 buffer_info = &tx_ring->buffer_info[i];
310                 u0 = (struct my_u0 *)tx_desc;
311                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
312                         next_desc = " NTC/U";
313                 else if (i == tx_ring->next_to_use)
314                         next_desc = " NTU";
315                 else if (i == tx_ring->next_to_clean)
316                         next_desc = " NTC";
317                 else
318                         next_desc = "";
319                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
320                         (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
321                          ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
322                         i,
323                         (unsigned long long)le64_to_cpu(u0->a),
324                         (unsigned long long)le64_to_cpu(u0->b),
325                         (unsigned long long)buffer_info->dma,
326                         buffer_info->length, buffer_info->next_to_watch,
327                         (unsigned long long)buffer_info->time_stamp,
328                         buffer_info->skb, next_desc);
329
330                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
331                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
332                                        16, 1, buffer_info->skb->data,
333                                        buffer_info->skb->len, true);
334         }
335
336         /* Print Rx Ring Summary */
337 rx_ring_summary:
338         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
339         pr_info("Queue [NTU] [NTC]\n");
340         pr_info(" %5d %5X %5X\n",
341                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
342
343         /* Print Rx Ring */
344         if (!netif_msg_rx_status(adapter))
345                 return;
346
347         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
348         switch (adapter->rx_ps_pages) {
349         case 1:
350         case 2:
351         case 3:
352                 /* [Extended] Packet Split Receive Descriptor Format
353                  *
354                  *    +-----------------------------------------------------+
355                  *  0 |                Buffer Address 0 [63:0]              |
356                  *    +-----------------------------------------------------+
357                  *  8 |                Buffer Address 1 [63:0]              |
358                  *    +-----------------------------------------------------+
359                  * 16 |                Buffer Address 2 [63:0]              |
360                  *    +-----------------------------------------------------+
361                  * 24 |                Buffer Address 3 [63:0]              |
362                  *    +-----------------------------------------------------+
363                  */
364                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
365                 /* [Extended] Receive Descriptor (Write-Back) Format
366                  *
367                  *   63       48 47    32 31     13 12    8 7    4 3        0
368                  *   +------------------------------------------------------+
369                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
370                  *   | Checksum | Ident  |         | Queue |      |  Type   |
371                  *   +------------------------------------------------------+
372                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
373                  *   +------------------------------------------------------+
374                  *   63       48 47    32 31            20 19               0
375                  */
376                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
377                 for (i = 0; i < rx_ring->count; i++) {
378                         const char *next_desc;
379                         buffer_info = &rx_ring->buffer_info[i];
380                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
381                         u1 = (struct my_u1 *)rx_desc_ps;
382                         staterr =
383                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
384
385                         if (i == rx_ring->next_to_use)
386                                 next_desc = " NTU";
387                         else if (i == rx_ring->next_to_clean)
388                                 next_desc = " NTC";
389                         else
390                                 next_desc = "";
391
392                         if (staterr & E1000_RXD_STAT_DD) {
393                                 /* Descriptor Done */
394                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
395                                         "RWB", i,
396                                         (unsigned long long)le64_to_cpu(u1->a),
397                                         (unsigned long long)le64_to_cpu(u1->b),
398                                         (unsigned long long)le64_to_cpu(u1->c),
399                                         (unsigned long long)le64_to_cpu(u1->d),
400                                         buffer_info->skb, next_desc);
401                         } else {
402                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
403                                         "R  ", i,
404                                         (unsigned long long)le64_to_cpu(u1->a),
405                                         (unsigned long long)le64_to_cpu(u1->b),
406                                         (unsigned long long)le64_to_cpu(u1->c),
407                                         (unsigned long long)le64_to_cpu(u1->d),
408                                         (unsigned long long)buffer_info->dma,
409                                         buffer_info->skb, next_desc);
410
411                                 if (netif_msg_pktdata(adapter))
412                                         e1000e_dump_ps_pages(adapter,
413                                                              buffer_info);
414                         }
415                 }
416                 break;
417         default:
418         case 0:
419                 /* Extended Receive Descriptor (Read) Format
420                  *
421                  *   +-----------------------------------------------------+
422                  * 0 |                Buffer Address [63:0]                |
423                  *   +-----------------------------------------------------+
424                  * 8 |                      Reserved                       |
425                  *   +-----------------------------------------------------+
426                  */
427                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
428                 /* Extended Receive Descriptor (Write-Back) Format
429                  *
430                  *   63       48 47    32 31    24 23            4 3        0
431                  *   +------------------------------------------------------+
432                  *   |     RSS Hash      |        |               |         |
433                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
434                  *   | Packet   | IP     |        |               |  Type   |
435                  *   | Checksum | Ident  |        |               |         |
436                  *   +------------------------------------------------------+
437                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
438                  *   +------------------------------------------------------+
439                  *   63       48 47    32 31            20 19               0
440                  */
441                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
442
443                 for (i = 0; i < rx_ring->count; i++) {
444                         const char *next_desc;
445
446                         buffer_info = &rx_ring->buffer_info[i];
447                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
448                         u1 = (struct my_u1 *)rx_desc;
449                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
450
451                         if (i == rx_ring->next_to_use)
452                                 next_desc = " NTU";
453                         else if (i == rx_ring->next_to_clean)
454                                 next_desc = " NTC";
455                         else
456                                 next_desc = "";
457
458                         if (staterr & E1000_RXD_STAT_DD) {
459                                 /* Descriptor Done */
460                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
461                                         "RWB", i,
462                                         (unsigned long long)le64_to_cpu(u1->a),
463                                         (unsigned long long)le64_to_cpu(u1->b),
464                                         buffer_info->skb, next_desc);
465                         } else {
466                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
467                                         "R  ", i,
468                                         (unsigned long long)le64_to_cpu(u1->a),
469                                         (unsigned long long)le64_to_cpu(u1->b),
470                                         (unsigned long long)buffer_info->dma,
471                                         buffer_info->skb, next_desc);
472
473                                 if (netif_msg_pktdata(adapter) &&
474                                     buffer_info->skb)
475                                         print_hex_dump(KERN_INFO, "",
476                                                        DUMP_PREFIX_ADDRESS, 16,
477                                                        1,
478                                                        buffer_info->skb->data,
479                                                        adapter->rx_buffer_len,
480                                                        true);
481                         }
482                 }
483         }
484 }
485
486 /**
487  * e1000_desc_unused - calculate if we have unused descriptors
488  **/
489 static int e1000_desc_unused(struct e1000_ring *ring)
490 {
491         if (ring->next_to_clean > ring->next_to_use)
492                 return ring->next_to_clean - ring->next_to_use - 1;
493
494         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
495 }
496
497 /**
498  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
499  * @adapter: board private structure
500  * @hwtstamps: time stamp structure to update
501  * @systim: unsigned 64bit system time value.
502  *
503  * Convert the system time value stored in the RX/TXSTMP registers into a
504  * hwtstamp which can be used by the upper level time stamping functions.
505  *
506  * The 'systim_lock' spinlock is used to protect the consistency of the
507  * system time value. This is needed because reading the 64 bit time
508  * value involves reading two 32 bit registers. The first read latches the
509  * value.
510  **/
511 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
512                                       struct skb_shared_hwtstamps *hwtstamps,
513                                       u64 systim)
514 {
515         u64 ns;
516         unsigned long flags;
517
518         spin_lock_irqsave(&adapter->systim_lock, flags);
519         ns = timecounter_cyc2time(&adapter->tc, systim);
520         spin_unlock_irqrestore(&adapter->systim_lock, flags);
521
522         memset(hwtstamps, 0, sizeof(*hwtstamps));
523         hwtstamps->hwtstamp = ns_to_ktime(ns);
524 }
525
526 /**
527  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
528  * @adapter: board private structure
529  * @status: descriptor extended error and status field
530  * @skb: particular skb to include time stamp
531  *
532  * If the time stamp is valid, convert it into the timecounter ns value
533  * and store that result into the shhwtstamps structure which is passed
534  * up the network stack.
535  **/
536 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
537                                struct sk_buff *skb)
538 {
539         struct e1000_hw *hw = &adapter->hw;
540         u64 rxstmp;
541
542         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
543             !(status & E1000_RXDEXT_STATERR_TST) ||
544             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
545                 return;
546
547         /* The Rx time stamp registers contain the time stamp.  No other
548          * received packet will be time stamped until the Rx time stamp
549          * registers are read.  Because only one packet can be time stamped
550          * at a time, the register values must belong to this packet and
551          * therefore none of the other additional attributes need to be
552          * compared.
553          */
554         rxstmp = (u64)er32(RXSTMPL);
555         rxstmp |= (u64)er32(RXSTMPH) << 32;
556         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
557
558         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
559 }
560
561 /**
562  * e1000_receive_skb - helper function to handle Rx indications
563  * @adapter: board private structure
564  * @staterr: descriptor extended error and status field as written by hardware
565  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
566  * @skb: pointer to sk_buff to be indicated to stack
567  **/
568 static void e1000_receive_skb(struct e1000_adapter *adapter,
569                               struct net_device *netdev, struct sk_buff *skb,
570                               u32 staterr, __le16 vlan)
571 {
572         u16 tag = le16_to_cpu(vlan);
573
574         e1000e_rx_hwtstamp(adapter, staterr, skb);
575
576         skb->protocol = eth_type_trans(skb, netdev);
577
578         if (staterr & E1000_RXD_STAT_VP)
579                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
580
581         napi_gro_receive(&adapter->napi, skb);
582 }
583
584 /**
585  * e1000_rx_checksum - Receive Checksum Offload
586  * @adapter: board private structure
587  * @status_err: receive descriptor status and error fields
588  * @csum: receive descriptor csum field
589  * @sk_buff: socket buffer with received data
590  **/
591 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
592                               struct sk_buff *skb)
593 {
594         u16 status = (u16)status_err;
595         u8 errors = (u8)(status_err >> 24);
596
597         skb_checksum_none_assert(skb);
598
599         /* Rx checksum disabled */
600         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
601                 return;
602
603         /* Ignore Checksum bit is set */
604         if (status & E1000_RXD_STAT_IXSM)
605                 return;
606
607         /* TCP/UDP checksum error bit or IP checksum error bit is set */
608         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
609                 /* let the stack verify checksum errors */
610                 adapter->hw_csum_err++;
611                 return;
612         }
613
614         /* TCP/UDP Checksum has not been calculated */
615         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
616                 return;
617
618         /* It must be a TCP or UDP packet with a valid checksum */
619         skb->ip_summed = CHECKSUM_UNNECESSARY;
620         adapter->hw_csum_good++;
621 }
622
623 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
624 {
625         struct e1000_adapter *adapter = rx_ring->adapter;
626         struct e1000_hw *hw = &adapter->hw;
627         s32 ret_val = __ew32_prepare(hw);
628
629         writel(i, rx_ring->tail);
630
631         if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
632                 u32 rctl = er32(RCTL);
633
634                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
635                 e_err("ME firmware caused invalid RDT - resetting\n");
636                 schedule_work(&adapter->reset_task);
637         }
638 }
639
640 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
641 {
642         struct e1000_adapter *adapter = tx_ring->adapter;
643         struct e1000_hw *hw = &adapter->hw;
644         s32 ret_val = __ew32_prepare(hw);
645
646         writel(i, tx_ring->tail);
647
648         if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
649                 u32 tctl = er32(TCTL);
650
651                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
652                 e_err("ME firmware caused invalid TDT - resetting\n");
653                 schedule_work(&adapter->reset_task);
654         }
655 }
656
657 /**
658  * e1000_alloc_rx_buffers - Replace used receive buffers
659  * @rx_ring: Rx descriptor ring
660  **/
661 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
662                                    int cleaned_count, gfp_t gfp)
663 {
664         struct e1000_adapter *adapter = rx_ring->adapter;
665         struct net_device *netdev = adapter->netdev;
666         struct pci_dev *pdev = adapter->pdev;
667         union e1000_rx_desc_extended *rx_desc;
668         struct e1000_buffer *buffer_info;
669         struct sk_buff *skb;
670         unsigned int i;
671         unsigned int bufsz = adapter->rx_buffer_len;
672
673         i = rx_ring->next_to_use;
674         buffer_info = &rx_ring->buffer_info[i];
675
676         while (cleaned_count--) {
677                 skb = buffer_info->skb;
678                 if (skb) {
679                         skb_trim(skb, 0);
680                         goto map_skb;
681                 }
682
683                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
684                 if (!skb) {
685                         /* Better luck next round */
686                         adapter->alloc_rx_buff_failed++;
687                         break;
688                 }
689
690                 buffer_info->skb = skb;
691 map_skb:
692                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
693                                                   adapter->rx_buffer_len,
694                                                   DMA_FROM_DEVICE);
695                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
696                         dev_err(&pdev->dev, "Rx DMA map failed\n");
697                         adapter->rx_dma_failed++;
698                         break;
699                 }
700
701                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
702                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
703
704                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
705                         /* Force memory writes to complete before letting h/w
706                          * know there are new descriptors to fetch.  (Only
707                          * applicable for weak-ordered memory model archs,
708                          * such as IA-64).
709                          */
710                         wmb();
711                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
712                                 e1000e_update_rdt_wa(rx_ring, i);
713                         else
714                                 writel(i, rx_ring->tail);
715                 }
716                 i++;
717                 if (i == rx_ring->count)
718                         i = 0;
719                 buffer_info = &rx_ring->buffer_info[i];
720         }
721
722         rx_ring->next_to_use = i;
723 }
724
725 /**
726  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
727  * @rx_ring: Rx descriptor ring
728  **/
729 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
730                                       int cleaned_count, gfp_t gfp)
731 {
732         struct e1000_adapter *adapter = rx_ring->adapter;
733         struct net_device *netdev = adapter->netdev;
734         struct pci_dev *pdev = adapter->pdev;
735         union e1000_rx_desc_packet_split *rx_desc;
736         struct e1000_buffer *buffer_info;
737         struct e1000_ps_page *ps_page;
738         struct sk_buff *skb;
739         unsigned int i, j;
740
741         i = rx_ring->next_to_use;
742         buffer_info = &rx_ring->buffer_info[i];
743
744         while (cleaned_count--) {
745                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
746
747                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
748                         ps_page = &buffer_info->ps_pages[j];
749                         if (j >= adapter->rx_ps_pages) {
750                                 /* all unused desc entries get hw null ptr */
751                                 rx_desc->read.buffer_addr[j + 1] =
752                                     ~cpu_to_le64(0);
753                                 continue;
754                         }
755                         if (!ps_page->page) {
756                                 ps_page->page = alloc_page(gfp);
757                                 if (!ps_page->page) {
758                                         adapter->alloc_rx_buff_failed++;
759                                         goto no_buffers;
760                                 }
761                                 ps_page->dma = dma_map_page(&pdev->dev,
762                                                             ps_page->page,
763                                                             0, PAGE_SIZE,
764                                                             DMA_FROM_DEVICE);
765                                 if (dma_mapping_error(&pdev->dev,
766                                                       ps_page->dma)) {
767                                         dev_err(&adapter->pdev->dev,
768                                                 "Rx DMA page map failed\n");
769                                         adapter->rx_dma_failed++;
770                                         goto no_buffers;
771                                 }
772                         }
773                         /* Refresh the desc even if buffer_addrs
774                          * didn't change because each write-back
775                          * erases this info.
776                          */
777                         rx_desc->read.buffer_addr[j + 1] =
778                             cpu_to_le64(ps_page->dma);
779                 }
780
781                 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
782                                                   gfp);
783
784                 if (!skb) {
785                         adapter->alloc_rx_buff_failed++;
786                         break;
787                 }
788
789                 buffer_info->skb = skb;
790                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
791                                                   adapter->rx_ps_bsize0,
792                                                   DMA_FROM_DEVICE);
793                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
794                         dev_err(&pdev->dev, "Rx DMA map failed\n");
795                         adapter->rx_dma_failed++;
796                         /* cleanup skb */
797                         dev_kfree_skb_any(skb);
798                         buffer_info->skb = NULL;
799                         break;
800                 }
801
802                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
803
804                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
805                         /* Force memory writes to complete before letting h/w
806                          * know there are new descriptors to fetch.  (Only
807                          * applicable for weak-ordered memory model archs,
808                          * such as IA-64).
809                          */
810                         wmb();
811                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
812                                 e1000e_update_rdt_wa(rx_ring, i << 1);
813                         else
814                                 writel(i << 1, rx_ring->tail);
815                 }
816
817                 i++;
818                 if (i == rx_ring->count)
819                         i = 0;
820                 buffer_info = &rx_ring->buffer_info[i];
821         }
822
823 no_buffers:
824         rx_ring->next_to_use = i;
825 }
826
827 /**
828  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
829  * @rx_ring: Rx descriptor ring
830  * @cleaned_count: number of buffers to allocate this pass
831  **/
832
833 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
834                                          int cleaned_count, gfp_t gfp)
835 {
836         struct e1000_adapter *adapter = rx_ring->adapter;
837         struct net_device *netdev = adapter->netdev;
838         struct pci_dev *pdev = adapter->pdev;
839         union e1000_rx_desc_extended *rx_desc;
840         struct e1000_buffer *buffer_info;
841         struct sk_buff *skb;
842         unsigned int i;
843         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
844
845         i = rx_ring->next_to_use;
846         buffer_info = &rx_ring->buffer_info[i];
847
848         while (cleaned_count--) {
849                 skb = buffer_info->skb;
850                 if (skb) {
851                         skb_trim(skb, 0);
852                         goto check_page;
853                 }
854
855                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
856                 if (unlikely(!skb)) {
857                         /* Better luck next round */
858                         adapter->alloc_rx_buff_failed++;
859                         break;
860                 }
861
862                 buffer_info->skb = skb;
863 check_page:
864                 /* allocate a new page if necessary */
865                 if (!buffer_info->page) {
866                         buffer_info->page = alloc_page(gfp);
867                         if (unlikely(!buffer_info->page)) {
868                                 adapter->alloc_rx_buff_failed++;
869                                 break;
870                         }
871                 }
872
873                 if (!buffer_info->dma) {
874                         buffer_info->dma = dma_map_page(&pdev->dev,
875                                                         buffer_info->page, 0,
876                                                         PAGE_SIZE,
877                                                         DMA_FROM_DEVICE);
878                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
879                                 adapter->alloc_rx_buff_failed++;
880                                 break;
881                         }
882                 }
883
884                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
885                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
886
887                 if (unlikely(++i == rx_ring->count))
888                         i = 0;
889                 buffer_info = &rx_ring->buffer_info[i];
890         }
891
892         if (likely(rx_ring->next_to_use != i)) {
893                 rx_ring->next_to_use = i;
894                 if (unlikely(i-- == 0))
895                         i = (rx_ring->count - 1);
896
897                 /* Force memory writes to complete before letting h/w
898                  * know there are new descriptors to fetch.  (Only
899                  * applicable for weak-ordered memory model archs,
900                  * such as IA-64).
901                  */
902                 wmb();
903                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
904                         e1000e_update_rdt_wa(rx_ring, i);
905                 else
906                         writel(i, rx_ring->tail);
907         }
908 }
909
910 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
911                                  struct sk_buff *skb)
912 {
913         if (netdev->features & NETIF_F_RXHASH)
914                 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
915 }
916
917 /**
918  * e1000_clean_rx_irq - Send received data up the network stack
919  * @rx_ring: Rx descriptor ring
920  *
921  * the return value indicates whether actual cleaning was done, there
922  * is no guarantee that everything was cleaned
923  **/
924 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
925                                int work_to_do)
926 {
927         struct e1000_adapter *adapter = rx_ring->adapter;
928         struct net_device *netdev = adapter->netdev;
929         struct pci_dev *pdev = adapter->pdev;
930         struct e1000_hw *hw = &adapter->hw;
931         union e1000_rx_desc_extended *rx_desc, *next_rxd;
932         struct e1000_buffer *buffer_info, *next_buffer;
933         u32 length, staterr;
934         unsigned int i;
935         int cleaned_count = 0;
936         bool cleaned = false;
937         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
938
939         i = rx_ring->next_to_clean;
940         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
941         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
942         buffer_info = &rx_ring->buffer_info[i];
943
944         while (staterr & E1000_RXD_STAT_DD) {
945                 struct sk_buff *skb;
946
947                 if (*work_done >= work_to_do)
948                         break;
949                 (*work_done)++;
950                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
951
952                 skb = buffer_info->skb;
953                 buffer_info->skb = NULL;
954
955                 prefetch(skb->data - NET_IP_ALIGN);
956
957                 i++;
958                 if (i == rx_ring->count)
959                         i = 0;
960                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
961                 prefetch(next_rxd);
962
963                 next_buffer = &rx_ring->buffer_info[i];
964
965                 cleaned = true;
966                 cleaned_count++;
967                 dma_unmap_single(&pdev->dev, buffer_info->dma,
968                                  adapter->rx_buffer_len, DMA_FROM_DEVICE);
969                 buffer_info->dma = 0;
970
971                 length = le16_to_cpu(rx_desc->wb.upper.length);
972
973                 /* !EOP means multiple descriptors were used to store a single
974                  * packet, if that's the case we need to toss it.  In fact, we
975                  * need to toss every packet with the EOP bit clear and the
976                  * next frame that _does_ have the EOP bit set, as it is by
977                  * definition only a frame fragment
978                  */
979                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
980                         adapter->flags2 |= FLAG2_IS_DISCARDING;
981
982                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
983                         /* All receives must fit into a single buffer */
984                         e_dbg("Receive packet consumed multiple buffers\n");
985                         /* recycle */
986                         buffer_info->skb = skb;
987                         if (staterr & E1000_RXD_STAT_EOP)
988                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
989                         goto next_desc;
990                 }
991
992                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
993                              !(netdev->features & NETIF_F_RXALL))) {
994                         /* recycle */
995                         buffer_info->skb = skb;
996                         goto next_desc;
997                 }
998
999                 /* adjust length to remove Ethernet CRC */
1000                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1001                         /* If configured to store CRC, don't subtract FCS,
1002                          * but keep the FCS bytes out of the total_rx_bytes
1003                          * counter
1004                          */
1005                         if (netdev->features & NETIF_F_RXFCS)
1006                                 total_rx_bytes -= 4;
1007                         else
1008                                 length -= 4;
1009                 }
1010
1011                 total_rx_bytes += length;
1012                 total_rx_packets++;
1013
1014                 /* code added for copybreak, this should improve
1015                  * performance for small packets with large amounts
1016                  * of reassembly being done in the stack
1017                  */
1018                 if (length < copybreak) {
1019                         struct sk_buff *new_skb =
1020                                 napi_alloc_skb(&adapter->napi, length);
1021                         if (new_skb) {
1022                                 skb_copy_to_linear_data_offset(new_skb,
1023                                                                -NET_IP_ALIGN,
1024                                                                (skb->data -
1025                                                                 NET_IP_ALIGN),
1026                                                                (length +
1027                                                                 NET_IP_ALIGN));
1028                                 /* save the skb in buffer_info as good */
1029                                 buffer_info->skb = skb;
1030                                 skb = new_skb;
1031                         }
1032                         /* else just continue with the old one */
1033                 }
1034                 /* end copybreak code */
1035                 skb_put(skb, length);
1036
1037                 /* Receive Checksum Offload */
1038                 e1000_rx_checksum(adapter, staterr, skb);
1039
1040                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1041
1042                 e1000_receive_skb(adapter, netdev, skb, staterr,
1043                                   rx_desc->wb.upper.vlan);
1044
1045 next_desc:
1046                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1047
1048                 /* return some buffers to hardware, one at a time is too slow */
1049                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1050                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1051                                               GFP_ATOMIC);
1052                         cleaned_count = 0;
1053                 }
1054
1055                 /* use prefetched values */
1056                 rx_desc = next_rxd;
1057                 buffer_info = next_buffer;
1058
1059                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1060         }
1061         rx_ring->next_to_clean = i;
1062
1063         cleaned_count = e1000_desc_unused(rx_ring);
1064         if (cleaned_count)
1065                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1066
1067         adapter->total_rx_bytes += total_rx_bytes;
1068         adapter->total_rx_packets += total_rx_packets;
1069         return cleaned;
1070 }
1071
1072 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1073                             struct e1000_buffer *buffer_info)
1074 {
1075         struct e1000_adapter *adapter = tx_ring->adapter;
1076
1077         if (buffer_info->dma) {
1078                 if (buffer_info->mapped_as_page)
1079                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1080                                        buffer_info->length, DMA_TO_DEVICE);
1081                 else
1082                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1083                                          buffer_info->length, DMA_TO_DEVICE);
1084                 buffer_info->dma = 0;
1085         }
1086         if (buffer_info->skb) {
1087                 dev_kfree_skb_any(buffer_info->skb);
1088                 buffer_info->skb = NULL;
1089         }
1090         buffer_info->time_stamp = 0;
1091 }
1092
1093 static void e1000_print_hw_hang(struct work_struct *work)
1094 {
1095         struct e1000_adapter *adapter = container_of(work,
1096                                                      struct e1000_adapter,
1097                                                      print_hang_task);
1098         struct net_device *netdev = adapter->netdev;
1099         struct e1000_ring *tx_ring = adapter->tx_ring;
1100         unsigned int i = tx_ring->next_to_clean;
1101         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1102         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1103         struct e1000_hw *hw = &adapter->hw;
1104         u16 phy_status, phy_1000t_status, phy_ext_status;
1105         u16 pci_status;
1106
1107         if (test_bit(__E1000_DOWN, &adapter->state))
1108                 return;
1109
1110         if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1111                 /* May be block on write-back, flush and detect again
1112                  * flush pending descriptor writebacks to memory
1113                  */
1114                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1115                 /* execute the writes immediately */
1116                 e1e_flush();
1117                 /* Due to rare timing issues, write to TIDV again to ensure
1118                  * the write is successful
1119                  */
1120                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1121                 /* execute the writes immediately */
1122                 e1e_flush();
1123                 adapter->tx_hang_recheck = true;
1124                 return;
1125         }
1126         adapter->tx_hang_recheck = false;
1127
1128         if (er32(TDH(0)) == er32(TDT(0))) {
1129                 e_dbg("false hang detected, ignoring\n");
1130                 return;
1131         }
1132
1133         /* Real hang detected */
1134         netif_stop_queue(netdev);
1135
1136         e1e_rphy(hw, MII_BMSR, &phy_status);
1137         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1138         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1139
1140         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1141
1142         /* detected Hardware unit hang */
1143         e_err("Detected Hardware Unit Hang:\n"
1144               "  TDH                  <%x>\n"
1145               "  TDT                  <%x>\n"
1146               "  next_to_use          <%x>\n"
1147               "  next_to_clean        <%x>\n"
1148               "buffer_info[next_to_clean]:\n"
1149               "  time_stamp           <%lx>\n"
1150               "  next_to_watch        <%x>\n"
1151               "  jiffies              <%lx>\n"
1152               "  next_to_watch.status <%x>\n"
1153               "MAC Status             <%x>\n"
1154               "PHY Status             <%x>\n"
1155               "PHY 1000BASE-T Status  <%x>\n"
1156               "PHY Extended Status    <%x>\n"
1157               "PCI Status             <%x>\n",
1158               readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1159               tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1160               eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1161               phy_status, phy_1000t_status, phy_ext_status, pci_status);
1162
1163         e1000e_dump(adapter);
1164
1165         /* Suggest workaround for known h/w issue */
1166         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1167                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1168 }
1169
1170 /**
1171  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1172  * @work: pointer to work struct
1173  *
1174  * This work function polls the TSYNCTXCTL valid bit to determine when a
1175  * timestamp has been taken for the current stored skb.  The timestamp must
1176  * be for this skb because only one such packet is allowed in the queue.
1177  */
1178 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1179 {
1180         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1181                                                      tx_hwtstamp_work);
1182         struct e1000_hw *hw = &adapter->hw;
1183
1184         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1185                 struct skb_shared_hwtstamps shhwtstamps;
1186                 u64 txstmp;
1187
1188                 txstmp = er32(TXSTMPL);
1189                 txstmp |= (u64)er32(TXSTMPH) << 32;
1190
1191                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1192
1193                 skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1194                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1195                 adapter->tx_hwtstamp_skb = NULL;
1196         } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1197                               + adapter->tx_timeout_factor * HZ)) {
1198                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1199                 adapter->tx_hwtstamp_skb = NULL;
1200                 adapter->tx_hwtstamp_timeouts++;
1201                 e_warn("clearing Tx timestamp hang\n");
1202         } else {
1203                 /* reschedule to check later */
1204                 schedule_work(&adapter->tx_hwtstamp_work);
1205         }
1206 }
1207
1208 /**
1209  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210  * @tx_ring: Tx descriptor ring
1211  *
1212  * the return value indicates whether actual cleaning was done, there
1213  * is no guarantee that everything was cleaned
1214  **/
1215 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1216 {
1217         struct e1000_adapter *adapter = tx_ring->adapter;
1218         struct net_device *netdev = adapter->netdev;
1219         struct e1000_hw *hw = &adapter->hw;
1220         struct e1000_tx_desc *tx_desc, *eop_desc;
1221         struct e1000_buffer *buffer_info;
1222         unsigned int i, eop;
1223         unsigned int count = 0;
1224         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1225         unsigned int bytes_compl = 0, pkts_compl = 0;
1226
1227         i = tx_ring->next_to_clean;
1228         eop = tx_ring->buffer_info[i].next_to_watch;
1229         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1230
1231         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1232                (count < tx_ring->count)) {
1233                 bool cleaned = false;
1234
1235                 dma_rmb();              /* read buffer_info after eop_desc */
1236                 for (; !cleaned; count++) {
1237                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1238                         buffer_info = &tx_ring->buffer_info[i];
1239                         cleaned = (i == eop);
1240
1241                         if (cleaned) {
1242                                 total_tx_packets += buffer_info->segs;
1243                                 total_tx_bytes += buffer_info->bytecount;
1244                                 if (buffer_info->skb) {
1245                                         bytes_compl += buffer_info->skb->len;
1246                                         pkts_compl++;
1247                                 }
1248                         }
1249
1250                         e1000_put_txbuf(tx_ring, buffer_info);
1251                         tx_desc->upper.data = 0;
1252
1253                         i++;
1254                         if (i == tx_ring->count)
1255                                 i = 0;
1256                 }
1257
1258                 if (i == tx_ring->next_to_use)
1259                         break;
1260                 eop = tx_ring->buffer_info[i].next_to_watch;
1261                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1262         }
1263
1264         tx_ring->next_to_clean = i;
1265
1266         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1267
1268 #define TX_WAKE_THRESHOLD 32
1269         if (count && netif_carrier_ok(netdev) &&
1270             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1271                 /* Make sure that anybody stopping the queue after this
1272                  * sees the new next_to_clean.
1273                  */
1274                 smp_mb();
1275
1276                 if (netif_queue_stopped(netdev) &&
1277                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1278                         netif_wake_queue(netdev);
1279                         ++adapter->restart_queue;
1280                 }
1281         }
1282
1283         if (adapter->detect_tx_hung) {
1284                 /* Detect a transmit hang in hardware, this serializes the
1285                  * check with the clearing of time_stamp and movement of i
1286                  */
1287                 adapter->detect_tx_hung = false;
1288                 if (tx_ring->buffer_info[i].time_stamp &&
1289                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1290                                + (adapter->tx_timeout_factor * HZ)) &&
1291                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1292                         schedule_work(&adapter->print_hang_task);
1293                 else
1294                         adapter->tx_hang_recheck = false;
1295         }
1296         adapter->total_tx_bytes += total_tx_bytes;
1297         adapter->total_tx_packets += total_tx_packets;
1298         return count < tx_ring->count;
1299 }
1300
1301 /**
1302  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303  * @rx_ring: Rx descriptor ring
1304  *
1305  * the return value indicates whether actual cleaning was done, there
1306  * is no guarantee that everything was cleaned
1307  **/
1308 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1309                                   int work_to_do)
1310 {
1311         struct e1000_adapter *adapter = rx_ring->adapter;
1312         struct e1000_hw *hw = &adapter->hw;
1313         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1314         struct net_device *netdev = adapter->netdev;
1315         struct pci_dev *pdev = adapter->pdev;
1316         struct e1000_buffer *buffer_info, *next_buffer;
1317         struct e1000_ps_page *ps_page;
1318         struct sk_buff *skb;
1319         unsigned int i, j;
1320         u32 length, staterr;
1321         int cleaned_count = 0;
1322         bool cleaned = false;
1323         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1324
1325         i = rx_ring->next_to_clean;
1326         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1327         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1328         buffer_info = &rx_ring->buffer_info[i];
1329
1330         while (staterr & E1000_RXD_STAT_DD) {
1331                 if (*work_done >= work_to_do)
1332                         break;
1333                 (*work_done)++;
1334                 skb = buffer_info->skb;
1335                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1336
1337                 /* in the packet split case this is header only */
1338                 prefetch(skb->data - NET_IP_ALIGN);
1339
1340                 i++;
1341                 if (i == rx_ring->count)
1342                         i = 0;
1343                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1344                 prefetch(next_rxd);
1345
1346                 next_buffer = &rx_ring->buffer_info[i];
1347
1348                 cleaned = true;
1349                 cleaned_count++;
1350                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1351                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1352                 buffer_info->dma = 0;
1353
1354                 /* see !EOP comment in other Rx routine */
1355                 if (!(staterr & E1000_RXD_STAT_EOP))
1356                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1357
1358                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1359                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1360                         dev_kfree_skb_irq(skb);
1361                         if (staterr & E1000_RXD_STAT_EOP)
1362                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1363                         goto next_desc;
1364                 }
1365
1366                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1367                              !(netdev->features & NETIF_F_RXALL))) {
1368                         dev_kfree_skb_irq(skb);
1369                         goto next_desc;
1370                 }
1371
1372                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1373
1374                 if (!length) {
1375                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1376                         dev_kfree_skb_irq(skb);
1377                         goto next_desc;
1378                 }
1379
1380                 /* Good Receive */
1381                 skb_put(skb, length);
1382
1383                 {
1384                         /* this looks ugly, but it seems compiler issues make
1385                          * it more efficient than reusing j
1386                          */
1387                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1388
1389                         /* page alloc/put takes too long and effects small
1390                          * packet throughput, so unsplit small packets and
1391                          * save the alloc/put only valid in softirq (napi)
1392                          * context to call kmap_*
1393                          */
1394                         if (l1 && (l1 <= copybreak) &&
1395                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1396                                 u8 *vaddr;
1397
1398                                 ps_page = &buffer_info->ps_pages[0];
1399
1400                                 /* there is no documentation about how to call
1401                                  * kmap_atomic, so we can't hold the mapping
1402                                  * very long
1403                                  */
1404                                 dma_sync_single_for_cpu(&pdev->dev,
1405                                                         ps_page->dma,
1406                                                         PAGE_SIZE,
1407                                                         DMA_FROM_DEVICE);
1408                                 vaddr = kmap_atomic(ps_page->page);
1409                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1410                                 kunmap_atomic(vaddr);
1411                                 dma_sync_single_for_device(&pdev->dev,
1412                                                            ps_page->dma,
1413                                                            PAGE_SIZE,
1414                                                            DMA_FROM_DEVICE);
1415
1416                                 /* remove the CRC */
1417                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1418                                         if (!(netdev->features & NETIF_F_RXFCS))
1419                                                 l1 -= 4;
1420                                 }
1421
1422                                 skb_put(skb, l1);
1423                                 goto copydone;
1424                         }       /* if */
1425                 }
1426
1427                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1428                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1429                         if (!length)
1430                                 break;
1431
1432                         ps_page = &buffer_info->ps_pages[j];
1433                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1434                                        DMA_FROM_DEVICE);
1435                         ps_page->dma = 0;
1436                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1437                         ps_page->page = NULL;
1438                         skb->len += length;
1439                         skb->data_len += length;
1440                         skb->truesize += PAGE_SIZE;
1441                 }
1442
1443                 /* strip the ethernet crc, problem is we're using pages now so
1444                  * this whole operation can get a little cpu intensive
1445                  */
1446                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1447                         if (!(netdev->features & NETIF_F_RXFCS))
1448                                 pskb_trim(skb, skb->len - 4);
1449                 }
1450
1451 copydone:
1452                 total_rx_bytes += skb->len;
1453                 total_rx_packets++;
1454
1455                 e1000_rx_checksum(adapter, staterr, skb);
1456
1457                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1458
1459                 if (rx_desc->wb.upper.header_status &
1460                     cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1461                         adapter->rx_hdr_split++;
1462
1463                 e1000_receive_skb(adapter, netdev, skb, staterr,
1464                                   rx_desc->wb.middle.vlan);
1465
1466 next_desc:
1467                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1468                 buffer_info->skb = NULL;
1469
1470                 /* return some buffers to hardware, one at a time is too slow */
1471                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1472                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1473                                               GFP_ATOMIC);
1474                         cleaned_count = 0;
1475                 }
1476
1477                 /* use prefetched values */
1478                 rx_desc = next_rxd;
1479                 buffer_info = next_buffer;
1480
1481                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1482         }
1483         rx_ring->next_to_clean = i;
1484
1485         cleaned_count = e1000_desc_unused(rx_ring);
1486         if (cleaned_count)
1487                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1488
1489         adapter->total_rx_bytes += total_rx_bytes;
1490         adapter->total_rx_packets += total_rx_packets;
1491         return cleaned;
1492 }
1493
1494 /**
1495  * e1000_consume_page - helper function
1496  **/
1497 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1498                                u16 length)
1499 {
1500         bi->page = NULL;
1501         skb->len += length;
1502         skb->data_len += length;
1503         skb->truesize += PAGE_SIZE;
1504 }
1505
1506 /**
1507  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1508  * @adapter: board private structure
1509  *
1510  * the return value indicates whether actual cleaning was done, there
1511  * is no guarantee that everything was cleaned
1512  **/
1513 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1514                                      int work_to_do)
1515 {
1516         struct e1000_adapter *adapter = rx_ring->adapter;
1517         struct net_device *netdev = adapter->netdev;
1518         struct pci_dev *pdev = adapter->pdev;
1519         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1520         struct e1000_buffer *buffer_info, *next_buffer;
1521         u32 length, staterr;
1522         unsigned int i;
1523         int cleaned_count = 0;
1524         bool cleaned = false;
1525         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1526         struct skb_shared_info *shinfo;
1527
1528         i = rx_ring->next_to_clean;
1529         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1530         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1531         buffer_info = &rx_ring->buffer_info[i];
1532
1533         while (staterr & E1000_RXD_STAT_DD) {
1534                 struct sk_buff *skb;
1535
1536                 if (*work_done >= work_to_do)
1537                         break;
1538                 (*work_done)++;
1539                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1540
1541                 skb = buffer_info->skb;
1542                 buffer_info->skb = NULL;
1543
1544                 ++i;
1545                 if (i == rx_ring->count)
1546                         i = 0;
1547                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1548                 prefetch(next_rxd);
1549
1550                 next_buffer = &rx_ring->buffer_info[i];
1551
1552                 cleaned = true;
1553                 cleaned_count++;
1554                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1555                                DMA_FROM_DEVICE);
1556                 buffer_info->dma = 0;
1557
1558                 length = le16_to_cpu(rx_desc->wb.upper.length);
1559
1560                 /* errors is only valid for DD + EOP descriptors */
1561                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1562                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1563                               !(netdev->features & NETIF_F_RXALL)))) {
1564                         /* recycle both page and skb */
1565                         buffer_info->skb = skb;
1566                         /* an error means any chain goes out the window too */
1567                         if (rx_ring->rx_skb_top)
1568                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1569                         rx_ring->rx_skb_top = NULL;
1570                         goto next_desc;
1571                 }
1572 #define rxtop (rx_ring->rx_skb_top)
1573                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1574                         /* this descriptor is only the beginning (or middle) */
1575                         if (!rxtop) {
1576                                 /* this is the beginning of a chain */
1577                                 rxtop = skb;
1578                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1579                                                    0, length);
1580                         } else {
1581                                 /* this is the middle of a chain */
1582                                 shinfo = skb_shinfo(rxtop);
1583                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1584                                                    buffer_info->page, 0,
1585                                                    length);
1586                                 /* re-use the skb, only consumed the page */
1587                                 buffer_info->skb = skb;
1588                         }
1589                         e1000_consume_page(buffer_info, rxtop, length);
1590                         goto next_desc;
1591                 } else {
1592                         if (rxtop) {
1593                                 /* end of the chain */
1594                                 shinfo = skb_shinfo(rxtop);
1595                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1596                                                    buffer_info->page, 0,
1597                                                    length);
1598                                 /* re-use the current skb, we only consumed the
1599                                  * page
1600                                  */
1601                                 buffer_info->skb = skb;
1602                                 skb = rxtop;
1603                                 rxtop = NULL;
1604                                 e1000_consume_page(buffer_info, skb, length);
1605                         } else {
1606                                 /* no chain, got EOP, this buf is the packet
1607                                  * copybreak to save the put_page/alloc_page
1608                                  */
1609                                 if (length <= copybreak &&
1610                                     skb_tailroom(skb) >= length) {
1611                                         u8 *vaddr;
1612                                         vaddr = kmap_atomic(buffer_info->page);
1613                                         memcpy(skb_tail_pointer(skb), vaddr,
1614                                                length);
1615                                         kunmap_atomic(vaddr);
1616                                         /* re-use the page, so don't erase
1617                                          * buffer_info->page
1618                                          */
1619                                         skb_put(skb, length);
1620                                 } else {
1621                                         skb_fill_page_desc(skb, 0,
1622                                                            buffer_info->page, 0,
1623                                                            length);
1624                                         e1000_consume_page(buffer_info, skb,
1625                                                            length);
1626                                 }
1627                         }
1628                 }
1629
1630                 /* Receive Checksum Offload */
1631                 e1000_rx_checksum(adapter, staterr, skb);
1632
1633                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1634
1635                 /* probably a little skewed due to removing CRC */
1636                 total_rx_bytes += skb->len;
1637                 total_rx_packets++;
1638
1639                 /* eth type trans needs skb->data to point to something */
1640                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1641                         e_err("pskb_may_pull failed.\n");
1642                         dev_kfree_skb_irq(skb);
1643                         goto next_desc;
1644                 }
1645
1646                 e1000_receive_skb(adapter, netdev, skb, staterr,
1647                                   rx_desc->wb.upper.vlan);
1648
1649 next_desc:
1650                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1651
1652                 /* return some buffers to hardware, one at a time is too slow */
1653                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1654                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1655                                               GFP_ATOMIC);
1656                         cleaned_count = 0;
1657                 }
1658
1659                 /* use prefetched values */
1660                 rx_desc = next_rxd;
1661                 buffer_info = next_buffer;
1662
1663                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1664         }
1665         rx_ring->next_to_clean = i;
1666
1667         cleaned_count = e1000_desc_unused(rx_ring);
1668         if (cleaned_count)
1669                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1670
1671         adapter->total_rx_bytes += total_rx_bytes;
1672         adapter->total_rx_packets += total_rx_packets;
1673         return cleaned;
1674 }
1675
1676 /**
1677  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1678  * @rx_ring: Rx descriptor ring
1679  **/
1680 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1681 {
1682         struct e1000_adapter *adapter = rx_ring->adapter;
1683         struct e1000_buffer *buffer_info;
1684         struct e1000_ps_page *ps_page;
1685         struct pci_dev *pdev = adapter->pdev;
1686         unsigned int i, j;
1687
1688         /* Free all the Rx ring sk_buffs */
1689         for (i = 0; i < rx_ring->count; i++) {
1690                 buffer_info = &rx_ring->buffer_info[i];
1691                 if (buffer_info->dma) {
1692                         if (adapter->clean_rx == e1000_clean_rx_irq)
1693                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1694                                                  adapter->rx_buffer_len,
1695                                                  DMA_FROM_DEVICE);
1696                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1697                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1698                                                PAGE_SIZE, DMA_FROM_DEVICE);
1699                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1700                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1701                                                  adapter->rx_ps_bsize0,
1702                                                  DMA_FROM_DEVICE);
1703                         buffer_info->dma = 0;
1704                 }
1705
1706                 if (buffer_info->page) {
1707                         put_page(buffer_info->page);
1708                         buffer_info->page = NULL;
1709                 }
1710
1711                 if (buffer_info->skb) {
1712                         dev_kfree_skb(buffer_info->skb);
1713                         buffer_info->skb = NULL;
1714                 }
1715
1716                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1717                         ps_page = &buffer_info->ps_pages[j];
1718                         if (!ps_page->page)
1719                                 break;
1720                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1721                                        DMA_FROM_DEVICE);
1722                         ps_page->dma = 0;
1723                         put_page(ps_page->page);
1724                         ps_page->page = NULL;
1725                 }
1726         }
1727
1728         /* there also may be some cached data from a chained receive */
1729         if (rx_ring->rx_skb_top) {
1730                 dev_kfree_skb(rx_ring->rx_skb_top);
1731                 rx_ring->rx_skb_top = NULL;
1732         }
1733
1734         /* Zero out the descriptor ring */
1735         memset(rx_ring->desc, 0, rx_ring->size);
1736
1737         rx_ring->next_to_clean = 0;
1738         rx_ring->next_to_use = 0;
1739         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1740 }
1741
1742 static void e1000e_downshift_workaround(struct work_struct *work)
1743 {
1744         struct e1000_adapter *adapter = container_of(work,
1745                                                      struct e1000_adapter,
1746                                                      downshift_task);
1747
1748         if (test_bit(__E1000_DOWN, &adapter->state))
1749                 return;
1750
1751         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1752 }
1753
1754 /**
1755  * e1000_intr_msi - Interrupt Handler
1756  * @irq: interrupt number
1757  * @data: pointer to a network interface device structure
1758  **/
1759 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1760 {
1761         struct net_device *netdev = data;
1762         struct e1000_adapter *adapter = netdev_priv(netdev);
1763         struct e1000_hw *hw = &adapter->hw;
1764         u32 icr = er32(ICR);
1765
1766         /* read ICR disables interrupts using IAM */
1767         if (icr & E1000_ICR_LSC) {
1768                 hw->mac.get_link_status = true;
1769                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1770                  * disconnect (LSC) before accessing any PHY registers
1771                  */
1772                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1773                     (!(er32(STATUS) & E1000_STATUS_LU)))
1774                         schedule_work(&adapter->downshift_task);
1775
1776                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1777                  * link down event; disable receives here in the ISR and reset
1778                  * adapter in watchdog
1779                  */
1780                 if (netif_carrier_ok(netdev) &&
1781                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1782                         /* disable receives */
1783                         u32 rctl = er32(RCTL);
1784
1785                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1786                         adapter->flags |= FLAG_RESTART_NOW;
1787                 }
1788                 /* guard against interrupt when we're going down */
1789                 if (!test_bit(__E1000_DOWN, &adapter->state))
1790                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1791         }
1792
1793         /* Reset on uncorrectable ECC error */
1794         if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1795                                         (hw->mac.type == e1000_pch_spt))) {
1796                 u32 pbeccsts = er32(PBECCSTS);
1797
1798                 adapter->corr_errors +=
1799                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1800                 adapter->uncorr_errors +=
1801                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1802                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1803
1804                 /* Do the reset outside of interrupt context */
1805                 schedule_work(&adapter->reset_task);
1806
1807                 /* return immediately since reset is imminent */
1808                 return IRQ_HANDLED;
1809         }
1810
1811         if (napi_schedule_prep(&adapter->napi)) {
1812                 adapter->total_tx_bytes = 0;
1813                 adapter->total_tx_packets = 0;
1814                 adapter->total_rx_bytes = 0;
1815                 adapter->total_rx_packets = 0;
1816                 __napi_schedule(&adapter->napi);
1817         }
1818
1819         return IRQ_HANDLED;
1820 }
1821
1822 /**
1823  * e1000_intr - Interrupt Handler
1824  * @irq: interrupt number
1825  * @data: pointer to a network interface device structure
1826  **/
1827 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1828 {
1829         struct net_device *netdev = data;
1830         struct e1000_adapter *adapter = netdev_priv(netdev);
1831         struct e1000_hw *hw = &adapter->hw;
1832         u32 rctl, icr = er32(ICR);
1833
1834         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1835                 return IRQ_NONE;        /* Not our interrupt */
1836
1837         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1838          * not set, then the adapter didn't send an interrupt
1839          */
1840         if (!(icr & E1000_ICR_INT_ASSERTED))
1841                 return IRQ_NONE;
1842
1843         /* Interrupt Auto-Mask...upon reading ICR,
1844          * interrupts are masked.  No need for the
1845          * IMC write
1846          */
1847
1848         if (icr & E1000_ICR_LSC) {
1849                 hw->mac.get_link_status = true;
1850                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1851                  * disconnect (LSC) before accessing any PHY registers
1852                  */
1853                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1854                     (!(er32(STATUS) & E1000_STATUS_LU)))
1855                         schedule_work(&adapter->downshift_task);
1856
1857                 /* 80003ES2LAN workaround--
1858                  * For packet buffer work-around on link down event;
1859                  * disable receives here in the ISR and
1860                  * reset adapter in watchdog
1861                  */
1862                 if (netif_carrier_ok(netdev) &&
1863                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1864                         /* disable receives */
1865                         rctl = er32(RCTL);
1866                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1867                         adapter->flags |= FLAG_RESTART_NOW;
1868                 }
1869                 /* guard against interrupt when we're going down */
1870                 if (!test_bit(__E1000_DOWN, &adapter->state))
1871                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1872         }
1873
1874         /* Reset on uncorrectable ECC error */
1875         if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1876                                         (hw->mac.type == e1000_pch_spt))) {
1877                 u32 pbeccsts = er32(PBECCSTS);
1878
1879                 adapter->corr_errors +=
1880                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1881                 adapter->uncorr_errors +=
1882                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1883                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1884
1885                 /* Do the reset outside of interrupt context */
1886                 schedule_work(&adapter->reset_task);
1887
1888                 /* return immediately since reset is imminent */
1889                 return IRQ_HANDLED;
1890         }
1891
1892         if (napi_schedule_prep(&adapter->napi)) {
1893                 adapter->total_tx_bytes = 0;
1894                 adapter->total_tx_packets = 0;
1895                 adapter->total_rx_bytes = 0;
1896                 adapter->total_rx_packets = 0;
1897                 __napi_schedule(&adapter->napi);
1898         }
1899
1900         return IRQ_HANDLED;
1901 }
1902
1903 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1904 {
1905         struct net_device *netdev = data;
1906         struct e1000_adapter *adapter = netdev_priv(netdev);
1907         struct e1000_hw *hw = &adapter->hw;
1908
1909         hw->mac.get_link_status = true;
1910
1911         /* guard against interrupt when we're going down */
1912         if (!test_bit(__E1000_DOWN, &adapter->state)) {
1913                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1914                 ew32(IMS, E1000_IMS_OTHER);
1915         }
1916
1917         return IRQ_HANDLED;
1918 }
1919
1920 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1921 {
1922         struct net_device *netdev = data;
1923         struct e1000_adapter *adapter = netdev_priv(netdev);
1924         struct e1000_hw *hw = &adapter->hw;
1925         struct e1000_ring *tx_ring = adapter->tx_ring;
1926
1927         adapter->total_tx_bytes = 0;
1928         adapter->total_tx_packets = 0;
1929
1930         if (!e1000_clean_tx_irq(tx_ring))
1931                 /* Ring was not completely cleaned, so fire another interrupt */
1932                 ew32(ICS, tx_ring->ims_val);
1933
1934         if (!test_bit(__E1000_DOWN, &adapter->state))
1935                 ew32(IMS, adapter->tx_ring->ims_val);
1936
1937         return IRQ_HANDLED;
1938 }
1939
1940 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1941 {
1942         struct net_device *netdev = data;
1943         struct e1000_adapter *adapter = netdev_priv(netdev);
1944         struct e1000_ring *rx_ring = adapter->rx_ring;
1945
1946         /* Write the ITR value calculated at the end of the
1947          * previous interrupt.
1948          */
1949         if (rx_ring->set_itr) {
1950                 u32 itr = rx_ring->itr_val ?
1951                           1000000000 / (rx_ring->itr_val * 256) : 0;
1952
1953                 writel(itr, rx_ring->itr_register);
1954                 rx_ring->set_itr = 0;
1955         }
1956
1957         if (napi_schedule_prep(&adapter->napi)) {
1958                 adapter->total_rx_bytes = 0;
1959                 adapter->total_rx_packets = 0;
1960                 __napi_schedule(&adapter->napi);
1961         }
1962         return IRQ_HANDLED;
1963 }
1964
1965 /**
1966  * e1000_configure_msix - Configure MSI-X hardware
1967  *
1968  * e1000_configure_msix sets up the hardware to properly
1969  * generate MSI-X interrupts.
1970  **/
1971 static void e1000_configure_msix(struct e1000_adapter *adapter)
1972 {
1973         struct e1000_hw *hw = &adapter->hw;
1974         struct e1000_ring *rx_ring = adapter->rx_ring;
1975         struct e1000_ring *tx_ring = adapter->tx_ring;
1976         int vector = 0;
1977         u32 ctrl_ext, ivar = 0;
1978
1979         adapter->eiac_mask = 0;
1980
1981         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1982         if (hw->mac.type == e1000_82574) {
1983                 u32 rfctl = er32(RFCTL);
1984
1985                 rfctl |= E1000_RFCTL_ACK_DIS;
1986                 ew32(RFCTL, rfctl);
1987         }
1988
1989         /* Configure Rx vector */
1990         rx_ring->ims_val = E1000_IMS_RXQ0;
1991         adapter->eiac_mask |= rx_ring->ims_val;
1992         if (rx_ring->itr_val)
1993                 writel(1000000000 / (rx_ring->itr_val * 256),
1994                        rx_ring->itr_register);
1995         else
1996                 writel(1, rx_ring->itr_register);
1997         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1998
1999         /* Configure Tx vector */
2000         tx_ring->ims_val = E1000_IMS_TXQ0;
2001         vector++;
2002         if (tx_ring->itr_val)
2003                 writel(1000000000 / (tx_ring->itr_val * 256),
2004                        tx_ring->itr_register);
2005         else
2006                 writel(1, tx_ring->itr_register);
2007         adapter->eiac_mask |= tx_ring->ims_val;
2008         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2009
2010         /* set vector for Other Causes, e.g. link changes */
2011         vector++;
2012         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2013         if (rx_ring->itr_val)
2014                 writel(1000000000 / (rx_ring->itr_val * 256),
2015                        hw->hw_addr + E1000_EITR_82574(vector));
2016         else
2017                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2018         adapter->eiac_mask |= E1000_IMS_OTHER;
2019
2020         /* Cause Tx interrupts on every write back */
2021         ivar |= BIT(31);
2022
2023         ew32(IVAR, ivar);
2024
2025         /* enable MSI-X PBA support */
2026         ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2027         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2028         ew32(CTRL_EXT, ctrl_ext);
2029         e1e_flush();
2030 }
2031
2032 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2033 {
2034         if (adapter->msix_entries) {
2035                 pci_disable_msix(adapter->pdev);
2036                 kfree(adapter->msix_entries);
2037                 adapter->msix_entries = NULL;
2038         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2039                 pci_disable_msi(adapter->pdev);
2040                 adapter->flags &= ~FLAG_MSI_ENABLED;
2041         }
2042 }
2043
2044 /**
2045  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2046  *
2047  * Attempt to configure interrupts using the best available
2048  * capabilities of the hardware and kernel.
2049  **/
2050 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2051 {
2052         int err;
2053         int i;
2054
2055         switch (adapter->int_mode) {
2056         case E1000E_INT_MODE_MSIX:
2057                 if (adapter->flags & FLAG_HAS_MSIX) {
2058                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2059                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2060                                                         sizeof(struct
2061                                                                msix_entry),
2062                                                         GFP_KERNEL);
2063                         if (adapter->msix_entries) {
2064                                 struct e1000_adapter *a = adapter;
2065
2066                                 for (i = 0; i < adapter->num_vectors; i++)
2067                                         adapter->msix_entries[i].entry = i;
2068
2069                                 err = pci_enable_msix_range(a->pdev,
2070                                                             a->msix_entries,
2071                                                             a->num_vectors,
2072                                                             a->num_vectors);
2073                                 if (err > 0)
2074                                         return;
2075                         }
2076                         /* MSI-X failed, so fall through and try MSI */
2077                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2078                         e1000e_reset_interrupt_capability(adapter);
2079                 }
2080                 adapter->int_mode = E1000E_INT_MODE_MSI;
2081                 /* Fall through */
2082         case E1000E_INT_MODE_MSI:
2083                 if (!pci_enable_msi(adapter->pdev)) {
2084                         adapter->flags |= FLAG_MSI_ENABLED;
2085                 } else {
2086                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2087                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2088                 }
2089                 /* Fall through */
2090         case E1000E_INT_MODE_LEGACY:
2091                 /* Don't do anything; this is the system default */
2092                 break;
2093         }
2094
2095         /* store the number of vectors being used */
2096         adapter->num_vectors = 1;
2097 }
2098
2099 /**
2100  * e1000_request_msix - Initialize MSI-X interrupts
2101  *
2102  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2103  * kernel.
2104  **/
2105 static int e1000_request_msix(struct e1000_adapter *adapter)
2106 {
2107         struct net_device *netdev = adapter->netdev;
2108         int err = 0, vector = 0;
2109
2110         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2111                 snprintf(adapter->rx_ring->name,
2112                          sizeof(adapter->rx_ring->name) - 1,
2113                          "%s-rx-0", netdev->name);
2114         else
2115                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2116         err = request_irq(adapter->msix_entries[vector].vector,
2117                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2118                           netdev);
2119         if (err)
2120                 return err;
2121         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2122             E1000_EITR_82574(vector);
2123         adapter->rx_ring->itr_val = adapter->itr;
2124         vector++;
2125
2126         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2127                 snprintf(adapter->tx_ring->name,
2128                          sizeof(adapter->tx_ring->name) - 1,
2129                          "%s-tx-0", netdev->name);
2130         else
2131                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2132         err = request_irq(adapter->msix_entries[vector].vector,
2133                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2134                           netdev);
2135         if (err)
2136                 return err;
2137         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2138             E1000_EITR_82574(vector);
2139         adapter->tx_ring->itr_val = adapter->itr;
2140         vector++;
2141
2142         err = request_irq(adapter->msix_entries[vector].vector,
2143                           e1000_msix_other, 0, netdev->name, netdev);
2144         if (err)
2145                 return err;
2146
2147         e1000_configure_msix(adapter);
2148
2149         return 0;
2150 }
2151
2152 /**
2153  * e1000_request_irq - initialize interrupts
2154  *
2155  * Attempts to configure interrupts using the best available
2156  * capabilities of the hardware and kernel.
2157  **/
2158 static int e1000_request_irq(struct e1000_adapter *adapter)
2159 {
2160         struct net_device *netdev = adapter->netdev;
2161         int err;
2162
2163         if (adapter->msix_entries) {
2164                 err = e1000_request_msix(adapter);
2165                 if (!err)
2166                         return err;
2167                 /* fall back to MSI */
2168                 e1000e_reset_interrupt_capability(adapter);
2169                 adapter->int_mode = E1000E_INT_MODE_MSI;
2170                 e1000e_set_interrupt_capability(adapter);
2171         }
2172         if (adapter->flags & FLAG_MSI_ENABLED) {
2173                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2174                                   netdev->name, netdev);
2175                 if (!err)
2176                         return err;
2177
2178                 /* fall back to legacy interrupt */
2179                 e1000e_reset_interrupt_capability(adapter);
2180                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2181         }
2182
2183         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2184                           netdev->name, netdev);
2185         if (err)
2186                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2187
2188         return err;
2189 }
2190
2191 static void e1000_free_irq(struct e1000_adapter *adapter)
2192 {
2193         struct net_device *netdev = adapter->netdev;
2194
2195         if (adapter->msix_entries) {
2196                 int vector = 0;
2197
2198                 free_irq(adapter->msix_entries[vector].vector, netdev);
2199                 vector++;
2200
2201                 free_irq(adapter->msix_entries[vector].vector, netdev);
2202                 vector++;
2203
2204                 /* Other Causes interrupt vector */
2205                 free_irq(adapter->msix_entries[vector].vector, netdev);
2206                 return;
2207         }
2208
2209         free_irq(adapter->pdev->irq, netdev);
2210 }
2211
2212 /**
2213  * e1000_irq_disable - Mask off interrupt generation on the NIC
2214  **/
2215 static void e1000_irq_disable(struct e1000_adapter *adapter)
2216 {
2217         struct e1000_hw *hw = &adapter->hw;
2218
2219         ew32(IMC, ~0);
2220         if (adapter->msix_entries)
2221                 ew32(EIAC_82574, 0);
2222         e1e_flush();
2223
2224         if (adapter->msix_entries) {
2225                 int i;
2226
2227                 for (i = 0; i < adapter->num_vectors; i++)
2228                         synchronize_irq(adapter->msix_entries[i].vector);
2229         } else {
2230                 synchronize_irq(adapter->pdev->irq);
2231         }
2232 }
2233
2234 /**
2235  * e1000_irq_enable - Enable default interrupt generation settings
2236  **/
2237 static void e1000_irq_enable(struct e1000_adapter *adapter)
2238 {
2239         struct e1000_hw *hw = &adapter->hw;
2240
2241         if (adapter->msix_entries) {
2242                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2243                 ew32(IMS, adapter->eiac_mask | E1000_IMS_LSC);
2244         } else if ((hw->mac.type == e1000_pch_lpt) ||
2245                    (hw->mac.type == e1000_pch_spt)) {
2246                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2247         } else {
2248                 ew32(IMS, IMS_ENABLE_MASK);
2249         }
2250         e1e_flush();
2251 }
2252
2253 /**
2254  * e1000e_get_hw_control - get control of the h/w from f/w
2255  * @adapter: address of board private structure
2256  *
2257  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2258  * For ASF and Pass Through versions of f/w this means that
2259  * the driver is loaded. For AMT version (only with 82573)
2260  * of the f/w this means that the network i/f is open.
2261  **/
2262 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2263 {
2264         struct e1000_hw *hw = &adapter->hw;
2265         u32 ctrl_ext;
2266         u32 swsm;
2267
2268         /* Let firmware know the driver has taken over */
2269         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2270                 swsm = er32(SWSM);
2271                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2272         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2273                 ctrl_ext = er32(CTRL_EXT);
2274                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2275         }
2276 }
2277
2278 /**
2279  * e1000e_release_hw_control - release control of the h/w to f/w
2280  * @adapter: address of board private structure
2281  *
2282  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2283  * For ASF and Pass Through versions of f/w this means that the
2284  * driver is no longer loaded. For AMT version (only with 82573) i
2285  * of the f/w this means that the network i/f is closed.
2286  *
2287  **/
2288 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2289 {
2290         struct e1000_hw *hw = &adapter->hw;
2291         u32 ctrl_ext;
2292         u32 swsm;
2293
2294         /* Let firmware taken over control of h/w */
2295         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2296                 swsm = er32(SWSM);
2297                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2298         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2299                 ctrl_ext = er32(CTRL_EXT);
2300                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2301         }
2302 }
2303
2304 /**
2305  * e1000_alloc_ring_dma - allocate memory for a ring structure
2306  **/
2307 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2308                                 struct e1000_ring *ring)
2309 {
2310         struct pci_dev *pdev = adapter->pdev;
2311
2312         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2313                                         GFP_KERNEL);
2314         if (!ring->desc)
2315                 return -ENOMEM;
2316
2317         return 0;
2318 }
2319
2320 /**
2321  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2322  * @tx_ring: Tx descriptor ring
2323  *
2324  * Return 0 on success, negative on failure
2325  **/
2326 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2327 {
2328         struct e1000_adapter *adapter = tx_ring->adapter;
2329         int err = -ENOMEM, size;
2330
2331         size = sizeof(struct e1000_buffer) * tx_ring->count;
2332         tx_ring->buffer_info = vzalloc(size);
2333         if (!tx_ring->buffer_info)
2334                 goto err;
2335
2336         /* round up to nearest 4K */
2337         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2338         tx_ring->size = ALIGN(tx_ring->size, 4096);
2339
2340         err = e1000_alloc_ring_dma(adapter, tx_ring);
2341         if (err)
2342                 goto err;
2343
2344         tx_ring->next_to_use = 0;
2345         tx_ring->next_to_clean = 0;
2346
2347         return 0;
2348 err:
2349         vfree(tx_ring->buffer_info);
2350         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2351         return err;
2352 }
2353
2354 /**
2355  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2356  * @rx_ring: Rx descriptor ring
2357  *
2358  * Returns 0 on success, negative on failure
2359  **/
2360 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2361 {
2362         struct e1000_adapter *adapter = rx_ring->adapter;
2363         struct e1000_buffer *buffer_info;
2364         int i, size, desc_len, err = -ENOMEM;
2365
2366         size = sizeof(struct e1000_buffer) * rx_ring->count;
2367         rx_ring->buffer_info = vzalloc(size);
2368         if (!rx_ring->buffer_info)
2369                 goto err;
2370
2371         for (i = 0; i < rx_ring->count; i++) {
2372                 buffer_info = &rx_ring->buffer_info[i];
2373                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2374                                                 sizeof(struct e1000_ps_page),
2375                                                 GFP_KERNEL);
2376                 if (!buffer_info->ps_pages)
2377                         goto err_pages;
2378         }
2379
2380         desc_len = sizeof(union e1000_rx_desc_packet_split);
2381
2382         /* Round up to nearest 4K */
2383         rx_ring->size = rx_ring->count * desc_len;
2384         rx_ring->size = ALIGN(rx_ring->size, 4096);
2385
2386         err = e1000_alloc_ring_dma(adapter, rx_ring);
2387         if (err)
2388                 goto err_pages;
2389
2390         rx_ring->next_to_clean = 0;
2391         rx_ring->next_to_use = 0;
2392         rx_ring->rx_skb_top = NULL;
2393
2394         return 0;
2395
2396 err_pages:
2397         for (i = 0; i < rx_ring->count; i++) {
2398                 buffer_info = &rx_ring->buffer_info[i];
2399                 kfree(buffer_info->ps_pages);
2400         }
2401 err:
2402         vfree(rx_ring->buffer_info);
2403         e_err("Unable to allocate memory for the receive descriptor ring\n");
2404         return err;
2405 }
2406
2407 /**
2408  * e1000_clean_tx_ring - Free Tx Buffers
2409  * @tx_ring: Tx descriptor ring
2410  **/
2411 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2412 {
2413         struct e1000_adapter *adapter = tx_ring->adapter;
2414         struct e1000_buffer *buffer_info;
2415         unsigned long size;
2416         unsigned int i;
2417
2418         for (i = 0; i < tx_ring->count; i++) {
2419                 buffer_info = &tx_ring->buffer_info[i];
2420                 e1000_put_txbuf(tx_ring, buffer_info);
2421         }
2422
2423         netdev_reset_queue(adapter->netdev);
2424         size = sizeof(struct e1000_buffer) * tx_ring->count;
2425         memset(tx_ring->buffer_info, 0, size);
2426
2427         memset(tx_ring->desc, 0, tx_ring->size);
2428
2429         tx_ring->next_to_use = 0;
2430         tx_ring->next_to_clean = 0;
2431 }
2432
2433 /**
2434  * e1000e_free_tx_resources - Free Tx Resources per Queue
2435  * @tx_ring: Tx descriptor ring
2436  *
2437  * Free all transmit software resources
2438  **/
2439 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2440 {
2441         struct e1000_adapter *adapter = tx_ring->adapter;
2442         struct pci_dev *pdev = adapter->pdev;
2443
2444         e1000_clean_tx_ring(tx_ring);
2445
2446         vfree(tx_ring->buffer_info);
2447         tx_ring->buffer_info = NULL;
2448
2449         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2450                           tx_ring->dma);
2451         tx_ring->desc = NULL;
2452 }
2453
2454 /**
2455  * e1000e_free_rx_resources - Free Rx Resources
2456  * @rx_ring: Rx descriptor ring
2457  *
2458  * Free all receive software resources
2459  **/
2460 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2461 {
2462         struct e1000_adapter *adapter = rx_ring->adapter;
2463         struct pci_dev *pdev = adapter->pdev;
2464         int i;
2465
2466         e1000_clean_rx_ring(rx_ring);
2467
2468         for (i = 0; i < rx_ring->count; i++)
2469                 kfree(rx_ring->buffer_info[i].ps_pages);
2470
2471         vfree(rx_ring->buffer_info);
2472         rx_ring->buffer_info = NULL;
2473
2474         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2475                           rx_ring->dma);
2476         rx_ring->desc = NULL;
2477 }
2478
2479 /**
2480  * e1000_update_itr - update the dynamic ITR value based on statistics
2481  * @adapter: pointer to adapter
2482  * @itr_setting: current adapter->itr
2483  * @packets: the number of packets during this measurement interval
2484  * @bytes: the number of bytes during this measurement interval
2485  *
2486  *      Stores a new ITR value based on packets and byte
2487  *      counts during the last interrupt.  The advantage of per interrupt
2488  *      computation is faster updates and more accurate ITR for the current
2489  *      traffic pattern.  Constants in this function were computed
2490  *      based on theoretical maximum wire speed and thresholds were set based
2491  *      on testing data as well as attempting to minimize response time
2492  *      while increasing bulk throughput.  This functionality is controlled
2493  *      by the InterruptThrottleRate module parameter.
2494  **/
2495 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2496 {
2497         unsigned int retval = itr_setting;
2498
2499         if (packets == 0)
2500                 return itr_setting;
2501
2502         switch (itr_setting) {
2503         case lowest_latency:
2504                 /* handle TSO and jumbo frames */
2505                 if (bytes / packets > 8000)
2506                         retval = bulk_latency;
2507                 else if ((packets < 5) && (bytes > 512))
2508                         retval = low_latency;
2509                 break;
2510         case low_latency:       /* 50 usec aka 20000 ints/s */
2511                 if (bytes > 10000) {
2512                         /* this if handles the TSO accounting */
2513                         if (bytes / packets > 8000)
2514                                 retval = bulk_latency;
2515                         else if ((packets < 10) || ((bytes / packets) > 1200))
2516                                 retval = bulk_latency;
2517                         else if ((packets > 35))
2518                                 retval = lowest_latency;
2519                 } else if (bytes / packets > 2000) {
2520                         retval = bulk_latency;
2521                 } else if (packets <= 2 && bytes < 512) {
2522                         retval = lowest_latency;
2523                 }
2524                 break;
2525         case bulk_latency:      /* 250 usec aka 4000 ints/s */
2526                 if (bytes > 25000) {
2527                         if (packets > 35)
2528                                 retval = low_latency;
2529                 } else if (bytes < 6000) {
2530                         retval = low_latency;
2531                 }
2532                 break;
2533         }
2534
2535         return retval;
2536 }
2537
2538 static void e1000_set_itr(struct e1000_adapter *adapter)
2539 {
2540         u16 current_itr;
2541         u32 new_itr = adapter->itr;
2542
2543         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2544         if (adapter->link_speed != SPEED_1000) {
2545                 current_itr = 0;
2546                 new_itr = 4000;
2547                 goto set_itr_now;
2548         }
2549
2550         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2551                 new_itr = 0;
2552                 goto set_itr_now;
2553         }
2554
2555         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2556                                            adapter->total_tx_packets,
2557                                            adapter->total_tx_bytes);
2558         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2559         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2560                 adapter->tx_itr = low_latency;
2561
2562         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2563                                            adapter->total_rx_packets,
2564                                            adapter->total_rx_bytes);
2565         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2566         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2567                 adapter->rx_itr = low_latency;
2568
2569         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2570
2571         /* counts and packets in update_itr are dependent on these numbers */
2572         switch (current_itr) {
2573         case lowest_latency:
2574                 new_itr = 70000;
2575                 break;
2576         case low_latency:
2577                 new_itr = 20000;        /* aka hwitr = ~200 */
2578                 break;
2579         case bulk_latency:
2580                 new_itr = 4000;
2581                 break;
2582         default:
2583                 break;
2584         }
2585
2586 set_itr_now:
2587         if (new_itr != adapter->itr) {
2588                 /* this attempts to bias the interrupt rate towards Bulk
2589                  * by adding intermediate steps when interrupt rate is
2590                  * increasing
2591                  */
2592                 new_itr = new_itr > adapter->itr ?
2593                     min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2594                 adapter->itr = new_itr;
2595                 adapter->rx_ring->itr_val = new_itr;
2596                 if (adapter->msix_entries)
2597                         adapter->rx_ring->set_itr = 1;
2598                 else
2599                         e1000e_write_itr(adapter, new_itr);
2600         }
2601 }
2602
2603 /**
2604  * e1000e_write_itr - write the ITR value to the appropriate registers
2605  * @adapter: address of board private structure
2606  * @itr: new ITR value to program
2607  *
2608  * e1000e_write_itr determines if the adapter is in MSI-X mode
2609  * and, if so, writes the EITR registers with the ITR value.
2610  * Otherwise, it writes the ITR value into the ITR register.
2611  **/
2612 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2613 {
2614         struct e1000_hw *hw = &adapter->hw;
2615         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2616
2617         if (adapter->msix_entries) {
2618                 int vector;
2619
2620                 for (vector = 0; vector < adapter->num_vectors; vector++)
2621                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2622         } else {
2623                 ew32(ITR, new_itr);
2624         }
2625 }
2626
2627 /**
2628  * e1000_alloc_queues - Allocate memory for all rings
2629  * @adapter: board private structure to initialize
2630  **/
2631 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2632 {
2633         int size = sizeof(struct e1000_ring);
2634
2635         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2636         if (!adapter->tx_ring)
2637                 goto err;
2638         adapter->tx_ring->count = adapter->tx_ring_count;
2639         adapter->tx_ring->adapter = adapter;
2640
2641         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2642         if (!adapter->rx_ring)
2643                 goto err;
2644         adapter->rx_ring->count = adapter->rx_ring_count;
2645         adapter->rx_ring->adapter = adapter;
2646
2647         return 0;
2648 err:
2649         e_err("Unable to allocate memory for queues\n");
2650         kfree(adapter->rx_ring);
2651         kfree(adapter->tx_ring);
2652         return -ENOMEM;
2653 }
2654
2655 /**
2656  * e1000e_poll - NAPI Rx polling callback
2657  * @napi: struct associated with this polling callback
2658  * @weight: number of packets driver is allowed to process this poll
2659  **/
2660 static int e1000e_poll(struct napi_struct *napi, int weight)
2661 {
2662         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2663                                                      napi);
2664         struct e1000_hw *hw = &adapter->hw;
2665         struct net_device *poll_dev = adapter->netdev;
2666         int tx_cleaned = 1, work_done = 0;
2667
2668         adapter = netdev_priv(poll_dev);
2669
2670         if (!adapter->msix_entries ||
2671             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2672                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2673
2674         adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2675
2676         if (!tx_cleaned)
2677                 work_done = weight;
2678
2679         /* If weight not fully consumed, exit the polling mode */
2680         if (work_done < weight) {
2681                 if (adapter->itr_setting & 3)
2682                         e1000_set_itr(adapter);
2683                 napi_complete_done(napi, work_done);
2684                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2685                         if (adapter->msix_entries)
2686                                 ew32(IMS, adapter->rx_ring->ims_val);
2687                         else
2688                                 e1000_irq_enable(adapter);
2689                 }
2690         }
2691
2692         return work_done;
2693 }
2694
2695 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2696                                  __always_unused __be16 proto, u16 vid)
2697 {
2698         struct e1000_adapter *adapter = netdev_priv(netdev);
2699         struct e1000_hw *hw = &adapter->hw;
2700         u32 vfta, index;
2701
2702         /* don't update vlan cookie if already programmed */
2703         if ((adapter->hw.mng_cookie.status &
2704              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2705             (vid == adapter->mng_vlan_id))
2706                 return 0;
2707
2708         /* add VID to filter table */
2709         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2710                 index = (vid >> 5) & 0x7F;
2711                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2712                 vfta |= BIT((vid & 0x1F));
2713                 hw->mac.ops.write_vfta(hw, index, vfta);
2714         }
2715
2716         set_bit(vid, adapter->active_vlans);
2717
2718         return 0;
2719 }
2720
2721 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2722                                   __always_unused __be16 proto, u16 vid)
2723 {
2724         struct e1000_adapter *adapter = netdev_priv(netdev);
2725         struct e1000_hw *hw = &adapter->hw;
2726         u32 vfta, index;
2727
2728         if ((adapter->hw.mng_cookie.status &
2729              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2730             (vid == adapter->mng_vlan_id)) {
2731                 /* release control to f/w */
2732                 e1000e_release_hw_control(adapter);
2733                 return 0;
2734         }
2735
2736         /* remove VID from filter table */
2737         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2738                 index = (vid >> 5) & 0x7F;
2739                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2740                 vfta &= ~BIT((vid & 0x1F));
2741                 hw->mac.ops.write_vfta(hw, index, vfta);
2742         }
2743
2744         clear_bit(vid, adapter->active_vlans);
2745
2746         return 0;
2747 }
2748
2749 /**
2750  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2751  * @adapter: board private structure to initialize
2752  **/
2753 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2754 {
2755         struct net_device *netdev = adapter->netdev;
2756         struct e1000_hw *hw = &adapter->hw;
2757         u32 rctl;
2758
2759         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2760                 /* disable VLAN receive filtering */
2761                 rctl = er32(RCTL);
2762                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2763                 ew32(RCTL, rctl);
2764
2765                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2766                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2767                                                adapter->mng_vlan_id);
2768                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2769                 }
2770         }
2771 }
2772
2773 /**
2774  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2775  * @adapter: board private structure to initialize
2776  **/
2777 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2778 {
2779         struct e1000_hw *hw = &adapter->hw;
2780         u32 rctl;
2781
2782         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2783                 /* enable VLAN receive filtering */
2784                 rctl = er32(RCTL);
2785                 rctl |= E1000_RCTL_VFE;
2786                 rctl &= ~E1000_RCTL_CFIEN;
2787                 ew32(RCTL, rctl);
2788         }
2789 }
2790
2791 /**
2792  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2793  * @adapter: board private structure to initialize
2794  **/
2795 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2796 {
2797         struct e1000_hw *hw = &adapter->hw;
2798         u32 ctrl;
2799
2800         /* disable VLAN tag insert/strip */
2801         ctrl = er32(CTRL);
2802         ctrl &= ~E1000_CTRL_VME;
2803         ew32(CTRL, ctrl);
2804 }
2805
2806 /**
2807  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2808  * @adapter: board private structure to initialize
2809  **/
2810 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2811 {
2812         struct e1000_hw *hw = &adapter->hw;
2813         u32 ctrl;
2814
2815         /* enable VLAN tag insert/strip */
2816         ctrl = er32(CTRL);
2817         ctrl |= E1000_CTRL_VME;
2818         ew32(CTRL, ctrl);
2819 }
2820
2821 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2822 {
2823         struct net_device *netdev = adapter->netdev;
2824         u16 vid = adapter->hw.mng_cookie.vlan_id;
2825         u16 old_vid = adapter->mng_vlan_id;
2826
2827         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2828                 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2829                 adapter->mng_vlan_id = vid;
2830         }
2831
2832         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2833                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2834 }
2835
2836 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2837 {
2838         u16 vid;
2839
2840         e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2841
2842         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2843             e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2844 }
2845
2846 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2847 {
2848         struct e1000_hw *hw = &adapter->hw;
2849         u32 manc, manc2h, mdef, i, j;
2850
2851         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2852                 return;
2853
2854         manc = er32(MANC);
2855
2856         /* enable receiving management packets to the host. this will probably
2857          * generate destination unreachable messages from the host OS, but
2858          * the packets will be handled on SMBUS
2859          */
2860         manc |= E1000_MANC_EN_MNG2HOST;
2861         manc2h = er32(MANC2H);
2862
2863         switch (hw->mac.type) {
2864         default:
2865                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2866                 break;
2867         case e1000_82574:
2868         case e1000_82583:
2869                 /* Check if IPMI pass-through decision filter already exists;
2870                  * if so, enable it.
2871                  */
2872                 for (i = 0, j = 0; i < 8; i++) {
2873                         mdef = er32(MDEF(i));
2874
2875                         /* Ignore filters with anything other than IPMI ports */
2876                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2877                                 continue;
2878
2879                         /* Enable this decision filter in MANC2H */
2880                         if (mdef)
2881                                 manc2h |= BIT(i);
2882
2883                         j |= mdef;
2884                 }
2885
2886                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2887                         break;
2888
2889                 /* Create new decision filter in an empty filter */
2890                 for (i = 0, j = 0; i < 8; i++)
2891                         if (er32(MDEF(i)) == 0) {
2892                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2893                                                E1000_MDEF_PORT_664));
2894                                 manc2h |= BIT(1);
2895                                 j++;
2896                                 break;
2897                         }
2898
2899                 if (!j)
2900                         e_warn("Unable to create IPMI pass-through filter\n");
2901                 break;
2902         }
2903
2904         ew32(MANC2H, manc2h);
2905         ew32(MANC, manc);
2906 }
2907
2908 /**
2909  * e1000_configure_tx - Configure Transmit Unit after Reset
2910  * @adapter: board private structure
2911  *
2912  * Configure the Tx unit of the MAC after a reset.
2913  **/
2914 static void e1000_configure_tx(struct e1000_adapter *adapter)
2915 {
2916         struct e1000_hw *hw = &adapter->hw;
2917         struct e1000_ring *tx_ring = adapter->tx_ring;
2918         u64 tdba;
2919         u32 tdlen, tctl, tarc;
2920
2921         /* Setup the HW Tx Head and Tail descriptor pointers */
2922         tdba = tx_ring->dma;
2923         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2924         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2925         ew32(TDBAH(0), (tdba >> 32));
2926         ew32(TDLEN(0), tdlen);
2927         ew32(TDH(0), 0);
2928         ew32(TDT(0), 0);
2929         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2930         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2931
2932         writel(0, tx_ring->head);
2933         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2934                 e1000e_update_tdt_wa(tx_ring, 0);
2935         else
2936                 writel(0, tx_ring->tail);
2937
2938         /* Set the Tx Interrupt Delay register */
2939         ew32(TIDV, adapter->tx_int_delay);
2940         /* Tx irq moderation */
2941         ew32(TADV, adapter->tx_abs_int_delay);
2942
2943         if (adapter->flags2 & FLAG2_DMA_BURST) {
2944                 u32 txdctl = er32(TXDCTL(0));
2945
2946                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2947                             E1000_TXDCTL_WTHRESH);
2948                 /* set up some performance related parameters to encourage the
2949                  * hardware to use the bus more efficiently in bursts, depends
2950                  * on the tx_int_delay to be enabled,
2951                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2952                  * hthresh = 1 ==> prefetch when one or more available
2953                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2954                  * BEWARE: this seems to work but should be considered first if
2955                  * there are Tx hangs or other Tx related bugs
2956                  */
2957                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2958                 ew32(TXDCTL(0), txdctl);
2959         }
2960         /* erratum work around: set txdctl the same for both queues */
2961         ew32(TXDCTL(1), er32(TXDCTL(0)));
2962
2963         /* Program the Transmit Control Register */
2964         tctl = er32(TCTL);
2965         tctl &= ~E1000_TCTL_CT;
2966         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2967                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2968
2969         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2970                 tarc = er32(TARC(0));
2971                 /* set the speed mode bit, we'll clear it if we're not at
2972                  * gigabit link later
2973                  */
2974 #define SPEED_MODE_BIT BIT(21)
2975                 tarc |= SPEED_MODE_BIT;
2976                 ew32(TARC(0), tarc);
2977         }
2978
2979         /* errata: program both queues to unweighted RR */
2980         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2981                 tarc = er32(TARC(0));
2982                 tarc |= 1;
2983                 ew32(TARC(0), tarc);
2984                 tarc = er32(TARC(1));
2985                 tarc |= 1;
2986                 ew32(TARC(1), tarc);
2987         }
2988
2989         /* Setup Transmit Descriptor Settings for eop descriptor */
2990         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2991
2992         /* only set IDE if we are delaying interrupts using the timers */
2993         if (adapter->tx_int_delay)
2994                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2995
2996         /* enable Report Status bit */
2997         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2998
2999         ew32(TCTL, tctl);
3000
3001         hw->mac.ops.config_collision_dist(hw);
3002
3003         /* SPT Si errata workaround to avoid data corruption */
3004         if (hw->mac.type == e1000_pch_spt) {
3005                 u32 reg_val;
3006
3007                 reg_val = er32(IOSFPC);
3008                 reg_val |= E1000_RCTL_RDMTS_HEX;
3009                 ew32(IOSFPC, reg_val);
3010
3011                 reg_val = er32(TARC(0));
3012                 reg_val |= E1000_TARC0_CB_MULTIQ_3_REQ;
3013                 ew32(TARC(0), reg_val);
3014         }
3015 }
3016
3017 /**
3018  * e1000_setup_rctl - configure the receive control registers
3019  * @adapter: Board private structure
3020  **/
3021 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3022                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3023 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3024 {
3025         struct e1000_hw *hw = &adapter->hw;
3026         u32 rctl, rfctl;
3027         u32 pages = 0;
3028
3029         /* Workaround Si errata on PCHx - configure jumbo frame flow.
3030          * If jumbo frames not set, program related MAC/PHY registers
3031          * to h/w defaults
3032          */
3033         if (hw->mac.type >= e1000_pch2lan) {
3034                 s32 ret_val;
3035
3036                 if (adapter->netdev->mtu > ETH_DATA_LEN)
3037                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3038                 else
3039                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3040
3041                 if (ret_val)
3042                         e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3043         }
3044
3045         /* Program MC offset vector base */
3046         rctl = er32(RCTL);
3047         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3048         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3049             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3050             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3051
3052         /* Do not Store bad packets */
3053         rctl &= ~E1000_RCTL_SBP;
3054
3055         /* Enable Long Packet receive */
3056         if (adapter->netdev->mtu <= ETH_DATA_LEN)
3057                 rctl &= ~E1000_RCTL_LPE;
3058         else
3059                 rctl |= E1000_RCTL_LPE;
3060
3061         /* Some systems expect that the CRC is included in SMBUS traffic. The
3062          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3063          * host memory when this is enabled
3064          */
3065         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3066                 rctl |= E1000_RCTL_SECRC;
3067
3068         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3069         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3070                 u16 phy_data;
3071
3072                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3073                 phy_data &= 0xfff8;
3074                 phy_data |= BIT(2);
3075                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3076
3077                 e1e_rphy(hw, 22, &phy_data);
3078                 phy_data &= 0x0fff;
3079                 phy_data |= BIT(14);
3080                 e1e_wphy(hw, 0x10, 0x2823);
3081                 e1e_wphy(hw, 0x11, 0x0003);
3082                 e1e_wphy(hw, 22, phy_data);
3083         }
3084
3085         /* Setup buffer sizes */
3086         rctl &= ~E1000_RCTL_SZ_4096;
3087         rctl |= E1000_RCTL_BSEX;
3088         switch (adapter->rx_buffer_len) {
3089         case 2048:
3090         default:
3091                 rctl |= E1000_RCTL_SZ_2048;
3092                 rctl &= ~E1000_RCTL_BSEX;
3093                 break;
3094         case 4096:
3095                 rctl |= E1000_RCTL_SZ_4096;
3096                 break;
3097         case 8192:
3098                 rctl |= E1000_RCTL_SZ_8192;
3099                 break;
3100         case 16384:
3101                 rctl |= E1000_RCTL_SZ_16384;
3102                 break;
3103         }
3104
3105         /* Enable Extended Status in all Receive Descriptors */
3106         rfctl = er32(RFCTL);
3107         rfctl |= E1000_RFCTL_EXTEN;
3108         ew32(RFCTL, rfctl);
3109
3110         /* 82571 and greater support packet-split where the protocol
3111          * header is placed in skb->data and the packet data is
3112          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3113          * In the case of a non-split, skb->data is linearly filled,
3114          * followed by the page buffers.  Therefore, skb->data is
3115          * sized to hold the largest protocol header.
3116          *
3117          * allocations using alloc_page take too long for regular MTU
3118          * so only enable packet split for jumbo frames
3119          *
3120          * Using pages when the page size is greater than 16k wastes
3121          * a lot of memory, since we allocate 3 pages at all times
3122          * per packet.
3123          */
3124         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3125         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3126                 adapter->rx_ps_pages = pages;
3127         else
3128                 adapter->rx_ps_pages = 0;
3129
3130         if (adapter->rx_ps_pages) {
3131                 u32 psrctl = 0;
3132
3133                 /* Enable Packet split descriptors */
3134                 rctl |= E1000_RCTL_DTYP_PS;
3135
3136                 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3137
3138                 switch (adapter->rx_ps_pages) {
3139                 case 3:
3140                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3141                         /* fall-through */
3142                 case 2:
3143                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3144                         /* fall-through */
3145                 case 1:
3146                         psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3147                         break;
3148                 }
3149
3150                 ew32(PSRCTL, psrctl);
3151         }
3152
3153         /* This is useful for sniffing bad packets. */
3154         if (adapter->netdev->features & NETIF_F_RXALL) {
3155                 /* UPE and MPE will be handled by normal PROMISC logic
3156                  * in e1000e_set_rx_mode
3157                  */
3158                 rctl |= (E1000_RCTL_SBP |       /* Receive bad packets */
3159                          E1000_RCTL_BAM |       /* RX All Bcast Pkts */
3160                          E1000_RCTL_PMCF);      /* RX All MAC Ctrl Pkts */
3161
3162                 rctl &= ~(E1000_RCTL_VFE |      /* Disable VLAN filter */
3163                           E1000_RCTL_DPF |      /* Allow filtered pause */
3164                           E1000_RCTL_CFIEN);    /* Dis VLAN CFIEN Filter */
3165                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3166                  * and that breaks VLANs.
3167                  */
3168         }
3169
3170         ew32(RCTL, rctl);
3171         /* just started the receive unit, no need to restart */
3172         adapter->flags &= ~FLAG_RESTART_NOW;
3173 }
3174
3175 /**
3176  * e1000_configure_rx - Configure Receive Unit after Reset
3177  * @adapter: board private structure
3178  *
3179  * Configure the Rx unit of the MAC after a reset.
3180  **/
3181 static void e1000_configure_rx(struct e1000_adapter *adapter)
3182 {
3183         struct e1000_hw *hw = &adapter->hw;
3184         struct e1000_ring *rx_ring = adapter->rx_ring;
3185         u64 rdba;
3186         u32 rdlen, rctl, rxcsum, ctrl_ext;
3187
3188         if (adapter->rx_ps_pages) {
3189                 /* this is a 32 byte descriptor */
3190                 rdlen = rx_ring->count *
3191                     sizeof(union e1000_rx_desc_packet_split);
3192                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3193                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3194         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3195                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3196                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3197                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3198         } else {
3199                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3200                 adapter->clean_rx = e1000_clean_rx_irq;
3201                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3202         }
3203
3204         /* disable receives while setting up the descriptors */
3205         rctl = er32(RCTL);
3206         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3207                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3208         e1e_flush();
3209         usleep_range(10000, 20000);
3210
3211         if (adapter->flags2 & FLAG2_DMA_BURST) {
3212                 /* set the writeback threshold (only takes effect if the RDTR
3213                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3214                  * enable prefetching of 0x20 Rx descriptors
3215                  * granularity = 01
3216                  * wthresh = 04,
3217                  * hthresh = 04,
3218                  * pthresh = 0x20
3219                  */
3220                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3221                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3222
3223                 /* override the delay timers for enabling bursting, only if
3224                  * the value was not set by the user via module options
3225                  */
3226                 if (adapter->rx_int_delay == DEFAULT_RDTR)
3227                         adapter->rx_int_delay = BURST_RDTR;
3228                 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3229                         adapter->rx_abs_int_delay = BURST_RADV;
3230         }
3231
3232         /* set the Receive Delay Timer Register */
3233         ew32(RDTR, adapter->rx_int_delay);
3234
3235         /* irq moderation */
3236         ew32(RADV, adapter->rx_abs_int_delay);
3237         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3238                 e1000e_write_itr(adapter, adapter->itr);
3239
3240         ctrl_ext = er32(CTRL_EXT);
3241         /* Auto-Mask interrupts upon ICR access */
3242         ctrl_ext |= E1000_CTRL_EXT_IAME;
3243         ew32(IAM, 0xffffffff);
3244         ew32(CTRL_EXT, ctrl_ext);
3245         e1e_flush();
3246
3247         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3248          * the Base and Length of the Rx Descriptor Ring
3249          */
3250         rdba = rx_ring->dma;
3251         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3252         ew32(RDBAH(0), (rdba >> 32));
3253         ew32(RDLEN(0), rdlen);
3254         ew32(RDH(0), 0);
3255         ew32(RDT(0), 0);
3256         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3257         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3258
3259         writel(0, rx_ring->head);
3260         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3261                 e1000e_update_rdt_wa(rx_ring, 0);
3262         else
3263                 writel(0, rx_ring->tail);
3264
3265         /* Enable Receive Checksum Offload for TCP and UDP */
3266         rxcsum = er32(RXCSUM);
3267         if (adapter->netdev->features & NETIF_F_RXCSUM)
3268                 rxcsum |= E1000_RXCSUM_TUOFL;
3269         else
3270                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3271         ew32(RXCSUM, rxcsum);
3272
3273         /* With jumbo frames, excessive C-state transition latencies result
3274          * in dropped transactions.
3275          */
3276         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3277                 u32 lat =
3278                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3279                      adapter->max_frame_size) * 8 / 1000;
3280
3281                 if (adapter->flags & FLAG_IS_ICH) {
3282                         u32 rxdctl = er32(RXDCTL(0));
3283
3284                         ew32(RXDCTL(0), rxdctl | 0x3);
3285                 }
3286
3287                 pm_qos_update_request(&adapter->pm_qos_req, lat);
3288         } else {
3289                 pm_qos_update_request(&adapter->pm_qos_req,
3290                                       PM_QOS_DEFAULT_VALUE);
3291         }
3292
3293         /* Enable Receives */
3294         ew32(RCTL, rctl);
3295 }
3296
3297 /**
3298  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3299  * @netdev: network interface device structure
3300  *
3301  * Writes multicast address list to the MTA hash table.
3302  * Returns: -ENOMEM on failure
3303  *                0 on no addresses written
3304  *                X on writing X addresses to MTA
3305  */
3306 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3307 {
3308         struct e1000_adapter *adapter = netdev_priv(netdev);
3309         struct e1000_hw *hw = &adapter->hw;
3310         struct netdev_hw_addr *ha;
3311         u8 *mta_list;
3312         int i;
3313
3314         if (netdev_mc_empty(netdev)) {
3315                 /* nothing to program, so clear mc list */
3316                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3317                 return 0;
3318         }
3319
3320         mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3321         if (!mta_list)
3322                 return -ENOMEM;
3323
3324         /* update_mc_addr_list expects a packed array of only addresses. */
3325         i = 0;
3326         netdev_for_each_mc_addr(ha, netdev)
3327             memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3328
3329         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3330         kfree(mta_list);
3331
3332         return netdev_mc_count(netdev);
3333 }
3334
3335 /**
3336  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3337  * @netdev: network interface device structure
3338  *
3339  * Writes unicast address list to the RAR table.
3340  * Returns: -ENOMEM on failure/insufficient address space
3341  *                0 on no addresses written
3342  *                X on writing X addresses to the RAR table
3343  **/
3344 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3345 {
3346         struct e1000_adapter *adapter = netdev_priv(netdev);
3347         struct e1000_hw *hw = &adapter->hw;
3348         unsigned int rar_entries;
3349         int count = 0;
3350
3351         rar_entries = hw->mac.ops.rar_get_count(hw);
3352
3353         /* save a rar entry for our hardware address */
3354         rar_entries--;
3355
3356         /* save a rar entry for the LAA workaround */
3357         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3358                 rar_entries--;
3359
3360         /* return ENOMEM indicating insufficient memory for addresses */
3361         if (netdev_uc_count(netdev) > rar_entries)
3362                 return -ENOMEM;
3363
3364         if (!netdev_uc_empty(netdev) && rar_entries) {
3365                 struct netdev_hw_addr *ha;
3366
3367                 /* write the addresses in reverse order to avoid write
3368                  * combining
3369                  */
3370                 netdev_for_each_uc_addr(ha, netdev) {
3371                         int ret_val;
3372
3373                         if (!rar_entries)
3374                                 break;
3375                         ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3376                         if (ret_val < 0)
3377                                 return -ENOMEM;
3378                         count++;
3379                 }
3380         }
3381
3382         /* zero out the remaining RAR entries not used above */
3383         for (; rar_entries > 0; rar_entries--) {
3384                 ew32(RAH(rar_entries), 0);
3385                 ew32(RAL(rar_entries), 0);
3386         }
3387         e1e_flush();
3388
3389         return count;
3390 }
3391
3392 /**
3393  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3394  * @netdev: network interface device structure
3395  *
3396  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3397  * address list or the network interface flags are updated.  This routine is
3398  * responsible for configuring the hardware for proper unicast, multicast,
3399  * promiscuous mode, and all-multi behavior.
3400  **/
3401 static void e1000e_set_rx_mode(struct net_device *netdev)
3402 {
3403         struct e1000_adapter *adapter = netdev_priv(netdev);
3404         struct e1000_hw *hw = &adapter->hw;
3405         u32 rctl;
3406
3407         if (pm_runtime_suspended(netdev->dev.parent))
3408                 return;
3409
3410         /* Check for Promiscuous and All Multicast modes */
3411         rctl = er32(RCTL);
3412
3413         /* clear the affected bits */
3414         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3415
3416         if (netdev->flags & IFF_PROMISC) {
3417                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3418                 /* Do not hardware filter VLANs in promisc mode */
3419                 e1000e_vlan_filter_disable(adapter);
3420         } else {
3421                 int count;
3422
3423                 if (netdev->flags & IFF_ALLMULTI) {
3424                         rctl |= E1000_RCTL_MPE;
3425                 } else {
3426                         /* Write addresses to the MTA, if the attempt fails
3427                          * then we should just turn on promiscuous mode so
3428                          * that we can at least receive multicast traffic
3429                          */
3430                         count = e1000e_write_mc_addr_list(netdev);
3431                         if (count < 0)
3432                                 rctl |= E1000_RCTL_MPE;
3433                 }
3434                 e1000e_vlan_filter_enable(adapter);
3435                 /* Write addresses to available RAR registers, if there is not
3436                  * sufficient space to store all the addresses then enable
3437                  * unicast promiscuous mode
3438                  */
3439                 count = e1000e_write_uc_addr_list(netdev);
3440                 if (count < 0)
3441                         rctl |= E1000_RCTL_UPE;
3442         }
3443
3444         ew32(RCTL, rctl);
3445
3446         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3447                 e1000e_vlan_strip_enable(adapter);
3448         else
3449                 e1000e_vlan_strip_disable(adapter);
3450 }
3451
3452 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3453 {
3454         struct e1000_hw *hw = &adapter->hw;
3455         u32 mrqc, rxcsum;
3456         u32 rss_key[10];
3457         int i;
3458
3459         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3460         for (i = 0; i < 10; i++)
3461                 ew32(RSSRK(i), rss_key[i]);
3462
3463         /* Direct all traffic to queue 0 */
3464         for (i = 0; i < 32; i++)
3465                 ew32(RETA(i), 0);
3466
3467         /* Disable raw packet checksumming so that RSS hash is placed in
3468          * descriptor on writeback.
3469          */
3470         rxcsum = er32(RXCSUM);
3471         rxcsum |= E1000_RXCSUM_PCSD;
3472
3473         ew32(RXCSUM, rxcsum);
3474
3475         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3476                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3477                 E1000_MRQC_RSS_FIELD_IPV6 |
3478                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3479                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3480
3481         ew32(MRQC, mrqc);
3482 }
3483
3484 /**
3485  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3486  * @adapter: board private structure
3487  * @timinca: pointer to returned time increment attributes
3488  *
3489  * Get attributes for incrementing the System Time Register SYSTIML/H at
3490  * the default base frequency, and set the cyclecounter shift value.
3491  **/
3492 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3493 {
3494         struct e1000_hw *hw = &adapter->hw;
3495         u32 incvalue, incperiod, shift;
3496
3497         /* Make sure clock is enabled on I217/I218/I219  before checking
3498          * the frequency
3499          */
3500         if (((hw->mac.type == e1000_pch_lpt) ||
3501              (hw->mac.type == e1000_pch_spt)) &&
3502             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3503             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3504                 u32 fextnvm7 = er32(FEXTNVM7);
3505
3506                 if (!(fextnvm7 & BIT(0))) {
3507                         ew32(FEXTNVM7, fextnvm7 | BIT(0));
3508                         e1e_flush();
3509                 }
3510         }
3511
3512         switch (hw->mac.type) {
3513         case e1000_pch2lan:
3514         case e1000_pch_lpt:
3515                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3516                         /* Stable 96MHz frequency */
3517                         incperiod = INCPERIOD_96MHz;
3518                         incvalue = INCVALUE_96MHz;
3519                         shift = INCVALUE_SHIFT_96MHz;
3520                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3521                 } else {
3522                         /* Stable 25MHz frequency */
3523                         incperiod = INCPERIOD_25MHz;
3524                         incvalue = INCVALUE_25MHz;
3525                         shift = INCVALUE_SHIFT_25MHz;
3526                         adapter->cc.shift = shift;
3527                 }
3528                 break;
3529         case e1000_pch_spt:
3530                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3531                         /* Stable 24MHz frequency */
3532                         incperiod = INCPERIOD_24MHz;
3533                         incvalue = INCVALUE_24MHz;
3534                         shift = INCVALUE_SHIFT_24MHz;
3535                         adapter->cc.shift = shift;
3536                         break;
3537                 }
3538                 return -EINVAL;
3539         case e1000_82574:
3540         case e1000_82583:
3541                 /* Stable 25MHz frequency */
3542                 incperiod = INCPERIOD_25MHz;
3543                 incvalue = INCVALUE_25MHz;
3544                 shift = INCVALUE_SHIFT_25MHz;
3545                 adapter->cc.shift = shift;
3546                 break;
3547         default:
3548                 return -EINVAL;
3549         }
3550
3551         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3552                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3553
3554         return 0;
3555 }
3556
3557 /**
3558  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3559  * @adapter: board private structure
3560  *
3561  * Outgoing time stamping can be enabled and disabled. Play nice and
3562  * disable it when requested, although it shouldn't cause any overhead
3563  * when no packet needs it. At most one packet in the queue may be
3564  * marked for time stamping, otherwise it would be impossible to tell
3565  * for sure to which packet the hardware time stamp belongs.
3566  *
3567  * Incoming time stamping has to be configured via the hardware filters.
3568  * Not all combinations are supported, in particular event type has to be
3569  * specified. Matching the kind of event packet is not supported, with the
3570  * exception of "all V2 events regardless of level 2 or 4".
3571  **/
3572 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3573                                   struct hwtstamp_config *config)
3574 {
3575         struct e1000_hw *hw = &adapter->hw;
3576         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3577         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3578         u32 rxmtrl = 0;
3579         u16 rxudp = 0;
3580         bool is_l4 = false;
3581         bool is_l2 = false;
3582         u32 regval;
3583
3584         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3585                 return -EINVAL;
3586
3587         /* flags reserved for future extensions - must be zero */
3588         if (config->flags)
3589                 return -EINVAL;
3590
3591         switch (config->tx_type) {
3592         case HWTSTAMP_TX_OFF:
3593                 tsync_tx_ctl = 0;
3594                 break;
3595         case HWTSTAMP_TX_ON:
3596                 break;
3597         default:
3598                 return -ERANGE;
3599         }
3600
3601         switch (config->rx_filter) {
3602         case HWTSTAMP_FILTER_NONE:
3603                 tsync_rx_ctl = 0;
3604                 break;
3605         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3606                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3607                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3608                 is_l4 = true;
3609                 break;
3610         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3611                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3612                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3613                 is_l4 = true;
3614                 break;
3615         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3616                 /* Also time stamps V2 L2 Path Delay Request/Response */
3617                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3618                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3619                 is_l2 = true;
3620                 break;
3621         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3622                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3623                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3624                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3625                 is_l2 = true;
3626                 break;
3627         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3628                 /* Hardware cannot filter just V2 L4 Sync messages;
3629                  * fall-through to V2 (both L2 and L4) Sync.
3630                  */
3631         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3632                 /* Also time stamps V2 Path Delay Request/Response. */
3633                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3634                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3635                 is_l2 = true;
3636                 is_l4 = true;
3637                 break;
3638         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3639                 /* Hardware cannot filter just V2 L4 Delay Request messages;
3640                  * fall-through to V2 (both L2 and L4) Delay Request.
3641                  */
3642         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3643                 /* Also time stamps V2 Path Delay Request/Response. */
3644                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3645                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3646                 is_l2 = true;
3647                 is_l4 = true;
3648                 break;
3649         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3650         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3651                 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3652                  * fall-through to all V2 (both L2 and L4) Events.
3653                  */
3654         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3655                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3656                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3657                 is_l2 = true;
3658                 is_l4 = true;
3659                 break;
3660         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3661                 /* For V1, the hardware can only filter Sync messages or
3662                  * Delay Request messages but not both so fall-through to
3663                  * time stamp all packets.
3664                  */
3665         case HWTSTAMP_FILTER_ALL:
3666                 is_l2 = true;
3667                 is_l4 = true;
3668                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3669                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3670                 break;
3671         default:
3672                 return -ERANGE;
3673         }
3674
3675         adapter->hwtstamp_config = *config;
3676
3677         /* enable/disable Tx h/w time stamping */
3678         regval = er32(TSYNCTXCTL);
3679         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3680         regval |= tsync_tx_ctl;
3681         ew32(TSYNCTXCTL, regval);
3682         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3683             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3684                 e_err("Timesync Tx Control register not set as expected\n");
3685                 return -EAGAIN;
3686         }
3687
3688         /* enable/disable Rx h/w time stamping */
3689         regval = er32(TSYNCRXCTL);
3690         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3691         regval |= tsync_rx_ctl;
3692         ew32(TSYNCRXCTL, regval);
3693         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3694                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3695             (regval & (E1000_TSYNCRXCTL_ENABLED |
3696                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3697                 e_err("Timesync Rx Control register not set as expected\n");
3698                 return -EAGAIN;
3699         }
3700
3701         /* L2: define ethertype filter for time stamped packets */
3702         if (is_l2)
3703                 rxmtrl |= ETH_P_1588;
3704
3705         /* define which PTP packets get time stamped */
3706         ew32(RXMTRL, rxmtrl);
3707
3708         /* Filter by destination port */
3709         if (is_l4) {
3710                 rxudp = PTP_EV_PORT;
3711                 cpu_to_be16s(&rxudp);
3712         }
3713         ew32(RXUDP, rxudp);
3714
3715         e1e_flush();
3716
3717         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3718         er32(RXSTMPH);
3719         er32(TXSTMPH);
3720
3721         return 0;
3722 }
3723
3724 /**
3725  * e1000_configure - configure the hardware for Rx and Tx
3726  * @adapter: private board structure
3727  **/
3728 static void e1000_configure(struct e1000_adapter *adapter)
3729 {
3730         struct e1000_ring *rx_ring = adapter->rx_ring;
3731
3732         e1000e_set_rx_mode(adapter->netdev);
3733
3734         e1000_restore_vlan(adapter);
3735         e1000_init_manageability_pt(adapter);
3736
3737         e1000_configure_tx(adapter);
3738
3739         if (adapter->netdev->features & NETIF_F_RXHASH)
3740                 e1000e_setup_rss_hash(adapter);
3741         e1000_setup_rctl(adapter);
3742         e1000_configure_rx(adapter);
3743         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3744 }
3745
3746 /**
3747  * e1000e_power_up_phy - restore link in case the phy was powered down
3748  * @adapter: address of board private structure
3749  *
3750  * The phy may be powered down to save power and turn off link when the
3751  * driver is unloaded and wake on lan is not enabled (among others)
3752  * *** this routine MUST be followed by a call to e1000e_reset ***
3753  **/
3754 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3755 {
3756         if (adapter->hw.phy.ops.power_up)
3757                 adapter->hw.phy.ops.power_up(&adapter->hw);
3758
3759         adapter->hw.mac.ops.setup_link(&adapter->hw);
3760 }
3761
3762 /**
3763  * e1000_power_down_phy - Power down the PHY
3764  *
3765  * Power down the PHY so no link is implied when interface is down.
3766  * The PHY cannot be powered down if management or WoL is active.
3767  */
3768 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3769 {
3770         if (adapter->hw.phy.ops.power_down)
3771                 adapter->hw.phy.ops.power_down(&adapter->hw);
3772 }
3773
3774 /**
3775  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3776  *
3777  * We want to clear all pending descriptors from the TX ring.
3778  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3779  * the data of the next descriptor. We don't care about the data we are about
3780  * to reset the HW.
3781  */
3782 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3783 {
3784         struct e1000_hw *hw = &adapter->hw;
3785         struct e1000_ring *tx_ring = adapter->tx_ring;
3786         struct e1000_tx_desc *tx_desc = NULL;
3787         u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3788         u16 size = 512;
3789
3790         tctl = er32(TCTL);
3791         ew32(TCTL, tctl | E1000_TCTL_EN);
3792         tdt = er32(TDT(0));
3793         BUG_ON(tdt != tx_ring->next_to_use);
3794         tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3795         tx_desc->buffer_addr = tx_ring->dma;
3796
3797         tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3798         tx_desc->upper.data = 0;
3799         /* flush descriptors to memory before notifying the HW */
3800         wmb();
3801         tx_ring->next_to_use++;
3802         if (tx_ring->next_to_use == tx_ring->count)
3803                 tx_ring->next_to_use = 0;
3804         ew32(TDT(0), tx_ring->next_to_use);
3805         mmiowb();
3806         usleep_range(200, 250);
3807 }
3808
3809 /**
3810  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3811  *
3812  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3813  */
3814 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3815 {
3816         u32 rctl, rxdctl;
3817         struct e1000_hw *hw = &adapter->hw;
3818
3819         rctl = er32(RCTL);
3820         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3821         e1e_flush();
3822         usleep_range(100, 150);
3823
3824         rxdctl = er32(RXDCTL(0));
3825         /* zero the lower 14 bits (prefetch and host thresholds) */
3826         rxdctl &= 0xffffc000;
3827
3828         /* update thresholds: prefetch threshold to 31, host threshold to 1
3829          * and make sure the granularity is "descriptors" and not "cache lines"
3830          */
3831         rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3832
3833         ew32(RXDCTL(0), rxdctl);
3834         /* momentarily enable the RX ring for the changes to take effect */
3835         ew32(RCTL, rctl | E1000_RCTL_EN);
3836         e1e_flush();
3837         usleep_range(100, 150);
3838         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3839 }
3840
3841 /**
3842  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3843  *
3844  * In i219, the descriptor rings must be emptied before resetting the HW
3845  * or before changing the device state to D3 during runtime (runtime PM).
3846  *
3847  * Failure to do this will cause the HW to enter a unit hang state which can
3848  * only be released by PCI reset on the device
3849  *
3850  */
3851
3852 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3853 {
3854         u16 hang_state;
3855         u32 fext_nvm11, tdlen;
3856         struct e1000_hw *hw = &adapter->hw;
3857
3858         /* First, disable MULR fix in FEXTNVM11 */
3859         fext_nvm11 = er32(FEXTNVM11);
3860         fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3861         ew32(FEXTNVM11, fext_nvm11);
3862         /* do nothing if we're not in faulty state, or if the queue is empty */
3863         tdlen = er32(TDLEN(0));
3864         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3865                              &hang_state);
3866         if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3867                 return;
3868         e1000_flush_tx_ring(adapter);
3869         /* recheck, maybe the fault is caused by the rx ring */
3870         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3871                              &hang_state);
3872         if (hang_state & FLUSH_DESC_REQUIRED)
3873                 e1000_flush_rx_ring(adapter);
3874 }
3875
3876 /**
3877  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3878  * @adapter: board private structure
3879  *
3880  * When the MAC is reset, all hardware bits for timesync will be reset to the
3881  * default values. This function will restore the settings last in place.
3882  * Since the clock SYSTIME registers are reset, we will simply restore the
3883  * cyclecounter to the kernel real clock time.
3884  **/
3885 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3886 {
3887         struct ptp_clock_info *info = &adapter->ptp_clock_info;
3888         struct e1000_hw *hw = &adapter->hw;
3889         unsigned long flags;
3890         u32 timinca;
3891         s32 ret_val;
3892
3893         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3894                 return;
3895
3896         if (info->adjfreq) {
3897                 /* restore the previous ptp frequency delta */
3898                 ret_val = info->adjfreq(info, adapter->ptp_delta);
3899         } else {
3900                 /* set the default base frequency if no adjustment possible */
3901                 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3902                 if (!ret_val)
3903                         ew32(TIMINCA, timinca);
3904         }
3905
3906         if (ret_val) {
3907                 dev_warn(&adapter->pdev->dev,
3908                          "Failed to restore TIMINCA clock rate delta: %d\n",
3909                          ret_val);
3910                 return;
3911         }
3912
3913         /* reset the systim ns time counter */
3914         spin_lock_irqsave(&adapter->systim_lock, flags);
3915         timecounter_init(&adapter->tc, &adapter->cc,
3916                          ktime_to_ns(ktime_get_real()));
3917         spin_unlock_irqrestore(&adapter->systim_lock, flags);
3918
3919         /* restore the previous hwtstamp configuration settings */
3920         e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3921 }
3922
3923 /**
3924  * e1000e_reset - bring the hardware into a known good state
3925  *
3926  * This function boots the hardware and enables some settings that
3927  * require a configuration cycle of the hardware - those cannot be
3928  * set/changed during runtime. After reset the device needs to be
3929  * properly configured for Rx, Tx etc.
3930  */
3931 void e1000e_reset(struct e1000_adapter *adapter)
3932 {
3933         struct e1000_mac_info *mac = &adapter->hw.mac;
3934         struct e1000_fc_info *fc = &adapter->hw.fc;
3935         struct e1000_hw *hw = &adapter->hw;
3936         u32 tx_space, min_tx_space, min_rx_space;
3937         u32 pba = adapter->pba;
3938         u16 hwm;
3939
3940         /* reset Packet Buffer Allocation to default */
3941         ew32(PBA, pba);
3942
3943         if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3944                 /* To maintain wire speed transmits, the Tx FIFO should be
3945                  * large enough to accommodate two full transmit packets,
3946                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3947                  * the Rx FIFO should be large enough to accommodate at least
3948                  * one full receive packet and is similarly rounded up and
3949                  * expressed in KB.
3950                  */
3951                 pba = er32(PBA);
3952                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3953                 tx_space = pba >> 16;
3954                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3955                 pba &= 0xffff;
3956                 /* the Tx fifo also stores 16 bytes of information about the Tx
3957                  * but don't include ethernet FCS because hardware appends it
3958                  */
3959                 min_tx_space = (adapter->max_frame_size +
3960                                 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3961                 min_tx_space = ALIGN(min_tx_space, 1024);
3962                 min_tx_space >>= 10;
3963                 /* software strips receive CRC, so leave room for it */
3964                 min_rx_space = adapter->max_frame_size;
3965                 min_rx_space = ALIGN(min_rx_space, 1024);
3966                 min_rx_space >>= 10;
3967
3968                 /* If current Tx allocation is less than the min Tx FIFO size,
3969                  * and the min Tx FIFO size is less than the current Rx FIFO
3970                  * allocation, take space away from current Rx allocation
3971                  */
3972                 if ((tx_space < min_tx_space) &&
3973                     ((min_tx_space - tx_space) < pba)) {
3974                         pba -= min_tx_space - tx_space;
3975
3976                         /* if short on Rx space, Rx wins and must trump Tx
3977                          * adjustment
3978                          */
3979                         if (pba < min_rx_space)
3980                                 pba = min_rx_space;
3981                 }
3982
3983                 ew32(PBA, pba);
3984         }
3985
3986         /* flow control settings
3987          *
3988          * The high water mark must be low enough to fit one full frame
3989          * (or the size used for early receive) above it in the Rx FIFO.
3990          * Set it to the lower of:
3991          * - 90% of the Rx FIFO size, and
3992          * - the full Rx FIFO size minus one full frame
3993          */
3994         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3995                 fc->pause_time = 0xFFFF;
3996         else
3997                 fc->pause_time = E1000_FC_PAUSE_TIME;
3998         fc->send_xon = true;
3999         fc->current_mode = fc->requested_mode;
4000
4001         switch (hw->mac.type) {
4002         case e1000_ich9lan:
4003         case e1000_ich10lan:
4004                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4005                         pba = 14;
4006                         ew32(PBA, pba);
4007                         fc->high_water = 0x2800;
4008                         fc->low_water = fc->high_water - 8;
4009                         break;
4010                 }
4011                 /* fall-through */
4012         default:
4013                 hwm = min(((pba << 10) * 9 / 10),
4014                           ((pba << 10) - adapter->max_frame_size));
4015
4016                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
4017                 fc->low_water = fc->high_water - 8;
4018                 break;
4019         case e1000_pchlan:
4020                 /* Workaround PCH LOM adapter hangs with certain network
4021                  * loads.  If hangs persist, try disabling Tx flow control.
4022                  */
4023                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4024                         fc->high_water = 0x3500;
4025                         fc->low_water = 0x1500;
4026                 } else {
4027                         fc->high_water = 0x5000;
4028                         fc->low_water = 0x3000;
4029                 }
4030                 fc->refresh_time = 0x1000;
4031                 break;
4032         case e1000_pch2lan:
4033         case e1000_pch_lpt:
4034         case e1000_pch_spt:
4035                 fc->refresh_time = 0x0400;
4036
4037                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4038                         fc->high_water = 0x05C20;
4039                         fc->low_water = 0x05048;
4040                         fc->pause_time = 0x0650;
4041                         break;
4042                 }
4043
4044                 pba = 14;
4045                 ew32(PBA, pba);
4046                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4047                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4048                 break;
4049         }
4050
4051         /* Alignment of Tx data is on an arbitrary byte boundary with the
4052          * maximum size per Tx descriptor limited only to the transmit
4053          * allocation of the packet buffer minus 96 bytes with an upper
4054          * limit of 24KB due to receive synchronization limitations.
4055          */
4056         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4057                                        24 << 10);
4058
4059         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4060          * fit in receive buffer.
4061          */
4062         if (adapter->itr_setting & 0x3) {
4063                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4064                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4065                                 dev_info(&adapter->pdev->dev,
4066                                          "Interrupt Throttle Rate off\n");
4067                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
4068                                 e1000e_write_itr(adapter, 0);
4069                         }
4070                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4071                         dev_info(&adapter->pdev->dev,
4072                                  "Interrupt Throttle Rate on\n");
4073                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4074                         adapter->itr = 20000;
4075                         e1000e_write_itr(adapter, adapter->itr);
4076                 }
4077         }
4078
4079         if (hw->mac.type == e1000_pch_spt)
4080                 e1000_flush_desc_rings(adapter);
4081         /* Allow time for pending master requests to run */
4082         mac->ops.reset_hw(hw);
4083
4084         /* For parts with AMT enabled, let the firmware know
4085          * that the network interface is in control
4086          */
4087         if (adapter->flags & FLAG_HAS_AMT)
4088                 e1000e_get_hw_control(adapter);
4089
4090         ew32(WUC, 0);
4091
4092         if (mac->ops.init_hw(hw))
4093                 e_err("Hardware Error\n");
4094
4095         e1000_update_mng_vlan(adapter);
4096
4097         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4098         ew32(VET, ETH_P_8021Q);
4099
4100         e1000e_reset_adaptive(hw);
4101
4102         /* restore systim and hwtstamp settings */
4103         e1000e_systim_reset(adapter);
4104
4105         /* Set EEE advertisement as appropriate */
4106         if (adapter->flags2 & FLAG2_HAS_EEE) {
4107                 s32 ret_val;
4108                 u16 adv_addr;
4109
4110                 switch (hw->phy.type) {
4111                 case e1000_phy_82579:
4112                         adv_addr = I82579_EEE_ADVERTISEMENT;
4113                         break;
4114                 case e1000_phy_i217:
4115                         adv_addr = I217_EEE_ADVERTISEMENT;
4116                         break;
4117                 default:
4118                         dev_err(&adapter->pdev->dev,
4119                                 "Invalid PHY type setting EEE advertisement\n");
4120                         return;
4121                 }
4122
4123                 ret_val = hw->phy.ops.acquire(hw);
4124                 if (ret_val) {
4125                         dev_err(&adapter->pdev->dev,
4126                                 "EEE advertisement - unable to acquire PHY\n");
4127                         return;
4128                 }
4129
4130                 e1000_write_emi_reg_locked(hw, adv_addr,
4131                                            hw->dev_spec.ich8lan.eee_disable ?
4132                                            0 : adapter->eee_advert);
4133
4134                 hw->phy.ops.release(hw);
4135         }
4136
4137         if (!netif_running(adapter->netdev) &&
4138             !test_bit(__E1000_TESTING, &adapter->state))
4139                 e1000_power_down_phy(adapter);
4140
4141         e1000_get_phy_info(hw);
4142
4143         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4144             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4145                 u16 phy_data = 0;
4146                 /* speed up time to link by disabling smart power down, ignore
4147                  * the return value of this function because there is nothing
4148                  * different we would do if it failed
4149                  */
4150                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4151                 phy_data &= ~IGP02E1000_PM_SPD;
4152                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4153         }
4154         if (hw->mac.type == e1000_pch_spt && adapter->int_mode == 0) {
4155                 u32 reg;
4156
4157                 /* Fextnvm7 @ 0xe4[2] = 1 */
4158                 reg = er32(FEXTNVM7);
4159                 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4160                 ew32(FEXTNVM7, reg);
4161                 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4162                 reg = er32(FEXTNVM9);
4163                 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4164                        E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4165                 ew32(FEXTNVM9, reg);
4166         }
4167
4168 }
4169
4170 /**
4171  * e1000e_trigger_lsc - trigger an LSC interrupt
4172  * @adapter: 
4173  *
4174  * Fire a link status change interrupt to start the watchdog.
4175  **/
4176 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4177 {
4178         struct e1000_hw *hw = &adapter->hw;
4179
4180         if (adapter->msix_entries)
4181                 ew32(ICS, E1000_ICS_OTHER);
4182         else
4183                 ew32(ICS, E1000_ICS_LSC);
4184 }
4185
4186 void e1000e_up(struct e1000_adapter *adapter)
4187 {
4188         /* hardware has been reset, we need to reload some things */
4189         e1000_configure(adapter);
4190
4191         clear_bit(__E1000_DOWN, &adapter->state);
4192
4193         if (adapter->msix_entries)
4194                 e1000_configure_msix(adapter);
4195         e1000_irq_enable(adapter);
4196
4197         netif_start_queue(adapter->netdev);
4198
4199         e1000e_trigger_lsc(adapter);
4200 }
4201
4202 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4203 {
4204         struct e1000_hw *hw = &adapter->hw;
4205
4206         if (!(adapter->flags2 & FLAG2_DMA_BURST))
4207                 return;
4208
4209         /* flush pending descriptor writebacks to memory */
4210         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4211         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4212
4213         /* execute the writes immediately */
4214         e1e_flush();
4215
4216         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4217          * write is successful
4218          */
4219         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4220         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4221
4222         /* execute the writes immediately */
4223         e1e_flush();
4224 }
4225
4226 static void e1000e_update_stats(struct e1000_adapter *adapter);
4227
4228 /**
4229  * e1000e_down - quiesce the device and optionally reset the hardware
4230  * @adapter: board private structure
4231  * @reset: boolean flag to reset the hardware or not
4232  */
4233 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4234 {
4235         struct net_device *netdev = adapter->netdev;
4236         struct e1000_hw *hw = &adapter->hw;
4237         u32 tctl, rctl;
4238
4239         /* signal that we're down so the interrupt handler does not
4240          * reschedule our watchdog timer
4241          */
4242         set_bit(__E1000_DOWN, &adapter->state);
4243
4244         netif_carrier_off(netdev);
4245
4246         /* disable receives in the hardware */
4247         rctl = er32(RCTL);
4248         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4249                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4250         /* flush and sleep below */
4251
4252         netif_stop_queue(netdev);
4253
4254         /* disable transmits in the hardware */
4255         tctl = er32(TCTL);
4256         tctl &= ~E1000_TCTL_EN;
4257         ew32(TCTL, tctl);
4258
4259         /* flush both disables and wait for them to finish */
4260         e1e_flush();
4261         usleep_range(10000, 20000);
4262
4263         e1000_irq_disable(adapter);
4264
4265         napi_synchronize(&adapter->napi);
4266
4267         del_timer_sync(&adapter->watchdog_timer);
4268         del_timer_sync(&adapter->phy_info_timer);
4269
4270         spin_lock(&adapter->stats64_lock);
4271         e1000e_update_stats(adapter);
4272         spin_unlock(&adapter->stats64_lock);
4273
4274         e1000e_flush_descriptors(adapter);
4275
4276         adapter->link_speed = 0;
4277         adapter->link_duplex = 0;
4278
4279         /* Disable Si errata workaround on PCHx for jumbo frame flow */
4280         if ((hw->mac.type >= e1000_pch2lan) &&
4281             (adapter->netdev->mtu > ETH_DATA_LEN) &&
4282             e1000_lv_jumbo_workaround_ich8lan(hw, false))
4283                 e_dbg("failed to disable jumbo frame workaround mode\n");
4284
4285         if (!pci_channel_offline(adapter->pdev)) {
4286                 if (reset)
4287                         e1000e_reset(adapter);
4288                 else if (hw->mac.type == e1000_pch_spt)
4289                         e1000_flush_desc_rings(adapter);
4290         }
4291         e1000_clean_tx_ring(adapter->tx_ring);
4292         e1000_clean_rx_ring(adapter->rx_ring);
4293 }
4294
4295 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4296 {
4297         might_sleep();
4298         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4299                 usleep_range(1000, 2000);
4300         e1000e_down(adapter, true);
4301         e1000e_up(adapter);
4302         clear_bit(__E1000_RESETTING, &adapter->state);
4303 }
4304
4305 /**
4306  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4307  * @cc: cyclecounter structure
4308  **/
4309 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4310 {
4311         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4312                                                      cc);
4313         struct e1000_hw *hw = &adapter->hw;
4314         u32 systimel, systimeh;
4315         cycle_t systim, systim_next;
4316         /* SYSTIMH latching upon SYSTIML read does not work well.
4317          * This means that if SYSTIML overflows after we read it but before
4318          * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4319          * will experience a huge non linear increment in the systime value
4320          * to fix that we test for overflow and if true, we re-read systime.
4321          */
4322         systimel = er32(SYSTIML);
4323         systimeh = er32(SYSTIMH);
4324         /* Is systimel is so large that overflow is possible? */
4325         if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4326                 u32 systimel_2 = er32(SYSTIML);
4327                 if (systimel > systimel_2) {
4328                         /* There was an overflow, read again SYSTIMH, and use
4329                          * systimel_2
4330                          */
4331                         systimeh = er32(SYSTIMH);
4332                         systimel = systimel_2;
4333                 }
4334         }
4335         systim = (cycle_t)systimel;
4336         systim |= (cycle_t)systimeh << 32;
4337
4338         if ((hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82583)) {
4339                 u64 time_delta, rem, temp;
4340                 u32 incvalue;
4341                 int i;
4342
4343                 /* errata for 82574/82583 possible bad bits read from SYSTIMH/L
4344                  * check to see that the time is incrementing at a reasonable
4345                  * rate and is a multiple of incvalue
4346                  */
4347                 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4348                 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4349                         /* latch SYSTIMH on read of SYSTIML */
4350                         systim_next = (cycle_t)er32(SYSTIML);
4351                         systim_next |= (cycle_t)er32(SYSTIMH) << 32;
4352
4353                         time_delta = systim_next - systim;
4354                         temp = time_delta;
4355                         rem = do_div(temp, incvalue);
4356
4357                         systim = systim_next;
4358
4359                         if ((time_delta < E1000_82574_SYSTIM_EPSILON) &&
4360                             (rem == 0))
4361                                 break;
4362                 }
4363         }
4364         return systim;
4365 }
4366
4367 /**
4368  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4369  * @adapter: board private structure to initialize
4370  *
4371  * e1000_sw_init initializes the Adapter private data structure.
4372  * Fields are initialized based on PCI device information and
4373  * OS network device settings (MTU size).
4374  **/
4375 static int e1000_sw_init(struct e1000_adapter *adapter)
4376 {
4377         struct net_device *netdev = adapter->netdev;
4378
4379         adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4380         adapter->rx_ps_bsize0 = 128;
4381         adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4382         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4383         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4384         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4385
4386         spin_lock_init(&adapter->stats64_lock);
4387
4388         e1000e_set_interrupt_capability(adapter);
4389
4390         if (e1000_alloc_queues(adapter))
4391                 return -ENOMEM;
4392
4393         /* Setup hardware time stamping cyclecounter */
4394         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4395                 adapter->cc.read = e1000e_cyclecounter_read;
4396                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4397                 adapter->cc.mult = 1;
4398                 /* cc.shift set in e1000e_get_base_tininca() */
4399
4400                 spin_lock_init(&adapter->systim_lock);
4401                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4402         }
4403
4404         /* Explicitly disable IRQ since the NIC can be in any state. */
4405         e1000_irq_disable(adapter);
4406
4407         set_bit(__E1000_DOWN, &adapter->state);
4408         return 0;
4409 }
4410
4411 /**
4412  * e1000_intr_msi_test - Interrupt Handler
4413  * @irq: interrupt number
4414  * @data: pointer to a network interface device structure
4415  **/
4416 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4417 {
4418         struct net_device *netdev = data;
4419         struct e1000_adapter *adapter = netdev_priv(netdev);
4420         struct e1000_hw *hw = &adapter->hw;
4421         u32 icr = er32(ICR);
4422
4423         e_dbg("icr is %08X\n", icr);
4424         if (icr & E1000_ICR_RXSEQ) {
4425                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4426                 /* Force memory writes to complete before acknowledging the
4427                  * interrupt is handled.
4428                  */
4429                 wmb();
4430         }
4431
4432         return IRQ_HANDLED;
4433 }
4434
4435 /**
4436  * e1000_test_msi_interrupt - Returns 0 for successful test
4437  * @adapter: board private struct
4438  *
4439  * code flow taken from tg3.c
4440  **/
4441 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4442 {
4443         struct net_device *netdev = adapter->netdev;
4444         struct e1000_hw *hw = &adapter->hw;
4445         int err;
4446
4447         /* poll_enable hasn't been called yet, so don't need disable */
4448         /* clear any pending events */
4449         er32(ICR);
4450
4451         /* free the real vector and request a test handler */
4452         e1000_free_irq(adapter);
4453         e1000e_reset_interrupt_capability(adapter);
4454
4455         /* Assume that the test fails, if it succeeds then the test
4456          * MSI irq handler will unset this flag
4457          */
4458         adapter->flags |= FLAG_MSI_TEST_FAILED;
4459
4460         err = pci_enable_msi(adapter->pdev);
4461         if (err)
4462                 goto msi_test_failed;
4463
4464         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4465                           netdev->name, netdev);
4466         if (err) {
4467                 pci_disable_msi(adapter->pdev);
4468                 goto msi_test_failed;
4469         }
4470
4471         /* Force memory writes to complete before enabling and firing an
4472          * interrupt.
4473          */
4474         wmb();
4475
4476         e1000_irq_enable(adapter);
4477
4478         /* fire an unusual interrupt on the test handler */
4479         ew32(ICS, E1000_ICS_RXSEQ);
4480         e1e_flush();
4481         msleep(100);
4482
4483         e1000_irq_disable(adapter);
4484
4485         rmb();                  /* read flags after interrupt has been fired */
4486
4487         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4488                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4489                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4490         } else {
4491                 e_dbg("MSI interrupt test succeeded!\n");
4492         }
4493
4494         free_irq(adapter->pdev->irq, netdev);
4495         pci_disable_msi(adapter->pdev);
4496
4497 msi_test_failed:
4498         e1000e_set_interrupt_capability(adapter);
4499         return e1000_request_irq(adapter);
4500 }
4501
4502 /**
4503  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4504  * @adapter: board private struct
4505  *
4506  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4507  **/
4508 static int e1000_test_msi(struct e1000_adapter *adapter)
4509 {
4510         int err;
4511         u16 pci_cmd;
4512
4513         if (!(adapter->flags & FLAG_MSI_ENABLED))
4514                 return 0;
4515
4516         /* disable SERR in case the MSI write causes a master abort */
4517         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4518         if (pci_cmd & PCI_COMMAND_SERR)
4519                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4520                                       pci_cmd & ~PCI_COMMAND_SERR);
4521
4522         err = e1000_test_msi_interrupt(adapter);
4523
4524         /* re-enable SERR */
4525         if (pci_cmd & PCI_COMMAND_SERR) {
4526                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4527                 pci_cmd |= PCI_COMMAND_SERR;
4528                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4529         }
4530
4531         return err;
4532 }
4533
4534 /**
4535  * e1000e_open - Called when a network interface is made active
4536  * @netdev: network interface device structure
4537  *
4538  * Returns 0 on success, negative value on failure
4539  *
4540  * The open entry point is called when a network interface is made
4541  * active by the system (IFF_UP).  At this point all resources needed
4542  * for transmit and receive operations are allocated, the interrupt
4543  * handler is registered with the OS, the watchdog timer is started,
4544  * and the stack is notified that the interface is ready.
4545  **/
4546 int e1000e_open(struct net_device *netdev)
4547 {
4548         struct e1000_adapter *adapter = netdev_priv(netdev);
4549         struct e1000_hw *hw = &adapter->hw;
4550         struct pci_dev *pdev = adapter->pdev;
4551         int err;
4552
4553         /* disallow open during test */
4554         if (test_bit(__E1000_TESTING, &adapter->state))
4555                 return -EBUSY;
4556
4557         pm_runtime_get_sync(&pdev->dev);
4558
4559         netif_carrier_off(netdev);
4560
4561         /* allocate transmit descriptors */
4562         err = e1000e_setup_tx_resources(adapter->tx_ring);
4563         if (err)
4564                 goto err_setup_tx;
4565
4566         /* allocate receive descriptors */
4567         err = e1000e_setup_rx_resources(adapter->rx_ring);
4568         if (err)
4569                 goto err_setup_rx;
4570
4571         /* If AMT is enabled, let the firmware know that the network
4572          * interface is now open and reset the part to a known state.
4573          */
4574         if (adapter->flags & FLAG_HAS_AMT) {
4575                 e1000e_get_hw_control(adapter);
4576                 e1000e_reset(adapter);
4577         }
4578
4579         e1000e_power_up_phy(adapter);
4580
4581         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4582         if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4583                 e1000_update_mng_vlan(adapter);
4584
4585         /* DMA latency requirement to workaround jumbo issue */
4586         pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4587                            PM_QOS_DEFAULT_VALUE);
4588
4589         /* before we allocate an interrupt, we must be ready to handle it.
4590          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4591          * as soon as we call pci_request_irq, so we have to setup our
4592          * clean_rx handler before we do so.
4593          */
4594         e1000_configure(adapter);
4595
4596         err = e1000_request_irq(adapter);
4597         if (err)
4598                 goto err_req_irq;
4599
4600         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4601          * ignore e1000e MSI messages, which means we need to test our MSI
4602          * interrupt now
4603          */
4604         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4605                 err = e1000_test_msi(adapter);
4606                 if (err) {
4607                         e_err("Interrupt allocation failed\n");
4608                         goto err_req_irq;
4609                 }
4610         }
4611
4612         /* From here on the code is the same as e1000e_up() */
4613         clear_bit(__E1000_DOWN, &adapter->state);
4614
4615         napi_enable(&adapter->napi);
4616
4617         e1000_irq_enable(adapter);
4618
4619         adapter->tx_hang_recheck = false;
4620         netif_start_queue(netdev);
4621
4622         hw->mac.get_link_status = true;
4623         pm_runtime_put(&pdev->dev);
4624
4625         e1000e_trigger_lsc(adapter);
4626
4627         return 0;
4628
4629 err_req_irq:
4630         pm_qos_remove_request(&adapter->pm_qos_req);
4631         e1000e_release_hw_control(adapter);
4632         e1000_power_down_phy(adapter);
4633         e1000e_free_rx_resources(adapter->rx_ring);
4634 err_setup_rx:
4635         e1000e_free_tx_resources(adapter->tx_ring);
4636 err_setup_tx:
4637         e1000e_reset(adapter);
4638         pm_runtime_put_sync(&pdev->dev);
4639
4640         return err;
4641 }
4642
4643 /**
4644  * e1000e_close - Disables a network interface
4645  * @netdev: network interface device structure
4646  *
4647  * Returns 0, this is not allowed to fail
4648  *
4649  * The close entry point is called when an interface is de-activated
4650  * by the OS.  The hardware is still under the drivers control, but
4651  * needs to be disabled.  A global MAC reset is issued to stop the
4652  * hardware, and all transmit and receive resources are freed.
4653  **/
4654 int e1000e_close(struct net_device *netdev)
4655 {
4656         struct e1000_adapter *adapter = netdev_priv(netdev);
4657         struct pci_dev *pdev = adapter->pdev;
4658         int count = E1000_CHECK_RESET_COUNT;
4659
4660         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4661                 usleep_range(10000, 20000);
4662
4663         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4664
4665         pm_runtime_get_sync(&pdev->dev);
4666
4667         if (!test_bit(__E1000_DOWN, &adapter->state)) {
4668                 e1000e_down(adapter, true);
4669                 e1000_free_irq(adapter);
4670
4671                 /* Link status message must follow this format */
4672                 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4673         }
4674
4675         napi_disable(&adapter->napi);
4676
4677         e1000e_free_tx_resources(adapter->tx_ring);
4678         e1000e_free_rx_resources(adapter->rx_ring);
4679
4680         /* kill manageability vlan ID if supported, but not if a vlan with
4681          * the same ID is registered on the host OS (let 8021q kill it)
4682          */
4683         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4684                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4685                                        adapter->mng_vlan_id);
4686
4687         /* If AMT is enabled, let the firmware know that the network
4688          * interface is now closed
4689          */
4690         if ((adapter->flags & FLAG_HAS_AMT) &&
4691             !test_bit(__E1000_TESTING, &adapter->state))
4692                 e1000e_release_hw_control(adapter);
4693
4694         pm_qos_remove_request(&adapter->pm_qos_req);
4695
4696         pm_runtime_put_sync(&pdev->dev);
4697
4698         return 0;
4699 }
4700
4701 /**
4702  * e1000_set_mac - Change the Ethernet Address of the NIC
4703  * @netdev: network interface device structure
4704  * @p: pointer to an address structure
4705  *
4706  * Returns 0 on success, negative on failure
4707  **/
4708 static int e1000_set_mac(struct net_device *netdev, void *p)
4709 {
4710         struct e1000_adapter *adapter = netdev_priv(netdev);
4711         struct e1000_hw *hw = &adapter->hw;
4712         struct sockaddr *addr = p;
4713
4714         if (!is_valid_ether_addr(addr->sa_data))
4715                 return -EADDRNOTAVAIL;
4716
4717         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4718         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4719
4720         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4721
4722         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4723                 /* activate the work around */
4724                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4725
4726                 /* Hold a copy of the LAA in RAR[14] This is done so that
4727                  * between the time RAR[0] gets clobbered  and the time it
4728                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4729                  * of the RARs and no incoming packets directed to this port
4730                  * are dropped. Eventually the LAA will be in RAR[0] and
4731                  * RAR[14]
4732                  */
4733                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4734                                     adapter->hw.mac.rar_entry_count - 1);
4735         }
4736
4737         return 0;
4738 }
4739
4740 /**
4741  * e1000e_update_phy_task - work thread to update phy
4742  * @work: pointer to our work struct
4743  *
4744  * this worker thread exists because we must acquire a
4745  * semaphore to read the phy, which we could msleep while
4746  * waiting for it, and we can't msleep in a timer.
4747  **/
4748 static void e1000e_update_phy_task(struct work_struct *work)
4749 {
4750         struct e1000_adapter *adapter = container_of(work,
4751                                                      struct e1000_adapter,
4752                                                      update_phy_task);
4753         struct e1000_hw *hw = &adapter->hw;
4754
4755         if (test_bit(__E1000_DOWN, &adapter->state))
4756                 return;
4757
4758         e1000_get_phy_info(hw);
4759
4760         /* Enable EEE on 82579 after link up */
4761         if (hw->phy.type >= e1000_phy_82579)
4762                 e1000_set_eee_pchlan(hw);
4763 }
4764
4765 /**
4766  * e1000_update_phy_info - timre call-back to update PHY info
4767  * @data: pointer to adapter cast into an unsigned long
4768  *
4769  * Need to wait a few seconds after link up to get diagnostic information from
4770  * the phy
4771  **/
4772 static void e1000_update_phy_info(unsigned long data)
4773 {
4774         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4775
4776         if (test_bit(__E1000_DOWN, &adapter->state))
4777                 return;
4778
4779         schedule_work(&adapter->update_phy_task);
4780 }
4781
4782 /**
4783  * e1000e_update_phy_stats - Update the PHY statistics counters
4784  * @adapter: board private structure
4785  *
4786  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4787  **/
4788 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4789 {
4790         struct e1000_hw *hw = &adapter->hw;
4791         s32 ret_val;
4792         u16 phy_data;
4793
4794         ret_val = hw->phy.ops.acquire(hw);
4795         if (ret_val)
4796                 return;
4797
4798         /* A page set is expensive so check if already on desired page.
4799          * If not, set to the page with the PHY status registers.
4800          */
4801         hw->phy.addr = 1;
4802         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4803                                            &phy_data);
4804         if (ret_val)
4805                 goto release;
4806         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4807                 ret_val = hw->phy.ops.set_page(hw,
4808                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4809                 if (ret_val)
4810                         goto release;
4811         }
4812
4813         /* Single Collision Count */
4814         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4815         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4816         if (!ret_val)
4817                 adapter->stats.scc += phy_data;
4818
4819         /* Excessive Collision Count */
4820         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4821         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4822         if (!ret_val)
4823                 adapter->stats.ecol += phy_data;
4824
4825         /* Multiple Collision Count */
4826         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4827         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4828         if (!ret_val)
4829                 adapter->stats.mcc += phy_data;
4830
4831         /* Late Collision Count */
4832         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4833         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4834         if (!ret_val)
4835                 adapter->stats.latecol += phy_data;
4836
4837         /* Collision Count - also used for adaptive IFS */
4838         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4839         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4840         if (!ret_val)
4841                 hw->mac.collision_delta = phy_data;
4842
4843         /* Defer Count */
4844         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4845         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4846         if (!ret_val)
4847                 adapter->stats.dc += phy_data;
4848
4849         /* Transmit with no CRS */
4850         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4851         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4852         if (!ret_val)
4853                 adapter->stats.tncrs += phy_data;
4854
4855 release:
4856         hw->phy.ops.release(hw);
4857 }
4858
4859 /**
4860  * e1000e_update_stats - Update the board statistics counters
4861  * @adapter: board private structure
4862  **/
4863 static void e1000e_update_stats(struct e1000_adapter *adapter)
4864 {
4865         struct net_device *netdev = adapter->netdev;
4866         struct e1000_hw *hw = &adapter->hw;
4867         struct pci_dev *pdev = adapter->pdev;
4868
4869         /* Prevent stats update while adapter is being reset, or if the pci
4870          * connection is down.
4871          */
4872         if (adapter->link_speed == 0)
4873                 return;
4874         if (pci_channel_offline(pdev))
4875                 return;
4876
4877         adapter->stats.crcerrs += er32(CRCERRS);
4878         adapter->stats.gprc += er32(GPRC);
4879         adapter->stats.gorc += er32(GORCL);
4880         er32(GORCH);            /* Clear gorc */
4881         adapter->stats.bprc += er32(BPRC);
4882         adapter->stats.mprc += er32(MPRC);
4883         adapter->stats.roc += er32(ROC);
4884
4885         adapter->stats.mpc += er32(MPC);
4886
4887         /* Half-duplex statistics */
4888         if (adapter->link_duplex == HALF_DUPLEX) {
4889                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4890                         e1000e_update_phy_stats(adapter);
4891                 } else {
4892                         adapter->stats.scc += er32(SCC);
4893                         adapter->stats.ecol += er32(ECOL);
4894                         adapter->stats.mcc += er32(MCC);
4895                         adapter->stats.latecol += er32(LATECOL);
4896                         adapter->stats.dc += er32(DC);
4897
4898                         hw->mac.collision_delta = er32(COLC);
4899
4900                         if ((hw->mac.type != e1000_82574) &&
4901                             (hw->mac.type != e1000_82583))
4902                                 adapter->stats.tncrs += er32(TNCRS);
4903                 }
4904                 adapter->stats.colc += hw->mac.collision_delta;
4905         }
4906
4907         adapter->stats.xonrxc += er32(XONRXC);
4908         adapter->stats.xontxc += er32(XONTXC);
4909         adapter->stats.xoffrxc += er32(XOFFRXC);
4910         adapter->stats.xofftxc += er32(XOFFTXC);
4911         adapter->stats.gptc += er32(GPTC);
4912         adapter->stats.gotc += er32(GOTCL);
4913         er32(GOTCH);            /* Clear gotc */
4914         adapter->stats.rnbc += er32(RNBC);
4915         adapter->stats.ruc += er32(RUC);
4916
4917         adapter->stats.mptc += er32(MPTC);
4918         adapter->stats.bptc += er32(BPTC);
4919
4920         /* used for adaptive IFS */
4921
4922         hw->mac.tx_packet_delta = er32(TPT);
4923         adapter->stats.tpt += hw->mac.tx_packet_delta;
4924
4925         adapter->stats.algnerrc += er32(ALGNERRC);
4926         adapter->stats.rxerrc += er32(RXERRC);
4927         adapter->stats.cexterr += er32(CEXTERR);
4928         adapter->stats.tsctc += er32(TSCTC);
4929         adapter->stats.tsctfc += er32(TSCTFC);
4930
4931         /* Fill out the OS statistics structure */
4932         netdev->stats.multicast = adapter->stats.mprc;
4933         netdev->stats.collisions = adapter->stats.colc;
4934
4935         /* Rx Errors */
4936
4937         /* RLEC on some newer hardware can be incorrect so build
4938          * our own version based on RUC and ROC
4939          */
4940         netdev->stats.rx_errors = adapter->stats.rxerrc +
4941             adapter->stats.crcerrs + adapter->stats.algnerrc +
4942             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4943         netdev->stats.rx_length_errors = adapter->stats.ruc +
4944             adapter->stats.roc;
4945         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4946         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4947         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4948
4949         /* Tx Errors */
4950         netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4951         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4952         netdev->stats.tx_window_errors = adapter->stats.latecol;
4953         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4954
4955         /* Tx Dropped needs to be maintained elsewhere */
4956
4957         /* Management Stats */
4958         adapter->stats.mgptc += er32(MGTPTC);
4959         adapter->stats.mgprc += er32(MGTPRC);
4960         adapter->stats.mgpdc += er32(MGTPDC);
4961
4962         /* Correctable ECC Errors */
4963         if ((hw->mac.type == e1000_pch_lpt) ||
4964             (hw->mac.type == e1000_pch_spt)) {
4965                 u32 pbeccsts = er32(PBECCSTS);
4966
4967                 adapter->corr_errors +=
4968                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4969                 adapter->uncorr_errors +=
4970                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4971                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4972         }
4973 }
4974
4975 /**
4976  * e1000_phy_read_status - Update the PHY register status snapshot
4977  * @adapter: board private structure
4978  **/
4979 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4980 {
4981         struct e1000_hw *hw = &adapter->hw;
4982         struct e1000_phy_regs *phy = &adapter->phy_regs;
4983
4984         if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
4985             (er32(STATUS) & E1000_STATUS_LU) &&
4986             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4987                 int ret_val;
4988
4989                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4990                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4991                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4992                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4993                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4994                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4995                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4996                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4997                 if (ret_val)
4998                         e_warn("Error reading PHY register\n");
4999         } else {
5000                 /* Do not read PHY registers if link is not up
5001                  * Set values to typical power-on defaults
5002                  */
5003                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5004                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5005                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5006                              BMSR_ERCAP);
5007                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5008                                   ADVERTISE_ALL | ADVERTISE_CSMA);
5009                 phy->lpa = 0;
5010                 phy->expansion = EXPANSION_ENABLENPAGE;
5011                 phy->ctrl1000 = ADVERTISE_1000FULL;
5012                 phy->stat1000 = 0;
5013                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5014         }
5015 }
5016
5017 static void e1000_print_link_info(struct e1000_adapter *adapter)
5018 {
5019         struct e1000_hw *hw = &adapter->hw;
5020         u32 ctrl = er32(CTRL);
5021
5022         /* Link status message must follow this format for user tools */
5023         pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5024                 adapter->netdev->name, adapter->link_speed,
5025                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5026                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5027                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5028                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5029 }
5030
5031 static bool e1000e_has_link(struct e1000_adapter *adapter)
5032 {
5033         struct e1000_hw *hw = &adapter->hw;
5034         bool link_active = false;
5035         s32 ret_val = 0;
5036
5037         /* get_link_status is set on LSC (link status) interrupt or
5038          * Rx sequence error interrupt.  get_link_status will stay
5039          * false until the check_for_link establishes link
5040          * for copper adapters ONLY
5041          */
5042         switch (hw->phy.media_type) {
5043         case e1000_media_type_copper:
5044                 if (hw->mac.get_link_status) {
5045                         ret_val = hw->mac.ops.check_for_link(hw);
5046                         link_active = !hw->mac.get_link_status;
5047                 } else {
5048                         link_active = true;
5049                 }
5050                 break;
5051         case e1000_media_type_fiber:
5052                 ret_val = hw->mac.ops.check_for_link(hw);
5053                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5054                 break;
5055         case e1000_media_type_internal_serdes:
5056                 ret_val = hw->mac.ops.check_for_link(hw);
5057                 link_active = adapter->hw.mac.serdes_has_link;
5058                 break;
5059         default:
5060         case e1000_media_type_unknown:
5061                 break;
5062         }
5063
5064         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5065             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5066                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5067                 e_info("Gigabit has been disabled, downgrading speed\n");
5068         }
5069
5070         return link_active;
5071 }
5072
5073 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5074 {
5075         /* make sure the receive unit is started */
5076         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5077             (adapter->flags & FLAG_RESTART_NOW)) {
5078                 struct e1000_hw *hw = &adapter->hw;
5079                 u32 rctl = er32(RCTL);
5080
5081                 ew32(RCTL, rctl | E1000_RCTL_EN);
5082                 adapter->flags &= ~FLAG_RESTART_NOW;
5083         }
5084 }
5085
5086 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5087 {
5088         struct e1000_hw *hw = &adapter->hw;
5089
5090         /* With 82574 controllers, PHY needs to be checked periodically
5091          * for hung state and reset, if two calls return true
5092          */
5093         if (e1000_check_phy_82574(hw))
5094                 adapter->phy_hang_count++;
5095         else
5096                 adapter->phy_hang_count = 0;
5097
5098         if (adapter->phy_hang_count > 1) {
5099                 adapter->phy_hang_count = 0;
5100                 e_dbg("PHY appears hung - resetting\n");
5101                 schedule_work(&adapter->reset_task);
5102         }
5103 }
5104
5105 /**
5106  * e1000_watchdog - Timer Call-back
5107  * @data: pointer to adapter cast into an unsigned long
5108  **/
5109 static void e1000_watchdog(unsigned long data)
5110 {
5111         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
5112
5113         /* Do the rest outside of interrupt context */
5114         schedule_work(&adapter->watchdog_task);
5115
5116         /* TODO: make this use queue_delayed_work() */
5117 }
5118
5119 static void e1000_watchdog_task(struct work_struct *work)
5120 {
5121         struct e1000_adapter *adapter = container_of(work,
5122                                                      struct e1000_adapter,
5123                                                      watchdog_task);
5124         struct net_device *netdev = adapter->netdev;
5125         struct e1000_mac_info *mac = &adapter->hw.mac;
5126         struct e1000_phy_info *phy = &adapter->hw.phy;
5127         struct e1000_ring *tx_ring = adapter->tx_ring;
5128         struct e1000_hw *hw = &adapter->hw;
5129         u32 link, tctl;
5130
5131         if (test_bit(__E1000_DOWN, &adapter->state))
5132                 return;
5133
5134         link = e1000e_has_link(adapter);
5135         if ((netif_carrier_ok(netdev)) && link) {
5136                 /* Cancel scheduled suspend requests. */
5137                 pm_runtime_resume(netdev->dev.parent);
5138
5139                 e1000e_enable_receives(adapter);
5140                 goto link_up;
5141         }
5142
5143         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5144             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5145                 e1000_update_mng_vlan(adapter);
5146
5147         if (link) {
5148                 if (!netif_carrier_ok(netdev)) {
5149                         bool txb2b = true;
5150
5151                         /* Cancel scheduled suspend requests. */
5152                         pm_runtime_resume(netdev->dev.parent);
5153
5154                         /* update snapshot of PHY registers on LSC */
5155                         e1000_phy_read_status(adapter);
5156                         mac->ops.get_link_up_info(&adapter->hw,
5157                                                   &adapter->link_speed,
5158                                                   &adapter->link_duplex);
5159                         e1000_print_link_info(adapter);
5160
5161                         /* check if SmartSpeed worked */
5162                         e1000e_check_downshift(hw);
5163                         if (phy->speed_downgraded)
5164                                 netdev_warn(netdev,
5165                                             "Link Speed was downgraded by SmartSpeed\n");
5166
5167                         /* On supported PHYs, check for duplex mismatch only
5168                          * if link has autonegotiated at 10/100 half
5169                          */
5170                         if ((hw->phy.type == e1000_phy_igp_3 ||
5171                              hw->phy.type == e1000_phy_bm) &&
5172                             hw->mac.autoneg &&
5173                             (adapter->link_speed == SPEED_10 ||
5174                              adapter->link_speed == SPEED_100) &&
5175                             (adapter->link_duplex == HALF_DUPLEX)) {
5176                                 u16 autoneg_exp;
5177
5178                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5179
5180                                 if (!(autoneg_exp & EXPANSION_NWAY))
5181                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5182                         }
5183
5184                         /* adjust timeout factor according to speed/duplex */
5185                         adapter->tx_timeout_factor = 1;
5186                         switch (adapter->link_speed) {
5187                         case SPEED_10:
5188                                 txb2b = false;
5189                                 adapter->tx_timeout_factor = 16;
5190                                 break;
5191                         case SPEED_100:
5192                                 txb2b = false;
5193                                 adapter->tx_timeout_factor = 10;
5194                                 break;
5195                         }
5196
5197                         /* workaround: re-program speed mode bit after
5198                          * link-up event
5199                          */
5200                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5201                             !txb2b) {
5202                                 u32 tarc0;
5203
5204                                 tarc0 = er32(TARC(0));
5205                                 tarc0 &= ~SPEED_MODE_BIT;
5206                                 ew32(TARC(0), tarc0);
5207                         }
5208
5209                         /* disable TSO for pcie and 10/100 speeds, to avoid
5210                          * some hardware issues
5211                          */
5212                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
5213                                 switch (adapter->link_speed) {
5214                                 case SPEED_10:
5215                                 case SPEED_100:
5216                                         e_info("10/100 speed: disabling TSO\n");
5217                                         netdev->features &= ~NETIF_F_TSO;
5218                                         netdev->features &= ~NETIF_F_TSO6;
5219                                         break;
5220                                 case SPEED_1000:
5221                                         netdev->features |= NETIF_F_TSO;
5222                                         netdev->features |= NETIF_F_TSO6;
5223                                         break;
5224                                 default:
5225                                         /* oops */
5226                                         break;
5227                                 }
5228                         }
5229
5230                         /* enable transmits in the hardware, need to do this
5231                          * after setting TARC(0)
5232                          */
5233                         tctl = er32(TCTL);
5234                         tctl |= E1000_TCTL_EN;
5235                         ew32(TCTL, tctl);
5236
5237                         /* Perform any post-link-up configuration before
5238                          * reporting link up.
5239                          */
5240                         if (phy->ops.cfg_on_link_up)
5241                                 phy->ops.cfg_on_link_up(hw);
5242
5243                         netif_carrier_on(netdev);
5244
5245                         if (!test_bit(__E1000_DOWN, &adapter->state))
5246                                 mod_timer(&adapter->phy_info_timer,
5247                                           round_jiffies(jiffies + 2 * HZ));
5248                 }
5249         } else {
5250                 if (netif_carrier_ok(netdev)) {
5251                         adapter->link_speed = 0;
5252                         adapter->link_duplex = 0;
5253                         /* Link status message must follow this format */
5254                         pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5255                         netif_carrier_off(netdev);
5256                         if (!test_bit(__E1000_DOWN, &adapter->state))
5257                                 mod_timer(&adapter->phy_info_timer,
5258                                           round_jiffies(jiffies + 2 * HZ));
5259
5260                         /* 8000ES2LAN requires a Rx packet buffer work-around
5261                          * on link down event; reset the controller to flush
5262                          * the Rx packet buffer.
5263                          */
5264                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5265                                 adapter->flags |= FLAG_RESTART_NOW;
5266                         else
5267                                 pm_schedule_suspend(netdev->dev.parent,
5268                                                     LINK_TIMEOUT);
5269                 }
5270         }
5271
5272 link_up:
5273         spin_lock(&adapter->stats64_lock);
5274         e1000e_update_stats(adapter);
5275
5276         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5277         adapter->tpt_old = adapter->stats.tpt;
5278         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5279         adapter->colc_old = adapter->stats.colc;
5280
5281         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5282         adapter->gorc_old = adapter->stats.gorc;
5283         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5284         adapter->gotc_old = adapter->stats.gotc;
5285         spin_unlock(&adapter->stats64_lock);
5286
5287         /* If the link is lost the controller stops DMA, but
5288          * if there is queued Tx work it cannot be done.  So
5289          * reset the controller to flush the Tx packet buffers.
5290          */
5291         if (!netif_carrier_ok(netdev) &&
5292             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5293                 adapter->flags |= FLAG_RESTART_NOW;
5294
5295         /* If reset is necessary, do it outside of interrupt context. */
5296         if (adapter->flags & FLAG_RESTART_NOW) {
5297                 schedule_work(&adapter->reset_task);
5298                 /* return immediately since reset is imminent */
5299                 return;
5300         }
5301
5302         e1000e_update_adaptive(&adapter->hw);
5303
5304         /* Simple mode for Interrupt Throttle Rate (ITR) */
5305         if (adapter->itr_setting == 4) {
5306                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5307                  * Total asymmetrical Tx or Rx gets ITR=8000;
5308                  * everyone else is between 2000-8000.
5309                  */
5310                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5311                 u32 dif = (adapter->gotc > adapter->gorc ?
5312                            adapter->gotc - adapter->gorc :
5313                            adapter->gorc - adapter->gotc) / 10000;
5314                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5315
5316                 e1000e_write_itr(adapter, itr);
5317         }
5318
5319         /* Cause software interrupt to ensure Rx ring is cleaned */
5320         if (adapter->msix_entries)
5321                 ew32(ICS, adapter->rx_ring->ims_val);
5322         else
5323                 ew32(ICS, E1000_ICS_RXDMT0);
5324
5325         /* flush pending descriptors to memory before detecting Tx hang */
5326         e1000e_flush_descriptors(adapter);
5327
5328         /* Force detection of hung controller every watchdog period */
5329         adapter->detect_tx_hung = true;
5330
5331         /* With 82571 controllers, LAA may be overwritten due to controller
5332          * reset from the other port. Set the appropriate LAA in RAR[0]
5333          */
5334         if (e1000e_get_laa_state_82571(hw))
5335                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5336
5337         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5338                 e1000e_check_82574_phy_workaround(adapter);
5339
5340         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5341         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5342                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5343                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5344                         er32(RXSTMPH);
5345                         adapter->rx_hwtstamp_cleared++;
5346                 } else {
5347                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5348                 }
5349         }
5350
5351         /* Reset the timer */
5352         if (!test_bit(__E1000_DOWN, &adapter->state))
5353                 mod_timer(&adapter->watchdog_timer,
5354                           round_jiffies(jiffies + 2 * HZ));
5355 }
5356
5357 #define E1000_TX_FLAGS_CSUM             0x00000001
5358 #define E1000_TX_FLAGS_VLAN             0x00000002
5359 #define E1000_TX_FLAGS_TSO              0x00000004
5360 #define E1000_TX_FLAGS_IPV4             0x00000008
5361 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5362 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5363 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5364 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5365
5366 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5367                      __be16 protocol)
5368 {
5369         struct e1000_context_desc *context_desc;
5370         struct e1000_buffer *buffer_info;
5371         unsigned int i;
5372         u32 cmd_length = 0;
5373         u16 ipcse = 0, mss;
5374         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5375         int err;
5376
5377         if (!skb_is_gso(skb))
5378                 return 0;
5379
5380         err = skb_cow_head(skb, 0);
5381         if (err < 0)
5382                 return err;
5383
5384         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5385         mss = skb_shinfo(skb)->gso_size;
5386         if (protocol == htons(ETH_P_IP)) {
5387                 struct iphdr *iph = ip_hdr(skb);
5388                 iph->tot_len = 0;
5389                 iph->check = 0;
5390                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5391                                                          0, IPPROTO_TCP, 0);
5392                 cmd_length = E1000_TXD_CMD_IP;
5393                 ipcse = skb_transport_offset(skb) - 1;
5394         } else if (skb_is_gso_v6(skb)) {
5395                 ipv6_hdr(skb)->payload_len = 0;
5396                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5397                                                        &ipv6_hdr(skb)->daddr,
5398                                                        0, IPPROTO_TCP, 0);
5399                 ipcse = 0;
5400         }
5401         ipcss = skb_network_offset(skb);
5402         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5403         tucss = skb_transport_offset(skb);
5404         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5405
5406         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5407                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5408
5409         i = tx_ring->next_to_use;
5410         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5411         buffer_info = &tx_ring->buffer_info[i];
5412
5413         context_desc->lower_setup.ip_fields.ipcss = ipcss;
5414         context_desc->lower_setup.ip_fields.ipcso = ipcso;
5415         context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5416         context_desc->upper_setup.tcp_fields.tucss = tucss;
5417         context_desc->upper_setup.tcp_fields.tucso = tucso;
5418         context_desc->upper_setup.tcp_fields.tucse = 0;
5419         context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5420         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5421         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5422
5423         buffer_info->time_stamp = jiffies;
5424         buffer_info->next_to_watch = i;
5425
5426         i++;
5427         if (i == tx_ring->count)
5428                 i = 0;
5429         tx_ring->next_to_use = i;
5430
5431         return 1;
5432 }
5433
5434 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5435                           __be16 protocol)
5436 {
5437         struct e1000_adapter *adapter = tx_ring->adapter;
5438         struct e1000_context_desc *context_desc;
5439         struct e1000_buffer *buffer_info;
5440         unsigned int i;
5441         u8 css;
5442         u32 cmd_len = E1000_TXD_CMD_DEXT;
5443
5444         if (skb->ip_summed != CHECKSUM_PARTIAL)
5445                 return false;
5446
5447         switch (protocol) {
5448         case cpu_to_be16(ETH_P_IP):
5449                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5450                         cmd_len |= E1000_TXD_CMD_TCP;
5451                 break;
5452         case cpu_to_be16(ETH_P_IPV6):
5453                 /* XXX not handling all IPV6 headers */
5454                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5455                         cmd_len |= E1000_TXD_CMD_TCP;
5456                 break;
5457         default:
5458                 if (unlikely(net_ratelimit()))
5459                         e_warn("checksum_partial proto=%x!\n",
5460                                be16_to_cpu(protocol));
5461                 break;
5462         }
5463
5464         css = skb_checksum_start_offset(skb);
5465
5466         i = tx_ring->next_to_use;
5467         buffer_info = &tx_ring->buffer_info[i];
5468         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5469
5470         context_desc->lower_setup.ip_config = 0;
5471         context_desc->upper_setup.tcp_fields.tucss = css;
5472         context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5473         context_desc->upper_setup.tcp_fields.tucse = 0;
5474         context_desc->tcp_seg_setup.data = 0;
5475         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5476
5477         buffer_info->time_stamp = jiffies;
5478         buffer_info->next_to_watch = i;
5479
5480         i++;
5481         if (i == tx_ring->count)
5482                 i = 0;
5483         tx_ring->next_to_use = i;
5484
5485         return true;
5486 }
5487
5488 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5489                         unsigned int first, unsigned int max_per_txd,
5490                         unsigned int nr_frags)
5491 {
5492         struct e1000_adapter *adapter = tx_ring->adapter;
5493         struct pci_dev *pdev = adapter->pdev;
5494         struct e1000_buffer *buffer_info;
5495         unsigned int len = skb_headlen(skb);
5496         unsigned int offset = 0, size, count = 0, i;
5497         unsigned int f, bytecount, segs;
5498
5499         i = tx_ring->next_to_use;
5500
5501         while (len) {
5502                 buffer_info = &tx_ring->buffer_info[i];
5503                 size = min(len, max_per_txd);
5504
5505                 buffer_info->length = size;
5506                 buffer_info->time_stamp = jiffies;
5507                 buffer_info->next_to_watch = i;
5508                 buffer_info->dma = dma_map_single(&pdev->dev,
5509                                                   skb->data + offset,
5510                                                   size, DMA_TO_DEVICE);
5511                 buffer_info->mapped_as_page = false;
5512                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5513                         goto dma_error;
5514
5515                 len -= size;
5516                 offset += size;
5517                 count++;
5518
5519                 if (len) {
5520                         i++;
5521                         if (i == tx_ring->count)
5522                                 i = 0;
5523                 }
5524         }
5525
5526         for (f = 0; f < nr_frags; f++) {
5527                 const struct skb_frag_struct *frag;
5528
5529                 frag = &skb_shinfo(skb)->frags[f];
5530                 len = skb_frag_size(frag);
5531                 offset = 0;
5532
5533                 while (len) {
5534                         i++;
5535                         if (i == tx_ring->count)
5536                                 i = 0;
5537
5538                         buffer_info = &tx_ring->buffer_info[i];
5539                         size = min(len, max_per_txd);
5540
5541                         buffer_info->length = size;
5542                         buffer_info->time_stamp = jiffies;
5543                         buffer_info->next_to_watch = i;
5544                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5545                                                             offset, size,
5546                                                             DMA_TO_DEVICE);
5547                         buffer_info->mapped_as_page = true;
5548                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5549                                 goto dma_error;
5550
5551                         len -= size;
5552                         offset += size;
5553                         count++;
5554                 }
5555         }
5556
5557         segs = skb_shinfo(skb)->gso_segs ? : 1;
5558         /* multiply data chunks by size of headers */
5559         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5560
5561         tx_ring->buffer_info[i].skb = skb;
5562         tx_ring->buffer_info[i].segs = segs;
5563         tx_ring->buffer_info[i].bytecount = bytecount;
5564         tx_ring->buffer_info[first].next_to_watch = i;
5565
5566         return count;
5567
5568 dma_error:
5569         dev_err(&pdev->dev, "Tx DMA map failed\n");
5570         buffer_info->dma = 0;
5571         if (count)
5572                 count--;
5573
5574         while (count--) {
5575                 if (i == 0)
5576                         i += tx_ring->count;
5577                 i--;
5578                 buffer_info = &tx_ring->buffer_info[i];
5579                 e1000_put_txbuf(tx_ring, buffer_info);
5580         }
5581
5582         return 0;
5583 }
5584
5585 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5586 {
5587         struct e1000_adapter *adapter = tx_ring->adapter;
5588         struct e1000_tx_desc *tx_desc = NULL;
5589         struct e1000_buffer *buffer_info;
5590         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5591         unsigned int i;
5592
5593         if (tx_flags & E1000_TX_FLAGS_TSO) {
5594                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5595                     E1000_TXD_CMD_TSE;
5596                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5597
5598                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5599                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5600         }
5601
5602         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5603                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5604                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5605         }
5606
5607         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5608                 txd_lower |= E1000_TXD_CMD_VLE;
5609                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5610         }
5611
5612         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5613                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5614
5615         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5616                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5617                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5618         }
5619
5620         i = tx_ring->next_to_use;
5621
5622         do {
5623                 buffer_info = &tx_ring->buffer_info[i];
5624                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5625                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5626                 tx_desc->lower.data = cpu_to_le32(txd_lower |
5627                                                   buffer_info->length);
5628                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5629
5630                 i++;
5631                 if (i == tx_ring->count)
5632                         i = 0;
5633         } while (--count > 0);
5634
5635         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5636
5637         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5638         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5639                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5640
5641         /* Force memory writes to complete before letting h/w
5642          * know there are new descriptors to fetch.  (Only
5643          * applicable for weak-ordered memory model archs,
5644          * such as IA-64).
5645          */
5646         wmb();
5647
5648         tx_ring->next_to_use = i;
5649 }
5650
5651 #define MINIMUM_DHCP_PACKET_SIZE 282
5652 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5653                                     struct sk_buff *skb)
5654 {
5655         struct e1000_hw *hw = &adapter->hw;
5656         u16 length, offset;
5657
5658         if (skb_vlan_tag_present(skb) &&
5659             !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5660               (adapter->hw.mng_cookie.status &
5661                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5662                 return 0;
5663
5664         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5665                 return 0;
5666
5667         if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5668                 return 0;
5669
5670         {
5671                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5672                 struct udphdr *udp;
5673
5674                 if (ip->protocol != IPPROTO_UDP)
5675                         return 0;
5676
5677                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5678                 if (ntohs(udp->dest) != 67)
5679                         return 0;
5680
5681                 offset = (u8 *)udp + 8 - skb->data;
5682                 length = skb->len - offset;
5683                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5684         }
5685
5686         return 0;
5687 }
5688
5689 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5690 {
5691         struct e1000_adapter *adapter = tx_ring->adapter;
5692
5693         netif_stop_queue(adapter->netdev);
5694         /* Herbert's original patch had:
5695          *  smp_mb__after_netif_stop_queue();
5696          * but since that doesn't exist yet, just open code it.
5697          */
5698         smp_mb();
5699
5700         /* We need to check again in a case another CPU has just
5701          * made room available.
5702          */
5703         if (e1000_desc_unused(tx_ring) < size)
5704                 return -EBUSY;
5705
5706         /* A reprieve! */
5707         netif_start_queue(adapter->netdev);
5708         ++adapter->restart_queue;
5709         return 0;
5710 }
5711
5712 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5713 {
5714         BUG_ON(size > tx_ring->count);
5715
5716         if (e1000_desc_unused(tx_ring) >= size)
5717                 return 0;
5718         return __e1000_maybe_stop_tx(tx_ring, size);
5719 }
5720
5721 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5722                                     struct net_device *netdev)
5723 {
5724         struct e1000_adapter *adapter = netdev_priv(netdev);
5725         struct e1000_ring *tx_ring = adapter->tx_ring;
5726         unsigned int first;
5727         unsigned int tx_flags = 0;
5728         unsigned int len = skb_headlen(skb);
5729         unsigned int nr_frags;
5730         unsigned int mss;
5731         int count = 0;
5732         int tso;
5733         unsigned int f;
5734         __be16 protocol = vlan_get_protocol(skb);
5735
5736         if (test_bit(__E1000_DOWN, &adapter->state)) {
5737                 dev_kfree_skb_any(skb);
5738                 return NETDEV_TX_OK;
5739         }
5740
5741         if (skb->len <= 0) {
5742                 dev_kfree_skb_any(skb);
5743                 return NETDEV_TX_OK;
5744         }
5745
5746         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5747          * pad skb in order to meet this minimum size requirement
5748          */
5749         if (skb_put_padto(skb, 17))
5750                 return NETDEV_TX_OK;
5751
5752         mss = skb_shinfo(skb)->gso_size;
5753         if (mss) {
5754                 u8 hdr_len;
5755
5756                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5757                  * points to just header, pull a few bytes of payload from
5758                  * frags into skb->data
5759                  */
5760                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5761                 /* we do this workaround for ES2LAN, but it is un-necessary,
5762                  * avoiding it could save a lot of cycles
5763                  */
5764                 if (skb->data_len && (hdr_len == len)) {
5765                         unsigned int pull_size;
5766
5767                         pull_size = min_t(unsigned int, 4, skb->data_len);
5768                         if (!__pskb_pull_tail(skb, pull_size)) {
5769                                 e_err("__pskb_pull_tail failed.\n");
5770                                 dev_kfree_skb_any(skb);
5771                                 return NETDEV_TX_OK;
5772                         }
5773                         len = skb_headlen(skb);
5774                 }
5775         }
5776
5777         /* reserve a descriptor for the offload context */
5778         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5779                 count++;
5780         count++;
5781
5782         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5783
5784         nr_frags = skb_shinfo(skb)->nr_frags;
5785         for (f = 0; f < nr_frags; f++)
5786                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5787                                       adapter->tx_fifo_limit);
5788
5789         if (adapter->hw.mac.tx_pkt_filtering)
5790                 e1000_transfer_dhcp_info(adapter, skb);
5791
5792         /* need: count + 2 desc gap to keep tail from touching
5793          * head, otherwise try next time
5794          */
5795         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5796                 return NETDEV_TX_BUSY;
5797
5798         if (skb_vlan_tag_present(skb)) {
5799                 tx_flags |= E1000_TX_FLAGS_VLAN;
5800                 tx_flags |= (skb_vlan_tag_get(skb) <<
5801                              E1000_TX_FLAGS_VLAN_SHIFT);
5802         }
5803
5804         first = tx_ring->next_to_use;
5805
5806         tso = e1000_tso(tx_ring, skb, protocol);
5807         if (tso < 0) {
5808                 dev_kfree_skb_any(skb);
5809                 return NETDEV_TX_OK;
5810         }
5811
5812         if (tso)
5813                 tx_flags |= E1000_TX_FLAGS_TSO;
5814         else if (e1000_tx_csum(tx_ring, skb, protocol))
5815                 tx_flags |= E1000_TX_FLAGS_CSUM;
5816
5817         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5818          * 82571 hardware supports TSO capabilities for IPv6 as well...
5819          * no longer assume, we must.
5820          */
5821         if (protocol == htons(ETH_P_IP))
5822                 tx_flags |= E1000_TX_FLAGS_IPV4;
5823
5824         if (unlikely(skb->no_fcs))
5825                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5826
5827         /* if count is 0 then mapping error has occurred */
5828         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5829                              nr_frags);
5830         if (count) {
5831                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5832                     (adapter->flags & FLAG_HAS_HW_TIMESTAMP) &&
5833                     !adapter->tx_hwtstamp_skb) {
5834                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5835                         tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5836                         adapter->tx_hwtstamp_skb = skb_get(skb);
5837                         adapter->tx_hwtstamp_start = jiffies;
5838                         schedule_work(&adapter->tx_hwtstamp_work);
5839                 } else {
5840                         skb_tx_timestamp(skb);
5841                 }
5842
5843                 netdev_sent_queue(netdev, skb->len);
5844                 e1000_tx_queue(tx_ring, tx_flags, count);
5845                 /* Make sure there is space in the ring for the next send. */
5846                 e1000_maybe_stop_tx(tx_ring,
5847                                     (MAX_SKB_FRAGS *
5848                                      DIV_ROUND_UP(PAGE_SIZE,
5849                                                   adapter->tx_fifo_limit) + 2));
5850
5851                 if (!skb->xmit_more ||
5852                     netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5853                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5854                                 e1000e_update_tdt_wa(tx_ring,
5855                                                      tx_ring->next_to_use);
5856                         else
5857                                 writel(tx_ring->next_to_use, tx_ring->tail);
5858
5859                         /* we need this if more than one processor can write
5860                          * to our tail at a time, it synchronizes IO on
5861                          *IA64/Altix systems
5862                          */
5863                         mmiowb();
5864                 }
5865         } else {
5866                 dev_kfree_skb_any(skb);
5867                 tx_ring->buffer_info[first].time_stamp = 0;
5868                 tx_ring->next_to_use = first;
5869         }
5870
5871         return NETDEV_TX_OK;
5872 }
5873
5874 /**
5875  * e1000_tx_timeout - Respond to a Tx Hang
5876  * @netdev: network interface device structure
5877  **/
5878 static void e1000_tx_timeout(struct net_device *netdev)
5879 {
5880         struct e1000_adapter *adapter = netdev_priv(netdev);
5881
5882         /* Do the reset outside of interrupt context */
5883         adapter->tx_timeout_count++;
5884         schedule_work(&adapter->reset_task);
5885 }
5886
5887 static void e1000_reset_task(struct work_struct *work)
5888 {
5889         struct e1000_adapter *adapter;
5890         adapter = container_of(work, struct e1000_adapter, reset_task);
5891
5892         /* don't run the task if already down */
5893         if (test_bit(__E1000_DOWN, &adapter->state))
5894                 return;
5895
5896         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5897                 e1000e_dump(adapter);
5898                 e_err("Reset adapter unexpectedly\n");
5899         }
5900         e1000e_reinit_locked(adapter);
5901 }
5902
5903 /**
5904  * e1000_get_stats64 - Get System Network Statistics
5905  * @netdev: network interface device structure
5906  * @stats: rtnl_link_stats64 pointer
5907  *
5908  * Returns the address of the device statistics structure.
5909  **/
5910 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5911                                              struct rtnl_link_stats64 *stats)
5912 {
5913         struct e1000_adapter *adapter = netdev_priv(netdev);
5914
5915         memset(stats, 0, sizeof(struct rtnl_link_stats64));
5916         spin_lock(&adapter->stats64_lock);
5917         e1000e_update_stats(adapter);
5918         /* Fill out the OS statistics structure */
5919         stats->rx_bytes = adapter->stats.gorc;
5920         stats->rx_packets = adapter->stats.gprc;
5921         stats->tx_bytes = adapter->stats.gotc;
5922         stats->tx_packets = adapter->stats.gptc;
5923         stats->multicast = adapter->stats.mprc;
5924         stats->collisions = adapter->stats.colc;
5925
5926         /* Rx Errors */
5927
5928         /* RLEC on some newer hardware can be incorrect so build
5929          * our own version based on RUC and ROC
5930          */
5931         stats->rx_errors = adapter->stats.rxerrc +
5932             adapter->stats.crcerrs + adapter->stats.algnerrc +
5933             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5934         stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5935         stats->rx_crc_errors = adapter->stats.crcerrs;
5936         stats->rx_frame_errors = adapter->stats.algnerrc;
5937         stats->rx_missed_errors = adapter->stats.mpc;
5938
5939         /* Tx Errors */
5940         stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5941         stats->tx_aborted_errors = adapter->stats.ecol;
5942         stats->tx_window_errors = adapter->stats.latecol;
5943         stats->tx_carrier_errors = adapter->stats.tncrs;
5944
5945         /* Tx Dropped needs to be maintained elsewhere */
5946
5947         spin_unlock(&adapter->stats64_lock);
5948         return stats;
5949 }
5950
5951 /**
5952  * e1000_change_mtu - Change the Maximum Transfer Unit
5953  * @netdev: network interface device structure
5954  * @new_mtu: new value for maximum frame size
5955  *
5956  * Returns 0 on success, negative on failure
5957  **/
5958 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5959 {
5960         struct e1000_adapter *adapter = netdev_priv(netdev);
5961         int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
5962
5963         /* Jumbo frame support */
5964         if ((max_frame > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) &&
5965             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5966                 e_err("Jumbo Frames not supported.\n");
5967                 return -EINVAL;
5968         }
5969
5970         /* Supported frame sizes */
5971         if ((new_mtu < (VLAN_ETH_ZLEN + ETH_FCS_LEN)) ||
5972             (max_frame > adapter->max_hw_frame_size)) {
5973                 e_err("Unsupported MTU setting\n");
5974                 return -EINVAL;
5975         }
5976
5977         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5978         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5979             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5980             (new_mtu > ETH_DATA_LEN)) {
5981                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5982                 return -EINVAL;
5983         }
5984
5985         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5986                 usleep_range(1000, 2000);
5987         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5988         adapter->max_frame_size = max_frame;
5989         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5990         netdev->mtu = new_mtu;
5991
5992         pm_runtime_get_sync(netdev->dev.parent);
5993
5994         if (netif_running(netdev))
5995                 e1000e_down(adapter, true);
5996
5997         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5998          * means we reserve 2 more, this pushes us to allocate from the next
5999          * larger slab size.
6000          * i.e. RXBUFFER_2048 --> size-4096 slab
6001          * However with the new *_jumbo_rx* routines, jumbo receives will use
6002          * fragmented skbs
6003          */
6004
6005         if (max_frame <= 2048)
6006                 adapter->rx_buffer_len = 2048;
6007         else
6008                 adapter->rx_buffer_len = 4096;
6009
6010         /* adjust allocation if LPE protects us, and we aren't using SBP */
6011         if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6012                 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6013
6014         if (netif_running(netdev))
6015                 e1000e_up(adapter);
6016         else
6017                 e1000e_reset(adapter);
6018
6019         pm_runtime_put_sync(netdev->dev.parent);
6020
6021         clear_bit(__E1000_RESETTING, &adapter->state);
6022
6023         return 0;
6024 }
6025
6026 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6027                            int cmd)
6028 {
6029         struct e1000_adapter *adapter = netdev_priv(netdev);
6030         struct mii_ioctl_data *data = if_mii(ifr);
6031
6032         if (adapter->hw.phy.media_type != e1000_media_type_copper)
6033                 return -EOPNOTSUPP;
6034
6035         switch (cmd) {
6036         case SIOCGMIIPHY:
6037                 data->phy_id = adapter->hw.phy.addr;
6038                 break;
6039         case SIOCGMIIREG:
6040                 e1000_phy_read_status(adapter);
6041
6042                 switch (data->reg_num & 0x1F) {
6043                 case MII_BMCR:
6044                         data->val_out = adapter->phy_regs.bmcr;
6045                         break;
6046                 case MII_BMSR:
6047                         data->val_out = adapter->phy_regs.bmsr;
6048                         break;
6049                 case MII_PHYSID1:
6050                         data->val_out = (adapter->hw.phy.id >> 16);
6051                         break;
6052                 case MII_PHYSID2:
6053                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
6054                         break;
6055                 case MII_ADVERTISE:
6056                         data->val_out = adapter->phy_regs.advertise;
6057                         break;
6058                 case MII_LPA:
6059                         data->val_out = adapter->phy_regs.lpa;
6060                         break;
6061                 case MII_EXPANSION:
6062                         data->val_out = adapter->phy_regs.expansion;
6063                         break;
6064                 case MII_CTRL1000:
6065                         data->val_out = adapter->phy_regs.ctrl1000;
6066                         break;
6067                 case MII_STAT1000:
6068                         data->val_out = adapter->phy_regs.stat1000;
6069                         break;
6070                 case MII_ESTATUS:
6071                         data->val_out = adapter->phy_regs.estatus;
6072                         break;
6073                 default:
6074                         return -EIO;
6075                 }
6076                 break;
6077         case SIOCSMIIREG:
6078         default:
6079                 return -EOPNOTSUPP;
6080         }
6081         return 0;
6082 }
6083
6084 /**
6085  * e1000e_hwtstamp_ioctl - control hardware time stamping
6086  * @netdev: network interface device structure
6087  * @ifreq: interface request
6088  *
6089  * Outgoing time stamping can be enabled and disabled. Play nice and
6090  * disable it when requested, although it shouldn't cause any overhead
6091  * when no packet needs it. At most one packet in the queue may be
6092  * marked for time stamping, otherwise it would be impossible to tell
6093  * for sure to which packet the hardware time stamp belongs.
6094  *
6095  * Incoming time stamping has to be configured via the hardware filters.
6096  * Not all combinations are supported, in particular event type has to be
6097  * specified. Matching the kind of event packet is not supported, with the
6098  * exception of "all V2 events regardless of level 2 or 4".
6099  **/
6100 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6101 {
6102         struct e1000_adapter *adapter = netdev_priv(netdev);
6103         struct hwtstamp_config config;
6104         int ret_val;
6105
6106         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6107                 return -EFAULT;
6108
6109         ret_val = e1000e_config_hwtstamp(adapter, &config);
6110         if (ret_val)
6111                 return ret_val;
6112
6113         switch (config.rx_filter) {
6114         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6115         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6116         case HWTSTAMP_FILTER_PTP_V2_SYNC:
6117         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6118         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6119         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6120                 /* With V2 type filters which specify a Sync or Delay Request,
6121                  * Path Delay Request/Response messages are also time stamped
6122                  * by hardware so notify the caller the requested packets plus
6123                  * some others are time stamped.
6124                  */
6125                 config.rx_filter = HWTSTAMP_FILTER_SOME;
6126                 break;
6127         default:
6128                 break;
6129         }
6130
6131         return copy_to_user(ifr->ifr_data, &config,
6132                             sizeof(config)) ? -EFAULT : 0;
6133 }
6134
6135 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6136 {
6137         struct e1000_adapter *adapter = netdev_priv(netdev);
6138
6139         return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6140                             sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6141 }
6142
6143 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6144 {
6145         switch (cmd) {
6146         case SIOCGMIIPHY:
6147         case SIOCGMIIREG:
6148         case SIOCSMIIREG:
6149                 return e1000_mii_ioctl(netdev, ifr, cmd);
6150         case SIOCSHWTSTAMP:
6151                 return e1000e_hwtstamp_set(netdev, ifr);
6152         case SIOCGHWTSTAMP:
6153                 return e1000e_hwtstamp_get(netdev, ifr);
6154         default:
6155                 return -EOPNOTSUPP;
6156         }
6157 }
6158
6159 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6160 {
6161         struct e1000_hw *hw = &adapter->hw;
6162         u32 i, mac_reg, wuc;
6163         u16 phy_reg, wuc_enable;
6164         int retval;
6165
6166         /* copy MAC RARs to PHY RARs */
6167         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6168
6169         retval = hw->phy.ops.acquire(hw);
6170         if (retval) {
6171                 e_err("Could not acquire PHY\n");
6172                 return retval;
6173         }
6174
6175         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6176         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6177         if (retval)
6178                 goto release;
6179
6180         /* copy MAC MTA to PHY MTA - only needed for pchlan */
6181         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6182                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6183                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6184                                            (u16)(mac_reg & 0xFFFF));
6185                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6186                                            (u16)((mac_reg >> 16) & 0xFFFF));
6187         }
6188
6189         /* configure PHY Rx Control register */
6190         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6191         mac_reg = er32(RCTL);
6192         if (mac_reg & E1000_RCTL_UPE)
6193                 phy_reg |= BM_RCTL_UPE;
6194         if (mac_reg & E1000_RCTL_MPE)
6195                 phy_reg |= BM_RCTL_MPE;
6196         phy_reg &= ~(BM_RCTL_MO_MASK);
6197         if (mac_reg & E1000_RCTL_MO_3)
6198                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6199                             << BM_RCTL_MO_SHIFT);
6200         if (mac_reg & E1000_RCTL_BAM)
6201                 phy_reg |= BM_RCTL_BAM;
6202         if (mac_reg & E1000_RCTL_PMCF)
6203                 phy_reg |= BM_RCTL_PMCF;
6204         mac_reg = er32(CTRL);
6205         if (mac_reg & E1000_CTRL_RFCE)
6206                 phy_reg |= BM_RCTL_RFCE;
6207         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6208
6209         wuc = E1000_WUC_PME_EN;
6210         if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6211                 wuc |= E1000_WUC_APME;
6212
6213         /* enable PHY wakeup in MAC register */
6214         ew32(WUFC, wufc);
6215         ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6216                    E1000_WUC_PME_STATUS | wuc));
6217
6218         /* configure and enable PHY wakeup in PHY registers */
6219         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6220         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6221
6222         /* activate PHY wakeup */
6223         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6224         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6225         if (retval)
6226                 e_err("Could not set PHY Host Wakeup bit\n");
6227 release:
6228         hw->phy.ops.release(hw);
6229
6230         return retval;
6231 }
6232
6233 static void e1000e_flush_lpic(struct pci_dev *pdev)
6234 {
6235         struct net_device *netdev = pci_get_drvdata(pdev);
6236         struct e1000_adapter *adapter = netdev_priv(netdev);
6237         struct e1000_hw *hw = &adapter->hw;
6238         u32 ret_val;
6239
6240         pm_runtime_get_sync(netdev->dev.parent);
6241
6242         ret_val = hw->phy.ops.acquire(hw);
6243         if (ret_val)
6244                 goto fl_out;
6245
6246         pr_info("EEE TX LPI TIMER: %08X\n",
6247                 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6248
6249         hw->phy.ops.release(hw);
6250
6251 fl_out:
6252         pm_runtime_put_sync(netdev->dev.parent);
6253 }
6254
6255 static int e1000e_pm_freeze(struct device *dev)
6256 {
6257         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6258         struct e1000_adapter *adapter = netdev_priv(netdev);
6259
6260         netif_device_detach(netdev);
6261
6262         if (netif_running(netdev)) {
6263                 int count = E1000_CHECK_RESET_COUNT;
6264
6265                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6266                         usleep_range(10000, 20000);
6267
6268                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6269
6270                 /* Quiesce the device without resetting the hardware */
6271                 e1000e_down(adapter, false);
6272                 e1000_free_irq(adapter);
6273         }
6274         e1000e_reset_interrupt_capability(adapter);
6275
6276         /* Allow time for pending master requests to run */
6277         e1000e_disable_pcie_master(&adapter->hw);
6278
6279         return 0;
6280 }
6281
6282 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6283 {
6284         struct net_device *netdev = pci_get_drvdata(pdev);
6285         struct e1000_adapter *adapter = netdev_priv(netdev);
6286         struct e1000_hw *hw = &adapter->hw;
6287         u32 ctrl, ctrl_ext, rctl, status;
6288         /* Runtime suspend should only enable wakeup for link changes */
6289         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6290         int retval = 0;
6291
6292         status = er32(STATUS);
6293         if (status & E1000_STATUS_LU)
6294                 wufc &= ~E1000_WUFC_LNKC;
6295
6296         if (wufc) {
6297                 e1000_setup_rctl(adapter);
6298                 e1000e_set_rx_mode(netdev);
6299
6300                 /* turn on all-multi mode if wake on multicast is enabled */
6301                 if (wufc & E1000_WUFC_MC) {
6302                         rctl = er32(RCTL);
6303                         rctl |= E1000_RCTL_MPE;
6304                         ew32(RCTL, rctl);
6305                 }
6306
6307                 ctrl = er32(CTRL);
6308                 ctrl |= E1000_CTRL_ADVD3WUC;
6309                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6310                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6311                 ew32(CTRL, ctrl);
6312
6313                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6314                     adapter->hw.phy.media_type ==
6315                     e1000_media_type_internal_serdes) {
6316                         /* keep the laser running in D3 */
6317                         ctrl_ext = er32(CTRL_EXT);
6318                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6319                         ew32(CTRL_EXT, ctrl_ext);
6320                 }
6321
6322                 if (!runtime)
6323                         e1000e_power_up_phy(adapter);
6324
6325                 if (adapter->flags & FLAG_IS_ICH)
6326                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
6327
6328                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6329                         /* enable wakeup by the PHY */
6330                         retval = e1000_init_phy_wakeup(adapter, wufc);
6331                         if (retval)
6332                                 return retval;
6333                 } else {
6334                         /* enable wakeup by the MAC */
6335                         ew32(WUFC, wufc);
6336                         ew32(WUC, E1000_WUC_PME_EN);
6337                 }
6338         } else {
6339                 ew32(WUC, 0);
6340                 ew32(WUFC, 0);
6341
6342                 e1000_power_down_phy(adapter);
6343         }
6344
6345         if (adapter->hw.phy.type == e1000_phy_igp_3) {
6346                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6347         } else if ((hw->mac.type == e1000_pch_lpt) ||
6348                    (hw->mac.type == e1000_pch_spt)) {
6349                 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6350                         /* ULP does not support wake from unicast, multicast
6351                          * or broadcast.
6352                          */
6353                         retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6354
6355                 if (retval)
6356                         return retval;
6357         }
6358
6359         /* Ensure that the appropriate bits are set in LPI_CTRL
6360          * for EEE in Sx
6361          */
6362         if ((hw->phy.type >= e1000_phy_i217) &&
6363             adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6364                 u16 lpi_ctrl = 0;
6365
6366                 retval = hw->phy.ops.acquire(hw);
6367                 if (!retval) {
6368                         retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6369                                                  &lpi_ctrl);
6370                         if (!retval) {
6371                                 if (adapter->eee_advert &
6372                                     hw->dev_spec.ich8lan.eee_lp_ability &
6373                                     I82579_EEE_100_SUPPORTED)
6374                                         lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6375                                 if (adapter->eee_advert &
6376                                     hw->dev_spec.ich8lan.eee_lp_ability &
6377                                     I82579_EEE_1000_SUPPORTED)
6378                                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6379
6380                                 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6381                                                          lpi_ctrl);
6382                         }
6383                 }
6384                 hw->phy.ops.release(hw);
6385         }
6386
6387         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6388          * would have already happened in close and is redundant.
6389          */
6390         e1000e_release_hw_control(adapter);
6391
6392         pci_clear_master(pdev);
6393
6394         /* The pci-e switch on some quad port adapters will report a
6395          * correctable error when the MAC transitions from D0 to D3.  To
6396          * prevent this we need to mask off the correctable errors on the
6397          * downstream port of the pci-e switch.
6398          *
6399          * We don't have the associated upstream bridge while assigning
6400          * the PCI device into guest. For example, the KVM on power is
6401          * one of the cases.
6402          */
6403         if (adapter->flags & FLAG_IS_QUAD_PORT) {
6404                 struct pci_dev *us_dev = pdev->bus->self;
6405                 u16 devctl;
6406
6407                 if (!us_dev)
6408                         return 0;
6409
6410                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6411                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6412                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
6413
6414                 pci_save_state(pdev);
6415                 pci_prepare_to_sleep(pdev);
6416
6417                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6418         }
6419
6420         return 0;
6421 }
6422
6423 /**
6424  * __e1000e_disable_aspm - Disable ASPM states
6425  * @pdev: pointer to PCI device struct
6426  * @state: bit-mask of ASPM states to disable
6427  * @locked: indication if this context holds pci_bus_sem locked.
6428  *
6429  * Some devices *must* have certain ASPM states disabled per hardware errata.
6430  **/
6431 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6432 {
6433         struct pci_dev *parent = pdev->bus->self;
6434         u16 aspm_dis_mask = 0;
6435         u16 pdev_aspmc, parent_aspmc;
6436
6437         switch (state) {
6438         case PCIE_LINK_STATE_L0S:
6439         case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6440                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6441                 /* fall-through - can't have L1 without L0s */
6442         case PCIE_LINK_STATE_L1:
6443                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6444                 break;
6445         default:
6446                 return;
6447         }
6448
6449         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6450         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6451
6452         if (parent) {
6453                 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6454                                           &parent_aspmc);
6455                 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6456         }
6457
6458         /* Nothing to do if the ASPM states to be disabled already are */
6459         if (!(pdev_aspmc & aspm_dis_mask) &&
6460             (!parent || !(parent_aspmc & aspm_dis_mask)))
6461                 return;
6462
6463         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6464                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6465                  "L0s" : "",
6466                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6467                  "L1" : "");
6468
6469 #ifdef CONFIG_PCIEASPM
6470         if (locked)
6471                 pci_disable_link_state_locked(pdev, state);
6472         else
6473                 pci_disable_link_state(pdev, state);
6474
6475         /* Double-check ASPM control.  If not disabled by the above, the
6476          * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6477          * not enabled); override by writing PCI config space directly.
6478          */
6479         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6480         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6481
6482         if (!(aspm_dis_mask & pdev_aspmc))
6483                 return;
6484 #endif
6485
6486         /* Both device and parent should have the same ASPM setting.
6487          * Disable ASPM in downstream component first and then upstream.
6488          */
6489         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6490
6491         if (parent)
6492                 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6493                                            aspm_dis_mask);
6494 }
6495
6496 /**
6497  * e1000e_disable_aspm - Disable ASPM states.
6498  * @pdev: pointer to PCI device struct
6499  * @state: bit-mask of ASPM states to disable
6500  *
6501  * This function acquires the pci_bus_sem!
6502  * Some devices *must* have certain ASPM states disabled per hardware errata.
6503  **/
6504 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6505 {
6506         __e1000e_disable_aspm(pdev, state, 0);
6507 }
6508
6509 /**
6510  * e1000e_disable_aspm_locked   Disable ASPM states.
6511  * @pdev: pointer to PCI device struct
6512  * @state: bit-mask of ASPM states to disable
6513  *
6514  * This function must be called with pci_bus_sem acquired!
6515  * Some devices *must* have certain ASPM states disabled per hardware errata.
6516  **/
6517 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6518 {
6519         __e1000e_disable_aspm(pdev, state, 1);
6520 }
6521
6522 #ifdef CONFIG_PM
6523 static int __e1000_resume(struct pci_dev *pdev)
6524 {
6525         struct net_device *netdev = pci_get_drvdata(pdev);
6526         struct e1000_adapter *adapter = netdev_priv(netdev);
6527         struct e1000_hw *hw = &adapter->hw;
6528         u16 aspm_disable_flag = 0;
6529
6530         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6531                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6532         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6533                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6534         if (aspm_disable_flag)
6535                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6536
6537         pci_set_master(pdev);
6538
6539         if (hw->mac.type >= e1000_pch2lan)
6540                 e1000_resume_workarounds_pchlan(&adapter->hw);
6541
6542         e1000e_power_up_phy(adapter);
6543
6544         /* report the system wakeup cause from S3/S4 */
6545         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6546                 u16 phy_data;
6547
6548                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6549                 if (phy_data) {
6550                         e_info("PHY Wakeup cause - %s\n",
6551                                phy_data & E1000_WUS_EX ? "Unicast Packet" :
6552                                phy_data & E1000_WUS_MC ? "Multicast Packet" :
6553                                phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6554                                phy_data & E1000_WUS_MAG ? "Magic Packet" :
6555                                phy_data & E1000_WUS_LNKC ?
6556                                "Link Status Change" : "other");
6557                 }
6558                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6559         } else {
6560                 u32 wus = er32(WUS);
6561
6562                 if (wus) {
6563                         e_info("MAC Wakeup cause - %s\n",
6564                                wus & E1000_WUS_EX ? "Unicast Packet" :
6565                                wus & E1000_WUS_MC ? "Multicast Packet" :
6566                                wus & E1000_WUS_BC ? "Broadcast Packet" :
6567                                wus & E1000_WUS_MAG ? "Magic Packet" :
6568                                wus & E1000_WUS_LNKC ? "Link Status Change" :
6569                                "other");
6570                 }
6571                 ew32(WUS, ~0);
6572         }
6573
6574         e1000e_reset(adapter);
6575
6576         e1000_init_manageability_pt(adapter);
6577
6578         /* If the controller has AMT, do not set DRV_LOAD until the interface
6579          * is up.  For all other cases, let the f/w know that the h/w is now
6580          * under the control of the driver.
6581          */
6582         if (!(adapter->flags & FLAG_HAS_AMT))
6583                 e1000e_get_hw_control(adapter);
6584
6585         return 0;
6586 }
6587
6588 #ifdef CONFIG_PM_SLEEP
6589 static int e1000e_pm_thaw(struct device *dev)
6590 {
6591         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6592         struct e1000_adapter *adapter = netdev_priv(netdev);
6593
6594         e1000e_set_interrupt_capability(adapter);
6595         if (netif_running(netdev)) {
6596                 u32 err = e1000_request_irq(adapter);
6597
6598                 if (err)
6599                         return err;
6600
6601                 e1000e_up(adapter);
6602         }
6603
6604         netif_device_attach(netdev);
6605
6606         return 0;
6607 }
6608
6609 static int e1000e_pm_suspend(struct device *dev)
6610 {
6611         struct pci_dev *pdev = to_pci_dev(dev);
6612
6613         e1000e_flush_lpic(pdev);
6614
6615         e1000e_pm_freeze(dev);
6616
6617         return __e1000_shutdown(pdev, false);
6618 }
6619
6620 static int e1000e_pm_resume(struct device *dev)
6621 {
6622         struct pci_dev *pdev = to_pci_dev(dev);
6623         int rc;
6624
6625         rc = __e1000_resume(pdev);
6626         if (rc)
6627                 return rc;
6628
6629         return e1000e_pm_thaw(dev);
6630 }
6631 #endif /* CONFIG_PM_SLEEP */
6632
6633 static int e1000e_pm_runtime_idle(struct device *dev)
6634 {
6635         struct pci_dev *pdev = to_pci_dev(dev);
6636         struct net_device *netdev = pci_get_drvdata(pdev);
6637         struct e1000_adapter *adapter = netdev_priv(netdev);
6638         u16 eee_lp;
6639
6640         eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6641
6642         if (!e1000e_has_link(adapter)) {
6643                 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6644                 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6645         }
6646
6647         return -EBUSY;
6648 }
6649
6650 static int e1000e_pm_runtime_resume(struct device *dev)
6651 {
6652         struct pci_dev *pdev = to_pci_dev(dev);
6653         struct net_device *netdev = pci_get_drvdata(pdev);
6654         struct e1000_adapter *adapter = netdev_priv(netdev);
6655         int rc;
6656
6657         rc = __e1000_resume(pdev);
6658         if (rc)
6659                 return rc;
6660
6661         if (netdev->flags & IFF_UP)
6662                 e1000e_up(adapter);
6663
6664         return rc;
6665 }
6666
6667 static int e1000e_pm_runtime_suspend(struct device *dev)
6668 {
6669         struct pci_dev *pdev = to_pci_dev(dev);
6670         struct net_device *netdev = pci_get_drvdata(pdev);
6671         struct e1000_adapter *adapter = netdev_priv(netdev);
6672
6673         if (netdev->flags & IFF_UP) {
6674                 int count = E1000_CHECK_RESET_COUNT;
6675
6676                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6677                         usleep_range(10000, 20000);
6678
6679                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6680
6681                 /* Down the device without resetting the hardware */
6682                 e1000e_down(adapter, false);
6683         }
6684
6685         if (__e1000_shutdown(pdev, true)) {
6686                 e1000e_pm_runtime_resume(dev);
6687                 return -EBUSY;
6688         }
6689
6690         return 0;
6691 }
6692 #endif /* CONFIG_PM */
6693
6694 static void e1000_shutdown(struct pci_dev *pdev)
6695 {
6696         e1000e_flush_lpic(pdev);
6697
6698         e1000e_pm_freeze(&pdev->dev);
6699
6700         __e1000_shutdown(pdev, false);
6701 }
6702
6703 #ifdef CONFIG_NET_POLL_CONTROLLER
6704
6705 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6706 {
6707         struct net_device *netdev = data;
6708         struct e1000_adapter *adapter = netdev_priv(netdev);
6709
6710         if (adapter->msix_entries) {
6711                 int vector, msix_irq;
6712
6713                 vector = 0;
6714                 msix_irq = adapter->msix_entries[vector].vector;
6715                 disable_irq(msix_irq);
6716                 e1000_intr_msix_rx(msix_irq, netdev);
6717                 enable_irq(msix_irq);
6718
6719                 vector++;
6720                 msix_irq = adapter->msix_entries[vector].vector;
6721                 disable_irq(msix_irq);
6722                 e1000_intr_msix_tx(msix_irq, netdev);
6723                 enable_irq(msix_irq);
6724
6725                 vector++;
6726                 msix_irq = adapter->msix_entries[vector].vector;
6727                 disable_irq(msix_irq);
6728                 e1000_msix_other(msix_irq, netdev);
6729                 enable_irq(msix_irq);
6730         }
6731
6732         return IRQ_HANDLED;
6733 }
6734
6735 /**
6736  * e1000_netpoll
6737  * @netdev: network interface device structure
6738  *
6739  * Polling 'interrupt' - used by things like netconsole to send skbs
6740  * without having to re-enable interrupts. It's not called while
6741  * the interrupt routine is executing.
6742  */
6743 static void e1000_netpoll(struct net_device *netdev)
6744 {
6745         struct e1000_adapter *adapter = netdev_priv(netdev);
6746
6747         switch (adapter->int_mode) {
6748         case E1000E_INT_MODE_MSIX:
6749                 e1000_intr_msix(adapter->pdev->irq, netdev);
6750                 break;
6751         case E1000E_INT_MODE_MSI:
6752                 disable_irq(adapter->pdev->irq);
6753                 e1000_intr_msi(adapter->pdev->irq, netdev);
6754                 enable_irq(adapter->pdev->irq);
6755                 break;
6756         default:                /* E1000E_INT_MODE_LEGACY */
6757                 disable_irq(adapter->pdev->irq);
6758                 e1000_intr(adapter->pdev->irq, netdev);
6759                 enable_irq(adapter->pdev->irq);
6760                 break;
6761         }
6762 }
6763 #endif
6764
6765 /**
6766  * e1000_io_error_detected - called when PCI error is detected
6767  * @pdev: Pointer to PCI device
6768  * @state: The current pci connection state
6769  *
6770  * This function is called after a PCI bus error affecting
6771  * this device has been detected.
6772  */
6773 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6774                                                 pci_channel_state_t state)
6775 {
6776         struct net_device *netdev = pci_get_drvdata(pdev);
6777         struct e1000_adapter *adapter = netdev_priv(netdev);
6778
6779         netif_device_detach(netdev);
6780
6781         if (state == pci_channel_io_perm_failure)
6782                 return PCI_ERS_RESULT_DISCONNECT;
6783
6784         if (netif_running(netdev))
6785                 e1000e_down(adapter, true);
6786         pci_disable_device(pdev);
6787
6788         /* Request a slot slot reset. */
6789         return PCI_ERS_RESULT_NEED_RESET;
6790 }
6791
6792 /**
6793  * e1000_io_slot_reset - called after the pci bus has been reset.
6794  * @pdev: Pointer to PCI device
6795  *
6796  * Restart the card from scratch, as if from a cold-boot. Implementation
6797  * resembles the first-half of the e1000e_pm_resume routine.
6798  */
6799 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6800 {
6801         struct net_device *netdev = pci_get_drvdata(pdev);
6802         struct e1000_adapter *adapter = netdev_priv(netdev);
6803         struct e1000_hw *hw = &adapter->hw;
6804         u16 aspm_disable_flag = 0;
6805         int err;
6806         pci_ers_result_t result;
6807
6808         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6809                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6810         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6811                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6812         if (aspm_disable_flag)
6813                 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6814
6815         err = pci_enable_device_mem(pdev);
6816         if (err) {
6817                 dev_err(&pdev->dev,
6818                         "Cannot re-enable PCI device after reset.\n");
6819                 result = PCI_ERS_RESULT_DISCONNECT;
6820         } else {
6821                 pdev->state_saved = true;
6822                 pci_restore_state(pdev);
6823                 pci_set_master(pdev);
6824
6825                 pci_enable_wake(pdev, PCI_D3hot, 0);
6826                 pci_enable_wake(pdev, PCI_D3cold, 0);
6827
6828                 e1000e_reset(adapter);
6829                 ew32(WUS, ~0);
6830                 result = PCI_ERS_RESULT_RECOVERED;
6831         }
6832
6833         pci_cleanup_aer_uncorrect_error_status(pdev);
6834
6835         return result;
6836 }
6837
6838 /**
6839  * e1000_io_resume - called when traffic can start flowing again.
6840  * @pdev: Pointer to PCI device
6841  *
6842  * This callback is called when the error recovery driver tells us that
6843  * its OK to resume normal operation. Implementation resembles the
6844  * second-half of the e1000e_pm_resume routine.
6845  */
6846 static void e1000_io_resume(struct pci_dev *pdev)
6847 {
6848         struct net_device *netdev = pci_get_drvdata(pdev);
6849         struct e1000_adapter *adapter = netdev_priv(netdev);
6850
6851         e1000_init_manageability_pt(adapter);
6852
6853         if (netif_running(netdev))
6854                 e1000e_up(adapter);
6855
6856         netif_device_attach(netdev);
6857
6858         /* If the controller has AMT, do not set DRV_LOAD until the interface
6859          * is up.  For all other cases, let the f/w know that the h/w is now
6860          * under the control of the driver.
6861          */
6862         if (!(adapter->flags & FLAG_HAS_AMT))
6863                 e1000e_get_hw_control(adapter);
6864 }
6865
6866 static void e1000_print_device_info(struct e1000_adapter *adapter)
6867 {
6868         struct e1000_hw *hw = &adapter->hw;
6869         struct net_device *netdev = adapter->netdev;
6870         u32 ret_val;
6871         u8 pba_str[E1000_PBANUM_LENGTH];
6872
6873         /* print bus type/speed/width info */
6874         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6875                /* bus width */
6876                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6877                 "Width x1"),
6878                /* MAC address */
6879                netdev->dev_addr);
6880         e_info("Intel(R) PRO/%s Network Connection\n",
6881                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6882         ret_val = e1000_read_pba_string_generic(hw, pba_str,
6883                                                 E1000_PBANUM_LENGTH);
6884         if (ret_val)
6885                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6886         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6887                hw->mac.type, hw->phy.type, pba_str);
6888 }
6889
6890 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6891 {
6892         struct e1000_hw *hw = &adapter->hw;
6893         int ret_val;
6894         u16 buf = 0;
6895
6896         if (hw->mac.type != e1000_82573)
6897                 return;
6898
6899         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6900         le16_to_cpus(&buf);
6901         if (!ret_val && (!(buf & BIT(0)))) {
6902                 /* Deep Smart Power Down (DSPD) */
6903                 dev_warn(&adapter->pdev->dev,
6904                          "Warning: detected DSPD enabled in EEPROM\n");
6905         }
6906 }
6907
6908 static netdev_features_t e1000_fix_features(struct net_device *netdev,
6909                                             netdev_features_t features)
6910 {
6911         struct e1000_adapter *adapter = netdev_priv(netdev);
6912         struct e1000_hw *hw = &adapter->hw;
6913
6914         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6915         if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6916                 features &= ~NETIF_F_RXFCS;
6917
6918         /* Since there is no support for separate Rx/Tx vlan accel
6919          * enable/disable make sure Tx flag is always in same state as Rx.
6920          */
6921         if (features & NETIF_F_HW_VLAN_CTAG_RX)
6922                 features |= NETIF_F_HW_VLAN_CTAG_TX;
6923         else
6924                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
6925
6926         return features;
6927 }
6928
6929 static int e1000_set_features(struct net_device *netdev,
6930                               netdev_features_t features)
6931 {
6932         struct e1000_adapter *adapter = netdev_priv(netdev);
6933         netdev_features_t changed = features ^ netdev->features;
6934
6935         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6936                 adapter->flags |= FLAG_TSO_FORCE;
6937
6938         if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6939                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6940                          NETIF_F_RXALL)))
6941                 return 0;
6942
6943         if (changed & NETIF_F_RXFCS) {
6944                 if (features & NETIF_F_RXFCS) {
6945                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6946                 } else {
6947                         /* We need to take it back to defaults, which might mean
6948                          * stripping is still disabled at the adapter level.
6949                          */
6950                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6951                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6952                         else
6953                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6954                 }
6955         }
6956
6957         netdev->features = features;
6958
6959         if (netif_running(netdev))
6960                 e1000e_reinit_locked(adapter);
6961         else
6962                 e1000e_reset(adapter);
6963
6964         return 0;
6965 }
6966
6967 static const struct net_device_ops e1000e_netdev_ops = {
6968         .ndo_open               = e1000e_open,
6969         .ndo_stop               = e1000e_close,
6970         .ndo_start_xmit         = e1000_xmit_frame,
6971         .ndo_get_stats64        = e1000e_get_stats64,
6972         .ndo_set_rx_mode        = e1000e_set_rx_mode,
6973         .ndo_set_mac_address    = e1000_set_mac,
6974         .ndo_change_mtu         = e1000_change_mtu,
6975         .ndo_do_ioctl           = e1000_ioctl,
6976         .ndo_tx_timeout         = e1000_tx_timeout,
6977         .ndo_validate_addr      = eth_validate_addr,
6978
6979         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
6980         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
6981 #ifdef CONFIG_NET_POLL_CONTROLLER
6982         .ndo_poll_controller    = e1000_netpoll,
6983 #endif
6984         .ndo_set_features = e1000_set_features,
6985         .ndo_fix_features = e1000_fix_features,
6986         .ndo_features_check     = passthru_features_check,
6987 };
6988
6989 /**
6990  * e1000_probe - Device Initialization Routine
6991  * @pdev: PCI device information struct
6992  * @ent: entry in e1000_pci_tbl
6993  *
6994  * Returns 0 on success, negative on failure
6995  *
6996  * e1000_probe initializes an adapter identified by a pci_dev structure.
6997  * The OS initialization, configuring of the adapter private structure,
6998  * and a hardware reset occur.
6999  **/
7000 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7001 {
7002         struct net_device *netdev;
7003         struct e1000_adapter *adapter;
7004         struct e1000_hw *hw;
7005         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7006         resource_size_t mmio_start, mmio_len;
7007         resource_size_t flash_start, flash_len;
7008         static int cards_found;
7009         u16 aspm_disable_flag = 0;
7010         int bars, i, err, pci_using_dac;
7011         u16 eeprom_data = 0;
7012         u16 eeprom_apme_mask = E1000_EEPROM_APME;
7013         s32 ret_val = 0;
7014
7015         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7016                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7017         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7018                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7019         if (aspm_disable_flag)
7020                 e1000e_disable_aspm(pdev, aspm_disable_flag);
7021
7022         err = pci_enable_device_mem(pdev);
7023         if (err)
7024                 return err;
7025
7026         pci_using_dac = 0;
7027         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7028         if (!err) {
7029                 pci_using_dac = 1;
7030         } else {
7031                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7032                 if (err) {
7033                         dev_err(&pdev->dev,
7034                                 "No usable DMA configuration, aborting\n");
7035                         goto err_dma;
7036                 }
7037         }
7038
7039         bars = pci_select_bars(pdev, IORESOURCE_MEM);
7040         err = pci_request_selected_regions_exclusive(pdev, bars,
7041                                                      e1000e_driver_name);
7042         if (err)
7043                 goto err_pci_reg;
7044
7045         /* AER (Advanced Error Reporting) hooks */
7046         pci_enable_pcie_error_reporting(pdev);
7047
7048         pci_set_master(pdev);
7049         /* PCI config space info */
7050         err = pci_save_state(pdev);
7051         if (err)
7052                 goto err_alloc_etherdev;
7053
7054         err = -ENOMEM;
7055         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7056         if (!netdev)
7057                 goto err_alloc_etherdev;
7058
7059         SET_NETDEV_DEV(netdev, &pdev->dev);
7060
7061         netdev->irq = pdev->irq;
7062
7063         pci_set_drvdata(pdev, netdev);
7064         adapter = netdev_priv(netdev);
7065         hw = &adapter->hw;
7066         adapter->netdev = netdev;
7067         adapter->pdev = pdev;
7068         adapter->ei = ei;
7069         adapter->pba = ei->pba;
7070         adapter->flags = ei->flags;
7071         adapter->flags2 = ei->flags2;
7072         adapter->hw.adapter = adapter;
7073         adapter->hw.mac.type = ei->mac;
7074         adapter->max_hw_frame_size = ei->max_hw_frame_size;
7075         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7076
7077         mmio_start = pci_resource_start(pdev, 0);
7078         mmio_len = pci_resource_len(pdev, 0);
7079
7080         err = -EIO;
7081         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7082         if (!adapter->hw.hw_addr)
7083                 goto err_ioremap;
7084
7085         if ((adapter->flags & FLAG_HAS_FLASH) &&
7086             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7087             (hw->mac.type < e1000_pch_spt)) {
7088                 flash_start = pci_resource_start(pdev, 1);
7089                 flash_len = pci_resource_len(pdev, 1);
7090                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7091                 if (!adapter->hw.flash_address)
7092                         goto err_flashmap;
7093         }
7094
7095         /* Set default EEE advertisement */
7096         if (adapter->flags2 & FLAG2_HAS_EEE)
7097                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7098
7099         /* construct the net_device struct */
7100         netdev->netdev_ops = &e1000e_netdev_ops;
7101         e1000e_set_ethtool_ops(netdev);
7102         netdev->watchdog_timeo = 5 * HZ;
7103         netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7104         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7105
7106         netdev->mem_start = mmio_start;
7107         netdev->mem_end = mmio_start + mmio_len;
7108
7109         adapter->bd_number = cards_found++;
7110
7111         e1000e_check_options(adapter);
7112
7113         /* setup adapter struct */
7114         err = e1000_sw_init(adapter);
7115         if (err)
7116                 goto err_sw_init;
7117
7118         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7119         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7120         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7121
7122         err = ei->get_variants(adapter);
7123         if (err)
7124                 goto err_hw_init;
7125
7126         if ((adapter->flags & FLAG_IS_ICH) &&
7127             (adapter->flags & FLAG_READ_ONLY_NVM) &&
7128             (hw->mac.type < e1000_pch_spt))
7129                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7130
7131         hw->mac.ops.get_bus_info(&adapter->hw);
7132
7133         adapter->hw.phy.autoneg_wait_to_complete = 0;
7134
7135         /* Copper options */
7136         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7137                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7138                 adapter->hw.phy.disable_polarity_correction = 0;
7139                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7140         }
7141
7142         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7143                 dev_info(&pdev->dev,
7144                          "PHY reset is blocked due to SOL/IDER session.\n");
7145
7146         /* Set initial default active device features */
7147         netdev->features = (NETIF_F_SG |
7148                             NETIF_F_HW_VLAN_CTAG_RX |
7149                             NETIF_F_HW_VLAN_CTAG_TX |
7150                             NETIF_F_TSO |
7151                             NETIF_F_TSO6 |
7152                             NETIF_F_RXHASH |
7153                             NETIF_F_RXCSUM |
7154                             NETIF_F_HW_CSUM);
7155
7156         /* Set user-changeable features (subset of all device features) */
7157         netdev->hw_features = netdev->features;
7158         netdev->hw_features |= NETIF_F_RXFCS;
7159         netdev->priv_flags |= IFF_SUPP_NOFCS;
7160         netdev->hw_features |= NETIF_F_RXALL;
7161
7162         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7163                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7164
7165         netdev->vlan_features |= (NETIF_F_SG |
7166                                   NETIF_F_TSO |
7167                                   NETIF_F_TSO6 |
7168                                   NETIF_F_HW_CSUM);
7169
7170         netdev->priv_flags |= IFF_UNICAST_FLT;
7171
7172         if (pci_using_dac) {
7173                 netdev->features |= NETIF_F_HIGHDMA;
7174                 netdev->vlan_features |= NETIF_F_HIGHDMA;
7175         }
7176
7177         if (e1000e_enable_mng_pass_thru(&adapter->hw))
7178                 adapter->flags |= FLAG_MNG_PT_ENABLED;
7179
7180         /* before reading the NVM, reset the controller to
7181          * put the device in a known good starting state
7182          */
7183         adapter->hw.mac.ops.reset_hw(&adapter->hw);
7184
7185         /* systems with ASPM and others may see the checksum fail on the first
7186          * attempt. Let's give it a few tries
7187          */
7188         for (i = 0;; i++) {
7189                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7190                         break;
7191                 if (i == 2) {
7192                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7193                         err = -EIO;
7194                         goto err_eeprom;
7195                 }
7196         }
7197
7198         e1000_eeprom_checks(adapter);
7199
7200         /* copy the MAC address */
7201         if (e1000e_read_mac_addr(&adapter->hw))
7202                 dev_err(&pdev->dev,
7203                         "NVM Read Error while reading MAC address\n");
7204
7205         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7206
7207         if (!is_valid_ether_addr(netdev->dev_addr)) {
7208                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7209                         netdev->dev_addr);
7210                 err = -EIO;
7211                 goto err_eeprom;
7212         }
7213
7214         init_timer(&adapter->watchdog_timer);
7215         adapter->watchdog_timer.function = e1000_watchdog;
7216         adapter->watchdog_timer.data = (unsigned long)adapter;
7217
7218         init_timer(&adapter->phy_info_timer);
7219         adapter->phy_info_timer.function = e1000_update_phy_info;
7220         adapter->phy_info_timer.data = (unsigned long)adapter;
7221
7222         INIT_WORK(&adapter->reset_task, e1000_reset_task);
7223         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7224         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7225         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7226         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7227
7228         /* Initialize link parameters. User can change them with ethtool */
7229         adapter->hw.mac.autoneg = 1;
7230         adapter->fc_autoneg = true;
7231         adapter->hw.fc.requested_mode = e1000_fc_default;
7232         adapter->hw.fc.current_mode = e1000_fc_default;
7233         adapter->hw.phy.autoneg_advertised = 0x2f;
7234
7235         /* Initial Wake on LAN setting - If APM wake is enabled in
7236          * the EEPROM, enable the ACPI Magic Packet filter
7237          */
7238         if (adapter->flags & FLAG_APME_IN_WUC) {
7239                 /* APME bit in EEPROM is mapped to WUC.APME */
7240                 eeprom_data = er32(WUC);
7241                 eeprom_apme_mask = E1000_WUC_APME;
7242                 if ((hw->mac.type > e1000_ich10lan) &&
7243                     (eeprom_data & E1000_WUC_PHY_WAKE))
7244                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7245         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7246                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7247                     (adapter->hw.bus.func == 1))
7248                         ret_val = e1000_read_nvm(&adapter->hw,
7249                                               NVM_INIT_CONTROL3_PORT_B,
7250                                               1, &eeprom_data);
7251                 else
7252                         ret_val = e1000_read_nvm(&adapter->hw,
7253                                               NVM_INIT_CONTROL3_PORT_A,
7254                                               1, &eeprom_data);
7255         }
7256
7257         /* fetch WoL from EEPROM */
7258         if (ret_val)
7259                 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7260         else if (eeprom_data & eeprom_apme_mask)
7261                 adapter->eeprom_wol |= E1000_WUFC_MAG;
7262
7263         /* now that we have the eeprom settings, apply the special cases
7264          * where the eeprom may be wrong or the board simply won't support
7265          * wake on lan on a particular port
7266          */
7267         if (!(adapter->flags & FLAG_HAS_WOL))
7268                 adapter->eeprom_wol = 0;
7269
7270         /* initialize the wol settings based on the eeprom settings */
7271         adapter->wol = adapter->eeprom_wol;
7272
7273         /* make sure adapter isn't asleep if manageability is enabled */
7274         if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7275             (hw->mac.ops.check_mng_mode(hw)))
7276                 device_wakeup_enable(&pdev->dev);
7277
7278         /* save off EEPROM version number */
7279         ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7280
7281         if (ret_val) {
7282                 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7283                 adapter->eeprom_vers = 0;
7284         }
7285
7286         /* init PTP hardware clock */
7287         e1000e_ptp_init(adapter);
7288
7289         /* reset the hardware with the new settings */
7290         e1000e_reset(adapter);
7291
7292         /* If the controller has AMT, do not set DRV_LOAD until the interface
7293          * is up.  For all other cases, let the f/w know that the h/w is now
7294          * under the control of the driver.
7295          */
7296         if (!(adapter->flags & FLAG_HAS_AMT))
7297                 e1000e_get_hw_control(adapter);
7298
7299         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7300         err = register_netdev(netdev);
7301         if (err)
7302                 goto err_register;
7303
7304         /* carrier off reporting is important to ethtool even BEFORE open */
7305         netif_carrier_off(netdev);
7306
7307         e1000_print_device_info(adapter);
7308
7309         if (pci_dev_run_wake(pdev))
7310                 pm_runtime_put_noidle(&pdev->dev);
7311
7312         return 0;
7313
7314 err_register:
7315         if (!(adapter->flags & FLAG_HAS_AMT))
7316                 e1000e_release_hw_control(adapter);
7317 err_eeprom:
7318         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7319                 e1000_phy_hw_reset(&adapter->hw);
7320 err_hw_init:
7321         kfree(adapter->tx_ring);
7322         kfree(adapter->rx_ring);
7323 err_sw_init:
7324         if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7325                 iounmap(adapter->hw.flash_address);
7326         e1000e_reset_interrupt_capability(adapter);
7327 err_flashmap:
7328         iounmap(adapter->hw.hw_addr);
7329 err_ioremap:
7330         free_netdev(netdev);
7331 err_alloc_etherdev:
7332         pci_release_selected_regions(pdev,
7333                                      pci_select_bars(pdev, IORESOURCE_MEM));
7334 err_pci_reg:
7335 err_dma:
7336         pci_disable_device(pdev);
7337         return err;
7338 }
7339
7340 /**
7341  * e1000_remove - Device Removal Routine
7342  * @pdev: PCI device information struct
7343  *
7344  * e1000_remove is called by the PCI subsystem to alert the driver
7345  * that it should release a PCI device.  The could be caused by a
7346  * Hot-Plug event, or because the driver is going to be removed from
7347  * memory.
7348  **/
7349 static void e1000_remove(struct pci_dev *pdev)
7350 {
7351         struct net_device *netdev = pci_get_drvdata(pdev);
7352         struct e1000_adapter *adapter = netdev_priv(netdev);
7353         bool down = test_bit(__E1000_DOWN, &adapter->state);
7354
7355         e1000e_ptp_remove(adapter);
7356
7357         /* The timers may be rescheduled, so explicitly disable them
7358          * from being rescheduled.
7359          */
7360         if (!down)
7361                 set_bit(__E1000_DOWN, &adapter->state);
7362         del_timer_sync(&adapter->watchdog_timer);
7363         del_timer_sync(&adapter->phy_info_timer);
7364
7365         cancel_work_sync(&adapter->reset_task);
7366         cancel_work_sync(&adapter->watchdog_task);
7367         cancel_work_sync(&adapter->downshift_task);
7368         cancel_work_sync(&adapter->update_phy_task);
7369         cancel_work_sync(&adapter->print_hang_task);
7370
7371         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7372                 cancel_work_sync(&adapter->tx_hwtstamp_work);
7373                 if (adapter->tx_hwtstamp_skb) {
7374                         dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
7375                         adapter->tx_hwtstamp_skb = NULL;
7376                 }
7377         }
7378
7379         /* Don't lie to e1000_close() down the road. */
7380         if (!down)
7381                 clear_bit(__E1000_DOWN, &adapter->state);
7382         unregister_netdev(netdev);
7383
7384         if (pci_dev_run_wake(pdev))
7385                 pm_runtime_get_noresume(&pdev->dev);
7386
7387         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7388          * would have already happened in close and is redundant.
7389          */
7390         e1000e_release_hw_control(adapter);
7391
7392         e1000e_reset_interrupt_capability(adapter);
7393         kfree(adapter->tx_ring);
7394         kfree(adapter->rx_ring);
7395
7396         iounmap(adapter->hw.hw_addr);
7397         if ((adapter->hw.flash_address) &&
7398             (adapter->hw.mac.type < e1000_pch_spt))
7399                 iounmap(adapter->hw.flash_address);
7400         pci_release_selected_regions(pdev,
7401                                      pci_select_bars(pdev, IORESOURCE_MEM));
7402
7403         free_netdev(netdev);
7404
7405         /* AER disable */
7406         pci_disable_pcie_error_reporting(pdev);
7407
7408         pci_disable_device(pdev);
7409 }
7410
7411 /* PCI Error Recovery (ERS) */
7412 static const struct pci_error_handlers e1000_err_handler = {
7413         .error_detected = e1000_io_error_detected,
7414         .slot_reset = e1000_io_slot_reset,
7415         .resume = e1000_io_resume,
7416 };
7417
7418 static const struct pci_device_id e1000_pci_tbl[] = {
7419         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7420         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7421         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7422         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7423           board_82571 },
7424         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7425         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7426         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7427         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7428         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7429
7430         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7431         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7432         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7433         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7434
7435         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7436         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7437         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7438
7439         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7440         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7441         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7442
7443         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7444           board_80003es2lan },
7445         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7446           board_80003es2lan },
7447         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7448           board_80003es2lan },
7449         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7450           board_80003es2lan },
7451
7452         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7453         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7454         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7455         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7456         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7457         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7458         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7459         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7460
7461         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7462         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7463         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7464         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7465         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7466         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7467         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7468         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7469         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7470
7471         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7472         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7473         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7474
7475         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7476         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7477         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7478
7479         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7480         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7481         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7482         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7483
7484         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7485         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7486
7487         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7488         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7489         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7490         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7491         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7492         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7493         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7494         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7495         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7496         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7497         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7498         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7499         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7500         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7501         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7502         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7503         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7504
7505         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7506 };
7507 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7508
7509 static const struct dev_pm_ops e1000_pm_ops = {
7510 #ifdef CONFIG_PM_SLEEP
7511         .suspend        = e1000e_pm_suspend,
7512         .resume         = e1000e_pm_resume,
7513         .freeze         = e1000e_pm_freeze,
7514         .thaw           = e1000e_pm_thaw,
7515         .poweroff       = e1000e_pm_suspend,
7516         .restore        = e1000e_pm_resume,
7517 #endif
7518         SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7519                            e1000e_pm_runtime_idle)
7520 };
7521
7522 /* PCI Device API Driver */
7523 static struct pci_driver e1000_driver = {
7524         .name     = e1000e_driver_name,
7525         .id_table = e1000_pci_tbl,
7526         .probe    = e1000_probe,
7527         .remove   = e1000_remove,
7528         .driver   = {
7529                 .pm = &e1000_pm_ops,
7530         },
7531         .shutdown = e1000_shutdown,
7532         .err_handler = &e1000_err_handler
7533 };
7534
7535 /**
7536  * e1000_init_module - Driver Registration Routine
7537  *
7538  * e1000_init_module is the first routine called when the driver is
7539  * loaded. All it does is register with the PCI subsystem.
7540  **/
7541 static int __init e1000_init_module(void)
7542 {
7543         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7544                 e1000e_driver_version);
7545         pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7546
7547         return pci_register_driver(&e1000_driver);
7548 }
7549 module_init(e1000_init_module);
7550
7551 /**
7552  * e1000_exit_module - Driver Exit Cleanup Routine
7553  *
7554  * e1000_exit_module is called just before the driver is removed
7555  * from memory.
7556  **/
7557 static void __exit e1000_exit_module(void)
7558 {
7559         pci_unregister_driver(&e1000_driver);
7560 }
7561 module_exit(e1000_exit_module);
7562
7563 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7564 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7565 MODULE_LICENSE("GPL");
7566 MODULE_VERSION(DRV_VERSION);
7567
7568 /* netdev.c */