]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/e1000e/netdev.c
Merge tag 'sound-4.7-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[karo-tx-linux.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
46
47 #include "e1000.h"
48
49 #define DRV_EXTRAVERSION "-k"
50
51 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug = -1;
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60 static const struct e1000_info *e1000_info_tbl[] = {
61         [board_82571]           = &e1000_82571_info,
62         [board_82572]           = &e1000_82572_info,
63         [board_82573]           = &e1000_82573_info,
64         [board_82574]           = &e1000_82574_info,
65         [board_82583]           = &e1000_82583_info,
66         [board_80003es2lan]     = &e1000_es2_info,
67         [board_ich8lan]         = &e1000_ich8_info,
68         [board_ich9lan]         = &e1000_ich9_info,
69         [board_ich10lan]        = &e1000_ich10_info,
70         [board_pchlan]          = &e1000_pch_info,
71         [board_pch2lan]         = &e1000_pch2_info,
72         [board_pch_lpt]         = &e1000_pch_lpt_info,
73         [board_pch_spt]         = &e1000_pch_spt_info,
74 };
75
76 struct e1000_reg_info {
77         u32 ofs;
78         char *name;
79 };
80
81 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
82         /* General Registers */
83         {E1000_CTRL, "CTRL"},
84         {E1000_STATUS, "STATUS"},
85         {E1000_CTRL_EXT, "CTRL_EXT"},
86
87         /* Interrupt Registers */
88         {E1000_ICR, "ICR"},
89
90         /* Rx Registers */
91         {E1000_RCTL, "RCTL"},
92         {E1000_RDLEN(0), "RDLEN"},
93         {E1000_RDH(0), "RDH"},
94         {E1000_RDT(0), "RDT"},
95         {E1000_RDTR, "RDTR"},
96         {E1000_RXDCTL(0), "RXDCTL"},
97         {E1000_ERT, "ERT"},
98         {E1000_RDBAL(0), "RDBAL"},
99         {E1000_RDBAH(0), "RDBAH"},
100         {E1000_RDFH, "RDFH"},
101         {E1000_RDFT, "RDFT"},
102         {E1000_RDFHS, "RDFHS"},
103         {E1000_RDFTS, "RDFTS"},
104         {E1000_RDFPC, "RDFPC"},
105
106         /* Tx Registers */
107         {E1000_TCTL, "TCTL"},
108         {E1000_TDBAL(0), "TDBAL"},
109         {E1000_TDBAH(0), "TDBAH"},
110         {E1000_TDLEN(0), "TDLEN"},
111         {E1000_TDH(0), "TDH"},
112         {E1000_TDT(0), "TDT"},
113         {E1000_TIDV, "TIDV"},
114         {E1000_TXDCTL(0), "TXDCTL"},
115         {E1000_TADV, "TADV"},
116         {E1000_TARC(0), "TARC"},
117         {E1000_TDFH, "TDFH"},
118         {E1000_TDFT, "TDFT"},
119         {E1000_TDFHS, "TDFHS"},
120         {E1000_TDFTS, "TDFTS"},
121         {E1000_TDFPC, "TDFPC"},
122
123         /* List Terminator */
124         {0, NULL}
125 };
126
127 /**
128  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
129  * @hw: pointer to the HW structure
130  *
131  * When updating the MAC CSR registers, the Manageability Engine (ME) could
132  * be accessing the registers at the same time.  Normally, this is handled in
133  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
134  * accesses later than it should which could result in the register to have
135  * an incorrect value.  Workaround this by checking the FWSM register which
136  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
137  * and try again a number of times.
138  **/
139 s32 __ew32_prepare(struct e1000_hw *hw)
140 {
141         s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
142
143         while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
144                 udelay(50);
145
146         return i;
147 }
148
149 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
150 {
151         if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
152                 __ew32_prepare(hw);
153
154         writel(val, hw->hw_addr + reg);
155 }
156
157 static bool e1000e_vlan_used(struct e1000_adapter *adapter)
158 {
159         u16 vid;
160
161         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
162                 return true;
163
164         return false;
165 }
166
167 /**
168  * e1000_regdump - register printout routine
169  * @hw: pointer to the HW structure
170  * @reginfo: pointer to the register info table
171  **/
172 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
173 {
174         int n = 0;
175         char rname[16];
176         u32 regs[8];
177
178         switch (reginfo->ofs) {
179         case E1000_RXDCTL(0):
180                 for (n = 0; n < 2; n++)
181                         regs[n] = __er32(hw, E1000_RXDCTL(n));
182                 break;
183         case E1000_TXDCTL(0):
184                 for (n = 0; n < 2; n++)
185                         regs[n] = __er32(hw, E1000_TXDCTL(n));
186                 break;
187         case E1000_TARC(0):
188                 for (n = 0; n < 2; n++)
189                         regs[n] = __er32(hw, E1000_TARC(n));
190                 break;
191         default:
192                 pr_info("%-15s %08x\n",
193                         reginfo->name, __er32(hw, reginfo->ofs));
194                 return;
195         }
196
197         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
198         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
199 }
200
201 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
202                                  struct e1000_buffer *bi)
203 {
204         int i;
205         struct e1000_ps_page *ps_page;
206
207         for (i = 0; i < adapter->rx_ps_pages; i++) {
208                 ps_page = &bi->ps_pages[i];
209
210                 if (ps_page->page) {
211                         pr_info("packet dump for ps_page %d:\n", i);
212                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
213                                        16, 1, page_address(ps_page->page),
214                                        PAGE_SIZE, true);
215                 }
216         }
217 }
218
219 /**
220  * e1000e_dump - Print registers, Tx-ring and Rx-ring
221  * @adapter: board private structure
222  **/
223 static void e1000e_dump(struct e1000_adapter *adapter)
224 {
225         struct net_device *netdev = adapter->netdev;
226         struct e1000_hw *hw = &adapter->hw;
227         struct e1000_reg_info *reginfo;
228         struct e1000_ring *tx_ring = adapter->tx_ring;
229         struct e1000_tx_desc *tx_desc;
230         struct my_u0 {
231                 __le64 a;
232                 __le64 b;
233         } *u0;
234         struct e1000_buffer *buffer_info;
235         struct e1000_ring *rx_ring = adapter->rx_ring;
236         union e1000_rx_desc_packet_split *rx_desc_ps;
237         union e1000_rx_desc_extended *rx_desc;
238         struct my_u1 {
239                 __le64 a;
240                 __le64 b;
241                 __le64 c;
242                 __le64 d;
243         } *u1;
244         u32 staterr;
245         int i = 0;
246
247         if (!netif_msg_hw(adapter))
248                 return;
249
250         /* Print netdevice Info */
251         if (netdev) {
252                 dev_info(&adapter->pdev->dev, "Net device Info\n");
253                 pr_info("Device Name     state            trans_start      last_rx\n");
254                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
255                         netdev->state, dev_trans_start(netdev), netdev->last_rx);
256         }
257
258         /* Print Registers */
259         dev_info(&adapter->pdev->dev, "Register Dump\n");
260         pr_info(" Register Name   Value\n");
261         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
262              reginfo->name; reginfo++) {
263                 e1000_regdump(hw, reginfo);
264         }
265
266         /* Print Tx Ring Summary */
267         if (!netdev || !netif_running(netdev))
268                 return;
269
270         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
271         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
272         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
273         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
274                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
275                 (unsigned long long)buffer_info->dma,
276                 buffer_info->length,
277                 buffer_info->next_to_watch,
278                 (unsigned long long)buffer_info->time_stamp);
279
280         /* Print Tx Ring */
281         if (!netif_msg_tx_done(adapter))
282                 goto rx_ring_summary;
283
284         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
285
286         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
287          *
288          * Legacy Transmit Descriptor
289          *   +--------------------------------------------------------------+
290          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
291          *   +--------------------------------------------------------------+
292          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
293          *   +--------------------------------------------------------------+
294          *   63       48 47        36 35    32 31     24 23    16 15        0
295          *
296          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
297          *   63      48 47    40 39       32 31             16 15    8 7      0
298          *   +----------------------------------------------------------------+
299          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
300          *   +----------------------------------------------------------------+
301          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
302          *   +----------------------------------------------------------------+
303          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
304          *
305          * Extended Data Descriptor (DTYP=0x1)
306          *   +----------------------------------------------------------------+
307          * 0 |                     Buffer Address [63:0]                      |
308          *   +----------------------------------------------------------------+
309          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
310          *   +----------------------------------------------------------------+
311          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
312          */
313         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
314         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
315         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
316         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
317                 const char *next_desc;
318                 tx_desc = E1000_TX_DESC(*tx_ring, i);
319                 buffer_info = &tx_ring->buffer_info[i];
320                 u0 = (struct my_u0 *)tx_desc;
321                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
322                         next_desc = " NTC/U";
323                 else if (i == tx_ring->next_to_use)
324                         next_desc = " NTU";
325                 else if (i == tx_ring->next_to_clean)
326                         next_desc = " NTC";
327                 else
328                         next_desc = "";
329                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
330                         (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
331                          ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
332                         i,
333                         (unsigned long long)le64_to_cpu(u0->a),
334                         (unsigned long long)le64_to_cpu(u0->b),
335                         (unsigned long long)buffer_info->dma,
336                         buffer_info->length, buffer_info->next_to_watch,
337                         (unsigned long long)buffer_info->time_stamp,
338                         buffer_info->skb, next_desc);
339
340                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
341                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
342                                        16, 1, buffer_info->skb->data,
343                                        buffer_info->skb->len, true);
344         }
345
346         /* Print Rx Ring Summary */
347 rx_ring_summary:
348         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
349         pr_info("Queue [NTU] [NTC]\n");
350         pr_info(" %5d %5X %5X\n",
351                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
352
353         /* Print Rx Ring */
354         if (!netif_msg_rx_status(adapter))
355                 return;
356
357         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
358         switch (adapter->rx_ps_pages) {
359         case 1:
360         case 2:
361         case 3:
362                 /* [Extended] Packet Split Receive Descriptor Format
363                  *
364                  *    +-----------------------------------------------------+
365                  *  0 |                Buffer Address 0 [63:0]              |
366                  *    +-----------------------------------------------------+
367                  *  8 |                Buffer Address 1 [63:0]              |
368                  *    +-----------------------------------------------------+
369                  * 16 |                Buffer Address 2 [63:0]              |
370                  *    +-----------------------------------------------------+
371                  * 24 |                Buffer Address 3 [63:0]              |
372                  *    +-----------------------------------------------------+
373                  */
374                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
375                 /* [Extended] Receive Descriptor (Write-Back) Format
376                  *
377                  *   63       48 47    32 31     13 12    8 7    4 3        0
378                  *   +------------------------------------------------------+
379                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
380                  *   | Checksum | Ident  |         | Queue |      |  Type   |
381                  *   +------------------------------------------------------+
382                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
383                  *   +------------------------------------------------------+
384                  *   63       48 47    32 31            20 19               0
385                  */
386                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
387                 for (i = 0; i < rx_ring->count; i++) {
388                         const char *next_desc;
389                         buffer_info = &rx_ring->buffer_info[i];
390                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
391                         u1 = (struct my_u1 *)rx_desc_ps;
392                         staterr =
393                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
394
395                         if (i == rx_ring->next_to_use)
396                                 next_desc = " NTU";
397                         else if (i == rx_ring->next_to_clean)
398                                 next_desc = " NTC";
399                         else
400                                 next_desc = "";
401
402                         if (staterr & E1000_RXD_STAT_DD) {
403                                 /* Descriptor Done */
404                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
405                                         "RWB", i,
406                                         (unsigned long long)le64_to_cpu(u1->a),
407                                         (unsigned long long)le64_to_cpu(u1->b),
408                                         (unsigned long long)le64_to_cpu(u1->c),
409                                         (unsigned long long)le64_to_cpu(u1->d),
410                                         buffer_info->skb, next_desc);
411                         } else {
412                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
413                                         "R  ", i,
414                                         (unsigned long long)le64_to_cpu(u1->a),
415                                         (unsigned long long)le64_to_cpu(u1->b),
416                                         (unsigned long long)le64_to_cpu(u1->c),
417                                         (unsigned long long)le64_to_cpu(u1->d),
418                                         (unsigned long long)buffer_info->dma,
419                                         buffer_info->skb, next_desc);
420
421                                 if (netif_msg_pktdata(adapter))
422                                         e1000e_dump_ps_pages(adapter,
423                                                              buffer_info);
424                         }
425                 }
426                 break;
427         default:
428         case 0:
429                 /* Extended Receive Descriptor (Read) Format
430                  *
431                  *   +-----------------------------------------------------+
432                  * 0 |                Buffer Address [63:0]                |
433                  *   +-----------------------------------------------------+
434                  * 8 |                      Reserved                       |
435                  *   +-----------------------------------------------------+
436                  */
437                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
438                 /* Extended Receive Descriptor (Write-Back) Format
439                  *
440                  *   63       48 47    32 31    24 23            4 3        0
441                  *   +------------------------------------------------------+
442                  *   |     RSS Hash      |        |               |         |
443                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
444                  *   | Packet   | IP     |        |               |  Type   |
445                  *   | Checksum | Ident  |        |               |         |
446                  *   +------------------------------------------------------+
447                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
448                  *   +------------------------------------------------------+
449                  *   63       48 47    32 31            20 19               0
450                  */
451                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
452
453                 for (i = 0; i < rx_ring->count; i++) {
454                         const char *next_desc;
455
456                         buffer_info = &rx_ring->buffer_info[i];
457                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
458                         u1 = (struct my_u1 *)rx_desc;
459                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
460
461                         if (i == rx_ring->next_to_use)
462                                 next_desc = " NTU";
463                         else if (i == rx_ring->next_to_clean)
464                                 next_desc = " NTC";
465                         else
466                                 next_desc = "";
467
468                         if (staterr & E1000_RXD_STAT_DD) {
469                                 /* Descriptor Done */
470                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
471                                         "RWB", i,
472                                         (unsigned long long)le64_to_cpu(u1->a),
473                                         (unsigned long long)le64_to_cpu(u1->b),
474                                         buffer_info->skb, next_desc);
475                         } else {
476                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
477                                         "R  ", i,
478                                         (unsigned long long)le64_to_cpu(u1->a),
479                                         (unsigned long long)le64_to_cpu(u1->b),
480                                         (unsigned long long)buffer_info->dma,
481                                         buffer_info->skb, next_desc);
482
483                                 if (netif_msg_pktdata(adapter) &&
484                                     buffer_info->skb)
485                                         print_hex_dump(KERN_INFO, "",
486                                                        DUMP_PREFIX_ADDRESS, 16,
487                                                        1,
488                                                        buffer_info->skb->data,
489                                                        adapter->rx_buffer_len,
490                                                        true);
491                         }
492                 }
493         }
494 }
495
496 /**
497  * e1000_desc_unused - calculate if we have unused descriptors
498  **/
499 static int e1000_desc_unused(struct e1000_ring *ring)
500 {
501         if (ring->next_to_clean > ring->next_to_use)
502                 return ring->next_to_clean - ring->next_to_use - 1;
503
504         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
505 }
506
507 /**
508  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
509  * @adapter: board private structure
510  * @hwtstamps: time stamp structure to update
511  * @systim: unsigned 64bit system time value.
512  *
513  * Convert the system time value stored in the RX/TXSTMP registers into a
514  * hwtstamp which can be used by the upper level time stamping functions.
515  *
516  * The 'systim_lock' spinlock is used to protect the consistency of the
517  * system time value. This is needed because reading the 64 bit time
518  * value involves reading two 32 bit registers. The first read latches the
519  * value.
520  **/
521 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
522                                       struct skb_shared_hwtstamps *hwtstamps,
523                                       u64 systim)
524 {
525         u64 ns;
526         unsigned long flags;
527
528         spin_lock_irqsave(&adapter->systim_lock, flags);
529         ns = timecounter_cyc2time(&adapter->tc, systim);
530         spin_unlock_irqrestore(&adapter->systim_lock, flags);
531
532         memset(hwtstamps, 0, sizeof(*hwtstamps));
533         hwtstamps->hwtstamp = ns_to_ktime(ns);
534 }
535
536 /**
537  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
538  * @adapter: board private structure
539  * @status: descriptor extended error and status field
540  * @skb: particular skb to include time stamp
541  *
542  * If the time stamp is valid, convert it into the timecounter ns value
543  * and store that result into the shhwtstamps structure which is passed
544  * up the network stack.
545  **/
546 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
547                                struct sk_buff *skb)
548 {
549         struct e1000_hw *hw = &adapter->hw;
550         u64 rxstmp;
551
552         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
553             !(status & E1000_RXDEXT_STATERR_TST) ||
554             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
555                 return;
556
557         /* The Rx time stamp registers contain the time stamp.  No other
558          * received packet will be time stamped until the Rx time stamp
559          * registers are read.  Because only one packet can be time stamped
560          * at a time, the register values must belong to this packet and
561          * therefore none of the other additional attributes need to be
562          * compared.
563          */
564         rxstmp = (u64)er32(RXSTMPL);
565         rxstmp |= (u64)er32(RXSTMPH) << 32;
566         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
567
568         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
569 }
570
571 /**
572  * e1000_receive_skb - helper function to handle Rx indications
573  * @adapter: board private structure
574  * @staterr: descriptor extended error and status field as written by hardware
575  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
576  * @skb: pointer to sk_buff to be indicated to stack
577  **/
578 static void e1000_receive_skb(struct e1000_adapter *adapter,
579                               struct net_device *netdev, struct sk_buff *skb,
580                               u32 staterr, __le16 vlan)
581 {
582         u16 tag = le16_to_cpu(vlan);
583
584         e1000e_rx_hwtstamp(adapter, staterr, skb);
585
586         skb->protocol = eth_type_trans(skb, netdev);
587
588         if (staterr & E1000_RXD_STAT_VP)
589                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
590
591         napi_gro_receive(&adapter->napi, skb);
592 }
593
594 /**
595  * e1000_rx_checksum - Receive Checksum Offload
596  * @adapter: board private structure
597  * @status_err: receive descriptor status and error fields
598  * @csum: receive descriptor csum field
599  * @sk_buff: socket buffer with received data
600  **/
601 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
602                               struct sk_buff *skb)
603 {
604         u16 status = (u16)status_err;
605         u8 errors = (u8)(status_err >> 24);
606
607         skb_checksum_none_assert(skb);
608
609         /* Rx checksum disabled */
610         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
611                 return;
612
613         /* Ignore Checksum bit is set */
614         if (status & E1000_RXD_STAT_IXSM)
615                 return;
616
617         /* TCP/UDP checksum error bit or IP checksum error bit is set */
618         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
619                 /* let the stack verify checksum errors */
620                 adapter->hw_csum_err++;
621                 return;
622         }
623
624         /* TCP/UDP Checksum has not been calculated */
625         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
626                 return;
627
628         /* It must be a TCP or UDP packet with a valid checksum */
629         skb->ip_summed = CHECKSUM_UNNECESSARY;
630         adapter->hw_csum_good++;
631 }
632
633 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
634 {
635         struct e1000_adapter *adapter = rx_ring->adapter;
636         struct e1000_hw *hw = &adapter->hw;
637         s32 ret_val = __ew32_prepare(hw);
638
639         writel(i, rx_ring->tail);
640
641         if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
642                 u32 rctl = er32(RCTL);
643
644                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
645                 e_err("ME firmware caused invalid RDT - resetting\n");
646                 schedule_work(&adapter->reset_task);
647         }
648 }
649
650 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
651 {
652         struct e1000_adapter *adapter = tx_ring->adapter;
653         struct e1000_hw *hw = &adapter->hw;
654         s32 ret_val = __ew32_prepare(hw);
655
656         writel(i, tx_ring->tail);
657
658         if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
659                 u32 tctl = er32(TCTL);
660
661                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
662                 e_err("ME firmware caused invalid TDT - resetting\n");
663                 schedule_work(&adapter->reset_task);
664         }
665 }
666
667 /**
668  * e1000_alloc_rx_buffers - Replace used receive buffers
669  * @rx_ring: Rx descriptor ring
670  **/
671 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
672                                    int cleaned_count, gfp_t gfp)
673 {
674         struct e1000_adapter *adapter = rx_ring->adapter;
675         struct net_device *netdev = adapter->netdev;
676         struct pci_dev *pdev = adapter->pdev;
677         union e1000_rx_desc_extended *rx_desc;
678         struct e1000_buffer *buffer_info;
679         struct sk_buff *skb;
680         unsigned int i;
681         unsigned int bufsz = adapter->rx_buffer_len;
682
683         i = rx_ring->next_to_use;
684         buffer_info = &rx_ring->buffer_info[i];
685
686         while (cleaned_count--) {
687                 skb = buffer_info->skb;
688                 if (skb) {
689                         skb_trim(skb, 0);
690                         goto map_skb;
691                 }
692
693                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
694                 if (!skb) {
695                         /* Better luck next round */
696                         adapter->alloc_rx_buff_failed++;
697                         break;
698                 }
699
700                 buffer_info->skb = skb;
701 map_skb:
702                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
703                                                   adapter->rx_buffer_len,
704                                                   DMA_FROM_DEVICE);
705                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
706                         dev_err(&pdev->dev, "Rx DMA map failed\n");
707                         adapter->rx_dma_failed++;
708                         break;
709                 }
710
711                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
712                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
713
714                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
715                         /* Force memory writes to complete before letting h/w
716                          * know there are new descriptors to fetch.  (Only
717                          * applicable for weak-ordered memory model archs,
718                          * such as IA-64).
719                          */
720                         wmb();
721                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
722                                 e1000e_update_rdt_wa(rx_ring, i);
723                         else
724                                 writel(i, rx_ring->tail);
725                 }
726                 i++;
727                 if (i == rx_ring->count)
728                         i = 0;
729                 buffer_info = &rx_ring->buffer_info[i];
730         }
731
732         rx_ring->next_to_use = i;
733 }
734
735 /**
736  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
737  * @rx_ring: Rx descriptor ring
738  **/
739 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
740                                       int cleaned_count, gfp_t gfp)
741 {
742         struct e1000_adapter *adapter = rx_ring->adapter;
743         struct net_device *netdev = adapter->netdev;
744         struct pci_dev *pdev = adapter->pdev;
745         union e1000_rx_desc_packet_split *rx_desc;
746         struct e1000_buffer *buffer_info;
747         struct e1000_ps_page *ps_page;
748         struct sk_buff *skb;
749         unsigned int i, j;
750
751         i = rx_ring->next_to_use;
752         buffer_info = &rx_ring->buffer_info[i];
753
754         while (cleaned_count--) {
755                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
756
757                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
758                         ps_page = &buffer_info->ps_pages[j];
759                         if (j >= adapter->rx_ps_pages) {
760                                 /* all unused desc entries get hw null ptr */
761                                 rx_desc->read.buffer_addr[j + 1] =
762                                     ~cpu_to_le64(0);
763                                 continue;
764                         }
765                         if (!ps_page->page) {
766                                 ps_page->page = alloc_page(gfp);
767                                 if (!ps_page->page) {
768                                         adapter->alloc_rx_buff_failed++;
769                                         goto no_buffers;
770                                 }
771                                 ps_page->dma = dma_map_page(&pdev->dev,
772                                                             ps_page->page,
773                                                             0, PAGE_SIZE,
774                                                             DMA_FROM_DEVICE);
775                                 if (dma_mapping_error(&pdev->dev,
776                                                       ps_page->dma)) {
777                                         dev_err(&adapter->pdev->dev,
778                                                 "Rx DMA page map failed\n");
779                                         adapter->rx_dma_failed++;
780                                         goto no_buffers;
781                                 }
782                         }
783                         /* Refresh the desc even if buffer_addrs
784                          * didn't change because each write-back
785                          * erases this info.
786                          */
787                         rx_desc->read.buffer_addr[j + 1] =
788                             cpu_to_le64(ps_page->dma);
789                 }
790
791                 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
792                                                   gfp);
793
794                 if (!skb) {
795                         adapter->alloc_rx_buff_failed++;
796                         break;
797                 }
798
799                 buffer_info->skb = skb;
800                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
801                                                   adapter->rx_ps_bsize0,
802                                                   DMA_FROM_DEVICE);
803                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
804                         dev_err(&pdev->dev, "Rx DMA map failed\n");
805                         adapter->rx_dma_failed++;
806                         /* cleanup skb */
807                         dev_kfree_skb_any(skb);
808                         buffer_info->skb = NULL;
809                         break;
810                 }
811
812                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
813
814                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
815                         /* Force memory writes to complete before letting h/w
816                          * know there are new descriptors to fetch.  (Only
817                          * applicable for weak-ordered memory model archs,
818                          * such as IA-64).
819                          */
820                         wmb();
821                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
822                                 e1000e_update_rdt_wa(rx_ring, i << 1);
823                         else
824                                 writel(i << 1, rx_ring->tail);
825                 }
826
827                 i++;
828                 if (i == rx_ring->count)
829                         i = 0;
830                 buffer_info = &rx_ring->buffer_info[i];
831         }
832
833 no_buffers:
834         rx_ring->next_to_use = i;
835 }
836
837 /**
838  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
839  * @rx_ring: Rx descriptor ring
840  * @cleaned_count: number of buffers to allocate this pass
841  **/
842
843 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
844                                          int cleaned_count, gfp_t gfp)
845 {
846         struct e1000_adapter *adapter = rx_ring->adapter;
847         struct net_device *netdev = adapter->netdev;
848         struct pci_dev *pdev = adapter->pdev;
849         union e1000_rx_desc_extended *rx_desc;
850         struct e1000_buffer *buffer_info;
851         struct sk_buff *skb;
852         unsigned int i;
853         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
854
855         i = rx_ring->next_to_use;
856         buffer_info = &rx_ring->buffer_info[i];
857
858         while (cleaned_count--) {
859                 skb = buffer_info->skb;
860                 if (skb) {
861                         skb_trim(skb, 0);
862                         goto check_page;
863                 }
864
865                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
866                 if (unlikely(!skb)) {
867                         /* Better luck next round */
868                         adapter->alloc_rx_buff_failed++;
869                         break;
870                 }
871
872                 buffer_info->skb = skb;
873 check_page:
874                 /* allocate a new page if necessary */
875                 if (!buffer_info->page) {
876                         buffer_info->page = alloc_page(gfp);
877                         if (unlikely(!buffer_info->page)) {
878                                 adapter->alloc_rx_buff_failed++;
879                                 break;
880                         }
881                 }
882
883                 if (!buffer_info->dma) {
884                         buffer_info->dma = dma_map_page(&pdev->dev,
885                                                         buffer_info->page, 0,
886                                                         PAGE_SIZE,
887                                                         DMA_FROM_DEVICE);
888                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
889                                 adapter->alloc_rx_buff_failed++;
890                                 break;
891                         }
892                 }
893
894                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
895                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
896
897                 if (unlikely(++i == rx_ring->count))
898                         i = 0;
899                 buffer_info = &rx_ring->buffer_info[i];
900         }
901
902         if (likely(rx_ring->next_to_use != i)) {
903                 rx_ring->next_to_use = i;
904                 if (unlikely(i-- == 0))
905                         i = (rx_ring->count - 1);
906
907                 /* Force memory writes to complete before letting h/w
908                  * know there are new descriptors to fetch.  (Only
909                  * applicable for weak-ordered memory model archs,
910                  * such as IA-64).
911                  */
912                 wmb();
913                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
914                         e1000e_update_rdt_wa(rx_ring, i);
915                 else
916                         writel(i, rx_ring->tail);
917         }
918 }
919
920 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
921                                  struct sk_buff *skb)
922 {
923         if (netdev->features & NETIF_F_RXHASH)
924                 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
925 }
926
927 /**
928  * e1000_clean_rx_irq - Send received data up the network stack
929  * @rx_ring: Rx descriptor ring
930  *
931  * the return value indicates whether actual cleaning was done, there
932  * is no guarantee that everything was cleaned
933  **/
934 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
935                                int work_to_do)
936 {
937         struct e1000_adapter *adapter = rx_ring->adapter;
938         struct net_device *netdev = adapter->netdev;
939         struct pci_dev *pdev = adapter->pdev;
940         struct e1000_hw *hw = &adapter->hw;
941         union e1000_rx_desc_extended *rx_desc, *next_rxd;
942         struct e1000_buffer *buffer_info, *next_buffer;
943         u32 length, staterr;
944         unsigned int i;
945         int cleaned_count = 0;
946         bool cleaned = false;
947         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
948
949         i = rx_ring->next_to_clean;
950         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
951         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
952         buffer_info = &rx_ring->buffer_info[i];
953
954         while (staterr & E1000_RXD_STAT_DD) {
955                 struct sk_buff *skb;
956
957                 if (*work_done >= work_to_do)
958                         break;
959                 (*work_done)++;
960                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
961
962                 skb = buffer_info->skb;
963                 buffer_info->skb = NULL;
964
965                 prefetch(skb->data - NET_IP_ALIGN);
966
967                 i++;
968                 if (i == rx_ring->count)
969                         i = 0;
970                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
971                 prefetch(next_rxd);
972
973                 next_buffer = &rx_ring->buffer_info[i];
974
975                 cleaned = true;
976                 cleaned_count++;
977                 dma_unmap_single(&pdev->dev, buffer_info->dma,
978                                  adapter->rx_buffer_len, DMA_FROM_DEVICE);
979                 buffer_info->dma = 0;
980
981                 length = le16_to_cpu(rx_desc->wb.upper.length);
982
983                 /* !EOP means multiple descriptors were used to store a single
984                  * packet, if that's the case we need to toss it.  In fact, we
985                  * need to toss every packet with the EOP bit clear and the
986                  * next frame that _does_ have the EOP bit set, as it is by
987                  * definition only a frame fragment
988                  */
989                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
990                         adapter->flags2 |= FLAG2_IS_DISCARDING;
991
992                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
993                         /* All receives must fit into a single buffer */
994                         e_dbg("Receive packet consumed multiple buffers\n");
995                         /* recycle */
996                         buffer_info->skb = skb;
997                         if (staterr & E1000_RXD_STAT_EOP)
998                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
999                         goto next_desc;
1000                 }
1001
1002                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1003                              !(netdev->features & NETIF_F_RXALL))) {
1004                         /* recycle */
1005                         buffer_info->skb = skb;
1006                         goto next_desc;
1007                 }
1008
1009                 /* adjust length to remove Ethernet CRC */
1010                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1011                         /* If configured to store CRC, don't subtract FCS,
1012                          * but keep the FCS bytes out of the total_rx_bytes
1013                          * counter
1014                          */
1015                         if (netdev->features & NETIF_F_RXFCS)
1016                                 total_rx_bytes -= 4;
1017                         else
1018                                 length -= 4;
1019                 }
1020
1021                 total_rx_bytes += length;
1022                 total_rx_packets++;
1023
1024                 /* code added for copybreak, this should improve
1025                  * performance for small packets with large amounts
1026                  * of reassembly being done in the stack
1027                  */
1028                 if (length < copybreak) {
1029                         struct sk_buff *new_skb =
1030                                 napi_alloc_skb(&adapter->napi, length);
1031                         if (new_skb) {
1032                                 skb_copy_to_linear_data_offset(new_skb,
1033                                                                -NET_IP_ALIGN,
1034                                                                (skb->data -
1035                                                                 NET_IP_ALIGN),
1036                                                                (length +
1037                                                                 NET_IP_ALIGN));
1038                                 /* save the skb in buffer_info as good */
1039                                 buffer_info->skb = skb;
1040                                 skb = new_skb;
1041                         }
1042                         /* else just continue with the old one */
1043                 }
1044                 /* end copybreak code */
1045                 skb_put(skb, length);
1046
1047                 /* Receive Checksum Offload */
1048                 e1000_rx_checksum(adapter, staterr, skb);
1049
1050                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1051
1052                 e1000_receive_skb(adapter, netdev, skb, staterr,
1053                                   rx_desc->wb.upper.vlan);
1054
1055 next_desc:
1056                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1057
1058                 /* return some buffers to hardware, one at a time is too slow */
1059                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1060                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1061                                               GFP_ATOMIC);
1062                         cleaned_count = 0;
1063                 }
1064
1065                 /* use prefetched values */
1066                 rx_desc = next_rxd;
1067                 buffer_info = next_buffer;
1068
1069                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1070         }
1071         rx_ring->next_to_clean = i;
1072
1073         cleaned_count = e1000_desc_unused(rx_ring);
1074         if (cleaned_count)
1075                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1076
1077         adapter->total_rx_bytes += total_rx_bytes;
1078         adapter->total_rx_packets += total_rx_packets;
1079         return cleaned;
1080 }
1081
1082 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1083                             struct e1000_buffer *buffer_info)
1084 {
1085         struct e1000_adapter *adapter = tx_ring->adapter;
1086
1087         if (buffer_info->dma) {
1088                 if (buffer_info->mapped_as_page)
1089                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1090                                        buffer_info->length, DMA_TO_DEVICE);
1091                 else
1092                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1093                                          buffer_info->length, DMA_TO_DEVICE);
1094                 buffer_info->dma = 0;
1095         }
1096         if (buffer_info->skb) {
1097                 dev_kfree_skb_any(buffer_info->skb);
1098                 buffer_info->skb = NULL;
1099         }
1100         buffer_info->time_stamp = 0;
1101 }
1102
1103 static void e1000_print_hw_hang(struct work_struct *work)
1104 {
1105         struct e1000_adapter *adapter = container_of(work,
1106                                                      struct e1000_adapter,
1107                                                      print_hang_task);
1108         struct net_device *netdev = adapter->netdev;
1109         struct e1000_ring *tx_ring = adapter->tx_ring;
1110         unsigned int i = tx_ring->next_to_clean;
1111         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1112         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1113         struct e1000_hw *hw = &adapter->hw;
1114         u16 phy_status, phy_1000t_status, phy_ext_status;
1115         u16 pci_status;
1116
1117         if (test_bit(__E1000_DOWN, &adapter->state))
1118                 return;
1119
1120         if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1121                 /* May be block on write-back, flush and detect again
1122                  * flush pending descriptor writebacks to memory
1123                  */
1124                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1125                 /* execute the writes immediately */
1126                 e1e_flush();
1127                 /* Due to rare timing issues, write to TIDV again to ensure
1128                  * the write is successful
1129                  */
1130                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1131                 /* execute the writes immediately */
1132                 e1e_flush();
1133                 adapter->tx_hang_recheck = true;
1134                 return;
1135         }
1136         adapter->tx_hang_recheck = false;
1137
1138         if (er32(TDH(0)) == er32(TDT(0))) {
1139                 e_dbg("false hang detected, ignoring\n");
1140                 return;
1141         }
1142
1143         /* Real hang detected */
1144         netif_stop_queue(netdev);
1145
1146         e1e_rphy(hw, MII_BMSR, &phy_status);
1147         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1148         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1149
1150         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1151
1152         /* detected Hardware unit hang */
1153         e_err("Detected Hardware Unit Hang:\n"
1154               "  TDH                  <%x>\n"
1155               "  TDT                  <%x>\n"
1156               "  next_to_use          <%x>\n"
1157               "  next_to_clean        <%x>\n"
1158               "buffer_info[next_to_clean]:\n"
1159               "  time_stamp           <%lx>\n"
1160               "  next_to_watch        <%x>\n"
1161               "  jiffies              <%lx>\n"
1162               "  next_to_watch.status <%x>\n"
1163               "MAC Status             <%x>\n"
1164               "PHY Status             <%x>\n"
1165               "PHY 1000BASE-T Status  <%x>\n"
1166               "PHY Extended Status    <%x>\n"
1167               "PCI Status             <%x>\n",
1168               readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1169               tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1170               eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1171               phy_status, phy_1000t_status, phy_ext_status, pci_status);
1172
1173         e1000e_dump(adapter);
1174
1175         /* Suggest workaround for known h/w issue */
1176         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1177                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1178 }
1179
1180 /**
1181  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1182  * @work: pointer to work struct
1183  *
1184  * This work function polls the TSYNCTXCTL valid bit to determine when a
1185  * timestamp has been taken for the current stored skb.  The timestamp must
1186  * be for this skb because only one such packet is allowed in the queue.
1187  */
1188 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1189 {
1190         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1191                                                      tx_hwtstamp_work);
1192         struct e1000_hw *hw = &adapter->hw;
1193
1194         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1195                 struct skb_shared_hwtstamps shhwtstamps;
1196                 u64 txstmp;
1197
1198                 txstmp = er32(TXSTMPL);
1199                 txstmp |= (u64)er32(TXSTMPH) << 32;
1200
1201                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1202
1203                 skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1204                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1205                 adapter->tx_hwtstamp_skb = NULL;
1206         } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1207                               + adapter->tx_timeout_factor * HZ)) {
1208                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1209                 adapter->tx_hwtstamp_skb = NULL;
1210                 adapter->tx_hwtstamp_timeouts++;
1211                 e_warn("clearing Tx timestamp hang\n");
1212         } else {
1213                 /* reschedule to check later */
1214                 schedule_work(&adapter->tx_hwtstamp_work);
1215         }
1216 }
1217
1218 /**
1219  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1220  * @tx_ring: Tx descriptor ring
1221  *
1222  * the return value indicates whether actual cleaning was done, there
1223  * is no guarantee that everything was cleaned
1224  **/
1225 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1226 {
1227         struct e1000_adapter *adapter = tx_ring->adapter;
1228         struct net_device *netdev = adapter->netdev;
1229         struct e1000_hw *hw = &adapter->hw;
1230         struct e1000_tx_desc *tx_desc, *eop_desc;
1231         struct e1000_buffer *buffer_info;
1232         unsigned int i, eop;
1233         unsigned int count = 0;
1234         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1235         unsigned int bytes_compl = 0, pkts_compl = 0;
1236
1237         i = tx_ring->next_to_clean;
1238         eop = tx_ring->buffer_info[i].next_to_watch;
1239         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1240
1241         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1242                (count < tx_ring->count)) {
1243                 bool cleaned = false;
1244
1245                 dma_rmb();              /* read buffer_info after eop_desc */
1246                 for (; !cleaned; count++) {
1247                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1248                         buffer_info = &tx_ring->buffer_info[i];
1249                         cleaned = (i == eop);
1250
1251                         if (cleaned) {
1252                                 total_tx_packets += buffer_info->segs;
1253                                 total_tx_bytes += buffer_info->bytecount;
1254                                 if (buffer_info->skb) {
1255                                         bytes_compl += buffer_info->skb->len;
1256                                         pkts_compl++;
1257                                 }
1258                         }
1259
1260                         e1000_put_txbuf(tx_ring, buffer_info);
1261                         tx_desc->upper.data = 0;
1262
1263                         i++;
1264                         if (i == tx_ring->count)
1265                                 i = 0;
1266                 }
1267
1268                 if (i == tx_ring->next_to_use)
1269                         break;
1270                 eop = tx_ring->buffer_info[i].next_to_watch;
1271                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1272         }
1273
1274         tx_ring->next_to_clean = i;
1275
1276         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1277
1278 #define TX_WAKE_THRESHOLD 32
1279         if (count && netif_carrier_ok(netdev) &&
1280             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1281                 /* Make sure that anybody stopping the queue after this
1282                  * sees the new next_to_clean.
1283                  */
1284                 smp_mb();
1285
1286                 if (netif_queue_stopped(netdev) &&
1287                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1288                         netif_wake_queue(netdev);
1289                         ++adapter->restart_queue;
1290                 }
1291         }
1292
1293         if (adapter->detect_tx_hung) {
1294                 /* Detect a transmit hang in hardware, this serializes the
1295                  * check with the clearing of time_stamp and movement of i
1296                  */
1297                 adapter->detect_tx_hung = false;
1298                 if (tx_ring->buffer_info[i].time_stamp &&
1299                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1300                                + (adapter->tx_timeout_factor * HZ)) &&
1301                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1302                         schedule_work(&adapter->print_hang_task);
1303                 else
1304                         adapter->tx_hang_recheck = false;
1305         }
1306         adapter->total_tx_bytes += total_tx_bytes;
1307         adapter->total_tx_packets += total_tx_packets;
1308         return count < tx_ring->count;
1309 }
1310
1311 /**
1312  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1313  * @rx_ring: Rx descriptor ring
1314  *
1315  * the return value indicates whether actual cleaning was done, there
1316  * is no guarantee that everything was cleaned
1317  **/
1318 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1319                                   int work_to_do)
1320 {
1321         struct e1000_adapter *adapter = rx_ring->adapter;
1322         struct e1000_hw *hw = &adapter->hw;
1323         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1324         struct net_device *netdev = adapter->netdev;
1325         struct pci_dev *pdev = adapter->pdev;
1326         struct e1000_buffer *buffer_info, *next_buffer;
1327         struct e1000_ps_page *ps_page;
1328         struct sk_buff *skb;
1329         unsigned int i, j;
1330         u32 length, staterr;
1331         int cleaned_count = 0;
1332         bool cleaned = false;
1333         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1334
1335         i = rx_ring->next_to_clean;
1336         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1337         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1338         buffer_info = &rx_ring->buffer_info[i];
1339
1340         while (staterr & E1000_RXD_STAT_DD) {
1341                 if (*work_done >= work_to_do)
1342                         break;
1343                 (*work_done)++;
1344                 skb = buffer_info->skb;
1345                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1346
1347                 /* in the packet split case this is header only */
1348                 prefetch(skb->data - NET_IP_ALIGN);
1349
1350                 i++;
1351                 if (i == rx_ring->count)
1352                         i = 0;
1353                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1354                 prefetch(next_rxd);
1355
1356                 next_buffer = &rx_ring->buffer_info[i];
1357
1358                 cleaned = true;
1359                 cleaned_count++;
1360                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1361                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1362                 buffer_info->dma = 0;
1363
1364                 /* see !EOP comment in other Rx routine */
1365                 if (!(staterr & E1000_RXD_STAT_EOP))
1366                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1367
1368                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1369                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1370                         dev_kfree_skb_irq(skb);
1371                         if (staterr & E1000_RXD_STAT_EOP)
1372                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1373                         goto next_desc;
1374                 }
1375
1376                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1377                              !(netdev->features & NETIF_F_RXALL))) {
1378                         dev_kfree_skb_irq(skb);
1379                         goto next_desc;
1380                 }
1381
1382                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1383
1384                 if (!length) {
1385                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1386                         dev_kfree_skb_irq(skb);
1387                         goto next_desc;
1388                 }
1389
1390                 /* Good Receive */
1391                 skb_put(skb, length);
1392
1393                 {
1394                         /* this looks ugly, but it seems compiler issues make
1395                          * it more efficient than reusing j
1396                          */
1397                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1398
1399                         /* page alloc/put takes too long and effects small
1400                          * packet throughput, so unsplit small packets and
1401                          * save the alloc/put only valid in softirq (napi)
1402                          * context to call kmap_*
1403                          */
1404                         if (l1 && (l1 <= copybreak) &&
1405                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1406                                 u8 *vaddr;
1407
1408                                 ps_page = &buffer_info->ps_pages[0];
1409
1410                                 /* there is no documentation about how to call
1411                                  * kmap_atomic, so we can't hold the mapping
1412                                  * very long
1413                                  */
1414                                 dma_sync_single_for_cpu(&pdev->dev,
1415                                                         ps_page->dma,
1416                                                         PAGE_SIZE,
1417                                                         DMA_FROM_DEVICE);
1418                                 vaddr = kmap_atomic(ps_page->page);
1419                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1420                                 kunmap_atomic(vaddr);
1421                                 dma_sync_single_for_device(&pdev->dev,
1422                                                            ps_page->dma,
1423                                                            PAGE_SIZE,
1424                                                            DMA_FROM_DEVICE);
1425
1426                                 /* remove the CRC */
1427                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1428                                         if (!(netdev->features & NETIF_F_RXFCS))
1429                                                 l1 -= 4;
1430                                 }
1431
1432                                 skb_put(skb, l1);
1433                                 goto copydone;
1434                         }       /* if */
1435                 }
1436
1437                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1438                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1439                         if (!length)
1440                                 break;
1441
1442                         ps_page = &buffer_info->ps_pages[j];
1443                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1444                                        DMA_FROM_DEVICE);
1445                         ps_page->dma = 0;
1446                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1447                         ps_page->page = NULL;
1448                         skb->len += length;
1449                         skb->data_len += length;
1450                         skb->truesize += PAGE_SIZE;
1451                 }
1452
1453                 /* strip the ethernet crc, problem is we're using pages now so
1454                  * this whole operation can get a little cpu intensive
1455                  */
1456                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1457                         if (!(netdev->features & NETIF_F_RXFCS))
1458                                 pskb_trim(skb, skb->len - 4);
1459                 }
1460
1461 copydone:
1462                 total_rx_bytes += skb->len;
1463                 total_rx_packets++;
1464
1465                 e1000_rx_checksum(adapter, staterr, skb);
1466
1467                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1468
1469                 if (rx_desc->wb.upper.header_status &
1470                     cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1471                         adapter->rx_hdr_split++;
1472
1473                 e1000_receive_skb(adapter, netdev, skb, staterr,
1474                                   rx_desc->wb.middle.vlan);
1475
1476 next_desc:
1477                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1478                 buffer_info->skb = NULL;
1479
1480                 /* return some buffers to hardware, one at a time is too slow */
1481                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1482                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1483                                               GFP_ATOMIC);
1484                         cleaned_count = 0;
1485                 }
1486
1487                 /* use prefetched values */
1488                 rx_desc = next_rxd;
1489                 buffer_info = next_buffer;
1490
1491                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1492         }
1493         rx_ring->next_to_clean = i;
1494
1495         cleaned_count = e1000_desc_unused(rx_ring);
1496         if (cleaned_count)
1497                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1498
1499         adapter->total_rx_bytes += total_rx_bytes;
1500         adapter->total_rx_packets += total_rx_packets;
1501         return cleaned;
1502 }
1503
1504 /**
1505  * e1000_consume_page - helper function
1506  **/
1507 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1508                                u16 length)
1509 {
1510         bi->page = NULL;
1511         skb->len += length;
1512         skb->data_len += length;
1513         skb->truesize += PAGE_SIZE;
1514 }
1515
1516 /**
1517  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1518  * @adapter: board private structure
1519  *
1520  * the return value indicates whether actual cleaning was done, there
1521  * is no guarantee that everything was cleaned
1522  **/
1523 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1524                                      int work_to_do)
1525 {
1526         struct e1000_adapter *adapter = rx_ring->adapter;
1527         struct net_device *netdev = adapter->netdev;
1528         struct pci_dev *pdev = adapter->pdev;
1529         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1530         struct e1000_buffer *buffer_info, *next_buffer;
1531         u32 length, staterr;
1532         unsigned int i;
1533         int cleaned_count = 0;
1534         bool cleaned = false;
1535         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1536         struct skb_shared_info *shinfo;
1537
1538         i = rx_ring->next_to_clean;
1539         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1540         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1541         buffer_info = &rx_ring->buffer_info[i];
1542
1543         while (staterr & E1000_RXD_STAT_DD) {
1544                 struct sk_buff *skb;
1545
1546                 if (*work_done >= work_to_do)
1547                         break;
1548                 (*work_done)++;
1549                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1550
1551                 skb = buffer_info->skb;
1552                 buffer_info->skb = NULL;
1553
1554                 ++i;
1555                 if (i == rx_ring->count)
1556                         i = 0;
1557                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1558                 prefetch(next_rxd);
1559
1560                 next_buffer = &rx_ring->buffer_info[i];
1561
1562                 cleaned = true;
1563                 cleaned_count++;
1564                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1565                                DMA_FROM_DEVICE);
1566                 buffer_info->dma = 0;
1567
1568                 length = le16_to_cpu(rx_desc->wb.upper.length);
1569
1570                 /* errors is only valid for DD + EOP descriptors */
1571                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1572                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1573                               !(netdev->features & NETIF_F_RXALL)))) {
1574                         /* recycle both page and skb */
1575                         buffer_info->skb = skb;
1576                         /* an error means any chain goes out the window too */
1577                         if (rx_ring->rx_skb_top)
1578                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1579                         rx_ring->rx_skb_top = NULL;
1580                         goto next_desc;
1581                 }
1582 #define rxtop (rx_ring->rx_skb_top)
1583                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1584                         /* this descriptor is only the beginning (or middle) */
1585                         if (!rxtop) {
1586                                 /* this is the beginning of a chain */
1587                                 rxtop = skb;
1588                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1589                                                    0, length);
1590                         } else {
1591                                 /* this is the middle of a chain */
1592                                 shinfo = skb_shinfo(rxtop);
1593                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1594                                                    buffer_info->page, 0,
1595                                                    length);
1596                                 /* re-use the skb, only consumed the page */
1597                                 buffer_info->skb = skb;
1598                         }
1599                         e1000_consume_page(buffer_info, rxtop, length);
1600                         goto next_desc;
1601                 } else {
1602                         if (rxtop) {
1603                                 /* end of the chain */
1604                                 shinfo = skb_shinfo(rxtop);
1605                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1606                                                    buffer_info->page, 0,
1607                                                    length);
1608                                 /* re-use the current skb, we only consumed the
1609                                  * page
1610                                  */
1611                                 buffer_info->skb = skb;
1612                                 skb = rxtop;
1613                                 rxtop = NULL;
1614                                 e1000_consume_page(buffer_info, skb, length);
1615                         } else {
1616                                 /* no chain, got EOP, this buf is the packet
1617                                  * copybreak to save the put_page/alloc_page
1618                                  */
1619                                 if (length <= copybreak &&
1620                                     skb_tailroom(skb) >= length) {
1621                                         u8 *vaddr;
1622                                         vaddr = kmap_atomic(buffer_info->page);
1623                                         memcpy(skb_tail_pointer(skb), vaddr,
1624                                                length);
1625                                         kunmap_atomic(vaddr);
1626                                         /* re-use the page, so don't erase
1627                                          * buffer_info->page
1628                                          */
1629                                         skb_put(skb, length);
1630                                 } else {
1631                                         skb_fill_page_desc(skb, 0,
1632                                                            buffer_info->page, 0,
1633                                                            length);
1634                                         e1000_consume_page(buffer_info, skb,
1635                                                            length);
1636                                 }
1637                         }
1638                 }
1639
1640                 /* Receive Checksum Offload */
1641                 e1000_rx_checksum(adapter, staterr, skb);
1642
1643                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1644
1645                 /* probably a little skewed due to removing CRC */
1646                 total_rx_bytes += skb->len;
1647                 total_rx_packets++;
1648
1649                 /* eth type trans needs skb->data to point to something */
1650                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1651                         e_err("pskb_may_pull failed.\n");
1652                         dev_kfree_skb_irq(skb);
1653                         goto next_desc;
1654                 }
1655
1656                 e1000_receive_skb(adapter, netdev, skb, staterr,
1657                                   rx_desc->wb.upper.vlan);
1658
1659 next_desc:
1660                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1661
1662                 /* return some buffers to hardware, one at a time is too slow */
1663                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1664                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1665                                               GFP_ATOMIC);
1666                         cleaned_count = 0;
1667                 }
1668
1669                 /* use prefetched values */
1670                 rx_desc = next_rxd;
1671                 buffer_info = next_buffer;
1672
1673                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1674         }
1675         rx_ring->next_to_clean = i;
1676
1677         cleaned_count = e1000_desc_unused(rx_ring);
1678         if (cleaned_count)
1679                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1680
1681         adapter->total_rx_bytes += total_rx_bytes;
1682         adapter->total_rx_packets += total_rx_packets;
1683         return cleaned;
1684 }
1685
1686 /**
1687  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1688  * @rx_ring: Rx descriptor ring
1689  **/
1690 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1691 {
1692         struct e1000_adapter *adapter = rx_ring->adapter;
1693         struct e1000_buffer *buffer_info;
1694         struct e1000_ps_page *ps_page;
1695         struct pci_dev *pdev = adapter->pdev;
1696         unsigned int i, j;
1697
1698         /* Free all the Rx ring sk_buffs */
1699         for (i = 0; i < rx_ring->count; i++) {
1700                 buffer_info = &rx_ring->buffer_info[i];
1701                 if (buffer_info->dma) {
1702                         if (adapter->clean_rx == e1000_clean_rx_irq)
1703                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1704                                                  adapter->rx_buffer_len,
1705                                                  DMA_FROM_DEVICE);
1706                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1707                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1708                                                PAGE_SIZE, DMA_FROM_DEVICE);
1709                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1710                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1711                                                  adapter->rx_ps_bsize0,
1712                                                  DMA_FROM_DEVICE);
1713                         buffer_info->dma = 0;
1714                 }
1715
1716                 if (buffer_info->page) {
1717                         put_page(buffer_info->page);
1718                         buffer_info->page = NULL;
1719                 }
1720
1721                 if (buffer_info->skb) {
1722                         dev_kfree_skb(buffer_info->skb);
1723                         buffer_info->skb = NULL;
1724                 }
1725
1726                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1727                         ps_page = &buffer_info->ps_pages[j];
1728                         if (!ps_page->page)
1729                                 break;
1730                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1731                                        DMA_FROM_DEVICE);
1732                         ps_page->dma = 0;
1733                         put_page(ps_page->page);
1734                         ps_page->page = NULL;
1735                 }
1736         }
1737
1738         /* there also may be some cached data from a chained receive */
1739         if (rx_ring->rx_skb_top) {
1740                 dev_kfree_skb(rx_ring->rx_skb_top);
1741                 rx_ring->rx_skb_top = NULL;
1742         }
1743
1744         /* Zero out the descriptor ring */
1745         memset(rx_ring->desc, 0, rx_ring->size);
1746
1747         rx_ring->next_to_clean = 0;
1748         rx_ring->next_to_use = 0;
1749         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1750 }
1751
1752 static void e1000e_downshift_workaround(struct work_struct *work)
1753 {
1754         struct e1000_adapter *adapter = container_of(work,
1755                                                      struct e1000_adapter,
1756                                                      downshift_task);
1757
1758         if (test_bit(__E1000_DOWN, &adapter->state))
1759                 return;
1760
1761         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1762 }
1763
1764 /**
1765  * e1000_intr_msi - Interrupt Handler
1766  * @irq: interrupt number
1767  * @data: pointer to a network interface device structure
1768  **/
1769 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1770 {
1771         struct net_device *netdev = data;
1772         struct e1000_adapter *adapter = netdev_priv(netdev);
1773         struct e1000_hw *hw = &adapter->hw;
1774         u32 icr = er32(ICR);
1775
1776         /* read ICR disables interrupts using IAM */
1777         if (icr & E1000_ICR_LSC) {
1778                 hw->mac.get_link_status = true;
1779                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1780                  * disconnect (LSC) before accessing any PHY registers
1781                  */
1782                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1783                     (!(er32(STATUS) & E1000_STATUS_LU)))
1784                         schedule_work(&adapter->downshift_task);
1785
1786                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1787                  * link down event; disable receives here in the ISR and reset
1788                  * adapter in watchdog
1789                  */
1790                 if (netif_carrier_ok(netdev) &&
1791                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1792                         /* disable receives */
1793                         u32 rctl = er32(RCTL);
1794
1795                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1796                         adapter->flags |= FLAG_RESTART_NOW;
1797                 }
1798                 /* guard against interrupt when we're going down */
1799                 if (!test_bit(__E1000_DOWN, &adapter->state))
1800                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1801         }
1802
1803         /* Reset on uncorrectable ECC error */
1804         if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1805                                         (hw->mac.type == e1000_pch_spt))) {
1806                 u32 pbeccsts = er32(PBECCSTS);
1807
1808                 adapter->corr_errors +=
1809                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1810                 adapter->uncorr_errors +=
1811                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1812                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1813
1814                 /* Do the reset outside of interrupt context */
1815                 schedule_work(&adapter->reset_task);
1816
1817                 /* return immediately since reset is imminent */
1818                 return IRQ_HANDLED;
1819         }
1820
1821         if (napi_schedule_prep(&adapter->napi)) {
1822                 adapter->total_tx_bytes = 0;
1823                 adapter->total_tx_packets = 0;
1824                 adapter->total_rx_bytes = 0;
1825                 adapter->total_rx_packets = 0;
1826                 __napi_schedule(&adapter->napi);
1827         }
1828
1829         return IRQ_HANDLED;
1830 }
1831
1832 /**
1833  * e1000_intr - Interrupt Handler
1834  * @irq: interrupt number
1835  * @data: pointer to a network interface device structure
1836  **/
1837 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1838 {
1839         struct net_device *netdev = data;
1840         struct e1000_adapter *adapter = netdev_priv(netdev);
1841         struct e1000_hw *hw = &adapter->hw;
1842         u32 rctl, icr = er32(ICR);
1843
1844         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1845                 return IRQ_NONE;        /* Not our interrupt */
1846
1847         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1848          * not set, then the adapter didn't send an interrupt
1849          */
1850         if (!(icr & E1000_ICR_INT_ASSERTED))
1851                 return IRQ_NONE;
1852
1853         /* Interrupt Auto-Mask...upon reading ICR,
1854          * interrupts are masked.  No need for the
1855          * IMC write
1856          */
1857
1858         if (icr & E1000_ICR_LSC) {
1859                 hw->mac.get_link_status = true;
1860                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1861                  * disconnect (LSC) before accessing any PHY registers
1862                  */
1863                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1864                     (!(er32(STATUS) & E1000_STATUS_LU)))
1865                         schedule_work(&adapter->downshift_task);
1866
1867                 /* 80003ES2LAN workaround--
1868                  * For packet buffer work-around on link down event;
1869                  * disable receives here in the ISR and
1870                  * reset adapter in watchdog
1871                  */
1872                 if (netif_carrier_ok(netdev) &&
1873                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1874                         /* disable receives */
1875                         rctl = er32(RCTL);
1876                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1877                         adapter->flags |= FLAG_RESTART_NOW;
1878                 }
1879                 /* guard against interrupt when we're going down */
1880                 if (!test_bit(__E1000_DOWN, &adapter->state))
1881                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1882         }
1883
1884         /* Reset on uncorrectable ECC error */
1885         if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1886                                         (hw->mac.type == e1000_pch_spt))) {
1887                 u32 pbeccsts = er32(PBECCSTS);
1888
1889                 adapter->corr_errors +=
1890                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1891                 adapter->uncorr_errors +=
1892                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1893                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1894
1895                 /* Do the reset outside of interrupt context */
1896                 schedule_work(&adapter->reset_task);
1897
1898                 /* return immediately since reset is imminent */
1899                 return IRQ_HANDLED;
1900         }
1901
1902         if (napi_schedule_prep(&adapter->napi)) {
1903                 adapter->total_tx_bytes = 0;
1904                 adapter->total_tx_packets = 0;
1905                 adapter->total_rx_bytes = 0;
1906                 adapter->total_rx_packets = 0;
1907                 __napi_schedule(&adapter->napi);
1908         }
1909
1910         return IRQ_HANDLED;
1911 }
1912
1913 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1914 {
1915         struct net_device *netdev = data;
1916         struct e1000_adapter *adapter = netdev_priv(netdev);
1917         struct e1000_hw *hw = &adapter->hw;
1918
1919         hw->mac.get_link_status = true;
1920
1921         /* guard against interrupt when we're going down */
1922         if (!test_bit(__E1000_DOWN, &adapter->state)) {
1923                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1924                 ew32(IMS, E1000_IMS_OTHER);
1925         }
1926
1927         return IRQ_HANDLED;
1928 }
1929
1930 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1931 {
1932         struct net_device *netdev = data;
1933         struct e1000_adapter *adapter = netdev_priv(netdev);
1934         struct e1000_hw *hw = &adapter->hw;
1935         struct e1000_ring *tx_ring = adapter->tx_ring;
1936
1937         adapter->total_tx_bytes = 0;
1938         adapter->total_tx_packets = 0;
1939
1940         if (!e1000_clean_tx_irq(tx_ring))
1941                 /* Ring was not completely cleaned, so fire another interrupt */
1942                 ew32(ICS, tx_ring->ims_val);
1943
1944         if (!test_bit(__E1000_DOWN, &adapter->state))
1945                 ew32(IMS, adapter->tx_ring->ims_val);
1946
1947         return IRQ_HANDLED;
1948 }
1949
1950 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1951 {
1952         struct net_device *netdev = data;
1953         struct e1000_adapter *adapter = netdev_priv(netdev);
1954         struct e1000_ring *rx_ring = adapter->rx_ring;
1955
1956         /* Write the ITR value calculated at the end of the
1957          * previous interrupt.
1958          */
1959         if (rx_ring->set_itr) {
1960                 u32 itr = rx_ring->itr_val ?
1961                           1000000000 / (rx_ring->itr_val * 256) : 0;
1962
1963                 writel(itr, rx_ring->itr_register);
1964                 rx_ring->set_itr = 0;
1965         }
1966
1967         if (napi_schedule_prep(&adapter->napi)) {
1968                 adapter->total_rx_bytes = 0;
1969                 adapter->total_rx_packets = 0;
1970                 __napi_schedule(&adapter->napi);
1971         }
1972         return IRQ_HANDLED;
1973 }
1974
1975 /**
1976  * e1000_configure_msix - Configure MSI-X hardware
1977  *
1978  * e1000_configure_msix sets up the hardware to properly
1979  * generate MSI-X interrupts.
1980  **/
1981 static void e1000_configure_msix(struct e1000_adapter *adapter)
1982 {
1983         struct e1000_hw *hw = &adapter->hw;
1984         struct e1000_ring *rx_ring = adapter->rx_ring;
1985         struct e1000_ring *tx_ring = adapter->tx_ring;
1986         int vector = 0;
1987         u32 ctrl_ext, ivar = 0;
1988
1989         adapter->eiac_mask = 0;
1990
1991         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1992         if (hw->mac.type == e1000_82574) {
1993                 u32 rfctl = er32(RFCTL);
1994
1995                 rfctl |= E1000_RFCTL_ACK_DIS;
1996                 ew32(RFCTL, rfctl);
1997         }
1998
1999         /* Configure Rx vector */
2000         rx_ring->ims_val = E1000_IMS_RXQ0;
2001         adapter->eiac_mask |= rx_ring->ims_val;
2002         if (rx_ring->itr_val)
2003                 writel(1000000000 / (rx_ring->itr_val * 256),
2004                        rx_ring->itr_register);
2005         else
2006                 writel(1, rx_ring->itr_register);
2007         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2008
2009         /* Configure Tx vector */
2010         tx_ring->ims_val = E1000_IMS_TXQ0;
2011         vector++;
2012         if (tx_ring->itr_val)
2013                 writel(1000000000 / (tx_ring->itr_val * 256),
2014                        tx_ring->itr_register);
2015         else
2016                 writel(1, tx_ring->itr_register);
2017         adapter->eiac_mask |= tx_ring->ims_val;
2018         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2019
2020         /* set vector for Other Causes, e.g. link changes */
2021         vector++;
2022         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2023         if (rx_ring->itr_val)
2024                 writel(1000000000 / (rx_ring->itr_val * 256),
2025                        hw->hw_addr + E1000_EITR_82574(vector));
2026         else
2027                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2028         adapter->eiac_mask |= E1000_IMS_OTHER;
2029
2030         /* Cause Tx interrupts on every write back */
2031         ivar |= BIT(31);
2032
2033         ew32(IVAR, ivar);
2034
2035         /* enable MSI-X PBA support */
2036         ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2037         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2038         ew32(CTRL_EXT, ctrl_ext);
2039         e1e_flush();
2040 }
2041
2042 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2043 {
2044         if (adapter->msix_entries) {
2045                 pci_disable_msix(adapter->pdev);
2046                 kfree(adapter->msix_entries);
2047                 adapter->msix_entries = NULL;
2048         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2049                 pci_disable_msi(adapter->pdev);
2050                 adapter->flags &= ~FLAG_MSI_ENABLED;
2051         }
2052 }
2053
2054 /**
2055  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2056  *
2057  * Attempt to configure interrupts using the best available
2058  * capabilities of the hardware and kernel.
2059  **/
2060 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2061 {
2062         int err;
2063         int i;
2064
2065         switch (adapter->int_mode) {
2066         case E1000E_INT_MODE_MSIX:
2067                 if (adapter->flags & FLAG_HAS_MSIX) {
2068                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2069                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2070                                                         sizeof(struct
2071                                                                msix_entry),
2072                                                         GFP_KERNEL);
2073                         if (adapter->msix_entries) {
2074                                 struct e1000_adapter *a = adapter;
2075
2076                                 for (i = 0; i < adapter->num_vectors; i++)
2077                                         adapter->msix_entries[i].entry = i;
2078
2079                                 err = pci_enable_msix_range(a->pdev,
2080                                                             a->msix_entries,
2081                                                             a->num_vectors,
2082                                                             a->num_vectors);
2083                                 if (err > 0)
2084                                         return;
2085                         }
2086                         /* MSI-X failed, so fall through and try MSI */
2087                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2088                         e1000e_reset_interrupt_capability(adapter);
2089                 }
2090                 adapter->int_mode = E1000E_INT_MODE_MSI;
2091                 /* Fall through */
2092         case E1000E_INT_MODE_MSI:
2093                 if (!pci_enable_msi(adapter->pdev)) {
2094                         adapter->flags |= FLAG_MSI_ENABLED;
2095                 } else {
2096                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2097                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2098                 }
2099                 /* Fall through */
2100         case E1000E_INT_MODE_LEGACY:
2101                 /* Don't do anything; this is the system default */
2102                 break;
2103         }
2104
2105         /* store the number of vectors being used */
2106         adapter->num_vectors = 1;
2107 }
2108
2109 /**
2110  * e1000_request_msix - Initialize MSI-X interrupts
2111  *
2112  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2113  * kernel.
2114  **/
2115 static int e1000_request_msix(struct e1000_adapter *adapter)
2116 {
2117         struct net_device *netdev = adapter->netdev;
2118         int err = 0, vector = 0;
2119
2120         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2121                 snprintf(adapter->rx_ring->name,
2122                          sizeof(adapter->rx_ring->name) - 1,
2123                          "%s-rx-0", netdev->name);
2124         else
2125                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2126         err = request_irq(adapter->msix_entries[vector].vector,
2127                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2128                           netdev);
2129         if (err)
2130                 return err;
2131         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2132             E1000_EITR_82574(vector);
2133         adapter->rx_ring->itr_val = adapter->itr;
2134         vector++;
2135
2136         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2137                 snprintf(adapter->tx_ring->name,
2138                          sizeof(adapter->tx_ring->name) - 1,
2139                          "%s-tx-0", netdev->name);
2140         else
2141                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2142         err = request_irq(adapter->msix_entries[vector].vector,
2143                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2144                           netdev);
2145         if (err)
2146                 return err;
2147         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2148             E1000_EITR_82574(vector);
2149         adapter->tx_ring->itr_val = adapter->itr;
2150         vector++;
2151
2152         err = request_irq(adapter->msix_entries[vector].vector,
2153                           e1000_msix_other, 0, netdev->name, netdev);
2154         if (err)
2155                 return err;
2156
2157         e1000_configure_msix(adapter);
2158
2159         return 0;
2160 }
2161
2162 /**
2163  * e1000_request_irq - initialize interrupts
2164  *
2165  * Attempts to configure interrupts using the best available
2166  * capabilities of the hardware and kernel.
2167  **/
2168 static int e1000_request_irq(struct e1000_adapter *adapter)
2169 {
2170         struct net_device *netdev = adapter->netdev;
2171         int err;
2172
2173         if (adapter->msix_entries) {
2174                 err = e1000_request_msix(adapter);
2175                 if (!err)
2176                         return err;
2177                 /* fall back to MSI */
2178                 e1000e_reset_interrupt_capability(adapter);
2179                 adapter->int_mode = E1000E_INT_MODE_MSI;
2180                 e1000e_set_interrupt_capability(adapter);
2181         }
2182         if (adapter->flags & FLAG_MSI_ENABLED) {
2183                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2184                                   netdev->name, netdev);
2185                 if (!err)
2186                         return err;
2187
2188                 /* fall back to legacy interrupt */
2189                 e1000e_reset_interrupt_capability(adapter);
2190                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2191         }
2192
2193         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2194                           netdev->name, netdev);
2195         if (err)
2196                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2197
2198         return err;
2199 }
2200
2201 static void e1000_free_irq(struct e1000_adapter *adapter)
2202 {
2203         struct net_device *netdev = adapter->netdev;
2204
2205         if (adapter->msix_entries) {
2206                 int vector = 0;
2207
2208                 free_irq(adapter->msix_entries[vector].vector, netdev);
2209                 vector++;
2210
2211                 free_irq(adapter->msix_entries[vector].vector, netdev);
2212                 vector++;
2213
2214                 /* Other Causes interrupt vector */
2215                 free_irq(adapter->msix_entries[vector].vector, netdev);
2216                 return;
2217         }
2218
2219         free_irq(adapter->pdev->irq, netdev);
2220 }
2221
2222 /**
2223  * e1000_irq_disable - Mask off interrupt generation on the NIC
2224  **/
2225 static void e1000_irq_disable(struct e1000_adapter *adapter)
2226 {
2227         struct e1000_hw *hw = &adapter->hw;
2228
2229         ew32(IMC, ~0);
2230         if (adapter->msix_entries)
2231                 ew32(EIAC_82574, 0);
2232         e1e_flush();
2233
2234         if (adapter->msix_entries) {
2235                 int i;
2236
2237                 for (i = 0; i < adapter->num_vectors; i++)
2238                         synchronize_irq(adapter->msix_entries[i].vector);
2239         } else {
2240                 synchronize_irq(adapter->pdev->irq);
2241         }
2242 }
2243
2244 /**
2245  * e1000_irq_enable - Enable default interrupt generation settings
2246  **/
2247 static void e1000_irq_enable(struct e1000_adapter *adapter)
2248 {
2249         struct e1000_hw *hw = &adapter->hw;
2250
2251         if (adapter->msix_entries) {
2252                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2253                 ew32(IMS, adapter->eiac_mask | E1000_IMS_LSC);
2254         } else if ((hw->mac.type == e1000_pch_lpt) ||
2255                    (hw->mac.type == e1000_pch_spt)) {
2256                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2257         } else {
2258                 ew32(IMS, IMS_ENABLE_MASK);
2259         }
2260         e1e_flush();
2261 }
2262
2263 /**
2264  * e1000e_get_hw_control - get control of the h/w from f/w
2265  * @adapter: address of board private structure
2266  *
2267  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2268  * For ASF and Pass Through versions of f/w this means that
2269  * the driver is loaded. For AMT version (only with 82573)
2270  * of the f/w this means that the network i/f is open.
2271  **/
2272 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2273 {
2274         struct e1000_hw *hw = &adapter->hw;
2275         u32 ctrl_ext;
2276         u32 swsm;
2277
2278         /* Let firmware know the driver has taken over */
2279         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2280                 swsm = er32(SWSM);
2281                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2282         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2283                 ctrl_ext = er32(CTRL_EXT);
2284                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2285         }
2286 }
2287
2288 /**
2289  * e1000e_release_hw_control - release control of the h/w to f/w
2290  * @adapter: address of board private structure
2291  *
2292  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2293  * For ASF and Pass Through versions of f/w this means that the
2294  * driver is no longer loaded. For AMT version (only with 82573) i
2295  * of the f/w this means that the network i/f is closed.
2296  *
2297  **/
2298 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2299 {
2300         struct e1000_hw *hw = &adapter->hw;
2301         u32 ctrl_ext;
2302         u32 swsm;
2303
2304         /* Let firmware taken over control of h/w */
2305         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2306                 swsm = er32(SWSM);
2307                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2308         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2309                 ctrl_ext = er32(CTRL_EXT);
2310                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2311         }
2312 }
2313
2314 /**
2315  * e1000_alloc_ring_dma - allocate memory for a ring structure
2316  **/
2317 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2318                                 struct e1000_ring *ring)
2319 {
2320         struct pci_dev *pdev = adapter->pdev;
2321
2322         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2323                                         GFP_KERNEL);
2324         if (!ring->desc)
2325                 return -ENOMEM;
2326
2327         return 0;
2328 }
2329
2330 /**
2331  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2332  * @tx_ring: Tx descriptor ring
2333  *
2334  * Return 0 on success, negative on failure
2335  **/
2336 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2337 {
2338         struct e1000_adapter *adapter = tx_ring->adapter;
2339         int err = -ENOMEM, size;
2340
2341         size = sizeof(struct e1000_buffer) * tx_ring->count;
2342         tx_ring->buffer_info = vzalloc(size);
2343         if (!tx_ring->buffer_info)
2344                 goto err;
2345
2346         /* round up to nearest 4K */
2347         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2348         tx_ring->size = ALIGN(tx_ring->size, 4096);
2349
2350         err = e1000_alloc_ring_dma(adapter, tx_ring);
2351         if (err)
2352                 goto err;
2353
2354         tx_ring->next_to_use = 0;
2355         tx_ring->next_to_clean = 0;
2356
2357         return 0;
2358 err:
2359         vfree(tx_ring->buffer_info);
2360         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2361         return err;
2362 }
2363
2364 /**
2365  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2366  * @rx_ring: Rx descriptor ring
2367  *
2368  * Returns 0 on success, negative on failure
2369  **/
2370 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2371 {
2372         struct e1000_adapter *adapter = rx_ring->adapter;
2373         struct e1000_buffer *buffer_info;
2374         int i, size, desc_len, err = -ENOMEM;
2375
2376         size = sizeof(struct e1000_buffer) * rx_ring->count;
2377         rx_ring->buffer_info = vzalloc(size);
2378         if (!rx_ring->buffer_info)
2379                 goto err;
2380
2381         for (i = 0; i < rx_ring->count; i++) {
2382                 buffer_info = &rx_ring->buffer_info[i];
2383                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2384                                                 sizeof(struct e1000_ps_page),
2385                                                 GFP_KERNEL);
2386                 if (!buffer_info->ps_pages)
2387                         goto err_pages;
2388         }
2389
2390         desc_len = sizeof(union e1000_rx_desc_packet_split);
2391
2392         /* Round up to nearest 4K */
2393         rx_ring->size = rx_ring->count * desc_len;
2394         rx_ring->size = ALIGN(rx_ring->size, 4096);
2395
2396         err = e1000_alloc_ring_dma(adapter, rx_ring);
2397         if (err)
2398                 goto err_pages;
2399
2400         rx_ring->next_to_clean = 0;
2401         rx_ring->next_to_use = 0;
2402         rx_ring->rx_skb_top = NULL;
2403
2404         return 0;
2405
2406 err_pages:
2407         for (i = 0; i < rx_ring->count; i++) {
2408                 buffer_info = &rx_ring->buffer_info[i];
2409                 kfree(buffer_info->ps_pages);
2410         }
2411 err:
2412         vfree(rx_ring->buffer_info);
2413         e_err("Unable to allocate memory for the receive descriptor ring\n");
2414         return err;
2415 }
2416
2417 /**
2418  * e1000_clean_tx_ring - Free Tx Buffers
2419  * @tx_ring: Tx descriptor ring
2420  **/
2421 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2422 {
2423         struct e1000_adapter *adapter = tx_ring->adapter;
2424         struct e1000_buffer *buffer_info;
2425         unsigned long size;
2426         unsigned int i;
2427
2428         for (i = 0; i < tx_ring->count; i++) {
2429                 buffer_info = &tx_ring->buffer_info[i];
2430                 e1000_put_txbuf(tx_ring, buffer_info);
2431         }
2432
2433         netdev_reset_queue(adapter->netdev);
2434         size = sizeof(struct e1000_buffer) * tx_ring->count;
2435         memset(tx_ring->buffer_info, 0, size);
2436
2437         memset(tx_ring->desc, 0, tx_ring->size);
2438
2439         tx_ring->next_to_use = 0;
2440         tx_ring->next_to_clean = 0;
2441 }
2442
2443 /**
2444  * e1000e_free_tx_resources - Free Tx Resources per Queue
2445  * @tx_ring: Tx descriptor ring
2446  *
2447  * Free all transmit software resources
2448  **/
2449 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2450 {
2451         struct e1000_adapter *adapter = tx_ring->adapter;
2452         struct pci_dev *pdev = adapter->pdev;
2453
2454         e1000_clean_tx_ring(tx_ring);
2455
2456         vfree(tx_ring->buffer_info);
2457         tx_ring->buffer_info = NULL;
2458
2459         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2460                           tx_ring->dma);
2461         tx_ring->desc = NULL;
2462 }
2463
2464 /**
2465  * e1000e_free_rx_resources - Free Rx Resources
2466  * @rx_ring: Rx descriptor ring
2467  *
2468  * Free all receive software resources
2469  **/
2470 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2471 {
2472         struct e1000_adapter *adapter = rx_ring->adapter;
2473         struct pci_dev *pdev = adapter->pdev;
2474         int i;
2475
2476         e1000_clean_rx_ring(rx_ring);
2477
2478         for (i = 0; i < rx_ring->count; i++)
2479                 kfree(rx_ring->buffer_info[i].ps_pages);
2480
2481         vfree(rx_ring->buffer_info);
2482         rx_ring->buffer_info = NULL;
2483
2484         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2485                           rx_ring->dma);
2486         rx_ring->desc = NULL;
2487 }
2488
2489 /**
2490  * e1000_update_itr - update the dynamic ITR value based on statistics
2491  * @adapter: pointer to adapter
2492  * @itr_setting: current adapter->itr
2493  * @packets: the number of packets during this measurement interval
2494  * @bytes: the number of bytes during this measurement interval
2495  *
2496  *      Stores a new ITR value based on packets and byte
2497  *      counts during the last interrupt.  The advantage of per interrupt
2498  *      computation is faster updates and more accurate ITR for the current
2499  *      traffic pattern.  Constants in this function were computed
2500  *      based on theoretical maximum wire speed and thresholds were set based
2501  *      on testing data as well as attempting to minimize response time
2502  *      while increasing bulk throughput.  This functionality is controlled
2503  *      by the InterruptThrottleRate module parameter.
2504  **/
2505 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2506 {
2507         unsigned int retval = itr_setting;
2508
2509         if (packets == 0)
2510                 return itr_setting;
2511
2512         switch (itr_setting) {
2513         case lowest_latency:
2514                 /* handle TSO and jumbo frames */
2515                 if (bytes / packets > 8000)
2516                         retval = bulk_latency;
2517                 else if ((packets < 5) && (bytes > 512))
2518                         retval = low_latency;
2519                 break;
2520         case low_latency:       /* 50 usec aka 20000 ints/s */
2521                 if (bytes > 10000) {
2522                         /* this if handles the TSO accounting */
2523                         if (bytes / packets > 8000)
2524                                 retval = bulk_latency;
2525                         else if ((packets < 10) || ((bytes / packets) > 1200))
2526                                 retval = bulk_latency;
2527                         else if ((packets > 35))
2528                                 retval = lowest_latency;
2529                 } else if (bytes / packets > 2000) {
2530                         retval = bulk_latency;
2531                 } else if (packets <= 2 && bytes < 512) {
2532                         retval = lowest_latency;
2533                 }
2534                 break;
2535         case bulk_latency:      /* 250 usec aka 4000 ints/s */
2536                 if (bytes > 25000) {
2537                         if (packets > 35)
2538                                 retval = low_latency;
2539                 } else if (bytes < 6000) {
2540                         retval = low_latency;
2541                 }
2542                 break;
2543         }
2544
2545         return retval;
2546 }
2547
2548 static void e1000_set_itr(struct e1000_adapter *adapter)
2549 {
2550         u16 current_itr;
2551         u32 new_itr = adapter->itr;
2552
2553         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2554         if (adapter->link_speed != SPEED_1000) {
2555                 current_itr = 0;
2556                 new_itr = 4000;
2557                 goto set_itr_now;
2558         }
2559
2560         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2561                 new_itr = 0;
2562                 goto set_itr_now;
2563         }
2564
2565         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2566                                            adapter->total_tx_packets,
2567                                            adapter->total_tx_bytes);
2568         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2569         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2570                 adapter->tx_itr = low_latency;
2571
2572         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2573                                            adapter->total_rx_packets,
2574                                            adapter->total_rx_bytes);
2575         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2576         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2577                 adapter->rx_itr = low_latency;
2578
2579         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2580
2581         /* counts and packets in update_itr are dependent on these numbers */
2582         switch (current_itr) {
2583         case lowest_latency:
2584                 new_itr = 70000;
2585                 break;
2586         case low_latency:
2587                 new_itr = 20000;        /* aka hwitr = ~200 */
2588                 break;
2589         case bulk_latency:
2590                 new_itr = 4000;
2591                 break;
2592         default:
2593                 break;
2594         }
2595
2596 set_itr_now:
2597         if (new_itr != adapter->itr) {
2598                 /* this attempts to bias the interrupt rate towards Bulk
2599                  * by adding intermediate steps when interrupt rate is
2600                  * increasing
2601                  */
2602                 new_itr = new_itr > adapter->itr ?
2603                     min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2604                 adapter->itr = new_itr;
2605                 adapter->rx_ring->itr_val = new_itr;
2606                 if (adapter->msix_entries)
2607                         adapter->rx_ring->set_itr = 1;
2608                 else
2609                         e1000e_write_itr(adapter, new_itr);
2610         }
2611 }
2612
2613 /**
2614  * e1000e_write_itr - write the ITR value to the appropriate registers
2615  * @adapter: address of board private structure
2616  * @itr: new ITR value to program
2617  *
2618  * e1000e_write_itr determines if the adapter is in MSI-X mode
2619  * and, if so, writes the EITR registers with the ITR value.
2620  * Otherwise, it writes the ITR value into the ITR register.
2621  **/
2622 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2623 {
2624         struct e1000_hw *hw = &adapter->hw;
2625         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2626
2627         if (adapter->msix_entries) {
2628                 int vector;
2629
2630                 for (vector = 0; vector < adapter->num_vectors; vector++)
2631                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2632         } else {
2633                 ew32(ITR, new_itr);
2634         }
2635 }
2636
2637 /**
2638  * e1000_alloc_queues - Allocate memory for all rings
2639  * @adapter: board private structure to initialize
2640  **/
2641 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2642 {
2643         int size = sizeof(struct e1000_ring);
2644
2645         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2646         if (!adapter->tx_ring)
2647                 goto err;
2648         adapter->tx_ring->count = adapter->tx_ring_count;
2649         adapter->tx_ring->adapter = adapter;
2650
2651         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2652         if (!adapter->rx_ring)
2653                 goto err;
2654         adapter->rx_ring->count = adapter->rx_ring_count;
2655         adapter->rx_ring->adapter = adapter;
2656
2657         return 0;
2658 err:
2659         e_err("Unable to allocate memory for queues\n");
2660         kfree(adapter->rx_ring);
2661         kfree(adapter->tx_ring);
2662         return -ENOMEM;
2663 }
2664
2665 /**
2666  * e1000e_poll - NAPI Rx polling callback
2667  * @napi: struct associated with this polling callback
2668  * @weight: number of packets driver is allowed to process this poll
2669  **/
2670 static int e1000e_poll(struct napi_struct *napi, int weight)
2671 {
2672         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2673                                                      napi);
2674         struct e1000_hw *hw = &adapter->hw;
2675         struct net_device *poll_dev = adapter->netdev;
2676         int tx_cleaned = 1, work_done = 0;
2677
2678         adapter = netdev_priv(poll_dev);
2679
2680         if (!adapter->msix_entries ||
2681             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2682                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2683
2684         adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2685
2686         if (!tx_cleaned)
2687                 work_done = weight;
2688
2689         /* If weight not fully consumed, exit the polling mode */
2690         if (work_done < weight) {
2691                 if (adapter->itr_setting & 3)
2692                         e1000_set_itr(adapter);
2693                 napi_complete_done(napi, work_done);
2694                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2695                         if (adapter->msix_entries)
2696                                 ew32(IMS, adapter->rx_ring->ims_val);
2697                         else
2698                                 e1000_irq_enable(adapter);
2699                 }
2700         }
2701
2702         return work_done;
2703 }
2704
2705 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2706                                  __always_unused __be16 proto, u16 vid)
2707 {
2708         struct e1000_adapter *adapter = netdev_priv(netdev);
2709         struct e1000_hw *hw = &adapter->hw;
2710         u32 vfta, index;
2711
2712         /* don't update vlan cookie if already programmed */
2713         if ((adapter->hw.mng_cookie.status &
2714              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2715             (vid == adapter->mng_vlan_id))
2716                 return 0;
2717
2718         /* add VID to filter table */
2719         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2720                 index = (vid >> 5) & 0x7F;
2721                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2722                 vfta |= BIT((vid & 0x1F));
2723                 hw->mac.ops.write_vfta(hw, index, vfta);
2724         }
2725
2726         set_bit(vid, adapter->active_vlans);
2727
2728         return 0;
2729 }
2730
2731 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2732                                   __always_unused __be16 proto, u16 vid)
2733 {
2734         struct e1000_adapter *adapter = netdev_priv(netdev);
2735         struct e1000_hw *hw = &adapter->hw;
2736         u32 vfta, index;
2737
2738         if ((adapter->hw.mng_cookie.status &
2739              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2740             (vid == adapter->mng_vlan_id)) {
2741                 /* release control to f/w */
2742                 e1000e_release_hw_control(adapter);
2743                 return 0;
2744         }
2745
2746         /* remove VID from filter table */
2747         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2748                 index = (vid >> 5) & 0x7F;
2749                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2750                 vfta &= ~BIT((vid & 0x1F));
2751                 hw->mac.ops.write_vfta(hw, index, vfta);
2752         }
2753
2754         clear_bit(vid, adapter->active_vlans);
2755
2756         return 0;
2757 }
2758
2759 /**
2760  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2761  * @adapter: board private structure to initialize
2762  **/
2763 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2764 {
2765         struct net_device *netdev = adapter->netdev;
2766         struct e1000_hw *hw = &adapter->hw;
2767         u32 rctl;
2768
2769         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2770                 /* disable VLAN receive filtering */
2771                 rctl = er32(RCTL);
2772                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2773                 ew32(RCTL, rctl);
2774
2775                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2776                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2777                                                adapter->mng_vlan_id);
2778                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2779                 }
2780         }
2781 }
2782
2783 /**
2784  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2785  * @adapter: board private structure to initialize
2786  **/
2787 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2788 {
2789         struct e1000_hw *hw = &adapter->hw;
2790         u32 rctl;
2791
2792         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2793                 /* enable VLAN receive filtering */
2794                 rctl = er32(RCTL);
2795                 rctl |= E1000_RCTL_VFE;
2796                 rctl &= ~E1000_RCTL_CFIEN;
2797                 ew32(RCTL, rctl);
2798         }
2799 }
2800
2801 /**
2802  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2803  * @adapter: board private structure to initialize
2804  **/
2805 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2806 {
2807         struct e1000_hw *hw = &adapter->hw;
2808         u32 ctrl;
2809
2810         /* disable VLAN tag insert/strip */
2811         ctrl = er32(CTRL);
2812         ctrl &= ~E1000_CTRL_VME;
2813         ew32(CTRL, ctrl);
2814 }
2815
2816 /**
2817  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2818  * @adapter: board private structure to initialize
2819  **/
2820 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2821 {
2822         struct e1000_hw *hw = &adapter->hw;
2823         u32 ctrl;
2824
2825         /* enable VLAN tag insert/strip */
2826         ctrl = er32(CTRL);
2827         ctrl |= E1000_CTRL_VME;
2828         ew32(CTRL, ctrl);
2829 }
2830
2831 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2832 {
2833         struct net_device *netdev = adapter->netdev;
2834         u16 vid = adapter->hw.mng_cookie.vlan_id;
2835         u16 old_vid = adapter->mng_vlan_id;
2836
2837         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2838                 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2839                 adapter->mng_vlan_id = vid;
2840         }
2841
2842         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2843                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2844 }
2845
2846 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2847 {
2848         u16 vid;
2849
2850         e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2851
2852         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2853             e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2854 }
2855
2856 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2857 {
2858         struct e1000_hw *hw = &adapter->hw;
2859         u32 manc, manc2h, mdef, i, j;
2860
2861         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2862                 return;
2863
2864         manc = er32(MANC);
2865
2866         /* enable receiving management packets to the host. this will probably
2867          * generate destination unreachable messages from the host OS, but
2868          * the packets will be handled on SMBUS
2869          */
2870         manc |= E1000_MANC_EN_MNG2HOST;
2871         manc2h = er32(MANC2H);
2872
2873         switch (hw->mac.type) {
2874         default:
2875                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2876                 break;
2877         case e1000_82574:
2878         case e1000_82583:
2879                 /* Check if IPMI pass-through decision filter already exists;
2880                  * if so, enable it.
2881                  */
2882                 for (i = 0, j = 0; i < 8; i++) {
2883                         mdef = er32(MDEF(i));
2884
2885                         /* Ignore filters with anything other than IPMI ports */
2886                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2887                                 continue;
2888
2889                         /* Enable this decision filter in MANC2H */
2890                         if (mdef)
2891                                 manc2h |= BIT(i);
2892
2893                         j |= mdef;
2894                 }
2895
2896                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2897                         break;
2898
2899                 /* Create new decision filter in an empty filter */
2900                 for (i = 0, j = 0; i < 8; i++)
2901                         if (er32(MDEF(i)) == 0) {
2902                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2903                                                E1000_MDEF_PORT_664));
2904                                 manc2h |= BIT(1);
2905                                 j++;
2906                                 break;
2907                         }
2908
2909                 if (!j)
2910                         e_warn("Unable to create IPMI pass-through filter\n");
2911                 break;
2912         }
2913
2914         ew32(MANC2H, manc2h);
2915         ew32(MANC, manc);
2916 }
2917
2918 /**
2919  * e1000_configure_tx - Configure Transmit Unit after Reset
2920  * @adapter: board private structure
2921  *
2922  * Configure the Tx unit of the MAC after a reset.
2923  **/
2924 static void e1000_configure_tx(struct e1000_adapter *adapter)
2925 {
2926         struct e1000_hw *hw = &adapter->hw;
2927         struct e1000_ring *tx_ring = adapter->tx_ring;
2928         u64 tdba;
2929         u32 tdlen, tctl, tarc;
2930
2931         /* Setup the HW Tx Head and Tail descriptor pointers */
2932         tdba = tx_ring->dma;
2933         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2934         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2935         ew32(TDBAH(0), (tdba >> 32));
2936         ew32(TDLEN(0), tdlen);
2937         ew32(TDH(0), 0);
2938         ew32(TDT(0), 0);
2939         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2940         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2941
2942         writel(0, tx_ring->head);
2943         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2944                 e1000e_update_tdt_wa(tx_ring, 0);
2945         else
2946                 writel(0, tx_ring->tail);
2947
2948         /* Set the Tx Interrupt Delay register */
2949         ew32(TIDV, adapter->tx_int_delay);
2950         /* Tx irq moderation */
2951         ew32(TADV, adapter->tx_abs_int_delay);
2952
2953         if (adapter->flags2 & FLAG2_DMA_BURST) {
2954                 u32 txdctl = er32(TXDCTL(0));
2955
2956                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2957                             E1000_TXDCTL_WTHRESH);
2958                 /* set up some performance related parameters to encourage the
2959                  * hardware to use the bus more efficiently in bursts, depends
2960                  * on the tx_int_delay to be enabled,
2961                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2962                  * hthresh = 1 ==> prefetch when one or more available
2963                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2964                  * BEWARE: this seems to work but should be considered first if
2965                  * there are Tx hangs or other Tx related bugs
2966                  */
2967                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2968                 ew32(TXDCTL(0), txdctl);
2969         }
2970         /* erratum work around: set txdctl the same for both queues */
2971         ew32(TXDCTL(1), er32(TXDCTL(0)));
2972
2973         /* Program the Transmit Control Register */
2974         tctl = er32(TCTL);
2975         tctl &= ~E1000_TCTL_CT;
2976         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2977                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2978
2979         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2980                 tarc = er32(TARC(0));
2981                 /* set the speed mode bit, we'll clear it if we're not at
2982                  * gigabit link later
2983                  */
2984 #define SPEED_MODE_BIT BIT(21)
2985                 tarc |= SPEED_MODE_BIT;
2986                 ew32(TARC(0), tarc);
2987         }
2988
2989         /* errata: program both queues to unweighted RR */
2990         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2991                 tarc = er32(TARC(0));
2992                 tarc |= 1;
2993                 ew32(TARC(0), tarc);
2994                 tarc = er32(TARC(1));
2995                 tarc |= 1;
2996                 ew32(TARC(1), tarc);
2997         }
2998
2999         /* Setup Transmit Descriptor Settings for eop descriptor */
3000         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3001
3002         /* only set IDE if we are delaying interrupts using the timers */
3003         if (adapter->tx_int_delay)
3004                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3005
3006         /* enable Report Status bit */
3007         adapter->txd_cmd |= E1000_TXD_CMD_RS;
3008
3009         ew32(TCTL, tctl);
3010
3011         hw->mac.ops.config_collision_dist(hw);
3012
3013         /* SPT Si errata workaround to avoid data corruption */
3014         if (hw->mac.type == e1000_pch_spt) {
3015                 u32 reg_val;
3016
3017                 reg_val = er32(IOSFPC);
3018                 reg_val |= E1000_RCTL_RDMTS_HEX;
3019                 ew32(IOSFPC, reg_val);
3020
3021                 reg_val = er32(TARC(0));
3022                 reg_val |= E1000_TARC0_CB_MULTIQ_3_REQ;
3023                 ew32(TARC(0), reg_val);
3024         }
3025 }
3026
3027 /**
3028  * e1000_setup_rctl - configure the receive control registers
3029  * @adapter: Board private structure
3030  **/
3031 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3032                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3033 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3034 {
3035         struct e1000_hw *hw = &adapter->hw;
3036         u32 rctl, rfctl;
3037         u32 pages = 0;
3038
3039         /* Workaround Si errata on PCHx - configure jumbo frame flow.
3040          * If jumbo frames not set, program related MAC/PHY registers
3041          * to h/w defaults
3042          */
3043         if (hw->mac.type >= e1000_pch2lan) {
3044                 s32 ret_val;
3045
3046                 if (adapter->netdev->mtu > ETH_DATA_LEN)
3047                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3048                 else
3049                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3050
3051                 if (ret_val)
3052                         e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3053         }
3054
3055         /* Program MC offset vector base */
3056         rctl = er32(RCTL);
3057         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3058         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3059             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3060             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3061
3062         /* Do not Store bad packets */
3063         rctl &= ~E1000_RCTL_SBP;
3064
3065         /* Enable Long Packet receive */
3066         if (adapter->netdev->mtu <= ETH_DATA_LEN)
3067                 rctl &= ~E1000_RCTL_LPE;
3068         else
3069                 rctl |= E1000_RCTL_LPE;
3070
3071         /* Some systems expect that the CRC is included in SMBUS traffic. The
3072          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3073          * host memory when this is enabled
3074          */
3075         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3076                 rctl |= E1000_RCTL_SECRC;
3077
3078         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3079         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3080                 u16 phy_data;
3081
3082                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3083                 phy_data &= 0xfff8;
3084                 phy_data |= BIT(2);
3085                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3086
3087                 e1e_rphy(hw, 22, &phy_data);
3088                 phy_data &= 0x0fff;
3089                 phy_data |= BIT(14);
3090                 e1e_wphy(hw, 0x10, 0x2823);
3091                 e1e_wphy(hw, 0x11, 0x0003);
3092                 e1e_wphy(hw, 22, phy_data);
3093         }
3094
3095         /* Setup buffer sizes */
3096         rctl &= ~E1000_RCTL_SZ_4096;
3097         rctl |= E1000_RCTL_BSEX;
3098         switch (adapter->rx_buffer_len) {
3099         case 2048:
3100         default:
3101                 rctl |= E1000_RCTL_SZ_2048;
3102                 rctl &= ~E1000_RCTL_BSEX;
3103                 break;
3104         case 4096:
3105                 rctl |= E1000_RCTL_SZ_4096;
3106                 break;
3107         case 8192:
3108                 rctl |= E1000_RCTL_SZ_8192;
3109                 break;
3110         case 16384:
3111                 rctl |= E1000_RCTL_SZ_16384;
3112                 break;
3113         }
3114
3115         /* Enable Extended Status in all Receive Descriptors */
3116         rfctl = er32(RFCTL);
3117         rfctl |= E1000_RFCTL_EXTEN;
3118         ew32(RFCTL, rfctl);
3119
3120         /* 82571 and greater support packet-split where the protocol
3121          * header is placed in skb->data and the packet data is
3122          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3123          * In the case of a non-split, skb->data is linearly filled,
3124          * followed by the page buffers.  Therefore, skb->data is
3125          * sized to hold the largest protocol header.
3126          *
3127          * allocations using alloc_page take too long for regular MTU
3128          * so only enable packet split for jumbo frames
3129          *
3130          * Using pages when the page size is greater than 16k wastes
3131          * a lot of memory, since we allocate 3 pages at all times
3132          * per packet.
3133          */
3134         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3135         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3136                 adapter->rx_ps_pages = pages;
3137         else
3138                 adapter->rx_ps_pages = 0;
3139
3140         if (adapter->rx_ps_pages) {
3141                 u32 psrctl = 0;
3142
3143                 /* Enable Packet split descriptors */
3144                 rctl |= E1000_RCTL_DTYP_PS;
3145
3146                 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3147
3148                 switch (adapter->rx_ps_pages) {
3149                 case 3:
3150                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3151                         /* fall-through */
3152                 case 2:
3153                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3154                         /* fall-through */
3155                 case 1:
3156                         psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3157                         break;
3158                 }
3159
3160                 ew32(PSRCTL, psrctl);
3161         }
3162
3163         /* This is useful for sniffing bad packets. */
3164         if (adapter->netdev->features & NETIF_F_RXALL) {
3165                 /* UPE and MPE will be handled by normal PROMISC logic
3166                  * in e1000e_set_rx_mode
3167                  */
3168                 rctl |= (E1000_RCTL_SBP |       /* Receive bad packets */
3169                          E1000_RCTL_BAM |       /* RX All Bcast Pkts */
3170                          E1000_RCTL_PMCF);      /* RX All MAC Ctrl Pkts */
3171
3172                 rctl &= ~(E1000_RCTL_VFE |      /* Disable VLAN filter */
3173                           E1000_RCTL_DPF |      /* Allow filtered pause */
3174                           E1000_RCTL_CFIEN);    /* Dis VLAN CFIEN Filter */
3175                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3176                  * and that breaks VLANs.
3177                  */
3178         }
3179
3180         ew32(RCTL, rctl);
3181         /* just started the receive unit, no need to restart */
3182         adapter->flags &= ~FLAG_RESTART_NOW;
3183 }
3184
3185 /**
3186  * e1000_configure_rx - Configure Receive Unit after Reset
3187  * @adapter: board private structure
3188  *
3189  * Configure the Rx unit of the MAC after a reset.
3190  **/
3191 static void e1000_configure_rx(struct e1000_adapter *adapter)
3192 {
3193         struct e1000_hw *hw = &adapter->hw;
3194         struct e1000_ring *rx_ring = adapter->rx_ring;
3195         u64 rdba;
3196         u32 rdlen, rctl, rxcsum, ctrl_ext;
3197
3198         if (adapter->rx_ps_pages) {
3199                 /* this is a 32 byte descriptor */
3200                 rdlen = rx_ring->count *
3201                     sizeof(union e1000_rx_desc_packet_split);
3202                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3203                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3204         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3205                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3206                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3207                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3208         } else {
3209                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3210                 adapter->clean_rx = e1000_clean_rx_irq;
3211                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3212         }
3213
3214         /* disable receives while setting up the descriptors */
3215         rctl = er32(RCTL);
3216         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3217                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3218         e1e_flush();
3219         usleep_range(10000, 20000);
3220
3221         if (adapter->flags2 & FLAG2_DMA_BURST) {
3222                 /* set the writeback threshold (only takes effect if the RDTR
3223                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3224                  * enable prefetching of 0x20 Rx descriptors
3225                  * granularity = 01
3226                  * wthresh = 04,
3227                  * hthresh = 04,
3228                  * pthresh = 0x20
3229                  */
3230                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3231                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3232
3233                 /* override the delay timers for enabling bursting, only if
3234                  * the value was not set by the user via module options
3235                  */
3236                 if (adapter->rx_int_delay == DEFAULT_RDTR)
3237                         adapter->rx_int_delay = BURST_RDTR;
3238                 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3239                         adapter->rx_abs_int_delay = BURST_RADV;
3240         }
3241
3242         /* set the Receive Delay Timer Register */
3243         ew32(RDTR, adapter->rx_int_delay);
3244
3245         /* irq moderation */
3246         ew32(RADV, adapter->rx_abs_int_delay);
3247         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3248                 e1000e_write_itr(adapter, adapter->itr);
3249
3250         ctrl_ext = er32(CTRL_EXT);
3251         /* Auto-Mask interrupts upon ICR access */
3252         ctrl_ext |= E1000_CTRL_EXT_IAME;
3253         ew32(IAM, 0xffffffff);
3254         ew32(CTRL_EXT, ctrl_ext);
3255         e1e_flush();
3256
3257         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3258          * the Base and Length of the Rx Descriptor Ring
3259          */
3260         rdba = rx_ring->dma;
3261         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3262         ew32(RDBAH(0), (rdba >> 32));
3263         ew32(RDLEN(0), rdlen);
3264         ew32(RDH(0), 0);
3265         ew32(RDT(0), 0);
3266         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3267         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3268
3269         writel(0, rx_ring->head);
3270         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3271                 e1000e_update_rdt_wa(rx_ring, 0);
3272         else
3273                 writel(0, rx_ring->tail);
3274
3275         /* Enable Receive Checksum Offload for TCP and UDP */
3276         rxcsum = er32(RXCSUM);
3277         if (adapter->netdev->features & NETIF_F_RXCSUM)
3278                 rxcsum |= E1000_RXCSUM_TUOFL;
3279         else
3280                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3281         ew32(RXCSUM, rxcsum);
3282
3283         /* With jumbo frames, excessive C-state transition latencies result
3284          * in dropped transactions.
3285          */
3286         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3287                 u32 lat =
3288                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3289                      adapter->max_frame_size) * 8 / 1000;
3290
3291                 if (adapter->flags & FLAG_IS_ICH) {
3292                         u32 rxdctl = er32(RXDCTL(0));
3293
3294                         ew32(RXDCTL(0), rxdctl | 0x3);
3295                 }
3296
3297                 pm_qos_update_request(&adapter->pm_qos_req, lat);
3298         } else {
3299                 pm_qos_update_request(&adapter->pm_qos_req,
3300                                       PM_QOS_DEFAULT_VALUE);
3301         }
3302
3303         /* Enable Receives */
3304         ew32(RCTL, rctl);
3305 }
3306
3307 /**
3308  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3309  * @netdev: network interface device structure
3310  *
3311  * Writes multicast address list to the MTA hash table.
3312  * Returns: -ENOMEM on failure
3313  *                0 on no addresses written
3314  *                X on writing X addresses to MTA
3315  */
3316 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3317 {
3318         struct e1000_adapter *adapter = netdev_priv(netdev);
3319         struct e1000_hw *hw = &adapter->hw;
3320         struct netdev_hw_addr *ha;
3321         u8 *mta_list;
3322         int i;
3323
3324         if (netdev_mc_empty(netdev)) {
3325                 /* nothing to program, so clear mc list */
3326                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3327                 return 0;
3328         }
3329
3330         mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3331         if (!mta_list)
3332                 return -ENOMEM;
3333
3334         /* update_mc_addr_list expects a packed array of only addresses. */
3335         i = 0;
3336         netdev_for_each_mc_addr(ha, netdev)
3337             memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3338
3339         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3340         kfree(mta_list);
3341
3342         return netdev_mc_count(netdev);
3343 }
3344
3345 /**
3346  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3347  * @netdev: network interface device structure
3348  *
3349  * Writes unicast address list to the RAR table.
3350  * Returns: -ENOMEM on failure/insufficient address space
3351  *                0 on no addresses written
3352  *                X on writing X addresses to the RAR table
3353  **/
3354 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3355 {
3356         struct e1000_adapter *adapter = netdev_priv(netdev);
3357         struct e1000_hw *hw = &adapter->hw;
3358         unsigned int rar_entries;
3359         int count = 0;
3360
3361         rar_entries = hw->mac.ops.rar_get_count(hw);
3362
3363         /* save a rar entry for our hardware address */
3364         rar_entries--;
3365
3366         /* save a rar entry for the LAA workaround */
3367         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3368                 rar_entries--;
3369
3370         /* return ENOMEM indicating insufficient memory for addresses */
3371         if (netdev_uc_count(netdev) > rar_entries)
3372                 return -ENOMEM;
3373
3374         if (!netdev_uc_empty(netdev) && rar_entries) {
3375                 struct netdev_hw_addr *ha;
3376
3377                 /* write the addresses in reverse order to avoid write
3378                  * combining
3379                  */
3380                 netdev_for_each_uc_addr(ha, netdev) {
3381                         int ret_val;
3382
3383                         if (!rar_entries)
3384                                 break;
3385                         ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3386                         if (ret_val < 0)
3387                                 return -ENOMEM;
3388                         count++;
3389                 }
3390         }
3391
3392         /* zero out the remaining RAR entries not used above */
3393         for (; rar_entries > 0; rar_entries--) {
3394                 ew32(RAH(rar_entries), 0);
3395                 ew32(RAL(rar_entries), 0);
3396         }
3397         e1e_flush();
3398
3399         return count;
3400 }
3401
3402 /**
3403  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3404  * @netdev: network interface device structure
3405  *
3406  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3407  * address list or the network interface flags are updated.  This routine is
3408  * responsible for configuring the hardware for proper unicast, multicast,
3409  * promiscuous mode, and all-multi behavior.
3410  **/
3411 static void e1000e_set_rx_mode(struct net_device *netdev)
3412 {
3413         struct e1000_adapter *adapter = netdev_priv(netdev);
3414         struct e1000_hw *hw = &adapter->hw;
3415         u32 rctl;
3416
3417         if (pm_runtime_suspended(netdev->dev.parent))
3418                 return;
3419
3420         /* Check for Promiscuous and All Multicast modes */
3421         rctl = er32(RCTL);
3422
3423         /* clear the affected bits */
3424         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3425
3426         if (netdev->flags & IFF_PROMISC) {
3427                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3428                 /* Do not hardware filter VLANs in promisc mode */
3429                 e1000e_vlan_filter_disable(adapter);
3430         } else {
3431                 int count;
3432
3433                 if (netdev->flags & IFF_ALLMULTI) {
3434                         rctl |= E1000_RCTL_MPE;
3435                 } else {
3436                         /* Write addresses to the MTA, if the attempt fails
3437                          * then we should just turn on promiscuous mode so
3438                          * that we can at least receive multicast traffic
3439                          */
3440                         count = e1000e_write_mc_addr_list(netdev);
3441                         if (count < 0)
3442                                 rctl |= E1000_RCTL_MPE;
3443                 }
3444                 e1000e_vlan_filter_enable(adapter);
3445                 /* Write addresses to available RAR registers, if there is not
3446                  * sufficient space to store all the addresses then enable
3447                  * unicast promiscuous mode
3448                  */
3449                 count = e1000e_write_uc_addr_list(netdev);
3450                 if (count < 0)
3451                         rctl |= E1000_RCTL_UPE;
3452         }
3453
3454         ew32(RCTL, rctl);
3455
3456         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX ||
3457             e1000e_vlan_used(adapter))
3458                 e1000e_vlan_strip_enable(adapter);
3459         else
3460                 e1000e_vlan_strip_disable(adapter);
3461 }
3462
3463 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3464 {
3465         struct e1000_hw *hw = &adapter->hw;
3466         u32 mrqc, rxcsum;
3467         u32 rss_key[10];
3468         int i;
3469
3470         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3471         for (i = 0; i < 10; i++)
3472                 ew32(RSSRK(i), rss_key[i]);
3473
3474         /* Direct all traffic to queue 0 */
3475         for (i = 0; i < 32; i++)
3476                 ew32(RETA(i), 0);
3477
3478         /* Disable raw packet checksumming so that RSS hash is placed in
3479          * descriptor on writeback.
3480          */
3481         rxcsum = er32(RXCSUM);
3482         rxcsum |= E1000_RXCSUM_PCSD;
3483
3484         ew32(RXCSUM, rxcsum);
3485
3486         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3487                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3488                 E1000_MRQC_RSS_FIELD_IPV6 |
3489                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3490                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3491
3492         ew32(MRQC, mrqc);
3493 }
3494
3495 /**
3496  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3497  * @adapter: board private structure
3498  * @timinca: pointer to returned time increment attributes
3499  *
3500  * Get attributes for incrementing the System Time Register SYSTIML/H at
3501  * the default base frequency, and set the cyclecounter shift value.
3502  **/
3503 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3504 {
3505         struct e1000_hw *hw = &adapter->hw;
3506         u32 incvalue, incperiod, shift;
3507
3508         /* Make sure clock is enabled on I217/I218/I219  before checking
3509          * the frequency
3510          */
3511         if (((hw->mac.type == e1000_pch_lpt) ||
3512              (hw->mac.type == e1000_pch_spt)) &&
3513             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3514             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3515                 u32 fextnvm7 = er32(FEXTNVM7);
3516
3517                 if (!(fextnvm7 & BIT(0))) {
3518                         ew32(FEXTNVM7, fextnvm7 | BIT(0));
3519                         e1e_flush();
3520                 }
3521         }
3522
3523         switch (hw->mac.type) {
3524         case e1000_pch2lan:
3525         case e1000_pch_lpt:
3526                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3527                         /* Stable 96MHz frequency */
3528                         incperiod = INCPERIOD_96MHz;
3529                         incvalue = INCVALUE_96MHz;
3530                         shift = INCVALUE_SHIFT_96MHz;
3531                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3532                 } else {
3533                         /* Stable 25MHz frequency */
3534                         incperiod = INCPERIOD_25MHz;
3535                         incvalue = INCVALUE_25MHz;
3536                         shift = INCVALUE_SHIFT_25MHz;
3537                         adapter->cc.shift = shift;
3538                 }
3539                 break;
3540         case e1000_pch_spt:
3541                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3542                         /* Stable 24MHz frequency */
3543                         incperiod = INCPERIOD_24MHz;
3544                         incvalue = INCVALUE_24MHz;
3545                         shift = INCVALUE_SHIFT_24MHz;
3546                         adapter->cc.shift = shift;
3547                         break;
3548                 }
3549                 return -EINVAL;
3550         case e1000_82574:
3551         case e1000_82583:
3552                 /* Stable 25MHz frequency */
3553                 incperiod = INCPERIOD_25MHz;
3554                 incvalue = INCVALUE_25MHz;
3555                 shift = INCVALUE_SHIFT_25MHz;
3556                 adapter->cc.shift = shift;
3557                 break;
3558         default:
3559                 return -EINVAL;
3560         }
3561
3562         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3563                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3564
3565         return 0;
3566 }
3567
3568 /**
3569  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3570  * @adapter: board private structure
3571  *
3572  * Outgoing time stamping can be enabled and disabled. Play nice and
3573  * disable it when requested, although it shouldn't cause any overhead
3574  * when no packet needs it. At most one packet in the queue may be
3575  * marked for time stamping, otherwise it would be impossible to tell
3576  * for sure to which packet the hardware time stamp belongs.
3577  *
3578  * Incoming time stamping has to be configured via the hardware filters.
3579  * Not all combinations are supported, in particular event type has to be
3580  * specified. Matching the kind of event packet is not supported, with the
3581  * exception of "all V2 events regardless of level 2 or 4".
3582  **/
3583 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3584                                   struct hwtstamp_config *config)
3585 {
3586         struct e1000_hw *hw = &adapter->hw;
3587         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3588         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3589         u32 rxmtrl = 0;
3590         u16 rxudp = 0;
3591         bool is_l4 = false;
3592         bool is_l2 = false;
3593         u32 regval;
3594
3595         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3596                 return -EINVAL;
3597
3598         /* flags reserved for future extensions - must be zero */
3599         if (config->flags)
3600                 return -EINVAL;
3601
3602         switch (config->tx_type) {
3603         case HWTSTAMP_TX_OFF:
3604                 tsync_tx_ctl = 0;
3605                 break;
3606         case HWTSTAMP_TX_ON:
3607                 break;
3608         default:
3609                 return -ERANGE;
3610         }
3611
3612         switch (config->rx_filter) {
3613         case HWTSTAMP_FILTER_NONE:
3614                 tsync_rx_ctl = 0;
3615                 break;
3616         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3617                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3618                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3619                 is_l4 = true;
3620                 break;
3621         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3622                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3623                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3624                 is_l4 = true;
3625                 break;
3626         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3627                 /* Also time stamps V2 L2 Path Delay Request/Response */
3628                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3629                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3630                 is_l2 = true;
3631                 break;
3632         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3633                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3634                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3635                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3636                 is_l2 = true;
3637                 break;
3638         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3639                 /* Hardware cannot filter just V2 L4 Sync messages;
3640                  * fall-through to V2 (both L2 and L4) Sync.
3641                  */
3642         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3643                 /* Also time stamps V2 Path Delay Request/Response. */
3644                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3645                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3646                 is_l2 = true;
3647                 is_l4 = true;
3648                 break;
3649         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3650                 /* Hardware cannot filter just V2 L4 Delay Request messages;
3651                  * fall-through to V2 (both L2 and L4) Delay Request.
3652                  */
3653         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3654                 /* Also time stamps V2 Path Delay Request/Response. */
3655                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3656                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3657                 is_l2 = true;
3658                 is_l4 = true;
3659                 break;
3660         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3661         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3662                 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3663                  * fall-through to all V2 (both L2 and L4) Events.
3664                  */
3665         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3666                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3667                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3668                 is_l2 = true;
3669                 is_l4 = true;
3670                 break;
3671         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3672                 /* For V1, the hardware can only filter Sync messages or
3673                  * Delay Request messages but not both so fall-through to
3674                  * time stamp all packets.
3675                  */
3676         case HWTSTAMP_FILTER_ALL:
3677                 is_l2 = true;
3678                 is_l4 = true;
3679                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3680                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3681                 break;
3682         default:
3683                 return -ERANGE;
3684         }
3685
3686         adapter->hwtstamp_config = *config;
3687
3688         /* enable/disable Tx h/w time stamping */
3689         regval = er32(TSYNCTXCTL);
3690         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3691         regval |= tsync_tx_ctl;
3692         ew32(TSYNCTXCTL, regval);
3693         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3694             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3695                 e_err("Timesync Tx Control register not set as expected\n");
3696                 return -EAGAIN;
3697         }
3698
3699         /* enable/disable Rx h/w time stamping */
3700         regval = er32(TSYNCRXCTL);
3701         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3702         regval |= tsync_rx_ctl;
3703         ew32(TSYNCRXCTL, regval);
3704         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3705                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3706             (regval & (E1000_TSYNCRXCTL_ENABLED |
3707                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3708                 e_err("Timesync Rx Control register not set as expected\n");
3709                 return -EAGAIN;
3710         }
3711
3712         /* L2: define ethertype filter for time stamped packets */
3713         if (is_l2)
3714                 rxmtrl |= ETH_P_1588;
3715
3716         /* define which PTP packets get time stamped */
3717         ew32(RXMTRL, rxmtrl);
3718
3719         /* Filter by destination port */
3720         if (is_l4) {
3721                 rxudp = PTP_EV_PORT;
3722                 cpu_to_be16s(&rxudp);
3723         }
3724         ew32(RXUDP, rxudp);
3725
3726         e1e_flush();
3727
3728         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3729         er32(RXSTMPH);
3730         er32(TXSTMPH);
3731
3732         return 0;
3733 }
3734
3735 /**
3736  * e1000_configure - configure the hardware for Rx and Tx
3737  * @adapter: private board structure
3738  **/
3739 static void e1000_configure(struct e1000_adapter *adapter)
3740 {
3741         struct e1000_ring *rx_ring = adapter->rx_ring;
3742
3743         e1000e_set_rx_mode(adapter->netdev);
3744
3745         e1000_restore_vlan(adapter);
3746         e1000_init_manageability_pt(adapter);
3747
3748         e1000_configure_tx(adapter);
3749
3750         if (adapter->netdev->features & NETIF_F_RXHASH)
3751                 e1000e_setup_rss_hash(adapter);
3752         e1000_setup_rctl(adapter);
3753         e1000_configure_rx(adapter);
3754         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3755 }
3756
3757 /**
3758  * e1000e_power_up_phy - restore link in case the phy was powered down
3759  * @adapter: address of board private structure
3760  *
3761  * The phy may be powered down to save power and turn off link when the
3762  * driver is unloaded and wake on lan is not enabled (among others)
3763  * *** this routine MUST be followed by a call to e1000e_reset ***
3764  **/
3765 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3766 {
3767         if (adapter->hw.phy.ops.power_up)
3768                 adapter->hw.phy.ops.power_up(&adapter->hw);
3769
3770         adapter->hw.mac.ops.setup_link(&adapter->hw);
3771 }
3772
3773 /**
3774  * e1000_power_down_phy - Power down the PHY
3775  *
3776  * Power down the PHY so no link is implied when interface is down.
3777  * The PHY cannot be powered down if management or WoL is active.
3778  */
3779 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3780 {
3781         if (adapter->hw.phy.ops.power_down)
3782                 adapter->hw.phy.ops.power_down(&adapter->hw);
3783 }
3784
3785 /**
3786  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3787  *
3788  * We want to clear all pending descriptors from the TX ring.
3789  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3790  * the data of the next descriptor. We don't care about the data we are about
3791  * to reset the HW.
3792  */
3793 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3794 {
3795         struct e1000_hw *hw = &adapter->hw;
3796         struct e1000_ring *tx_ring = adapter->tx_ring;
3797         struct e1000_tx_desc *tx_desc = NULL;
3798         u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3799         u16 size = 512;
3800
3801         tctl = er32(TCTL);
3802         ew32(TCTL, tctl | E1000_TCTL_EN);
3803         tdt = er32(TDT(0));
3804         BUG_ON(tdt != tx_ring->next_to_use);
3805         tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3806         tx_desc->buffer_addr = tx_ring->dma;
3807
3808         tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3809         tx_desc->upper.data = 0;
3810         /* flush descriptors to memory before notifying the HW */
3811         wmb();
3812         tx_ring->next_to_use++;
3813         if (tx_ring->next_to_use == tx_ring->count)
3814                 tx_ring->next_to_use = 0;
3815         ew32(TDT(0), tx_ring->next_to_use);
3816         mmiowb();
3817         usleep_range(200, 250);
3818 }
3819
3820 /**
3821  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3822  *
3823  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3824  */
3825 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3826 {
3827         u32 rctl, rxdctl;
3828         struct e1000_hw *hw = &adapter->hw;
3829
3830         rctl = er32(RCTL);
3831         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3832         e1e_flush();
3833         usleep_range(100, 150);
3834
3835         rxdctl = er32(RXDCTL(0));
3836         /* zero the lower 14 bits (prefetch and host thresholds) */
3837         rxdctl &= 0xffffc000;
3838
3839         /* update thresholds: prefetch threshold to 31, host threshold to 1
3840          * and make sure the granularity is "descriptors" and not "cache lines"
3841          */
3842         rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3843
3844         ew32(RXDCTL(0), rxdctl);
3845         /* momentarily enable the RX ring for the changes to take effect */
3846         ew32(RCTL, rctl | E1000_RCTL_EN);
3847         e1e_flush();
3848         usleep_range(100, 150);
3849         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3850 }
3851
3852 /**
3853  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3854  *
3855  * In i219, the descriptor rings must be emptied before resetting the HW
3856  * or before changing the device state to D3 during runtime (runtime PM).
3857  *
3858  * Failure to do this will cause the HW to enter a unit hang state which can
3859  * only be released by PCI reset on the device
3860  *
3861  */
3862
3863 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3864 {
3865         u16 hang_state;
3866         u32 fext_nvm11, tdlen;
3867         struct e1000_hw *hw = &adapter->hw;
3868
3869         /* First, disable MULR fix in FEXTNVM11 */
3870         fext_nvm11 = er32(FEXTNVM11);
3871         fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3872         ew32(FEXTNVM11, fext_nvm11);
3873         /* do nothing if we're not in faulty state, or if the queue is empty */
3874         tdlen = er32(TDLEN(0));
3875         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3876                              &hang_state);
3877         if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3878                 return;
3879         e1000_flush_tx_ring(adapter);
3880         /* recheck, maybe the fault is caused by the rx ring */
3881         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3882                              &hang_state);
3883         if (hang_state & FLUSH_DESC_REQUIRED)
3884                 e1000_flush_rx_ring(adapter);
3885 }
3886
3887 /**
3888  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3889  * @adapter: board private structure
3890  *
3891  * When the MAC is reset, all hardware bits for timesync will be reset to the
3892  * default values. This function will restore the settings last in place.
3893  * Since the clock SYSTIME registers are reset, we will simply restore the
3894  * cyclecounter to the kernel real clock time.
3895  **/
3896 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3897 {
3898         struct ptp_clock_info *info = &adapter->ptp_clock_info;
3899         struct e1000_hw *hw = &adapter->hw;
3900         unsigned long flags;
3901         u32 timinca;
3902         s32 ret_val;
3903
3904         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3905                 return;
3906
3907         if (info->adjfreq) {
3908                 /* restore the previous ptp frequency delta */
3909                 ret_val = info->adjfreq(info, adapter->ptp_delta);
3910         } else {
3911                 /* set the default base frequency if no adjustment possible */
3912                 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3913                 if (!ret_val)
3914                         ew32(TIMINCA, timinca);
3915         }
3916
3917         if (ret_val) {
3918                 dev_warn(&adapter->pdev->dev,
3919                          "Failed to restore TIMINCA clock rate delta: %d\n",
3920                          ret_val);
3921                 return;
3922         }
3923
3924         /* reset the systim ns time counter */
3925         spin_lock_irqsave(&adapter->systim_lock, flags);
3926         timecounter_init(&adapter->tc, &adapter->cc,
3927                          ktime_to_ns(ktime_get_real()));
3928         spin_unlock_irqrestore(&adapter->systim_lock, flags);
3929
3930         /* restore the previous hwtstamp configuration settings */
3931         e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3932 }
3933
3934 /**
3935  * e1000e_reset - bring the hardware into a known good state
3936  *
3937  * This function boots the hardware and enables some settings that
3938  * require a configuration cycle of the hardware - those cannot be
3939  * set/changed during runtime. After reset the device needs to be
3940  * properly configured for Rx, Tx etc.
3941  */
3942 void e1000e_reset(struct e1000_adapter *adapter)
3943 {
3944         struct e1000_mac_info *mac = &adapter->hw.mac;
3945         struct e1000_fc_info *fc = &adapter->hw.fc;
3946         struct e1000_hw *hw = &adapter->hw;
3947         u32 tx_space, min_tx_space, min_rx_space;
3948         u32 pba = adapter->pba;
3949         u16 hwm;
3950
3951         /* reset Packet Buffer Allocation to default */
3952         ew32(PBA, pba);
3953
3954         if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3955                 /* To maintain wire speed transmits, the Tx FIFO should be
3956                  * large enough to accommodate two full transmit packets,
3957                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3958                  * the Rx FIFO should be large enough to accommodate at least
3959                  * one full receive packet and is similarly rounded up and
3960                  * expressed in KB.
3961                  */
3962                 pba = er32(PBA);
3963                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3964                 tx_space = pba >> 16;
3965                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3966                 pba &= 0xffff;
3967                 /* the Tx fifo also stores 16 bytes of information about the Tx
3968                  * but don't include ethernet FCS because hardware appends it
3969                  */
3970                 min_tx_space = (adapter->max_frame_size +
3971                                 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3972                 min_tx_space = ALIGN(min_tx_space, 1024);
3973                 min_tx_space >>= 10;
3974                 /* software strips receive CRC, so leave room for it */
3975                 min_rx_space = adapter->max_frame_size;
3976                 min_rx_space = ALIGN(min_rx_space, 1024);
3977                 min_rx_space >>= 10;
3978
3979                 /* If current Tx allocation is less than the min Tx FIFO size,
3980                  * and the min Tx FIFO size is less than the current Rx FIFO
3981                  * allocation, take space away from current Rx allocation
3982                  */
3983                 if ((tx_space < min_tx_space) &&
3984                     ((min_tx_space - tx_space) < pba)) {
3985                         pba -= min_tx_space - tx_space;
3986
3987                         /* if short on Rx space, Rx wins and must trump Tx
3988                          * adjustment
3989                          */
3990                         if (pba < min_rx_space)
3991                                 pba = min_rx_space;
3992                 }
3993
3994                 ew32(PBA, pba);
3995         }
3996
3997         /* flow control settings
3998          *
3999          * The high water mark must be low enough to fit one full frame
4000          * (or the size used for early receive) above it in the Rx FIFO.
4001          * Set it to the lower of:
4002          * - 90% of the Rx FIFO size, and
4003          * - the full Rx FIFO size minus one full frame
4004          */
4005         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4006                 fc->pause_time = 0xFFFF;
4007         else
4008                 fc->pause_time = E1000_FC_PAUSE_TIME;
4009         fc->send_xon = true;
4010         fc->current_mode = fc->requested_mode;
4011
4012         switch (hw->mac.type) {
4013         case e1000_ich9lan:
4014         case e1000_ich10lan:
4015                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4016                         pba = 14;
4017                         ew32(PBA, pba);
4018                         fc->high_water = 0x2800;
4019                         fc->low_water = fc->high_water - 8;
4020                         break;
4021                 }
4022                 /* fall-through */
4023         default:
4024                 hwm = min(((pba << 10) * 9 / 10),
4025                           ((pba << 10) - adapter->max_frame_size));
4026
4027                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
4028                 fc->low_water = fc->high_water - 8;
4029                 break;
4030         case e1000_pchlan:
4031                 /* Workaround PCH LOM adapter hangs with certain network
4032                  * loads.  If hangs persist, try disabling Tx flow control.
4033                  */
4034                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4035                         fc->high_water = 0x3500;
4036                         fc->low_water = 0x1500;
4037                 } else {
4038                         fc->high_water = 0x5000;
4039                         fc->low_water = 0x3000;
4040                 }
4041                 fc->refresh_time = 0x1000;
4042                 break;
4043         case e1000_pch2lan:
4044         case e1000_pch_lpt:
4045         case e1000_pch_spt:
4046                 fc->refresh_time = 0x0400;
4047
4048                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4049                         fc->high_water = 0x05C20;
4050                         fc->low_water = 0x05048;
4051                         fc->pause_time = 0x0650;
4052                         break;
4053                 }
4054
4055                 pba = 14;
4056                 ew32(PBA, pba);
4057                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4058                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4059                 break;
4060         }
4061
4062         /* Alignment of Tx data is on an arbitrary byte boundary with the
4063          * maximum size per Tx descriptor limited only to the transmit
4064          * allocation of the packet buffer minus 96 bytes with an upper
4065          * limit of 24KB due to receive synchronization limitations.
4066          */
4067         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4068                                        24 << 10);
4069
4070         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4071          * fit in receive buffer.
4072          */
4073         if (adapter->itr_setting & 0x3) {
4074                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4075                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4076                                 dev_info(&adapter->pdev->dev,
4077                                          "Interrupt Throttle Rate off\n");
4078                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
4079                                 e1000e_write_itr(adapter, 0);
4080                         }
4081                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4082                         dev_info(&adapter->pdev->dev,
4083                                  "Interrupt Throttle Rate on\n");
4084                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4085                         adapter->itr = 20000;
4086                         e1000e_write_itr(adapter, adapter->itr);
4087                 }
4088         }
4089
4090         if (hw->mac.type == e1000_pch_spt)
4091                 e1000_flush_desc_rings(adapter);
4092         /* Allow time for pending master requests to run */
4093         mac->ops.reset_hw(hw);
4094
4095         /* For parts with AMT enabled, let the firmware know
4096          * that the network interface is in control
4097          */
4098         if (adapter->flags & FLAG_HAS_AMT)
4099                 e1000e_get_hw_control(adapter);
4100
4101         ew32(WUC, 0);
4102
4103         if (mac->ops.init_hw(hw))
4104                 e_err("Hardware Error\n");
4105
4106         e1000_update_mng_vlan(adapter);
4107
4108         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4109         ew32(VET, ETH_P_8021Q);
4110
4111         e1000e_reset_adaptive(hw);
4112
4113         /* restore systim and hwtstamp settings */
4114         e1000e_systim_reset(adapter);
4115
4116         /* Set EEE advertisement as appropriate */
4117         if (adapter->flags2 & FLAG2_HAS_EEE) {
4118                 s32 ret_val;
4119                 u16 adv_addr;
4120
4121                 switch (hw->phy.type) {
4122                 case e1000_phy_82579:
4123                         adv_addr = I82579_EEE_ADVERTISEMENT;
4124                         break;
4125                 case e1000_phy_i217:
4126                         adv_addr = I217_EEE_ADVERTISEMENT;
4127                         break;
4128                 default:
4129                         dev_err(&adapter->pdev->dev,
4130                                 "Invalid PHY type setting EEE advertisement\n");
4131                         return;
4132                 }
4133
4134                 ret_val = hw->phy.ops.acquire(hw);
4135                 if (ret_val) {
4136                         dev_err(&adapter->pdev->dev,
4137                                 "EEE advertisement - unable to acquire PHY\n");
4138                         return;
4139                 }
4140
4141                 e1000_write_emi_reg_locked(hw, adv_addr,
4142                                            hw->dev_spec.ich8lan.eee_disable ?
4143                                            0 : adapter->eee_advert);
4144
4145                 hw->phy.ops.release(hw);
4146         }
4147
4148         if (!netif_running(adapter->netdev) &&
4149             !test_bit(__E1000_TESTING, &adapter->state))
4150                 e1000_power_down_phy(adapter);
4151
4152         e1000_get_phy_info(hw);
4153
4154         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4155             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4156                 u16 phy_data = 0;
4157                 /* speed up time to link by disabling smart power down, ignore
4158                  * the return value of this function because there is nothing
4159                  * different we would do if it failed
4160                  */
4161                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4162                 phy_data &= ~IGP02E1000_PM_SPD;
4163                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4164         }
4165         if (hw->mac.type == e1000_pch_spt && adapter->int_mode == 0) {
4166                 u32 reg;
4167
4168                 /* Fextnvm7 @ 0xe4[2] = 1 */
4169                 reg = er32(FEXTNVM7);
4170                 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4171                 ew32(FEXTNVM7, reg);
4172                 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4173                 reg = er32(FEXTNVM9);
4174                 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4175                        E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4176                 ew32(FEXTNVM9, reg);
4177         }
4178
4179 }
4180
4181 /**
4182  * e1000e_trigger_lsc - trigger an LSC interrupt
4183  * @adapter: 
4184  *
4185  * Fire a link status change interrupt to start the watchdog.
4186  **/
4187 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4188 {
4189         struct e1000_hw *hw = &adapter->hw;
4190
4191         if (adapter->msix_entries)
4192                 ew32(ICS, E1000_ICS_OTHER);
4193         else
4194                 ew32(ICS, E1000_ICS_LSC);
4195 }
4196
4197 void e1000e_up(struct e1000_adapter *adapter)
4198 {
4199         /* hardware has been reset, we need to reload some things */
4200         e1000_configure(adapter);
4201
4202         clear_bit(__E1000_DOWN, &adapter->state);
4203
4204         if (adapter->msix_entries)
4205                 e1000_configure_msix(adapter);
4206         e1000_irq_enable(adapter);
4207
4208         netif_start_queue(adapter->netdev);
4209
4210         e1000e_trigger_lsc(adapter);
4211 }
4212
4213 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4214 {
4215         struct e1000_hw *hw = &adapter->hw;
4216
4217         if (!(adapter->flags2 & FLAG2_DMA_BURST))
4218                 return;
4219
4220         /* flush pending descriptor writebacks to memory */
4221         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4222         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4223
4224         /* execute the writes immediately */
4225         e1e_flush();
4226
4227         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4228          * write is successful
4229          */
4230         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4231         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4232
4233         /* execute the writes immediately */
4234         e1e_flush();
4235 }
4236
4237 static void e1000e_update_stats(struct e1000_adapter *adapter);
4238
4239 /**
4240  * e1000e_down - quiesce the device and optionally reset the hardware
4241  * @adapter: board private structure
4242  * @reset: boolean flag to reset the hardware or not
4243  */
4244 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4245 {
4246         struct net_device *netdev = adapter->netdev;
4247         struct e1000_hw *hw = &adapter->hw;
4248         u32 tctl, rctl;
4249
4250         /* signal that we're down so the interrupt handler does not
4251          * reschedule our watchdog timer
4252          */
4253         set_bit(__E1000_DOWN, &adapter->state);
4254
4255         netif_carrier_off(netdev);
4256
4257         /* disable receives in the hardware */
4258         rctl = er32(RCTL);
4259         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4260                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4261         /* flush and sleep below */
4262
4263         netif_stop_queue(netdev);
4264
4265         /* disable transmits in the hardware */
4266         tctl = er32(TCTL);
4267         tctl &= ~E1000_TCTL_EN;
4268         ew32(TCTL, tctl);
4269
4270         /* flush both disables and wait for them to finish */
4271         e1e_flush();
4272         usleep_range(10000, 20000);
4273
4274         e1000_irq_disable(adapter);
4275
4276         napi_synchronize(&adapter->napi);
4277
4278         del_timer_sync(&adapter->watchdog_timer);
4279         del_timer_sync(&adapter->phy_info_timer);
4280
4281         spin_lock(&adapter->stats64_lock);
4282         e1000e_update_stats(adapter);
4283         spin_unlock(&adapter->stats64_lock);
4284
4285         e1000e_flush_descriptors(adapter);
4286
4287         adapter->link_speed = 0;
4288         adapter->link_duplex = 0;
4289
4290         /* Disable Si errata workaround on PCHx for jumbo frame flow */
4291         if ((hw->mac.type >= e1000_pch2lan) &&
4292             (adapter->netdev->mtu > ETH_DATA_LEN) &&
4293             e1000_lv_jumbo_workaround_ich8lan(hw, false))
4294                 e_dbg("failed to disable jumbo frame workaround mode\n");
4295
4296         if (!pci_channel_offline(adapter->pdev)) {
4297                 if (reset)
4298                         e1000e_reset(adapter);
4299                 else if (hw->mac.type == e1000_pch_spt)
4300                         e1000_flush_desc_rings(adapter);
4301         }
4302         e1000_clean_tx_ring(adapter->tx_ring);
4303         e1000_clean_rx_ring(adapter->rx_ring);
4304 }
4305
4306 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4307 {
4308         might_sleep();
4309         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4310                 usleep_range(1000, 2000);
4311         e1000e_down(adapter, true);
4312         e1000e_up(adapter);
4313         clear_bit(__E1000_RESETTING, &adapter->state);
4314 }
4315
4316 /**
4317  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4318  * @cc: cyclecounter structure
4319  **/
4320 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4321 {
4322         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4323                                                      cc);
4324         struct e1000_hw *hw = &adapter->hw;
4325         u32 systimel, systimeh;
4326         cycle_t systim, systim_next;
4327         /* SYSTIMH latching upon SYSTIML read does not work well.
4328          * This means that if SYSTIML overflows after we read it but before
4329          * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4330          * will experience a huge non linear increment in the systime value
4331          * to fix that we test for overflow and if true, we re-read systime.
4332          */
4333         systimel = er32(SYSTIML);
4334         systimeh = er32(SYSTIMH);
4335         /* Is systimel is so large that overflow is possible? */
4336         if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4337                 u32 systimel_2 = er32(SYSTIML);
4338                 if (systimel > systimel_2) {
4339                         /* There was an overflow, read again SYSTIMH, and use
4340                          * systimel_2
4341                          */
4342                         systimeh = er32(SYSTIMH);
4343                         systimel = systimel_2;
4344                 }
4345         }
4346         systim = (cycle_t)systimel;
4347         systim |= (cycle_t)systimeh << 32;
4348
4349         if ((hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82583)) {
4350                 u64 time_delta, rem, temp;
4351                 u32 incvalue;
4352                 int i;
4353
4354                 /* errata for 82574/82583 possible bad bits read from SYSTIMH/L
4355                  * check to see that the time is incrementing at a reasonable
4356                  * rate and is a multiple of incvalue
4357                  */
4358                 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4359                 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4360                         /* latch SYSTIMH on read of SYSTIML */
4361                         systim_next = (cycle_t)er32(SYSTIML);
4362                         systim_next |= (cycle_t)er32(SYSTIMH) << 32;
4363
4364                         time_delta = systim_next - systim;
4365                         temp = time_delta;
4366                         rem = do_div(temp, incvalue);
4367
4368                         systim = systim_next;
4369
4370                         if ((time_delta < E1000_82574_SYSTIM_EPSILON) &&
4371                             (rem == 0))
4372                                 break;
4373                 }
4374         }
4375         return systim;
4376 }
4377
4378 /**
4379  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4380  * @adapter: board private structure to initialize
4381  *
4382  * e1000_sw_init initializes the Adapter private data structure.
4383  * Fields are initialized based on PCI device information and
4384  * OS network device settings (MTU size).
4385  **/
4386 static int e1000_sw_init(struct e1000_adapter *adapter)
4387 {
4388         struct net_device *netdev = adapter->netdev;
4389
4390         adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4391         adapter->rx_ps_bsize0 = 128;
4392         adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4393         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4394         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4395         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4396
4397         spin_lock_init(&adapter->stats64_lock);
4398
4399         e1000e_set_interrupt_capability(adapter);
4400
4401         if (e1000_alloc_queues(adapter))
4402                 return -ENOMEM;
4403
4404         /* Setup hardware time stamping cyclecounter */
4405         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4406                 adapter->cc.read = e1000e_cyclecounter_read;
4407                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4408                 adapter->cc.mult = 1;
4409                 /* cc.shift set in e1000e_get_base_tininca() */
4410
4411                 spin_lock_init(&adapter->systim_lock);
4412                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4413         }
4414
4415         /* Explicitly disable IRQ since the NIC can be in any state. */
4416         e1000_irq_disable(adapter);
4417
4418         set_bit(__E1000_DOWN, &adapter->state);
4419         return 0;
4420 }
4421
4422 /**
4423  * e1000_intr_msi_test - Interrupt Handler
4424  * @irq: interrupt number
4425  * @data: pointer to a network interface device structure
4426  **/
4427 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4428 {
4429         struct net_device *netdev = data;
4430         struct e1000_adapter *adapter = netdev_priv(netdev);
4431         struct e1000_hw *hw = &adapter->hw;
4432         u32 icr = er32(ICR);
4433
4434         e_dbg("icr is %08X\n", icr);
4435         if (icr & E1000_ICR_RXSEQ) {
4436                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4437                 /* Force memory writes to complete before acknowledging the
4438                  * interrupt is handled.
4439                  */
4440                 wmb();
4441         }
4442
4443         return IRQ_HANDLED;
4444 }
4445
4446 /**
4447  * e1000_test_msi_interrupt - Returns 0 for successful test
4448  * @adapter: board private struct
4449  *
4450  * code flow taken from tg3.c
4451  **/
4452 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4453 {
4454         struct net_device *netdev = adapter->netdev;
4455         struct e1000_hw *hw = &adapter->hw;
4456         int err;
4457
4458         /* poll_enable hasn't been called yet, so don't need disable */
4459         /* clear any pending events */
4460         er32(ICR);
4461
4462         /* free the real vector and request a test handler */
4463         e1000_free_irq(adapter);
4464         e1000e_reset_interrupt_capability(adapter);
4465
4466         /* Assume that the test fails, if it succeeds then the test
4467          * MSI irq handler will unset this flag
4468          */
4469         adapter->flags |= FLAG_MSI_TEST_FAILED;
4470
4471         err = pci_enable_msi(adapter->pdev);
4472         if (err)
4473                 goto msi_test_failed;
4474
4475         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4476                           netdev->name, netdev);
4477         if (err) {
4478                 pci_disable_msi(adapter->pdev);
4479                 goto msi_test_failed;
4480         }
4481
4482         /* Force memory writes to complete before enabling and firing an
4483          * interrupt.
4484          */
4485         wmb();
4486
4487         e1000_irq_enable(adapter);
4488
4489         /* fire an unusual interrupt on the test handler */
4490         ew32(ICS, E1000_ICS_RXSEQ);
4491         e1e_flush();
4492         msleep(100);
4493
4494         e1000_irq_disable(adapter);
4495
4496         rmb();                  /* read flags after interrupt has been fired */
4497
4498         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4499                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4500                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4501         } else {
4502                 e_dbg("MSI interrupt test succeeded!\n");
4503         }
4504
4505         free_irq(adapter->pdev->irq, netdev);
4506         pci_disable_msi(adapter->pdev);
4507
4508 msi_test_failed:
4509         e1000e_set_interrupt_capability(adapter);
4510         return e1000_request_irq(adapter);
4511 }
4512
4513 /**
4514  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4515  * @adapter: board private struct
4516  *
4517  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4518  **/
4519 static int e1000_test_msi(struct e1000_adapter *adapter)
4520 {
4521         int err;
4522         u16 pci_cmd;
4523
4524         if (!(adapter->flags & FLAG_MSI_ENABLED))
4525                 return 0;
4526
4527         /* disable SERR in case the MSI write causes a master abort */
4528         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4529         if (pci_cmd & PCI_COMMAND_SERR)
4530                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4531                                       pci_cmd & ~PCI_COMMAND_SERR);
4532
4533         err = e1000_test_msi_interrupt(adapter);
4534
4535         /* re-enable SERR */
4536         if (pci_cmd & PCI_COMMAND_SERR) {
4537                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4538                 pci_cmd |= PCI_COMMAND_SERR;
4539                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4540         }
4541
4542         return err;
4543 }
4544
4545 /**
4546  * e1000e_open - Called when a network interface is made active
4547  * @netdev: network interface device structure
4548  *
4549  * Returns 0 on success, negative value on failure
4550  *
4551  * The open entry point is called when a network interface is made
4552  * active by the system (IFF_UP).  At this point all resources needed
4553  * for transmit and receive operations are allocated, the interrupt
4554  * handler is registered with the OS, the watchdog timer is started,
4555  * and the stack is notified that the interface is ready.
4556  **/
4557 int e1000e_open(struct net_device *netdev)
4558 {
4559         struct e1000_adapter *adapter = netdev_priv(netdev);
4560         struct e1000_hw *hw = &adapter->hw;
4561         struct pci_dev *pdev = adapter->pdev;
4562         int err;
4563
4564         /* disallow open during test */
4565         if (test_bit(__E1000_TESTING, &adapter->state))
4566                 return -EBUSY;
4567
4568         pm_runtime_get_sync(&pdev->dev);
4569
4570         netif_carrier_off(netdev);
4571
4572         /* allocate transmit descriptors */
4573         err = e1000e_setup_tx_resources(adapter->tx_ring);
4574         if (err)
4575                 goto err_setup_tx;
4576
4577         /* allocate receive descriptors */
4578         err = e1000e_setup_rx_resources(adapter->rx_ring);
4579         if (err)
4580                 goto err_setup_rx;
4581
4582         /* If AMT is enabled, let the firmware know that the network
4583          * interface is now open and reset the part to a known state.
4584          */
4585         if (adapter->flags & FLAG_HAS_AMT) {
4586                 e1000e_get_hw_control(adapter);
4587                 e1000e_reset(adapter);
4588         }
4589
4590         e1000e_power_up_phy(adapter);
4591
4592         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4593         if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4594                 e1000_update_mng_vlan(adapter);
4595
4596         /* DMA latency requirement to workaround jumbo issue */
4597         pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4598                            PM_QOS_DEFAULT_VALUE);
4599
4600         /* before we allocate an interrupt, we must be ready to handle it.
4601          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4602          * as soon as we call pci_request_irq, so we have to setup our
4603          * clean_rx handler before we do so.
4604          */
4605         e1000_configure(adapter);
4606
4607         err = e1000_request_irq(adapter);
4608         if (err)
4609                 goto err_req_irq;
4610
4611         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4612          * ignore e1000e MSI messages, which means we need to test our MSI
4613          * interrupt now
4614          */
4615         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4616                 err = e1000_test_msi(adapter);
4617                 if (err) {
4618                         e_err("Interrupt allocation failed\n");
4619                         goto err_req_irq;
4620                 }
4621         }
4622
4623         /* From here on the code is the same as e1000e_up() */
4624         clear_bit(__E1000_DOWN, &adapter->state);
4625
4626         napi_enable(&adapter->napi);
4627
4628         e1000_irq_enable(adapter);
4629
4630         adapter->tx_hang_recheck = false;
4631         netif_start_queue(netdev);
4632
4633         hw->mac.get_link_status = true;
4634         pm_runtime_put(&pdev->dev);
4635
4636         e1000e_trigger_lsc(adapter);
4637
4638         return 0;
4639
4640 err_req_irq:
4641         pm_qos_remove_request(&adapter->pm_qos_req);
4642         e1000e_release_hw_control(adapter);
4643         e1000_power_down_phy(adapter);
4644         e1000e_free_rx_resources(adapter->rx_ring);
4645 err_setup_rx:
4646         e1000e_free_tx_resources(adapter->tx_ring);
4647 err_setup_tx:
4648         e1000e_reset(adapter);
4649         pm_runtime_put_sync(&pdev->dev);
4650
4651         return err;
4652 }
4653
4654 /**
4655  * e1000e_close - Disables a network interface
4656  * @netdev: network interface device structure
4657  *
4658  * Returns 0, this is not allowed to fail
4659  *
4660  * The close entry point is called when an interface is de-activated
4661  * by the OS.  The hardware is still under the drivers control, but
4662  * needs to be disabled.  A global MAC reset is issued to stop the
4663  * hardware, and all transmit and receive resources are freed.
4664  **/
4665 int e1000e_close(struct net_device *netdev)
4666 {
4667         struct e1000_adapter *adapter = netdev_priv(netdev);
4668         struct pci_dev *pdev = adapter->pdev;
4669         int count = E1000_CHECK_RESET_COUNT;
4670
4671         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4672                 usleep_range(10000, 20000);
4673
4674         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4675
4676         pm_runtime_get_sync(&pdev->dev);
4677
4678         if (!test_bit(__E1000_DOWN, &adapter->state)) {
4679                 e1000e_down(adapter, true);
4680                 e1000_free_irq(adapter);
4681
4682                 /* Link status message must follow this format */
4683                 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4684         }
4685
4686         napi_disable(&adapter->napi);
4687
4688         e1000e_free_tx_resources(adapter->tx_ring);
4689         e1000e_free_rx_resources(adapter->rx_ring);
4690
4691         /* kill manageability vlan ID if supported, but not if a vlan with
4692          * the same ID is registered on the host OS (let 8021q kill it)
4693          */
4694         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4695                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4696                                        adapter->mng_vlan_id);
4697
4698         /* If AMT is enabled, let the firmware know that the network
4699          * interface is now closed
4700          */
4701         if ((adapter->flags & FLAG_HAS_AMT) &&
4702             !test_bit(__E1000_TESTING, &adapter->state))
4703                 e1000e_release_hw_control(adapter);
4704
4705         pm_qos_remove_request(&adapter->pm_qos_req);
4706
4707         pm_runtime_put_sync(&pdev->dev);
4708
4709         return 0;
4710 }
4711
4712 /**
4713  * e1000_set_mac - Change the Ethernet Address of the NIC
4714  * @netdev: network interface device structure
4715  * @p: pointer to an address structure
4716  *
4717  * Returns 0 on success, negative on failure
4718  **/
4719 static int e1000_set_mac(struct net_device *netdev, void *p)
4720 {
4721         struct e1000_adapter *adapter = netdev_priv(netdev);
4722         struct e1000_hw *hw = &adapter->hw;
4723         struct sockaddr *addr = p;
4724
4725         if (!is_valid_ether_addr(addr->sa_data))
4726                 return -EADDRNOTAVAIL;
4727
4728         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4729         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4730
4731         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4732
4733         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4734                 /* activate the work around */
4735                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4736
4737                 /* Hold a copy of the LAA in RAR[14] This is done so that
4738                  * between the time RAR[0] gets clobbered  and the time it
4739                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4740                  * of the RARs and no incoming packets directed to this port
4741                  * are dropped. Eventually the LAA will be in RAR[0] and
4742                  * RAR[14]
4743                  */
4744                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4745                                     adapter->hw.mac.rar_entry_count - 1);
4746         }
4747
4748         return 0;
4749 }
4750
4751 /**
4752  * e1000e_update_phy_task - work thread to update phy
4753  * @work: pointer to our work struct
4754  *
4755  * this worker thread exists because we must acquire a
4756  * semaphore to read the phy, which we could msleep while
4757  * waiting for it, and we can't msleep in a timer.
4758  **/
4759 static void e1000e_update_phy_task(struct work_struct *work)
4760 {
4761         struct e1000_adapter *adapter = container_of(work,
4762                                                      struct e1000_adapter,
4763                                                      update_phy_task);
4764         struct e1000_hw *hw = &adapter->hw;
4765
4766         if (test_bit(__E1000_DOWN, &adapter->state))
4767                 return;
4768
4769         e1000_get_phy_info(hw);
4770
4771         /* Enable EEE on 82579 after link up */
4772         if (hw->phy.type >= e1000_phy_82579)
4773                 e1000_set_eee_pchlan(hw);
4774 }
4775
4776 /**
4777  * e1000_update_phy_info - timre call-back to update PHY info
4778  * @data: pointer to adapter cast into an unsigned long
4779  *
4780  * Need to wait a few seconds after link up to get diagnostic information from
4781  * the phy
4782  **/
4783 static void e1000_update_phy_info(unsigned long data)
4784 {
4785         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4786
4787         if (test_bit(__E1000_DOWN, &adapter->state))
4788                 return;
4789
4790         schedule_work(&adapter->update_phy_task);
4791 }
4792
4793 /**
4794  * e1000e_update_phy_stats - Update the PHY statistics counters
4795  * @adapter: board private structure
4796  *
4797  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4798  **/
4799 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4800 {
4801         struct e1000_hw *hw = &adapter->hw;
4802         s32 ret_val;
4803         u16 phy_data;
4804
4805         ret_val = hw->phy.ops.acquire(hw);
4806         if (ret_val)
4807                 return;
4808
4809         /* A page set is expensive so check if already on desired page.
4810          * If not, set to the page with the PHY status registers.
4811          */
4812         hw->phy.addr = 1;
4813         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4814                                            &phy_data);
4815         if (ret_val)
4816                 goto release;
4817         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4818                 ret_val = hw->phy.ops.set_page(hw,
4819                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4820                 if (ret_val)
4821                         goto release;
4822         }
4823
4824         /* Single Collision Count */
4825         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4826         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4827         if (!ret_val)
4828                 adapter->stats.scc += phy_data;
4829
4830         /* Excessive Collision Count */
4831         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4832         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4833         if (!ret_val)
4834                 adapter->stats.ecol += phy_data;
4835
4836         /* Multiple Collision Count */
4837         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4838         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4839         if (!ret_val)
4840                 adapter->stats.mcc += phy_data;
4841
4842         /* Late Collision Count */
4843         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4844         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4845         if (!ret_val)
4846                 adapter->stats.latecol += phy_data;
4847
4848         /* Collision Count - also used for adaptive IFS */
4849         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4850         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4851         if (!ret_val)
4852                 hw->mac.collision_delta = phy_data;
4853
4854         /* Defer Count */
4855         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4856         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4857         if (!ret_val)
4858                 adapter->stats.dc += phy_data;
4859
4860         /* Transmit with no CRS */
4861         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4862         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4863         if (!ret_val)
4864                 adapter->stats.tncrs += phy_data;
4865
4866 release:
4867         hw->phy.ops.release(hw);
4868 }
4869
4870 /**
4871  * e1000e_update_stats - Update the board statistics counters
4872  * @adapter: board private structure
4873  **/
4874 static void e1000e_update_stats(struct e1000_adapter *adapter)
4875 {
4876         struct net_device *netdev = adapter->netdev;
4877         struct e1000_hw *hw = &adapter->hw;
4878         struct pci_dev *pdev = adapter->pdev;
4879
4880         /* Prevent stats update while adapter is being reset, or if the pci
4881          * connection is down.
4882          */
4883         if (adapter->link_speed == 0)
4884                 return;
4885         if (pci_channel_offline(pdev))
4886                 return;
4887
4888         adapter->stats.crcerrs += er32(CRCERRS);
4889         adapter->stats.gprc += er32(GPRC);
4890         adapter->stats.gorc += er32(GORCL);
4891         er32(GORCH);            /* Clear gorc */
4892         adapter->stats.bprc += er32(BPRC);
4893         adapter->stats.mprc += er32(MPRC);
4894         adapter->stats.roc += er32(ROC);
4895
4896         adapter->stats.mpc += er32(MPC);
4897
4898         /* Half-duplex statistics */
4899         if (adapter->link_duplex == HALF_DUPLEX) {
4900                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4901                         e1000e_update_phy_stats(adapter);
4902                 } else {
4903                         adapter->stats.scc += er32(SCC);
4904                         adapter->stats.ecol += er32(ECOL);
4905                         adapter->stats.mcc += er32(MCC);
4906                         adapter->stats.latecol += er32(LATECOL);
4907                         adapter->stats.dc += er32(DC);
4908
4909                         hw->mac.collision_delta = er32(COLC);
4910
4911                         if ((hw->mac.type != e1000_82574) &&
4912                             (hw->mac.type != e1000_82583))
4913                                 adapter->stats.tncrs += er32(TNCRS);
4914                 }
4915                 adapter->stats.colc += hw->mac.collision_delta;
4916         }
4917
4918         adapter->stats.xonrxc += er32(XONRXC);
4919         adapter->stats.xontxc += er32(XONTXC);
4920         adapter->stats.xoffrxc += er32(XOFFRXC);
4921         adapter->stats.xofftxc += er32(XOFFTXC);
4922         adapter->stats.gptc += er32(GPTC);
4923         adapter->stats.gotc += er32(GOTCL);
4924         er32(GOTCH);            /* Clear gotc */
4925         adapter->stats.rnbc += er32(RNBC);
4926         adapter->stats.ruc += er32(RUC);
4927
4928         adapter->stats.mptc += er32(MPTC);
4929         adapter->stats.bptc += er32(BPTC);
4930
4931         /* used for adaptive IFS */
4932
4933         hw->mac.tx_packet_delta = er32(TPT);
4934         adapter->stats.tpt += hw->mac.tx_packet_delta;
4935
4936         adapter->stats.algnerrc += er32(ALGNERRC);
4937         adapter->stats.rxerrc += er32(RXERRC);
4938         adapter->stats.cexterr += er32(CEXTERR);
4939         adapter->stats.tsctc += er32(TSCTC);
4940         adapter->stats.tsctfc += er32(TSCTFC);
4941
4942         /* Fill out the OS statistics structure */
4943         netdev->stats.multicast = adapter->stats.mprc;
4944         netdev->stats.collisions = adapter->stats.colc;
4945
4946         /* Rx Errors */
4947
4948         /* RLEC on some newer hardware can be incorrect so build
4949          * our own version based on RUC and ROC
4950          */
4951         netdev->stats.rx_errors = adapter->stats.rxerrc +
4952             adapter->stats.crcerrs + adapter->stats.algnerrc +
4953             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4954         netdev->stats.rx_length_errors = adapter->stats.ruc +
4955             adapter->stats.roc;
4956         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4957         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4958         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4959
4960         /* Tx Errors */
4961         netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4962         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4963         netdev->stats.tx_window_errors = adapter->stats.latecol;
4964         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4965
4966         /* Tx Dropped needs to be maintained elsewhere */
4967
4968         /* Management Stats */
4969         adapter->stats.mgptc += er32(MGTPTC);
4970         adapter->stats.mgprc += er32(MGTPRC);
4971         adapter->stats.mgpdc += er32(MGTPDC);
4972
4973         /* Correctable ECC Errors */
4974         if ((hw->mac.type == e1000_pch_lpt) ||
4975             (hw->mac.type == e1000_pch_spt)) {
4976                 u32 pbeccsts = er32(PBECCSTS);
4977
4978                 adapter->corr_errors +=
4979                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4980                 adapter->uncorr_errors +=
4981                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4982                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4983         }
4984 }
4985
4986 /**
4987  * e1000_phy_read_status - Update the PHY register status snapshot
4988  * @adapter: board private structure
4989  **/
4990 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4991 {
4992         struct e1000_hw *hw = &adapter->hw;
4993         struct e1000_phy_regs *phy = &adapter->phy_regs;
4994
4995         if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
4996             (er32(STATUS) & E1000_STATUS_LU) &&
4997             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4998                 int ret_val;
4999
5000                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5001                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5002                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5003                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5004                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5005                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5006                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5007                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5008                 if (ret_val)
5009                         e_warn("Error reading PHY register\n");
5010         } else {
5011                 /* Do not read PHY registers if link is not up
5012                  * Set values to typical power-on defaults
5013                  */
5014                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5015                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5016                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5017                              BMSR_ERCAP);
5018                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5019                                   ADVERTISE_ALL | ADVERTISE_CSMA);
5020                 phy->lpa = 0;
5021                 phy->expansion = EXPANSION_ENABLENPAGE;
5022                 phy->ctrl1000 = ADVERTISE_1000FULL;
5023                 phy->stat1000 = 0;
5024                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5025         }
5026 }
5027
5028 static void e1000_print_link_info(struct e1000_adapter *adapter)
5029 {
5030         struct e1000_hw *hw = &adapter->hw;
5031         u32 ctrl = er32(CTRL);
5032
5033         /* Link status message must follow this format for user tools */
5034         pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5035                 adapter->netdev->name, adapter->link_speed,
5036                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5037                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5038                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5039                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5040 }
5041
5042 static bool e1000e_has_link(struct e1000_adapter *adapter)
5043 {
5044         struct e1000_hw *hw = &adapter->hw;
5045         bool link_active = false;
5046         s32 ret_val = 0;
5047
5048         /* get_link_status is set on LSC (link status) interrupt or
5049          * Rx sequence error interrupt.  get_link_status will stay
5050          * false until the check_for_link establishes link
5051          * for copper adapters ONLY
5052          */
5053         switch (hw->phy.media_type) {
5054         case e1000_media_type_copper:
5055                 if (hw->mac.get_link_status) {
5056                         ret_val = hw->mac.ops.check_for_link(hw);
5057                         link_active = !hw->mac.get_link_status;
5058                 } else {
5059                         link_active = true;
5060                 }
5061                 break;
5062         case e1000_media_type_fiber:
5063                 ret_val = hw->mac.ops.check_for_link(hw);
5064                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5065                 break;
5066         case e1000_media_type_internal_serdes:
5067                 ret_val = hw->mac.ops.check_for_link(hw);
5068                 link_active = adapter->hw.mac.serdes_has_link;
5069                 break;
5070         default:
5071         case e1000_media_type_unknown:
5072                 break;
5073         }
5074
5075         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5076             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5077                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5078                 e_info("Gigabit has been disabled, downgrading speed\n");
5079         }
5080
5081         return link_active;
5082 }
5083
5084 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5085 {
5086         /* make sure the receive unit is started */
5087         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5088             (adapter->flags & FLAG_RESTART_NOW)) {
5089                 struct e1000_hw *hw = &adapter->hw;
5090                 u32 rctl = er32(RCTL);
5091
5092                 ew32(RCTL, rctl | E1000_RCTL_EN);
5093                 adapter->flags &= ~FLAG_RESTART_NOW;
5094         }
5095 }
5096
5097 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5098 {
5099         struct e1000_hw *hw = &adapter->hw;
5100
5101         /* With 82574 controllers, PHY needs to be checked periodically
5102          * for hung state and reset, if two calls return true
5103          */
5104         if (e1000_check_phy_82574(hw))
5105                 adapter->phy_hang_count++;
5106         else
5107                 adapter->phy_hang_count = 0;
5108
5109         if (adapter->phy_hang_count > 1) {
5110                 adapter->phy_hang_count = 0;
5111                 e_dbg("PHY appears hung - resetting\n");
5112                 schedule_work(&adapter->reset_task);
5113         }
5114 }
5115
5116 /**
5117  * e1000_watchdog - Timer Call-back
5118  * @data: pointer to adapter cast into an unsigned long
5119  **/
5120 static void e1000_watchdog(unsigned long data)
5121 {
5122         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
5123
5124         /* Do the rest outside of interrupt context */
5125         schedule_work(&adapter->watchdog_task);
5126
5127         /* TODO: make this use queue_delayed_work() */
5128 }
5129
5130 static void e1000_watchdog_task(struct work_struct *work)
5131 {
5132         struct e1000_adapter *adapter = container_of(work,
5133                                                      struct e1000_adapter,
5134                                                      watchdog_task);
5135         struct net_device *netdev = adapter->netdev;
5136         struct e1000_mac_info *mac = &adapter->hw.mac;
5137         struct e1000_phy_info *phy = &adapter->hw.phy;
5138         struct e1000_ring *tx_ring = adapter->tx_ring;
5139         struct e1000_hw *hw = &adapter->hw;
5140         u32 link, tctl;
5141
5142         if (test_bit(__E1000_DOWN, &adapter->state))
5143                 return;
5144
5145         link = e1000e_has_link(adapter);
5146         if ((netif_carrier_ok(netdev)) && link) {
5147                 /* Cancel scheduled suspend requests. */
5148                 pm_runtime_resume(netdev->dev.parent);
5149
5150                 e1000e_enable_receives(adapter);
5151                 goto link_up;
5152         }
5153
5154         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5155             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5156                 e1000_update_mng_vlan(adapter);
5157
5158         if (link) {
5159                 if (!netif_carrier_ok(netdev)) {
5160                         bool txb2b = true;
5161
5162                         /* Cancel scheduled suspend requests. */
5163                         pm_runtime_resume(netdev->dev.parent);
5164
5165                         /* update snapshot of PHY registers on LSC */
5166                         e1000_phy_read_status(adapter);
5167                         mac->ops.get_link_up_info(&adapter->hw,
5168                                                   &adapter->link_speed,
5169                                                   &adapter->link_duplex);
5170                         e1000_print_link_info(adapter);
5171
5172                         /* check if SmartSpeed worked */
5173                         e1000e_check_downshift(hw);
5174                         if (phy->speed_downgraded)
5175                                 netdev_warn(netdev,
5176                                             "Link Speed was downgraded by SmartSpeed\n");
5177
5178                         /* On supported PHYs, check for duplex mismatch only
5179                          * if link has autonegotiated at 10/100 half
5180                          */
5181                         if ((hw->phy.type == e1000_phy_igp_3 ||
5182                              hw->phy.type == e1000_phy_bm) &&
5183                             hw->mac.autoneg &&
5184                             (adapter->link_speed == SPEED_10 ||
5185                              adapter->link_speed == SPEED_100) &&
5186                             (adapter->link_duplex == HALF_DUPLEX)) {
5187                                 u16 autoneg_exp;
5188
5189                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5190
5191                                 if (!(autoneg_exp & EXPANSION_NWAY))
5192                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5193                         }
5194
5195                         /* adjust timeout factor according to speed/duplex */
5196                         adapter->tx_timeout_factor = 1;
5197                         switch (adapter->link_speed) {
5198                         case SPEED_10:
5199                                 txb2b = false;
5200                                 adapter->tx_timeout_factor = 16;
5201                                 break;
5202                         case SPEED_100:
5203                                 txb2b = false;
5204                                 adapter->tx_timeout_factor = 10;
5205                                 break;
5206                         }
5207
5208                         /* workaround: re-program speed mode bit after
5209                          * link-up event
5210                          */
5211                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5212                             !txb2b) {
5213                                 u32 tarc0;
5214
5215                                 tarc0 = er32(TARC(0));
5216                                 tarc0 &= ~SPEED_MODE_BIT;
5217                                 ew32(TARC(0), tarc0);
5218                         }
5219
5220                         /* disable TSO for pcie and 10/100 speeds, to avoid
5221                          * some hardware issues
5222                          */
5223                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
5224                                 switch (adapter->link_speed) {
5225                                 case SPEED_10:
5226                                 case SPEED_100:
5227                                         e_info("10/100 speed: disabling TSO\n");
5228                                         netdev->features &= ~NETIF_F_TSO;
5229                                         netdev->features &= ~NETIF_F_TSO6;
5230                                         break;
5231                                 case SPEED_1000:
5232                                         netdev->features |= NETIF_F_TSO;
5233                                         netdev->features |= NETIF_F_TSO6;
5234                                         break;
5235                                 default:
5236                                         /* oops */
5237                                         break;
5238                                 }
5239                         }
5240
5241                         /* enable transmits in the hardware, need to do this
5242                          * after setting TARC(0)
5243                          */
5244                         tctl = er32(TCTL);
5245                         tctl |= E1000_TCTL_EN;
5246                         ew32(TCTL, tctl);
5247
5248                         /* Perform any post-link-up configuration before
5249                          * reporting link up.
5250                          */
5251                         if (phy->ops.cfg_on_link_up)
5252                                 phy->ops.cfg_on_link_up(hw);
5253
5254                         netif_carrier_on(netdev);
5255
5256                         if (!test_bit(__E1000_DOWN, &adapter->state))
5257                                 mod_timer(&adapter->phy_info_timer,
5258                                           round_jiffies(jiffies + 2 * HZ));
5259                 }
5260         } else {
5261                 if (netif_carrier_ok(netdev)) {
5262                         adapter->link_speed = 0;
5263                         adapter->link_duplex = 0;
5264                         /* Link status message must follow this format */
5265                         pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5266                         netif_carrier_off(netdev);
5267                         if (!test_bit(__E1000_DOWN, &adapter->state))
5268                                 mod_timer(&adapter->phy_info_timer,
5269                                           round_jiffies(jiffies + 2 * HZ));
5270
5271                         /* 8000ES2LAN requires a Rx packet buffer work-around
5272                          * on link down event; reset the controller to flush
5273                          * the Rx packet buffer.
5274                          */
5275                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5276                                 adapter->flags |= FLAG_RESTART_NOW;
5277                         else
5278                                 pm_schedule_suspend(netdev->dev.parent,
5279                                                     LINK_TIMEOUT);
5280                 }
5281         }
5282
5283 link_up:
5284         spin_lock(&adapter->stats64_lock);
5285         e1000e_update_stats(adapter);
5286
5287         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5288         adapter->tpt_old = adapter->stats.tpt;
5289         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5290         adapter->colc_old = adapter->stats.colc;
5291
5292         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5293         adapter->gorc_old = adapter->stats.gorc;
5294         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5295         adapter->gotc_old = adapter->stats.gotc;
5296         spin_unlock(&adapter->stats64_lock);
5297
5298         /* If the link is lost the controller stops DMA, but
5299          * if there is queued Tx work it cannot be done.  So
5300          * reset the controller to flush the Tx packet buffers.
5301          */
5302         if (!netif_carrier_ok(netdev) &&
5303             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5304                 adapter->flags |= FLAG_RESTART_NOW;
5305
5306         /* If reset is necessary, do it outside of interrupt context. */
5307         if (adapter->flags & FLAG_RESTART_NOW) {
5308                 schedule_work(&adapter->reset_task);
5309                 /* return immediately since reset is imminent */
5310                 return;
5311         }
5312
5313         e1000e_update_adaptive(&adapter->hw);
5314
5315         /* Simple mode for Interrupt Throttle Rate (ITR) */
5316         if (adapter->itr_setting == 4) {
5317                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5318                  * Total asymmetrical Tx or Rx gets ITR=8000;
5319                  * everyone else is between 2000-8000.
5320                  */
5321                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5322                 u32 dif = (adapter->gotc > adapter->gorc ?
5323                            adapter->gotc - adapter->gorc :
5324                            adapter->gorc - adapter->gotc) / 10000;
5325                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5326
5327                 e1000e_write_itr(adapter, itr);
5328         }
5329
5330         /* Cause software interrupt to ensure Rx ring is cleaned */
5331         if (adapter->msix_entries)
5332                 ew32(ICS, adapter->rx_ring->ims_val);
5333         else
5334                 ew32(ICS, E1000_ICS_RXDMT0);
5335
5336         /* flush pending descriptors to memory before detecting Tx hang */
5337         e1000e_flush_descriptors(adapter);
5338
5339         /* Force detection of hung controller every watchdog period */
5340         adapter->detect_tx_hung = true;
5341
5342         /* With 82571 controllers, LAA may be overwritten due to controller
5343          * reset from the other port. Set the appropriate LAA in RAR[0]
5344          */
5345         if (e1000e_get_laa_state_82571(hw))
5346                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5347
5348         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5349                 e1000e_check_82574_phy_workaround(adapter);
5350
5351         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5352         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5353                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5354                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5355                         er32(RXSTMPH);
5356                         adapter->rx_hwtstamp_cleared++;
5357                 } else {
5358                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5359                 }
5360         }
5361
5362         /* Reset the timer */
5363         if (!test_bit(__E1000_DOWN, &adapter->state))
5364                 mod_timer(&adapter->watchdog_timer,
5365                           round_jiffies(jiffies + 2 * HZ));
5366 }
5367
5368 #define E1000_TX_FLAGS_CSUM             0x00000001
5369 #define E1000_TX_FLAGS_VLAN             0x00000002
5370 #define E1000_TX_FLAGS_TSO              0x00000004
5371 #define E1000_TX_FLAGS_IPV4             0x00000008
5372 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5373 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5374 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5375 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5376
5377 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5378                      __be16 protocol)
5379 {
5380         struct e1000_context_desc *context_desc;
5381         struct e1000_buffer *buffer_info;
5382         unsigned int i;
5383         u32 cmd_length = 0;
5384         u16 ipcse = 0, mss;
5385         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5386         int err;
5387
5388         if (!skb_is_gso(skb))
5389                 return 0;
5390
5391         err = skb_cow_head(skb, 0);
5392         if (err < 0)
5393                 return err;
5394
5395         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5396         mss = skb_shinfo(skb)->gso_size;
5397         if (protocol == htons(ETH_P_IP)) {
5398                 struct iphdr *iph = ip_hdr(skb);
5399                 iph->tot_len = 0;
5400                 iph->check = 0;
5401                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5402                                                          0, IPPROTO_TCP, 0);
5403                 cmd_length = E1000_TXD_CMD_IP;
5404                 ipcse = skb_transport_offset(skb) - 1;
5405         } else if (skb_is_gso_v6(skb)) {
5406                 ipv6_hdr(skb)->payload_len = 0;
5407                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5408                                                        &ipv6_hdr(skb)->daddr,
5409                                                        0, IPPROTO_TCP, 0);
5410                 ipcse = 0;
5411         }
5412         ipcss = skb_network_offset(skb);
5413         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5414         tucss = skb_transport_offset(skb);
5415         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5416
5417         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5418                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5419
5420         i = tx_ring->next_to_use;
5421         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5422         buffer_info = &tx_ring->buffer_info[i];
5423
5424         context_desc->lower_setup.ip_fields.ipcss = ipcss;
5425         context_desc->lower_setup.ip_fields.ipcso = ipcso;
5426         context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5427         context_desc->upper_setup.tcp_fields.tucss = tucss;
5428         context_desc->upper_setup.tcp_fields.tucso = tucso;
5429         context_desc->upper_setup.tcp_fields.tucse = 0;
5430         context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5431         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5432         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5433
5434         buffer_info->time_stamp = jiffies;
5435         buffer_info->next_to_watch = i;
5436
5437         i++;
5438         if (i == tx_ring->count)
5439                 i = 0;
5440         tx_ring->next_to_use = i;
5441
5442         return 1;
5443 }
5444
5445 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5446                           __be16 protocol)
5447 {
5448         struct e1000_adapter *adapter = tx_ring->adapter;
5449         struct e1000_context_desc *context_desc;
5450         struct e1000_buffer *buffer_info;
5451         unsigned int i;
5452         u8 css;
5453         u32 cmd_len = E1000_TXD_CMD_DEXT;
5454
5455         if (skb->ip_summed != CHECKSUM_PARTIAL)
5456                 return false;
5457
5458         switch (protocol) {
5459         case cpu_to_be16(ETH_P_IP):
5460                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5461                         cmd_len |= E1000_TXD_CMD_TCP;
5462                 break;
5463         case cpu_to_be16(ETH_P_IPV6):
5464                 /* XXX not handling all IPV6 headers */
5465                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5466                         cmd_len |= E1000_TXD_CMD_TCP;
5467                 break;
5468         default:
5469                 if (unlikely(net_ratelimit()))
5470                         e_warn("checksum_partial proto=%x!\n",
5471                                be16_to_cpu(protocol));
5472                 break;
5473         }
5474
5475         css = skb_checksum_start_offset(skb);
5476
5477         i = tx_ring->next_to_use;
5478         buffer_info = &tx_ring->buffer_info[i];
5479         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5480
5481         context_desc->lower_setup.ip_config = 0;
5482         context_desc->upper_setup.tcp_fields.tucss = css;
5483         context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5484         context_desc->upper_setup.tcp_fields.tucse = 0;
5485         context_desc->tcp_seg_setup.data = 0;
5486         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5487
5488         buffer_info->time_stamp = jiffies;
5489         buffer_info->next_to_watch = i;
5490
5491         i++;
5492         if (i == tx_ring->count)
5493                 i = 0;
5494         tx_ring->next_to_use = i;
5495
5496         return true;
5497 }
5498
5499 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5500                         unsigned int first, unsigned int max_per_txd,
5501                         unsigned int nr_frags)
5502 {
5503         struct e1000_adapter *adapter = tx_ring->adapter;
5504         struct pci_dev *pdev = adapter->pdev;
5505         struct e1000_buffer *buffer_info;
5506         unsigned int len = skb_headlen(skb);
5507         unsigned int offset = 0, size, count = 0, i;
5508         unsigned int f, bytecount, segs;
5509
5510         i = tx_ring->next_to_use;
5511
5512         while (len) {
5513                 buffer_info = &tx_ring->buffer_info[i];
5514                 size = min(len, max_per_txd);
5515
5516                 buffer_info->length = size;
5517                 buffer_info->time_stamp = jiffies;
5518                 buffer_info->next_to_watch = i;
5519                 buffer_info->dma = dma_map_single(&pdev->dev,
5520                                                   skb->data + offset,
5521                                                   size, DMA_TO_DEVICE);
5522                 buffer_info->mapped_as_page = false;
5523                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5524                         goto dma_error;
5525
5526                 len -= size;
5527                 offset += size;
5528                 count++;
5529
5530                 if (len) {
5531                         i++;
5532                         if (i == tx_ring->count)
5533                                 i = 0;
5534                 }
5535         }
5536
5537         for (f = 0; f < nr_frags; f++) {
5538                 const struct skb_frag_struct *frag;
5539
5540                 frag = &skb_shinfo(skb)->frags[f];
5541                 len = skb_frag_size(frag);
5542                 offset = 0;
5543
5544                 while (len) {
5545                         i++;
5546                         if (i == tx_ring->count)
5547                                 i = 0;
5548
5549                         buffer_info = &tx_ring->buffer_info[i];
5550                         size = min(len, max_per_txd);
5551
5552                         buffer_info->length = size;
5553                         buffer_info->time_stamp = jiffies;
5554                         buffer_info->next_to_watch = i;
5555                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5556                                                             offset, size,
5557                                                             DMA_TO_DEVICE);
5558                         buffer_info->mapped_as_page = true;
5559                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5560                                 goto dma_error;
5561
5562                         len -= size;
5563                         offset += size;
5564                         count++;
5565                 }
5566         }
5567
5568         segs = skb_shinfo(skb)->gso_segs ? : 1;
5569         /* multiply data chunks by size of headers */
5570         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5571
5572         tx_ring->buffer_info[i].skb = skb;
5573         tx_ring->buffer_info[i].segs = segs;
5574         tx_ring->buffer_info[i].bytecount = bytecount;
5575         tx_ring->buffer_info[first].next_to_watch = i;
5576
5577         return count;
5578
5579 dma_error:
5580         dev_err(&pdev->dev, "Tx DMA map failed\n");
5581         buffer_info->dma = 0;
5582         if (count)
5583                 count--;
5584
5585         while (count--) {
5586                 if (i == 0)
5587                         i += tx_ring->count;
5588                 i--;
5589                 buffer_info = &tx_ring->buffer_info[i];
5590                 e1000_put_txbuf(tx_ring, buffer_info);
5591         }
5592
5593         return 0;
5594 }
5595
5596 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5597 {
5598         struct e1000_adapter *adapter = tx_ring->adapter;
5599         struct e1000_tx_desc *tx_desc = NULL;
5600         struct e1000_buffer *buffer_info;
5601         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5602         unsigned int i;
5603
5604         if (tx_flags & E1000_TX_FLAGS_TSO) {
5605                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5606                     E1000_TXD_CMD_TSE;
5607                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5608
5609                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5610                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5611         }
5612
5613         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5614                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5615                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5616         }
5617
5618         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5619                 txd_lower |= E1000_TXD_CMD_VLE;
5620                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5621         }
5622
5623         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5624                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5625
5626         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5627                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5628                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5629         }
5630
5631         i = tx_ring->next_to_use;
5632
5633         do {
5634                 buffer_info = &tx_ring->buffer_info[i];
5635                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5636                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5637                 tx_desc->lower.data = cpu_to_le32(txd_lower |
5638                                                   buffer_info->length);
5639                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5640
5641                 i++;
5642                 if (i == tx_ring->count)
5643                         i = 0;
5644         } while (--count > 0);
5645
5646         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5647
5648         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5649         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5650                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5651
5652         /* Force memory writes to complete before letting h/w
5653          * know there are new descriptors to fetch.  (Only
5654          * applicable for weak-ordered memory model archs,
5655          * such as IA-64).
5656          */
5657         wmb();
5658
5659         tx_ring->next_to_use = i;
5660 }
5661
5662 #define MINIMUM_DHCP_PACKET_SIZE 282
5663 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5664                                     struct sk_buff *skb)
5665 {
5666         struct e1000_hw *hw = &adapter->hw;
5667         u16 length, offset;
5668
5669         if (skb_vlan_tag_present(skb) &&
5670             !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5671               (adapter->hw.mng_cookie.status &
5672                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5673                 return 0;
5674
5675         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5676                 return 0;
5677
5678         if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5679                 return 0;
5680
5681         {
5682                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5683                 struct udphdr *udp;
5684
5685                 if (ip->protocol != IPPROTO_UDP)
5686                         return 0;
5687
5688                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5689                 if (ntohs(udp->dest) != 67)
5690                         return 0;
5691
5692                 offset = (u8 *)udp + 8 - skb->data;
5693                 length = skb->len - offset;
5694                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5695         }
5696
5697         return 0;
5698 }
5699
5700 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5701 {
5702         struct e1000_adapter *adapter = tx_ring->adapter;
5703
5704         netif_stop_queue(adapter->netdev);
5705         /* Herbert's original patch had:
5706          *  smp_mb__after_netif_stop_queue();
5707          * but since that doesn't exist yet, just open code it.
5708          */
5709         smp_mb();
5710
5711         /* We need to check again in a case another CPU has just
5712          * made room available.
5713          */
5714         if (e1000_desc_unused(tx_ring) < size)
5715                 return -EBUSY;
5716
5717         /* A reprieve! */
5718         netif_start_queue(adapter->netdev);
5719         ++adapter->restart_queue;
5720         return 0;
5721 }
5722
5723 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5724 {
5725         BUG_ON(size > tx_ring->count);
5726
5727         if (e1000_desc_unused(tx_ring) >= size)
5728                 return 0;
5729         return __e1000_maybe_stop_tx(tx_ring, size);
5730 }
5731
5732 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5733                                     struct net_device *netdev)
5734 {
5735         struct e1000_adapter *adapter = netdev_priv(netdev);
5736         struct e1000_ring *tx_ring = adapter->tx_ring;
5737         unsigned int first;
5738         unsigned int tx_flags = 0;
5739         unsigned int len = skb_headlen(skb);
5740         unsigned int nr_frags;
5741         unsigned int mss;
5742         int count = 0;
5743         int tso;
5744         unsigned int f;
5745         __be16 protocol = vlan_get_protocol(skb);
5746
5747         if (test_bit(__E1000_DOWN, &adapter->state)) {
5748                 dev_kfree_skb_any(skb);
5749                 return NETDEV_TX_OK;
5750         }
5751
5752         if (skb->len <= 0) {
5753                 dev_kfree_skb_any(skb);
5754                 return NETDEV_TX_OK;
5755         }
5756
5757         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5758          * pad skb in order to meet this minimum size requirement
5759          */
5760         if (skb_put_padto(skb, 17))
5761                 return NETDEV_TX_OK;
5762
5763         mss = skb_shinfo(skb)->gso_size;
5764         if (mss) {
5765                 u8 hdr_len;
5766
5767                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5768                  * points to just header, pull a few bytes of payload from
5769                  * frags into skb->data
5770                  */
5771                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5772                 /* we do this workaround for ES2LAN, but it is un-necessary,
5773                  * avoiding it could save a lot of cycles
5774                  */
5775                 if (skb->data_len && (hdr_len == len)) {
5776                         unsigned int pull_size;
5777
5778                         pull_size = min_t(unsigned int, 4, skb->data_len);
5779                         if (!__pskb_pull_tail(skb, pull_size)) {
5780                                 e_err("__pskb_pull_tail failed.\n");
5781                                 dev_kfree_skb_any(skb);
5782                                 return NETDEV_TX_OK;
5783                         }
5784                         len = skb_headlen(skb);
5785                 }
5786         }
5787
5788         /* reserve a descriptor for the offload context */
5789         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5790                 count++;
5791         count++;
5792
5793         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5794
5795         nr_frags = skb_shinfo(skb)->nr_frags;
5796         for (f = 0; f < nr_frags; f++)
5797                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5798                                       adapter->tx_fifo_limit);
5799
5800         if (adapter->hw.mac.tx_pkt_filtering)
5801                 e1000_transfer_dhcp_info(adapter, skb);
5802
5803         /* need: count + 2 desc gap to keep tail from touching
5804          * head, otherwise try next time
5805          */
5806         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5807                 return NETDEV_TX_BUSY;
5808
5809         if (skb_vlan_tag_present(skb)) {
5810                 tx_flags |= E1000_TX_FLAGS_VLAN;
5811                 tx_flags |= (skb_vlan_tag_get(skb) <<
5812                              E1000_TX_FLAGS_VLAN_SHIFT);
5813         }
5814
5815         first = tx_ring->next_to_use;
5816
5817         tso = e1000_tso(tx_ring, skb, protocol);
5818         if (tso < 0) {
5819                 dev_kfree_skb_any(skb);
5820                 return NETDEV_TX_OK;
5821         }
5822
5823         if (tso)
5824                 tx_flags |= E1000_TX_FLAGS_TSO;
5825         else if (e1000_tx_csum(tx_ring, skb, protocol))
5826                 tx_flags |= E1000_TX_FLAGS_CSUM;
5827
5828         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5829          * 82571 hardware supports TSO capabilities for IPv6 as well...
5830          * no longer assume, we must.
5831          */
5832         if (protocol == htons(ETH_P_IP))
5833                 tx_flags |= E1000_TX_FLAGS_IPV4;
5834
5835         if (unlikely(skb->no_fcs))
5836                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5837
5838         /* if count is 0 then mapping error has occurred */
5839         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5840                              nr_frags);
5841         if (count) {
5842                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5843                     (adapter->flags & FLAG_HAS_HW_TIMESTAMP) &&
5844                     !adapter->tx_hwtstamp_skb) {
5845                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5846                         tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5847                         adapter->tx_hwtstamp_skb = skb_get(skb);
5848                         adapter->tx_hwtstamp_start = jiffies;
5849                         schedule_work(&adapter->tx_hwtstamp_work);
5850                 } else {
5851                         skb_tx_timestamp(skb);
5852                 }
5853
5854                 netdev_sent_queue(netdev, skb->len);
5855                 e1000_tx_queue(tx_ring, tx_flags, count);
5856                 /* Make sure there is space in the ring for the next send. */
5857                 e1000_maybe_stop_tx(tx_ring,
5858                                     (MAX_SKB_FRAGS *
5859                                      DIV_ROUND_UP(PAGE_SIZE,
5860                                                   adapter->tx_fifo_limit) + 2));
5861
5862                 if (!skb->xmit_more ||
5863                     netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5864                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5865                                 e1000e_update_tdt_wa(tx_ring,
5866                                                      tx_ring->next_to_use);
5867                         else
5868                                 writel(tx_ring->next_to_use, tx_ring->tail);
5869
5870                         /* we need this if more than one processor can write
5871                          * to our tail at a time, it synchronizes IO on
5872                          *IA64/Altix systems
5873                          */
5874                         mmiowb();
5875                 }
5876         } else {
5877                 dev_kfree_skb_any(skb);
5878                 tx_ring->buffer_info[first].time_stamp = 0;
5879                 tx_ring->next_to_use = first;
5880         }
5881
5882         return NETDEV_TX_OK;
5883 }
5884
5885 /**
5886  * e1000_tx_timeout - Respond to a Tx Hang
5887  * @netdev: network interface device structure
5888  **/
5889 static void e1000_tx_timeout(struct net_device *netdev)
5890 {
5891         struct e1000_adapter *adapter = netdev_priv(netdev);
5892
5893         /* Do the reset outside of interrupt context */
5894         adapter->tx_timeout_count++;
5895         schedule_work(&adapter->reset_task);
5896 }
5897
5898 static void e1000_reset_task(struct work_struct *work)
5899 {
5900         struct e1000_adapter *adapter;
5901         adapter = container_of(work, struct e1000_adapter, reset_task);
5902
5903         /* don't run the task if already down */
5904         if (test_bit(__E1000_DOWN, &adapter->state))
5905                 return;
5906
5907         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5908                 e1000e_dump(adapter);
5909                 e_err("Reset adapter unexpectedly\n");
5910         }
5911         e1000e_reinit_locked(adapter);
5912 }
5913
5914 /**
5915  * e1000_get_stats64 - Get System Network Statistics
5916  * @netdev: network interface device structure
5917  * @stats: rtnl_link_stats64 pointer
5918  *
5919  * Returns the address of the device statistics structure.
5920  **/
5921 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5922                                              struct rtnl_link_stats64 *stats)
5923 {
5924         struct e1000_adapter *adapter = netdev_priv(netdev);
5925
5926         memset(stats, 0, sizeof(struct rtnl_link_stats64));
5927         spin_lock(&adapter->stats64_lock);
5928         e1000e_update_stats(adapter);
5929         /* Fill out the OS statistics structure */
5930         stats->rx_bytes = adapter->stats.gorc;
5931         stats->rx_packets = adapter->stats.gprc;
5932         stats->tx_bytes = adapter->stats.gotc;
5933         stats->tx_packets = adapter->stats.gptc;
5934         stats->multicast = adapter->stats.mprc;
5935         stats->collisions = adapter->stats.colc;
5936
5937         /* Rx Errors */
5938
5939         /* RLEC on some newer hardware can be incorrect so build
5940          * our own version based on RUC and ROC
5941          */
5942         stats->rx_errors = adapter->stats.rxerrc +
5943             adapter->stats.crcerrs + adapter->stats.algnerrc +
5944             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5945         stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5946         stats->rx_crc_errors = adapter->stats.crcerrs;
5947         stats->rx_frame_errors = adapter->stats.algnerrc;
5948         stats->rx_missed_errors = adapter->stats.mpc;
5949
5950         /* Tx Errors */
5951         stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5952         stats->tx_aborted_errors = adapter->stats.ecol;
5953         stats->tx_window_errors = adapter->stats.latecol;
5954         stats->tx_carrier_errors = adapter->stats.tncrs;
5955
5956         /* Tx Dropped needs to be maintained elsewhere */
5957
5958         spin_unlock(&adapter->stats64_lock);
5959         return stats;
5960 }
5961
5962 /**
5963  * e1000_change_mtu - Change the Maximum Transfer Unit
5964  * @netdev: network interface device structure
5965  * @new_mtu: new value for maximum frame size
5966  *
5967  * Returns 0 on success, negative on failure
5968  **/
5969 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5970 {
5971         struct e1000_adapter *adapter = netdev_priv(netdev);
5972         int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
5973
5974         /* Jumbo frame support */
5975         if ((max_frame > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) &&
5976             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5977                 e_err("Jumbo Frames not supported.\n");
5978                 return -EINVAL;
5979         }
5980
5981         /* Supported frame sizes */
5982         if ((new_mtu < (VLAN_ETH_ZLEN + ETH_FCS_LEN)) ||
5983             (max_frame > adapter->max_hw_frame_size)) {
5984                 e_err("Unsupported MTU setting\n");
5985                 return -EINVAL;
5986         }
5987
5988         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5989         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5990             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5991             (new_mtu > ETH_DATA_LEN)) {
5992                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5993                 return -EINVAL;
5994         }
5995
5996         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5997                 usleep_range(1000, 2000);
5998         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5999         adapter->max_frame_size = max_frame;
6000         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
6001         netdev->mtu = new_mtu;
6002
6003         pm_runtime_get_sync(netdev->dev.parent);
6004
6005         if (netif_running(netdev))
6006                 e1000e_down(adapter, true);
6007
6008         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6009          * means we reserve 2 more, this pushes us to allocate from the next
6010          * larger slab size.
6011          * i.e. RXBUFFER_2048 --> size-4096 slab
6012          * However with the new *_jumbo_rx* routines, jumbo receives will use
6013          * fragmented skbs
6014          */
6015
6016         if (max_frame <= 2048)
6017                 adapter->rx_buffer_len = 2048;
6018         else
6019                 adapter->rx_buffer_len = 4096;
6020
6021         /* adjust allocation if LPE protects us, and we aren't using SBP */
6022         if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6023                 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6024
6025         if (netif_running(netdev))
6026                 e1000e_up(adapter);
6027         else
6028                 e1000e_reset(adapter);
6029
6030         pm_runtime_put_sync(netdev->dev.parent);
6031
6032         clear_bit(__E1000_RESETTING, &adapter->state);
6033
6034         return 0;
6035 }
6036
6037 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6038                            int cmd)
6039 {
6040         struct e1000_adapter *adapter = netdev_priv(netdev);
6041         struct mii_ioctl_data *data = if_mii(ifr);
6042
6043         if (adapter->hw.phy.media_type != e1000_media_type_copper)
6044                 return -EOPNOTSUPP;
6045
6046         switch (cmd) {
6047         case SIOCGMIIPHY:
6048                 data->phy_id = adapter->hw.phy.addr;
6049                 break;
6050         case SIOCGMIIREG:
6051                 e1000_phy_read_status(adapter);
6052
6053                 switch (data->reg_num & 0x1F) {
6054                 case MII_BMCR:
6055                         data->val_out = adapter->phy_regs.bmcr;
6056                         break;
6057                 case MII_BMSR:
6058                         data->val_out = adapter->phy_regs.bmsr;
6059                         break;
6060                 case MII_PHYSID1:
6061                         data->val_out = (adapter->hw.phy.id >> 16);
6062                         break;
6063                 case MII_PHYSID2:
6064                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
6065                         break;
6066                 case MII_ADVERTISE:
6067                         data->val_out = adapter->phy_regs.advertise;
6068                         break;
6069                 case MII_LPA:
6070                         data->val_out = adapter->phy_regs.lpa;
6071                         break;
6072                 case MII_EXPANSION:
6073                         data->val_out = adapter->phy_regs.expansion;
6074                         break;
6075                 case MII_CTRL1000:
6076                         data->val_out = adapter->phy_regs.ctrl1000;
6077                         break;
6078                 case MII_STAT1000:
6079                         data->val_out = adapter->phy_regs.stat1000;
6080                         break;
6081                 case MII_ESTATUS:
6082                         data->val_out = adapter->phy_regs.estatus;
6083                         break;
6084                 default:
6085                         return -EIO;
6086                 }
6087                 break;
6088         case SIOCSMIIREG:
6089         default:
6090                 return -EOPNOTSUPP;
6091         }
6092         return 0;
6093 }
6094
6095 /**
6096  * e1000e_hwtstamp_ioctl - control hardware time stamping
6097  * @netdev: network interface device structure
6098  * @ifreq: interface request
6099  *
6100  * Outgoing time stamping can be enabled and disabled. Play nice and
6101  * disable it when requested, although it shouldn't cause any overhead
6102  * when no packet needs it. At most one packet in the queue may be
6103  * marked for time stamping, otherwise it would be impossible to tell
6104  * for sure to which packet the hardware time stamp belongs.
6105  *
6106  * Incoming time stamping has to be configured via the hardware filters.
6107  * Not all combinations are supported, in particular event type has to be
6108  * specified. Matching the kind of event packet is not supported, with the
6109  * exception of "all V2 events regardless of level 2 or 4".
6110  **/
6111 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6112 {
6113         struct e1000_adapter *adapter = netdev_priv(netdev);
6114         struct hwtstamp_config config;
6115         int ret_val;
6116
6117         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6118                 return -EFAULT;
6119
6120         ret_val = e1000e_config_hwtstamp(adapter, &config);
6121         if (ret_val)
6122                 return ret_val;
6123
6124         switch (config.rx_filter) {
6125         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6126         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6127         case HWTSTAMP_FILTER_PTP_V2_SYNC:
6128         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6129         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6130         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6131                 /* With V2 type filters which specify a Sync or Delay Request,
6132                  * Path Delay Request/Response messages are also time stamped
6133                  * by hardware so notify the caller the requested packets plus
6134                  * some others are time stamped.
6135                  */
6136                 config.rx_filter = HWTSTAMP_FILTER_SOME;
6137                 break;
6138         default:
6139                 break;
6140         }
6141
6142         return copy_to_user(ifr->ifr_data, &config,
6143                             sizeof(config)) ? -EFAULT : 0;
6144 }
6145
6146 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6147 {
6148         struct e1000_adapter *adapter = netdev_priv(netdev);
6149
6150         return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6151                             sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6152 }
6153
6154 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6155 {
6156         switch (cmd) {
6157         case SIOCGMIIPHY:
6158         case SIOCGMIIREG:
6159         case SIOCSMIIREG:
6160                 return e1000_mii_ioctl(netdev, ifr, cmd);
6161         case SIOCSHWTSTAMP:
6162                 return e1000e_hwtstamp_set(netdev, ifr);
6163         case SIOCGHWTSTAMP:
6164                 return e1000e_hwtstamp_get(netdev, ifr);
6165         default:
6166                 return -EOPNOTSUPP;
6167         }
6168 }
6169
6170 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6171 {
6172         struct e1000_hw *hw = &adapter->hw;
6173         u32 i, mac_reg, wuc;
6174         u16 phy_reg, wuc_enable;
6175         int retval;
6176
6177         /* copy MAC RARs to PHY RARs */
6178         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6179
6180         retval = hw->phy.ops.acquire(hw);
6181         if (retval) {
6182                 e_err("Could not acquire PHY\n");
6183                 return retval;
6184         }
6185
6186         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6187         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6188         if (retval)
6189                 goto release;
6190
6191         /* copy MAC MTA to PHY MTA - only needed for pchlan */
6192         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6193                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6194                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6195                                            (u16)(mac_reg & 0xFFFF));
6196                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6197                                            (u16)((mac_reg >> 16) & 0xFFFF));
6198         }
6199
6200         /* configure PHY Rx Control register */
6201         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6202         mac_reg = er32(RCTL);
6203         if (mac_reg & E1000_RCTL_UPE)
6204                 phy_reg |= BM_RCTL_UPE;
6205         if (mac_reg & E1000_RCTL_MPE)
6206                 phy_reg |= BM_RCTL_MPE;
6207         phy_reg &= ~(BM_RCTL_MO_MASK);
6208         if (mac_reg & E1000_RCTL_MO_3)
6209                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6210                             << BM_RCTL_MO_SHIFT);
6211         if (mac_reg & E1000_RCTL_BAM)
6212                 phy_reg |= BM_RCTL_BAM;
6213         if (mac_reg & E1000_RCTL_PMCF)
6214                 phy_reg |= BM_RCTL_PMCF;
6215         mac_reg = er32(CTRL);
6216         if (mac_reg & E1000_CTRL_RFCE)
6217                 phy_reg |= BM_RCTL_RFCE;
6218         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6219
6220         wuc = E1000_WUC_PME_EN;
6221         if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6222                 wuc |= E1000_WUC_APME;
6223
6224         /* enable PHY wakeup in MAC register */
6225         ew32(WUFC, wufc);
6226         ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6227                    E1000_WUC_PME_STATUS | wuc));
6228
6229         /* configure and enable PHY wakeup in PHY registers */
6230         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6231         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6232
6233         /* activate PHY wakeup */
6234         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6235         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6236         if (retval)
6237                 e_err("Could not set PHY Host Wakeup bit\n");
6238 release:
6239         hw->phy.ops.release(hw);
6240
6241         return retval;
6242 }
6243
6244 static void e1000e_flush_lpic(struct pci_dev *pdev)
6245 {
6246         struct net_device *netdev = pci_get_drvdata(pdev);
6247         struct e1000_adapter *adapter = netdev_priv(netdev);
6248         struct e1000_hw *hw = &adapter->hw;
6249         u32 ret_val;
6250
6251         pm_runtime_get_sync(netdev->dev.parent);
6252
6253         ret_val = hw->phy.ops.acquire(hw);
6254         if (ret_val)
6255                 goto fl_out;
6256
6257         pr_info("EEE TX LPI TIMER: %08X\n",
6258                 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6259
6260         hw->phy.ops.release(hw);
6261
6262 fl_out:
6263         pm_runtime_put_sync(netdev->dev.parent);
6264 }
6265
6266 static int e1000e_pm_freeze(struct device *dev)
6267 {
6268         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6269         struct e1000_adapter *adapter = netdev_priv(netdev);
6270
6271         netif_device_detach(netdev);
6272
6273         if (netif_running(netdev)) {
6274                 int count = E1000_CHECK_RESET_COUNT;
6275
6276                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6277                         usleep_range(10000, 20000);
6278
6279                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6280
6281                 /* Quiesce the device without resetting the hardware */
6282                 e1000e_down(adapter, false);
6283                 e1000_free_irq(adapter);
6284         }
6285         e1000e_reset_interrupt_capability(adapter);
6286
6287         /* Allow time for pending master requests to run */
6288         e1000e_disable_pcie_master(&adapter->hw);
6289
6290         return 0;
6291 }
6292
6293 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6294 {
6295         struct net_device *netdev = pci_get_drvdata(pdev);
6296         struct e1000_adapter *adapter = netdev_priv(netdev);
6297         struct e1000_hw *hw = &adapter->hw;
6298         u32 ctrl, ctrl_ext, rctl, status;
6299         /* Runtime suspend should only enable wakeup for link changes */
6300         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6301         int retval = 0;
6302
6303         status = er32(STATUS);
6304         if (status & E1000_STATUS_LU)
6305                 wufc &= ~E1000_WUFC_LNKC;
6306
6307         if (wufc) {
6308                 e1000_setup_rctl(adapter);
6309                 e1000e_set_rx_mode(netdev);
6310
6311                 /* turn on all-multi mode if wake on multicast is enabled */
6312                 if (wufc & E1000_WUFC_MC) {
6313                         rctl = er32(RCTL);
6314                         rctl |= E1000_RCTL_MPE;
6315                         ew32(RCTL, rctl);
6316                 }
6317
6318                 ctrl = er32(CTRL);
6319                 ctrl |= E1000_CTRL_ADVD3WUC;
6320                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6321                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6322                 ew32(CTRL, ctrl);
6323
6324                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6325                     adapter->hw.phy.media_type ==
6326                     e1000_media_type_internal_serdes) {
6327                         /* keep the laser running in D3 */
6328                         ctrl_ext = er32(CTRL_EXT);
6329                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6330                         ew32(CTRL_EXT, ctrl_ext);
6331                 }
6332
6333                 if (!runtime)
6334                         e1000e_power_up_phy(adapter);
6335
6336                 if (adapter->flags & FLAG_IS_ICH)
6337                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
6338
6339                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6340                         /* enable wakeup by the PHY */
6341                         retval = e1000_init_phy_wakeup(adapter, wufc);
6342                         if (retval)
6343                                 return retval;
6344                 } else {
6345                         /* enable wakeup by the MAC */
6346                         ew32(WUFC, wufc);
6347                         ew32(WUC, E1000_WUC_PME_EN);
6348                 }
6349         } else {
6350                 ew32(WUC, 0);
6351                 ew32(WUFC, 0);
6352
6353                 e1000_power_down_phy(adapter);
6354         }
6355
6356         if (adapter->hw.phy.type == e1000_phy_igp_3) {
6357                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6358         } else if ((hw->mac.type == e1000_pch_lpt) ||
6359                    (hw->mac.type == e1000_pch_spt)) {
6360                 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6361                         /* ULP does not support wake from unicast, multicast
6362                          * or broadcast.
6363                          */
6364                         retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6365
6366                 if (retval)
6367                         return retval;
6368         }
6369
6370         /* Ensure that the appropriate bits are set in LPI_CTRL
6371          * for EEE in Sx
6372          */
6373         if ((hw->phy.type >= e1000_phy_i217) &&
6374             adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6375                 u16 lpi_ctrl = 0;
6376
6377                 retval = hw->phy.ops.acquire(hw);
6378                 if (!retval) {
6379                         retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6380                                                  &lpi_ctrl);
6381                         if (!retval) {
6382                                 if (adapter->eee_advert &
6383                                     hw->dev_spec.ich8lan.eee_lp_ability &
6384                                     I82579_EEE_100_SUPPORTED)
6385                                         lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6386                                 if (adapter->eee_advert &
6387                                     hw->dev_spec.ich8lan.eee_lp_ability &
6388                                     I82579_EEE_1000_SUPPORTED)
6389                                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6390
6391                                 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6392                                                          lpi_ctrl);
6393                         }
6394                 }
6395                 hw->phy.ops.release(hw);
6396         }
6397
6398         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6399          * would have already happened in close and is redundant.
6400          */
6401         e1000e_release_hw_control(adapter);
6402
6403         pci_clear_master(pdev);
6404
6405         /* The pci-e switch on some quad port adapters will report a
6406          * correctable error when the MAC transitions from D0 to D3.  To
6407          * prevent this we need to mask off the correctable errors on the
6408          * downstream port of the pci-e switch.
6409          *
6410          * We don't have the associated upstream bridge while assigning
6411          * the PCI device into guest. For example, the KVM on power is
6412          * one of the cases.
6413          */
6414         if (adapter->flags & FLAG_IS_QUAD_PORT) {
6415                 struct pci_dev *us_dev = pdev->bus->self;
6416                 u16 devctl;
6417
6418                 if (!us_dev)
6419                         return 0;
6420
6421                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6422                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6423                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
6424
6425                 pci_save_state(pdev);
6426                 pci_prepare_to_sleep(pdev);
6427
6428                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6429         }
6430
6431         return 0;
6432 }
6433
6434 /**
6435  * __e1000e_disable_aspm - Disable ASPM states
6436  * @pdev: pointer to PCI device struct
6437  * @state: bit-mask of ASPM states to disable
6438  * @locked: indication if this context holds pci_bus_sem locked.
6439  *
6440  * Some devices *must* have certain ASPM states disabled per hardware errata.
6441  **/
6442 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6443 {
6444         struct pci_dev *parent = pdev->bus->self;
6445         u16 aspm_dis_mask = 0;
6446         u16 pdev_aspmc, parent_aspmc;
6447
6448         switch (state) {
6449         case PCIE_LINK_STATE_L0S:
6450         case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6451                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6452                 /* fall-through - can't have L1 without L0s */
6453         case PCIE_LINK_STATE_L1:
6454                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6455                 break;
6456         default:
6457                 return;
6458         }
6459
6460         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6461         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6462
6463         if (parent) {
6464                 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6465                                           &parent_aspmc);
6466                 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6467         }
6468
6469         /* Nothing to do if the ASPM states to be disabled already are */
6470         if (!(pdev_aspmc & aspm_dis_mask) &&
6471             (!parent || !(parent_aspmc & aspm_dis_mask)))
6472                 return;
6473
6474         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6475                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6476                  "L0s" : "",
6477                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6478                  "L1" : "");
6479
6480 #ifdef CONFIG_PCIEASPM
6481         if (locked)
6482                 pci_disable_link_state_locked(pdev, state);
6483         else
6484                 pci_disable_link_state(pdev, state);
6485
6486         /* Double-check ASPM control.  If not disabled by the above, the
6487          * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6488          * not enabled); override by writing PCI config space directly.
6489          */
6490         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6491         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6492
6493         if (!(aspm_dis_mask & pdev_aspmc))
6494                 return;
6495 #endif
6496
6497         /* Both device and parent should have the same ASPM setting.
6498          * Disable ASPM in downstream component first and then upstream.
6499          */
6500         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6501
6502         if (parent)
6503                 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6504                                            aspm_dis_mask);
6505 }
6506
6507 /**
6508  * e1000e_disable_aspm - Disable ASPM states.
6509  * @pdev: pointer to PCI device struct
6510  * @state: bit-mask of ASPM states to disable
6511  *
6512  * This function acquires the pci_bus_sem!
6513  * Some devices *must* have certain ASPM states disabled per hardware errata.
6514  **/
6515 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6516 {
6517         __e1000e_disable_aspm(pdev, state, 0);
6518 }
6519
6520 /**
6521  * e1000e_disable_aspm_locked   Disable ASPM states.
6522  * @pdev: pointer to PCI device struct
6523  * @state: bit-mask of ASPM states to disable
6524  *
6525  * This function must be called with pci_bus_sem acquired!
6526  * Some devices *must* have certain ASPM states disabled per hardware errata.
6527  **/
6528 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6529 {
6530         __e1000e_disable_aspm(pdev, state, 1);
6531 }
6532
6533 #ifdef CONFIG_PM
6534 static int __e1000_resume(struct pci_dev *pdev)
6535 {
6536         struct net_device *netdev = pci_get_drvdata(pdev);
6537         struct e1000_adapter *adapter = netdev_priv(netdev);
6538         struct e1000_hw *hw = &adapter->hw;
6539         u16 aspm_disable_flag = 0;
6540
6541         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6542                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6543         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6544                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6545         if (aspm_disable_flag)
6546                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6547
6548         pci_set_master(pdev);
6549
6550         if (hw->mac.type >= e1000_pch2lan)
6551                 e1000_resume_workarounds_pchlan(&adapter->hw);
6552
6553         e1000e_power_up_phy(adapter);
6554
6555         /* report the system wakeup cause from S3/S4 */
6556         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6557                 u16 phy_data;
6558
6559                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6560                 if (phy_data) {
6561                         e_info("PHY Wakeup cause - %s\n",
6562                                phy_data & E1000_WUS_EX ? "Unicast Packet" :
6563                                phy_data & E1000_WUS_MC ? "Multicast Packet" :
6564                                phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6565                                phy_data & E1000_WUS_MAG ? "Magic Packet" :
6566                                phy_data & E1000_WUS_LNKC ?
6567                                "Link Status Change" : "other");
6568                 }
6569                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6570         } else {
6571                 u32 wus = er32(WUS);
6572
6573                 if (wus) {
6574                         e_info("MAC Wakeup cause - %s\n",
6575                                wus & E1000_WUS_EX ? "Unicast Packet" :
6576                                wus & E1000_WUS_MC ? "Multicast Packet" :
6577                                wus & E1000_WUS_BC ? "Broadcast Packet" :
6578                                wus & E1000_WUS_MAG ? "Magic Packet" :
6579                                wus & E1000_WUS_LNKC ? "Link Status Change" :
6580                                "other");
6581                 }
6582                 ew32(WUS, ~0);
6583         }
6584
6585         e1000e_reset(adapter);
6586
6587         e1000_init_manageability_pt(adapter);
6588
6589         /* If the controller has AMT, do not set DRV_LOAD until the interface
6590          * is up.  For all other cases, let the f/w know that the h/w is now
6591          * under the control of the driver.
6592          */
6593         if (!(adapter->flags & FLAG_HAS_AMT))
6594                 e1000e_get_hw_control(adapter);
6595
6596         return 0;
6597 }
6598
6599 #ifdef CONFIG_PM_SLEEP
6600 static int e1000e_pm_thaw(struct device *dev)
6601 {
6602         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6603         struct e1000_adapter *adapter = netdev_priv(netdev);
6604
6605         e1000e_set_interrupt_capability(adapter);
6606         if (netif_running(netdev)) {
6607                 u32 err = e1000_request_irq(adapter);
6608
6609                 if (err)
6610                         return err;
6611
6612                 e1000e_up(adapter);
6613         }
6614
6615         netif_device_attach(netdev);
6616
6617         return 0;
6618 }
6619
6620 static int e1000e_pm_suspend(struct device *dev)
6621 {
6622         struct pci_dev *pdev = to_pci_dev(dev);
6623
6624         e1000e_flush_lpic(pdev);
6625
6626         e1000e_pm_freeze(dev);
6627
6628         return __e1000_shutdown(pdev, false);
6629 }
6630
6631 static int e1000e_pm_resume(struct device *dev)
6632 {
6633         struct pci_dev *pdev = to_pci_dev(dev);
6634         int rc;
6635
6636         rc = __e1000_resume(pdev);
6637         if (rc)
6638                 return rc;
6639
6640         return e1000e_pm_thaw(dev);
6641 }
6642 #endif /* CONFIG_PM_SLEEP */
6643
6644 static int e1000e_pm_runtime_idle(struct device *dev)
6645 {
6646         struct pci_dev *pdev = to_pci_dev(dev);
6647         struct net_device *netdev = pci_get_drvdata(pdev);
6648         struct e1000_adapter *adapter = netdev_priv(netdev);
6649         u16 eee_lp;
6650
6651         eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6652
6653         if (!e1000e_has_link(adapter)) {
6654                 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6655                 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6656         }
6657
6658         return -EBUSY;
6659 }
6660
6661 static int e1000e_pm_runtime_resume(struct device *dev)
6662 {
6663         struct pci_dev *pdev = to_pci_dev(dev);
6664         struct net_device *netdev = pci_get_drvdata(pdev);
6665         struct e1000_adapter *adapter = netdev_priv(netdev);
6666         int rc;
6667
6668         rc = __e1000_resume(pdev);
6669         if (rc)
6670                 return rc;
6671
6672         if (netdev->flags & IFF_UP)
6673                 e1000e_up(adapter);
6674
6675         return rc;
6676 }
6677
6678 static int e1000e_pm_runtime_suspend(struct device *dev)
6679 {
6680         struct pci_dev *pdev = to_pci_dev(dev);
6681         struct net_device *netdev = pci_get_drvdata(pdev);
6682         struct e1000_adapter *adapter = netdev_priv(netdev);
6683
6684         if (netdev->flags & IFF_UP) {
6685                 int count = E1000_CHECK_RESET_COUNT;
6686
6687                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6688                         usleep_range(10000, 20000);
6689
6690                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6691
6692                 /* Down the device without resetting the hardware */
6693                 e1000e_down(adapter, false);
6694         }
6695
6696         if (__e1000_shutdown(pdev, true)) {
6697                 e1000e_pm_runtime_resume(dev);
6698                 return -EBUSY;
6699         }
6700
6701         return 0;
6702 }
6703 #endif /* CONFIG_PM */
6704
6705 static void e1000_shutdown(struct pci_dev *pdev)
6706 {
6707         e1000e_flush_lpic(pdev);
6708
6709         e1000e_pm_freeze(&pdev->dev);
6710
6711         __e1000_shutdown(pdev, false);
6712 }
6713
6714 #ifdef CONFIG_NET_POLL_CONTROLLER
6715
6716 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6717 {
6718         struct net_device *netdev = data;
6719         struct e1000_adapter *adapter = netdev_priv(netdev);
6720
6721         if (adapter->msix_entries) {
6722                 int vector, msix_irq;
6723
6724                 vector = 0;
6725                 msix_irq = adapter->msix_entries[vector].vector;
6726                 disable_irq(msix_irq);
6727                 e1000_intr_msix_rx(msix_irq, netdev);
6728                 enable_irq(msix_irq);
6729
6730                 vector++;
6731                 msix_irq = adapter->msix_entries[vector].vector;
6732                 disable_irq(msix_irq);
6733                 e1000_intr_msix_tx(msix_irq, netdev);
6734                 enable_irq(msix_irq);
6735
6736                 vector++;
6737                 msix_irq = adapter->msix_entries[vector].vector;
6738                 disable_irq(msix_irq);
6739                 e1000_msix_other(msix_irq, netdev);
6740                 enable_irq(msix_irq);
6741         }
6742
6743         return IRQ_HANDLED;
6744 }
6745
6746 /**
6747  * e1000_netpoll
6748  * @netdev: network interface device structure
6749  *
6750  * Polling 'interrupt' - used by things like netconsole to send skbs
6751  * without having to re-enable interrupts. It's not called while
6752  * the interrupt routine is executing.
6753  */
6754 static void e1000_netpoll(struct net_device *netdev)
6755 {
6756         struct e1000_adapter *adapter = netdev_priv(netdev);
6757
6758         switch (adapter->int_mode) {
6759         case E1000E_INT_MODE_MSIX:
6760                 e1000_intr_msix(adapter->pdev->irq, netdev);
6761                 break;
6762         case E1000E_INT_MODE_MSI:
6763                 disable_irq(adapter->pdev->irq);
6764                 e1000_intr_msi(adapter->pdev->irq, netdev);
6765                 enable_irq(adapter->pdev->irq);
6766                 break;
6767         default:                /* E1000E_INT_MODE_LEGACY */
6768                 disable_irq(adapter->pdev->irq);
6769                 e1000_intr(adapter->pdev->irq, netdev);
6770                 enable_irq(adapter->pdev->irq);
6771                 break;
6772         }
6773 }
6774 #endif
6775
6776 /**
6777  * e1000_io_error_detected - called when PCI error is detected
6778  * @pdev: Pointer to PCI device
6779  * @state: The current pci connection state
6780  *
6781  * This function is called after a PCI bus error affecting
6782  * this device has been detected.
6783  */
6784 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6785                                                 pci_channel_state_t state)
6786 {
6787         struct net_device *netdev = pci_get_drvdata(pdev);
6788         struct e1000_adapter *adapter = netdev_priv(netdev);
6789
6790         netif_device_detach(netdev);
6791
6792         if (state == pci_channel_io_perm_failure)
6793                 return PCI_ERS_RESULT_DISCONNECT;
6794
6795         if (netif_running(netdev))
6796                 e1000e_down(adapter, true);
6797         pci_disable_device(pdev);
6798
6799         /* Request a slot slot reset. */
6800         return PCI_ERS_RESULT_NEED_RESET;
6801 }
6802
6803 /**
6804  * e1000_io_slot_reset - called after the pci bus has been reset.
6805  * @pdev: Pointer to PCI device
6806  *
6807  * Restart the card from scratch, as if from a cold-boot. Implementation
6808  * resembles the first-half of the e1000e_pm_resume routine.
6809  */
6810 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6811 {
6812         struct net_device *netdev = pci_get_drvdata(pdev);
6813         struct e1000_adapter *adapter = netdev_priv(netdev);
6814         struct e1000_hw *hw = &adapter->hw;
6815         u16 aspm_disable_flag = 0;
6816         int err;
6817         pci_ers_result_t result;
6818
6819         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6820                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6821         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6822                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6823         if (aspm_disable_flag)
6824                 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6825
6826         err = pci_enable_device_mem(pdev);
6827         if (err) {
6828                 dev_err(&pdev->dev,
6829                         "Cannot re-enable PCI device after reset.\n");
6830                 result = PCI_ERS_RESULT_DISCONNECT;
6831         } else {
6832                 pdev->state_saved = true;
6833                 pci_restore_state(pdev);
6834                 pci_set_master(pdev);
6835
6836                 pci_enable_wake(pdev, PCI_D3hot, 0);
6837                 pci_enable_wake(pdev, PCI_D3cold, 0);
6838
6839                 e1000e_reset(adapter);
6840                 ew32(WUS, ~0);
6841                 result = PCI_ERS_RESULT_RECOVERED;
6842         }
6843
6844         pci_cleanup_aer_uncorrect_error_status(pdev);
6845
6846         return result;
6847 }
6848
6849 /**
6850  * e1000_io_resume - called when traffic can start flowing again.
6851  * @pdev: Pointer to PCI device
6852  *
6853  * This callback is called when the error recovery driver tells us that
6854  * its OK to resume normal operation. Implementation resembles the
6855  * second-half of the e1000e_pm_resume routine.
6856  */
6857 static void e1000_io_resume(struct pci_dev *pdev)
6858 {
6859         struct net_device *netdev = pci_get_drvdata(pdev);
6860         struct e1000_adapter *adapter = netdev_priv(netdev);
6861
6862         e1000_init_manageability_pt(adapter);
6863
6864         if (netif_running(netdev))
6865                 e1000e_up(adapter);
6866
6867         netif_device_attach(netdev);
6868
6869         /* If the controller has AMT, do not set DRV_LOAD until the interface
6870          * is up.  For all other cases, let the f/w know that the h/w is now
6871          * under the control of the driver.
6872          */
6873         if (!(adapter->flags & FLAG_HAS_AMT))
6874                 e1000e_get_hw_control(adapter);
6875 }
6876
6877 static void e1000_print_device_info(struct e1000_adapter *adapter)
6878 {
6879         struct e1000_hw *hw = &adapter->hw;
6880         struct net_device *netdev = adapter->netdev;
6881         u32 ret_val;
6882         u8 pba_str[E1000_PBANUM_LENGTH];
6883
6884         /* print bus type/speed/width info */
6885         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6886                /* bus width */
6887                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6888                 "Width x1"),
6889                /* MAC address */
6890                netdev->dev_addr);
6891         e_info("Intel(R) PRO/%s Network Connection\n",
6892                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6893         ret_val = e1000_read_pba_string_generic(hw, pba_str,
6894                                                 E1000_PBANUM_LENGTH);
6895         if (ret_val)
6896                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6897         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6898                hw->mac.type, hw->phy.type, pba_str);
6899 }
6900
6901 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6902 {
6903         struct e1000_hw *hw = &adapter->hw;
6904         int ret_val;
6905         u16 buf = 0;
6906
6907         if (hw->mac.type != e1000_82573)
6908                 return;
6909
6910         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6911         le16_to_cpus(&buf);
6912         if (!ret_val && (!(buf & BIT(0)))) {
6913                 /* Deep Smart Power Down (DSPD) */
6914                 dev_warn(&adapter->pdev->dev,
6915                          "Warning: detected DSPD enabled in EEPROM\n");
6916         }
6917 }
6918
6919 static netdev_features_t e1000_fix_features(struct net_device *netdev,
6920                                             netdev_features_t features)
6921 {
6922         struct e1000_adapter *adapter = netdev_priv(netdev);
6923         struct e1000_hw *hw = &adapter->hw;
6924
6925         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6926         if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6927                 features &= ~NETIF_F_RXFCS;
6928
6929         return features;
6930 }
6931
6932 static int e1000_set_features(struct net_device *netdev,
6933                               netdev_features_t features)
6934 {
6935         struct e1000_adapter *adapter = netdev_priv(netdev);
6936         netdev_features_t changed = features ^ netdev->features;
6937
6938         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6939                 adapter->flags |= FLAG_TSO_FORCE;
6940
6941         if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6942                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6943                          NETIF_F_RXALL)))
6944                 return 0;
6945
6946         if (changed & NETIF_F_RXFCS) {
6947                 if (features & NETIF_F_RXFCS) {
6948                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6949                 } else {
6950                         /* We need to take it back to defaults, which might mean
6951                          * stripping is still disabled at the adapter level.
6952                          */
6953                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6954                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6955                         else
6956                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6957                 }
6958         }
6959
6960         netdev->features = features;
6961
6962         if (netif_running(netdev))
6963                 e1000e_reinit_locked(adapter);
6964         else
6965                 e1000e_reset(adapter);
6966
6967         return 0;
6968 }
6969
6970 static const struct net_device_ops e1000e_netdev_ops = {
6971         .ndo_open               = e1000e_open,
6972         .ndo_stop               = e1000e_close,
6973         .ndo_start_xmit         = e1000_xmit_frame,
6974         .ndo_get_stats64        = e1000e_get_stats64,
6975         .ndo_set_rx_mode        = e1000e_set_rx_mode,
6976         .ndo_set_mac_address    = e1000_set_mac,
6977         .ndo_change_mtu         = e1000_change_mtu,
6978         .ndo_do_ioctl           = e1000_ioctl,
6979         .ndo_tx_timeout         = e1000_tx_timeout,
6980         .ndo_validate_addr      = eth_validate_addr,
6981
6982         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
6983         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
6984 #ifdef CONFIG_NET_POLL_CONTROLLER
6985         .ndo_poll_controller    = e1000_netpoll,
6986 #endif
6987         .ndo_set_features = e1000_set_features,
6988         .ndo_fix_features = e1000_fix_features,
6989         .ndo_features_check     = passthru_features_check,
6990 };
6991
6992 /**
6993  * e1000_probe - Device Initialization Routine
6994  * @pdev: PCI device information struct
6995  * @ent: entry in e1000_pci_tbl
6996  *
6997  * Returns 0 on success, negative on failure
6998  *
6999  * e1000_probe initializes an adapter identified by a pci_dev structure.
7000  * The OS initialization, configuring of the adapter private structure,
7001  * and a hardware reset occur.
7002  **/
7003 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7004 {
7005         struct net_device *netdev;
7006         struct e1000_adapter *adapter;
7007         struct e1000_hw *hw;
7008         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7009         resource_size_t mmio_start, mmio_len;
7010         resource_size_t flash_start, flash_len;
7011         static int cards_found;
7012         u16 aspm_disable_flag = 0;
7013         int bars, i, err, pci_using_dac;
7014         u16 eeprom_data = 0;
7015         u16 eeprom_apme_mask = E1000_EEPROM_APME;
7016         s32 ret_val = 0;
7017
7018         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7019                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7020         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7021                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7022         if (aspm_disable_flag)
7023                 e1000e_disable_aspm(pdev, aspm_disable_flag);
7024
7025         err = pci_enable_device_mem(pdev);
7026         if (err)
7027                 return err;
7028
7029         pci_using_dac = 0;
7030         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7031         if (!err) {
7032                 pci_using_dac = 1;
7033         } else {
7034                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7035                 if (err) {
7036                         dev_err(&pdev->dev,
7037                                 "No usable DMA configuration, aborting\n");
7038                         goto err_dma;
7039                 }
7040         }
7041
7042         bars = pci_select_bars(pdev, IORESOURCE_MEM);
7043         err = pci_request_selected_regions_exclusive(pdev, bars,
7044                                                      e1000e_driver_name);
7045         if (err)
7046                 goto err_pci_reg;
7047
7048         /* AER (Advanced Error Reporting) hooks */
7049         pci_enable_pcie_error_reporting(pdev);
7050
7051         pci_set_master(pdev);
7052         /* PCI config space info */
7053         err = pci_save_state(pdev);
7054         if (err)
7055                 goto err_alloc_etherdev;
7056
7057         err = -ENOMEM;
7058         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7059         if (!netdev)
7060                 goto err_alloc_etherdev;
7061
7062         SET_NETDEV_DEV(netdev, &pdev->dev);
7063
7064         netdev->irq = pdev->irq;
7065
7066         pci_set_drvdata(pdev, netdev);
7067         adapter = netdev_priv(netdev);
7068         hw = &adapter->hw;
7069         adapter->netdev = netdev;
7070         adapter->pdev = pdev;
7071         adapter->ei = ei;
7072         adapter->pba = ei->pba;
7073         adapter->flags = ei->flags;
7074         adapter->flags2 = ei->flags2;
7075         adapter->hw.adapter = adapter;
7076         adapter->hw.mac.type = ei->mac;
7077         adapter->max_hw_frame_size = ei->max_hw_frame_size;
7078         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7079
7080         mmio_start = pci_resource_start(pdev, 0);
7081         mmio_len = pci_resource_len(pdev, 0);
7082
7083         err = -EIO;
7084         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7085         if (!adapter->hw.hw_addr)
7086                 goto err_ioremap;
7087
7088         if ((adapter->flags & FLAG_HAS_FLASH) &&
7089             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7090             (hw->mac.type < e1000_pch_spt)) {
7091                 flash_start = pci_resource_start(pdev, 1);
7092                 flash_len = pci_resource_len(pdev, 1);
7093                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7094                 if (!adapter->hw.flash_address)
7095                         goto err_flashmap;
7096         }
7097
7098         /* Set default EEE advertisement */
7099         if (adapter->flags2 & FLAG2_HAS_EEE)
7100                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7101
7102         /* construct the net_device struct */
7103         netdev->netdev_ops = &e1000e_netdev_ops;
7104         e1000e_set_ethtool_ops(netdev);
7105         netdev->watchdog_timeo = 5 * HZ;
7106         netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7107         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7108
7109         netdev->mem_start = mmio_start;
7110         netdev->mem_end = mmio_start + mmio_len;
7111
7112         adapter->bd_number = cards_found++;
7113
7114         e1000e_check_options(adapter);
7115
7116         /* setup adapter struct */
7117         err = e1000_sw_init(adapter);
7118         if (err)
7119                 goto err_sw_init;
7120
7121         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7122         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7123         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7124
7125         err = ei->get_variants(adapter);
7126         if (err)
7127                 goto err_hw_init;
7128
7129         if ((adapter->flags & FLAG_IS_ICH) &&
7130             (adapter->flags & FLAG_READ_ONLY_NVM) &&
7131             (hw->mac.type < e1000_pch_spt))
7132                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7133
7134         hw->mac.ops.get_bus_info(&adapter->hw);
7135
7136         adapter->hw.phy.autoneg_wait_to_complete = 0;
7137
7138         /* Copper options */
7139         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7140                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7141                 adapter->hw.phy.disable_polarity_correction = 0;
7142                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7143         }
7144
7145         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7146                 dev_info(&pdev->dev,
7147                          "PHY reset is blocked due to SOL/IDER session.\n");
7148
7149         /* Set initial default active device features */
7150         netdev->features = (NETIF_F_SG |
7151                             NETIF_F_HW_VLAN_CTAG_RX |
7152                             NETIF_F_HW_VLAN_CTAG_TX |
7153                             NETIF_F_TSO |
7154                             NETIF_F_TSO6 |
7155                             NETIF_F_RXHASH |
7156                             NETIF_F_RXCSUM |
7157                             NETIF_F_HW_CSUM);
7158
7159         /* Set user-changeable features (subset of all device features) */
7160         netdev->hw_features = netdev->features;
7161         netdev->hw_features |= NETIF_F_RXFCS;
7162         netdev->priv_flags |= IFF_SUPP_NOFCS;
7163         netdev->hw_features |= NETIF_F_RXALL;
7164
7165         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7166                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7167
7168         netdev->vlan_features |= (NETIF_F_SG |
7169                                   NETIF_F_TSO |
7170                                   NETIF_F_TSO6 |
7171                                   NETIF_F_HW_CSUM);
7172
7173         netdev->priv_flags |= IFF_UNICAST_FLT;
7174
7175         if (pci_using_dac) {
7176                 netdev->features |= NETIF_F_HIGHDMA;
7177                 netdev->vlan_features |= NETIF_F_HIGHDMA;
7178         }
7179
7180         if (e1000e_enable_mng_pass_thru(&adapter->hw))
7181                 adapter->flags |= FLAG_MNG_PT_ENABLED;
7182
7183         /* before reading the NVM, reset the controller to
7184          * put the device in a known good starting state
7185          */
7186         adapter->hw.mac.ops.reset_hw(&adapter->hw);
7187
7188         /* systems with ASPM and others may see the checksum fail on the first
7189          * attempt. Let's give it a few tries
7190          */
7191         for (i = 0;; i++) {
7192                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7193                         break;
7194                 if (i == 2) {
7195                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7196                         err = -EIO;
7197                         goto err_eeprom;
7198                 }
7199         }
7200
7201         e1000_eeprom_checks(adapter);
7202
7203         /* copy the MAC address */
7204         if (e1000e_read_mac_addr(&adapter->hw))
7205                 dev_err(&pdev->dev,
7206                         "NVM Read Error while reading MAC address\n");
7207
7208         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7209
7210         if (!is_valid_ether_addr(netdev->dev_addr)) {
7211                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7212                         netdev->dev_addr);
7213                 err = -EIO;
7214                 goto err_eeprom;
7215         }
7216
7217         init_timer(&adapter->watchdog_timer);
7218         adapter->watchdog_timer.function = e1000_watchdog;
7219         adapter->watchdog_timer.data = (unsigned long)adapter;
7220
7221         init_timer(&adapter->phy_info_timer);
7222         adapter->phy_info_timer.function = e1000_update_phy_info;
7223         adapter->phy_info_timer.data = (unsigned long)adapter;
7224
7225         INIT_WORK(&adapter->reset_task, e1000_reset_task);
7226         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7227         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7228         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7229         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7230
7231         /* Initialize link parameters. User can change them with ethtool */
7232         adapter->hw.mac.autoneg = 1;
7233         adapter->fc_autoneg = true;
7234         adapter->hw.fc.requested_mode = e1000_fc_default;
7235         adapter->hw.fc.current_mode = e1000_fc_default;
7236         adapter->hw.phy.autoneg_advertised = 0x2f;
7237
7238         /* Initial Wake on LAN setting - If APM wake is enabled in
7239          * the EEPROM, enable the ACPI Magic Packet filter
7240          */
7241         if (adapter->flags & FLAG_APME_IN_WUC) {
7242                 /* APME bit in EEPROM is mapped to WUC.APME */
7243                 eeprom_data = er32(WUC);
7244                 eeprom_apme_mask = E1000_WUC_APME;
7245                 if ((hw->mac.type > e1000_ich10lan) &&
7246                     (eeprom_data & E1000_WUC_PHY_WAKE))
7247                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7248         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7249                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7250                     (adapter->hw.bus.func == 1))
7251                         ret_val = e1000_read_nvm(&adapter->hw,
7252                                               NVM_INIT_CONTROL3_PORT_B,
7253                                               1, &eeprom_data);
7254                 else
7255                         ret_val = e1000_read_nvm(&adapter->hw,
7256                                               NVM_INIT_CONTROL3_PORT_A,
7257                                               1, &eeprom_data);
7258         }
7259
7260         /* fetch WoL from EEPROM */
7261         if (ret_val)
7262                 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7263         else if (eeprom_data & eeprom_apme_mask)
7264                 adapter->eeprom_wol |= E1000_WUFC_MAG;
7265
7266         /* now that we have the eeprom settings, apply the special cases
7267          * where the eeprom may be wrong or the board simply won't support
7268          * wake on lan on a particular port
7269          */
7270         if (!(adapter->flags & FLAG_HAS_WOL))
7271                 adapter->eeprom_wol = 0;
7272
7273         /* initialize the wol settings based on the eeprom settings */
7274         adapter->wol = adapter->eeprom_wol;
7275
7276         /* make sure adapter isn't asleep if manageability is enabled */
7277         if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7278             (hw->mac.ops.check_mng_mode(hw)))
7279                 device_wakeup_enable(&pdev->dev);
7280
7281         /* save off EEPROM version number */
7282         ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7283
7284         if (ret_val) {
7285                 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7286                 adapter->eeprom_vers = 0;
7287         }
7288
7289         /* init PTP hardware clock */
7290         e1000e_ptp_init(adapter);
7291
7292         /* reset the hardware with the new settings */
7293         e1000e_reset(adapter);
7294
7295         /* If the controller has AMT, do not set DRV_LOAD until the interface
7296          * is up.  For all other cases, let the f/w know that the h/w is now
7297          * under the control of the driver.
7298          */
7299         if (!(adapter->flags & FLAG_HAS_AMT))
7300                 e1000e_get_hw_control(adapter);
7301
7302         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7303         err = register_netdev(netdev);
7304         if (err)
7305                 goto err_register;
7306
7307         /* carrier off reporting is important to ethtool even BEFORE open */
7308         netif_carrier_off(netdev);
7309
7310         e1000_print_device_info(adapter);
7311
7312         if (pci_dev_run_wake(pdev))
7313                 pm_runtime_put_noidle(&pdev->dev);
7314
7315         return 0;
7316
7317 err_register:
7318         if (!(adapter->flags & FLAG_HAS_AMT))
7319                 e1000e_release_hw_control(adapter);
7320 err_eeprom:
7321         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7322                 e1000_phy_hw_reset(&adapter->hw);
7323 err_hw_init:
7324         kfree(adapter->tx_ring);
7325         kfree(adapter->rx_ring);
7326 err_sw_init:
7327         if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7328                 iounmap(adapter->hw.flash_address);
7329         e1000e_reset_interrupt_capability(adapter);
7330 err_flashmap:
7331         iounmap(adapter->hw.hw_addr);
7332 err_ioremap:
7333         free_netdev(netdev);
7334 err_alloc_etherdev:
7335         pci_release_selected_regions(pdev,
7336                                      pci_select_bars(pdev, IORESOURCE_MEM));
7337 err_pci_reg:
7338 err_dma:
7339         pci_disable_device(pdev);
7340         return err;
7341 }
7342
7343 /**
7344  * e1000_remove - Device Removal Routine
7345  * @pdev: PCI device information struct
7346  *
7347  * e1000_remove is called by the PCI subsystem to alert the driver
7348  * that it should release a PCI device.  The could be caused by a
7349  * Hot-Plug event, or because the driver is going to be removed from
7350  * memory.
7351  **/
7352 static void e1000_remove(struct pci_dev *pdev)
7353 {
7354         struct net_device *netdev = pci_get_drvdata(pdev);
7355         struct e1000_adapter *adapter = netdev_priv(netdev);
7356         bool down = test_bit(__E1000_DOWN, &adapter->state);
7357
7358         e1000e_ptp_remove(adapter);
7359
7360         /* The timers may be rescheduled, so explicitly disable them
7361          * from being rescheduled.
7362          */
7363         if (!down)
7364                 set_bit(__E1000_DOWN, &adapter->state);
7365         del_timer_sync(&adapter->watchdog_timer);
7366         del_timer_sync(&adapter->phy_info_timer);
7367
7368         cancel_work_sync(&adapter->reset_task);
7369         cancel_work_sync(&adapter->watchdog_task);
7370         cancel_work_sync(&adapter->downshift_task);
7371         cancel_work_sync(&adapter->update_phy_task);
7372         cancel_work_sync(&adapter->print_hang_task);
7373
7374         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7375                 cancel_work_sync(&adapter->tx_hwtstamp_work);
7376                 if (adapter->tx_hwtstamp_skb) {
7377                         dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
7378                         adapter->tx_hwtstamp_skb = NULL;
7379                 }
7380         }
7381
7382         /* Don't lie to e1000_close() down the road. */
7383         if (!down)
7384                 clear_bit(__E1000_DOWN, &adapter->state);
7385         unregister_netdev(netdev);
7386
7387         if (pci_dev_run_wake(pdev))
7388                 pm_runtime_get_noresume(&pdev->dev);
7389
7390         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7391          * would have already happened in close and is redundant.
7392          */
7393         e1000e_release_hw_control(adapter);
7394
7395         e1000e_reset_interrupt_capability(adapter);
7396         kfree(adapter->tx_ring);
7397         kfree(adapter->rx_ring);
7398
7399         iounmap(adapter->hw.hw_addr);
7400         if ((adapter->hw.flash_address) &&
7401             (adapter->hw.mac.type < e1000_pch_spt))
7402                 iounmap(adapter->hw.flash_address);
7403         pci_release_selected_regions(pdev,
7404                                      pci_select_bars(pdev, IORESOURCE_MEM));
7405
7406         free_netdev(netdev);
7407
7408         /* AER disable */
7409         pci_disable_pcie_error_reporting(pdev);
7410
7411         pci_disable_device(pdev);
7412 }
7413
7414 /* PCI Error Recovery (ERS) */
7415 static const struct pci_error_handlers e1000_err_handler = {
7416         .error_detected = e1000_io_error_detected,
7417         .slot_reset = e1000_io_slot_reset,
7418         .resume = e1000_io_resume,
7419 };
7420
7421 static const struct pci_device_id e1000_pci_tbl[] = {
7422         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7423         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7424         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7425         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7426           board_82571 },
7427         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7428         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7429         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7430         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7431         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7432
7433         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7434         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7435         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7436         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7437
7438         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7439         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7440         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7441
7442         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7443         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7444         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7445
7446         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7447           board_80003es2lan },
7448         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7449           board_80003es2lan },
7450         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7451           board_80003es2lan },
7452         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7453           board_80003es2lan },
7454
7455         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7456         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7457         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7458         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7459         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7460         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7461         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7462         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7463
7464         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7465         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7466         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7467         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7468         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7469         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7470         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7471         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7472         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7473
7474         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7475         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7476         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7477
7478         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7479         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7480         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7481
7482         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7483         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7484         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7485         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7486
7487         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7488         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7489
7490         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7491         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7492         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7493         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7494         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7495         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7496         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7497         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7498         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7499         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7500         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7501         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7502         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7503         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7504         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7505         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7506         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7507
7508         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7509 };
7510 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7511
7512 static const struct dev_pm_ops e1000_pm_ops = {
7513 #ifdef CONFIG_PM_SLEEP
7514         .suspend        = e1000e_pm_suspend,
7515         .resume         = e1000e_pm_resume,
7516         .freeze         = e1000e_pm_freeze,
7517         .thaw           = e1000e_pm_thaw,
7518         .poweroff       = e1000e_pm_suspend,
7519         .restore        = e1000e_pm_resume,
7520 #endif
7521         SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7522                            e1000e_pm_runtime_idle)
7523 };
7524
7525 /* PCI Device API Driver */
7526 static struct pci_driver e1000_driver = {
7527         .name     = e1000e_driver_name,
7528         .id_table = e1000_pci_tbl,
7529         .probe    = e1000_probe,
7530         .remove   = e1000_remove,
7531         .driver   = {
7532                 .pm = &e1000_pm_ops,
7533         },
7534         .shutdown = e1000_shutdown,
7535         .err_handler = &e1000_err_handler
7536 };
7537
7538 /**
7539  * e1000_init_module - Driver Registration Routine
7540  *
7541  * e1000_init_module is the first routine called when the driver is
7542  * loaded. All it does is register with the PCI subsystem.
7543  **/
7544 static int __init e1000_init_module(void)
7545 {
7546         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7547                 e1000e_driver_version);
7548         pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7549
7550         return pci_register_driver(&e1000_driver);
7551 }
7552 module_init(e1000_init_module);
7553
7554 /**
7555  * e1000_exit_module - Driver Exit Cleanup Routine
7556  *
7557  * e1000_exit_module is called just before the driver is removed
7558  * from memory.
7559  **/
7560 static void __exit e1000_exit_module(void)
7561 {
7562         pci_unregister_driver(&e1000_driver);
7563 }
7564 module_exit(e1000_exit_module);
7565
7566 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7567 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7568 MODULE_LICENSE("GPL");
7569 MODULE_VERSION(DRV_VERSION);
7570
7571 /* netdev.c */