]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/igb/igb_main.c
Merge remote-tracking branch 'regulator/topic/core' into regulator-next
[karo-tx-linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2014 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, see <http://www.gnu.org/licenses/>.
17
18   The full GNU General Public License is included in this distribution in
19   the file called "COPYING".
20
21   Contact Information:
22   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 *******************************************************************************/
26
27 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/bitops.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/netdevice.h>
36 #include <linux/ipv6.h>
37 #include <linux/slab.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #include <linux/net_tstamp.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if.h>
44 #include <linux/if_vlan.h>
45 #include <linux/pci.h>
46 #include <linux/pci-aspm.h>
47 #include <linux/delay.h>
48 #include <linux/interrupt.h>
49 #include <linux/ip.h>
50 #include <linux/tcp.h>
51 #include <linux/sctp.h>
52 #include <linux/if_ether.h>
53 #include <linux/aer.h>
54 #include <linux/prefetch.h>
55 #include <linux/pm_runtime.h>
56 #ifdef CONFIG_IGB_DCA
57 #include <linux/dca.h>
58 #endif
59 #include <linux/i2c.h>
60 #include "igb.h"
61
62 #define MAJ 5
63 #define MIN 0
64 #define BUILD 5
65 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66 __stringify(BUILD) "-k"
67 char igb_driver_name[] = "igb";
68 char igb_driver_version[] = DRV_VERSION;
69 static const char igb_driver_string[] =
70                                 "Intel(R) Gigabit Ethernet Network Driver";
71 static const char igb_copyright[] =
72                                 "Copyright (c) 2007-2014 Intel Corporation.";
73
74 static const struct e1000_info *igb_info_tbl[] = {
75         [board_82575] = &e1000_82575_info,
76 };
77
78 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
110         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
111         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
112         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
113         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
114         /* required last entry */
115         {0, }
116 };
117
118 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
119
120 void igb_reset(struct igb_adapter *);
121 static int igb_setup_all_tx_resources(struct igb_adapter *);
122 static int igb_setup_all_rx_resources(struct igb_adapter *);
123 static void igb_free_all_tx_resources(struct igb_adapter *);
124 static void igb_free_all_rx_resources(struct igb_adapter *);
125 static void igb_setup_mrqc(struct igb_adapter *);
126 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
127 static void igb_remove(struct pci_dev *pdev);
128 static int igb_sw_init(struct igb_adapter *);
129 static int igb_open(struct net_device *);
130 static int igb_close(struct net_device *);
131 static void igb_configure(struct igb_adapter *);
132 static void igb_configure_tx(struct igb_adapter *);
133 static void igb_configure_rx(struct igb_adapter *);
134 static void igb_clean_all_tx_rings(struct igb_adapter *);
135 static void igb_clean_all_rx_rings(struct igb_adapter *);
136 static void igb_clean_tx_ring(struct igb_ring *);
137 static void igb_clean_rx_ring(struct igb_ring *);
138 static void igb_set_rx_mode(struct net_device *);
139 static void igb_update_phy_info(unsigned long);
140 static void igb_watchdog(unsigned long);
141 static void igb_watchdog_task(struct work_struct *);
142 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
143 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
144                                                  struct rtnl_link_stats64 *stats);
145 static int igb_change_mtu(struct net_device *, int);
146 static int igb_set_mac(struct net_device *, void *);
147 static void igb_set_uta(struct igb_adapter *adapter);
148 static irqreturn_t igb_intr(int irq, void *);
149 static irqreturn_t igb_intr_msi(int irq, void *);
150 static irqreturn_t igb_msix_other(int irq, void *);
151 static irqreturn_t igb_msix_ring(int irq, void *);
152 #ifdef CONFIG_IGB_DCA
153 static void igb_update_dca(struct igb_q_vector *);
154 static void igb_setup_dca(struct igb_adapter *);
155 #endif /* CONFIG_IGB_DCA */
156 static int igb_poll(struct napi_struct *, int);
157 static bool igb_clean_tx_irq(struct igb_q_vector *);
158 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
159 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
160 static void igb_tx_timeout(struct net_device *);
161 static void igb_reset_task(struct work_struct *);
162 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
163 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
164 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
165 static void igb_restore_vlan(struct igb_adapter *);
166 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
167 static void igb_ping_all_vfs(struct igb_adapter *);
168 static void igb_msg_task(struct igb_adapter *);
169 static void igb_vmm_control(struct igb_adapter *);
170 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
171 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
172 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
173 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
174                                int vf, u16 vlan, u8 qos);
175 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
176 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
177                                    bool setting);
178 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
179                                  struct ifla_vf_info *ivi);
180 static void igb_check_vf_rate_limit(struct igb_adapter *);
181
182 #ifdef CONFIG_PCI_IOV
183 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
184 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
185 #endif
186
187 #ifdef CONFIG_PM
188 #ifdef CONFIG_PM_SLEEP
189 static int igb_suspend(struct device *);
190 #endif
191 static int igb_resume(struct device *);
192 #ifdef CONFIG_PM_RUNTIME
193 static int igb_runtime_suspend(struct device *dev);
194 static int igb_runtime_resume(struct device *dev);
195 static int igb_runtime_idle(struct device *dev);
196 #endif
197 static const struct dev_pm_ops igb_pm_ops = {
198         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200                         igb_runtime_idle)
201 };
202 #endif
203 static void igb_shutdown(struct pci_dev *);
204 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205 #ifdef CONFIG_IGB_DCA
206 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207 static struct notifier_block dca_notifier = {
208         .notifier_call  = igb_notify_dca,
209         .next           = NULL,
210         .priority       = 0
211 };
212 #endif
213 #ifdef CONFIG_NET_POLL_CONTROLLER
214 /* for netdump / net console */
215 static void igb_netpoll(struct net_device *);
216 #endif
217 #ifdef CONFIG_PCI_IOV
218 static unsigned int max_vfs = 0;
219 module_param(max_vfs, uint, 0);
220 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
221                  "per physical function");
222 #endif /* CONFIG_PCI_IOV */
223
224 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
225                      pci_channel_state_t);
226 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
227 static void igb_io_resume(struct pci_dev *);
228
229 static const struct pci_error_handlers igb_err_handler = {
230         .error_detected = igb_io_error_detected,
231         .slot_reset = igb_io_slot_reset,
232         .resume = igb_io_resume,
233 };
234
235 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
236
237 static struct pci_driver igb_driver = {
238         .name     = igb_driver_name,
239         .id_table = igb_pci_tbl,
240         .probe    = igb_probe,
241         .remove   = igb_remove,
242 #ifdef CONFIG_PM
243         .driver.pm = &igb_pm_ops,
244 #endif
245         .shutdown = igb_shutdown,
246         .sriov_configure = igb_pci_sriov_configure,
247         .err_handler = &igb_err_handler
248 };
249
250 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
251 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
252 MODULE_LICENSE("GPL");
253 MODULE_VERSION(DRV_VERSION);
254
255 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
256 static int debug = -1;
257 module_param(debug, int, 0);
258 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
259
260 struct igb_reg_info {
261         u32 ofs;
262         char *name;
263 };
264
265 static const struct igb_reg_info igb_reg_info_tbl[] = {
266
267         /* General Registers */
268         {E1000_CTRL, "CTRL"},
269         {E1000_STATUS, "STATUS"},
270         {E1000_CTRL_EXT, "CTRL_EXT"},
271
272         /* Interrupt Registers */
273         {E1000_ICR, "ICR"},
274
275         /* RX Registers */
276         {E1000_RCTL, "RCTL"},
277         {E1000_RDLEN(0), "RDLEN"},
278         {E1000_RDH(0), "RDH"},
279         {E1000_RDT(0), "RDT"},
280         {E1000_RXDCTL(0), "RXDCTL"},
281         {E1000_RDBAL(0), "RDBAL"},
282         {E1000_RDBAH(0), "RDBAH"},
283
284         /* TX Registers */
285         {E1000_TCTL, "TCTL"},
286         {E1000_TDBAL(0), "TDBAL"},
287         {E1000_TDBAH(0), "TDBAH"},
288         {E1000_TDLEN(0), "TDLEN"},
289         {E1000_TDH(0), "TDH"},
290         {E1000_TDT(0), "TDT"},
291         {E1000_TXDCTL(0), "TXDCTL"},
292         {E1000_TDFH, "TDFH"},
293         {E1000_TDFT, "TDFT"},
294         {E1000_TDFHS, "TDFHS"},
295         {E1000_TDFPC, "TDFPC"},
296
297         /* List Terminator */
298         {}
299 };
300
301 /* igb_regdump - register printout routine */
302 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
303 {
304         int n = 0;
305         char rname[16];
306         u32 regs[8];
307
308         switch (reginfo->ofs) {
309         case E1000_RDLEN(0):
310                 for (n = 0; n < 4; n++)
311                         regs[n] = rd32(E1000_RDLEN(n));
312                 break;
313         case E1000_RDH(0):
314                 for (n = 0; n < 4; n++)
315                         regs[n] = rd32(E1000_RDH(n));
316                 break;
317         case E1000_RDT(0):
318                 for (n = 0; n < 4; n++)
319                         regs[n] = rd32(E1000_RDT(n));
320                 break;
321         case E1000_RXDCTL(0):
322                 for (n = 0; n < 4; n++)
323                         regs[n] = rd32(E1000_RXDCTL(n));
324                 break;
325         case E1000_RDBAL(0):
326                 for (n = 0; n < 4; n++)
327                         regs[n] = rd32(E1000_RDBAL(n));
328                 break;
329         case E1000_RDBAH(0):
330                 for (n = 0; n < 4; n++)
331                         regs[n] = rd32(E1000_RDBAH(n));
332                 break;
333         case E1000_TDBAL(0):
334                 for (n = 0; n < 4; n++)
335                         regs[n] = rd32(E1000_RDBAL(n));
336                 break;
337         case E1000_TDBAH(0):
338                 for (n = 0; n < 4; n++)
339                         regs[n] = rd32(E1000_TDBAH(n));
340                 break;
341         case E1000_TDLEN(0):
342                 for (n = 0; n < 4; n++)
343                         regs[n] = rd32(E1000_TDLEN(n));
344                 break;
345         case E1000_TDH(0):
346                 for (n = 0; n < 4; n++)
347                         regs[n] = rd32(E1000_TDH(n));
348                 break;
349         case E1000_TDT(0):
350                 for (n = 0; n < 4; n++)
351                         regs[n] = rd32(E1000_TDT(n));
352                 break;
353         case E1000_TXDCTL(0):
354                 for (n = 0; n < 4; n++)
355                         regs[n] = rd32(E1000_TXDCTL(n));
356                 break;
357         default:
358                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
359                 return;
360         }
361
362         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
363         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
364                 regs[2], regs[3]);
365 }
366
367 /* igb_dump - Print registers, Tx-rings and Rx-rings */
368 static void igb_dump(struct igb_adapter *adapter)
369 {
370         struct net_device *netdev = adapter->netdev;
371         struct e1000_hw *hw = &adapter->hw;
372         struct igb_reg_info *reginfo;
373         struct igb_ring *tx_ring;
374         union e1000_adv_tx_desc *tx_desc;
375         struct my_u0 { u64 a; u64 b; } *u0;
376         struct igb_ring *rx_ring;
377         union e1000_adv_rx_desc *rx_desc;
378         u32 staterr;
379         u16 i, n;
380
381         if (!netif_msg_hw(adapter))
382                 return;
383
384         /* Print netdevice Info */
385         if (netdev) {
386                 dev_info(&adapter->pdev->dev, "Net device Info\n");
387                 pr_info("Device Name     state            trans_start      "
388                         "last_rx\n");
389                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
390                         netdev->state, netdev->trans_start, netdev->last_rx);
391         }
392
393         /* Print Registers */
394         dev_info(&adapter->pdev->dev, "Register Dump\n");
395         pr_info(" Register Name   Value\n");
396         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
397              reginfo->name; reginfo++) {
398                 igb_regdump(hw, reginfo);
399         }
400
401         /* Print TX Ring Summary */
402         if (!netdev || !netif_running(netdev))
403                 goto exit;
404
405         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
406         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
407         for (n = 0; n < adapter->num_tx_queues; n++) {
408                 struct igb_tx_buffer *buffer_info;
409                 tx_ring = adapter->tx_ring[n];
410                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
411                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
412                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
413                         (u64)dma_unmap_addr(buffer_info, dma),
414                         dma_unmap_len(buffer_info, len),
415                         buffer_info->next_to_watch,
416                         (u64)buffer_info->time_stamp);
417         }
418
419         /* Print TX Rings */
420         if (!netif_msg_tx_done(adapter))
421                 goto rx_ring_summary;
422
423         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
424
425         /* Transmit Descriptor Formats
426          *
427          * Advanced Transmit Descriptor
428          *   +--------------------------------------------------------------+
429          * 0 |         Buffer Address [63:0]                                |
430          *   +--------------------------------------------------------------+
431          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
432          *   +--------------------------------------------------------------+
433          *   63      46 45    40 39 38 36 35 32 31   24             15       0
434          */
435
436         for (n = 0; n < adapter->num_tx_queues; n++) {
437                 tx_ring = adapter->tx_ring[n];
438                 pr_info("------------------------------------\n");
439                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
440                 pr_info("------------------------------------\n");
441                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
442                         "[bi->dma       ] leng  ntw timestamp        "
443                         "bi->skb\n");
444
445                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
446                         const char *next_desc;
447                         struct igb_tx_buffer *buffer_info;
448                         tx_desc = IGB_TX_DESC(tx_ring, i);
449                         buffer_info = &tx_ring->tx_buffer_info[i];
450                         u0 = (struct my_u0 *)tx_desc;
451                         if (i == tx_ring->next_to_use &&
452                             i == tx_ring->next_to_clean)
453                                 next_desc = " NTC/U";
454                         else if (i == tx_ring->next_to_use)
455                                 next_desc = " NTU";
456                         else if (i == tx_ring->next_to_clean)
457                                 next_desc = " NTC";
458                         else
459                                 next_desc = "";
460
461                         pr_info("T [0x%03X]    %016llX %016llX %016llX"
462                                 " %04X  %p %016llX %p%s\n", i,
463                                 le64_to_cpu(u0->a),
464                                 le64_to_cpu(u0->b),
465                                 (u64)dma_unmap_addr(buffer_info, dma),
466                                 dma_unmap_len(buffer_info, len),
467                                 buffer_info->next_to_watch,
468                                 (u64)buffer_info->time_stamp,
469                                 buffer_info->skb, next_desc);
470
471                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
472                                 print_hex_dump(KERN_INFO, "",
473                                         DUMP_PREFIX_ADDRESS,
474                                         16, 1, buffer_info->skb->data,
475                                         dma_unmap_len(buffer_info, len),
476                                         true);
477                 }
478         }
479
480         /* Print RX Rings Summary */
481 rx_ring_summary:
482         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
483         pr_info("Queue [NTU] [NTC]\n");
484         for (n = 0; n < adapter->num_rx_queues; n++) {
485                 rx_ring = adapter->rx_ring[n];
486                 pr_info(" %5d %5X %5X\n",
487                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
488         }
489
490         /* Print RX Rings */
491         if (!netif_msg_rx_status(adapter))
492                 goto exit;
493
494         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
495
496         /* Advanced Receive Descriptor (Read) Format
497          *    63                                           1        0
498          *    +-----------------------------------------------------+
499          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
500          *    +----------------------------------------------+------+
501          *  8 |       Header Buffer Address [63:1]           |  DD  |
502          *    +-----------------------------------------------------+
503          *
504          *
505          * Advanced Receive Descriptor (Write-Back) Format
506          *
507          *   63       48 47    32 31  30      21 20 17 16   4 3     0
508          *   +------------------------------------------------------+
509          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
510          *   | Checksum   Ident  |   |           |    | Type | Type |
511          *   +------------------------------------------------------+
512          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
513          *   +------------------------------------------------------+
514          *   63       48 47    32 31            20 19               0
515          */
516
517         for (n = 0; n < adapter->num_rx_queues; n++) {
518                 rx_ring = adapter->rx_ring[n];
519                 pr_info("------------------------------------\n");
520                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
521                 pr_info("------------------------------------\n");
522                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
523                         "[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
524                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
525                         "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
526
527                 for (i = 0; i < rx_ring->count; i++) {
528                         const char *next_desc;
529                         struct igb_rx_buffer *buffer_info;
530                         buffer_info = &rx_ring->rx_buffer_info[i];
531                         rx_desc = IGB_RX_DESC(rx_ring, i);
532                         u0 = (struct my_u0 *)rx_desc;
533                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
534
535                         if (i == rx_ring->next_to_use)
536                                 next_desc = " NTU";
537                         else if (i == rx_ring->next_to_clean)
538                                 next_desc = " NTC";
539                         else
540                                 next_desc = "";
541
542                         if (staterr & E1000_RXD_STAT_DD) {
543                                 /* Descriptor Done */
544                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
545                                         "RWB", i,
546                                         le64_to_cpu(u0->a),
547                                         le64_to_cpu(u0->b),
548                                         next_desc);
549                         } else {
550                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
551                                         "R  ", i,
552                                         le64_to_cpu(u0->a),
553                                         le64_to_cpu(u0->b),
554                                         (u64)buffer_info->dma,
555                                         next_desc);
556
557                                 if (netif_msg_pktdata(adapter) &&
558                                     buffer_info->dma && buffer_info->page) {
559                                         print_hex_dump(KERN_INFO, "",
560                                           DUMP_PREFIX_ADDRESS,
561                                           16, 1,
562                                           page_address(buffer_info->page) +
563                                                       buffer_info->page_offset,
564                                           IGB_RX_BUFSZ, true);
565                                 }
566                         }
567                 }
568         }
569
570 exit:
571         return;
572 }
573
574 /**
575  *  igb_get_i2c_data - Reads the I2C SDA data bit
576  *  @hw: pointer to hardware structure
577  *  @i2cctl: Current value of I2CCTL register
578  *
579  *  Returns the I2C data bit value
580  **/
581 static int igb_get_i2c_data(void *data)
582 {
583         struct igb_adapter *adapter = (struct igb_adapter *)data;
584         struct e1000_hw *hw = &adapter->hw;
585         s32 i2cctl = rd32(E1000_I2CPARAMS);
586
587         return ((i2cctl & E1000_I2C_DATA_IN) != 0);
588 }
589
590 /**
591  *  igb_set_i2c_data - Sets the I2C data bit
592  *  @data: pointer to hardware structure
593  *  @state: I2C data value (0 or 1) to set
594  *
595  *  Sets the I2C data bit
596  **/
597 static void igb_set_i2c_data(void *data, int state)
598 {
599         struct igb_adapter *adapter = (struct igb_adapter *)data;
600         struct e1000_hw *hw = &adapter->hw;
601         s32 i2cctl = rd32(E1000_I2CPARAMS);
602
603         if (state)
604                 i2cctl |= E1000_I2C_DATA_OUT;
605         else
606                 i2cctl &= ~E1000_I2C_DATA_OUT;
607
608         i2cctl &= ~E1000_I2C_DATA_OE_N;
609         i2cctl |= E1000_I2C_CLK_OE_N;
610         wr32(E1000_I2CPARAMS, i2cctl);
611         wrfl();
612
613 }
614
615 /**
616  *  igb_set_i2c_clk - Sets the I2C SCL clock
617  *  @data: pointer to hardware structure
618  *  @state: state to set clock
619  *
620  *  Sets the I2C clock line to state
621  **/
622 static void igb_set_i2c_clk(void *data, int state)
623 {
624         struct igb_adapter *adapter = (struct igb_adapter *)data;
625         struct e1000_hw *hw = &adapter->hw;
626         s32 i2cctl = rd32(E1000_I2CPARAMS);
627
628         if (state) {
629                 i2cctl |= E1000_I2C_CLK_OUT;
630                 i2cctl &= ~E1000_I2C_CLK_OE_N;
631         } else {
632                 i2cctl &= ~E1000_I2C_CLK_OUT;
633                 i2cctl &= ~E1000_I2C_CLK_OE_N;
634         }
635         wr32(E1000_I2CPARAMS, i2cctl);
636         wrfl();
637 }
638
639 /**
640  *  igb_get_i2c_clk - Gets the I2C SCL clock state
641  *  @data: pointer to hardware structure
642  *
643  *  Gets the I2C clock state
644  **/
645 static int igb_get_i2c_clk(void *data)
646 {
647         struct igb_adapter *adapter = (struct igb_adapter *)data;
648         struct e1000_hw *hw = &adapter->hw;
649         s32 i2cctl = rd32(E1000_I2CPARAMS);
650
651         return ((i2cctl & E1000_I2C_CLK_IN) != 0);
652 }
653
654 static const struct i2c_algo_bit_data igb_i2c_algo = {
655         .setsda         = igb_set_i2c_data,
656         .setscl         = igb_set_i2c_clk,
657         .getsda         = igb_get_i2c_data,
658         .getscl         = igb_get_i2c_clk,
659         .udelay         = 5,
660         .timeout        = 20,
661 };
662
663 /**
664  *  igb_get_hw_dev - return device
665  *  @hw: pointer to hardware structure
666  *
667  *  used by hardware layer to print debugging information
668  **/
669 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
670 {
671         struct igb_adapter *adapter = hw->back;
672         return adapter->netdev;
673 }
674
675 /**
676  *  igb_init_module - Driver Registration Routine
677  *
678  *  igb_init_module is the first routine called when the driver is
679  *  loaded. All it does is register with the PCI subsystem.
680  **/
681 static int __init igb_init_module(void)
682 {
683         int ret;
684         pr_info("%s - version %s\n",
685                igb_driver_string, igb_driver_version);
686
687         pr_info("%s\n", igb_copyright);
688
689 #ifdef CONFIG_IGB_DCA
690         dca_register_notify(&dca_notifier);
691 #endif
692         ret = pci_register_driver(&igb_driver);
693         return ret;
694 }
695
696 module_init(igb_init_module);
697
698 /**
699  *  igb_exit_module - Driver Exit Cleanup Routine
700  *
701  *  igb_exit_module is called just before the driver is removed
702  *  from memory.
703  **/
704 static void __exit igb_exit_module(void)
705 {
706 #ifdef CONFIG_IGB_DCA
707         dca_unregister_notify(&dca_notifier);
708 #endif
709         pci_unregister_driver(&igb_driver);
710 }
711
712 module_exit(igb_exit_module);
713
714 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
715 /**
716  *  igb_cache_ring_register - Descriptor ring to register mapping
717  *  @adapter: board private structure to initialize
718  *
719  *  Once we know the feature-set enabled for the device, we'll cache
720  *  the register offset the descriptor ring is assigned to.
721  **/
722 static void igb_cache_ring_register(struct igb_adapter *adapter)
723 {
724         int i = 0, j = 0;
725         u32 rbase_offset = adapter->vfs_allocated_count;
726
727         switch (adapter->hw.mac.type) {
728         case e1000_82576:
729                 /* The queues are allocated for virtualization such that VF 0
730                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
731                  * In order to avoid collision we start at the first free queue
732                  * and continue consuming queues in the same sequence
733                  */
734                 if (adapter->vfs_allocated_count) {
735                         for (; i < adapter->rss_queues; i++)
736                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
737                                                                Q_IDX_82576(i);
738                 }
739         case e1000_82575:
740         case e1000_82580:
741         case e1000_i350:
742         case e1000_i354:
743         case e1000_i210:
744         case e1000_i211:
745         default:
746                 for (; i < adapter->num_rx_queues; i++)
747                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
748                 for (; j < adapter->num_tx_queues; j++)
749                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
750                 break;
751         }
752 }
753
754 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
755 {
756         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
757         u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
758         u32 value = 0;
759
760         if (E1000_REMOVED(hw_addr))
761                 return ~value;
762
763         value = readl(&hw_addr[reg]);
764
765         /* reads should not return all F's */
766         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
767                 struct net_device *netdev = igb->netdev;
768                 hw->hw_addr = NULL;
769                 netif_device_detach(netdev);
770                 netdev_err(netdev, "PCIe link lost, device now detached\n");
771         }
772
773         return value;
774 }
775
776 /**
777  *  igb_write_ivar - configure ivar for given MSI-X vector
778  *  @hw: pointer to the HW structure
779  *  @msix_vector: vector number we are allocating to a given ring
780  *  @index: row index of IVAR register to write within IVAR table
781  *  @offset: column offset of in IVAR, should be multiple of 8
782  *
783  *  This function is intended to handle the writing of the IVAR register
784  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
785  *  each containing an cause allocation for an Rx and Tx ring, and a
786  *  variable number of rows depending on the number of queues supported.
787  **/
788 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
789                            int index, int offset)
790 {
791         u32 ivar = array_rd32(E1000_IVAR0, index);
792
793         /* clear any bits that are currently set */
794         ivar &= ~((u32)0xFF << offset);
795
796         /* write vector and valid bit */
797         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
798
799         array_wr32(E1000_IVAR0, index, ivar);
800 }
801
802 #define IGB_N0_QUEUE -1
803 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
804 {
805         struct igb_adapter *adapter = q_vector->adapter;
806         struct e1000_hw *hw = &adapter->hw;
807         int rx_queue = IGB_N0_QUEUE;
808         int tx_queue = IGB_N0_QUEUE;
809         u32 msixbm = 0;
810
811         if (q_vector->rx.ring)
812                 rx_queue = q_vector->rx.ring->reg_idx;
813         if (q_vector->tx.ring)
814                 tx_queue = q_vector->tx.ring->reg_idx;
815
816         switch (hw->mac.type) {
817         case e1000_82575:
818                 /* The 82575 assigns vectors using a bitmask, which matches the
819                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
820                  * or more queues to a vector, we write the appropriate bits
821                  * into the MSIXBM register for that vector.
822                  */
823                 if (rx_queue > IGB_N0_QUEUE)
824                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
825                 if (tx_queue > IGB_N0_QUEUE)
826                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
827                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
828                         msixbm |= E1000_EIMS_OTHER;
829                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
830                 q_vector->eims_value = msixbm;
831                 break;
832         case e1000_82576:
833                 /* 82576 uses a table that essentially consists of 2 columns
834                  * with 8 rows.  The ordering is column-major so we use the
835                  * lower 3 bits as the row index, and the 4th bit as the
836                  * column offset.
837                  */
838                 if (rx_queue > IGB_N0_QUEUE)
839                         igb_write_ivar(hw, msix_vector,
840                                        rx_queue & 0x7,
841                                        (rx_queue & 0x8) << 1);
842                 if (tx_queue > IGB_N0_QUEUE)
843                         igb_write_ivar(hw, msix_vector,
844                                        tx_queue & 0x7,
845                                        ((tx_queue & 0x8) << 1) + 8);
846                 q_vector->eims_value = 1 << msix_vector;
847                 break;
848         case e1000_82580:
849         case e1000_i350:
850         case e1000_i354:
851         case e1000_i210:
852         case e1000_i211:
853                 /* On 82580 and newer adapters the scheme is similar to 82576
854                  * however instead of ordering column-major we have things
855                  * ordered row-major.  So we traverse the table by using
856                  * bit 0 as the column offset, and the remaining bits as the
857                  * row index.
858                  */
859                 if (rx_queue > IGB_N0_QUEUE)
860                         igb_write_ivar(hw, msix_vector,
861                                        rx_queue >> 1,
862                                        (rx_queue & 0x1) << 4);
863                 if (tx_queue > IGB_N0_QUEUE)
864                         igb_write_ivar(hw, msix_vector,
865                                        tx_queue >> 1,
866                                        ((tx_queue & 0x1) << 4) + 8);
867                 q_vector->eims_value = 1 << msix_vector;
868                 break;
869         default:
870                 BUG();
871                 break;
872         }
873
874         /* add q_vector eims value to global eims_enable_mask */
875         adapter->eims_enable_mask |= q_vector->eims_value;
876
877         /* configure q_vector to set itr on first interrupt */
878         q_vector->set_itr = 1;
879 }
880
881 /**
882  *  igb_configure_msix - Configure MSI-X hardware
883  *  @adapter: board private structure to initialize
884  *
885  *  igb_configure_msix sets up the hardware to properly
886  *  generate MSI-X interrupts.
887  **/
888 static void igb_configure_msix(struct igb_adapter *adapter)
889 {
890         u32 tmp;
891         int i, vector = 0;
892         struct e1000_hw *hw = &adapter->hw;
893
894         adapter->eims_enable_mask = 0;
895
896         /* set vector for other causes, i.e. link changes */
897         switch (hw->mac.type) {
898         case e1000_82575:
899                 tmp = rd32(E1000_CTRL_EXT);
900                 /* enable MSI-X PBA support*/
901                 tmp |= E1000_CTRL_EXT_PBA_CLR;
902
903                 /* Auto-Mask interrupts upon ICR read. */
904                 tmp |= E1000_CTRL_EXT_EIAME;
905                 tmp |= E1000_CTRL_EXT_IRCA;
906
907                 wr32(E1000_CTRL_EXT, tmp);
908
909                 /* enable msix_other interrupt */
910                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
911                 adapter->eims_other = E1000_EIMS_OTHER;
912
913                 break;
914
915         case e1000_82576:
916         case e1000_82580:
917         case e1000_i350:
918         case e1000_i354:
919         case e1000_i210:
920         case e1000_i211:
921                 /* Turn on MSI-X capability first, or our settings
922                  * won't stick.  And it will take days to debug.
923                  */
924                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
925                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
926                      E1000_GPIE_NSICR);
927
928                 /* enable msix_other interrupt */
929                 adapter->eims_other = 1 << vector;
930                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
931
932                 wr32(E1000_IVAR_MISC, tmp);
933                 break;
934         default:
935                 /* do nothing, since nothing else supports MSI-X */
936                 break;
937         } /* switch (hw->mac.type) */
938
939         adapter->eims_enable_mask |= adapter->eims_other;
940
941         for (i = 0; i < adapter->num_q_vectors; i++)
942                 igb_assign_vector(adapter->q_vector[i], vector++);
943
944         wrfl();
945 }
946
947 /**
948  *  igb_request_msix - Initialize MSI-X interrupts
949  *  @adapter: board private structure to initialize
950  *
951  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
952  *  kernel.
953  **/
954 static int igb_request_msix(struct igb_adapter *adapter)
955 {
956         struct net_device *netdev = adapter->netdev;
957         struct e1000_hw *hw = &adapter->hw;
958         int i, err = 0, vector = 0, free_vector = 0;
959
960         err = request_irq(adapter->msix_entries[vector].vector,
961                           igb_msix_other, 0, netdev->name, adapter);
962         if (err)
963                 goto err_out;
964
965         for (i = 0; i < adapter->num_q_vectors; i++) {
966                 struct igb_q_vector *q_vector = adapter->q_vector[i];
967
968                 vector++;
969
970                 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
971
972                 if (q_vector->rx.ring && q_vector->tx.ring)
973                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
974                                 q_vector->rx.ring->queue_index);
975                 else if (q_vector->tx.ring)
976                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
977                                 q_vector->tx.ring->queue_index);
978                 else if (q_vector->rx.ring)
979                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
980                                 q_vector->rx.ring->queue_index);
981                 else
982                         sprintf(q_vector->name, "%s-unused", netdev->name);
983
984                 err = request_irq(adapter->msix_entries[vector].vector,
985                                   igb_msix_ring, 0, q_vector->name,
986                                   q_vector);
987                 if (err)
988                         goto err_free;
989         }
990
991         igb_configure_msix(adapter);
992         return 0;
993
994 err_free:
995         /* free already assigned IRQs */
996         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
997
998         vector--;
999         for (i = 0; i < vector; i++) {
1000                 free_irq(adapter->msix_entries[free_vector++].vector,
1001                          adapter->q_vector[i]);
1002         }
1003 err_out:
1004         return err;
1005 }
1006
1007 /**
1008  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1009  *  @adapter: board private structure to initialize
1010  *  @v_idx: Index of vector to be freed
1011  *
1012  *  This function frees the memory allocated to the q_vector.
1013  **/
1014 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1015 {
1016         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1017
1018         adapter->q_vector[v_idx] = NULL;
1019
1020         /* igb_get_stats64() might access the rings on this vector,
1021          * we must wait a grace period before freeing it.
1022          */
1023         kfree_rcu(q_vector, rcu);
1024 }
1025
1026 /**
1027  *  igb_reset_q_vector - Reset config for interrupt vector
1028  *  @adapter: board private structure to initialize
1029  *  @v_idx: Index of vector to be reset
1030  *
1031  *  If NAPI is enabled it will delete any references to the
1032  *  NAPI struct. This is preparation for igb_free_q_vector.
1033  **/
1034 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1035 {
1036         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1037
1038         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1039          * allocated. So, q_vector is NULL so we should stop here.
1040          */
1041         if (!q_vector)
1042                 return;
1043
1044         if (q_vector->tx.ring)
1045                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1046
1047         if (q_vector->rx.ring)
1048                 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1049
1050         netif_napi_del(&q_vector->napi);
1051
1052 }
1053
1054 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1055 {
1056         int v_idx = adapter->num_q_vectors;
1057
1058         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1059                 pci_disable_msix(adapter->pdev);
1060         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1061                 pci_disable_msi(adapter->pdev);
1062
1063         while (v_idx--)
1064                 igb_reset_q_vector(adapter, v_idx);
1065 }
1066
1067 /**
1068  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1069  *  @adapter: board private structure to initialize
1070  *
1071  *  This function frees the memory allocated to the q_vectors.  In addition if
1072  *  NAPI is enabled it will delete any references to the NAPI struct prior
1073  *  to freeing the q_vector.
1074  **/
1075 static void igb_free_q_vectors(struct igb_adapter *adapter)
1076 {
1077         int v_idx = adapter->num_q_vectors;
1078
1079         adapter->num_tx_queues = 0;
1080         adapter->num_rx_queues = 0;
1081         adapter->num_q_vectors = 0;
1082
1083         while (v_idx--) {
1084                 igb_reset_q_vector(adapter, v_idx);
1085                 igb_free_q_vector(adapter, v_idx);
1086         }
1087 }
1088
1089 /**
1090  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1091  *  @adapter: board private structure to initialize
1092  *
1093  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1094  *  MSI-X interrupts allocated.
1095  */
1096 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1097 {
1098         igb_free_q_vectors(adapter);
1099         igb_reset_interrupt_capability(adapter);
1100 }
1101
1102 /**
1103  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1104  *  @adapter: board private structure to initialize
1105  *  @msix: boolean value of MSIX capability
1106  *
1107  *  Attempt to configure interrupts using the best available
1108  *  capabilities of the hardware and kernel.
1109  **/
1110 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1111 {
1112         int err;
1113         int numvecs, i;
1114
1115         if (!msix)
1116                 goto msi_only;
1117         adapter->flags |= IGB_FLAG_HAS_MSIX;
1118
1119         /* Number of supported queues. */
1120         adapter->num_rx_queues = adapter->rss_queues;
1121         if (adapter->vfs_allocated_count)
1122                 adapter->num_tx_queues = 1;
1123         else
1124                 adapter->num_tx_queues = adapter->rss_queues;
1125
1126         /* start with one vector for every Rx queue */
1127         numvecs = adapter->num_rx_queues;
1128
1129         /* if Tx handler is separate add 1 for every Tx queue */
1130         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1131                 numvecs += adapter->num_tx_queues;
1132
1133         /* store the number of vectors reserved for queues */
1134         adapter->num_q_vectors = numvecs;
1135
1136         /* add 1 vector for link status interrupts */
1137         numvecs++;
1138         for (i = 0; i < numvecs; i++)
1139                 adapter->msix_entries[i].entry = i;
1140
1141         err = pci_enable_msix_range(adapter->pdev,
1142                                     adapter->msix_entries,
1143                                     numvecs,
1144                                     numvecs);
1145         if (err > 0)
1146                 return;
1147
1148         igb_reset_interrupt_capability(adapter);
1149
1150         /* If we can't do MSI-X, try MSI */
1151 msi_only:
1152         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1153 #ifdef CONFIG_PCI_IOV
1154         /* disable SR-IOV for non MSI-X configurations */
1155         if (adapter->vf_data) {
1156                 struct e1000_hw *hw = &adapter->hw;
1157                 /* disable iov and allow time for transactions to clear */
1158                 pci_disable_sriov(adapter->pdev);
1159                 msleep(500);
1160
1161                 kfree(adapter->vf_data);
1162                 adapter->vf_data = NULL;
1163                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1164                 wrfl();
1165                 msleep(100);
1166                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1167         }
1168 #endif
1169         adapter->vfs_allocated_count = 0;
1170         adapter->rss_queues = 1;
1171         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1172         adapter->num_rx_queues = 1;
1173         adapter->num_tx_queues = 1;
1174         adapter->num_q_vectors = 1;
1175         if (!pci_enable_msi(adapter->pdev))
1176                 adapter->flags |= IGB_FLAG_HAS_MSI;
1177 }
1178
1179 static void igb_add_ring(struct igb_ring *ring,
1180                          struct igb_ring_container *head)
1181 {
1182         head->ring = ring;
1183         head->count++;
1184 }
1185
1186 /**
1187  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1188  *  @adapter: board private structure to initialize
1189  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1190  *  @v_idx: index of vector in adapter struct
1191  *  @txr_count: total number of Tx rings to allocate
1192  *  @txr_idx: index of first Tx ring to allocate
1193  *  @rxr_count: total number of Rx rings to allocate
1194  *  @rxr_idx: index of first Rx ring to allocate
1195  *
1196  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1197  **/
1198 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1199                               int v_count, int v_idx,
1200                               int txr_count, int txr_idx,
1201                               int rxr_count, int rxr_idx)
1202 {
1203         struct igb_q_vector *q_vector;
1204         struct igb_ring *ring;
1205         int ring_count, size;
1206
1207         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1208         if (txr_count > 1 || rxr_count > 1)
1209                 return -ENOMEM;
1210
1211         ring_count = txr_count + rxr_count;
1212         size = sizeof(struct igb_q_vector) +
1213                (sizeof(struct igb_ring) * ring_count);
1214
1215         /* allocate q_vector and rings */
1216         q_vector = adapter->q_vector[v_idx];
1217         if (!q_vector)
1218                 q_vector = kzalloc(size, GFP_KERNEL);
1219         if (!q_vector)
1220                 return -ENOMEM;
1221
1222         /* initialize NAPI */
1223         netif_napi_add(adapter->netdev, &q_vector->napi,
1224                        igb_poll, 64);
1225
1226         /* tie q_vector and adapter together */
1227         adapter->q_vector[v_idx] = q_vector;
1228         q_vector->adapter = adapter;
1229
1230         /* initialize work limits */
1231         q_vector->tx.work_limit = adapter->tx_work_limit;
1232
1233         /* initialize ITR configuration */
1234         q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1235         q_vector->itr_val = IGB_START_ITR;
1236
1237         /* initialize pointer to rings */
1238         ring = q_vector->ring;
1239
1240         /* intialize ITR */
1241         if (rxr_count) {
1242                 /* rx or rx/tx vector */
1243                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1244                         q_vector->itr_val = adapter->rx_itr_setting;
1245         } else {
1246                 /* tx only vector */
1247                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1248                         q_vector->itr_val = adapter->tx_itr_setting;
1249         }
1250
1251         if (txr_count) {
1252                 /* assign generic ring traits */
1253                 ring->dev = &adapter->pdev->dev;
1254                 ring->netdev = adapter->netdev;
1255
1256                 /* configure backlink on ring */
1257                 ring->q_vector = q_vector;
1258
1259                 /* update q_vector Tx values */
1260                 igb_add_ring(ring, &q_vector->tx);
1261
1262                 /* For 82575, context index must be unique per ring. */
1263                 if (adapter->hw.mac.type == e1000_82575)
1264                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1265
1266                 /* apply Tx specific ring traits */
1267                 ring->count = adapter->tx_ring_count;
1268                 ring->queue_index = txr_idx;
1269
1270                 u64_stats_init(&ring->tx_syncp);
1271                 u64_stats_init(&ring->tx_syncp2);
1272
1273                 /* assign ring to adapter */
1274                 adapter->tx_ring[txr_idx] = ring;
1275
1276                 /* push pointer to next ring */
1277                 ring++;
1278         }
1279
1280         if (rxr_count) {
1281                 /* assign generic ring traits */
1282                 ring->dev = &adapter->pdev->dev;
1283                 ring->netdev = adapter->netdev;
1284
1285                 /* configure backlink on ring */
1286                 ring->q_vector = q_vector;
1287
1288                 /* update q_vector Rx values */
1289                 igb_add_ring(ring, &q_vector->rx);
1290
1291                 /* set flag indicating ring supports SCTP checksum offload */
1292                 if (adapter->hw.mac.type >= e1000_82576)
1293                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1294
1295                 /*
1296                  * On i350, i354, i210, and i211, loopback VLAN packets
1297                  * have the tag byte-swapped.
1298                  */
1299                 if (adapter->hw.mac.type >= e1000_i350)
1300                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1301
1302                 /* apply Rx specific ring traits */
1303                 ring->count = adapter->rx_ring_count;
1304                 ring->queue_index = rxr_idx;
1305
1306                 u64_stats_init(&ring->rx_syncp);
1307
1308                 /* assign ring to adapter */
1309                 adapter->rx_ring[rxr_idx] = ring;
1310         }
1311
1312         return 0;
1313 }
1314
1315
1316 /**
1317  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1318  *  @adapter: board private structure to initialize
1319  *
1320  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1321  *  return -ENOMEM.
1322  **/
1323 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1324 {
1325         int q_vectors = adapter->num_q_vectors;
1326         int rxr_remaining = adapter->num_rx_queues;
1327         int txr_remaining = adapter->num_tx_queues;
1328         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1329         int err;
1330
1331         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1332                 for (; rxr_remaining; v_idx++) {
1333                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1334                                                  0, 0, 1, rxr_idx);
1335
1336                         if (err)
1337                                 goto err_out;
1338
1339                         /* update counts and index */
1340                         rxr_remaining--;
1341                         rxr_idx++;
1342                 }
1343         }
1344
1345         for (; v_idx < q_vectors; v_idx++) {
1346                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1347                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1348                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1349                                          tqpv, txr_idx, rqpv, rxr_idx);
1350
1351                 if (err)
1352                         goto err_out;
1353
1354                 /* update counts and index */
1355                 rxr_remaining -= rqpv;
1356                 txr_remaining -= tqpv;
1357                 rxr_idx++;
1358                 txr_idx++;
1359         }
1360
1361         return 0;
1362
1363 err_out:
1364         adapter->num_tx_queues = 0;
1365         adapter->num_rx_queues = 0;
1366         adapter->num_q_vectors = 0;
1367
1368         while (v_idx--)
1369                 igb_free_q_vector(adapter, v_idx);
1370
1371         return -ENOMEM;
1372 }
1373
1374 /**
1375  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1376  *  @adapter: board private structure to initialize
1377  *  @msix: boolean value of MSIX capability
1378  *
1379  *  This function initializes the interrupts and allocates all of the queues.
1380  **/
1381 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1382 {
1383         struct pci_dev *pdev = adapter->pdev;
1384         int err;
1385
1386         igb_set_interrupt_capability(adapter, msix);
1387
1388         err = igb_alloc_q_vectors(adapter);
1389         if (err) {
1390                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1391                 goto err_alloc_q_vectors;
1392         }
1393
1394         igb_cache_ring_register(adapter);
1395
1396         return 0;
1397
1398 err_alloc_q_vectors:
1399         igb_reset_interrupt_capability(adapter);
1400         return err;
1401 }
1402
1403 /**
1404  *  igb_request_irq - initialize interrupts
1405  *  @adapter: board private structure to initialize
1406  *
1407  *  Attempts to configure interrupts using the best available
1408  *  capabilities of the hardware and kernel.
1409  **/
1410 static int igb_request_irq(struct igb_adapter *adapter)
1411 {
1412         struct net_device *netdev = adapter->netdev;
1413         struct pci_dev *pdev = adapter->pdev;
1414         int err = 0;
1415
1416         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1417                 err = igb_request_msix(adapter);
1418                 if (!err)
1419                         goto request_done;
1420                 /* fall back to MSI */
1421                 igb_free_all_tx_resources(adapter);
1422                 igb_free_all_rx_resources(adapter);
1423
1424                 igb_clear_interrupt_scheme(adapter);
1425                 err = igb_init_interrupt_scheme(adapter, false);
1426                 if (err)
1427                         goto request_done;
1428
1429                 igb_setup_all_tx_resources(adapter);
1430                 igb_setup_all_rx_resources(adapter);
1431                 igb_configure(adapter);
1432         }
1433
1434         igb_assign_vector(adapter->q_vector[0], 0);
1435
1436         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1437                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1438                                   netdev->name, adapter);
1439                 if (!err)
1440                         goto request_done;
1441
1442                 /* fall back to legacy interrupts */
1443                 igb_reset_interrupt_capability(adapter);
1444                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1445         }
1446
1447         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1448                           netdev->name, adapter);
1449
1450         if (err)
1451                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1452                         err);
1453
1454 request_done:
1455         return err;
1456 }
1457
1458 static void igb_free_irq(struct igb_adapter *adapter)
1459 {
1460         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1461                 int vector = 0, i;
1462
1463                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1464
1465                 for (i = 0; i < adapter->num_q_vectors; i++)
1466                         free_irq(adapter->msix_entries[vector++].vector,
1467                                  adapter->q_vector[i]);
1468         } else {
1469                 free_irq(adapter->pdev->irq, adapter);
1470         }
1471 }
1472
1473 /**
1474  *  igb_irq_disable - Mask off interrupt generation on the NIC
1475  *  @adapter: board private structure
1476  **/
1477 static void igb_irq_disable(struct igb_adapter *adapter)
1478 {
1479         struct e1000_hw *hw = &adapter->hw;
1480
1481         /* we need to be careful when disabling interrupts.  The VFs are also
1482          * mapped into these registers and so clearing the bits can cause
1483          * issues on the VF drivers so we only need to clear what we set
1484          */
1485         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1486                 u32 regval = rd32(E1000_EIAM);
1487                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1489                 regval = rd32(E1000_EIAC);
1490                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491         }
1492
1493         wr32(E1000_IAM, 0);
1494         wr32(E1000_IMC, ~0);
1495         wrfl();
1496         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497                 int i;
1498                 for (i = 0; i < adapter->num_q_vectors; i++)
1499                         synchronize_irq(adapter->msix_entries[i].vector);
1500         } else {
1501                 synchronize_irq(adapter->pdev->irq);
1502         }
1503 }
1504
1505 /**
1506  *  igb_irq_enable - Enable default interrupt generation settings
1507  *  @adapter: board private structure
1508  **/
1509 static void igb_irq_enable(struct igb_adapter *adapter)
1510 {
1511         struct e1000_hw *hw = &adapter->hw;
1512
1513         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1514                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1515                 u32 regval = rd32(E1000_EIAC);
1516                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1517                 regval = rd32(E1000_EIAM);
1518                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1519                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1520                 if (adapter->vfs_allocated_count) {
1521                         wr32(E1000_MBVFIMR, 0xFF);
1522                         ims |= E1000_IMS_VMMB;
1523                 }
1524                 wr32(E1000_IMS, ims);
1525         } else {
1526                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1527                                 E1000_IMS_DRSTA);
1528                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1529                                 E1000_IMS_DRSTA);
1530         }
1531 }
1532
1533 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1534 {
1535         struct e1000_hw *hw = &adapter->hw;
1536         u16 vid = adapter->hw.mng_cookie.vlan_id;
1537         u16 old_vid = adapter->mng_vlan_id;
1538
1539         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1540                 /* add VID to filter table */
1541                 igb_vfta_set(hw, vid, true);
1542                 adapter->mng_vlan_id = vid;
1543         } else {
1544                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1545         }
1546
1547         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1548             (vid != old_vid) &&
1549             !test_bit(old_vid, adapter->active_vlans)) {
1550                 /* remove VID from filter table */
1551                 igb_vfta_set(hw, old_vid, false);
1552         }
1553 }
1554
1555 /**
1556  *  igb_release_hw_control - release control of the h/w to f/w
1557  *  @adapter: address of board private structure
1558  *
1559  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1560  *  For ASF and Pass Through versions of f/w this means that the
1561  *  driver is no longer loaded.
1562  **/
1563 static void igb_release_hw_control(struct igb_adapter *adapter)
1564 {
1565         struct e1000_hw *hw = &adapter->hw;
1566         u32 ctrl_ext;
1567
1568         /* Let firmware take over control of h/w */
1569         ctrl_ext = rd32(E1000_CTRL_EXT);
1570         wr32(E1000_CTRL_EXT,
1571                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1572 }
1573
1574 /**
1575  *  igb_get_hw_control - get control of the h/w from f/w
1576  *  @adapter: address of board private structure
1577  *
1578  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1579  *  For ASF and Pass Through versions of f/w this means that
1580  *  the driver is loaded.
1581  **/
1582 static void igb_get_hw_control(struct igb_adapter *adapter)
1583 {
1584         struct e1000_hw *hw = &adapter->hw;
1585         u32 ctrl_ext;
1586
1587         /* Let firmware know the driver has taken over */
1588         ctrl_ext = rd32(E1000_CTRL_EXT);
1589         wr32(E1000_CTRL_EXT,
1590                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1591 }
1592
1593 /**
1594  *  igb_configure - configure the hardware for RX and TX
1595  *  @adapter: private board structure
1596  **/
1597 static void igb_configure(struct igb_adapter *adapter)
1598 {
1599         struct net_device *netdev = adapter->netdev;
1600         int i;
1601
1602         igb_get_hw_control(adapter);
1603         igb_set_rx_mode(netdev);
1604
1605         igb_restore_vlan(adapter);
1606
1607         igb_setup_tctl(adapter);
1608         igb_setup_mrqc(adapter);
1609         igb_setup_rctl(adapter);
1610
1611         igb_configure_tx(adapter);
1612         igb_configure_rx(adapter);
1613
1614         igb_rx_fifo_flush_82575(&adapter->hw);
1615
1616         /* call igb_desc_unused which always leaves
1617          * at least 1 descriptor unused to make sure
1618          * next_to_use != next_to_clean
1619          */
1620         for (i = 0; i < adapter->num_rx_queues; i++) {
1621                 struct igb_ring *ring = adapter->rx_ring[i];
1622                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1623         }
1624 }
1625
1626 /**
1627  *  igb_power_up_link - Power up the phy/serdes link
1628  *  @adapter: address of board private structure
1629  **/
1630 void igb_power_up_link(struct igb_adapter *adapter)
1631 {
1632         igb_reset_phy(&adapter->hw);
1633
1634         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1635                 igb_power_up_phy_copper(&adapter->hw);
1636         else
1637                 igb_power_up_serdes_link_82575(&adapter->hw);
1638 }
1639
1640 /**
1641  *  igb_power_down_link - Power down the phy/serdes link
1642  *  @adapter: address of board private structure
1643  */
1644 static void igb_power_down_link(struct igb_adapter *adapter)
1645 {
1646         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1647                 igb_power_down_phy_copper_82575(&adapter->hw);
1648         else
1649                 igb_shutdown_serdes_link_82575(&adapter->hw);
1650 }
1651
1652 /**
1653  * Detect and switch function for Media Auto Sense
1654  * @adapter: address of the board private structure
1655  **/
1656 static void igb_check_swap_media(struct igb_adapter *adapter)
1657 {
1658         struct e1000_hw *hw = &adapter->hw;
1659         u32 ctrl_ext, connsw;
1660         bool swap_now = false;
1661
1662         ctrl_ext = rd32(E1000_CTRL_EXT);
1663         connsw = rd32(E1000_CONNSW);
1664
1665         /* need to live swap if current media is copper and we have fiber/serdes
1666          * to go to.
1667          */
1668
1669         if ((hw->phy.media_type == e1000_media_type_copper) &&
1670             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1671                 swap_now = true;
1672         } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1673                 /* copper signal takes time to appear */
1674                 if (adapter->copper_tries < 4) {
1675                         adapter->copper_tries++;
1676                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1677                         wr32(E1000_CONNSW, connsw);
1678                         return;
1679                 } else {
1680                         adapter->copper_tries = 0;
1681                         if ((connsw & E1000_CONNSW_PHYSD) &&
1682                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
1683                                 swap_now = true;
1684                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1685                                 wr32(E1000_CONNSW, connsw);
1686                         }
1687                 }
1688         }
1689
1690         if (!swap_now)
1691                 return;
1692
1693         switch (hw->phy.media_type) {
1694         case e1000_media_type_copper:
1695                 netdev_info(adapter->netdev,
1696                         "MAS: changing media to fiber/serdes\n");
1697                 ctrl_ext |=
1698                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1699                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1700                 adapter->copper_tries = 0;
1701                 break;
1702         case e1000_media_type_internal_serdes:
1703         case e1000_media_type_fiber:
1704                 netdev_info(adapter->netdev,
1705                         "MAS: changing media to copper\n");
1706                 ctrl_ext &=
1707                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1708                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1709                 break;
1710         default:
1711                 /* shouldn't get here during regular operation */
1712                 netdev_err(adapter->netdev,
1713                         "AMS: Invalid media type found, returning\n");
1714                 break;
1715         }
1716         wr32(E1000_CTRL_EXT, ctrl_ext);
1717 }
1718
1719 /**
1720  *  igb_up - Open the interface and prepare it to handle traffic
1721  *  @adapter: board private structure
1722  **/
1723 int igb_up(struct igb_adapter *adapter)
1724 {
1725         struct e1000_hw *hw = &adapter->hw;
1726         int i;
1727
1728         /* hardware has been reset, we need to reload some things */
1729         igb_configure(adapter);
1730
1731         clear_bit(__IGB_DOWN, &adapter->state);
1732
1733         for (i = 0; i < adapter->num_q_vectors; i++)
1734                 napi_enable(&(adapter->q_vector[i]->napi));
1735
1736         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1737                 igb_configure_msix(adapter);
1738         else
1739                 igb_assign_vector(adapter->q_vector[0], 0);
1740
1741         /* Clear any pending interrupts. */
1742         rd32(E1000_ICR);
1743         igb_irq_enable(adapter);
1744
1745         /* notify VFs that reset has been completed */
1746         if (adapter->vfs_allocated_count) {
1747                 u32 reg_data = rd32(E1000_CTRL_EXT);
1748                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1749                 wr32(E1000_CTRL_EXT, reg_data);
1750         }
1751
1752         netif_tx_start_all_queues(adapter->netdev);
1753
1754         /* start the watchdog. */
1755         hw->mac.get_link_status = 1;
1756         schedule_work(&adapter->watchdog_task);
1757
1758         if ((adapter->flags & IGB_FLAG_EEE) &&
1759             (!hw->dev_spec._82575.eee_disable))
1760                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1761
1762         return 0;
1763 }
1764
1765 void igb_down(struct igb_adapter *adapter)
1766 {
1767         struct net_device *netdev = adapter->netdev;
1768         struct e1000_hw *hw = &adapter->hw;
1769         u32 tctl, rctl;
1770         int i;
1771
1772         /* signal that we're down so the interrupt handler does not
1773          * reschedule our watchdog timer
1774          */
1775         set_bit(__IGB_DOWN, &adapter->state);
1776
1777         /* disable receives in the hardware */
1778         rctl = rd32(E1000_RCTL);
1779         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1780         /* flush and sleep below */
1781
1782         netif_tx_stop_all_queues(netdev);
1783
1784         /* disable transmits in the hardware */
1785         tctl = rd32(E1000_TCTL);
1786         tctl &= ~E1000_TCTL_EN;
1787         wr32(E1000_TCTL, tctl);
1788         /* flush both disables and wait for them to finish */
1789         wrfl();
1790         msleep(10);
1791
1792         igb_irq_disable(adapter);
1793
1794         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1795
1796         for (i = 0; i < adapter->num_q_vectors; i++) {
1797                 napi_synchronize(&(adapter->q_vector[i]->napi));
1798                 napi_disable(&(adapter->q_vector[i]->napi));
1799         }
1800
1801
1802         del_timer_sync(&adapter->watchdog_timer);
1803         del_timer_sync(&adapter->phy_info_timer);
1804
1805         netif_carrier_off(netdev);
1806
1807         /* record the stats before reset*/
1808         spin_lock(&adapter->stats64_lock);
1809         igb_update_stats(adapter, &adapter->stats64);
1810         spin_unlock(&adapter->stats64_lock);
1811
1812         adapter->link_speed = 0;
1813         adapter->link_duplex = 0;
1814
1815         if (!pci_channel_offline(adapter->pdev))
1816                 igb_reset(adapter);
1817         igb_clean_all_tx_rings(adapter);
1818         igb_clean_all_rx_rings(adapter);
1819 #ifdef CONFIG_IGB_DCA
1820
1821         /* since we reset the hardware DCA settings were cleared */
1822         igb_setup_dca(adapter);
1823 #endif
1824 }
1825
1826 void igb_reinit_locked(struct igb_adapter *adapter)
1827 {
1828         WARN_ON(in_interrupt());
1829         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1830                 msleep(1);
1831         igb_down(adapter);
1832         igb_up(adapter);
1833         clear_bit(__IGB_RESETTING, &adapter->state);
1834 }
1835
1836 /** igb_enable_mas - Media Autosense re-enable after swap
1837  *
1838  * @adapter: adapter struct
1839  **/
1840 static s32 igb_enable_mas(struct igb_adapter *adapter)
1841 {
1842         struct e1000_hw *hw = &adapter->hw;
1843         u32 connsw;
1844         s32 ret_val = 0;
1845
1846         connsw = rd32(E1000_CONNSW);
1847         if (!(hw->phy.media_type == e1000_media_type_copper))
1848                 return ret_val;
1849
1850         /* configure for SerDes media detect */
1851         if (!(connsw & E1000_CONNSW_SERDESD)) {
1852                 connsw |= E1000_CONNSW_ENRGSRC;
1853                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1854                 wr32(E1000_CONNSW, connsw);
1855                 wrfl();
1856         } else if (connsw & E1000_CONNSW_SERDESD) {
1857                 /* already SerDes, no need to enable anything */
1858                 return ret_val;
1859         } else {
1860                 netdev_info(adapter->netdev,
1861                         "MAS: Unable to configure feature, disabling..\n");
1862                 adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1863         }
1864         return ret_val;
1865 }
1866
1867 void igb_reset(struct igb_adapter *adapter)
1868 {
1869         struct pci_dev *pdev = adapter->pdev;
1870         struct e1000_hw *hw = &adapter->hw;
1871         struct e1000_mac_info *mac = &hw->mac;
1872         struct e1000_fc_info *fc = &hw->fc;
1873         u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1874
1875         /* Repartition Pba for greater than 9k mtu
1876          * To take effect CTRL.RST is required.
1877          */
1878         switch (mac->type) {
1879         case e1000_i350:
1880         case e1000_i354:
1881         case e1000_82580:
1882                 pba = rd32(E1000_RXPBS);
1883                 pba = igb_rxpbs_adjust_82580(pba);
1884                 break;
1885         case e1000_82576:
1886                 pba = rd32(E1000_RXPBS);
1887                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1888                 break;
1889         case e1000_82575:
1890         case e1000_i210:
1891         case e1000_i211:
1892         default:
1893                 pba = E1000_PBA_34K;
1894                 break;
1895         }
1896
1897         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1898             (mac->type < e1000_82576)) {
1899                 /* adjust PBA for jumbo frames */
1900                 wr32(E1000_PBA, pba);
1901
1902                 /* To maintain wire speed transmits, the Tx FIFO should be
1903                  * large enough to accommodate two full transmit packets,
1904                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1905                  * the Rx FIFO should be large enough to accommodate at least
1906                  * one full receive packet and is similarly rounded up and
1907                  * expressed in KB.
1908                  */
1909                 pba = rd32(E1000_PBA);
1910                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1911                 tx_space = pba >> 16;
1912                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1913                 pba &= 0xffff;
1914                 /* the Tx fifo also stores 16 bytes of information about the Tx
1915                  * but don't include ethernet FCS because hardware appends it
1916                  */
1917                 min_tx_space = (adapter->max_frame_size +
1918                                 sizeof(union e1000_adv_tx_desc) -
1919                                 ETH_FCS_LEN) * 2;
1920                 min_tx_space = ALIGN(min_tx_space, 1024);
1921                 min_tx_space >>= 10;
1922                 /* software strips receive CRC, so leave room for it */
1923                 min_rx_space = adapter->max_frame_size;
1924                 min_rx_space = ALIGN(min_rx_space, 1024);
1925                 min_rx_space >>= 10;
1926
1927                 /* If current Tx allocation is less than the min Tx FIFO size,
1928                  * and the min Tx FIFO size is less than the current Rx FIFO
1929                  * allocation, take space away from current Rx allocation
1930                  */
1931                 if (tx_space < min_tx_space &&
1932                     ((min_tx_space - tx_space) < pba)) {
1933                         pba = pba - (min_tx_space - tx_space);
1934
1935                         /* if short on Rx space, Rx wins and must trump Tx
1936                          * adjustment
1937                          */
1938                         if (pba < min_rx_space)
1939                                 pba = min_rx_space;
1940                 }
1941                 wr32(E1000_PBA, pba);
1942         }
1943
1944         /* flow control settings */
1945         /* The high water mark must be low enough to fit one full frame
1946          * (or the size used for early receive) above it in the Rx FIFO.
1947          * Set it to the lower of:
1948          * - 90% of the Rx FIFO size, or
1949          * - the full Rx FIFO size minus one full frame
1950          */
1951         hwm = min(((pba << 10) * 9 / 10),
1952                         ((pba << 10) - 2 * adapter->max_frame_size));
1953
1954         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
1955         fc->low_water = fc->high_water - 16;
1956         fc->pause_time = 0xFFFF;
1957         fc->send_xon = 1;
1958         fc->current_mode = fc->requested_mode;
1959
1960         /* disable receive for all VFs and wait one second */
1961         if (adapter->vfs_allocated_count) {
1962                 int i;
1963                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1964                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1965
1966                 /* ping all the active vfs to let them know we are going down */
1967                 igb_ping_all_vfs(adapter);
1968
1969                 /* disable transmits and receives */
1970                 wr32(E1000_VFRE, 0);
1971                 wr32(E1000_VFTE, 0);
1972         }
1973
1974         /* Allow time for pending master requests to run */
1975         hw->mac.ops.reset_hw(hw);
1976         wr32(E1000_WUC, 0);
1977
1978         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1979                 /* need to resetup here after media swap */
1980                 adapter->ei.get_invariants(hw);
1981                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1982         }
1983         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1984                 if (igb_enable_mas(adapter))
1985                         dev_err(&pdev->dev,
1986                                 "Error enabling Media Auto Sense\n");
1987         }
1988         if (hw->mac.ops.init_hw(hw))
1989                 dev_err(&pdev->dev, "Hardware Error\n");
1990
1991         /* Flow control settings reset on hardware reset, so guarantee flow
1992          * control is off when forcing speed.
1993          */
1994         if (!hw->mac.autoneg)
1995                 igb_force_mac_fc(hw);
1996
1997         igb_init_dmac(adapter, pba);
1998 #ifdef CONFIG_IGB_HWMON
1999         /* Re-initialize the thermal sensor on i350 devices. */
2000         if (!test_bit(__IGB_DOWN, &adapter->state)) {
2001                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2002                         /* If present, re-initialize the external thermal sensor
2003                          * interface.
2004                          */
2005                         if (adapter->ets)
2006                                 mac->ops.init_thermal_sensor_thresh(hw);
2007                 }
2008         }
2009 #endif
2010         /* Re-establish EEE setting */
2011         if (hw->phy.media_type == e1000_media_type_copper) {
2012                 switch (mac->type) {
2013                 case e1000_i350:
2014                 case e1000_i210:
2015                 case e1000_i211:
2016                         igb_set_eee_i350(hw);
2017                         break;
2018                 case e1000_i354:
2019                         igb_set_eee_i354(hw);
2020                         break;
2021                 default:
2022                         break;
2023                 }
2024         }
2025         if (!netif_running(adapter->netdev))
2026                 igb_power_down_link(adapter);
2027
2028         igb_update_mng_vlan(adapter);
2029
2030         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2031         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2032
2033         /* Re-enable PTP, where applicable. */
2034         igb_ptp_reset(adapter);
2035
2036         igb_get_phy_info(hw);
2037 }
2038
2039 static netdev_features_t igb_fix_features(struct net_device *netdev,
2040         netdev_features_t features)
2041 {
2042         /* Since there is no support for separate Rx/Tx vlan accel
2043          * enable/disable make sure Tx flag is always in same state as Rx.
2044          */
2045         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2046                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2047         else
2048                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2049
2050         return features;
2051 }
2052
2053 static int igb_set_features(struct net_device *netdev,
2054         netdev_features_t features)
2055 {
2056         netdev_features_t changed = netdev->features ^ features;
2057         struct igb_adapter *adapter = netdev_priv(netdev);
2058
2059         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2060                 igb_vlan_mode(netdev, features);
2061
2062         if (!(changed & NETIF_F_RXALL))
2063                 return 0;
2064
2065         netdev->features = features;
2066
2067         if (netif_running(netdev))
2068                 igb_reinit_locked(adapter);
2069         else
2070                 igb_reset(adapter);
2071
2072         return 0;
2073 }
2074
2075 static const struct net_device_ops igb_netdev_ops = {
2076         .ndo_open               = igb_open,
2077         .ndo_stop               = igb_close,
2078         .ndo_start_xmit         = igb_xmit_frame,
2079         .ndo_get_stats64        = igb_get_stats64,
2080         .ndo_set_rx_mode        = igb_set_rx_mode,
2081         .ndo_set_mac_address    = igb_set_mac,
2082         .ndo_change_mtu         = igb_change_mtu,
2083         .ndo_do_ioctl           = igb_ioctl,
2084         .ndo_tx_timeout         = igb_tx_timeout,
2085         .ndo_validate_addr      = eth_validate_addr,
2086         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2087         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2088         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2089         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2090         .ndo_set_vf_tx_rate     = igb_ndo_set_vf_bw,
2091         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2092         .ndo_get_vf_config      = igb_ndo_get_vf_config,
2093 #ifdef CONFIG_NET_POLL_CONTROLLER
2094         .ndo_poll_controller    = igb_netpoll,
2095 #endif
2096         .ndo_fix_features       = igb_fix_features,
2097         .ndo_set_features       = igb_set_features,
2098 };
2099
2100 /**
2101  * igb_set_fw_version - Configure version string for ethtool
2102  * @adapter: adapter struct
2103  **/
2104 void igb_set_fw_version(struct igb_adapter *adapter)
2105 {
2106         struct e1000_hw *hw = &adapter->hw;
2107         struct e1000_fw_version fw;
2108
2109         igb_get_fw_version(hw, &fw);
2110
2111         switch (hw->mac.type) {
2112         case e1000_i210:
2113         case e1000_i211:
2114                 if (!(igb_get_flash_presence_i210(hw))) {
2115                         snprintf(adapter->fw_version,
2116                                  sizeof(adapter->fw_version),
2117                                  "%2d.%2d-%d",
2118                                  fw.invm_major, fw.invm_minor,
2119                                  fw.invm_img_type);
2120                         break;
2121                 }
2122                 /* fall through */
2123         default:
2124                 /* if option is rom valid, display its version too */
2125                 if (fw.or_valid) {
2126                         snprintf(adapter->fw_version,
2127                                  sizeof(adapter->fw_version),
2128                                  "%d.%d, 0x%08x, %d.%d.%d",
2129                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2130                                  fw.or_major, fw.or_build, fw.or_patch);
2131                 /* no option rom */
2132                 } else if (fw.etrack_id != 0X0000) {
2133                         snprintf(adapter->fw_version,
2134                             sizeof(adapter->fw_version),
2135                             "%d.%d, 0x%08x",
2136                             fw.eep_major, fw.eep_minor, fw.etrack_id);
2137                 } else {
2138                 snprintf(adapter->fw_version,
2139                     sizeof(adapter->fw_version),
2140                     "%d.%d.%d",
2141                     fw.eep_major, fw.eep_minor, fw.eep_build);
2142                 }
2143                 break;
2144         }
2145         return;
2146 }
2147
2148 /**
2149  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2150  *
2151  * @adapter: adapter struct
2152  **/
2153 static void igb_init_mas(struct igb_adapter *adapter)
2154 {
2155         struct e1000_hw *hw = &adapter->hw;
2156         u16 eeprom_data;
2157
2158         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2159         switch (hw->bus.func) {
2160         case E1000_FUNC_0:
2161                 if (eeprom_data & IGB_MAS_ENABLE_0) {
2162                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2163                         netdev_info(adapter->netdev,
2164                                 "MAS: Enabling Media Autosense for port %d\n",
2165                                 hw->bus.func);
2166                 }
2167                 break;
2168         case E1000_FUNC_1:
2169                 if (eeprom_data & IGB_MAS_ENABLE_1) {
2170                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2171                         netdev_info(adapter->netdev,
2172                                 "MAS: Enabling Media Autosense for port %d\n",
2173                                 hw->bus.func);
2174                 }
2175                 break;
2176         case E1000_FUNC_2:
2177                 if (eeprom_data & IGB_MAS_ENABLE_2) {
2178                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2179                         netdev_info(adapter->netdev,
2180                                 "MAS: Enabling Media Autosense for port %d\n",
2181                                 hw->bus.func);
2182                 }
2183                 break;
2184         case E1000_FUNC_3:
2185                 if (eeprom_data & IGB_MAS_ENABLE_3) {
2186                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2187                         netdev_info(adapter->netdev,
2188                                 "MAS: Enabling Media Autosense for port %d\n",
2189                                 hw->bus.func);
2190                 }
2191                 break;
2192         default:
2193                 /* Shouldn't get here */
2194                 netdev_err(adapter->netdev,
2195                         "MAS: Invalid port configuration, returning\n");
2196                 break;
2197         }
2198 }
2199
2200 /**
2201  *  igb_init_i2c - Init I2C interface
2202  *  @adapter: pointer to adapter structure
2203  **/
2204 static s32 igb_init_i2c(struct igb_adapter *adapter)
2205 {
2206         s32 status = E1000_SUCCESS;
2207
2208         /* I2C interface supported on i350 devices */
2209         if (adapter->hw.mac.type != e1000_i350)
2210                 return E1000_SUCCESS;
2211
2212         /* Initialize the i2c bus which is controlled by the registers.
2213          * This bus will use the i2c_algo_bit structue that implements
2214          * the protocol through toggling of the 4 bits in the register.
2215          */
2216         adapter->i2c_adap.owner = THIS_MODULE;
2217         adapter->i2c_algo = igb_i2c_algo;
2218         adapter->i2c_algo.data = adapter;
2219         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2220         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2221         strlcpy(adapter->i2c_adap.name, "igb BB",
2222                 sizeof(adapter->i2c_adap.name));
2223         status = i2c_bit_add_bus(&adapter->i2c_adap);
2224         return status;
2225 }
2226
2227 /**
2228  *  igb_probe - Device Initialization Routine
2229  *  @pdev: PCI device information struct
2230  *  @ent: entry in igb_pci_tbl
2231  *
2232  *  Returns 0 on success, negative on failure
2233  *
2234  *  igb_probe initializes an adapter identified by a pci_dev structure.
2235  *  The OS initialization, configuring of the adapter private structure,
2236  *  and a hardware reset occur.
2237  **/
2238 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2239 {
2240         struct net_device *netdev;
2241         struct igb_adapter *adapter;
2242         struct e1000_hw *hw;
2243         u16 eeprom_data = 0;
2244         s32 ret_val;
2245         static int global_quad_port_a; /* global quad port a indication */
2246         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2247         int err, pci_using_dac;
2248         u8 part_str[E1000_PBANUM_LENGTH];
2249
2250         /* Catch broken hardware that put the wrong VF device ID in
2251          * the PCIe SR-IOV capability.
2252          */
2253         if (pdev->is_virtfn) {
2254                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2255                         pci_name(pdev), pdev->vendor, pdev->device);
2256                 return -EINVAL;
2257         }
2258
2259         err = pci_enable_device_mem(pdev);
2260         if (err)
2261                 return err;
2262
2263         pci_using_dac = 0;
2264         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2265         if (!err) {
2266                 pci_using_dac = 1;
2267         } else {
2268                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2269                 if (err) {
2270                         dev_err(&pdev->dev,
2271                                 "No usable DMA configuration, aborting\n");
2272                         goto err_dma;
2273                 }
2274         }
2275
2276         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2277                                            IORESOURCE_MEM),
2278                                            igb_driver_name);
2279         if (err)
2280                 goto err_pci_reg;
2281
2282         pci_enable_pcie_error_reporting(pdev);
2283
2284         pci_set_master(pdev);
2285         pci_save_state(pdev);
2286
2287         err = -ENOMEM;
2288         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2289                                    IGB_MAX_TX_QUEUES);
2290         if (!netdev)
2291                 goto err_alloc_etherdev;
2292
2293         SET_NETDEV_DEV(netdev, &pdev->dev);
2294
2295         pci_set_drvdata(pdev, netdev);
2296         adapter = netdev_priv(netdev);
2297         adapter->netdev = netdev;
2298         adapter->pdev = pdev;
2299         hw = &adapter->hw;
2300         hw->back = adapter;
2301         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2302
2303         err = -EIO;
2304         hw->hw_addr = pci_iomap(pdev, 0, 0);
2305         if (!hw->hw_addr)
2306                 goto err_ioremap;
2307
2308         netdev->netdev_ops = &igb_netdev_ops;
2309         igb_set_ethtool_ops(netdev);
2310         netdev->watchdog_timeo = 5 * HZ;
2311
2312         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2313
2314         netdev->mem_start = pci_resource_start(pdev, 0);
2315         netdev->mem_end = pci_resource_end(pdev, 0);
2316
2317         /* PCI config space info */
2318         hw->vendor_id = pdev->vendor;
2319         hw->device_id = pdev->device;
2320         hw->revision_id = pdev->revision;
2321         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2322         hw->subsystem_device_id = pdev->subsystem_device;
2323
2324         /* Copy the default MAC, PHY and NVM function pointers */
2325         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2326         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2327         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2328         /* Initialize skew-specific constants */
2329         err = ei->get_invariants(hw);
2330         if (err)
2331                 goto err_sw_init;
2332
2333         /* setup the private structure */
2334         err = igb_sw_init(adapter);
2335         if (err)
2336                 goto err_sw_init;
2337
2338         igb_get_bus_info_pcie(hw);
2339
2340         hw->phy.autoneg_wait_to_complete = false;
2341
2342         /* Copper options */
2343         if (hw->phy.media_type == e1000_media_type_copper) {
2344                 hw->phy.mdix = AUTO_ALL_MODES;
2345                 hw->phy.disable_polarity_correction = false;
2346                 hw->phy.ms_type = e1000_ms_hw_default;
2347         }
2348
2349         if (igb_check_reset_block(hw))
2350                 dev_info(&pdev->dev,
2351                         "PHY reset is blocked due to SOL/IDER session.\n");
2352
2353         /* features is initialized to 0 in allocation, it might have bits
2354          * set by igb_sw_init so we should use an or instead of an
2355          * assignment.
2356          */
2357         netdev->features |= NETIF_F_SG |
2358                             NETIF_F_IP_CSUM |
2359                             NETIF_F_IPV6_CSUM |
2360                             NETIF_F_TSO |
2361                             NETIF_F_TSO6 |
2362                             NETIF_F_RXHASH |
2363                             NETIF_F_RXCSUM |
2364                             NETIF_F_HW_VLAN_CTAG_RX |
2365                             NETIF_F_HW_VLAN_CTAG_TX;
2366
2367         /* copy netdev features into list of user selectable features */
2368         netdev->hw_features |= netdev->features;
2369         netdev->hw_features |= NETIF_F_RXALL;
2370
2371         /* set this bit last since it cannot be part of hw_features */
2372         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2373
2374         netdev->vlan_features |= NETIF_F_TSO |
2375                                  NETIF_F_TSO6 |
2376                                  NETIF_F_IP_CSUM |
2377                                  NETIF_F_IPV6_CSUM |
2378                                  NETIF_F_SG;
2379
2380         netdev->priv_flags |= IFF_SUPP_NOFCS;
2381
2382         if (pci_using_dac) {
2383                 netdev->features |= NETIF_F_HIGHDMA;
2384                 netdev->vlan_features |= NETIF_F_HIGHDMA;
2385         }
2386
2387         if (hw->mac.type >= e1000_82576) {
2388                 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2389                 netdev->features |= NETIF_F_SCTP_CSUM;
2390         }
2391
2392         netdev->priv_flags |= IFF_UNICAST_FLT;
2393
2394         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2395
2396         /* before reading the NVM, reset the controller to put the device in a
2397          * known good starting state
2398          */
2399         hw->mac.ops.reset_hw(hw);
2400
2401         /* make sure the NVM is good , i211/i210 parts can have special NVM
2402          * that doesn't contain a checksum
2403          */
2404         switch (hw->mac.type) {
2405         case e1000_i210:
2406         case e1000_i211:
2407                 if (igb_get_flash_presence_i210(hw)) {
2408                         if (hw->nvm.ops.validate(hw) < 0) {
2409                                 dev_err(&pdev->dev,
2410                                         "The NVM Checksum Is Not Valid\n");
2411                                 err = -EIO;
2412                                 goto err_eeprom;
2413                         }
2414                 }
2415                 break;
2416         default:
2417                 if (hw->nvm.ops.validate(hw) < 0) {
2418                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2419                         err = -EIO;
2420                         goto err_eeprom;
2421                 }
2422                 break;
2423         }
2424
2425         /* copy the MAC address out of the NVM */
2426         if (hw->mac.ops.read_mac_addr(hw))
2427                 dev_err(&pdev->dev, "NVM Read Error\n");
2428
2429         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2430
2431         if (!is_valid_ether_addr(netdev->dev_addr)) {
2432                 dev_err(&pdev->dev, "Invalid MAC Address\n");
2433                 err = -EIO;
2434                 goto err_eeprom;
2435         }
2436
2437         /* get firmware version for ethtool -i */
2438         igb_set_fw_version(adapter);
2439
2440         setup_timer(&adapter->watchdog_timer, igb_watchdog,
2441                     (unsigned long) adapter);
2442         setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2443                     (unsigned long) adapter);
2444
2445         INIT_WORK(&adapter->reset_task, igb_reset_task);
2446         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2447
2448         /* Initialize link properties that are user-changeable */
2449         adapter->fc_autoneg = true;
2450         hw->mac.autoneg = true;
2451         hw->phy.autoneg_advertised = 0x2f;
2452
2453         hw->fc.requested_mode = e1000_fc_default;
2454         hw->fc.current_mode = e1000_fc_default;
2455
2456         igb_validate_mdi_setting(hw);
2457
2458         /* By default, support wake on port A */
2459         if (hw->bus.func == 0)
2460                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2461
2462         /* Check the NVM for wake support on non-port A ports */
2463         if (hw->mac.type >= e1000_82580)
2464                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2465                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2466                                  &eeprom_data);
2467         else if (hw->bus.func == 1)
2468                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2469
2470         if (eeprom_data & IGB_EEPROM_APME)
2471                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2472
2473         /* now that we have the eeprom settings, apply the special cases where
2474          * the eeprom may be wrong or the board simply won't support wake on
2475          * lan on a particular port
2476          */
2477         switch (pdev->device) {
2478         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2479                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2480                 break;
2481         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2482         case E1000_DEV_ID_82576_FIBER:
2483         case E1000_DEV_ID_82576_SERDES:
2484                 /* Wake events only supported on port A for dual fiber
2485                  * regardless of eeprom setting
2486                  */
2487                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2488                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2489                 break;
2490         case E1000_DEV_ID_82576_QUAD_COPPER:
2491         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2492                 /* if quad port adapter, disable WoL on all but port A */
2493                 if (global_quad_port_a != 0)
2494                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2495                 else
2496                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2497                 /* Reset for multiple quad port adapters */
2498                 if (++global_quad_port_a == 4)
2499                         global_quad_port_a = 0;
2500                 break;
2501         default:
2502                 /* If the device can't wake, don't set software support */
2503                 if (!device_can_wakeup(&adapter->pdev->dev))
2504                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2505         }
2506
2507         /* initialize the wol settings based on the eeprom settings */
2508         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2509                 adapter->wol |= E1000_WUFC_MAG;
2510
2511         /* Some vendors want WoL disabled by default, but still supported */
2512         if ((hw->mac.type == e1000_i350) &&
2513             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2514                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2515                 adapter->wol = 0;
2516         }
2517
2518         device_set_wakeup_enable(&adapter->pdev->dev,
2519                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2520
2521         /* reset the hardware with the new settings */
2522         igb_reset(adapter);
2523
2524         /* Init the I2C interface */
2525         err = igb_init_i2c(adapter);
2526         if (err) {
2527                 dev_err(&pdev->dev, "failed to init i2c interface\n");
2528                 goto err_eeprom;
2529         }
2530
2531         /* let the f/w know that the h/w is now under the control of the
2532          * driver. */
2533         igb_get_hw_control(adapter);
2534
2535         strcpy(netdev->name, "eth%d");
2536         err = register_netdev(netdev);
2537         if (err)
2538                 goto err_register;
2539
2540         /* carrier off reporting is important to ethtool even BEFORE open */
2541         netif_carrier_off(netdev);
2542
2543 #ifdef CONFIG_IGB_DCA
2544         if (dca_add_requester(&pdev->dev) == 0) {
2545                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2546                 dev_info(&pdev->dev, "DCA enabled\n");
2547                 igb_setup_dca(adapter);
2548         }
2549
2550 #endif
2551 #ifdef CONFIG_IGB_HWMON
2552         /* Initialize the thermal sensor on i350 devices. */
2553         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2554                 u16 ets_word;
2555
2556                 /* Read the NVM to determine if this i350 device supports an
2557                  * external thermal sensor.
2558                  */
2559                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2560                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2561                         adapter->ets = true;
2562                 else
2563                         adapter->ets = false;
2564                 if (igb_sysfs_init(adapter))
2565                         dev_err(&pdev->dev,
2566                                 "failed to allocate sysfs resources\n");
2567         } else {
2568                 adapter->ets = false;
2569         }
2570 #endif
2571         /* Check if Media Autosense is enabled */
2572         adapter->ei = *ei;
2573         if (hw->dev_spec._82575.mas_capable)
2574                 igb_init_mas(adapter);
2575
2576         /* do hw tstamp init after resetting */
2577         igb_ptp_init(adapter);
2578
2579         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2580         /* print bus type/speed/width info, not applicable to i354 */
2581         if (hw->mac.type != e1000_i354) {
2582                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2583                          netdev->name,
2584                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2585                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2586                            "unknown"),
2587                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2588                           "Width x4" :
2589                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
2590                           "Width x2" :
2591                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
2592                           "Width x1" : "unknown"), netdev->dev_addr);
2593         }
2594
2595         if ((hw->mac.type >= e1000_i210 ||
2596              igb_get_flash_presence_i210(hw))) {
2597                 ret_val = igb_read_part_string(hw, part_str,
2598                                                E1000_PBANUM_LENGTH);
2599         } else {
2600                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2601         }
2602
2603         if (ret_val)
2604                 strcpy(part_str, "Unknown");
2605         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2606         dev_info(&pdev->dev,
2607                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2608                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2609                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2610                 adapter->num_rx_queues, adapter->num_tx_queues);
2611         if (hw->phy.media_type == e1000_media_type_copper) {
2612                 switch (hw->mac.type) {
2613                 case e1000_i350:
2614                 case e1000_i210:
2615                 case e1000_i211:
2616                         /* Enable EEE for internal copper PHY devices */
2617                         err = igb_set_eee_i350(hw);
2618                         if ((!err) &&
2619                             (!hw->dev_spec._82575.eee_disable)) {
2620                                 adapter->eee_advert =
2621                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
2622                                 adapter->flags |= IGB_FLAG_EEE;
2623                         }
2624                         break;
2625                 case e1000_i354:
2626                         if ((rd32(E1000_CTRL_EXT) &
2627                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2628                                 err = igb_set_eee_i354(hw);
2629                                 if ((!err) &&
2630                                         (!hw->dev_spec._82575.eee_disable)) {
2631                                         adapter->eee_advert =
2632                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
2633                                         adapter->flags |= IGB_FLAG_EEE;
2634                                 }
2635                         }
2636                         break;
2637                 default:
2638                         break;
2639                 }
2640         }
2641         pm_runtime_put_noidle(&pdev->dev);
2642         return 0;
2643
2644 err_register:
2645         igb_release_hw_control(adapter);
2646         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2647 err_eeprom:
2648         if (!igb_check_reset_block(hw))
2649                 igb_reset_phy(hw);
2650
2651         if (hw->flash_address)
2652                 iounmap(hw->flash_address);
2653 err_sw_init:
2654         igb_clear_interrupt_scheme(adapter);
2655         pci_iounmap(pdev, hw->hw_addr);
2656 err_ioremap:
2657         free_netdev(netdev);
2658 err_alloc_etherdev:
2659         pci_release_selected_regions(pdev,
2660                                      pci_select_bars(pdev, IORESOURCE_MEM));
2661 err_pci_reg:
2662 err_dma:
2663         pci_disable_device(pdev);
2664         return err;
2665 }
2666
2667 #ifdef CONFIG_PCI_IOV
2668 static int igb_disable_sriov(struct pci_dev *pdev)
2669 {
2670         struct net_device *netdev = pci_get_drvdata(pdev);
2671         struct igb_adapter *adapter = netdev_priv(netdev);
2672         struct e1000_hw *hw = &adapter->hw;
2673
2674         /* reclaim resources allocated to VFs */
2675         if (adapter->vf_data) {
2676                 /* disable iov and allow time for transactions to clear */
2677                 if (pci_vfs_assigned(pdev)) {
2678                         dev_warn(&pdev->dev,
2679                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2680                         return -EPERM;
2681                 } else {
2682                         pci_disable_sriov(pdev);
2683                         msleep(500);
2684                 }
2685
2686                 kfree(adapter->vf_data);
2687                 adapter->vf_data = NULL;
2688                 adapter->vfs_allocated_count = 0;
2689                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2690                 wrfl();
2691                 msleep(100);
2692                 dev_info(&pdev->dev, "IOV Disabled\n");
2693
2694                 /* Re-enable DMA Coalescing flag since IOV is turned off */
2695                 adapter->flags |= IGB_FLAG_DMAC;
2696         }
2697
2698         return 0;
2699 }
2700
2701 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2702 {
2703         struct net_device *netdev = pci_get_drvdata(pdev);
2704         struct igb_adapter *adapter = netdev_priv(netdev);
2705         int old_vfs = pci_num_vf(pdev);
2706         int err = 0;
2707         int i;
2708
2709         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2710                 err = -EPERM;
2711                 goto out;
2712         }
2713         if (!num_vfs)
2714                 goto out;
2715
2716         if (old_vfs) {
2717                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2718                          old_vfs, max_vfs);
2719                 adapter->vfs_allocated_count = old_vfs;
2720         } else
2721                 adapter->vfs_allocated_count = num_vfs;
2722
2723         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2724                                 sizeof(struct vf_data_storage), GFP_KERNEL);
2725
2726         /* if allocation failed then we do not support SR-IOV */
2727         if (!adapter->vf_data) {
2728                 adapter->vfs_allocated_count = 0;
2729                 dev_err(&pdev->dev,
2730                         "Unable to allocate memory for VF Data Storage\n");
2731                 err = -ENOMEM;
2732                 goto out;
2733         }
2734
2735         /* only call pci_enable_sriov() if no VFs are allocated already */
2736         if (!old_vfs) {
2737                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2738                 if (err)
2739                         goto err_out;
2740         }
2741         dev_info(&pdev->dev, "%d VFs allocated\n",
2742                  adapter->vfs_allocated_count);
2743         for (i = 0; i < adapter->vfs_allocated_count; i++)
2744                 igb_vf_configure(adapter, i);
2745
2746         /* DMA Coalescing is not supported in IOV mode. */
2747         adapter->flags &= ~IGB_FLAG_DMAC;
2748         goto out;
2749
2750 err_out:
2751         kfree(adapter->vf_data);
2752         adapter->vf_data = NULL;
2753         adapter->vfs_allocated_count = 0;
2754 out:
2755         return err;
2756 }
2757
2758 #endif
2759 /**
2760  *  igb_remove_i2c - Cleanup  I2C interface
2761  *  @adapter: pointer to adapter structure
2762  **/
2763 static void igb_remove_i2c(struct igb_adapter *adapter)
2764 {
2765         /* free the adapter bus structure */
2766         i2c_del_adapter(&adapter->i2c_adap);
2767 }
2768
2769 /**
2770  *  igb_remove - Device Removal Routine
2771  *  @pdev: PCI device information struct
2772  *
2773  *  igb_remove is called by the PCI subsystem to alert the driver
2774  *  that it should release a PCI device.  The could be caused by a
2775  *  Hot-Plug event, or because the driver is going to be removed from
2776  *  memory.
2777  **/
2778 static void igb_remove(struct pci_dev *pdev)
2779 {
2780         struct net_device *netdev = pci_get_drvdata(pdev);
2781         struct igb_adapter *adapter = netdev_priv(netdev);
2782         struct e1000_hw *hw = &adapter->hw;
2783
2784         pm_runtime_get_noresume(&pdev->dev);
2785 #ifdef CONFIG_IGB_HWMON
2786         igb_sysfs_exit(adapter);
2787 #endif
2788         igb_remove_i2c(adapter);
2789         igb_ptp_stop(adapter);
2790         /* The watchdog timer may be rescheduled, so explicitly
2791          * disable watchdog from being rescheduled.
2792          */
2793         set_bit(__IGB_DOWN, &adapter->state);
2794         del_timer_sync(&adapter->watchdog_timer);
2795         del_timer_sync(&adapter->phy_info_timer);
2796
2797         cancel_work_sync(&adapter->reset_task);
2798         cancel_work_sync(&adapter->watchdog_task);
2799
2800 #ifdef CONFIG_IGB_DCA
2801         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2802                 dev_info(&pdev->dev, "DCA disabled\n");
2803                 dca_remove_requester(&pdev->dev);
2804                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2805                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2806         }
2807 #endif
2808
2809         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2810          * would have already happened in close and is redundant.
2811          */
2812         igb_release_hw_control(adapter);
2813
2814         unregister_netdev(netdev);
2815
2816         igb_clear_interrupt_scheme(adapter);
2817
2818 #ifdef CONFIG_PCI_IOV
2819         igb_disable_sriov(pdev);
2820 #endif
2821
2822         pci_iounmap(pdev, hw->hw_addr);
2823         if (hw->flash_address)
2824                 iounmap(hw->flash_address);
2825         pci_release_selected_regions(pdev,
2826                                      pci_select_bars(pdev, IORESOURCE_MEM));
2827
2828         kfree(adapter->shadow_vfta);
2829         free_netdev(netdev);
2830
2831         pci_disable_pcie_error_reporting(pdev);
2832
2833         pci_disable_device(pdev);
2834 }
2835
2836 /**
2837  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2838  *  @adapter: board private structure to initialize
2839  *
2840  *  This function initializes the vf specific data storage and then attempts to
2841  *  allocate the VFs.  The reason for ordering it this way is because it is much
2842  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2843  *  the memory for the VFs.
2844  **/
2845 static void igb_probe_vfs(struct igb_adapter *adapter)
2846 {
2847 #ifdef CONFIG_PCI_IOV
2848         struct pci_dev *pdev = adapter->pdev;
2849         struct e1000_hw *hw = &adapter->hw;
2850
2851         /* Virtualization features not supported on i210 family. */
2852         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2853                 return;
2854
2855         pci_sriov_set_totalvfs(pdev, 7);
2856         igb_pci_enable_sriov(pdev, max_vfs);
2857
2858 #endif /* CONFIG_PCI_IOV */
2859 }
2860
2861 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2862 {
2863         struct e1000_hw *hw = &adapter->hw;
2864         u32 max_rss_queues;
2865
2866         /* Determine the maximum number of RSS queues supported. */
2867         switch (hw->mac.type) {
2868         case e1000_i211:
2869                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2870                 break;
2871         case e1000_82575:
2872         case e1000_i210:
2873                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2874                 break;
2875         case e1000_i350:
2876                 /* I350 cannot do RSS and SR-IOV at the same time */
2877                 if (!!adapter->vfs_allocated_count) {
2878                         max_rss_queues = 1;
2879                         break;
2880                 }
2881                 /* fall through */
2882         case e1000_82576:
2883                 if (!!adapter->vfs_allocated_count) {
2884                         max_rss_queues = 2;
2885                         break;
2886                 }
2887                 /* fall through */
2888         case e1000_82580:
2889         case e1000_i354:
2890         default:
2891                 max_rss_queues = IGB_MAX_RX_QUEUES;
2892                 break;
2893         }
2894
2895         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2896
2897         /* Determine if we need to pair queues. */
2898         switch (hw->mac.type) {
2899         case e1000_82575:
2900         case e1000_i211:
2901                 /* Device supports enough interrupts without queue pairing. */
2902                 break;
2903         case e1000_82576:
2904                 /* If VFs are going to be allocated with RSS queues then we
2905                  * should pair the queues in order to conserve interrupts due
2906                  * to limited supply.
2907                  */
2908                 if ((adapter->rss_queues > 1) &&
2909                     (adapter->vfs_allocated_count > 6))
2910                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2911                 /* fall through */
2912         case e1000_82580:
2913         case e1000_i350:
2914         case e1000_i354:
2915         case e1000_i210:
2916         default:
2917                 /* If rss_queues > half of max_rss_queues, pair the queues in
2918                  * order to conserve interrupts due to limited supply.
2919                  */
2920                 if (adapter->rss_queues > (max_rss_queues / 2))
2921                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2922                 break;
2923         }
2924 }
2925
2926 /**
2927  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2928  *  @adapter: board private structure to initialize
2929  *
2930  *  igb_sw_init initializes the Adapter private data structure.
2931  *  Fields are initialized based on PCI device information and
2932  *  OS network device settings (MTU size).
2933  **/
2934 static int igb_sw_init(struct igb_adapter *adapter)
2935 {
2936         struct e1000_hw *hw = &adapter->hw;
2937         struct net_device *netdev = adapter->netdev;
2938         struct pci_dev *pdev = adapter->pdev;
2939
2940         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2941
2942         /* set default ring sizes */
2943         adapter->tx_ring_count = IGB_DEFAULT_TXD;
2944         adapter->rx_ring_count = IGB_DEFAULT_RXD;
2945
2946         /* set default ITR values */
2947         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2948         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2949
2950         /* set default work limits */
2951         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2952
2953         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2954                                   VLAN_HLEN;
2955         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2956
2957         spin_lock_init(&adapter->stats64_lock);
2958 #ifdef CONFIG_PCI_IOV
2959         switch (hw->mac.type) {
2960         case e1000_82576:
2961         case e1000_i350:
2962                 if (max_vfs > 7) {
2963                         dev_warn(&pdev->dev,
2964                                  "Maximum of 7 VFs per PF, using max\n");
2965                         max_vfs = adapter->vfs_allocated_count = 7;
2966                 } else
2967                         adapter->vfs_allocated_count = max_vfs;
2968                 if (adapter->vfs_allocated_count)
2969                         dev_warn(&pdev->dev,
2970                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2971                 break;
2972         default:
2973                 break;
2974         }
2975 #endif /* CONFIG_PCI_IOV */
2976
2977         igb_init_queue_configuration(adapter);
2978
2979         /* Setup and initialize a copy of the hw vlan table array */
2980         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2981                                        GFP_ATOMIC);
2982
2983         /* This call may decrease the number of queues */
2984         if (igb_init_interrupt_scheme(adapter, true)) {
2985                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2986                 return -ENOMEM;
2987         }
2988
2989         igb_probe_vfs(adapter);
2990
2991         /* Explicitly disable IRQ since the NIC can be in any state. */
2992         igb_irq_disable(adapter);
2993
2994         if (hw->mac.type >= e1000_i350)
2995                 adapter->flags &= ~IGB_FLAG_DMAC;
2996
2997         set_bit(__IGB_DOWN, &adapter->state);
2998         return 0;
2999 }
3000
3001 /**
3002  *  igb_open - Called when a network interface is made active
3003  *  @netdev: network interface device structure
3004  *
3005  *  Returns 0 on success, negative value on failure
3006  *
3007  *  The open entry point is called when a network interface is made
3008  *  active by the system (IFF_UP).  At this point all resources needed
3009  *  for transmit and receive operations are allocated, the interrupt
3010  *  handler is registered with the OS, the watchdog timer is started,
3011  *  and the stack is notified that the interface is ready.
3012  **/
3013 static int __igb_open(struct net_device *netdev, bool resuming)
3014 {
3015         struct igb_adapter *adapter = netdev_priv(netdev);
3016         struct e1000_hw *hw = &adapter->hw;
3017         struct pci_dev *pdev = adapter->pdev;
3018         int err;
3019         int i;
3020
3021         /* disallow open during test */
3022         if (test_bit(__IGB_TESTING, &adapter->state)) {
3023                 WARN_ON(resuming);
3024                 return -EBUSY;
3025         }
3026
3027         if (!resuming)
3028                 pm_runtime_get_sync(&pdev->dev);
3029
3030         netif_carrier_off(netdev);
3031
3032         /* allocate transmit descriptors */
3033         err = igb_setup_all_tx_resources(adapter);
3034         if (err)
3035                 goto err_setup_tx;
3036
3037         /* allocate receive descriptors */
3038         err = igb_setup_all_rx_resources(adapter);
3039         if (err)
3040                 goto err_setup_rx;
3041
3042         igb_power_up_link(adapter);
3043
3044         /* before we allocate an interrupt, we must be ready to handle it.
3045          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3046          * as soon as we call pci_request_irq, so we have to setup our
3047          * clean_rx handler before we do so.
3048          */
3049         igb_configure(adapter);
3050
3051         err = igb_request_irq(adapter);
3052         if (err)
3053                 goto err_req_irq;
3054
3055         /* Notify the stack of the actual queue counts. */
3056         err = netif_set_real_num_tx_queues(adapter->netdev,
3057                                            adapter->num_tx_queues);
3058         if (err)
3059                 goto err_set_queues;
3060
3061         err = netif_set_real_num_rx_queues(adapter->netdev,
3062                                            adapter->num_rx_queues);
3063         if (err)
3064                 goto err_set_queues;
3065
3066         /* From here on the code is the same as igb_up() */
3067         clear_bit(__IGB_DOWN, &adapter->state);
3068
3069         for (i = 0; i < adapter->num_q_vectors; i++)
3070                 napi_enable(&(adapter->q_vector[i]->napi));
3071
3072         /* Clear any pending interrupts. */
3073         rd32(E1000_ICR);
3074
3075         igb_irq_enable(adapter);
3076
3077         /* notify VFs that reset has been completed */
3078         if (adapter->vfs_allocated_count) {
3079                 u32 reg_data = rd32(E1000_CTRL_EXT);
3080                 reg_data |= E1000_CTRL_EXT_PFRSTD;
3081                 wr32(E1000_CTRL_EXT, reg_data);
3082         }
3083
3084         netif_tx_start_all_queues(netdev);
3085
3086         if (!resuming)
3087                 pm_runtime_put(&pdev->dev);
3088
3089         /* start the watchdog. */
3090         hw->mac.get_link_status = 1;
3091         schedule_work(&adapter->watchdog_task);
3092
3093         return 0;
3094
3095 err_set_queues:
3096         igb_free_irq(adapter);
3097 err_req_irq:
3098         igb_release_hw_control(adapter);
3099         igb_power_down_link(adapter);
3100         igb_free_all_rx_resources(adapter);
3101 err_setup_rx:
3102         igb_free_all_tx_resources(adapter);
3103 err_setup_tx:
3104         igb_reset(adapter);
3105         if (!resuming)
3106                 pm_runtime_put(&pdev->dev);
3107
3108         return err;
3109 }
3110
3111 static int igb_open(struct net_device *netdev)
3112 {
3113         return __igb_open(netdev, false);
3114 }
3115
3116 /**
3117  *  igb_close - Disables a network interface
3118  *  @netdev: network interface device structure
3119  *
3120  *  Returns 0, this is not allowed to fail
3121  *
3122  *  The close entry point is called when an interface is de-activated
3123  *  by the OS.  The hardware is still under the driver's control, but
3124  *  needs to be disabled.  A global MAC reset is issued to stop the
3125  *  hardware, and all transmit and receive resources are freed.
3126  **/
3127 static int __igb_close(struct net_device *netdev, bool suspending)
3128 {
3129         struct igb_adapter *adapter = netdev_priv(netdev);
3130         struct pci_dev *pdev = adapter->pdev;
3131
3132         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3133
3134         if (!suspending)
3135                 pm_runtime_get_sync(&pdev->dev);
3136
3137         igb_down(adapter);
3138         igb_free_irq(adapter);
3139
3140         igb_free_all_tx_resources(adapter);
3141         igb_free_all_rx_resources(adapter);
3142
3143         if (!suspending)
3144                 pm_runtime_put_sync(&pdev->dev);
3145         return 0;
3146 }
3147
3148 static int igb_close(struct net_device *netdev)
3149 {
3150         return __igb_close(netdev, false);
3151 }
3152
3153 /**
3154  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3155  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3156  *
3157  *  Return 0 on success, negative on failure
3158  **/
3159 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3160 {
3161         struct device *dev = tx_ring->dev;
3162         int size;
3163
3164         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3165
3166         tx_ring->tx_buffer_info = vzalloc(size);
3167         if (!tx_ring->tx_buffer_info)
3168                 goto err;
3169
3170         /* round up to nearest 4K */
3171         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3172         tx_ring->size = ALIGN(tx_ring->size, 4096);
3173
3174         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3175                                            &tx_ring->dma, GFP_KERNEL);
3176         if (!tx_ring->desc)
3177                 goto err;
3178
3179         tx_ring->next_to_use = 0;
3180         tx_ring->next_to_clean = 0;
3181
3182         return 0;
3183
3184 err:
3185         vfree(tx_ring->tx_buffer_info);
3186         tx_ring->tx_buffer_info = NULL;
3187         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3188         return -ENOMEM;
3189 }
3190
3191 /**
3192  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3193  *                               (Descriptors) for all queues
3194  *  @adapter: board private structure
3195  *
3196  *  Return 0 on success, negative on failure
3197  **/
3198 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3199 {
3200         struct pci_dev *pdev = adapter->pdev;
3201         int i, err = 0;
3202
3203         for (i = 0; i < adapter->num_tx_queues; i++) {
3204                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3205                 if (err) {
3206                         dev_err(&pdev->dev,
3207                                 "Allocation for Tx Queue %u failed\n", i);
3208                         for (i--; i >= 0; i--)
3209                                 igb_free_tx_resources(adapter->tx_ring[i]);
3210                         break;
3211                 }
3212         }
3213
3214         return err;
3215 }
3216
3217 /**
3218  *  igb_setup_tctl - configure the transmit control registers
3219  *  @adapter: Board private structure
3220  **/
3221 void igb_setup_tctl(struct igb_adapter *adapter)
3222 {
3223         struct e1000_hw *hw = &adapter->hw;
3224         u32 tctl;
3225
3226         /* disable queue 0 which is enabled by default on 82575 and 82576 */
3227         wr32(E1000_TXDCTL(0), 0);
3228
3229         /* Program the Transmit Control Register */
3230         tctl = rd32(E1000_TCTL);
3231         tctl &= ~E1000_TCTL_CT;
3232         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3233                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3234
3235         igb_config_collision_dist(hw);
3236
3237         /* Enable transmits */
3238         tctl |= E1000_TCTL_EN;
3239
3240         wr32(E1000_TCTL, tctl);
3241 }
3242
3243 /**
3244  *  igb_configure_tx_ring - Configure transmit ring after Reset
3245  *  @adapter: board private structure
3246  *  @ring: tx ring to configure
3247  *
3248  *  Configure a transmit ring after a reset.
3249  **/
3250 void igb_configure_tx_ring(struct igb_adapter *adapter,
3251                            struct igb_ring *ring)
3252 {
3253         struct e1000_hw *hw = &adapter->hw;
3254         u32 txdctl = 0;
3255         u64 tdba = ring->dma;
3256         int reg_idx = ring->reg_idx;
3257
3258         /* disable the queue */
3259         wr32(E1000_TXDCTL(reg_idx), 0);
3260         wrfl();
3261         mdelay(10);
3262
3263         wr32(E1000_TDLEN(reg_idx),
3264              ring->count * sizeof(union e1000_adv_tx_desc));
3265         wr32(E1000_TDBAL(reg_idx),
3266              tdba & 0x00000000ffffffffULL);
3267         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3268
3269         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3270         wr32(E1000_TDH(reg_idx), 0);
3271         writel(0, ring->tail);
3272
3273         txdctl |= IGB_TX_PTHRESH;
3274         txdctl |= IGB_TX_HTHRESH << 8;
3275         txdctl |= IGB_TX_WTHRESH << 16;
3276
3277         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3278         wr32(E1000_TXDCTL(reg_idx), txdctl);
3279 }
3280
3281 /**
3282  *  igb_configure_tx - Configure transmit Unit after Reset
3283  *  @adapter: board private structure
3284  *
3285  *  Configure the Tx unit of the MAC after a reset.
3286  **/
3287 static void igb_configure_tx(struct igb_adapter *adapter)
3288 {
3289         int i;
3290
3291         for (i = 0; i < adapter->num_tx_queues; i++)
3292                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3293 }
3294
3295 /**
3296  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3297  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3298  *
3299  *  Returns 0 on success, negative on failure
3300  **/
3301 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3302 {
3303         struct device *dev = rx_ring->dev;
3304         int size;
3305
3306         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3307
3308         rx_ring->rx_buffer_info = vzalloc(size);
3309         if (!rx_ring->rx_buffer_info)
3310                 goto err;
3311
3312         /* Round up to nearest 4K */
3313         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3314         rx_ring->size = ALIGN(rx_ring->size, 4096);
3315
3316         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3317                                            &rx_ring->dma, GFP_KERNEL);
3318         if (!rx_ring->desc)
3319                 goto err;
3320
3321         rx_ring->next_to_alloc = 0;
3322         rx_ring->next_to_clean = 0;
3323         rx_ring->next_to_use = 0;
3324
3325         return 0;
3326
3327 err:
3328         vfree(rx_ring->rx_buffer_info);
3329         rx_ring->rx_buffer_info = NULL;
3330         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3331         return -ENOMEM;
3332 }
3333
3334 /**
3335  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3336  *                               (Descriptors) for all queues
3337  *  @adapter: board private structure
3338  *
3339  *  Return 0 on success, negative on failure
3340  **/
3341 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3342 {
3343         struct pci_dev *pdev = adapter->pdev;
3344         int i, err = 0;
3345
3346         for (i = 0; i < adapter->num_rx_queues; i++) {
3347                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3348                 if (err) {
3349                         dev_err(&pdev->dev,
3350                                 "Allocation for Rx Queue %u failed\n", i);
3351                         for (i--; i >= 0; i--)
3352                                 igb_free_rx_resources(adapter->rx_ring[i]);
3353                         break;
3354                 }
3355         }
3356
3357         return err;
3358 }
3359
3360 /**
3361  *  igb_setup_mrqc - configure the multiple receive queue control registers
3362  *  @adapter: Board private structure
3363  **/
3364 static void igb_setup_mrqc(struct igb_adapter *adapter)
3365 {
3366         struct e1000_hw *hw = &adapter->hw;
3367         u32 mrqc, rxcsum;
3368         u32 j, num_rx_queues;
3369         static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3370                                         0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3371                                         0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3372                                         0xFA01ACBE };
3373
3374         /* Fill out hash function seeds */
3375         for (j = 0; j < 10; j++)
3376                 wr32(E1000_RSSRK(j), rsskey[j]);
3377
3378         num_rx_queues = adapter->rss_queues;
3379
3380         switch (hw->mac.type) {
3381         case e1000_82576:
3382                 /* 82576 supports 2 RSS queues for SR-IOV */
3383                 if (adapter->vfs_allocated_count)
3384                         num_rx_queues = 2;
3385                 break;
3386         default:
3387                 break;
3388         }
3389
3390         if (adapter->rss_indir_tbl_init != num_rx_queues) {
3391                 for (j = 0; j < IGB_RETA_SIZE; j++)
3392                         adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
3393                 adapter->rss_indir_tbl_init = num_rx_queues;
3394         }
3395         igb_write_rss_indir_tbl(adapter);
3396
3397         /* Disable raw packet checksumming so that RSS hash is placed in
3398          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3399          * offloads as they are enabled by default
3400          */
3401         rxcsum = rd32(E1000_RXCSUM);
3402         rxcsum |= E1000_RXCSUM_PCSD;
3403
3404         if (adapter->hw.mac.type >= e1000_82576)
3405                 /* Enable Receive Checksum Offload for SCTP */
3406                 rxcsum |= E1000_RXCSUM_CRCOFL;
3407
3408         /* Don't need to set TUOFL or IPOFL, they default to 1 */
3409         wr32(E1000_RXCSUM, rxcsum);
3410
3411         /* Generate RSS hash based on packet types, TCP/UDP
3412          * port numbers and/or IPv4/v6 src and dst addresses
3413          */
3414         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3415                E1000_MRQC_RSS_FIELD_IPV4_TCP |
3416                E1000_MRQC_RSS_FIELD_IPV6 |
3417                E1000_MRQC_RSS_FIELD_IPV6_TCP |
3418                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3419
3420         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3421                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3422         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3423                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3424
3425         /* If VMDq is enabled then we set the appropriate mode for that, else
3426          * we default to RSS so that an RSS hash is calculated per packet even
3427          * if we are only using one queue
3428          */
3429         if (adapter->vfs_allocated_count) {
3430                 if (hw->mac.type > e1000_82575) {
3431                         /* Set the default pool for the PF's first queue */
3432                         u32 vtctl = rd32(E1000_VT_CTL);
3433                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3434                                    E1000_VT_CTL_DISABLE_DEF_POOL);
3435                         vtctl |= adapter->vfs_allocated_count <<
3436                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3437                         wr32(E1000_VT_CTL, vtctl);
3438                 }
3439                 if (adapter->rss_queues > 1)
3440                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3441                 else
3442                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
3443         } else {
3444                 if (hw->mac.type != e1000_i211)
3445                         mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3446         }
3447         igb_vmm_control(adapter);
3448
3449         wr32(E1000_MRQC, mrqc);
3450 }
3451
3452 /**
3453  *  igb_setup_rctl - configure the receive control registers
3454  *  @adapter: Board private structure
3455  **/
3456 void igb_setup_rctl(struct igb_adapter *adapter)
3457 {
3458         struct e1000_hw *hw = &adapter->hw;
3459         u32 rctl;
3460
3461         rctl = rd32(E1000_RCTL);
3462
3463         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3464         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3465
3466         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3467                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3468
3469         /* enable stripping of CRC. It's unlikely this will break BMC
3470          * redirection as it did with e1000. Newer features require
3471          * that the HW strips the CRC.
3472          */
3473         rctl |= E1000_RCTL_SECRC;
3474
3475         /* disable store bad packets and clear size bits. */
3476         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3477
3478         /* enable LPE to prevent packets larger than max_frame_size */
3479         rctl |= E1000_RCTL_LPE;
3480
3481         /* disable queue 0 to prevent tail write w/o re-config */
3482         wr32(E1000_RXDCTL(0), 0);
3483
3484         /* Attention!!!  For SR-IOV PF driver operations you must enable
3485          * queue drop for all VF and PF queues to prevent head of line blocking
3486          * if an un-trusted VF does not provide descriptors to hardware.
3487          */
3488         if (adapter->vfs_allocated_count) {
3489                 /* set all queue drop enable bits */
3490                 wr32(E1000_QDE, ALL_QUEUES);
3491         }
3492
3493         /* This is useful for sniffing bad packets. */
3494         if (adapter->netdev->features & NETIF_F_RXALL) {
3495                 /* UPE and MPE will be handled by normal PROMISC logic
3496                  * in e1000e_set_rx_mode
3497                  */
3498                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3499                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3500                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3501
3502                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3503                           E1000_RCTL_DPF | /* Allow filtered pause */
3504                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3505                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3506                  * and that breaks VLANs.
3507                  */
3508         }
3509
3510         wr32(E1000_RCTL, rctl);
3511 }
3512
3513 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3514                                    int vfn)
3515 {
3516         struct e1000_hw *hw = &adapter->hw;
3517         u32 vmolr;
3518
3519         /* if it isn't the PF check to see if VFs are enabled and
3520          * increase the size to support vlan tags
3521          */
3522         if (vfn < adapter->vfs_allocated_count &&
3523             adapter->vf_data[vfn].vlans_enabled)
3524                 size += VLAN_TAG_SIZE;
3525
3526         vmolr = rd32(E1000_VMOLR(vfn));
3527         vmolr &= ~E1000_VMOLR_RLPML_MASK;
3528         vmolr |= size | E1000_VMOLR_LPE;
3529         wr32(E1000_VMOLR(vfn), vmolr);
3530
3531         return 0;
3532 }
3533
3534 /**
3535  *  igb_rlpml_set - set maximum receive packet size
3536  *  @adapter: board private structure
3537  *
3538  *  Configure maximum receivable packet size.
3539  **/
3540 static void igb_rlpml_set(struct igb_adapter *adapter)
3541 {
3542         u32 max_frame_size = adapter->max_frame_size;
3543         struct e1000_hw *hw = &adapter->hw;
3544         u16 pf_id = adapter->vfs_allocated_count;
3545
3546         if (pf_id) {
3547                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3548                 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3549                  * to our max jumbo frame size, in case we need to enable
3550                  * jumbo frames on one of the rings later.
3551                  * This will not pass over-length frames into the default
3552                  * queue because it's gated by the VMOLR.RLPML.
3553                  */
3554                 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3555         }
3556
3557         wr32(E1000_RLPML, max_frame_size);
3558 }
3559
3560 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3561                                  int vfn, bool aupe)
3562 {
3563         struct e1000_hw *hw = &adapter->hw;
3564         u32 vmolr;
3565
3566         /* This register exists only on 82576 and newer so if we are older then
3567          * we should exit and do nothing
3568          */
3569         if (hw->mac.type < e1000_82576)
3570                 return;
3571
3572         vmolr = rd32(E1000_VMOLR(vfn));
3573         vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3574         if (hw->mac.type == e1000_i350) {
3575                 u32 dvmolr;
3576
3577                 dvmolr = rd32(E1000_DVMOLR(vfn));
3578                 dvmolr |= E1000_DVMOLR_STRVLAN;
3579                 wr32(E1000_DVMOLR(vfn), dvmolr);
3580         }
3581         if (aupe)
3582                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3583         else
3584                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3585
3586         /* clear all bits that might not be set */
3587         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3588
3589         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3590                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3591         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3592          * multicast packets
3593          */
3594         if (vfn <= adapter->vfs_allocated_count)
3595                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3596
3597         wr32(E1000_VMOLR(vfn), vmolr);
3598 }
3599
3600 /**
3601  *  igb_configure_rx_ring - Configure a receive ring after Reset
3602  *  @adapter: board private structure
3603  *  @ring: receive ring to be configured
3604  *
3605  *  Configure the Rx unit of the MAC after a reset.
3606  **/
3607 void igb_configure_rx_ring(struct igb_adapter *adapter,
3608                            struct igb_ring *ring)
3609 {
3610         struct e1000_hw *hw = &adapter->hw;
3611         u64 rdba = ring->dma;
3612         int reg_idx = ring->reg_idx;
3613         u32 srrctl = 0, rxdctl = 0;
3614
3615         /* disable the queue */
3616         wr32(E1000_RXDCTL(reg_idx), 0);
3617
3618         /* Set DMA base address registers */
3619         wr32(E1000_RDBAL(reg_idx),
3620              rdba & 0x00000000ffffffffULL);
3621         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3622         wr32(E1000_RDLEN(reg_idx),
3623              ring->count * sizeof(union e1000_adv_rx_desc));
3624
3625         /* initialize head and tail */
3626         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3627         wr32(E1000_RDH(reg_idx), 0);
3628         writel(0, ring->tail);
3629
3630         /* set descriptor configuration */
3631         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3632         srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3633         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3634         if (hw->mac.type >= e1000_82580)
3635                 srrctl |= E1000_SRRCTL_TIMESTAMP;
3636         /* Only set Drop Enable if we are supporting multiple queues */
3637         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3638                 srrctl |= E1000_SRRCTL_DROP_EN;
3639
3640         wr32(E1000_SRRCTL(reg_idx), srrctl);
3641
3642         /* set filtering for VMDQ pools */
3643         igb_set_vmolr(adapter, reg_idx & 0x7, true);
3644
3645         rxdctl |= IGB_RX_PTHRESH;
3646         rxdctl |= IGB_RX_HTHRESH << 8;
3647         rxdctl |= IGB_RX_WTHRESH << 16;
3648
3649         /* enable receive descriptor fetching */
3650         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3651         wr32(E1000_RXDCTL(reg_idx), rxdctl);
3652 }
3653
3654 /**
3655  *  igb_configure_rx - Configure receive Unit after Reset
3656  *  @adapter: board private structure
3657  *
3658  *  Configure the Rx unit of the MAC after a reset.
3659  **/
3660 static void igb_configure_rx(struct igb_adapter *adapter)
3661 {
3662         int i;
3663
3664         /* set UTA to appropriate mode */
3665         igb_set_uta(adapter);
3666
3667         /* set the correct pool for the PF default MAC address in entry 0 */
3668         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3669                          adapter->vfs_allocated_count);
3670
3671         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3672          * the Base and Length of the Rx Descriptor Ring
3673          */
3674         for (i = 0; i < adapter->num_rx_queues; i++)
3675                 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3676 }
3677
3678 /**
3679  *  igb_free_tx_resources - Free Tx Resources per Queue
3680  *  @tx_ring: Tx descriptor ring for a specific queue
3681  *
3682  *  Free all transmit software resources
3683  **/
3684 void igb_free_tx_resources(struct igb_ring *tx_ring)
3685 {
3686         igb_clean_tx_ring(tx_ring);
3687
3688         vfree(tx_ring->tx_buffer_info);
3689         tx_ring->tx_buffer_info = NULL;
3690
3691         /* if not set, then don't free */
3692         if (!tx_ring->desc)
3693                 return;
3694
3695         dma_free_coherent(tx_ring->dev, tx_ring->size,
3696                           tx_ring->desc, tx_ring->dma);
3697
3698         tx_ring->desc = NULL;
3699 }
3700
3701 /**
3702  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3703  *  @adapter: board private structure
3704  *
3705  *  Free all transmit software resources
3706  **/
3707 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3708 {
3709         int i;
3710
3711         for (i = 0; i < adapter->num_tx_queues; i++)
3712                 igb_free_tx_resources(adapter->tx_ring[i]);
3713 }
3714
3715 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3716                                     struct igb_tx_buffer *tx_buffer)
3717 {
3718         if (tx_buffer->skb) {
3719                 dev_kfree_skb_any(tx_buffer->skb);
3720                 if (dma_unmap_len(tx_buffer, len))
3721                         dma_unmap_single(ring->dev,
3722                                          dma_unmap_addr(tx_buffer, dma),
3723                                          dma_unmap_len(tx_buffer, len),
3724                                          DMA_TO_DEVICE);
3725         } else if (dma_unmap_len(tx_buffer, len)) {
3726                 dma_unmap_page(ring->dev,
3727                                dma_unmap_addr(tx_buffer, dma),
3728                                dma_unmap_len(tx_buffer, len),
3729                                DMA_TO_DEVICE);
3730         }
3731         tx_buffer->next_to_watch = NULL;
3732         tx_buffer->skb = NULL;
3733         dma_unmap_len_set(tx_buffer, len, 0);
3734         /* buffer_info must be completely set up in the transmit path */
3735 }
3736
3737 /**
3738  *  igb_clean_tx_ring - Free Tx Buffers
3739  *  @tx_ring: ring to be cleaned
3740  **/
3741 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3742 {
3743         struct igb_tx_buffer *buffer_info;
3744         unsigned long size;
3745         u16 i;
3746
3747         if (!tx_ring->tx_buffer_info)
3748                 return;
3749         /* Free all the Tx ring sk_buffs */
3750
3751         for (i = 0; i < tx_ring->count; i++) {
3752                 buffer_info = &tx_ring->tx_buffer_info[i];
3753                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3754         }
3755
3756         netdev_tx_reset_queue(txring_txq(tx_ring));
3757
3758         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3759         memset(tx_ring->tx_buffer_info, 0, size);
3760
3761         /* Zero out the descriptor ring */
3762         memset(tx_ring->desc, 0, tx_ring->size);
3763
3764         tx_ring->next_to_use = 0;
3765         tx_ring->next_to_clean = 0;
3766 }
3767
3768 /**
3769  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3770  *  @adapter: board private structure
3771  **/
3772 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3773 {
3774         int i;
3775
3776         for (i = 0; i < adapter->num_tx_queues; i++)
3777                 igb_clean_tx_ring(adapter->tx_ring[i]);
3778 }
3779
3780 /**
3781  *  igb_free_rx_resources - Free Rx Resources
3782  *  @rx_ring: ring to clean the resources from
3783  *
3784  *  Free all receive software resources
3785  **/
3786 void igb_free_rx_resources(struct igb_ring *rx_ring)
3787 {
3788         igb_clean_rx_ring(rx_ring);
3789
3790         vfree(rx_ring->rx_buffer_info);
3791         rx_ring->rx_buffer_info = NULL;
3792
3793         /* if not set, then don't free */
3794         if (!rx_ring->desc)
3795                 return;
3796
3797         dma_free_coherent(rx_ring->dev, rx_ring->size,
3798                           rx_ring->desc, rx_ring->dma);
3799
3800         rx_ring->desc = NULL;
3801 }
3802
3803 /**
3804  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3805  *  @adapter: board private structure
3806  *
3807  *  Free all receive software resources
3808  **/
3809 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3810 {
3811         int i;
3812
3813         for (i = 0; i < adapter->num_rx_queues; i++)
3814                 igb_free_rx_resources(adapter->rx_ring[i]);
3815 }
3816
3817 /**
3818  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3819  *  @rx_ring: ring to free buffers from
3820  **/
3821 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3822 {
3823         unsigned long size;
3824         u16 i;
3825
3826         if (rx_ring->skb)
3827                 dev_kfree_skb(rx_ring->skb);
3828         rx_ring->skb = NULL;
3829
3830         if (!rx_ring->rx_buffer_info)
3831                 return;
3832
3833         /* Free all the Rx ring sk_buffs */
3834         for (i = 0; i < rx_ring->count; i++) {
3835                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3836
3837                 if (!buffer_info->page)
3838                         continue;
3839
3840                 dma_unmap_page(rx_ring->dev,
3841                                buffer_info->dma,
3842                                PAGE_SIZE,
3843                                DMA_FROM_DEVICE);
3844                 __free_page(buffer_info->page);
3845
3846                 buffer_info->page = NULL;
3847         }
3848
3849         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3850         memset(rx_ring->rx_buffer_info, 0, size);
3851
3852         /* Zero out the descriptor ring */
3853         memset(rx_ring->desc, 0, rx_ring->size);
3854
3855         rx_ring->next_to_alloc = 0;
3856         rx_ring->next_to_clean = 0;
3857         rx_ring->next_to_use = 0;
3858 }
3859
3860 /**
3861  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3862  *  @adapter: board private structure
3863  **/
3864 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3865 {
3866         int i;
3867
3868         for (i = 0; i < adapter->num_rx_queues; i++)
3869                 igb_clean_rx_ring(adapter->rx_ring[i]);
3870 }
3871
3872 /**
3873  *  igb_set_mac - Change the Ethernet Address of the NIC
3874  *  @netdev: network interface device structure
3875  *  @p: pointer to an address structure
3876  *
3877  *  Returns 0 on success, negative on failure
3878  **/
3879 static int igb_set_mac(struct net_device *netdev, void *p)
3880 {
3881         struct igb_adapter *adapter = netdev_priv(netdev);
3882         struct e1000_hw *hw = &adapter->hw;
3883         struct sockaddr *addr = p;
3884
3885         if (!is_valid_ether_addr(addr->sa_data))
3886                 return -EADDRNOTAVAIL;
3887
3888         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3889         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3890
3891         /* set the correct pool for the new PF MAC address in entry 0 */
3892         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3893                          adapter->vfs_allocated_count);
3894
3895         return 0;
3896 }
3897
3898 /**
3899  *  igb_write_mc_addr_list - write multicast addresses to MTA
3900  *  @netdev: network interface device structure
3901  *
3902  *  Writes multicast address list to the MTA hash table.
3903  *  Returns: -ENOMEM on failure
3904  *           0 on no addresses written
3905  *           X on writing X addresses to MTA
3906  **/
3907 static int igb_write_mc_addr_list(struct net_device *netdev)
3908 {
3909         struct igb_adapter *adapter = netdev_priv(netdev);
3910         struct e1000_hw *hw = &adapter->hw;
3911         struct netdev_hw_addr *ha;
3912         u8  *mta_list;
3913         int i;
3914
3915         if (netdev_mc_empty(netdev)) {
3916                 /* nothing to program, so clear mc list */
3917                 igb_update_mc_addr_list(hw, NULL, 0);
3918                 igb_restore_vf_multicasts(adapter);
3919                 return 0;
3920         }
3921
3922         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3923         if (!mta_list)
3924                 return -ENOMEM;
3925
3926         /* The shared function expects a packed array of only addresses. */
3927         i = 0;
3928         netdev_for_each_mc_addr(ha, netdev)
3929                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3930
3931         igb_update_mc_addr_list(hw, mta_list, i);
3932         kfree(mta_list);
3933
3934         return netdev_mc_count(netdev);
3935 }
3936
3937 /**
3938  *  igb_write_uc_addr_list - write unicast addresses to RAR table
3939  *  @netdev: network interface device structure
3940  *
3941  *  Writes unicast address list to the RAR table.
3942  *  Returns: -ENOMEM on failure/insufficient address space
3943  *           0 on no addresses written
3944  *           X on writing X addresses to the RAR table
3945  **/
3946 static int igb_write_uc_addr_list(struct net_device *netdev)
3947 {
3948         struct igb_adapter *adapter = netdev_priv(netdev);
3949         struct e1000_hw *hw = &adapter->hw;
3950         unsigned int vfn = adapter->vfs_allocated_count;
3951         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3952         int count = 0;
3953
3954         /* return ENOMEM indicating insufficient memory for addresses */
3955         if (netdev_uc_count(netdev) > rar_entries)
3956                 return -ENOMEM;
3957
3958         if (!netdev_uc_empty(netdev) && rar_entries) {
3959                 struct netdev_hw_addr *ha;
3960
3961                 netdev_for_each_uc_addr(ha, netdev) {
3962                         if (!rar_entries)
3963                                 break;
3964                         igb_rar_set_qsel(adapter, ha->addr,
3965                                          rar_entries--,
3966                                          vfn);
3967                         count++;
3968                 }
3969         }
3970         /* write the addresses in reverse order to avoid write combining */
3971         for (; rar_entries > 0 ; rar_entries--) {
3972                 wr32(E1000_RAH(rar_entries), 0);
3973                 wr32(E1000_RAL(rar_entries), 0);
3974         }
3975         wrfl();
3976
3977         return count;
3978 }
3979
3980 /**
3981  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3982  *  @netdev: network interface device structure
3983  *
3984  *  The set_rx_mode entry point is called whenever the unicast or multicast
3985  *  address lists or the network interface flags are updated.  This routine is
3986  *  responsible for configuring the hardware for proper unicast, multicast,
3987  *  promiscuous mode, and all-multi behavior.
3988  **/
3989 static void igb_set_rx_mode(struct net_device *netdev)
3990 {
3991         struct igb_adapter *adapter = netdev_priv(netdev);
3992         struct e1000_hw *hw = &adapter->hw;
3993         unsigned int vfn = adapter->vfs_allocated_count;
3994         u32 rctl, vmolr = 0;
3995         int count;
3996
3997         /* Check for Promiscuous and All Multicast modes */
3998         rctl = rd32(E1000_RCTL);
3999
4000         /* clear the effected bits */
4001         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4002
4003         if (netdev->flags & IFF_PROMISC) {
4004                 /* retain VLAN HW filtering if in VT mode */
4005                 if (adapter->vfs_allocated_count)
4006                         rctl |= E1000_RCTL_VFE;
4007                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4008                 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4009         } else {
4010                 if (netdev->flags & IFF_ALLMULTI) {
4011                         rctl |= E1000_RCTL_MPE;
4012                         vmolr |= E1000_VMOLR_MPME;
4013                 } else {
4014                         /* Write addresses to the MTA, if the attempt fails
4015                          * then we should just turn on promiscuous mode so
4016                          * that we can at least receive multicast traffic
4017                          */
4018                         count = igb_write_mc_addr_list(netdev);
4019                         if (count < 0) {
4020                                 rctl |= E1000_RCTL_MPE;
4021                                 vmolr |= E1000_VMOLR_MPME;
4022                         } else if (count) {
4023                                 vmolr |= E1000_VMOLR_ROMPE;
4024                         }
4025                 }
4026                 /* Write addresses to available RAR registers, if there is not
4027                  * sufficient space to store all the addresses then enable
4028                  * unicast promiscuous mode
4029                  */
4030                 count = igb_write_uc_addr_list(netdev);
4031                 if (count < 0) {
4032                         rctl |= E1000_RCTL_UPE;
4033                         vmolr |= E1000_VMOLR_ROPE;
4034                 }
4035                 rctl |= E1000_RCTL_VFE;
4036         }
4037         wr32(E1000_RCTL, rctl);
4038
4039         /* In order to support SR-IOV and eventually VMDq it is necessary to set
4040          * the VMOLR to enable the appropriate modes.  Without this workaround
4041          * we will have issues with VLAN tag stripping not being done for frames
4042          * that are only arriving because we are the default pool
4043          */
4044         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4045                 return;
4046
4047         vmolr |= rd32(E1000_VMOLR(vfn)) &
4048                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4049         wr32(E1000_VMOLR(vfn), vmolr);
4050         igb_restore_vf_multicasts(adapter);
4051 }
4052
4053 static void igb_check_wvbr(struct igb_adapter *adapter)
4054 {
4055         struct e1000_hw *hw = &adapter->hw;
4056         u32 wvbr = 0;
4057
4058         switch (hw->mac.type) {
4059         case e1000_82576:
4060         case e1000_i350:
4061                 if (!(wvbr = rd32(E1000_WVBR)))
4062                         return;
4063                 break;
4064         default:
4065                 break;
4066         }
4067
4068         adapter->wvbr |= wvbr;
4069 }
4070
4071 #define IGB_STAGGERED_QUEUE_OFFSET 8
4072
4073 static void igb_spoof_check(struct igb_adapter *adapter)
4074 {
4075         int j;
4076
4077         if (!adapter->wvbr)
4078                 return;
4079
4080         for(j = 0; j < adapter->vfs_allocated_count; j++) {
4081                 if (adapter->wvbr & (1 << j) ||
4082                     adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4083                         dev_warn(&adapter->pdev->dev,
4084                                 "Spoof event(s) detected on VF %d\n", j);
4085                         adapter->wvbr &=
4086                                 ~((1 << j) |
4087                                   (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4088                 }
4089         }
4090 }
4091
4092 /* Need to wait a few seconds after link up to get diagnostic information from
4093  * the phy
4094  */
4095 static void igb_update_phy_info(unsigned long data)
4096 {
4097         struct igb_adapter *adapter = (struct igb_adapter *) data;
4098         igb_get_phy_info(&adapter->hw);
4099 }
4100
4101 /**
4102  *  igb_has_link - check shared code for link and determine up/down
4103  *  @adapter: pointer to driver private info
4104  **/
4105 bool igb_has_link(struct igb_adapter *adapter)
4106 {
4107         struct e1000_hw *hw = &adapter->hw;
4108         bool link_active = false;
4109
4110         /* get_link_status is set on LSC (link status) interrupt or
4111          * rx sequence error interrupt.  get_link_status will stay
4112          * false until the e1000_check_for_link establishes link
4113          * for copper adapters ONLY
4114          */
4115         switch (hw->phy.media_type) {
4116         case e1000_media_type_copper:
4117                 if (!hw->mac.get_link_status)
4118                         return true;
4119         case e1000_media_type_internal_serdes:
4120                 hw->mac.ops.check_for_link(hw);
4121                 link_active = !hw->mac.get_link_status;
4122                 break;
4123         default:
4124         case e1000_media_type_unknown:
4125                 break;
4126         }
4127
4128         if (((hw->mac.type == e1000_i210) ||
4129              (hw->mac.type == e1000_i211)) &&
4130              (hw->phy.id == I210_I_PHY_ID)) {
4131                 if (!netif_carrier_ok(adapter->netdev)) {
4132                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4133                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4134                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4135                         adapter->link_check_timeout = jiffies;
4136                 }
4137         }
4138
4139         return link_active;
4140 }
4141
4142 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4143 {
4144         bool ret = false;
4145         u32 ctrl_ext, thstat;
4146
4147         /* check for thermal sensor event on i350 copper only */
4148         if (hw->mac.type == e1000_i350) {
4149                 thstat = rd32(E1000_THSTAT);
4150                 ctrl_ext = rd32(E1000_CTRL_EXT);
4151
4152                 if ((hw->phy.media_type == e1000_media_type_copper) &&
4153                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4154                         ret = !!(thstat & event);
4155         }
4156
4157         return ret;
4158 }
4159
4160 /**
4161  *  igb_watchdog - Timer Call-back
4162  *  @data: pointer to adapter cast into an unsigned long
4163  **/
4164 static void igb_watchdog(unsigned long data)
4165 {
4166         struct igb_adapter *adapter = (struct igb_adapter *)data;
4167         /* Do the rest outside of interrupt context */
4168         schedule_work(&adapter->watchdog_task);
4169 }
4170
4171 static void igb_watchdog_task(struct work_struct *work)
4172 {
4173         struct igb_adapter *adapter = container_of(work,
4174                                                    struct igb_adapter,
4175                                                    watchdog_task);
4176         struct e1000_hw *hw = &adapter->hw;
4177         struct e1000_phy_info *phy = &hw->phy;
4178         struct net_device *netdev = adapter->netdev;
4179         u32 link;
4180         int i;
4181         u32 connsw;
4182
4183         link = igb_has_link(adapter);
4184
4185         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4186                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4187                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4188                 else
4189                         link = false;
4190         }
4191
4192         /* Force link down if we have fiber to swap to */
4193         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4194                 if (hw->phy.media_type == e1000_media_type_copper) {
4195                         connsw = rd32(E1000_CONNSW);
4196                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4197                                 link = 0;
4198                 }
4199         }
4200         if (link) {
4201                 /* Perform a reset if the media type changed. */
4202                 if (hw->dev_spec._82575.media_changed) {
4203                         hw->dev_spec._82575.media_changed = false;
4204                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
4205                         igb_reset(adapter);
4206                 }
4207                 /* Cancel scheduled suspend requests. */
4208                 pm_runtime_resume(netdev->dev.parent);
4209
4210                 if (!netif_carrier_ok(netdev)) {
4211                         u32 ctrl;
4212                         hw->mac.ops.get_speed_and_duplex(hw,
4213                                                          &adapter->link_speed,
4214                                                          &adapter->link_duplex);
4215
4216                         ctrl = rd32(E1000_CTRL);
4217                         /* Links status message must follow this format */
4218                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
4219                                "Duplex, Flow Control: %s\n",
4220                                netdev->name,
4221                                adapter->link_speed,
4222                                adapter->link_duplex == FULL_DUPLEX ?
4223                                "Full" : "Half",
4224                                (ctrl & E1000_CTRL_TFCE) &&
4225                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4226                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4227                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4228
4229                         /* disable EEE if enabled */
4230                         if ((adapter->flags & IGB_FLAG_EEE) &&
4231                                 (adapter->link_duplex == HALF_DUPLEX)) {
4232                                 dev_info(&adapter->pdev->dev,
4233                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4234                                 adapter->hw.dev_spec._82575.eee_disable = true;
4235                                 adapter->flags &= ~IGB_FLAG_EEE;
4236                         }
4237
4238                         /* check if SmartSpeed worked */
4239                         igb_check_downshift(hw);
4240                         if (phy->speed_downgraded)
4241                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4242
4243                         /* check for thermal sensor event */
4244                         if (igb_thermal_sensor_event(hw,
4245                             E1000_THSTAT_LINK_THROTTLE)) {
4246                                 netdev_info(netdev, "The network adapter link "
4247                                             "speed was downshifted because it "
4248                                             "overheated\n");
4249                         }
4250
4251                         /* adjust timeout factor according to speed/duplex */
4252                         adapter->tx_timeout_factor = 1;
4253                         switch (adapter->link_speed) {
4254                         case SPEED_10:
4255                                 adapter->tx_timeout_factor = 14;
4256                                 break;
4257                         case SPEED_100:
4258                                 /* maybe add some timeout factor ? */
4259                                 break;
4260                         }
4261
4262                         netif_carrier_on(netdev);
4263
4264                         igb_ping_all_vfs(adapter);
4265                         igb_check_vf_rate_limit(adapter);
4266
4267                         /* link state has changed, schedule phy info update */
4268                         if (!test_bit(__IGB_DOWN, &adapter->state))
4269                                 mod_timer(&adapter->phy_info_timer,
4270                                           round_jiffies(jiffies + 2 * HZ));
4271                 }
4272         } else {
4273                 if (netif_carrier_ok(netdev)) {
4274                         adapter->link_speed = 0;
4275                         adapter->link_duplex = 0;
4276
4277                         /* check for thermal sensor event */
4278                         if (igb_thermal_sensor_event(hw,
4279                             E1000_THSTAT_PWR_DOWN)) {
4280                                 netdev_err(netdev, "The network adapter was "
4281                                            "stopped because it overheated\n");
4282                         }
4283
4284                         /* Links status message must follow this format */
4285                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
4286                                netdev->name);
4287                         netif_carrier_off(netdev);
4288
4289                         igb_ping_all_vfs(adapter);
4290
4291                         /* link state has changed, schedule phy info update */
4292                         if (!test_bit(__IGB_DOWN, &adapter->state))
4293                                 mod_timer(&adapter->phy_info_timer,
4294                                           round_jiffies(jiffies + 2 * HZ));
4295
4296                         /* link is down, time to check for alternate media */
4297                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4298                                 igb_check_swap_media(adapter);
4299                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4300                                         schedule_work(&adapter->reset_task);
4301                                         /* return immediately */
4302                                         return;
4303                                 }
4304                         }
4305                         pm_schedule_suspend(netdev->dev.parent,
4306                                             MSEC_PER_SEC * 5);
4307
4308                 /* also check for alternate media here */
4309                 } else if (!netif_carrier_ok(netdev) &&
4310                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4311                         igb_check_swap_media(adapter);
4312                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4313                                 schedule_work(&adapter->reset_task);
4314                                 /* return immediately */
4315                                 return;
4316                         }
4317                 }
4318         }
4319
4320         spin_lock(&adapter->stats64_lock);
4321         igb_update_stats(adapter, &adapter->stats64);
4322         spin_unlock(&adapter->stats64_lock);
4323
4324         for (i = 0; i < adapter->num_tx_queues; i++) {
4325                 struct igb_ring *tx_ring = adapter->tx_ring[i];
4326                 if (!netif_carrier_ok(netdev)) {
4327                         /* We've lost link, so the controller stops DMA,
4328                          * but we've got queued Tx work that's never going
4329                          * to get done, so reset controller to flush Tx.
4330                          * (Do the reset outside of interrupt context).
4331                          */
4332                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4333                                 adapter->tx_timeout_count++;
4334                                 schedule_work(&adapter->reset_task);
4335                                 /* return immediately since reset is imminent */
4336                                 return;
4337                         }
4338                 }
4339
4340                 /* Force detection of hung controller every watchdog period */
4341                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4342         }
4343
4344         /* Cause software interrupt to ensure Rx ring is cleaned */
4345         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4346                 u32 eics = 0;
4347                 for (i = 0; i < adapter->num_q_vectors; i++)
4348                         eics |= adapter->q_vector[i]->eims_value;
4349                 wr32(E1000_EICS, eics);
4350         } else {
4351                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4352         }
4353
4354         igb_spoof_check(adapter);
4355         igb_ptp_rx_hang(adapter);
4356
4357         /* Reset the timer */
4358         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4359                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4360                         mod_timer(&adapter->watchdog_timer,
4361                                   round_jiffies(jiffies +  HZ));
4362                 else
4363                         mod_timer(&adapter->watchdog_timer,
4364                                   round_jiffies(jiffies + 2 * HZ));
4365         }
4366 }
4367
4368 enum latency_range {
4369         lowest_latency = 0,
4370         low_latency = 1,
4371         bulk_latency = 2,
4372         latency_invalid = 255
4373 };
4374
4375 /**
4376  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4377  *  @q_vector: pointer to q_vector
4378  *
4379  *  Stores a new ITR value based on strictly on packet size.  This
4380  *  algorithm is less sophisticated than that used in igb_update_itr,
4381  *  due to the difficulty of synchronizing statistics across multiple
4382  *  receive rings.  The divisors and thresholds used by this function
4383  *  were determined based on theoretical maximum wire speed and testing
4384  *  data, in order to minimize response time while increasing bulk
4385  *  throughput.
4386  *  This functionality is controlled by ethtool's coalescing settings.
4387  *  NOTE:  This function is called only when operating in a multiqueue
4388  *         receive environment.
4389  **/
4390 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4391 {
4392         int new_val = q_vector->itr_val;
4393         int avg_wire_size = 0;
4394         struct igb_adapter *adapter = q_vector->adapter;
4395         unsigned int packets;
4396
4397         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4398          * ints/sec - ITR timer value of 120 ticks.
4399          */
4400         if (adapter->link_speed != SPEED_1000) {
4401                 new_val = IGB_4K_ITR;
4402                 goto set_itr_val;
4403         }
4404
4405         packets = q_vector->rx.total_packets;
4406         if (packets)
4407                 avg_wire_size = q_vector->rx.total_bytes / packets;
4408
4409         packets = q_vector->tx.total_packets;
4410         if (packets)
4411                 avg_wire_size = max_t(u32, avg_wire_size,
4412                                       q_vector->tx.total_bytes / packets);
4413
4414         /* if avg_wire_size isn't set no work was done */
4415         if (!avg_wire_size)
4416                 goto clear_counts;
4417
4418         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4419         avg_wire_size += 24;
4420
4421         /* Don't starve jumbo frames */
4422         avg_wire_size = min(avg_wire_size, 3000);
4423
4424         /* Give a little boost to mid-size frames */
4425         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4426                 new_val = avg_wire_size / 3;
4427         else
4428                 new_val = avg_wire_size / 2;
4429
4430         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4431         if (new_val < IGB_20K_ITR &&
4432             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4433              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4434                 new_val = IGB_20K_ITR;
4435
4436 set_itr_val:
4437         if (new_val != q_vector->itr_val) {
4438                 q_vector->itr_val = new_val;
4439                 q_vector->set_itr = 1;
4440         }
4441 clear_counts:
4442         q_vector->rx.total_bytes = 0;
4443         q_vector->rx.total_packets = 0;
4444         q_vector->tx.total_bytes = 0;
4445         q_vector->tx.total_packets = 0;
4446 }
4447
4448 /**
4449  *  igb_update_itr - update the dynamic ITR value based on statistics
4450  *  @q_vector: pointer to q_vector
4451  *  @ring_container: ring info to update the itr for
4452  *
4453  *  Stores a new ITR value based on packets and byte
4454  *  counts during the last interrupt.  The advantage of per interrupt
4455  *  computation is faster updates and more accurate ITR for the current
4456  *  traffic pattern.  Constants in this function were computed
4457  *  based on theoretical maximum wire speed and thresholds were set based
4458  *  on testing data as well as attempting to minimize response time
4459  *  while increasing bulk throughput.
4460  *  This functionality is controlled by ethtool's coalescing settings.
4461  *  NOTE:  These calculations are only valid when operating in a single-
4462  *         queue environment.
4463  **/
4464 static void igb_update_itr(struct igb_q_vector *q_vector,
4465                            struct igb_ring_container *ring_container)
4466 {
4467         unsigned int packets = ring_container->total_packets;
4468         unsigned int bytes = ring_container->total_bytes;
4469         u8 itrval = ring_container->itr;
4470
4471         /* no packets, exit with status unchanged */
4472         if (packets == 0)
4473                 return;
4474
4475         switch (itrval) {
4476         case lowest_latency:
4477                 /* handle TSO and jumbo frames */
4478                 if (bytes/packets > 8000)
4479                         itrval = bulk_latency;
4480                 else if ((packets < 5) && (bytes > 512))
4481                         itrval = low_latency;
4482                 break;
4483         case low_latency:  /* 50 usec aka 20000 ints/s */
4484                 if (bytes > 10000) {
4485                         /* this if handles the TSO accounting */
4486                         if (bytes/packets > 8000) {
4487                                 itrval = bulk_latency;
4488                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
4489                                 itrval = bulk_latency;
4490                         } else if ((packets > 35)) {
4491                                 itrval = lowest_latency;
4492                         }
4493                 } else if (bytes/packets > 2000) {
4494                         itrval = bulk_latency;
4495                 } else if (packets <= 2 && bytes < 512) {
4496                         itrval = lowest_latency;
4497                 }
4498                 break;
4499         case bulk_latency: /* 250 usec aka 4000 ints/s */
4500                 if (bytes > 25000) {
4501                         if (packets > 35)
4502                                 itrval = low_latency;
4503                 } else if (bytes < 1500) {
4504                         itrval = low_latency;
4505                 }
4506                 break;
4507         }
4508
4509         /* clear work counters since we have the values we need */
4510         ring_container->total_bytes = 0;
4511         ring_container->total_packets = 0;
4512
4513         /* write updated itr to ring container */
4514         ring_container->itr = itrval;
4515 }
4516
4517 static void igb_set_itr(struct igb_q_vector *q_vector)
4518 {
4519         struct igb_adapter *adapter = q_vector->adapter;
4520         u32 new_itr = q_vector->itr_val;
4521         u8 current_itr = 0;
4522
4523         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4524         if (adapter->link_speed != SPEED_1000) {
4525                 current_itr = 0;
4526                 new_itr = IGB_4K_ITR;
4527                 goto set_itr_now;
4528         }
4529
4530         igb_update_itr(q_vector, &q_vector->tx);
4531         igb_update_itr(q_vector, &q_vector->rx);
4532
4533         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4534
4535         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4536         if (current_itr == lowest_latency &&
4537             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4538              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4539                 current_itr = low_latency;
4540
4541         switch (current_itr) {
4542         /* counts and packets in update_itr are dependent on these numbers */
4543         case lowest_latency:
4544                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4545                 break;
4546         case low_latency:
4547                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4548                 break;
4549         case bulk_latency:
4550                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4551                 break;
4552         default:
4553                 break;
4554         }
4555
4556 set_itr_now:
4557         if (new_itr != q_vector->itr_val) {
4558                 /* this attempts to bias the interrupt rate towards Bulk
4559                  * by adding intermediate steps when interrupt rate is
4560                  * increasing
4561                  */
4562                 new_itr = new_itr > q_vector->itr_val ?
4563                           max((new_itr * q_vector->itr_val) /
4564                           (new_itr + (q_vector->itr_val >> 2)),
4565                           new_itr) : new_itr;
4566                 /* Don't write the value here; it resets the adapter's
4567                  * internal timer, and causes us to delay far longer than
4568                  * we should between interrupts.  Instead, we write the ITR
4569                  * value at the beginning of the next interrupt so the timing
4570                  * ends up being correct.
4571                  */
4572                 q_vector->itr_val = new_itr;
4573                 q_vector->set_itr = 1;
4574         }
4575 }
4576
4577 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4578                             u32 type_tucmd, u32 mss_l4len_idx)
4579 {
4580         struct e1000_adv_tx_context_desc *context_desc;
4581         u16 i = tx_ring->next_to_use;
4582
4583         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4584
4585         i++;
4586         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4587
4588         /* set bits to identify this as an advanced context descriptor */
4589         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4590
4591         /* For 82575, context index must be unique per ring. */
4592         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4593                 mss_l4len_idx |= tx_ring->reg_idx << 4;
4594
4595         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4596         context_desc->seqnum_seed       = 0;
4597         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4598         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4599 }
4600
4601 static int igb_tso(struct igb_ring *tx_ring,
4602                    struct igb_tx_buffer *first,
4603                    u8 *hdr_len)
4604 {
4605         struct sk_buff *skb = first->skb;
4606         u32 vlan_macip_lens, type_tucmd;
4607         u32 mss_l4len_idx, l4len;
4608         int err;
4609
4610         if (skb->ip_summed != CHECKSUM_PARTIAL)
4611                 return 0;
4612
4613         if (!skb_is_gso(skb))
4614                 return 0;
4615
4616         err = skb_cow_head(skb, 0);
4617         if (err < 0)
4618                 return err;
4619
4620         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4621         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4622
4623         if (first->protocol == htons(ETH_P_IP)) {
4624                 struct iphdr *iph = ip_hdr(skb);
4625                 iph->tot_len = 0;
4626                 iph->check = 0;
4627                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4628                                                          iph->daddr, 0,
4629                                                          IPPROTO_TCP,
4630                                                          0);
4631                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4632                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4633                                    IGB_TX_FLAGS_CSUM |
4634                                    IGB_TX_FLAGS_IPV4;
4635         } else if (skb_is_gso_v6(skb)) {
4636                 ipv6_hdr(skb)->payload_len = 0;
4637                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4638                                                        &ipv6_hdr(skb)->daddr,
4639                                                        0, IPPROTO_TCP, 0);
4640                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4641                                    IGB_TX_FLAGS_CSUM;
4642         }
4643
4644         /* compute header lengths */
4645         l4len = tcp_hdrlen(skb);
4646         *hdr_len = skb_transport_offset(skb) + l4len;
4647
4648         /* update gso size and bytecount with header size */
4649         first->gso_segs = skb_shinfo(skb)->gso_segs;
4650         first->bytecount += (first->gso_segs - 1) * *hdr_len;
4651
4652         /* MSS L4LEN IDX */
4653         mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4654         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4655
4656         /* VLAN MACLEN IPLEN */
4657         vlan_macip_lens = skb_network_header_len(skb);
4658         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4659         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4660
4661         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4662
4663         return 1;
4664 }
4665
4666 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4667 {
4668         struct sk_buff *skb = first->skb;
4669         u32 vlan_macip_lens = 0;
4670         u32 mss_l4len_idx = 0;
4671         u32 type_tucmd = 0;
4672
4673         if (skb->ip_summed != CHECKSUM_PARTIAL) {
4674                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4675                         return;
4676         } else {
4677                 u8 l4_hdr = 0;
4678                 switch (first->protocol) {
4679                 case htons(ETH_P_IP):
4680                         vlan_macip_lens |= skb_network_header_len(skb);
4681                         type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4682                         l4_hdr = ip_hdr(skb)->protocol;
4683                         break;
4684                 case htons(ETH_P_IPV6):
4685                         vlan_macip_lens |= skb_network_header_len(skb);
4686                         l4_hdr = ipv6_hdr(skb)->nexthdr;
4687                         break;
4688                 default:
4689                         if (unlikely(net_ratelimit())) {
4690                                 dev_warn(tx_ring->dev,
4691                                          "partial checksum but proto=%x!\n",
4692                                          first->protocol);
4693                         }
4694                         break;
4695                 }
4696
4697                 switch (l4_hdr) {
4698                 case IPPROTO_TCP:
4699                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4700                         mss_l4len_idx = tcp_hdrlen(skb) <<
4701                                         E1000_ADVTXD_L4LEN_SHIFT;
4702                         break;
4703                 case IPPROTO_SCTP:
4704                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4705                         mss_l4len_idx = sizeof(struct sctphdr) <<
4706                                         E1000_ADVTXD_L4LEN_SHIFT;
4707                         break;
4708                 case IPPROTO_UDP:
4709                         mss_l4len_idx = sizeof(struct udphdr) <<
4710                                         E1000_ADVTXD_L4LEN_SHIFT;
4711                         break;
4712                 default:
4713                         if (unlikely(net_ratelimit())) {
4714                                 dev_warn(tx_ring->dev,
4715                                          "partial checksum but l4 proto=%x!\n",
4716                                          l4_hdr);
4717                         }
4718                         break;
4719                 }
4720
4721                 /* update TX checksum flag */
4722                 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4723         }
4724
4725         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4726         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4727
4728         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4729 }
4730
4731 #define IGB_SET_FLAG(_input, _flag, _result) \
4732         ((_flag <= _result) ? \
4733          ((u32)(_input & _flag) * (_result / _flag)) : \
4734          ((u32)(_input & _flag) / (_flag / _result)))
4735
4736 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4737 {
4738         /* set type for advanced descriptor with frame checksum insertion */
4739         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4740                        E1000_ADVTXD_DCMD_DEXT |
4741                        E1000_ADVTXD_DCMD_IFCS;
4742
4743         /* set HW vlan bit if vlan is present */
4744         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4745                                  (E1000_ADVTXD_DCMD_VLE));
4746
4747         /* set segmentation bits for TSO */
4748         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4749                                  (E1000_ADVTXD_DCMD_TSE));
4750
4751         /* set timestamp bit if present */
4752         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4753                                  (E1000_ADVTXD_MAC_TSTAMP));
4754
4755         /* insert frame checksum */
4756         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4757
4758         return cmd_type;
4759 }
4760
4761 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4762                                  union e1000_adv_tx_desc *tx_desc,
4763                                  u32 tx_flags, unsigned int paylen)
4764 {
4765         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4766
4767         /* 82575 requires a unique index per ring */
4768         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4769                 olinfo_status |= tx_ring->reg_idx << 4;
4770
4771         /* insert L4 checksum */
4772         olinfo_status |= IGB_SET_FLAG(tx_flags,
4773                                       IGB_TX_FLAGS_CSUM,
4774                                       (E1000_TXD_POPTS_TXSM << 8));
4775
4776         /* insert IPv4 checksum */
4777         olinfo_status |= IGB_SET_FLAG(tx_flags,
4778                                       IGB_TX_FLAGS_IPV4,
4779                                       (E1000_TXD_POPTS_IXSM << 8));
4780
4781         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4782 }
4783
4784 static void igb_tx_map(struct igb_ring *tx_ring,
4785                        struct igb_tx_buffer *first,
4786                        const u8 hdr_len)
4787 {
4788         struct sk_buff *skb = first->skb;
4789         struct igb_tx_buffer *tx_buffer;
4790         union e1000_adv_tx_desc *tx_desc;
4791         struct skb_frag_struct *frag;
4792         dma_addr_t dma;
4793         unsigned int data_len, size;
4794         u32 tx_flags = first->tx_flags;
4795         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4796         u16 i = tx_ring->next_to_use;
4797
4798         tx_desc = IGB_TX_DESC(tx_ring, i);
4799
4800         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4801
4802         size = skb_headlen(skb);
4803         data_len = skb->data_len;
4804
4805         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4806
4807         tx_buffer = first;
4808
4809         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4810                 if (dma_mapping_error(tx_ring->dev, dma))
4811                         goto dma_error;
4812
4813                 /* record length, and DMA address */
4814                 dma_unmap_len_set(tx_buffer, len, size);
4815                 dma_unmap_addr_set(tx_buffer, dma, dma);
4816
4817                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4818
4819                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4820                         tx_desc->read.cmd_type_len =
4821                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4822
4823                         i++;
4824                         tx_desc++;
4825                         if (i == tx_ring->count) {
4826                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4827                                 i = 0;
4828                         }
4829                         tx_desc->read.olinfo_status = 0;
4830
4831                         dma += IGB_MAX_DATA_PER_TXD;
4832                         size -= IGB_MAX_DATA_PER_TXD;
4833
4834                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
4835                 }
4836
4837                 if (likely(!data_len))
4838                         break;
4839
4840                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4841
4842                 i++;
4843                 tx_desc++;
4844                 if (i == tx_ring->count) {
4845                         tx_desc = IGB_TX_DESC(tx_ring, 0);
4846                         i = 0;
4847                 }
4848                 tx_desc->read.olinfo_status = 0;
4849
4850                 size = skb_frag_size(frag);
4851                 data_len -= size;
4852
4853                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4854                                        size, DMA_TO_DEVICE);
4855
4856                 tx_buffer = &tx_ring->tx_buffer_info[i];
4857         }
4858
4859         /* write last descriptor with RS and EOP bits */
4860         cmd_type |= size | IGB_TXD_DCMD;
4861         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4862
4863         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4864
4865         /* set the timestamp */
4866         first->time_stamp = jiffies;
4867
4868         /* Force memory writes to complete before letting h/w know there
4869          * are new descriptors to fetch.  (Only applicable for weak-ordered
4870          * memory model archs, such as IA-64).
4871          *
4872          * We also need this memory barrier to make certain all of the
4873          * status bits have been updated before next_to_watch is written.
4874          */
4875         wmb();
4876
4877         /* set next_to_watch value indicating a packet is present */
4878         first->next_to_watch = tx_desc;
4879
4880         i++;
4881         if (i == tx_ring->count)
4882                 i = 0;
4883
4884         tx_ring->next_to_use = i;
4885
4886         writel(i, tx_ring->tail);
4887
4888         /* we need this if more than one processor can write to our tail
4889          * at a time, it synchronizes IO on IA64/Altix systems
4890          */
4891         mmiowb();
4892
4893         return;
4894
4895 dma_error:
4896         dev_err(tx_ring->dev, "TX DMA map failed\n");
4897
4898         /* clear dma mappings for failed tx_buffer_info map */
4899         for (;;) {
4900                 tx_buffer = &tx_ring->tx_buffer_info[i];
4901                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4902                 if (tx_buffer == first)
4903                         break;
4904                 if (i == 0)
4905                         i = tx_ring->count;
4906                 i--;
4907         }
4908
4909         tx_ring->next_to_use = i;
4910 }
4911
4912 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4913 {
4914         struct net_device *netdev = tx_ring->netdev;
4915
4916         netif_stop_subqueue(netdev, tx_ring->queue_index);
4917
4918         /* Herbert's original patch had:
4919          *  smp_mb__after_netif_stop_queue();
4920          * but since that doesn't exist yet, just open code it.
4921          */
4922         smp_mb();
4923
4924         /* We need to check again in a case another CPU has just
4925          * made room available.
4926          */
4927         if (igb_desc_unused(tx_ring) < size)
4928                 return -EBUSY;
4929
4930         /* A reprieve! */
4931         netif_wake_subqueue(netdev, tx_ring->queue_index);
4932
4933         u64_stats_update_begin(&tx_ring->tx_syncp2);
4934         tx_ring->tx_stats.restart_queue2++;
4935         u64_stats_update_end(&tx_ring->tx_syncp2);
4936
4937         return 0;
4938 }
4939
4940 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4941 {
4942         if (igb_desc_unused(tx_ring) >= size)
4943                 return 0;
4944         return __igb_maybe_stop_tx(tx_ring, size);
4945 }
4946
4947 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4948                                 struct igb_ring *tx_ring)
4949 {
4950         struct igb_tx_buffer *first;
4951         int tso;
4952         u32 tx_flags = 0;
4953         u16 count = TXD_USE_COUNT(skb_headlen(skb));
4954         __be16 protocol = vlan_get_protocol(skb);
4955         u8 hdr_len = 0;
4956
4957         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4958          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4959          *       + 2 desc gap to keep tail from touching head,
4960          *       + 1 desc for context descriptor,
4961          * otherwise try next time
4962          */
4963         if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4964                 unsigned short f;
4965                 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4966                         count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4967         } else {
4968                 count += skb_shinfo(skb)->nr_frags;
4969         }
4970
4971         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4972                 /* this is a hard error */
4973                 return NETDEV_TX_BUSY;
4974         }
4975
4976         /* record the location of the first descriptor for this packet */
4977         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4978         first->skb = skb;
4979         first->bytecount = skb->len;
4980         first->gso_segs = 1;
4981
4982         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4983                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4984
4985                 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
4986                                            &adapter->state)) {
4987                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4988                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
4989
4990                         adapter->ptp_tx_skb = skb_get(skb);
4991                         adapter->ptp_tx_start = jiffies;
4992                         if (adapter->hw.mac.type == e1000_82576)
4993                                 schedule_work(&adapter->ptp_tx_work);
4994                 }
4995         }
4996
4997         skb_tx_timestamp(skb);
4998
4999         if (vlan_tx_tag_present(skb)) {
5000                 tx_flags |= IGB_TX_FLAGS_VLAN;
5001                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5002         }
5003
5004         /* record initial flags and protocol */
5005         first->tx_flags = tx_flags;
5006         first->protocol = protocol;
5007
5008         tso = igb_tso(tx_ring, first, &hdr_len);
5009         if (tso < 0)
5010                 goto out_drop;
5011         else if (!tso)
5012                 igb_tx_csum(tx_ring, first);
5013
5014         igb_tx_map(tx_ring, first, hdr_len);
5015
5016         /* Make sure there is space in the ring for the next send. */
5017         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5018
5019         return NETDEV_TX_OK;
5020
5021 out_drop:
5022         igb_unmap_and_free_tx_resource(tx_ring, first);
5023
5024         return NETDEV_TX_OK;
5025 }
5026
5027 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5028                                                     struct sk_buff *skb)
5029 {
5030         unsigned int r_idx = skb->queue_mapping;
5031
5032         if (r_idx >= adapter->num_tx_queues)
5033                 r_idx = r_idx % adapter->num_tx_queues;
5034
5035         return adapter->tx_ring[r_idx];
5036 }
5037
5038 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5039                                   struct net_device *netdev)
5040 {
5041         struct igb_adapter *adapter = netdev_priv(netdev);
5042
5043         if (test_bit(__IGB_DOWN, &adapter->state)) {
5044                 dev_kfree_skb_any(skb);
5045                 return NETDEV_TX_OK;
5046         }
5047
5048         if (skb->len <= 0) {
5049                 dev_kfree_skb_any(skb);
5050                 return NETDEV_TX_OK;
5051         }
5052
5053         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5054          * in order to meet this minimum size requirement.
5055          */
5056         if (unlikely(skb->len < 17)) {
5057                 if (skb_pad(skb, 17 - skb->len))
5058                         return NETDEV_TX_OK;
5059                 skb->len = 17;
5060                 skb_set_tail_pointer(skb, 17);
5061         }
5062
5063         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5064 }
5065
5066 /**
5067  *  igb_tx_timeout - Respond to a Tx Hang
5068  *  @netdev: network interface device structure
5069  **/
5070 static void igb_tx_timeout(struct net_device *netdev)
5071 {
5072         struct igb_adapter *adapter = netdev_priv(netdev);
5073         struct e1000_hw *hw = &adapter->hw;
5074
5075         /* Do the reset outside of interrupt context */
5076         adapter->tx_timeout_count++;
5077
5078         if (hw->mac.type >= e1000_82580)
5079                 hw->dev_spec._82575.global_device_reset = true;
5080
5081         schedule_work(&adapter->reset_task);
5082         wr32(E1000_EICS,
5083              (adapter->eims_enable_mask & ~adapter->eims_other));
5084 }
5085
5086 static void igb_reset_task(struct work_struct *work)
5087 {
5088         struct igb_adapter *adapter;
5089         adapter = container_of(work, struct igb_adapter, reset_task);
5090
5091         igb_dump(adapter);
5092         netdev_err(adapter->netdev, "Reset adapter\n");
5093         igb_reinit_locked(adapter);
5094 }
5095
5096 /**
5097  *  igb_get_stats64 - Get System Network Statistics
5098  *  @netdev: network interface device structure
5099  *  @stats: rtnl_link_stats64 pointer
5100  **/
5101 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5102                                                 struct rtnl_link_stats64 *stats)
5103 {
5104         struct igb_adapter *adapter = netdev_priv(netdev);
5105
5106         spin_lock(&adapter->stats64_lock);
5107         igb_update_stats(adapter, &adapter->stats64);
5108         memcpy(stats, &adapter->stats64, sizeof(*stats));
5109         spin_unlock(&adapter->stats64_lock);
5110
5111         return stats;
5112 }
5113
5114 /**
5115  *  igb_change_mtu - Change the Maximum Transfer Unit
5116  *  @netdev: network interface device structure
5117  *  @new_mtu: new value for maximum frame size
5118  *
5119  *  Returns 0 on success, negative on failure
5120  **/
5121 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5122 {
5123         struct igb_adapter *adapter = netdev_priv(netdev);
5124         struct pci_dev *pdev = adapter->pdev;
5125         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5126
5127         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5128                 dev_err(&pdev->dev, "Invalid MTU setting\n");
5129                 return -EINVAL;
5130         }
5131
5132 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5133         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5134                 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5135                 return -EINVAL;
5136         }
5137
5138         /* adjust max frame to be at least the size of a standard frame */
5139         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5140                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5141
5142         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5143                 msleep(1);
5144
5145         /* igb_down has a dependency on max_frame_size */
5146         adapter->max_frame_size = max_frame;
5147
5148         if (netif_running(netdev))
5149                 igb_down(adapter);
5150
5151         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5152                  netdev->mtu, new_mtu);
5153         netdev->mtu = new_mtu;
5154
5155         if (netif_running(netdev))
5156                 igb_up(adapter);
5157         else
5158                 igb_reset(adapter);
5159
5160         clear_bit(__IGB_RESETTING, &adapter->state);
5161
5162         return 0;
5163 }
5164
5165 /**
5166  *  igb_update_stats - Update the board statistics counters
5167  *  @adapter: board private structure
5168  **/
5169 void igb_update_stats(struct igb_adapter *adapter,
5170                       struct rtnl_link_stats64 *net_stats)
5171 {
5172         struct e1000_hw *hw = &adapter->hw;
5173         struct pci_dev *pdev = adapter->pdev;
5174         u32 reg, mpc;
5175         u16 phy_tmp;
5176         int i;
5177         u64 bytes, packets;
5178         unsigned int start;
5179         u64 _bytes, _packets;
5180
5181 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5182
5183         /* Prevent stats update while adapter is being reset, or if the pci
5184          * connection is down.
5185          */
5186         if (adapter->link_speed == 0)
5187                 return;
5188         if (pci_channel_offline(pdev))
5189                 return;
5190
5191         bytes = 0;
5192         packets = 0;
5193
5194         rcu_read_lock();
5195         for (i = 0; i < adapter->num_rx_queues; i++) {
5196                 struct igb_ring *ring = adapter->rx_ring[i];
5197                 u32 rqdpc = rd32(E1000_RQDPC(i));
5198                 if (hw->mac.type >= e1000_i210)
5199                         wr32(E1000_RQDPC(i), 0);
5200
5201                 if (rqdpc) {
5202                         ring->rx_stats.drops += rqdpc;
5203                         net_stats->rx_fifo_errors += rqdpc;
5204                 }
5205
5206                 do {
5207                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5208                         _bytes = ring->rx_stats.bytes;
5209                         _packets = ring->rx_stats.packets;
5210                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5211                 bytes += _bytes;
5212                 packets += _packets;
5213         }
5214
5215         net_stats->rx_bytes = bytes;
5216         net_stats->rx_packets = packets;
5217
5218         bytes = 0;
5219         packets = 0;
5220         for (i = 0; i < adapter->num_tx_queues; i++) {
5221                 struct igb_ring *ring = adapter->tx_ring[i];
5222                 do {
5223                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5224                         _bytes = ring->tx_stats.bytes;
5225                         _packets = ring->tx_stats.packets;
5226                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5227                 bytes += _bytes;
5228                 packets += _packets;
5229         }
5230         net_stats->tx_bytes = bytes;
5231         net_stats->tx_packets = packets;
5232         rcu_read_unlock();
5233
5234         /* read stats registers */
5235         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5236         adapter->stats.gprc += rd32(E1000_GPRC);
5237         adapter->stats.gorc += rd32(E1000_GORCL);
5238         rd32(E1000_GORCH); /* clear GORCL */
5239         adapter->stats.bprc += rd32(E1000_BPRC);
5240         adapter->stats.mprc += rd32(E1000_MPRC);
5241         adapter->stats.roc += rd32(E1000_ROC);
5242
5243         adapter->stats.prc64 += rd32(E1000_PRC64);
5244         adapter->stats.prc127 += rd32(E1000_PRC127);
5245         adapter->stats.prc255 += rd32(E1000_PRC255);
5246         adapter->stats.prc511 += rd32(E1000_PRC511);
5247         adapter->stats.prc1023 += rd32(E1000_PRC1023);
5248         adapter->stats.prc1522 += rd32(E1000_PRC1522);
5249         adapter->stats.symerrs += rd32(E1000_SYMERRS);
5250         adapter->stats.sec += rd32(E1000_SEC);
5251
5252         mpc = rd32(E1000_MPC);
5253         adapter->stats.mpc += mpc;
5254         net_stats->rx_fifo_errors += mpc;
5255         adapter->stats.scc += rd32(E1000_SCC);
5256         adapter->stats.ecol += rd32(E1000_ECOL);
5257         adapter->stats.mcc += rd32(E1000_MCC);
5258         adapter->stats.latecol += rd32(E1000_LATECOL);
5259         adapter->stats.dc += rd32(E1000_DC);
5260         adapter->stats.rlec += rd32(E1000_RLEC);
5261         adapter->stats.xonrxc += rd32(E1000_XONRXC);
5262         adapter->stats.xontxc += rd32(E1000_XONTXC);
5263         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5264         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5265         adapter->stats.fcruc += rd32(E1000_FCRUC);
5266         adapter->stats.gptc += rd32(E1000_GPTC);
5267         adapter->stats.gotc += rd32(E1000_GOTCL);
5268         rd32(E1000_GOTCH); /* clear GOTCL */
5269         adapter->stats.rnbc += rd32(E1000_RNBC);
5270         adapter->stats.ruc += rd32(E1000_RUC);
5271         adapter->stats.rfc += rd32(E1000_RFC);
5272         adapter->stats.rjc += rd32(E1000_RJC);
5273         adapter->stats.tor += rd32(E1000_TORH);
5274         adapter->stats.tot += rd32(E1000_TOTH);
5275         adapter->stats.tpr += rd32(E1000_TPR);
5276
5277         adapter->stats.ptc64 += rd32(E1000_PTC64);
5278         adapter->stats.ptc127 += rd32(E1000_PTC127);
5279         adapter->stats.ptc255 += rd32(E1000_PTC255);
5280         adapter->stats.ptc511 += rd32(E1000_PTC511);
5281         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5282         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5283
5284         adapter->stats.mptc += rd32(E1000_MPTC);
5285         adapter->stats.bptc += rd32(E1000_BPTC);
5286
5287         adapter->stats.tpt += rd32(E1000_TPT);
5288         adapter->stats.colc += rd32(E1000_COLC);
5289
5290         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5291         /* read internal phy specific stats */
5292         reg = rd32(E1000_CTRL_EXT);
5293         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5294                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5295
5296                 /* this stat has invalid values on i210/i211 */
5297                 if ((hw->mac.type != e1000_i210) &&
5298                     (hw->mac.type != e1000_i211))
5299                         adapter->stats.tncrs += rd32(E1000_TNCRS);
5300         }
5301
5302         adapter->stats.tsctc += rd32(E1000_TSCTC);
5303         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5304
5305         adapter->stats.iac += rd32(E1000_IAC);
5306         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5307         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5308         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5309         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5310         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5311         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5312         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5313         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5314
5315         /* Fill out the OS statistics structure */
5316         net_stats->multicast = adapter->stats.mprc;
5317         net_stats->collisions = adapter->stats.colc;
5318
5319         /* Rx Errors */
5320
5321         /* RLEC on some newer hardware can be incorrect so build
5322          * our own version based on RUC and ROC
5323          */
5324         net_stats->rx_errors = adapter->stats.rxerrc +
5325                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5326                 adapter->stats.ruc + adapter->stats.roc +
5327                 adapter->stats.cexterr;
5328         net_stats->rx_length_errors = adapter->stats.ruc +
5329                                       adapter->stats.roc;
5330         net_stats->rx_crc_errors = adapter->stats.crcerrs;
5331         net_stats->rx_frame_errors = adapter->stats.algnerrc;
5332         net_stats->rx_missed_errors = adapter->stats.mpc;
5333
5334         /* Tx Errors */
5335         net_stats->tx_errors = adapter->stats.ecol +
5336                                adapter->stats.latecol;
5337         net_stats->tx_aborted_errors = adapter->stats.ecol;
5338         net_stats->tx_window_errors = adapter->stats.latecol;
5339         net_stats->tx_carrier_errors = adapter->stats.tncrs;
5340
5341         /* Tx Dropped needs to be maintained elsewhere */
5342
5343         /* Phy Stats */
5344         if (hw->phy.media_type == e1000_media_type_copper) {
5345                 if ((adapter->link_speed == SPEED_1000) &&
5346                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5347                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5348                         adapter->phy_stats.idle_errors += phy_tmp;
5349                 }
5350         }
5351
5352         /* Management Stats */
5353         adapter->stats.mgptc += rd32(E1000_MGTPTC);
5354         adapter->stats.mgprc += rd32(E1000_MGTPRC);
5355         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5356
5357         /* OS2BMC Stats */
5358         reg = rd32(E1000_MANC);
5359         if (reg & E1000_MANC_EN_BMC2OS) {
5360                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5361                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5362                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5363                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5364         }
5365 }
5366
5367 static irqreturn_t igb_msix_other(int irq, void *data)
5368 {
5369         struct igb_adapter *adapter = data;
5370         struct e1000_hw *hw = &adapter->hw;
5371         u32 icr = rd32(E1000_ICR);
5372         /* reading ICR causes bit 31 of EICR to be cleared */
5373
5374         if (icr & E1000_ICR_DRSTA)
5375                 schedule_work(&adapter->reset_task);
5376
5377         if (icr & E1000_ICR_DOUTSYNC) {
5378                 /* HW is reporting DMA is out of sync */
5379                 adapter->stats.doosync++;
5380                 /* The DMA Out of Sync is also indication of a spoof event
5381                  * in IOV mode. Check the Wrong VM Behavior register to
5382                  * see if it is really a spoof event.
5383                  */
5384                 igb_check_wvbr(adapter);
5385         }
5386
5387         /* Check for a mailbox event */
5388         if (icr & E1000_ICR_VMMB)
5389                 igb_msg_task(adapter);
5390
5391         if (icr & E1000_ICR_LSC) {
5392                 hw->mac.get_link_status = 1;
5393                 /* guard against interrupt when we're going down */
5394                 if (!test_bit(__IGB_DOWN, &adapter->state))
5395                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5396         }
5397
5398         if (icr & E1000_ICR_TS) {
5399                 u32 tsicr = rd32(E1000_TSICR);
5400
5401                 if (tsicr & E1000_TSICR_TXTS) {
5402                         /* acknowledge the interrupt */
5403                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
5404                         /* retrieve hardware timestamp */
5405                         schedule_work(&adapter->ptp_tx_work);
5406                 }
5407         }
5408
5409         wr32(E1000_EIMS, adapter->eims_other);
5410
5411         return IRQ_HANDLED;
5412 }
5413
5414 static void igb_write_itr(struct igb_q_vector *q_vector)
5415 {
5416         struct igb_adapter *adapter = q_vector->adapter;
5417         u32 itr_val = q_vector->itr_val & 0x7FFC;
5418
5419         if (!q_vector->set_itr)
5420                 return;
5421
5422         if (!itr_val)
5423                 itr_val = 0x4;
5424
5425         if (adapter->hw.mac.type == e1000_82575)
5426                 itr_val |= itr_val << 16;
5427         else
5428                 itr_val |= E1000_EITR_CNT_IGNR;
5429
5430         writel(itr_val, q_vector->itr_register);
5431         q_vector->set_itr = 0;
5432 }
5433
5434 static irqreturn_t igb_msix_ring(int irq, void *data)
5435 {
5436         struct igb_q_vector *q_vector = data;
5437
5438         /* Write the ITR value calculated from the previous interrupt. */
5439         igb_write_itr(q_vector);
5440
5441         napi_schedule(&q_vector->napi);
5442
5443         return IRQ_HANDLED;
5444 }
5445
5446 #ifdef CONFIG_IGB_DCA
5447 static void igb_update_tx_dca(struct igb_adapter *adapter,
5448                               struct igb_ring *tx_ring,
5449                               int cpu)
5450 {
5451         struct e1000_hw *hw = &adapter->hw;
5452         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5453
5454         if (hw->mac.type != e1000_82575)
5455                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5456
5457         /* We can enable relaxed ordering for reads, but not writes when
5458          * DCA is enabled.  This is due to a known issue in some chipsets
5459          * which will cause the DCA tag to be cleared.
5460          */
5461         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5462                   E1000_DCA_TXCTRL_DATA_RRO_EN |
5463                   E1000_DCA_TXCTRL_DESC_DCA_EN;
5464
5465         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5466 }
5467
5468 static void igb_update_rx_dca(struct igb_adapter *adapter,
5469                               struct igb_ring *rx_ring,
5470                               int cpu)
5471 {
5472         struct e1000_hw *hw = &adapter->hw;
5473         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5474
5475         if (hw->mac.type != e1000_82575)
5476                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5477
5478         /* We can enable relaxed ordering for reads, but not writes when
5479          * DCA is enabled.  This is due to a known issue in some chipsets
5480          * which will cause the DCA tag to be cleared.
5481          */
5482         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5483                   E1000_DCA_RXCTRL_DESC_DCA_EN;
5484
5485         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5486 }
5487
5488 static void igb_update_dca(struct igb_q_vector *q_vector)
5489 {
5490         struct igb_adapter *adapter = q_vector->adapter;
5491         int cpu = get_cpu();
5492
5493         if (q_vector->cpu == cpu)
5494                 goto out_no_update;
5495
5496         if (q_vector->tx.ring)
5497                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5498
5499         if (q_vector->rx.ring)
5500                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5501
5502         q_vector->cpu = cpu;
5503 out_no_update:
5504         put_cpu();
5505 }
5506
5507 static void igb_setup_dca(struct igb_adapter *adapter)
5508 {
5509         struct e1000_hw *hw = &adapter->hw;
5510         int i;
5511
5512         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5513                 return;
5514
5515         /* Always use CB2 mode, difference is masked in the CB driver. */
5516         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5517
5518         for (i = 0; i < adapter->num_q_vectors; i++) {
5519                 adapter->q_vector[i]->cpu = -1;
5520                 igb_update_dca(adapter->q_vector[i]);
5521         }
5522 }
5523
5524 static int __igb_notify_dca(struct device *dev, void *data)
5525 {
5526         struct net_device *netdev = dev_get_drvdata(dev);
5527         struct igb_adapter *adapter = netdev_priv(netdev);
5528         struct pci_dev *pdev = adapter->pdev;
5529         struct e1000_hw *hw = &adapter->hw;
5530         unsigned long event = *(unsigned long *)data;
5531
5532         switch (event) {
5533         case DCA_PROVIDER_ADD:
5534                 /* if already enabled, don't do it again */
5535                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5536                         break;
5537                 if (dca_add_requester(dev) == 0) {
5538                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
5539                         dev_info(&pdev->dev, "DCA enabled\n");
5540                         igb_setup_dca(adapter);
5541                         break;
5542                 }
5543                 /* Fall Through since DCA is disabled. */
5544         case DCA_PROVIDER_REMOVE:
5545                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5546                         /* without this a class_device is left
5547                          * hanging around in the sysfs model
5548                          */
5549                         dca_remove_requester(dev);
5550                         dev_info(&pdev->dev, "DCA disabled\n");
5551                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5552                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5553                 }
5554                 break;
5555         }
5556
5557         return 0;
5558 }
5559
5560 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5561                           void *p)
5562 {
5563         int ret_val;
5564
5565         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5566                                          __igb_notify_dca);
5567
5568         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5569 }
5570 #endif /* CONFIG_IGB_DCA */
5571
5572 #ifdef CONFIG_PCI_IOV
5573 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5574 {
5575         unsigned char mac_addr[ETH_ALEN];
5576
5577         eth_zero_addr(mac_addr);
5578         igb_set_vf_mac(adapter, vf, mac_addr);
5579
5580         /* By default spoof check is enabled for all VFs */
5581         adapter->vf_data[vf].spoofchk_enabled = true;
5582
5583         return 0;
5584 }
5585
5586 #endif
5587 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5588 {
5589         struct e1000_hw *hw = &adapter->hw;
5590         u32 ping;
5591         int i;
5592
5593         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5594                 ping = E1000_PF_CONTROL_MSG;
5595                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5596                         ping |= E1000_VT_MSGTYPE_CTS;
5597                 igb_write_mbx(hw, &ping, 1, i);
5598         }
5599 }
5600
5601 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5602 {
5603         struct e1000_hw *hw = &adapter->hw;
5604         u32 vmolr = rd32(E1000_VMOLR(vf));
5605         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5606
5607         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5608                             IGB_VF_FLAG_MULTI_PROMISC);
5609         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5610
5611         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5612                 vmolr |= E1000_VMOLR_MPME;
5613                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5614                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5615         } else {
5616                 /* if we have hashes and we are clearing a multicast promisc
5617                  * flag we need to write the hashes to the MTA as this step
5618                  * was previously skipped
5619                  */
5620                 if (vf_data->num_vf_mc_hashes > 30) {
5621                         vmolr |= E1000_VMOLR_MPME;
5622                 } else if (vf_data->num_vf_mc_hashes) {
5623                         int j;
5624                         vmolr |= E1000_VMOLR_ROMPE;
5625                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5626                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5627                 }
5628         }
5629
5630         wr32(E1000_VMOLR(vf), vmolr);
5631
5632         /* there are flags left unprocessed, likely not supported */
5633         if (*msgbuf & E1000_VT_MSGINFO_MASK)
5634                 return -EINVAL;
5635
5636         return 0;
5637 }
5638
5639 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5640                                   u32 *msgbuf, u32 vf)
5641 {
5642         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5643         u16 *hash_list = (u16 *)&msgbuf[1];
5644         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5645         int i;
5646
5647         /* salt away the number of multicast addresses assigned
5648          * to this VF for later use to restore when the PF multi cast
5649          * list changes
5650          */
5651         vf_data->num_vf_mc_hashes = n;
5652
5653         /* only up to 30 hash values supported */
5654         if (n > 30)
5655                 n = 30;
5656
5657         /* store the hashes for later use */
5658         for (i = 0; i < n; i++)
5659                 vf_data->vf_mc_hashes[i] = hash_list[i];
5660
5661         /* Flush and reset the mta with the new values */
5662         igb_set_rx_mode(adapter->netdev);
5663
5664         return 0;
5665 }
5666
5667 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5668 {
5669         struct e1000_hw *hw = &adapter->hw;
5670         struct vf_data_storage *vf_data;
5671         int i, j;
5672
5673         for (i = 0; i < adapter->vfs_allocated_count; i++) {
5674                 u32 vmolr = rd32(E1000_VMOLR(i));
5675                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5676
5677                 vf_data = &adapter->vf_data[i];
5678
5679                 if ((vf_data->num_vf_mc_hashes > 30) ||
5680                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5681                         vmolr |= E1000_VMOLR_MPME;
5682                 } else if (vf_data->num_vf_mc_hashes) {
5683                         vmolr |= E1000_VMOLR_ROMPE;
5684                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5685                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5686                 }
5687                 wr32(E1000_VMOLR(i), vmolr);
5688         }
5689 }
5690
5691 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5692 {
5693         struct e1000_hw *hw = &adapter->hw;
5694         u32 pool_mask, reg, vid;
5695         int i;
5696
5697         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5698
5699         /* Find the vlan filter for this id */
5700         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5701                 reg = rd32(E1000_VLVF(i));
5702
5703                 /* remove the vf from the pool */
5704                 reg &= ~pool_mask;
5705
5706                 /* if pool is empty then remove entry from vfta */
5707                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5708                     (reg & E1000_VLVF_VLANID_ENABLE)) {
5709                         reg = 0;
5710                         vid = reg & E1000_VLVF_VLANID_MASK;
5711                         igb_vfta_set(hw, vid, false);
5712                 }
5713
5714                 wr32(E1000_VLVF(i), reg);
5715         }
5716
5717         adapter->vf_data[vf].vlans_enabled = 0;
5718 }
5719
5720 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5721 {
5722         struct e1000_hw *hw = &adapter->hw;
5723         u32 reg, i;
5724
5725         /* The vlvf table only exists on 82576 hardware and newer */
5726         if (hw->mac.type < e1000_82576)
5727                 return -1;
5728
5729         /* we only need to do this if VMDq is enabled */
5730         if (!adapter->vfs_allocated_count)
5731                 return -1;
5732
5733         /* Find the vlan filter for this id */
5734         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5735                 reg = rd32(E1000_VLVF(i));
5736                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5737                     vid == (reg & E1000_VLVF_VLANID_MASK))
5738                         break;
5739         }
5740
5741         if (add) {
5742                 if (i == E1000_VLVF_ARRAY_SIZE) {
5743                         /* Did not find a matching VLAN ID entry that was
5744                          * enabled.  Search for a free filter entry, i.e.
5745                          * one without the enable bit set
5746                          */
5747                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5748                                 reg = rd32(E1000_VLVF(i));
5749                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5750                                         break;
5751                         }
5752                 }
5753                 if (i < E1000_VLVF_ARRAY_SIZE) {
5754                         /* Found an enabled/available entry */
5755                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5756
5757                         /* if !enabled we need to set this up in vfta */
5758                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5759                                 /* add VID to filter table */
5760                                 igb_vfta_set(hw, vid, true);
5761                                 reg |= E1000_VLVF_VLANID_ENABLE;
5762                         }
5763                         reg &= ~E1000_VLVF_VLANID_MASK;
5764                         reg |= vid;
5765                         wr32(E1000_VLVF(i), reg);
5766
5767                         /* do not modify RLPML for PF devices */
5768                         if (vf >= adapter->vfs_allocated_count)
5769                                 return 0;
5770
5771                         if (!adapter->vf_data[vf].vlans_enabled) {
5772                                 u32 size;
5773                                 reg = rd32(E1000_VMOLR(vf));
5774                                 size = reg & E1000_VMOLR_RLPML_MASK;
5775                                 size += 4;
5776                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5777                                 reg |= size;
5778                                 wr32(E1000_VMOLR(vf), reg);
5779                         }
5780
5781                         adapter->vf_data[vf].vlans_enabled++;
5782                 }
5783         } else {
5784                 if (i < E1000_VLVF_ARRAY_SIZE) {
5785                         /* remove vf from the pool */
5786                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5787                         /* if pool is empty then remove entry from vfta */
5788                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5789                                 reg = 0;
5790                                 igb_vfta_set(hw, vid, false);
5791                         }
5792                         wr32(E1000_VLVF(i), reg);
5793
5794                         /* do not modify RLPML for PF devices */
5795                         if (vf >= adapter->vfs_allocated_count)
5796                                 return 0;
5797
5798                         adapter->vf_data[vf].vlans_enabled--;
5799                         if (!adapter->vf_data[vf].vlans_enabled) {
5800                                 u32 size;
5801                                 reg = rd32(E1000_VMOLR(vf));
5802                                 size = reg & E1000_VMOLR_RLPML_MASK;
5803                                 size -= 4;
5804                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5805                                 reg |= size;
5806                                 wr32(E1000_VMOLR(vf), reg);
5807                         }
5808                 }
5809         }
5810         return 0;
5811 }
5812
5813 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5814 {
5815         struct e1000_hw *hw = &adapter->hw;
5816
5817         if (vid)
5818                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5819         else
5820                 wr32(E1000_VMVIR(vf), 0);
5821 }
5822
5823 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5824                                int vf, u16 vlan, u8 qos)
5825 {
5826         int err = 0;
5827         struct igb_adapter *adapter = netdev_priv(netdev);
5828
5829         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5830                 return -EINVAL;
5831         if (vlan || qos) {
5832                 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5833                 if (err)
5834                         goto out;
5835                 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5836                 igb_set_vmolr(adapter, vf, !vlan);
5837                 adapter->vf_data[vf].pf_vlan = vlan;
5838                 adapter->vf_data[vf].pf_qos = qos;
5839                 dev_info(&adapter->pdev->dev,
5840                          "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5841                 if (test_bit(__IGB_DOWN, &adapter->state)) {
5842                         dev_warn(&adapter->pdev->dev,
5843                                  "The VF VLAN has been set, but the PF device is not up.\n");
5844                         dev_warn(&adapter->pdev->dev,
5845                                  "Bring the PF device up before attempting to use the VF device.\n");
5846                 }
5847         } else {
5848                 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5849                              false, vf);
5850                 igb_set_vmvir(adapter, vlan, vf);
5851                 igb_set_vmolr(adapter, vf, true);
5852                 adapter->vf_data[vf].pf_vlan = 0;
5853                 adapter->vf_data[vf].pf_qos = 0;
5854         }
5855 out:
5856         return err;
5857 }
5858
5859 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5860 {
5861         struct e1000_hw *hw = &adapter->hw;
5862         int i;
5863         u32 reg;
5864
5865         /* Find the vlan filter for this id */
5866         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5867                 reg = rd32(E1000_VLVF(i));
5868                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5869                     vid == (reg & E1000_VLVF_VLANID_MASK))
5870                         break;
5871         }
5872
5873         if (i >= E1000_VLVF_ARRAY_SIZE)
5874                 i = -1;
5875
5876         return i;
5877 }
5878
5879 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5880 {
5881         struct e1000_hw *hw = &adapter->hw;
5882         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5883         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5884         int err = 0;
5885
5886         /* If in promiscuous mode we need to make sure the PF also has
5887          * the VLAN filter set.
5888          */
5889         if (add && (adapter->netdev->flags & IFF_PROMISC))
5890                 err = igb_vlvf_set(adapter, vid, add,
5891                                    adapter->vfs_allocated_count);
5892         if (err)
5893                 goto out;
5894
5895         err = igb_vlvf_set(adapter, vid, add, vf);
5896
5897         if (err)
5898                 goto out;
5899
5900         /* Go through all the checks to see if the VLAN filter should
5901          * be wiped completely.
5902          */
5903         if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5904                 u32 vlvf, bits;
5905
5906                 int regndx = igb_find_vlvf_entry(adapter, vid);
5907                 if (regndx < 0)
5908                         goto out;
5909                 /* See if any other pools are set for this VLAN filter
5910                  * entry other than the PF.
5911                  */
5912                 vlvf = bits = rd32(E1000_VLVF(regndx));
5913                 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5914                               adapter->vfs_allocated_count);
5915                 /* If the filter was removed then ensure PF pool bit
5916                  * is cleared if the PF only added itself to the pool
5917                  * because the PF is in promiscuous mode.
5918                  */
5919                 if ((vlvf & VLAN_VID_MASK) == vid &&
5920                     !test_bit(vid, adapter->active_vlans) &&
5921                     !bits)
5922                         igb_vlvf_set(adapter, vid, add,
5923                                      adapter->vfs_allocated_count);
5924         }
5925
5926 out:
5927         return err;
5928 }
5929
5930 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5931 {
5932         /* clear flags - except flag that indicates PF has set the MAC */
5933         adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5934         adapter->vf_data[vf].last_nack = jiffies;
5935
5936         /* reset offloads to defaults */
5937         igb_set_vmolr(adapter, vf, true);
5938
5939         /* reset vlans for device */
5940         igb_clear_vf_vfta(adapter, vf);
5941         if (adapter->vf_data[vf].pf_vlan)
5942                 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5943                                     adapter->vf_data[vf].pf_vlan,
5944                                     adapter->vf_data[vf].pf_qos);
5945         else
5946                 igb_clear_vf_vfta(adapter, vf);
5947
5948         /* reset multicast table array for vf */
5949         adapter->vf_data[vf].num_vf_mc_hashes = 0;
5950
5951         /* Flush and reset the mta with the new values */
5952         igb_set_rx_mode(adapter->netdev);
5953 }
5954
5955 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5956 {
5957         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5958
5959         /* clear mac address as we were hotplug removed/added */
5960         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5961                 eth_zero_addr(vf_mac);
5962
5963         /* process remaining reset events */
5964         igb_vf_reset(adapter, vf);
5965 }
5966
5967 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5968 {
5969         struct e1000_hw *hw = &adapter->hw;
5970         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5971         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5972         u32 reg, msgbuf[3];
5973         u8 *addr = (u8 *)(&msgbuf[1]);
5974
5975         /* process all the same items cleared in a function level reset */
5976         igb_vf_reset(adapter, vf);
5977
5978         /* set vf mac address */
5979         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5980
5981         /* enable transmit and receive for vf */
5982         reg = rd32(E1000_VFTE);
5983         wr32(E1000_VFTE, reg | (1 << vf));
5984         reg = rd32(E1000_VFRE);
5985         wr32(E1000_VFRE, reg | (1 << vf));
5986
5987         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5988
5989         /* reply to reset with ack and vf mac address */
5990         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5991         memcpy(addr, vf_mac, ETH_ALEN);
5992         igb_write_mbx(hw, msgbuf, 3, vf);
5993 }
5994
5995 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5996 {
5997         /* The VF MAC Address is stored in a packed array of bytes
5998          * starting at the second 32 bit word of the msg array
5999          */
6000         unsigned char *addr = (char *)&msg[1];
6001         int err = -1;
6002
6003         if (is_valid_ether_addr(addr))
6004                 err = igb_set_vf_mac(adapter, vf, addr);
6005
6006         return err;
6007 }
6008
6009 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6010 {
6011         struct e1000_hw *hw = &adapter->hw;
6012         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6013         u32 msg = E1000_VT_MSGTYPE_NACK;
6014
6015         /* if device isn't clear to send it shouldn't be reading either */
6016         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6017             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6018                 igb_write_mbx(hw, &msg, 1, vf);
6019                 vf_data->last_nack = jiffies;
6020         }
6021 }
6022
6023 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6024 {
6025         struct pci_dev *pdev = adapter->pdev;
6026         u32 msgbuf[E1000_VFMAILBOX_SIZE];
6027         struct e1000_hw *hw = &adapter->hw;
6028         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6029         s32 retval;
6030
6031         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6032
6033         if (retval) {
6034                 /* if receive failed revoke VF CTS stats and restart init */
6035                 dev_err(&pdev->dev, "Error receiving message from VF\n");
6036                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6037                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6038                         return;
6039                 goto out;
6040         }
6041
6042         /* this is a message we already processed, do nothing */
6043         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6044                 return;
6045
6046         /* until the vf completes a reset it should not be
6047          * allowed to start any configuration.
6048          */
6049         if (msgbuf[0] == E1000_VF_RESET) {
6050                 igb_vf_reset_msg(adapter, vf);
6051                 return;
6052         }
6053
6054         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6055                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6056                         return;
6057                 retval = -1;
6058                 goto out;
6059         }
6060
6061         switch ((msgbuf[0] & 0xFFFF)) {
6062         case E1000_VF_SET_MAC_ADDR:
6063                 retval = -EINVAL;
6064                 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6065                         retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6066                 else
6067                         dev_warn(&pdev->dev,
6068                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6069                                  vf);
6070                 break;
6071         case E1000_VF_SET_PROMISC:
6072                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6073                 break;
6074         case E1000_VF_SET_MULTICAST:
6075                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6076                 break;
6077         case E1000_VF_SET_LPE:
6078                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6079                 break;
6080         case E1000_VF_SET_VLAN:
6081                 retval = -1;
6082                 if (vf_data->pf_vlan)
6083                         dev_warn(&pdev->dev,
6084                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6085                                  vf);
6086                 else
6087                         retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6088                 break;
6089         default:
6090                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6091                 retval = -1;
6092                 break;
6093         }
6094
6095         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6096 out:
6097         /* notify the VF of the results of what it sent us */
6098         if (retval)
6099                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6100         else
6101                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6102
6103         igb_write_mbx(hw, msgbuf, 1, vf);
6104 }
6105
6106 static void igb_msg_task(struct igb_adapter *adapter)
6107 {
6108         struct e1000_hw *hw = &adapter->hw;
6109         u32 vf;
6110
6111         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6112                 /* process any reset requests */
6113                 if (!igb_check_for_rst(hw, vf))
6114                         igb_vf_reset_event(adapter, vf);
6115
6116                 /* process any messages pending */
6117                 if (!igb_check_for_msg(hw, vf))
6118                         igb_rcv_msg_from_vf(adapter, vf);
6119
6120                 /* process any acks */
6121                 if (!igb_check_for_ack(hw, vf))
6122                         igb_rcv_ack_from_vf(adapter, vf);
6123         }
6124 }
6125
6126 /**
6127  *  igb_set_uta - Set unicast filter table address
6128  *  @adapter: board private structure
6129  *
6130  *  The unicast table address is a register array of 32-bit registers.
6131  *  The table is meant to be used in a way similar to how the MTA is used
6132  *  however due to certain limitations in the hardware it is necessary to
6133  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6134  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6135  **/
6136 static void igb_set_uta(struct igb_adapter *adapter)
6137 {
6138         struct e1000_hw *hw = &adapter->hw;
6139         int i;
6140
6141         /* The UTA table only exists on 82576 hardware and newer */
6142         if (hw->mac.type < e1000_82576)
6143                 return;
6144
6145         /* we only need to do this if VMDq is enabled */
6146         if (!adapter->vfs_allocated_count)
6147                 return;
6148
6149         for (i = 0; i < hw->mac.uta_reg_count; i++)
6150                 array_wr32(E1000_UTA, i, ~0);
6151 }
6152
6153 /**
6154  *  igb_intr_msi - Interrupt Handler
6155  *  @irq: interrupt number
6156  *  @data: pointer to a network interface device structure
6157  **/
6158 static irqreturn_t igb_intr_msi(int irq, void *data)
6159 {
6160         struct igb_adapter *adapter = data;
6161         struct igb_q_vector *q_vector = adapter->q_vector[0];
6162         struct e1000_hw *hw = &adapter->hw;
6163         /* read ICR disables interrupts using IAM */
6164         u32 icr = rd32(E1000_ICR);
6165
6166         igb_write_itr(q_vector);
6167
6168         if (icr & E1000_ICR_DRSTA)
6169                 schedule_work(&adapter->reset_task);
6170
6171         if (icr & E1000_ICR_DOUTSYNC) {
6172                 /* HW is reporting DMA is out of sync */
6173                 adapter->stats.doosync++;
6174         }
6175
6176         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6177                 hw->mac.get_link_status = 1;
6178                 if (!test_bit(__IGB_DOWN, &adapter->state))
6179                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6180         }
6181
6182         if (icr & E1000_ICR_TS) {
6183                 u32 tsicr = rd32(E1000_TSICR);
6184
6185                 if (tsicr & E1000_TSICR_TXTS) {
6186                         /* acknowledge the interrupt */
6187                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
6188                         /* retrieve hardware timestamp */
6189                         schedule_work(&adapter->ptp_tx_work);
6190                 }
6191         }
6192
6193         napi_schedule(&q_vector->napi);
6194
6195         return IRQ_HANDLED;
6196 }
6197
6198 /**
6199  *  igb_intr - Legacy Interrupt Handler
6200  *  @irq: interrupt number
6201  *  @data: pointer to a network interface device structure
6202  **/
6203 static irqreturn_t igb_intr(int irq, void *data)
6204 {
6205         struct igb_adapter *adapter = data;
6206         struct igb_q_vector *q_vector = adapter->q_vector[0];
6207         struct e1000_hw *hw = &adapter->hw;
6208         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6209          * need for the IMC write
6210          */
6211         u32 icr = rd32(E1000_ICR);
6212
6213         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6214          * not set, then the adapter didn't send an interrupt
6215          */
6216         if (!(icr & E1000_ICR_INT_ASSERTED))
6217                 return IRQ_NONE;
6218
6219         igb_write_itr(q_vector);
6220
6221         if (icr & E1000_ICR_DRSTA)
6222                 schedule_work(&adapter->reset_task);
6223
6224         if (icr & E1000_ICR_DOUTSYNC) {
6225                 /* HW is reporting DMA is out of sync */
6226                 adapter->stats.doosync++;
6227         }
6228
6229         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6230                 hw->mac.get_link_status = 1;
6231                 /* guard against interrupt when we're going down */
6232                 if (!test_bit(__IGB_DOWN, &adapter->state))
6233                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6234         }
6235
6236         if (icr & E1000_ICR_TS) {
6237                 u32 tsicr = rd32(E1000_TSICR);
6238
6239                 if (tsicr & E1000_TSICR_TXTS) {
6240                         /* acknowledge the interrupt */
6241                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
6242                         /* retrieve hardware timestamp */
6243                         schedule_work(&adapter->ptp_tx_work);
6244                 }
6245         }
6246
6247         napi_schedule(&q_vector->napi);
6248
6249         return IRQ_HANDLED;
6250 }
6251
6252 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6253 {
6254         struct igb_adapter *adapter = q_vector->adapter;
6255         struct e1000_hw *hw = &adapter->hw;
6256
6257         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6258             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6259                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6260                         igb_set_itr(q_vector);
6261                 else
6262                         igb_update_ring_itr(q_vector);
6263         }
6264
6265         if (!test_bit(__IGB_DOWN, &adapter->state)) {
6266                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6267                         wr32(E1000_EIMS, q_vector->eims_value);
6268                 else
6269                         igb_irq_enable(adapter);
6270         }
6271 }
6272
6273 /**
6274  *  igb_poll - NAPI Rx polling callback
6275  *  @napi: napi polling structure
6276  *  @budget: count of how many packets we should handle
6277  **/
6278 static int igb_poll(struct napi_struct *napi, int budget)
6279 {
6280         struct igb_q_vector *q_vector = container_of(napi,
6281                                                      struct igb_q_vector,
6282                                                      napi);
6283         bool clean_complete = true;
6284
6285 #ifdef CONFIG_IGB_DCA
6286         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6287                 igb_update_dca(q_vector);
6288 #endif
6289         if (q_vector->tx.ring)
6290                 clean_complete = igb_clean_tx_irq(q_vector);
6291
6292         if (q_vector->rx.ring)
6293                 clean_complete &= igb_clean_rx_irq(q_vector, budget);
6294
6295         /* If all work not completed, return budget and keep polling */
6296         if (!clean_complete)
6297                 return budget;
6298
6299         /* If not enough Rx work done, exit the polling mode */
6300         napi_complete(napi);
6301         igb_ring_irq_enable(q_vector);
6302
6303         return 0;
6304 }
6305
6306 /**
6307  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6308  *  @q_vector: pointer to q_vector containing needed info
6309  *
6310  *  returns true if ring is completely cleaned
6311  **/
6312 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6313 {
6314         struct igb_adapter *adapter = q_vector->adapter;
6315         struct igb_ring *tx_ring = q_vector->tx.ring;
6316         struct igb_tx_buffer *tx_buffer;
6317         union e1000_adv_tx_desc *tx_desc;
6318         unsigned int total_bytes = 0, total_packets = 0;
6319         unsigned int budget = q_vector->tx.work_limit;
6320         unsigned int i = tx_ring->next_to_clean;
6321
6322         if (test_bit(__IGB_DOWN, &adapter->state))
6323                 return true;
6324
6325         tx_buffer = &tx_ring->tx_buffer_info[i];
6326         tx_desc = IGB_TX_DESC(tx_ring, i);
6327         i -= tx_ring->count;
6328
6329         do {
6330                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6331
6332                 /* if next_to_watch is not set then there is no work pending */
6333                 if (!eop_desc)
6334                         break;
6335
6336                 /* prevent any other reads prior to eop_desc */
6337                 read_barrier_depends();
6338
6339                 /* if DD is not set pending work has not been completed */
6340                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6341                         break;
6342
6343                 /* clear next_to_watch to prevent false hangs */
6344                 tx_buffer->next_to_watch = NULL;
6345
6346                 /* update the statistics for this packet */
6347                 total_bytes += tx_buffer->bytecount;
6348                 total_packets += tx_buffer->gso_segs;
6349
6350                 /* free the skb */
6351                 dev_kfree_skb_any(tx_buffer->skb);
6352
6353                 /* unmap skb header data */
6354                 dma_unmap_single(tx_ring->dev,
6355                                  dma_unmap_addr(tx_buffer, dma),
6356                                  dma_unmap_len(tx_buffer, len),
6357                                  DMA_TO_DEVICE);
6358
6359                 /* clear tx_buffer data */
6360                 tx_buffer->skb = NULL;
6361                 dma_unmap_len_set(tx_buffer, len, 0);
6362
6363                 /* clear last DMA location and unmap remaining buffers */
6364                 while (tx_desc != eop_desc) {
6365                         tx_buffer++;
6366                         tx_desc++;
6367                         i++;
6368                         if (unlikely(!i)) {
6369                                 i -= tx_ring->count;
6370                                 tx_buffer = tx_ring->tx_buffer_info;
6371                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6372                         }
6373
6374                         /* unmap any remaining paged data */
6375                         if (dma_unmap_len(tx_buffer, len)) {
6376                                 dma_unmap_page(tx_ring->dev,
6377                                                dma_unmap_addr(tx_buffer, dma),
6378                                                dma_unmap_len(tx_buffer, len),
6379                                                DMA_TO_DEVICE);
6380                                 dma_unmap_len_set(tx_buffer, len, 0);
6381                         }
6382                 }
6383
6384                 /* move us one more past the eop_desc for start of next pkt */
6385                 tx_buffer++;
6386                 tx_desc++;
6387                 i++;
6388                 if (unlikely(!i)) {
6389                         i -= tx_ring->count;
6390                         tx_buffer = tx_ring->tx_buffer_info;
6391                         tx_desc = IGB_TX_DESC(tx_ring, 0);
6392                 }
6393
6394                 /* issue prefetch for next Tx descriptor */
6395                 prefetch(tx_desc);
6396
6397                 /* update budget accounting */
6398                 budget--;
6399         } while (likely(budget));
6400
6401         netdev_tx_completed_queue(txring_txq(tx_ring),
6402                                   total_packets, total_bytes);
6403         i += tx_ring->count;
6404         tx_ring->next_to_clean = i;
6405         u64_stats_update_begin(&tx_ring->tx_syncp);
6406         tx_ring->tx_stats.bytes += total_bytes;
6407         tx_ring->tx_stats.packets += total_packets;
6408         u64_stats_update_end(&tx_ring->tx_syncp);
6409         q_vector->tx.total_bytes += total_bytes;
6410         q_vector->tx.total_packets += total_packets;
6411
6412         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6413                 struct e1000_hw *hw = &adapter->hw;
6414
6415                 /* Detect a transmit hang in hardware, this serializes the
6416                  * check with the clearing of time_stamp and movement of i
6417                  */
6418                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6419                 if (tx_buffer->next_to_watch &&
6420                     time_after(jiffies, tx_buffer->time_stamp +
6421                                (adapter->tx_timeout_factor * HZ)) &&
6422                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6423
6424                         /* detected Tx unit hang */
6425                         dev_err(tx_ring->dev,
6426                                 "Detected Tx Unit Hang\n"
6427                                 "  Tx Queue             <%d>\n"
6428                                 "  TDH                  <%x>\n"
6429                                 "  TDT                  <%x>\n"
6430                                 "  next_to_use          <%x>\n"
6431                                 "  next_to_clean        <%x>\n"
6432                                 "buffer_info[next_to_clean]\n"
6433                                 "  time_stamp           <%lx>\n"
6434                                 "  next_to_watch        <%p>\n"
6435                                 "  jiffies              <%lx>\n"
6436                                 "  desc.status          <%x>\n",
6437                                 tx_ring->queue_index,
6438                                 rd32(E1000_TDH(tx_ring->reg_idx)),
6439                                 readl(tx_ring->tail),
6440                                 tx_ring->next_to_use,
6441                                 tx_ring->next_to_clean,
6442                                 tx_buffer->time_stamp,
6443                                 tx_buffer->next_to_watch,
6444                                 jiffies,
6445                                 tx_buffer->next_to_watch->wb.status);
6446                         netif_stop_subqueue(tx_ring->netdev,
6447                                             tx_ring->queue_index);
6448
6449                         /* we are about to reset, no point in enabling stuff */
6450                         return true;
6451                 }
6452         }
6453
6454 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6455         if (unlikely(total_packets &&
6456             netif_carrier_ok(tx_ring->netdev) &&
6457             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6458                 /* Make sure that anybody stopping the queue after this
6459                  * sees the new next_to_clean.
6460                  */
6461                 smp_mb();
6462                 if (__netif_subqueue_stopped(tx_ring->netdev,
6463                                              tx_ring->queue_index) &&
6464                     !(test_bit(__IGB_DOWN, &adapter->state))) {
6465                         netif_wake_subqueue(tx_ring->netdev,
6466                                             tx_ring->queue_index);
6467
6468                         u64_stats_update_begin(&tx_ring->tx_syncp);
6469                         tx_ring->tx_stats.restart_queue++;
6470                         u64_stats_update_end(&tx_ring->tx_syncp);
6471                 }
6472         }
6473
6474         return !!budget;
6475 }
6476
6477 /**
6478  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6479  *  @rx_ring: rx descriptor ring to store buffers on
6480  *  @old_buff: donor buffer to have page reused
6481  *
6482  *  Synchronizes page for reuse by the adapter
6483  **/
6484 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6485                               struct igb_rx_buffer *old_buff)
6486 {
6487         struct igb_rx_buffer *new_buff;
6488         u16 nta = rx_ring->next_to_alloc;
6489
6490         new_buff = &rx_ring->rx_buffer_info[nta];
6491
6492         /* update, and store next to alloc */
6493         nta++;
6494         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6495
6496         /* transfer page from old buffer to new buffer */
6497         memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6498
6499         /* sync the buffer for use by the device */
6500         dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6501                                          old_buff->page_offset,
6502                                          IGB_RX_BUFSZ,
6503                                          DMA_FROM_DEVICE);
6504 }
6505
6506 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6507                                   struct page *page,
6508                                   unsigned int truesize)
6509 {
6510         /* avoid re-using remote pages */
6511         if (unlikely(page_to_nid(page) != numa_node_id()))
6512                 return false;
6513
6514 #if (PAGE_SIZE < 8192)
6515         /* if we are only owner of page we can reuse it */
6516         if (unlikely(page_count(page) != 1))
6517                 return false;
6518
6519         /* flip page offset to other buffer */
6520         rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6521
6522         /* since we are the only owner of the page and we need to
6523          * increment it, just set the value to 2 in order to avoid
6524          * an unnecessary locked operation
6525          */
6526         atomic_set(&page->_count, 2);
6527 #else
6528         /* move offset up to the next cache line */
6529         rx_buffer->page_offset += truesize;
6530
6531         if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6532                 return false;
6533
6534         /* bump ref count on page before it is given to the stack */
6535         get_page(page);
6536 #endif
6537
6538         return true;
6539 }
6540
6541 /**
6542  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6543  *  @rx_ring: rx descriptor ring to transact packets on
6544  *  @rx_buffer: buffer containing page to add
6545  *  @rx_desc: descriptor containing length of buffer written by hardware
6546  *  @skb: sk_buff to place the data into
6547  *
6548  *  This function will add the data contained in rx_buffer->page to the skb.
6549  *  This is done either through a direct copy if the data in the buffer is
6550  *  less than the skb header size, otherwise it will just attach the page as
6551  *  a frag to the skb.
6552  *
6553  *  The function will then update the page offset if necessary and return
6554  *  true if the buffer can be reused by the adapter.
6555  **/
6556 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6557                             struct igb_rx_buffer *rx_buffer,
6558                             union e1000_adv_rx_desc *rx_desc,
6559                             struct sk_buff *skb)
6560 {
6561         struct page *page = rx_buffer->page;
6562         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6563 #if (PAGE_SIZE < 8192)
6564         unsigned int truesize = IGB_RX_BUFSZ;
6565 #else
6566         unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6567 #endif
6568
6569         if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6570                 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6571
6572                 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6573                         igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6574                         va += IGB_TS_HDR_LEN;
6575                         size -= IGB_TS_HDR_LEN;
6576                 }
6577
6578                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6579
6580                 /* we can reuse buffer as-is, just make sure it is local */
6581                 if (likely(page_to_nid(page) == numa_node_id()))
6582                         return true;
6583
6584                 /* this page cannot be reused so discard it */
6585                 put_page(page);
6586                 return false;
6587         }
6588
6589         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6590                         rx_buffer->page_offset, size, truesize);
6591
6592         return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6593 }
6594
6595 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6596                                            union e1000_adv_rx_desc *rx_desc,
6597                                            struct sk_buff *skb)
6598 {
6599         struct igb_rx_buffer *rx_buffer;
6600         struct page *page;
6601
6602         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6603
6604         page = rx_buffer->page;
6605         prefetchw(page);
6606
6607         if (likely(!skb)) {
6608                 void *page_addr = page_address(page) +
6609                                   rx_buffer->page_offset;
6610
6611                 /* prefetch first cache line of first page */
6612                 prefetch(page_addr);
6613 #if L1_CACHE_BYTES < 128
6614                 prefetch(page_addr + L1_CACHE_BYTES);
6615 #endif
6616
6617                 /* allocate a skb to store the frags */
6618                 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6619                                                 IGB_RX_HDR_LEN);
6620                 if (unlikely(!skb)) {
6621                         rx_ring->rx_stats.alloc_failed++;
6622                         return NULL;
6623                 }
6624
6625                 /* we will be copying header into skb->data in
6626                  * pskb_may_pull so it is in our interest to prefetch
6627                  * it now to avoid a possible cache miss
6628                  */
6629                 prefetchw(skb->data);
6630         }
6631
6632         /* we are reusing so sync this buffer for CPU use */
6633         dma_sync_single_range_for_cpu(rx_ring->dev,
6634                                       rx_buffer->dma,
6635                                       rx_buffer->page_offset,
6636                                       IGB_RX_BUFSZ,
6637                                       DMA_FROM_DEVICE);
6638
6639         /* pull page into skb */
6640         if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6641                 /* hand second half of page back to the ring */
6642                 igb_reuse_rx_page(rx_ring, rx_buffer);
6643         } else {
6644                 /* we are not reusing the buffer so unmap it */
6645                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6646                                PAGE_SIZE, DMA_FROM_DEVICE);
6647         }
6648
6649         /* clear contents of rx_buffer */
6650         rx_buffer->page = NULL;
6651
6652         return skb;
6653 }
6654
6655 static inline void igb_rx_checksum(struct igb_ring *ring,
6656                                    union e1000_adv_rx_desc *rx_desc,
6657                                    struct sk_buff *skb)
6658 {
6659         skb_checksum_none_assert(skb);
6660
6661         /* Ignore Checksum bit is set */
6662         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6663                 return;
6664
6665         /* Rx checksum disabled via ethtool */
6666         if (!(ring->netdev->features & NETIF_F_RXCSUM))
6667                 return;
6668
6669         /* TCP/UDP checksum error bit is set */
6670         if (igb_test_staterr(rx_desc,
6671                              E1000_RXDEXT_STATERR_TCPE |
6672                              E1000_RXDEXT_STATERR_IPE)) {
6673                 /* work around errata with sctp packets where the TCPE aka
6674                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6675                  * packets, (aka let the stack check the crc32c)
6676                  */
6677                 if (!((skb->len == 60) &&
6678                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6679                         u64_stats_update_begin(&ring->rx_syncp);
6680                         ring->rx_stats.csum_err++;
6681                         u64_stats_update_end(&ring->rx_syncp);
6682                 }
6683                 /* let the stack verify checksum errors */
6684                 return;
6685         }
6686         /* It must be a TCP or UDP packet with a valid checksum */
6687         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6688                                       E1000_RXD_STAT_UDPCS))
6689                 skb->ip_summed = CHECKSUM_UNNECESSARY;
6690
6691         dev_dbg(ring->dev, "cksum success: bits %08X\n",
6692                 le32_to_cpu(rx_desc->wb.upper.status_error));
6693 }
6694
6695 static inline void igb_rx_hash(struct igb_ring *ring,
6696                                union e1000_adv_rx_desc *rx_desc,
6697                                struct sk_buff *skb)
6698 {
6699         if (ring->netdev->features & NETIF_F_RXHASH)
6700                 skb_set_hash(skb,
6701                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6702                              PKT_HASH_TYPE_L3);
6703 }
6704
6705 /**
6706  *  igb_is_non_eop - process handling of non-EOP buffers
6707  *  @rx_ring: Rx ring being processed
6708  *  @rx_desc: Rx descriptor for current buffer
6709  *  @skb: current socket buffer containing buffer in progress
6710  *
6711  *  This function updates next to clean.  If the buffer is an EOP buffer
6712  *  this function exits returning false, otherwise it will place the
6713  *  sk_buff in the next buffer to be chained and return true indicating
6714  *  that this is in fact a non-EOP buffer.
6715  **/
6716 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6717                            union e1000_adv_rx_desc *rx_desc)
6718 {
6719         u32 ntc = rx_ring->next_to_clean + 1;
6720
6721         /* fetch, update, and store next to clean */
6722         ntc = (ntc < rx_ring->count) ? ntc : 0;
6723         rx_ring->next_to_clean = ntc;
6724
6725         prefetch(IGB_RX_DESC(rx_ring, ntc));
6726
6727         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6728                 return false;
6729
6730         return true;
6731 }
6732
6733 /**
6734  *  igb_get_headlen - determine size of header for LRO/GRO
6735  *  @data: pointer to the start of the headers
6736  *  @max_len: total length of section to find headers in
6737  *
6738  *  This function is meant to determine the length of headers that will
6739  *  be recognized by hardware for LRO, and GRO offloads.  The main
6740  *  motivation of doing this is to only perform one pull for IPv4 TCP
6741  *  packets so that we can do basic things like calculating the gso_size
6742  *  based on the average data per packet.
6743  **/
6744 static unsigned int igb_get_headlen(unsigned char *data,
6745                                     unsigned int max_len)
6746 {
6747         union {
6748                 unsigned char *network;
6749                 /* l2 headers */
6750                 struct ethhdr *eth;
6751                 struct vlan_hdr *vlan;
6752                 /* l3 headers */
6753                 struct iphdr *ipv4;
6754                 struct ipv6hdr *ipv6;
6755         } hdr;
6756         __be16 protocol;
6757         u8 nexthdr = 0; /* default to not TCP */
6758         u8 hlen;
6759
6760         /* this should never happen, but better safe than sorry */
6761         if (max_len < ETH_HLEN)
6762                 return max_len;
6763
6764         /* initialize network frame pointer */
6765         hdr.network = data;
6766
6767         /* set first protocol and move network header forward */
6768         protocol = hdr.eth->h_proto;
6769         hdr.network += ETH_HLEN;
6770
6771         /* handle any vlan tag if present */
6772         if (protocol == htons(ETH_P_8021Q)) {
6773                 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6774                         return max_len;
6775
6776                 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6777                 hdr.network += VLAN_HLEN;
6778         }
6779
6780         /* handle L3 protocols */
6781         if (protocol == htons(ETH_P_IP)) {
6782                 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6783                         return max_len;
6784
6785                 /* access ihl as a u8 to avoid unaligned access on ia64 */
6786                 hlen = (hdr.network[0] & 0x0F) << 2;
6787
6788                 /* verify hlen meets minimum size requirements */
6789                 if (hlen < sizeof(struct iphdr))
6790                         return hdr.network - data;
6791
6792                 /* record next protocol if header is present */
6793                 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6794                         nexthdr = hdr.ipv4->protocol;
6795         } else if (protocol == htons(ETH_P_IPV6)) {
6796                 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6797                         return max_len;
6798
6799                 /* record next protocol */
6800                 nexthdr = hdr.ipv6->nexthdr;
6801                 hlen = sizeof(struct ipv6hdr);
6802         } else {
6803                 return hdr.network - data;
6804         }
6805
6806         /* relocate pointer to start of L4 header */
6807         hdr.network += hlen;
6808
6809         /* finally sort out TCP */
6810         if (nexthdr == IPPROTO_TCP) {
6811                 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6812                         return max_len;
6813
6814                 /* access doff as a u8 to avoid unaligned access on ia64 */
6815                 hlen = (hdr.network[12] & 0xF0) >> 2;
6816
6817                 /* verify hlen meets minimum size requirements */
6818                 if (hlen < sizeof(struct tcphdr))
6819                         return hdr.network - data;
6820
6821                 hdr.network += hlen;
6822         } else if (nexthdr == IPPROTO_UDP) {
6823                 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6824                         return max_len;
6825
6826                 hdr.network += sizeof(struct udphdr);
6827         }
6828
6829         /* If everything has gone correctly hdr.network should be the
6830          * data section of the packet and will be the end of the header.
6831          * If not then it probably represents the end of the last recognized
6832          * header.
6833          */
6834         if ((hdr.network - data) < max_len)
6835                 return hdr.network - data;
6836         else
6837                 return max_len;
6838 }
6839
6840 /**
6841  *  igb_pull_tail - igb specific version of skb_pull_tail
6842  *  @rx_ring: rx descriptor ring packet is being transacted on
6843  *  @rx_desc: pointer to the EOP Rx descriptor
6844  *  @skb: pointer to current skb being adjusted
6845  *
6846  *  This function is an igb specific version of __pskb_pull_tail.  The
6847  *  main difference between this version and the original function is that
6848  *  this function can make several assumptions about the state of things
6849  *  that allow for significant optimizations versus the standard function.
6850  *  As a result we can do things like drop a frag and maintain an accurate
6851  *  truesize for the skb.
6852  */
6853 static void igb_pull_tail(struct igb_ring *rx_ring,
6854                           union e1000_adv_rx_desc *rx_desc,
6855                           struct sk_buff *skb)
6856 {
6857         struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6858         unsigned char *va;
6859         unsigned int pull_len;
6860
6861         /* it is valid to use page_address instead of kmap since we are
6862          * working with pages allocated out of the lomem pool per
6863          * alloc_page(GFP_ATOMIC)
6864          */
6865         va = skb_frag_address(frag);
6866
6867         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6868                 /* retrieve timestamp from buffer */
6869                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6870
6871                 /* update pointers to remove timestamp header */
6872                 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6873                 frag->page_offset += IGB_TS_HDR_LEN;
6874                 skb->data_len -= IGB_TS_HDR_LEN;
6875                 skb->len -= IGB_TS_HDR_LEN;
6876
6877                 /* move va to start of packet data */
6878                 va += IGB_TS_HDR_LEN;
6879         }
6880
6881         /* we need the header to contain the greater of either ETH_HLEN or
6882          * 60 bytes if the skb->len is less than 60 for skb_pad.
6883          */
6884         pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6885
6886         /* align pull length to size of long to optimize memcpy performance */
6887         skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6888
6889         /* update all of the pointers */
6890         skb_frag_size_sub(frag, pull_len);
6891         frag->page_offset += pull_len;
6892         skb->data_len -= pull_len;
6893         skb->tail += pull_len;
6894 }
6895
6896 /**
6897  *  igb_cleanup_headers - Correct corrupted or empty headers
6898  *  @rx_ring: rx descriptor ring packet is being transacted on
6899  *  @rx_desc: pointer to the EOP Rx descriptor
6900  *  @skb: pointer to current skb being fixed
6901  *
6902  *  Address the case where we are pulling data in on pages only
6903  *  and as such no data is present in the skb header.
6904  *
6905  *  In addition if skb is not at least 60 bytes we need to pad it so that
6906  *  it is large enough to qualify as a valid Ethernet frame.
6907  *
6908  *  Returns true if an error was encountered and skb was freed.
6909  **/
6910 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6911                                 union e1000_adv_rx_desc *rx_desc,
6912                                 struct sk_buff *skb)
6913 {
6914         if (unlikely((igb_test_staterr(rx_desc,
6915                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6916                 struct net_device *netdev = rx_ring->netdev;
6917                 if (!(netdev->features & NETIF_F_RXALL)) {
6918                         dev_kfree_skb_any(skb);
6919                         return true;
6920                 }
6921         }
6922
6923         /* place header in linear portion of buffer */
6924         if (skb_is_nonlinear(skb))
6925                 igb_pull_tail(rx_ring, rx_desc, skb);
6926
6927         /* if skb_pad returns an error the skb was freed */
6928         if (unlikely(skb->len < 60)) {
6929                 int pad_len = 60 - skb->len;
6930
6931                 if (skb_pad(skb, pad_len))
6932                         return true;
6933                 __skb_put(skb, pad_len);
6934         }
6935
6936         return false;
6937 }
6938
6939 /**
6940  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6941  *  @rx_ring: rx descriptor ring packet is being transacted on
6942  *  @rx_desc: pointer to the EOP Rx descriptor
6943  *  @skb: pointer to current skb being populated
6944  *
6945  *  This function checks the ring, descriptor, and packet information in
6946  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6947  *  other fields within the skb.
6948  **/
6949 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6950                                    union e1000_adv_rx_desc *rx_desc,
6951                                    struct sk_buff *skb)
6952 {
6953         struct net_device *dev = rx_ring->netdev;
6954
6955         igb_rx_hash(rx_ring, rx_desc, skb);
6956
6957         igb_rx_checksum(rx_ring, rx_desc, skb);
6958
6959         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6960             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6961                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6962
6963         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6964             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6965                 u16 vid;
6966                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6967                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6968                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6969                 else
6970                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6971
6972                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6973         }
6974
6975         skb_record_rx_queue(skb, rx_ring->queue_index);
6976
6977         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6978 }
6979
6980 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6981 {
6982         struct igb_ring *rx_ring = q_vector->rx.ring;
6983         struct sk_buff *skb = rx_ring->skb;
6984         unsigned int total_bytes = 0, total_packets = 0;
6985         u16 cleaned_count = igb_desc_unused(rx_ring);
6986
6987         while (likely(total_packets < budget)) {
6988                 union e1000_adv_rx_desc *rx_desc;
6989
6990                 /* return some buffers to hardware, one at a time is too slow */
6991                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6992                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
6993                         cleaned_count = 0;
6994                 }
6995
6996                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6997
6998                 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6999                         break;
7000
7001                 /* This memory barrier is needed to keep us from reading
7002                  * any other fields out of the rx_desc until we know the
7003                  * RXD_STAT_DD bit is set
7004                  */
7005                 rmb();
7006
7007                 /* retrieve a buffer from the ring */
7008                 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7009
7010                 /* exit if we failed to retrieve a buffer */
7011                 if (!skb)
7012                         break;
7013
7014                 cleaned_count++;
7015
7016                 /* fetch next buffer in frame if non-eop */
7017                 if (igb_is_non_eop(rx_ring, rx_desc))
7018                         continue;
7019
7020                 /* verify the packet layout is correct */
7021                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7022                         skb = NULL;
7023                         continue;
7024                 }
7025
7026                 /* probably a little skewed due to removing CRC */
7027                 total_bytes += skb->len;
7028
7029                 /* populate checksum, timestamp, VLAN, and protocol */
7030                 igb_process_skb_fields(rx_ring, rx_desc, skb);
7031
7032                 napi_gro_receive(&q_vector->napi, skb);
7033
7034                 /* reset skb pointer */
7035                 skb = NULL;
7036
7037                 /* update budget accounting */
7038                 total_packets++;
7039         }
7040
7041         /* place incomplete frames back on ring for completion */
7042         rx_ring->skb = skb;
7043
7044         u64_stats_update_begin(&rx_ring->rx_syncp);
7045         rx_ring->rx_stats.packets += total_packets;
7046         rx_ring->rx_stats.bytes += total_bytes;
7047         u64_stats_update_end(&rx_ring->rx_syncp);
7048         q_vector->rx.total_packets += total_packets;
7049         q_vector->rx.total_bytes += total_bytes;
7050
7051         if (cleaned_count)
7052                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7053
7054         return (total_packets < budget);
7055 }
7056
7057 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7058                                   struct igb_rx_buffer *bi)
7059 {
7060         struct page *page = bi->page;
7061         dma_addr_t dma;
7062
7063         /* since we are recycling buffers we should seldom need to alloc */
7064         if (likely(page))
7065                 return true;
7066
7067         /* alloc new page for storage */
7068         page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
7069         if (unlikely(!page)) {
7070                 rx_ring->rx_stats.alloc_failed++;
7071                 return false;
7072         }
7073
7074         /* map page for use */
7075         dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7076
7077         /* if mapping failed free memory back to system since
7078          * there isn't much point in holding memory we can't use
7079          */
7080         if (dma_mapping_error(rx_ring->dev, dma)) {
7081                 __free_page(page);
7082
7083                 rx_ring->rx_stats.alloc_failed++;
7084                 return false;
7085         }
7086
7087         bi->dma = dma;
7088         bi->page = page;
7089         bi->page_offset = 0;
7090
7091         return true;
7092 }
7093
7094 /**
7095  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7096  *  @adapter: address of board private structure
7097  **/
7098 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7099 {
7100         union e1000_adv_rx_desc *rx_desc;
7101         struct igb_rx_buffer *bi;
7102         u16 i = rx_ring->next_to_use;
7103
7104         /* nothing to do */
7105         if (!cleaned_count)
7106                 return;
7107
7108         rx_desc = IGB_RX_DESC(rx_ring, i);
7109         bi = &rx_ring->rx_buffer_info[i];
7110         i -= rx_ring->count;
7111
7112         do {
7113                 if (!igb_alloc_mapped_page(rx_ring, bi))
7114                         break;
7115
7116                 /* Refresh the desc even if buffer_addrs didn't change
7117                  * because each write-back erases this info.
7118                  */
7119                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7120
7121                 rx_desc++;
7122                 bi++;
7123                 i++;
7124                 if (unlikely(!i)) {
7125                         rx_desc = IGB_RX_DESC(rx_ring, 0);
7126                         bi = rx_ring->rx_buffer_info;
7127                         i -= rx_ring->count;
7128                 }
7129
7130                 /* clear the hdr_addr for the next_to_use descriptor */
7131                 rx_desc->read.hdr_addr = 0;
7132
7133                 cleaned_count--;
7134         } while (cleaned_count);
7135
7136         i += rx_ring->count;
7137
7138         if (rx_ring->next_to_use != i) {
7139                 /* record the next descriptor to use */
7140                 rx_ring->next_to_use = i;
7141
7142                 /* update next to alloc since we have filled the ring */
7143                 rx_ring->next_to_alloc = i;
7144
7145                 /* Force memory writes to complete before letting h/w
7146                  * know there are new descriptors to fetch.  (Only
7147                  * applicable for weak-ordered memory model archs,
7148                  * such as IA-64).
7149                  */
7150                 wmb();
7151                 writel(i, rx_ring->tail);
7152         }
7153 }
7154
7155 /**
7156  * igb_mii_ioctl -
7157  * @netdev:
7158  * @ifreq:
7159  * @cmd:
7160  **/
7161 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7162 {
7163         struct igb_adapter *adapter = netdev_priv(netdev);
7164         struct mii_ioctl_data *data = if_mii(ifr);
7165
7166         if (adapter->hw.phy.media_type != e1000_media_type_copper)
7167                 return -EOPNOTSUPP;
7168
7169         switch (cmd) {
7170         case SIOCGMIIPHY:
7171                 data->phy_id = adapter->hw.phy.addr;
7172                 break;
7173         case SIOCGMIIREG:
7174                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7175                                      &data->val_out))
7176                         return -EIO;
7177                 break;
7178         case SIOCSMIIREG:
7179         default:
7180                 return -EOPNOTSUPP;
7181         }
7182         return 0;
7183 }
7184
7185 /**
7186  * igb_ioctl -
7187  * @netdev:
7188  * @ifreq:
7189  * @cmd:
7190  **/
7191 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7192 {
7193         switch (cmd) {
7194         case SIOCGMIIPHY:
7195         case SIOCGMIIREG:
7196         case SIOCSMIIREG:
7197                 return igb_mii_ioctl(netdev, ifr, cmd);
7198         case SIOCGHWTSTAMP:
7199                 return igb_ptp_get_ts_config(netdev, ifr);
7200         case SIOCSHWTSTAMP:
7201                 return igb_ptp_set_ts_config(netdev, ifr);
7202         default:
7203                 return -EOPNOTSUPP;
7204         }
7205 }
7206
7207 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7208 {
7209         struct igb_adapter *adapter = hw->back;
7210
7211         if (pcie_capability_read_word(adapter->pdev, reg, value))
7212                 return -E1000_ERR_CONFIG;
7213
7214         return 0;
7215 }
7216
7217 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7218 {
7219         struct igb_adapter *adapter = hw->back;
7220
7221         if (pcie_capability_write_word(adapter->pdev, reg, *value))
7222                 return -E1000_ERR_CONFIG;
7223
7224         return 0;
7225 }
7226
7227 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7228 {
7229         struct igb_adapter *adapter = netdev_priv(netdev);
7230         struct e1000_hw *hw = &adapter->hw;
7231         u32 ctrl, rctl;
7232         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7233
7234         if (enable) {
7235                 /* enable VLAN tag insert/strip */
7236                 ctrl = rd32(E1000_CTRL);
7237                 ctrl |= E1000_CTRL_VME;
7238                 wr32(E1000_CTRL, ctrl);
7239
7240                 /* Disable CFI check */
7241                 rctl = rd32(E1000_RCTL);
7242                 rctl &= ~E1000_RCTL_CFIEN;
7243                 wr32(E1000_RCTL, rctl);
7244         } else {
7245                 /* disable VLAN tag insert/strip */
7246                 ctrl = rd32(E1000_CTRL);
7247                 ctrl &= ~E1000_CTRL_VME;
7248                 wr32(E1000_CTRL, ctrl);
7249         }
7250
7251         igb_rlpml_set(adapter);
7252 }
7253
7254 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7255                                __be16 proto, u16 vid)
7256 {
7257         struct igb_adapter *adapter = netdev_priv(netdev);
7258         struct e1000_hw *hw = &adapter->hw;
7259         int pf_id = adapter->vfs_allocated_count;
7260
7261         /* attempt to add filter to vlvf array */
7262         igb_vlvf_set(adapter, vid, true, pf_id);
7263
7264         /* add the filter since PF can receive vlans w/o entry in vlvf */
7265         igb_vfta_set(hw, vid, true);
7266
7267         set_bit(vid, adapter->active_vlans);
7268
7269         return 0;
7270 }
7271
7272 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7273                                 __be16 proto, u16 vid)
7274 {
7275         struct igb_adapter *adapter = netdev_priv(netdev);
7276         struct e1000_hw *hw = &adapter->hw;
7277         int pf_id = adapter->vfs_allocated_count;
7278         s32 err;
7279
7280         /* remove vlan from VLVF table array */
7281         err = igb_vlvf_set(adapter, vid, false, pf_id);
7282
7283         /* if vid was not present in VLVF just remove it from table */
7284         if (err)
7285                 igb_vfta_set(hw, vid, false);
7286
7287         clear_bit(vid, adapter->active_vlans);
7288
7289         return 0;
7290 }
7291
7292 static void igb_restore_vlan(struct igb_adapter *adapter)
7293 {
7294         u16 vid;
7295
7296         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7297
7298         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7299                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7300 }
7301
7302 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7303 {
7304         struct pci_dev *pdev = adapter->pdev;
7305         struct e1000_mac_info *mac = &adapter->hw.mac;
7306
7307         mac->autoneg = 0;
7308
7309         /* Make sure dplx is at most 1 bit and lsb of speed is not set
7310          * for the switch() below to work
7311          */
7312         if ((spd & 1) || (dplx & ~1))
7313                 goto err_inval;
7314
7315         /* Fiber NIC's only allow 1000 gbps Full duplex
7316          * and 100Mbps Full duplex for 100baseFx sfp
7317          */
7318         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7319                 switch (spd + dplx) {
7320                 case SPEED_10 + DUPLEX_HALF:
7321                 case SPEED_10 + DUPLEX_FULL:
7322                 case SPEED_100 + DUPLEX_HALF:
7323                         goto err_inval;
7324                 default:
7325                         break;
7326                 }
7327         }
7328
7329         switch (spd + dplx) {
7330         case SPEED_10 + DUPLEX_HALF:
7331                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7332                 break;
7333         case SPEED_10 + DUPLEX_FULL:
7334                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7335                 break;
7336         case SPEED_100 + DUPLEX_HALF:
7337                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7338                 break;
7339         case SPEED_100 + DUPLEX_FULL:
7340                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7341                 break;
7342         case SPEED_1000 + DUPLEX_FULL:
7343                 mac->autoneg = 1;
7344                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7345                 break;
7346         case SPEED_1000 + DUPLEX_HALF: /* not supported */
7347         default:
7348                 goto err_inval;
7349         }
7350
7351         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7352         adapter->hw.phy.mdix = AUTO_ALL_MODES;
7353
7354         return 0;
7355
7356 err_inval:
7357         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7358         return -EINVAL;
7359 }
7360
7361 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7362                           bool runtime)
7363 {
7364         struct net_device *netdev = pci_get_drvdata(pdev);
7365         struct igb_adapter *adapter = netdev_priv(netdev);
7366         struct e1000_hw *hw = &adapter->hw;
7367         u32 ctrl, rctl, status;
7368         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7369 #ifdef CONFIG_PM
7370         int retval = 0;
7371 #endif
7372
7373         netif_device_detach(netdev);
7374
7375         if (netif_running(netdev))
7376                 __igb_close(netdev, true);
7377
7378         igb_clear_interrupt_scheme(adapter);
7379
7380 #ifdef CONFIG_PM
7381         retval = pci_save_state(pdev);
7382         if (retval)
7383                 return retval;
7384 #endif
7385
7386         status = rd32(E1000_STATUS);
7387         if (status & E1000_STATUS_LU)
7388                 wufc &= ~E1000_WUFC_LNKC;
7389
7390         if (wufc) {
7391                 igb_setup_rctl(adapter);
7392                 igb_set_rx_mode(netdev);
7393
7394                 /* turn on all-multi mode if wake on multicast is enabled */
7395                 if (wufc & E1000_WUFC_MC) {
7396                         rctl = rd32(E1000_RCTL);
7397                         rctl |= E1000_RCTL_MPE;
7398                         wr32(E1000_RCTL, rctl);
7399                 }
7400
7401                 ctrl = rd32(E1000_CTRL);
7402                 /* advertise wake from D3Cold */
7403                 #define E1000_CTRL_ADVD3WUC 0x00100000
7404                 /* phy power management enable */
7405                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7406                 ctrl |= E1000_CTRL_ADVD3WUC;
7407                 wr32(E1000_CTRL, ctrl);
7408
7409                 /* Allow time for pending master requests to run */
7410                 igb_disable_pcie_master(hw);
7411
7412                 wr32(E1000_WUC, E1000_WUC_PME_EN);
7413                 wr32(E1000_WUFC, wufc);
7414         } else {
7415                 wr32(E1000_WUC, 0);
7416                 wr32(E1000_WUFC, 0);
7417         }
7418
7419         *enable_wake = wufc || adapter->en_mng_pt;
7420         if (!*enable_wake)
7421                 igb_power_down_link(adapter);
7422         else
7423                 igb_power_up_link(adapter);
7424
7425         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7426          * would have already happened in close and is redundant.
7427          */
7428         igb_release_hw_control(adapter);
7429
7430         pci_disable_device(pdev);
7431
7432         return 0;
7433 }
7434
7435 #ifdef CONFIG_PM
7436 #ifdef CONFIG_PM_SLEEP
7437 static int igb_suspend(struct device *dev)
7438 {
7439         int retval;
7440         bool wake;
7441         struct pci_dev *pdev = to_pci_dev(dev);
7442
7443         retval = __igb_shutdown(pdev, &wake, 0);
7444         if (retval)
7445                 return retval;
7446
7447         if (wake) {
7448                 pci_prepare_to_sleep(pdev);
7449         } else {
7450                 pci_wake_from_d3(pdev, false);
7451                 pci_set_power_state(pdev, PCI_D3hot);
7452         }
7453
7454         return 0;
7455 }
7456 #endif /* CONFIG_PM_SLEEP */
7457
7458 static int igb_resume(struct device *dev)
7459 {
7460         struct pci_dev *pdev = to_pci_dev(dev);
7461         struct net_device *netdev = pci_get_drvdata(pdev);
7462         struct igb_adapter *adapter = netdev_priv(netdev);
7463         struct e1000_hw *hw = &adapter->hw;
7464         u32 err;
7465
7466         pci_set_power_state(pdev, PCI_D0);
7467         pci_restore_state(pdev);
7468         pci_save_state(pdev);
7469
7470         err = pci_enable_device_mem(pdev);
7471         if (err) {
7472                 dev_err(&pdev->dev,
7473                         "igb: Cannot enable PCI device from suspend\n");
7474                 return err;
7475         }
7476         pci_set_master(pdev);
7477
7478         pci_enable_wake(pdev, PCI_D3hot, 0);
7479         pci_enable_wake(pdev, PCI_D3cold, 0);
7480
7481         if (igb_init_interrupt_scheme(adapter, true)) {
7482                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7483                 return -ENOMEM;
7484         }
7485
7486         igb_reset(adapter);
7487
7488         /* let the f/w know that the h/w is now under the control of the
7489          * driver.
7490          */
7491         igb_get_hw_control(adapter);
7492
7493         wr32(E1000_WUS, ~0);
7494
7495         if (netdev->flags & IFF_UP) {
7496                 rtnl_lock();
7497                 err = __igb_open(netdev, true);
7498                 rtnl_unlock();
7499                 if (err)
7500                         return err;
7501         }
7502
7503         netif_device_attach(netdev);
7504         return 0;
7505 }
7506
7507 #ifdef CONFIG_PM_RUNTIME
7508 static int igb_runtime_idle(struct device *dev)
7509 {
7510         struct pci_dev *pdev = to_pci_dev(dev);
7511         struct net_device *netdev = pci_get_drvdata(pdev);
7512         struct igb_adapter *adapter = netdev_priv(netdev);
7513
7514         if (!igb_has_link(adapter))
7515                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7516
7517         return -EBUSY;
7518 }
7519
7520 static int igb_runtime_suspend(struct device *dev)
7521 {
7522         struct pci_dev *pdev = to_pci_dev(dev);
7523         int retval;
7524         bool wake;
7525
7526         retval = __igb_shutdown(pdev, &wake, 1);
7527         if (retval)
7528                 return retval;
7529
7530         if (wake) {
7531                 pci_prepare_to_sleep(pdev);
7532         } else {
7533                 pci_wake_from_d3(pdev, false);
7534                 pci_set_power_state(pdev, PCI_D3hot);
7535         }
7536
7537         return 0;
7538 }
7539
7540 static int igb_runtime_resume(struct device *dev)
7541 {
7542         return igb_resume(dev);
7543 }
7544 #endif /* CONFIG_PM_RUNTIME */
7545 #endif
7546
7547 static void igb_shutdown(struct pci_dev *pdev)
7548 {
7549         bool wake;
7550
7551         __igb_shutdown(pdev, &wake, 0);
7552
7553         if (system_state == SYSTEM_POWER_OFF) {
7554                 pci_wake_from_d3(pdev, wake);
7555                 pci_set_power_state(pdev, PCI_D3hot);
7556         }
7557 }
7558
7559 #ifdef CONFIG_PCI_IOV
7560 static int igb_sriov_reinit(struct pci_dev *dev)
7561 {
7562         struct net_device *netdev = pci_get_drvdata(dev);
7563         struct igb_adapter *adapter = netdev_priv(netdev);
7564         struct pci_dev *pdev = adapter->pdev;
7565
7566         rtnl_lock();
7567
7568         if (netif_running(netdev))
7569                 igb_close(netdev);
7570
7571         igb_clear_interrupt_scheme(adapter);
7572
7573         igb_init_queue_configuration(adapter);
7574
7575         if (igb_init_interrupt_scheme(adapter, true)) {
7576                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7577                 return -ENOMEM;
7578         }
7579
7580         if (netif_running(netdev))
7581                 igb_open(netdev);
7582
7583         rtnl_unlock();
7584
7585         return 0;
7586 }
7587
7588 static int igb_pci_disable_sriov(struct pci_dev *dev)
7589 {
7590         int err = igb_disable_sriov(dev);
7591
7592         if (!err)
7593                 err = igb_sriov_reinit(dev);
7594
7595         return err;
7596 }
7597
7598 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7599 {
7600         int err = igb_enable_sriov(dev, num_vfs);
7601
7602         if (err)
7603                 goto out;
7604
7605         err = igb_sriov_reinit(dev);
7606         if (!err)
7607                 return num_vfs;
7608
7609 out:
7610         return err;
7611 }
7612
7613 #endif
7614 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7615 {
7616 #ifdef CONFIG_PCI_IOV
7617         if (num_vfs == 0)
7618                 return igb_pci_disable_sriov(dev);
7619         else
7620                 return igb_pci_enable_sriov(dev, num_vfs);
7621 #endif
7622         return 0;
7623 }
7624
7625 #ifdef CONFIG_NET_POLL_CONTROLLER
7626 /* Polling 'interrupt' - used by things like netconsole to send skbs
7627  * without having to re-enable interrupts. It's not called while
7628  * the interrupt routine is executing.
7629  */
7630 static void igb_netpoll(struct net_device *netdev)
7631 {
7632         struct igb_adapter *adapter = netdev_priv(netdev);
7633         struct e1000_hw *hw = &adapter->hw;
7634         struct igb_q_vector *q_vector;
7635         int i;
7636
7637         for (i = 0; i < adapter->num_q_vectors; i++) {
7638                 q_vector = adapter->q_vector[i];
7639                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7640                         wr32(E1000_EIMC, q_vector->eims_value);
7641                 else
7642                         igb_irq_disable(adapter);
7643                 napi_schedule(&q_vector->napi);
7644         }
7645 }
7646 #endif /* CONFIG_NET_POLL_CONTROLLER */
7647
7648 /**
7649  *  igb_io_error_detected - called when PCI error is detected
7650  *  @pdev: Pointer to PCI device
7651  *  @state: The current pci connection state
7652  *
7653  *  This function is called after a PCI bus error affecting
7654  *  this device has been detected.
7655  **/
7656 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7657                                               pci_channel_state_t state)
7658 {
7659         struct net_device *netdev = pci_get_drvdata(pdev);
7660         struct igb_adapter *adapter = netdev_priv(netdev);
7661
7662         netif_device_detach(netdev);
7663
7664         if (state == pci_channel_io_perm_failure)
7665                 return PCI_ERS_RESULT_DISCONNECT;
7666
7667         if (netif_running(netdev))
7668                 igb_down(adapter);
7669         pci_disable_device(pdev);
7670
7671         /* Request a slot slot reset. */
7672         return PCI_ERS_RESULT_NEED_RESET;
7673 }
7674
7675 /**
7676  *  igb_io_slot_reset - called after the pci bus has been reset.
7677  *  @pdev: Pointer to PCI device
7678  *
7679  *  Restart the card from scratch, as if from a cold-boot. Implementation
7680  *  resembles the first-half of the igb_resume routine.
7681  **/
7682 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7683 {
7684         struct net_device *netdev = pci_get_drvdata(pdev);
7685         struct igb_adapter *adapter = netdev_priv(netdev);
7686         struct e1000_hw *hw = &adapter->hw;
7687         pci_ers_result_t result;
7688         int err;
7689
7690         if (pci_enable_device_mem(pdev)) {
7691                 dev_err(&pdev->dev,
7692                         "Cannot re-enable PCI device after reset.\n");
7693                 result = PCI_ERS_RESULT_DISCONNECT;
7694         } else {
7695                 pci_set_master(pdev);
7696                 pci_restore_state(pdev);
7697                 pci_save_state(pdev);
7698
7699                 pci_enable_wake(pdev, PCI_D3hot, 0);
7700                 pci_enable_wake(pdev, PCI_D3cold, 0);
7701
7702                 igb_reset(adapter);
7703                 wr32(E1000_WUS, ~0);
7704                 result = PCI_ERS_RESULT_RECOVERED;
7705         }
7706
7707         err = pci_cleanup_aer_uncorrect_error_status(pdev);
7708         if (err) {
7709                 dev_err(&pdev->dev,
7710                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7711                         err);
7712                 /* non-fatal, continue */
7713         }
7714
7715         return result;
7716 }
7717
7718 /**
7719  *  igb_io_resume - called when traffic can start flowing again.
7720  *  @pdev: Pointer to PCI device
7721  *
7722  *  This callback is called when the error recovery driver tells us that
7723  *  its OK to resume normal operation. Implementation resembles the
7724  *  second-half of the igb_resume routine.
7725  */
7726 static void igb_io_resume(struct pci_dev *pdev)
7727 {
7728         struct net_device *netdev = pci_get_drvdata(pdev);
7729         struct igb_adapter *adapter = netdev_priv(netdev);
7730
7731         if (netif_running(netdev)) {
7732                 if (igb_up(adapter)) {
7733                         dev_err(&pdev->dev, "igb_up failed after reset\n");
7734                         return;
7735                 }
7736         }
7737
7738         netif_device_attach(netdev);
7739
7740         /* let the f/w know that the h/w is now under the control of the
7741          * driver.
7742          */
7743         igb_get_hw_control(adapter);
7744 }
7745
7746 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7747                              u8 qsel)
7748 {
7749         u32 rar_low, rar_high;
7750         struct e1000_hw *hw = &adapter->hw;
7751
7752         /* HW expects these in little endian so we reverse the byte order
7753          * from network order (big endian) to little endian
7754          */
7755         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7756                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7757         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7758
7759         /* Indicate to hardware the Address is Valid. */
7760         rar_high |= E1000_RAH_AV;
7761
7762         if (hw->mac.type == e1000_82575)
7763                 rar_high |= E1000_RAH_POOL_1 * qsel;
7764         else
7765                 rar_high |= E1000_RAH_POOL_1 << qsel;
7766
7767         wr32(E1000_RAL(index), rar_low);
7768         wrfl();
7769         wr32(E1000_RAH(index), rar_high);
7770         wrfl();
7771 }
7772
7773 static int igb_set_vf_mac(struct igb_adapter *adapter,
7774                           int vf, unsigned char *mac_addr)
7775 {
7776         struct e1000_hw *hw = &adapter->hw;
7777         /* VF MAC addresses start at end of receive addresses and moves
7778          * towards the first, as a result a collision should not be possible
7779          */
7780         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7781
7782         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7783
7784         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7785
7786         return 0;
7787 }
7788
7789 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7790 {
7791         struct igb_adapter *adapter = netdev_priv(netdev);
7792         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7793                 return -EINVAL;
7794         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7795         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7796         dev_info(&adapter->pdev->dev,
7797                  "Reload the VF driver to make this change effective.");
7798         if (test_bit(__IGB_DOWN, &adapter->state)) {
7799                 dev_warn(&adapter->pdev->dev,
7800                          "The VF MAC address has been set, but the PF device is not up.\n");
7801                 dev_warn(&adapter->pdev->dev,
7802                          "Bring the PF device up before attempting to use the VF device.\n");
7803         }
7804         return igb_set_vf_mac(adapter, vf, mac);
7805 }
7806
7807 static int igb_link_mbps(int internal_link_speed)
7808 {
7809         switch (internal_link_speed) {
7810         case SPEED_100:
7811                 return 100;
7812         case SPEED_1000:
7813                 return 1000;
7814         default:
7815                 return 0;
7816         }
7817 }
7818
7819 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7820                                   int link_speed)
7821 {
7822         int rf_dec, rf_int;
7823         u32 bcnrc_val;
7824
7825         if (tx_rate != 0) {
7826                 /* Calculate the rate factor values to set */
7827                 rf_int = link_speed / tx_rate;
7828                 rf_dec = (link_speed - (rf_int * tx_rate));
7829                 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7830                          tx_rate;
7831
7832                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7833                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7834                               E1000_RTTBCNRC_RF_INT_MASK);
7835                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7836         } else {
7837                 bcnrc_val = 0;
7838         }
7839
7840         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7841         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7842          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7843          */
7844         wr32(E1000_RTTBCNRM, 0x14);
7845         wr32(E1000_RTTBCNRC, bcnrc_val);
7846 }
7847
7848 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7849 {
7850         int actual_link_speed, i;
7851         bool reset_rate = false;
7852
7853         /* VF TX rate limit was not set or not supported */
7854         if ((adapter->vf_rate_link_speed == 0) ||
7855             (adapter->hw.mac.type != e1000_82576))
7856                 return;
7857
7858         actual_link_speed = igb_link_mbps(adapter->link_speed);
7859         if (actual_link_speed != adapter->vf_rate_link_speed) {
7860                 reset_rate = true;
7861                 adapter->vf_rate_link_speed = 0;
7862                 dev_info(&adapter->pdev->dev,
7863                          "Link speed has been changed. VF Transmit rate is disabled\n");
7864         }
7865
7866         for (i = 0; i < adapter->vfs_allocated_count; i++) {
7867                 if (reset_rate)
7868                         adapter->vf_data[i].tx_rate = 0;
7869
7870                 igb_set_vf_rate_limit(&adapter->hw, i,
7871                                       adapter->vf_data[i].tx_rate,
7872                                       actual_link_speed);
7873         }
7874 }
7875
7876 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7877 {
7878         struct igb_adapter *adapter = netdev_priv(netdev);
7879         struct e1000_hw *hw = &adapter->hw;
7880         int actual_link_speed;
7881
7882         if (hw->mac.type != e1000_82576)
7883                 return -EOPNOTSUPP;
7884
7885         actual_link_speed = igb_link_mbps(adapter->link_speed);
7886         if ((vf >= adapter->vfs_allocated_count) ||
7887             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7888             (tx_rate < 0) || (tx_rate > actual_link_speed))
7889                 return -EINVAL;
7890
7891         adapter->vf_rate_link_speed = actual_link_speed;
7892         adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7893         igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7894
7895         return 0;
7896 }
7897
7898 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7899                                    bool setting)
7900 {
7901         struct igb_adapter *adapter = netdev_priv(netdev);
7902         struct e1000_hw *hw = &adapter->hw;
7903         u32 reg_val, reg_offset;
7904
7905         if (!adapter->vfs_allocated_count)
7906                 return -EOPNOTSUPP;
7907
7908         if (vf >= adapter->vfs_allocated_count)
7909                 return -EINVAL;
7910
7911         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7912         reg_val = rd32(reg_offset);
7913         if (setting)
7914                 reg_val |= ((1 << vf) |
7915                             (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7916         else
7917                 reg_val &= ~((1 << vf) |
7918                              (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7919         wr32(reg_offset, reg_val);
7920
7921         adapter->vf_data[vf].spoofchk_enabled = setting;
7922         return E1000_SUCCESS;
7923 }
7924
7925 static int igb_ndo_get_vf_config(struct net_device *netdev,
7926                                  int vf, struct ifla_vf_info *ivi)
7927 {
7928         struct igb_adapter *adapter = netdev_priv(netdev);
7929         if (vf >= adapter->vfs_allocated_count)
7930                 return -EINVAL;
7931         ivi->vf = vf;
7932         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7933         ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7934         ivi->vlan = adapter->vf_data[vf].pf_vlan;
7935         ivi->qos = adapter->vf_data[vf].pf_qos;
7936         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7937         return 0;
7938 }
7939
7940 static void igb_vmm_control(struct igb_adapter *adapter)
7941 {
7942         struct e1000_hw *hw = &adapter->hw;
7943         u32 reg;
7944
7945         switch (hw->mac.type) {
7946         case e1000_82575:
7947         case e1000_i210:
7948         case e1000_i211:
7949         case e1000_i354:
7950         default:
7951                 /* replication is not supported for 82575 */
7952                 return;
7953         case e1000_82576:
7954                 /* notify HW that the MAC is adding vlan tags */
7955                 reg = rd32(E1000_DTXCTL);
7956                 reg |= E1000_DTXCTL_VLAN_ADDED;
7957                 wr32(E1000_DTXCTL, reg);
7958         case e1000_82580:
7959                 /* enable replication vlan tag stripping */
7960                 reg = rd32(E1000_RPLOLR);
7961                 reg |= E1000_RPLOLR_STRVLAN;
7962                 wr32(E1000_RPLOLR, reg);
7963         case e1000_i350:
7964                 /* none of the above registers are supported by i350 */
7965                 break;
7966         }
7967
7968         if (adapter->vfs_allocated_count) {
7969                 igb_vmdq_set_loopback_pf(hw, true);
7970                 igb_vmdq_set_replication_pf(hw, true);
7971                 igb_vmdq_set_anti_spoofing_pf(hw, true,
7972                                               adapter->vfs_allocated_count);
7973         } else {
7974                 igb_vmdq_set_loopback_pf(hw, false);
7975                 igb_vmdq_set_replication_pf(hw, false);
7976         }
7977 }
7978
7979 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7980 {
7981         struct e1000_hw *hw = &adapter->hw;
7982         u32 dmac_thr;
7983         u16 hwm;
7984
7985         if (hw->mac.type > e1000_82580) {
7986                 if (adapter->flags & IGB_FLAG_DMAC) {
7987                         u32 reg;
7988
7989                         /* force threshold to 0. */
7990                         wr32(E1000_DMCTXTH, 0);
7991
7992                         /* DMA Coalescing high water mark needs to be greater
7993                          * than the Rx threshold. Set hwm to PBA - max frame
7994                          * size in 16B units, capping it at PBA - 6KB.
7995                          */
7996                         hwm = 64 * pba - adapter->max_frame_size / 16;
7997                         if (hwm < 64 * (pba - 6))
7998                                 hwm = 64 * (pba - 6);
7999                         reg = rd32(E1000_FCRTC);
8000                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8001                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8002                                 & E1000_FCRTC_RTH_COAL_MASK);
8003                         wr32(E1000_FCRTC, reg);
8004
8005                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8006                          * frame size, capping it at PBA - 10KB.
8007                          */
8008                         dmac_thr = pba - adapter->max_frame_size / 512;
8009                         if (dmac_thr < pba - 10)
8010                                 dmac_thr = pba - 10;
8011                         reg = rd32(E1000_DMACR);
8012                         reg &= ~E1000_DMACR_DMACTHR_MASK;
8013                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8014                                 & E1000_DMACR_DMACTHR_MASK);
8015
8016                         /* transition to L0x or L1 if available..*/
8017                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8018
8019                         /* watchdog timer= +-1000 usec in 32usec intervals */
8020                         reg |= (1000 >> 5);
8021
8022                         /* Disable BMC-to-OS Watchdog Enable */
8023                         if (hw->mac.type != e1000_i354)
8024                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8025
8026                         wr32(E1000_DMACR, reg);
8027
8028                         /* no lower threshold to disable
8029                          * coalescing(smart fifb)-UTRESH=0
8030                          */
8031                         wr32(E1000_DMCRTRH, 0);
8032
8033                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8034
8035                         wr32(E1000_DMCTLX, reg);
8036
8037                         /* free space in tx packet buffer to wake from
8038                          * DMA coal
8039                          */
8040                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8041                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8042
8043                         /* make low power state decision controlled
8044                          * by DMA coal
8045                          */
8046                         reg = rd32(E1000_PCIEMISC);
8047                         reg &= ~E1000_PCIEMISC_LX_DECISION;
8048                         wr32(E1000_PCIEMISC, reg);
8049                 } /* endif adapter->dmac is not disabled */
8050         } else if (hw->mac.type == e1000_82580) {
8051                 u32 reg = rd32(E1000_PCIEMISC);
8052                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8053                 wr32(E1000_DMACR, 0);
8054         }
8055 }
8056
8057 /**
8058  *  igb_read_i2c_byte - Reads 8 bit word over I2C
8059  *  @hw: pointer to hardware structure
8060  *  @byte_offset: byte offset to read
8061  *  @dev_addr: device address
8062  *  @data: value read
8063  *
8064  *  Performs byte read operation over I2C interface at
8065  *  a specified device address.
8066  **/
8067 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8068                       u8 dev_addr, u8 *data)
8069 {
8070         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8071         struct i2c_client *this_client = adapter->i2c_client;
8072         s32 status;
8073         u16 swfw_mask = 0;
8074
8075         if (!this_client)
8076                 return E1000_ERR_I2C;
8077
8078         swfw_mask = E1000_SWFW_PHY0_SM;
8079
8080         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
8081             != E1000_SUCCESS)
8082                 return E1000_ERR_SWFW_SYNC;
8083
8084         status = i2c_smbus_read_byte_data(this_client, byte_offset);
8085         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8086
8087         if (status < 0)
8088                 return E1000_ERR_I2C;
8089         else {
8090                 *data = status;
8091                 return E1000_SUCCESS;
8092         }
8093 }
8094
8095 /**
8096  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8097  *  @hw: pointer to hardware structure
8098  *  @byte_offset: byte offset to write
8099  *  @dev_addr: device address
8100  *  @data: value to write
8101  *
8102  *  Performs byte write operation over I2C interface at
8103  *  a specified device address.
8104  **/
8105 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8106                        u8 dev_addr, u8 data)
8107 {
8108         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8109         struct i2c_client *this_client = adapter->i2c_client;
8110         s32 status;
8111         u16 swfw_mask = E1000_SWFW_PHY0_SM;
8112
8113         if (!this_client)
8114                 return E1000_ERR_I2C;
8115
8116         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
8117                 return E1000_ERR_SWFW_SYNC;
8118         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8119         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8120
8121         if (status)
8122                 return E1000_ERR_I2C;
8123         else
8124                 return E1000_SUCCESS;
8125
8126 }
8127
8128 int igb_reinit_queues(struct igb_adapter *adapter)
8129 {
8130         struct net_device *netdev = adapter->netdev;
8131         struct pci_dev *pdev = adapter->pdev;
8132         int err = 0;
8133
8134         if (netif_running(netdev))
8135                 igb_close(netdev);
8136
8137         igb_reset_interrupt_capability(adapter);
8138
8139         if (igb_init_interrupt_scheme(adapter, true)) {
8140                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8141                 return -ENOMEM;
8142         }
8143
8144         if (netif_running(netdev))
8145                 err = igb_open(netdev);
8146
8147         return err;
8148 }
8149 /* igb_main.c */